WO2019235900A1 - 발광 소자 패키지 및 이의 제조 방법 - Google Patents

발광 소자 패키지 및 이의 제조 방법 Download PDF

Info

Publication number
WO2019235900A1
WO2019235900A1 PCT/KR2019/006930 KR2019006930W WO2019235900A1 WO 2019235900 A1 WO2019235900 A1 WO 2019235900A1 KR 2019006930 W KR2019006930 W KR 2019006930W WO 2019235900 A1 WO2019235900 A1 WO 2019235900A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflector
light emitting
emitting device
cover
substrate
Prior art date
Application number
PCT/KR2019/006930
Other languages
English (en)
French (fr)
Inventor
빌렌코유리
박기연
Original Assignee
서울바이오시스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울바이오시스 주식회사 filed Critical 서울바이오시스 주식회사
Priority to EP19815307.4A priority Critical patent/EP3806172A4/en
Priority to CN201911389651.3A priority patent/CN111092143B/zh
Priority to CN201980002623.3A priority patent/CN110832649B/zh
Priority to JP2020568305A priority patent/JP2021527324A/ja
Publication of WO2019235900A1 publication Critical patent/WO2019235900A1/ko
Priority to US17/113,448 priority patent/US20210091278A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements

Definitions

  • the present invention relates to a light emitting device package and a method of manufacturing the same.
  • a light emitting diode is a semiconductor light emitting device that emits light by a potential difference when electrons and holes recombine in a P-N semiconductor junction structure by an applied current.
  • the light emitting device using the light emitting diode has advantages such as eco-friendly, low voltage, long life and low price.
  • light emitting diodes are conventionally applied to simple information display such as display lamps and numbers, recently, due to the development of industrial technology, especially information display technology and semiconductor technology, the display field, lighting field, automobile head lamp, projector, etc. It is used in various fields, and in particular, it is being applied to external installations such as street lamps and traffic lights. Accordingly, even more durable structures are required when light emitting diodes are used in external installations that may be exposed to relatively harsh environments.
  • An object of the present invention is to provide a light emitting device package having a durable structure by being assembled stably and stably.
  • a light emitting device package includes a substrate having a mounting area on which a light emitting device chip is mounted, a light emitting device chip mounted on a mounting area of the substrate, and a circumference of the light emitting device chip.
  • a reflector having an opening for exposing the mounting area and having an elasticity, the reflector of which the diameter can be changed, and a cover surrounding the reflector.
  • the inner surface forming the opening of the reflector may be inclined with respect to the surface of the substrate.
  • the width of the opening of the reflector may increase in an upward direction from the substrate surface.
  • the inner surface forming the opening of the reflector may have a parabolic cross section.
  • the light emitting device chip may be provided at the focus of the parabola.
  • the reflector may have a ring shape when viewed in a plan view.
  • the reflector has a slit in which a part of the reflector is removed on one side, the reflector is separated by the slit may have both ends facing each other.
  • the slit may be on a line passing through the center of the ring or beveled with respect to the line.
  • the outer wall of the reflector may be in contact with the inner surface of the cover.
  • the outer diameter of the reflector may be the same as the inner diameter of the cover.
  • the outer wall of the reflector and the inner surface of the cover may be fastened to each other.
  • the outer wall of the reflector and the inner surface of the cover may each have a thread that engages each other.
  • the reflector may be made of a metal.
  • the light emitting device package may further include a reflective film provided on the inner surface of the reflector.
  • the reflector may be provided as a metal, a ceramic, or an organic polymer.
  • the light emitting device package may further include a window connected to the cover and transmitting the light emitted from the light emitting device chip.
  • the window may cover the opening of the reflector.
  • the window may fill the opening of the reflector.
  • the light emitting device package having the above-described structure can be manufactured by mounting a light emitting device chip on a substrate, preparing a cover, mounting the cover around the reflector, and fastening the cover into which the reflector is inserted onto the substrate. have.
  • the reflector has a slit to provide an elastic force by removing a portion thereof, the outer diameter of the reflector can be adjusted by the slit.
  • the reflector may be inserted into the cover in a state adjusted to have an outer diameter equal to or less than the inner diameter of the cover.
  • the step of mounting a window to the cover may be further included.
  • the light emitting device package may be employed in the light irradiation device, the light irradiation device includes at least one light emitting device package, and a body on which the at least one light emitting device package is mounted.
  • the light emitting device package according to the embodiment of the present invention provides a durable structure by assembling each component stably and firmly.
  • FIG. 1 is a cross-sectional view showing a light emitting device package according to an embodiment of the present invention.
  • FIG. 2 is a plan view illustrating a light emitting device package according to an exemplary embodiment of the present invention.
  • FIG 3 is a plan view showing a light emitting device package according to an embodiment of the present invention.
  • 4A to 4C are cross-sectional views sequentially illustrating a manufacturing method according to an embodiment of the present invention.
  • 5 to 8 are cross-sectional views illustrating light emitting device packages according to example embodiments.
  • Figure 1 is a cross-sectional view showing a light emitting device package according to an embodiment of the present invention
  • Figure 2 is a plan view showing a light emitting device package according to an embodiment of the present invention.
  • a light emitting device package 100 is a light source that is employed in various devices through surface mount, etc., and emits light 21. ). More specifically, the light emitting device package 100 according to an embodiment of the present invention is a substrate 10 on which the light emitting device chip 21 is mounted, a light emitting device chip 21 mounted on the substrate 10, light emission The reflector 30 reflects light emitted from the element chip 21, and a cover 43 surrounding the circumference of the reflector 30 and fastened to the reflector 30.
  • the substrate 10 is for mounting at least one light emitting device chip 21 thereon and has a mounting area in which the light emitting device chip 21 is mounted.
  • the substrate 10 may mount the light emitting device chip 21 and may be provided in various shapes.
  • the substrate 10 may be provided in a plate shape having a substantially circular shape and a predetermined height in plan view.
  • the shape of the substrate 10 is not limited thereto, and may be provided in an elliptical shape or a square shape.
  • the substrate 10 may be made of a material having high thermal conductivity.
  • the substrate 10 may be made of, for example, a metal, and copper, iron, nickel, chromium, aluminum, silver, gold, titanium, alloys thereof, or the like may be used as the metal.
  • the material of the substrate 10 is not limited thereto, and may be made of a non-conductive material.
  • a conductor may be provided on the upper surface.
  • ceramic, resin, glass, or a composite material thereof for example, a composite resin or a mixture of the composite resin and the conductive material
  • the substrate 10 may be provided as a single body that is not separated, but is not limited thereto, and the plurality of sub substrates 10 may be provided in a combined form.
  • the substrate 10 is provided with a terminal portion for supplying power to the light emitting device chip 21.
  • the terminal unit may include a first terminal 51 and a second terminal 53 respectively connected to the cathode and the anode of the light emitting device chip 21.
  • the first and second terminals 51 and 53 may be provided in a pin shape penetrating the upper and lower surfaces of the substrate 10.
  • the first and second terminals 51 and 53 may be formed to be longer than the thickness of the substrate 10 to extend to the bottom of the substrate 10.
  • the first and second terminals 51 and 53 may each be made of a conductive material, for example a metal.
  • the first and second terminals 51 and 53 have upper ends thereof on the same height as the upper surface of the substrate 10, but for convenience of description, the first and second terminals 51 and 53 may be arranged differently. have.
  • upper ends of the first and second terminals 51 and 53 may protrude from the upper surface of the substrate 10.
  • pads having a relatively large area may be further provided on upper portions of the first and second terminals 51 and 53 to facilitate connection with the light emitting device chip 21.
  • pads having a relatively large area may be further provided on upper portions of the first and second terminals 51 and 53 to facilitate connection with the light emitting device chip 21.
  • an insulator 55 may be provided between the substrate 10 and the terminal portion. That is, an insulator 55 surrounding the first terminal 51 and the second terminal 53 is provided between the substrate 10 and the first terminal 51 and between the substrate 10 and the second terminal 53. Can be. The insulator 55 insulates the first and second terminals 51, 53 from the substrate 10, respectively.
  • the substrate 10 when the substrate 10 is made of a non-conductive material, for example, a material such as ceramic, the substrate 10 itself corresponds to an insulating material, so that the insulator 55 may be omitted.
  • the substrate 10, the first terminal 51, and the second terminal 53 may be in contact with each other.
  • the light emitting device chip 21 is mounted in the mounting area of the substrate 10.
  • the light emitting device chip 21 may be directly mounted on the substrate 10 or disposed on the substrate 10 with the submount 27 interposed therebetween.
  • the light emitting device chip 21 is disposed on the submount 27, and the submount 27 on which the light emitting device chip 21 is mounted is mounted on the substrate 10.
  • one light emitting device chip 21 is provided on the substrate 10
  • the present invention is not limited thereto, and two or more light emitting device chips 21 may be provided as necessary. have.
  • the light emitting device chip 21 may be a flip chip type.
  • the type of the light emitting device chip 21 is not limited thereto, and may be provided in various forms such as a lateral type or a vertical type without departing from the concept of the present invention.
  • the light emitting device chip 21 may include a light emitting structure and an electrode unit formed on the base substrate.
  • the base substrate can be, for example, a sapphire substrate, in particular a patterned sapphire substrate.
  • the base substrate is preferably an insulating substrate, but is not limited to the insulating substrate.
  • the light emitting structure may include a first semiconductor layer, an active layer, and a second semiconductor layer sequentially provided.
  • the first semiconductor layer is a semiconductor layer doped with a first conductivity type dopant.
  • the first conductivity type dopant may be an n type dopant.
  • the first conductivity type dopant may be Si, Ge, Se, Te or C.
  • the first semiconductor layer may comprise a nitride-based semiconductor material.
  • the first semiconductor layer may be formed of a semiconductor material having a composition formula of In x Al y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + ⁇ 1).
  • the semiconductor material having the above composition formula may include GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, or the like.
  • the first semiconductor layer may be formed by growing to include n-type dopants such as Si, Ge, Sn, Se, and Te using the semiconductor material.
  • the active layer is provided on the first semiconductor layer and corresponds to the light emitting layer.
  • the active layer electrons (or holes) injected through the first conductive semiconductor layer and holes (or electrons) injected through the second semiconductor layer meet each other, and a band gap of an energy band according to the material of the active layer is formed.
  • the active layer may emit at least one peak wavelength of ultraviolet, blue, green, and red.
  • the active layer may be implemented with a compound semiconductor.
  • the active layer of example 3 -5-group or group 2 in a compound semiconductor of Group -6 may be implemented by at least one, In x Al y Ga 1- xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1).
  • the second semiconductor layer is provided on the active layer.
  • the second semiconductor layer is a semiconductor layer having a second conductivity type dopant having a polarity opposite to that of the first conductivity type dopant.
  • the second conductivity type dopant may be a p-type dopant, and the second conductivity type dopant may include, for example, Mg, Zn, Ca, Sr, Ba, or the like.
  • the second semiconductor layer may comprise a nitride-based semiconductor material.
  • the second semiconductor layer may be made of a semiconductor material having a composition formula of In x Al y Ga 1-xy N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x + y ⁇ 1).
  • the semiconductor material having the above composition formula may include GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, or the like.
  • the second semiconductor layer may be formed by growing to include p-type dopants such as Mg, Zn, Ca, Sr, and Ba using the semiconductor material.
  • an insulating film is provided on the first semiconductor layer and the second semiconductor layer, and a cathode and an anode connected to the first semiconductor layer and the second semiconductor layer, respectively, with the insulating film interposed therebetween.
  • the sub-mount 27 may be provided between the substrate 10 and the light emitting device chip 21, and may be provided under the light emitting device chip 21 to provide the light emitting device chip 21 with the terminal portion provided on the substrate 10. Can be electrically connected
  • the submount 27 may be made of a material having high thermal conductivity so as to effectively discharge heat generated from the light emitting device chip 21.
  • the submount 27 may be made of ceramic such as AlN.
  • First and second pads 25a and 25b electrically connected to the light emitting device chip 21 may be provided on the upper surface of the sub-mount 27, and the first and second pads 25a and 25b may be light emitting devices.
  • the cathode and the anode of the chip 21 may be connected to each other via the conductive adhesive member 23.
  • the first and second pads 25a and 25b may be wire-bonded to the first and second terminals 51 and 53, respectively, so that the cathode of the light emitting device chip 21 may form the conductive adhesive member 23.
  • the first pad 25a is connected to the first pad 25a, and the first pad 25a is connected to the first terminal 51 through the wire W.
  • the anode of the light emitting device chip 21 is connected to the second pad 25b through the conductive adhesive member 23, and the second pad 25b is connected to the second terminal 53 through the wire W. Accordingly, power may be applied to the light emitting device chip 21 through the terminal unit.
  • the conductive adhesive member 23 may be provided with a conductive paste such as solder paste or silver paste or a conductive resin, or may be provided as an anisotropic conductive film.
  • the shape of the sub-mount 27 may be variously changed within the limit that the light emitting device chip 21 may be electrically connected to the terminal provided on the substrate 10, and may be omitted according to an embodiment.
  • the light emitting device chip 21 may have a chip-on-board form mounted directly on the substrate 10.
  • the reflector 30 is provided on the substrate 10 along the circumference of the mounting area.
  • the reflector 30 reflects light so that the light emitted from the light emitting element chip 21 travels upward.
  • the reflector 30 is provided around the light emitting device chip 21 and has an opening OPN exposing the mounting area of the substrate 10. That is, the reflector 30 is provided on the substrate 10 in a ring shape through which the upper and lower parts penetrate.
  • the reflector 30 may have a shape corresponding to the shape of the substrate 10, and may be provided in a circular ring shape when viewed in plan view.
  • the shape of the reflector 30 is not limited thereto, and may be provided in the shape of an ellipse, a square, or the like, or may be provided in a shape different from that of the substrate 10.
  • the light emitting device chip 21 may be disposed on the substrate 10 provided with the opening OPN of the gafflector 30.
  • the light emitting device chip 21 may be disposed in an area corresponding to the center of the circle formed by the reflector 30 so as to maximize the reflectance of light.
  • the reflector 30 has an inner surface 31 facing the opening OPN, an outer surface 33 facing the outside, and a bottom surface in contact with the upper surface of the substrate 10.
  • the cross section of the reflector 30 has a substantially right triangle shape, and the inner surface 31 may correspond to the hypotenuse.
  • the cross section of the reflector 30 is not limited thereto, and the reflector 30 has an upper surface having an area opposite to the bottom surface and having a smaller area than the bottom surface in addition to the inner surface 31, the outer surface 33, and the bottom surface.
  • the cross section of the reflector 30 may have a substantially trapezoidal shape, and the inner side surface 31 may correspond to the hypotenuse of the trapezoid.
  • the inner surface 31 is provided at least partially inclined with respect to the upper surface of the substrate 10. Accordingly, the width of the opening OPN of the reflector 30 increases from the upper surface of the substrate 10 toward the upper direction. In other words, the inner diameter D1 of the reflector 30 increases from the upper surface of the substrate 10 toward the upper direction.
  • the outer surface 33 of the reflector 30 may be provided perpendicularly to the upper surface of the substrate 10, so that the outer diameter D2 of the reflector 30 mounted on the cover 43 may be formed on the substrate 10. It may have substantially the same value without increasing or decreasing from the upper surface to the upper direction. However, the outer diameter D2 of the reflector 30 is not limited thereto, and may be changed to facilitate the fastening with the cover 43 thereafter.
  • An adhesive may be provided between the substrate 10 and the reflector 30 to bond the substrate 10 and the reflector 30, or the substrate 10 and the reflector 30 may be provided with a separate fastening member such as a hook. It can also be connected via. However, one embodiment of the present invention is not limited thereto, and the adhesive between the substrate 10 and the reflector 30 may be omitted.
  • the reflector 30 may be made of a material having high reflectivity so that the light extraction efficiency of the light emitted from the light emitting device chip 21 is maximized.
  • the reflector 30 may be made of aluminum and / or aluminum alloy. However, in addition to aluminum and / or aluminum alloys, it may be made of highly reflective materials, for example, various metals such as silver, gold, tin, copper, chromium, nickel, molybdenum, titanium, and / or alloys containing the same. In addition, the reflector 30 may be made of a material having high reflectivity according to the wavelength of light emitted from the light emitting device chip 21. For example, since silver (Ag) has a low light reflectance in a predetermined ultraviolet wavelength band, when the light emitting device chip 21 emits ultraviolet rays, silver may not be used as a material of the reflector 30.
  • the reflector 30 may be made of a reflective material other than metal.
  • it may be made of an organic polymer material having reflectivity.
  • the organic polymer may be made of a single film or multiple films so that the organic polymer material is reflective, and at least one of the films made of a single film or multiple films may be stretched and expanded.
  • the organic polymer may have polymer nodes connected to each other by fibrils that make microporous pores.
  • organic polymer materials having such a reflective structure for example, Teflon-based may be used.
  • the organic polymer material used for the reflector 30 may be made of stretch expanded polytetrafluoroethylene.
  • the reflector 30 has a slit 37 which provides an elastic force by removing a portion thereof.
  • the slit 37 is provided on one side of the reflector 30 and the reflector 30 is separated by the slit 37. Accordingly, the reflector 30 is connected to each other in a portion where the slit 37 is not provided to form a ring shape, but in the portion where the slit 37 is formed, both ends of the reflector 30 are separated from each other to face each other. Becomes Both ends may be in contact and may be spaced a predetermined distance apart.
  • the reflector 30 has elastic force by the slit 37, and both ends thereof are manufactured to be spaced apart from each other, and the outer diameter of the reflector 30 may be changed by a force applied from both sides to the inside. This will be described later.
  • the slit 37 may be provided on a line passing through the center of the shape formed by the reflector 30, for example, when the reflector 30 has a circular shape, from the center of the circle. It may be provided on a line facing outward.
  • the shape of the slit 37 is not limited thereto, and may be provided in various shapes within a limit to which the reflectance may be maximized while stably providing a degree of elasticity to the reflector 30.
  • the slit 37 is formed differently in the light emitting device package 100 according to an embodiment of the present invention.
  • the slit 37 may be provided obliquely on a line passing through the center of the shape formed by the reflector 30. Since the areas of both ends of the slits 37 facing each other are formed to be wide and meet in an oblique line, distortion of both ends can be reduced, thereby providing a stable ring shape.
  • a cover 43 is provided along the side of the reflector 30, ie along the circumference of the reflector 30.
  • the cover 43 surrounds the reflector 30 in a form surrounding the outer surface of the reflector 30 and has a shape penetrating up and down.
  • the cover 43 is provided along the circumference of the reflector 30 and is attached to the substrate 10 while supporting the window 41.
  • the cover 43 may be made of various materials, for example, made of metal. In addition to aluminum and / or aluminum alloys, it may be made of highly reflective materials such as silver, gold, tin, copper, chromium, nickel, molybdenum, titanium, and other metals and / or alloys containing the same. Alternatively, the material may be formed of a material other than a metal, for example, an organic polymer, and may be coated with a metal or a metal alloy.
  • An upper end of the cover 43 may partially extend in a direction parallel to the surface of the substrate 10, and a stepped portion (not shown) may be provided on the extended portion to mount the window 41.
  • the stepped portion provided in the cover 43 may be provided corresponding to the thickness of the window 41.
  • An adhesive for attaching the window 41 may be provided between the stepped portion of the cover 43 and the window 41.
  • the lower end of the cover 43 is provided on the surface of the substrate 10 and connected to the substrate 10 with the coupling member 47 interposed therebetween, thereby sealing the internal space.
  • the coupling member 47 is not particularly limited as long as the coupling member 47 is for sealing the inner space by connecting the lower end of the cover 43 and the substrate 10.
  • the cover 43 is made of metal
  • the coupling member 47 may be a weld welded to the cover 43 and the substrate 10. In this case, the lower end of the cover 43 may be sealed by welding.
  • the inner diameter W1 of the cover 43 is substantially the same as the outer diameter D2 of the reflector 30. Accordingly, the inner surface of the cover 43 is in overall contact with the outer surface 33 of the reflector 30.
  • An upper portion of the cover 43 may be provided with a window 41 provided in an area corresponding to the upper portion of the light emitting device chip 21 to transmit light.
  • the window 41 is provided in a region corresponding to the upper portion of the light emitting device chip 21 to transmit the light emitted from the light emitting device chip 21.
  • the window 41 may protect the light emitting device chip 21 in the opening OPN.
  • the window 41 may have various shapes to transmit the light emitted from the light emitting device chip 21 or to change a path of the light emitted from the light emitting device chip 21.
  • the light may be collected or distributed, and the window 41 may be applied to the use.
  • the window 41 is made of a transparent insulating material in order to transmit light from the light emitting device chip 21, and protects the light emitting device chip 21 and simultaneously transmits the light emitted from the light emitting device chip 21.
  • the window 41 may be made of a material that is not deformed or discolored by the light emitted from the light emitting device chip 21.
  • the window 41 may be made of a material that is not deformed or discolored by the ultraviolet light.
  • the window 41 may be provided in various materials as long as the function described above is satisfied, but the material is not limited.
  • the window 41 may be made of quartz or a polymer organic material.
  • the polymer glass material may be selected in consideration of the wavelength emitted from the light emitting device chip 21 because the wavelength to be absorbed / transmitted varies depending on the type of the monomer, the molding method, and the conditions.
  • organic polymers such as poly (methylmethacrylate) (PMMA), polyvinylalcohol (PVA), polypropylene (PP) and low density polyethylene (PE) are ultraviolet rays. Silver hardly absorbs, but organic polymers such as polyester can absorb ultraviolet rays.
  • the window 41 is provided on the light emitting device chip 21 spaced apart from the light emitting device chip 21, but is not limited thereto, and from the light emitting device chip 21 Various modifications can be made within the limits of efficiently transmitting the emitted light.
  • the window 41 may be provided to fill the inner opening OPN of the reflector 30.
  • the light emitting device package 100 having the above-described structure may be manufactured by the following method.
  • 4A to 4C are cross-sectional views sequentially illustrating a manufacturing method according to an embodiment of the present invention.
  • the cover 43 and the reflector 30 may be assembled.
  • the reflector 30 has a slit 37 (see FIG. 2) with a portion thereof removed. Both ends of the reflector 30 separated by the slit 37 are spaced apart from each other by a predetermined distance. Since both ends of the reflector 30 are spaced apart by the slit 37, the distance between the both ends of the reflector 30 when the external force is applied in the inward direction from both sides of the reflector 30 As it narrows, the outer diameter of the reflector 30 can be reduced. If the external force in the inward direction on both sides of the reflector is lost, the reflector 30 is returned to its original diameter by elasticity.
  • the diameter in the state without external force is called 1st diameter D0
  • the diameter in the state which applied the external force P1 in the inward direction from both sides is called 2nd diameter 'D2
  • the diameter D2 is smaller than the first diameter D1
  • the degree of reduction of the diameter may vary depending on the size of the external force P1 and the width of the slit 37.
  • the reflector 30 is inserted into the cover 43 with a force applied from the outside.
  • the cover 43 may be disposed to penetrate up and down, and then the reflector 30 may be inserted from the upper side to the lower side.
  • the bottom part of the reflector 30 can be arrange
  • this insertion method has been described as an example, and covers the reflector 30 from the bottom to the top in a state in which the opening OPN of the cover 43 penetrates up and down and an external force is applied to the reflector 30. It may be inserted into (43), or may be assembled in such a way that the reflector 30 is fixed and the cover 43 is fitted into the reflector 30.
  • the second diameter D2 of the reflector 30 must be equal to or smaller than the inner diameter W1 of the cover 43, that is, the inner diameter W1 of the cover 43, so that the reflector 30 can be easily introduced into the cover 43. Is inserted. Substantially, when the second diameter D2 is smaller than the same as the inner diameter W1 of the cover 43, the insertion can be easily performed.
  • the reflector 30 has a restoring force by removing external force. Accordingly, the reflector 30 is fixed to the cover 43 very stably and tightly.
  • a substrate 10 on which the light emitting device chip 21 is mounted is provided, and the substrate 10 is provided.
  • the assembly of the reflector 30 and the cover 43 is disposed on ().
  • the light emitting device chip 21 may be first mounted on the submount 27, and the light emitting device chip 10 mounted on the submount 27 may include a substrate 10 having first and second terminals 51 and 53. Wire bond). Although not shown, an adhesive may be provided between the submount 27 and the substrate 10.
  • the assembly of the reflector 30 and the cover 43 may be disposed on the substrate 10 after being rotated in a direction in which the opening of the reflector 30 is gradually widened upward.
  • the reflector 30 is disposed so as to surround the circumference of the light emitting device chip 21 and the light emitting device chip 21 is positioned in an opening OPN portion of the reflector 30.
  • the reflector 30 since the reflector 30 is firmly fixed to the cover 43, the reflector 30 may be stably disposed on the substrate 10, so that an adhesive may be omitted between the reflector 30 and the substrate 10. Can be. However, of course, an adhesive may be used to more firmly secure between the reflector 30 and the substrate 10.
  • the cover 43 and the substrate 10 are sealed.
  • the lower end of the cover 43 and the substrate 10 are sealed by welding to complete the light emitting device package 100 according to an embodiment of the present invention.
  • the preparing of the cover 43, the preparing of the reflector 30, and the preparing of the substrate 10 or the light emitting device are not particularly related to each other. It may be provided in the form that is then mounted or assembled.
  • the cover 43 and the window 41 are first coupled, and then the reflector 30 is mounted on the cover 43, but is not limited thereto.
  • the order of coupling of the window 41 to the cover 43 may be variously changed.
  • the cover 43 and the reflector 30 are assembled first, and then the window 41 is opened prior to mounting the cover 43 and the reflector 30 assembly to the substrate 10.
  • the cover 43 and the reflector 30 may be assembled first, and the cover 43 and the reflector 30 assembly may be mounted on the substrate 10, and then, Finally, the window 41 may be connected to the cover 43.
  • FIG. 4A to 4C illustrate a method of manufacturing one light emitting device package 100, but the present disclosure is not limited thereto.
  • a plurality of light emitting device packages 100 may be simultaneously packaged. It is possible to batch produce.
  • the plurality of covers 43 may be prepared and arranged in a row form, and then the reflectors 30 and the cover 43 assembly may be inserted into the covers 43 simultaneously or sequentially. Can be formed.
  • the prepared reflector 30 and the cover 43 assembly are simultaneously assembled to cover the light emitting device chips 21.
  • the plurality of light emitting device packages 100 may be manufactured.
  • the cover 43 or the substrate 10 is formed in a wide manner without being separated for each individual light emitting device package 100, assembled into a shape in which the reflector 30 is inserted into each of them, and then cutting in the final step. It can also be prepared.
  • the light emitting device package 100 provides a durable structure by assembling each component stably and firmly.
  • the reflector 30 is tightly fastened to the cover 43, thereby reducing the separation of the reflector 30 in the light emitting device package 100.
  • a space occurs between the cover 43 and the reflector 30.
  • the reflector 30 is not firmly fixed to the cover 43, a problem may arise in that the reflector 30 is not fixed to the space generated between the cover 43 and the reflector 30.
  • the reflector 30 is detached from the substrate 10 and unexpectedly moves within the light emitting device package 100 to the space, thereby causing the reflector 30 to move. There may be a rattle problem.
  • the reflector 30 may move within the cover 43 to damage other components, for example, the light emitting device chip 21, the wire W, or the like.
  • a separate adhesive was required to fix the reflector 30 and the cover 43, the reflector 30 and the cover with an adhesive A separate process for fixing (43) was added. Nevertheless, the adhesive may drop due to external impact during use, or due to the curing action of the adhesive over time, and in this case, the problem that the reflector 30 and the cover 43 are separated again occurs.
  • the reflector 30 is disposed on the cover 43 very stably only by simple insertion without the addition of a separate process, so that the above problem does not occur.
  • the reflector 30 since the reflector 30 is provided in an elastic form, the reflector 30 is stably fixed to the cover 43 using a physical elastic force.
  • the reflector 30 according to the exemplary embodiment of the present invention does not need an additional adhesive between the cover 43 and the reflector 30 simply by inserting the reflector 30 into the cover 43.
  • the cover 43 assembly is completed.
  • the step of attaching the reflector 30 and the cover 43 through the adhesive, the step of curing the adhesive, and the like are all omitted. As a result, the process of fastening the reflector 30 and the cover 43 becomes very easy and simplified, and the manufacturing yield increases while reducing the defective rate when assembling the light emitting device package.
  • the light emitting device package having the above-described structure may be modified in various forms in order to increase light extraction efficiency or increase workability.
  • 5 to 8 are cross-sectional views showing light emitting device packages according to embodiments of the present invention.
  • the description will be focused on the differences from the above-described embodiment in order to avoid duplication of description, and the non-described parts are in accordance with the above-described embodiment.
  • the window 41 may be provided as a simple plate rather than a lens, but may have a convex lens or a concave lens shape.
  • the window 41 may have various shapes such as spherical, elliptical, hemispherical, semi-elliptic, bifocal, and the like.
  • a window 41 having a lens shape having a lower surface is a flat surface and an upper surface is convex upward is shown as an example.
  • by varying the shape of the window 41 it is possible to variously adjust, such as to condense or disperse the path of the light emitted from the light emitting device chip 21.
  • the reflector 30 has an inner surface 31 facing the opening OPN, an outer surface 33 facing the outside, and a bottom surface in contact with the upper surface of the substrate 10.
  • the inner side 31 may be of a curved surface.
  • the curvature of the curved surface may be set to various degrees depending on the profile of the light from the light emitting element chip 21. For example, when the amount of light emitted upward by the light emitting device chip 21 is relatively large or when the amount of light emitted by the side is relatively large, the curvatures of the inner surface 31 may be different from each other.
  • the inner surface 31 of the reflector 30 may be a parabolic surface, and the light emitting device diode may be disposed at the focal point of the parabolic surface.
  • the side corresponding to the inner surface 31 may be made of a parabola, and the light emitting diode may be disposed at the focal point of the parabola.
  • the light reflected by the inner surface 31 of the reflector 30 among the light emitted from the light emitting diode may progress upward in parallel.
  • the inner surface 31 is curved, but the shape of the inner surface 31 is not limited thereto.
  • the inner surface 31 may have a shape in which at least one curved surface and at least one flat surface are mixed, and the inclination of the plane or the curvature of the curved surface may be variously set.
  • the reflector 30 may have a reflecting film 39 for increasing the reflectance.
  • the reflective film 39 may be plated or coated with a material having a high light reflectance from the light emitting device chip 21.
  • the reflector 30 may have a reflecting film 39 on its entire surface, but the reflecting film 39 may be provided on the inner surface 31, which is a portion where actual light is reflected.
  • the portion except for the reflecting film 39 may be provided as a metal, but may be made of a ceramic or an organic polymer other than the metal.
  • a metal for example, polycarbonate (PC), polyether sulfone (Polyether Sulfone), triacetyl cellulose (TAC), polymethyl methacrylate (PMMA), polyvinyl alcohol (PVA), polyimide (PI), cyclic olefin Organic polymers such as copolymer (COC), Teflon, polytetrafluoroethylene (ePTFE) and the like can be used.
  • PC polycarbonate
  • Polyether Sulfone Polyether Sulfone
  • TAC triacetyl cellulose
  • PMMA polymethyl methacrylate
  • PMMA polyvinyl alcohol
  • PVA polyvinyl alcohol
  • PI polyimide
  • cyclic olefin Organic polymers such as copolymer (COC), Teflon, polytetrafluoroethylene (ePTFE) and
  • the reflective film 39 may be made of a highly reflective material, such as silver, gold, tin, copper, chromium, nickel, molybdenum, titanium, and / or an alloy containing the same, and / or an alloy containing the same. It may be made of a polymer or the like.
  • the reflector 30 and / or the reflective film 39 may be provided with a roughness for improving the light emission efficiency by improving the scattering of the light emitted from the light emitting device chip 21.
  • the roughness may be provided on the inner inclined surface of the reflector 30 and / or the reflective film 39, and may be additionally provided on the upper surface of the substrate 10 as necessary.
  • the cover 43 and the reflector 30 may be further provided with a fastening member for improving assembly.
  • the cover 43 and the reflector 30 may be provided with threads 35 fastened to each other on surfaces facing each other. The threads 43 of the cover 43 and the reflector 30 are fastened in engagement with each other.
  • the cover 43 and the reflector 30 may be tightened more firmly.
  • the above-described light emitting device package may be applied to various types of light irradiation apparatus, for example, UV curing machine, sterilizer and the like.
  • the light irradiation apparatus includes at least one light emitting device package and a body on which the at least one light emitting device package is mounted.
  • the main body may further include a power supply unit for providing power, a control unit for controlling the amount of light emitted from the light emitting device package, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

발광 소자 패키지는, 발광 소자 칩이 실장되는 실장 영역을 갖는 기판, 상기 기판의 실장 영역 상에 실장된 발광 소자 칩, 상기 발광 소자 칩 둘레에 제공되고, 상기 기판의 실장 영역을 노출하는 개구를 가지며 탄성을 가짐으로써 직경 변경이 가능한 리플렉터, 및 상기 리플렉터의 둘레를 감싸는 커버를 포함한다.

Description

발광 소자 패키지 및 이의 제조 방법
본 발명은 발광 소자 패키지 및 이의 제조 방법에 관한 것이다.
발광 다이오드는 인가된 전류에 의해 P-N 반도체 접합 구조에서 전자와 정공이 재결합할 때, 전위차에 의해 빛을 발하는 반도체 발광 장치이다. 이러한 발광 다이오드를 이용한 발광 장치는 친환경, 저 전압, 긴 수명 및 낮은 가격 등의 장점을 갖는다.
발광 다이오드는 종래에는 표시용 램프나 숫자와 같은 단순 정보 표시에 많이 응용되었지만, 최근에는 산업기술의 발전, 특히 정보표시 기술과 반도체 기술의 발전으로 디스플레이 분야나, 조명분야, 자동차 헤드램프, 프로젝터 등 다양한 방면에 걸쳐 이용되고 있으며, 특히, 가로등이나 신호등과 같은 외부 설치물에도 적용되고 있는 추세이다. 이에 따라, 상대적으로 가혹한 환경에 노출될 수 있는 외부 설치물에 발광 다이오드가 사용되는 경우 더욱 더 내구성 있는 구조가 요구된다.
본 발명은 안정적으로 단단하게 조립됨으로써 내구성 높은 구조를 갖는 발광 소자 패키지를 제공하는 것을 목적으로 한다.
본 발명의 일 실시예에 따른 발광 소자 패키지는, 발광 소자 칩이 실장되는 실장 영역을 갖는 기판, 상기 기판의 실장 영역 상에 실장된 발광 소자 칩, 상기 발광 소자 칩 둘레에 제공되고, 상기 기판의 실장 영역을 노출하는 개구를 가지며 탄성을 가짐으로써 직경의 변경이 가능한 리플렉터, 및 상기 리플렉터의 둘레를 감싸는 커버를 포함한다.
본 발명의 일 실시예에 있어서, 상기 리플렉터의 개구를 이루는 내측면은 상기 기판의 면에 대해 경사질 수 있다.
본 발명의 일 실시예에 있어서, 상기 리플렉터의 개구의 폭은 상기 기판 면으로부터 상부 방향으로 갈수록 증가할 수 있다.
본 발명의 일 실시예에 있어서, 상기 리플렉터의 개구를 이루는 내측면은 그 단면이 포물선을 이룰 수 있다.
본 발명의 일 실시예에 있어서, 상기 발광 소자 칩은 상기 포물선의 초점에 제공될 수 있다.
본 발명의 일 실시예에 있어서, 상기 리플렉터는 평면 상에서 볼 때 고리 형상을 가질 수 있다.
본 발명의 일 실시예에 있어서, 상기 리플렉터는 일측에 상기 리플렉터의 일부가 제거된 슬릿을 가지며, 상기 슬릿에 의해 상기 리플렉터가 분리되어 서로 마주보는 양 단부를 가질 수 있다.
본 발명의 일 실시예에 있어서, 상기 슬릿은 상기 고리의 중심을 지나는 선 상에 있거나 상기 선에 대해 비스듬할 수 있다.
본 발명의 일 실시예에 있어서, 상기 리플렉터의 외측벽은 상기 커버의 내측면과 접촉할 수 있다.
본 발명의 일 실시예에 있어서, 상기 리플렉터의 외경은 상기 커버의 내경과 동일할 수 있다.
본 발명의 일 실시예에 있어서, 상기 리플렉터의 외측벽과 상기 커버의 내측면은 서로 체결될 수 있다.
본 발명의 일 실시예에 있어서, 상기 리플렉터의 외측벽과 상기 커버의 내측면은 각각 서로 맞물리는 나사산을 가질 수 있다.
본 발명의 일 실시예에 있어서, 상기 리플렉터는 금속으로 이루어질 수 있다.
본 발명의 일 실시예에 있어서, 발광 소자 패키지는 상기 리플렉터의 내측면 상에 제공된 반사막을 더 포함할 수 있다. 상기 리플렉터는 금속, 세라믹, 또는 유기 고분자로 제공될 수 있다.
본 발명의 일 실시예에 있어서, 발광 소자 패키지는 상기 커버에 연결되며 상기 발광 소자 칩으로부터 출사된 광을 투과시키는 윈도우를 더 포함할 수 있다.
본 발명의 일 실시예에 있어서, 상기 윈도우는 상기 리플렉터의 상기 개구를 커버할 수 있다. 또는 상기 윈도우는 상기 리플렉터의 개구를 충진할 수 있다.
상술한 구조의 발광 소자 패키지는, 기판 상에 발광 소자 칩을 실장하고, 커버를 준비하고, 리플렉터의 둘레에 상기 커버를 장착하고, 상기 리플렉터가 삽입된 커버를 상기 기판 상에 체결함으로써 제조할 수 있다.
본 발명의 일 실시예에 있어서, 상기 리플렉터는 그 일부가 제거됨으로써 탄성력을 제공하는 슬릿을 가지며, 상기 슬릿에 의해 상기 리플렉터의 외경이 조절될 수 있다.
본 발명의 일 실시예에 있어서, 상기 리플렉터는 상기 커버의 내경과 동일하거나 더 작은 외경을 갖도록 조절된 상태에서 상기 커버에 삽입될 수 있다.
본 발명의 일 실시예에 있어서, 발광 소자 패키지의 제조시, 상기 커버에 윈도우를 장착하는 단계가 더 포함될 수 있다.
본 발명의 일 실시예에 있어서, 발광 소자 패키지는 광 조사 장치에 채용될 수 있으며, 광 조사 장치는 적어도 하나의 상기 발광 소자 패키지, 및 상기 적어도 하나의 발광 소자 패키지가 장착된 본체를 포함한다.
본 발명의 일 실시예에 따른 발광 소자 패키지는, 각 구성 요소가 안정적으로 단단하게 조립됨으로써 내구성 높은 구조를 제공한다.
도 1은 본 발명의 일 실시예에 따른 발광 소자 패키지를 도시한 단면도이다.
도 2는 본 발명의 일 실시예에 따른 발광 소자 패키지를 도시한 평면도이다.
도 3은 본 발명의 일 실시예에 따른 발광 소자 패키지를 도시한 평면도이다.
도 4a 내지 도 4c는 본 발명의 일 실시예에 따른 제조 방법을 순차적으로 도시한 단면도이다.
도 5 내지 8은 본 발명의 일 실시예들에 따른 발광 소자 패키지를 도시한 단면도들이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
이하, 첨부한 도면들을 참조하여 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다.
도 1은 본 발명의 일 실시예에 따른 발광 소자 패키지를 도시한 단면도이며, 도 2는 본 발명의 일 실시예에 따른 발광 소자 패키지를 도시한 평면도이다.
도 1 및 도 2를 참조하면, 본 발명의 일 실시예에 따른 발광 소자 패키지(100)는 표면 실장(surface mount) 등을 통해 다양한 장치에 채용되는 광원으로서, 광을 출사하는 발광 소자 칩(21)을 포함한다. 좀더 상세하게는, 본 발명의 일 실시예에 따른 발광 소자 패키지(100)는 발광 소자 칩(21)이 실장되는 기판(10), 기판(10) 상에 실장된 발광 소자 칩(21), 발광 소자 칩(21)으로부터 출사된 광을 반사하는 리플렉터(30), 및 리플렉터(30)의 둘레를 둘러싸며 레플렉터(30)과 체결되는 커버(43)를 포함한다.
기판(10)은 그 상부에 하나 이상의 발광 소자 칩(21)을 실장하기 위한 것으로서, 발광 소자 칩(21)이 실장되는 실장 영역을 갖는다.
기판(10)은 발광 소자 칩(21)을 실장할 수 있는 것으로서 다양한 형상으로 제공될 수 있다. 일예로 기판(10)은 평면 상에서 볼 때 대략 원형이며 소정의 높이를 갖는 판상으로 제공될 수 있다. 그러나, 기판(10)의 형상은 이에 한정되는 것은 아니며, 타원형이나 사각형으로 제공될 수도 있다.
기판(10)은 적어도 일부가 열 전도율이 높은 재료로 이루어질 수 있다. 기판(10)는 예를 들어, 금속으로 이루어질 수 있으며, 상기 금속으로는 구리, 철, 니켈, 크롬, 알루미늄, 은, 금, 티타늄, 이들의 합금 등이 사용될 수 있다. 그러나, 기판(10)의 재료는 이에 한정되는 것은 아니며, 비도전성 재료로 이루어질 수 있다. 비도전성 재료로 이루어지는 경우, 상면에 도전체가 제공될 수 있다. 비도전성 재료로는 세라믹, 수지, 유리, 또는 이들의 복합 재료(예를 들어, 복합 수지 또는 복합 수지와 도전 재료의 혼합재) 등이 사용될 수 있다.
본 발명의 일 실시예에 있어서, 기판(10)은 분리되지 않은 일체로 제공될 수도 있으나, 이에 한정되는 것은 아니며, 복수 개의 서브 기판(10)이 조합된 형태로 제공될 수도 있다.
기판(10)에는 발광 소자 칩(21)에 전원을 제공하기 위한 단자부가 제공된다. 단자부는 발광 소자 칩(21)의 캐소드와 애노드에 각각 연결되는 제1 단자(51) 및 제2 단자(53)를 포함할 수 있다.
본 발명의 일 실시예에 있어서, 제1 및 제2 단자(51, 53)는 기판(10)의 상하면을 관통하는 핀형으로 제공될 수 있다. 제1 및 제2 단자(51, 53)는 기판(10)의 두께보다 길게 형성되어 기판(10)의 하단으로 길게 연장된 형태로 제공될 수 있다. 제1 및 제2 단자(51, 53)는 각각 도전성 재료, 예를 들어, 금속으로 이루어질 수 있다. 본 실시예에 있어서, 제1 및 제2 단자(51, 53)는 그 상단부가 기판(10)의 상면과 동일 높이 상에 있는 것을 도시하였으나, 이는 설명의 편의를 위한 것으로서, 이와 달리 배치될 수 있다. 예를 들어, 제1 및 제2 단자(51, 53)의 상단부가 기판(10)의 상면으로부터 돌출될 수도 있다. 이에 더해, 별도로 도시하지는 않았으나, 제1 및 제2 단자(51, 53)의 상부는 이후 발광 소자 칩(21)과의 연결이 용이하도록 상대적으로 넓은 면적을 갖는 패드가 더 제공될 수 있다. 또한,
본 발명의 일 실시예에 있어서, 기판(10)과 단자부 사이에는 절연체(55)가 제공될 수 있다. 즉, 기판(10)과 제1 단자(51) 사이 및 기판(10)과 제2 단자(53) 사이는 제1 단자(51)와 제2 단자(53)를 둘러싸는 절연체(55)가 제공될 수 있다. 절연체(55)는 기판(10)으로부터 제1 및 제2 단자(51, 53)를 각각 절연한다.
본 발명의 일 실시예에 있어서, 기판(10)이 비도전성 재료, 예를 들어, 세라믹과 같은 재료로 이루어진 경우, 기판(10) 자체가 절연성 물질에 해당하므로, 상기 절연체(55)는 생략될 수 있으며, 기판(10)과 제1 단자(51) 및 제2 단자(53)는 각각 서로 접촉될 수도 있다.
기판(10)의 실장 영역에는 발광 소자 칩(21)이 실장된다. 발광 소자 칩(21)은 기판(10) 상에 직접 실장되거나, 서브 마운트(27)를 사이에 두고 기판(10) 상에 배치될 수 있다. 본 발명의 일 실시예에서는 발광 소자 칩(21)이 서브 마운트(27)에 배치되고, 발광 소자 칩(21)이 실장된 서브 마운트(27)가 기판(10) 상에 실장된 것을 도시하였다.
본 발명의 일 실시예에 있어서, 기판(10) 상에 발광 소자 칩(21)이 하나 제공된 것을 도시하였으나, 이에 한정되는 것은 아니며, 필요에 따라 2개 이상의 발광 소자 칩(21)이 제공될 수도 있다.
본 발명의 일 실시예에 있어서, 발광 소자 칩(21)은 플립칩 타입일 수 있다. 그러나 발광 소자 칩(21)의 종류는 이에 한정되는 것은 아니며, 본 발명의 개념에서 벗어나지 않는 한, 래터럴 타입이나 버티컬 타입 등 다양한 형태로 제공될 수 있다.
도시하지는 않았으나, 발광 소자 칩(21)은 베이스 기판 상에 형성된 발광 구조체 및 전극부를 포함할 수 있다.
베이스 기판은 예를 들어, 사파이어 기판, 특히 패터닝된 사파이어 기판일 수 있다. 베이스 기판은 절연 기판인 것이 선호되지만, 절연 기판에 한정되는 것은 아니다.
발광 구조체는 순차적으로 제공된 제1 반도체층, 활성층, 및 제2 반도체층을 포함할 수 있다.
제1 반도체층은 제1 도전형 도펀트가 도핑된 반도체 층이다. 제1 도전형 도펀트는 n형 도펀트일 수 있다. 제1 도전형 도펀트는 Si, Ge, Se, Te 또는 C일 수 있다. 본 발명의 일 실시예에 있어서, 제1 반도체층은 질화물계 반도체 재료를 포함할 수 있다. 예를 들어, 제1 반도체층은 InxAlyGa1-x-yN(0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 재료로 이루어질 수 있다. 본 발명의 일 실시예에 있어서, 상기 조성식을 갖는 반도체 재료로는 GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN 등을 들 수 있다. 제1 반도체층은 상기 반도체 재료를 이용하여 Si, Ge, Sn, Se, Te 등의 n형 도펀트를 포함하도록 성장시키는 방식으로 형성될 수 있다.
활성층은 제1 반도체층 상에 제공되며 발광층에 해당한다.
활성층은 제1 도전형 반도체층을 통해서 주입되는 전자(또는 정공)와 제2 반도체층을 통해서 주입되는 정공(또는 전자)이 서로 만나서, 활성층의 형성 물질에 따른 에너지 밴드(Energy Band)의 밴드 갭(Band Gap) 차이에 의해서 빛을 방출하는 층이다. 활성층은 자외선, 청색, 녹색 및 적색 중 적어도 하나의 피크 파장을 발광할 수 있다.
활성층은 화합물 반도체로 구현될 수 있다. 활성층은 예로서 3족-5족 또는 2족-6족의 화합물반도체 중에서 적어도 하나로 구현될 수 있으며, InxAlyGa1-x-yN (0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 재료로 배치될 수 있다.
제2 반도체층은 활성층 상에 제공된다.
제2 반도체층은 제1 도전형 도펀트와 반대의 극성을 갖는 제2 도전형 도펀트를 갖는 반도체층이다. 제2 도전형 도펀트는 p형 도펀트일 수 있는 바, 제2 도전형 도펀트는 예를 들어, Mg, Zn, Ca, Sr, Ba 등을 포함할 수 있다. 본 발명의 일 실시예에 있어서, 제2 반도체층은 질화물계 반도체 재료를 포함할 수 있다. 제2 반도체층은 InxAlyGa1-x-yN(0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 재료로 이루어질 수 있다. 본 발명의 일 실시예에 있어서, 상기 조성식을 갖는 반도체 재료로는 GaN, AlN, AlGaN, InGaN, InN, InAlGaN, AlInN, 등을 들 수 있다. 제2 반도체층은 상기 반도체 재료를 이용하여 Mg, Zn, Ca, Sr, Ba 등의 p형 도펀트를 포함도록 성장시키는 방식으로 형성될 수 있다.
본 발명의 일 실시예에 있어서, 제1 반도체층과 제2 반도체층 상에는 절연막이 제공되며, 절연막 상에는 절연막을 사이에 두고 각각 제1 반도체층 및 제2 반도체층에 연결되는 캐소드와 애노드가 제공된다.
서브 마운트(27)는 기판(10)과 발광 소자 칩(21) 사이에 제공될 수 있으며, 발광 소자 칩(21)의 하부에 제공되어 발광 소자 칩(21)을 기판(10) 에 제공된 단자부와 전기적으로 연결할 수 있다.
서브 마운트(27)는 발광 소자 칩(21)으로부터 발생된 열을 효과적으로 배출시킬 수 있도록 열전도성이 높은 물질로 이루어질 수 있다. 예를 들어, 서브 마운트(27)는 AlN과 같은 세라믹으로 이루어질 수 있다.
서브 마운트(27)의 상면에는 발광 소자 칩(21)과 전기적으로 연결되는 제1 및 제2 패드(25a, 25b)가 제공될 수 있으며, 제1 및 제2 패드(25a, 25b)는 발광 소자 칩(21)의 캐소드와 애노드에 도전성 접착 부재(23)를 통해 각각 연결될 수 있다. 제1 및 제2 패드(25a, 25b)는 각각 제1 및 제2 단자(51, 53)에 와이어 본딩될 수 있으며, 이에 따라, 발광 소자 칩(21)의 캐소드는 도전성 접착 부재(23)를 통해 제1 패드(25a)에 연결되고, 제1 패드(25a)는 와이어(W)를 통해 통해 제1 단자(51)에 연결된다. 발광 소자 칩(21)의 애노드는 도전성 접착 부재(23)를 통해 제2 패드(25b)에 연결되고, 제2 패드(25b)는 와이어(W)를 통해 제2 단자(53)에 연결된다. 이에 따라, 발광 소자 칩(21)에 단자부를 통해 전원이 인가될 수 있다.
여기서, 도전성 접착 부재(23)는 솔더 페이스트, 은 페이스트 등의 도전성 페이스트나 도전성 수지로 제공될 수 있으며, 또는 이방성 도전 필름으로 제공될 수도 있다.
서브 마운트(27)의 형상은 발광 소자 칩(21)을 기판(10)에 제공된 단자부와 전기적으로 연결할 수 있는 한도 내에서 다양하게 변경될 수 있으며, 실시예에 따라 생략될 수도 있다. 서브 마운트(27)가 생략되는 경우, 발광 소자 칩(21)은 기판(10)에 직접적으로 실장되는 칩-온-보드(chip-on-board) 형태를 가질 수도 있다.
기판(10) 상에는 실장 영역의 둘레를 따라 리플렉터(30)가 제공된다. 리플렉터(30)는 발광 소자 칩(21)으로부터 출사된 광이 상부 방향으로 진행하도록 광을 반사한다.
리플렉터(30)는 발광 소자 칩(21) 둘레에 제공되며, 기판(10)의 실장 영역을 노출하는 개구(OPN)를 갖는다. 즉, 리플렉터(30)는 상하부가 관통된 고리 형상으로 기판(10) 상에 제공된다. 리플렉터(30)는 기판(10)의 형상에 대응하는 형상을 가질 수 있는 바, 평면 상에서 볼 때 원형의 고리 형상으로 제공될 수 있다. 그러나, 리플렉터(30)의 형상은 이에 한정되는 것은 아니며, 타원형, 사각형 등의 형상으로 제공될 수도 있고, 기판(10)의 형상과 다른 형상으로 제공될 수도 있다.
리플렉터(30)의 개구(OPN)에 대응하는 부분에는, 기판(10)의 실장 영역이 외부로 노출된다. 기플렉터(30)의 개구(OPN)가 제공된 기판(10) 상에는 발광 소자 칩(21)이 배치될 수 있다. 리플렉터(30)가 원형 고리 형태로 제공되는 경우, 발광 소자 칩(21)은 광의 반사율이 최대화되도록 리플렉터(30)가 이루는 원의 중심에 대응하는 영역에 배치될 수 있다.
본 발명의 일 실시예에 따른 리플렉터(30)는 개구(OPN)에 면하는 내측면(31)과, 외부에 면하는 외측면(33) 및 기판(10)의 상면에 접하는 저면을 갖는다. 본 발명의 일 실시예에 있어서, 리플렉터(30)의 단면은 대략적으로 직각 삼각형 형상을 가지며, 내측면(31)은 빗변에 대응할 수 있다. 그러나, 리플렉터(30)의 단면은 이에 한정되는 것은 아니며, 리플렉터(30)는 내측면(31), 외측면(33), 및 저면에 더해, 저면에 반대되며 저면보다 좁은 면적을 갖는 상면을 가질 수 있다. 이 경우, 리플렉터(30)의 단면은 대략적으로 사다리꼴 형상을 가질 수 있으며, 내측면(31)은 사다리꼴의 빗변에 대응할 수 있다.
본 발명의 일 실시예에 있어서, 내측면(31)은 기판(10)의 상면에 대해 적어도 일부가 경사지게 제공된다. 이에 따라, 리플렉터(30)의 개구(OPN)의 폭은 기판(10) 상면으로부터 상부 방향으로 갈수록 커진다. 다시 말해, 리플렉터(30)의 내경(D1)은 기판(10) 상면으로부터 상부 방향으로 갈수록 커진다. 리플렉터(30)의 외측면(33)은 기판(10)의 상면에 대해 수직으로 제공될 수 있으며, 이에 따라 커버(43)에 장착된 리플렉터(30)의 외경(D2)은 기판(10)의 상면으로부터 상부 방향으로 커지거나 줄어들지 않고 실질적으로 동일한 값을 가질 수 있다. 그러나, 리플렉터(30)의 외경(D2)은 이에 한정되는 것은 아니며 이후 커버(43)와의 체결이 용이하도록 변경될 수도 있다.
기판(10)과 리플렉터(30) 사이에는 기판(10)과 리플렉터(30)를 접착시키기 위한 접착제가 제공될 수 있으며, 또는 기판(10)과 리플렉터(30)가 후크와 같은 별도의 체결 부재를 통해 연결될 수도 있다. 그러나, 본 발명의 일 실시예는 이에 한정되는 아니며, 기판(10)과 리플렉터(30) 사이의 접착제가 생략될 수 있다.
리플렉터(30)는 발광 소자 칩(21)으로부터 출사된 광의 광 추출 효율이 최대화될 수 있도록 반사성이 높은 재료로 이루어질 수 있다.
예를 들어, 리플렉터(30)는 알루미늄 및/또는 알루미늄 합금으로 이루어질 수 있다. 그러나, 알루미늄 및/또는 알루미늄 합금 이외에도 반사성이 높은 재료, 예를 들어, 은, 금, 주석, 구리, 크롬, 니켈, 몰리브덴, 티타늄 등 다양한 금속 및/또는 이를 포함하는 합금으로 이루어질 수 있다. 또한, 리플렉터(30)는 발광 소자 칩(21)에서 출사되는 광의 파장에 따라 반사도가 높은 재료로 이루어질 수도 있다. 예를 들어, 은(Ag)의 경우 소정 자외선 파장 대역에서 광 반사율이 낮은 바, 발광 소자 칩(21)이 자외선을 출사하는 경우, 리플렉터(30)의 재료로서 은은 사용되지 않을 수 있다.
본 발명의 일 실시예에 있어서, 리플렉터(30)는 금속 이외의 반사성 재료로 이루어질 수도 있다. 예를 들어, 반사성을 갖는 유기 고분자 재료로 이루어질 수도 있다. 상기 유기 고분자 재료가 반사성을 가지도록, 유기 고분자는 단일막 또는 다중막으로 이루어질 수 있으며, 단일막 또는 다중막으로 이루어지는 막들 중 적어도 하나의 막이 연신 팽창될 수 있다. 또한, 상기 유기 고분자는 미세 다공질의 공극을 만드는 파이브릴(fibril)에 의해서 서로 접속된 폴리머 결절(polymer node)을 가질 수 있다. 이러한 구조의 반사성을 갖는 유기 고분자 재료는 다양한 것이 있을 수 있으며, 예를 들어 테플론계가 사용될 수 있다. 예를 들어, 리플렉터(30)에 사용되는 유기 고분자재료는 연신 팽창된 폴리테트라플루오로에틸렌 (polytetrafluoroethylene)으로 이루어질 수 있다.
본 발명의 일 실시예에 있어서, 리플렉터(30)는 그 일부가 제거됨으로써 탄성력을 제공하는 슬릿(37)을 가진다. 슬릿(37)은 리플렉터(30)의 일측에 제공되며 슬릿(37)에 의해 리플렉터(30)가 분리된다. 이에 따라, 리플렉터(30)는 슬릿(37)이 제공되지 않은 부분에서는 서로 연결되어 고리 형상을 이루되, 슬릿(37)이 형성된 부분에서는 리플렉터(30)의 양 단부가 서로 분리됨으로써 서로 마주보는 형태가 된다. 양 단부는 접촉할 수도 있고 소정 거리로 이격될 수도 있다. 리플렉터(30)는 슬릿(37)에 의해 탄성력을 가지게 되는 바, 양 단부가 서로 이격된 상태로 제조되되, 양측으로부터 내측으로 가해지는 힘에 의해 리플렉터(30)의 외경이 변경될 수 있다. 이에 대해서는 후술한다.
본 발명의 일 실시예에 있어서, 슬릿(37)은 리플렉터(30)가 이루는 형상의 중심을 지나는 선 상에 제공될 수 예를 들어, 리플렉터(30)가 원 형상을 갖는 경우, 원의 중심으로부터 바깥쪽을 향하는 선 상에 제공될 수도 있다. 그러나, 슬릿(37)의 형상은 이에 한정되는 것은 아니며, 리플렉터(30)에 소정 정도의 탄성을 안정적으로 제공함과 동시에 반사율이 최대화될 수 있는 한도 내에서 다양한 형상으로 제공될 수 있다.
도 3은 본 발명의 일 실시예에 따른 발광 소자 패키지(100)에 있어서, 슬릿(37)이 달리 형성된 것을 도시한 평면도이다. 도 3을 참조하면, 슬릿(37)은 리플렉터(30)가 이루는 형상의 중심을 지나는 선에 비스듬하게 제공될 수 있다. 서로 마주보는 슬릿(37)의 양 단부의 면적이 넓게 형성되며 사선을 이루면서 만나기 때문에 양 단부의 뒤틀림이 적어질 수 있어 안정적인 고리 형상을 제공할 수 있다.
다시, 도 1 및 도 2를 참조하면, 리플렉터(30)의 측부를 따라, 즉, 리플렉터(30)의 둘레를 따라 커버(43)가 제공된다. 커버(43)는 리플렉터(30)의 외측면을 감싸는 형태로 리플렉터(30)을 둘러싸며, 위 아래로 관통된 형상을 갖는다.
커버(43)는 리플렉터(30)의 둘레를 따라 제공되며 윈도우(41)를 지지함과 동시에 기판(10)에 부착된다. 커버(43)는 다양한 재료로 이루어질 수 있으며, 예를 들어, 금속으로 이루어질 수 있다. 알루미늄 및/또는 알루미늄 합금 이외에도 반사성이 높은 재료, 예를 들어, 은, 금, 주석, 구리, 크롬, 니켈, 몰리브덴, 티타늄 등 다양한 금속 및/또는 이를 포함하는 합금으로 이루어질 수 있다. 또는, 금속이 아닌 다른 물질, 예를 들어, 유기 고분자 등으로 이루어지되, 금속이나 금속 합금으로 피복된 형태를 가질 수도 있다.
커버(43)의 상단은 기판(10)면과 평행한 방향으로 일부 연장될 수 있으며, 연장된 부분에 윈도우(41)가 장착되기 위한 단차부(미도시)가 제공될 수 있다. 커버(43)에 제공된 단차부는 윈도우(41)의 두께에 대응하여 제공될 수 있다. 커버(43)의 단차부와 윈도우(41) 사이에는 윈도우(41)를 부착하기 위한 접착제가 제공될 수 있다.
커버(43)의 하단은 기판(10) 면에 제공되며, 결합 부재(47)를 사이에 두고 기판(10)에 연결됨으로써, 내부 공간을 밀봉할 수 있다. 여기서 결합 부재(47)는 커버(43)의 하단과 기판(10)을 연결함으로써 그 내부 공간을 밀봉하기 위한 것이면 특별히 한정되는 것은 아니다. 예를 들어, 본 발명의 일 실시예에 있어서, 커버(43)가 금속으로 이루어지되, 결합 부재(47)는 커버(43)와 기판(10)이 용접된 용접부일 수도 있다. 이 경우 커버(43)의 하단부는 용접을 통해 밀봉될 수 있다.
본 발명의 일 실시예에 있어서, 커버(43)의 내경(W1)은 리플렉터(30)의 외경(D2)와 실질적으로 같다. 이에 따라, 커버(43)의 내측면은 리플렉터(30)의 외측면(33)과 전체적으로 접촉한다.
커버(43)의 상측에는 발광 소자 칩(21)의 상부에 대응하는 영역에 제공되어 광을 투과시키는 윈도우(41)가 제공될 수 있다.
윈도우(41)는, 발광 소자 칩(21)의 상부에 대응하는 영역에 제공되어 발광 소자 칩(21)으로부터 출사된 광을 투과시킨다.
윈도우(41)는 개구(OPN) 내의 발광 소자 칩(21)을 보호할 수 있다. 윈도우(41)은 발광 소자 칩(21)으로부터 출사된 광을 투과시키거나, 발광 소자 칩(21)으로부터 출사된 광의 경로를 변경할 수 있도록 다양한 형상을 가질 수 있다. 본 발명의 일 실시예에 따른 발광 소자 패키지(100)가 사용되는 용도에 따라 광의 집광이나 분산이 필요할 수 있으며, 이러한 용도에 맞추어 윈도우(41)를 적용할 수 있다.
윈도우(41)는 발광 소자 칩(21)로부터 광을 투과시키기 위해 투명한 절연 재료로 이루어지며, 발광 소자 칩(21)을 보호함과 동시에 발광 소자 칩(21)으로부터 출사된 광을 투과시킨다. 윈도우(41)는 발광 소자 칩(21)으로부터 출사되는 광에 변형되거나 변색되지 않은 재료로 이루어질 수 있다. 예를 들어, 발광 소자 칩(21)로부터 출사되는 광이 자외선인 경우, 윈도우(41)는 자외선에 변형되거나 변색되지 않은 재료로 이루어질 수 있다. 윈도우(41)는 상술한 기능을 만족하는 한, 다양한 재료로 제공될 수 있으며, 그 재료가 한정되는 것은 아니다. 예를 들어, 윈도우(41)은 석영이나 고분자 유기 재료로 이루어질 수 있다. 여기서 고분자 유리 재료의 경우, 모노머의 종류, 성형 방법, 조건에 따라 흡수/투과시키는 파장이 다르기 때문에 발광 소자 칩(21)으로부터 출사되는 파장을 고려하여 선택될 수 있다. 예를 들어, 폴리(메틸메타크릴레이트)(poly(methylmethacrylate); PMMA), 폴리비닐알코올(polyvinylalcohol; PVA), 폴리프로필렌(polypropylene; PP), 저밀도 폴리에틸렌(polyethylene; PE)과 같은 유기 고분자는 자외선은 거의 흡수하지 않으나, 폴리에스테르(polyester)와 같은 유기 고분자는 자외선을 흡수할 수 있다.
본 발명의 일 실시예에 있어서, 윈도우(41)은 발광 소자 칩(21)의 상부에 발광 소자 칩(21)으로부터 이격되어 제공된 것을 도시하였으나, 이에 한정되는 것은 아니며, 발광 소자 칩(21)으로부터 출사된 광을 효율적으로 투과시키는 한도 내에서 다양하게 변형될 수 있다. 예를 들어, 윈도우(41) 상기 리플렉터(30)의 내측 개구(OPN)를 충진하는 형태로 제공될 수 있다.
상술한 구조의 발광 소자 패키지(100)는 다음과 같은 방법으로 제조될 수 있다.
도 4a 내지 도 4c는 본 발명의 일 실시예에 따른 제조 방법을 순차적으로 도시한 단면도이다.
도 4a를 참조하면, 커버(43)와 리플렉터(30)가 각각 준비된 후, 커버(43)와 리플렉터(30)가 조립될 수 있다.
리플렉터(30)는 그 일부가 제거된 슬릿(37, 도 2 참조)을 갖는다. 슬릿(37)에 의해 분리된 리플렉터(30)의 양 단부는 서로 소정 거리 이격된다. 리플렉터(30)의 양 단부는 슬릿(37)에 의해 소정 거리 이격되어 있기 때문에, 리플렉터(30)의 양측에서 내측 방향으로 외부 힘을 가하게 되는 경우 슬릿(37)에 의해 벌어진 양 단부 사이의 거리가 좁아지면서 리플렉터(30)의 외경이 감소될 수 있다. 만약, 리플렉터(30)의 양측에서의 내측방향으로의 외부 힘이 없어지면 리플렉터(30)는 탄성에 의해 원 상태의 직경으로 돌아가게 된다. 만약, 외부 힘이 없는 상태의 직경을 제1 직경(D0)이라고 하고, 양측에서의 내측 방향으로의 외부 힘(P1)을 가한 상태에서의 직경을 제2 직경('D2)이라고 하면, 제2 직경(D2)은 제1 직경(D1)보다 작으며, 직경의 줄어든 정도는 외부 힘(P1)의 크기와 슬릿(37)의 폭에 따라 달라질 수 있다.
리플렉터(30)는 외부에서 힘을 가한 상태로 커버(43) 내에 삽입된다. 리플렉터(30)를 커버(43)에 삽입할 때 커버(43)가 상하로 관통되도록 배치한 후, 리플렉터(30)를 상부에서 하부 방향으로 삽입할 수 있다. 이 때, 리플렉터(30)의 저면부가 상측에 배치되도록 할 수 있다.
그러나, 이러한 삽입 방법은 일 예로서 설명한 것이며, 커버(43)의 개구(OPN)가 상하로 관통되도록 배치하고 리플렉터(30)에 외부 힘을 가한 상태에서 하부에서 상부 방향으로 리플렉터(30)를 커버(43)에 삽입하거나, 리플렉터(30)을 고정하고 커버(43)를 리플렉터(30)에 끼우는 형태로 조립할 수도 있다.
이 때, 리플렉터(30)의 제2 직경(D2)은 커버(43) 내의 내경, 즉, 커버(43)의 내경(W1)보다 같거나 작아야, 리플렉터(30)가 용이하게 커버(43) 내로 삽입된다. 실질적으로는 제2 직경(D2)이 커버(43)의 내경(W1)과 같은 경우보다는 더 작을 경우에 용이하게 삽입이 가능하다.
리플렉터(30)에 외부 힘을 가한 상태에서 삽입이 완료되면 외부 힘을 제거한다. 리플렉터(30)는 외부 힘이 제거됨으로써 복원력이 작용한다. 이에 따라, 리플렉터(30)는 커버(43)에 매우 안정적으로 타이트하게 고정된다.다음으로, 도 4b를 참조하면, 발광 소자 칩(21)이 실장된 기판(10)이 제공되며, 기판(10) 상에 리플렉터(30)와 커버(43)의 조립체가 배치된다.
발광 소자 칩(21)은 서브 마운트(27)에 먼저 실장될 수 있으며, 서브 마운트(27)에 실장된 발광 소자 칩(10)은 제1 및 제2 단자(51, 53)를 갖는 기판(10) 상에 와이어 본딩될 수 있다. 도시하지는 않았으나 서브 마운트(27)와 기판(10) 사이에는 접착제가 제공될 수 있다.
리플렉터(30)와 커버(43)의 조립체는 리플렉터(30)의 개구가 상부를 향해 점점 넓어지는 방향으로 회전된 후 기판(10) 상에 배치될 수 있다. 이때, 리플렉터(30)는 발광 소자 칩(21)의 둘레를 둘러싸며 리플렉터(30)의 개구(OPN) 부분에 발광 소자 칩(21)이 위치하도록 배치된다. 본 실시예에 있어서, 리플렉터(30)가 커버(43)에 단단하게 고정된 상태로서, 기판(10)에도 안정적으로 배치될 수 있으므로, 리플렉터(30)와 기판(10) 사이에는 접착제가 생략될 수 있다. 그러나, 리플렉터(30)와 기판(10) 사이를 더욱 더 단단하게 고정하기 위해 접착제가 사용될 수 있음은 물론이다.
다음으로, 도 4c에 도시된 바와 같이, 커버(43)와 기판(10) 사이가 밀봉된다. 커버(43)의 하단부와 기판(10)은 용접을 통해 밀봉됨으로써 본 발명의 일 실시예에 따른 발광 소자 패키지(100)가 완성된다.
본 발명의 일 실시예에 있어서, 커버(43)를 준비하는 단계, 리플렉터(30)를 준비하는 단계, 및 기판(10)이나 발광 소자를 준비하는 단계 등은 특별히 선후 관계가 있는 것은 아니며, 개별적으로 구비된 다음 실장되거나 조립되는 형태로 제조될 수 있다.
본 실시예에서는 커버(43)와 윈도우(41)가 먼저 결합된 후, 이후 리플렉터(30)가 커버(43)에 장착되는 것이 설명되었으나, 이에 한정되는 것은 아니다. 윈도우(41)의 커버(43)에의 결합 순서는 다양하게 변경될 수 있다. 예를 들어, 커버(43)와 리플렉터(30)를 먼저 조립한 후, 기판(10)에 커버(43)와 리플렉터(30) 조립체를 기판(10)에 장착하기 이전에, 윈도우(41)를 커버(43)에 연결할 수 있으며, 또는, 커버(43)와 리플렉터(30)를 먼저 조립하고, 기판(10)에 커버(43)와 리플렉터(30) 조립체를 기판(10)에 장착한 후, 마지막으로, 윈도우(41)를 커버(43)에 연결할 수도 있다.
여기서, 도 4a 내지 도 4c에서는 하나의 발광 소자 패키지(100)를 제조하는 방법을 도시하였으나, 이에 한정되는 것은 아니며, 본 발명의 일 실시예에 따르면, 복수 개의 발광 소자 패키지(100)를 동시에 일괄적으로 제조(batch production)하는 것이 가능하다.
예를 들어, 커버(43)를 복수 개로 준비하여 행열 형태로 배치한 후, 리플렉터(30)를 각각의 커버(43) 내에 동시 또는 순차적으로 삽입시키는 형태로 리플렉터(30)와 커버(43) 조립체를 형성할 수 있다. 또한, 발광 소자 칩(21)이 실장된 기판(10)을 복수 개로 준비하고 행열 형태로 배치한 후, 준비된 리플렉터(30)와 커버(43) 조립체를 발광 소자 칩(21)이 덮이도록 동시에 조립한 후 용접함으로써 복수 개의 발광 소자 패키지(100)를 제조할 수 있다. 또는, 개별 발광 소자 패키지(100) 별로 분리되지 않고 넓게 형성된 커버(43)나 기판(10)을 준비하고, 각각에 리플렉터(30)를 삽입하는 형태로 조립한 후, 최종 단계에서 커팅을 하는 방식으로 제조할 수도 있다.
상술한 실시예에 따른 발광 소자 패키지(100)는, 각 구성 요소가 안정적으로 단단하게 조립됨으로써 내구성 높은 구조를 제공한다.
상술한 실시예예 따르면, 리플렉터(30)가 커버(43)에 타이트하게 체결됨으로써, 발광 소자 패키지(100) 내에서의 리플렉터(30)의 분리가 줄어든다. 특히, 커버(43)와 리플렉터(30) 사이의 직경에 일부 편차가 있는 경우 커버(43)와 리플렉터(30) 사이에 공간이 발생한다. 리플렉터(30)가 커버(43)에 단단히 고정되지 않는 경우에는, 커버(43)와 리플렉터(30) 사이에 발생하는 공간으로 리플렉터(30)가 고정되지 않고 이동하는 문제가 발생할 수 있다. 또한, 리플렉터(30)가 기판(10)에 단단히 고정되지 않는 경우에는 리플렉터(30)가 기판(10)으로부터 분리되어 그 공간으로 발광 소자 패키지(100) 내에서 예기치 않게 이동함으로써 리플렉터(30)가 덜그럭거리는 문제가 있을 수 있다. 심하게는 리플렉터(30)가 커버(43) 내에서 이동함으로써 다른 구성 요소, 예를 들어, 발광 소자 칩(21)이나 와이어(W) 등을 손상시킬 수도 있다. 기존 발명에서는, 이러한 리플렉터(30)의 이동에 의해 발생할 수 있는 문제점을 해결하기 위해, 리플렉터(30)와 커버(43)를 고정하기 위해 별도의 접착제가 필요하였으며, 접착제로 리플렉터(30)와 커버(43)를 고정하는 별도의 공정이 추가되었다. 그럼에도 불구하고, 사용시 외부 충격에 의해, 또는 접착제의 시간에 따른 경화 작용 등에 의해 접착제가 떨어지는 경우가 발생할 수 있으며, 이 경우, 리플렉터(30)와 커버(43)가 분리되는 문제점이 다시 발생한다.
그러나, 본 발명의 실시예에 따르면, 리플렉터(30)가 별도의 공정의 추가 없이 간단한 삽입만으로 매우 안정적으로 커버(43)에 배치됨으로써 상기한 문제점이 발생하지 않는다. 특히, 리플렉터(30)가 탄성을 가진 형태로 제공됨으로써 물리적인 탄성력을 이용하여 커버(43)에 안정적으로 고정된다. 이에 따라, 본 발명의 일 실시예에 따른 리플렉터(30)는 커버(43)와의 사이에 별도의 접착제가 필요하지 않으며, 단순히 리플렉터(30)를 커버(43)에 삽입하기만 하면 리플렉터(30)와 커버(43) 조립체가 완성된다. 본 발명의 일 실시예에서는, 접착제를 통해 리플렉터(30)와 커버(43)를 부착는 단계나 접착제를 경화하는 단계 등이 모두 생략된다. 그 결과, 리플렉터(30)와 커버(43)의 체결하는 공정이 매우 용이해지고 단순화되고, 발광 소자 패키지의 조립시 불량률이 감소함과 동시에 제조 수율이 증가한다.
상술한 구조를 갖는 발광 소자 패키지는 광 추출 효율을 높이거나 작업성을 높이기 위해 다양한 형태로 변용이 가능하다.
도 5 내지 8은 본 발명의 일 실시예들에 따른 발광 소자 패키지를 도시한 단면도이다. 이하의 실시예들에서는 설명의 중복을 피하기 위해 상술한 실시예와 다른 점을 위주로 설명하며, 설명되지 않은 부분은 상술한 실시예에 따른다.
도 5를 참조하면, 윈도우(41)는 상술한 바와 같이, 렌즈 형이 아닌 단순한 판상으로 제공될 수도 있으나, 볼록 렌즈나 오목 렌즈 형상을 가질 수도 있다. 예를 들어, 윈도우(41)은 구형, 타원형, 반구형, 반타원구형, 이중초점형 등의 다양한 형태를 가질 수도 있다. 도 5에서는 하면은 편평한 면이되, 상면은 위로 볼록한 형태의 렌즈 형상을 갖는 윈도우(41)가 일 예로서 도시되었다. 본 발명의 일 실시예에 따르면, 윈도우(41)의 형상을 다양하게 변경함으로써, 발광 소자 칩(21)으로부터 출사되는 광의 경로를 집광하거나 분산시키는 등, 다양하게 조절할 수 있다.
도 6을 참조하면, 리플렉터(30)는 개구(OPN)에 면하는 내측면(31)과, 외부에 면하는 외측면(33) 및 기판(10)의 상면에 접하는 저면을 갖되, 본 발명의 일 실시예에 있어서, 내측면(31)은 곡면으로 이루어질 수 있다. 곡면의 곡률은 발광 소자 칩(21)으로부터의 광의 프로파일에 따라 다양한 정도로 설정될 수 있다. 예를 들어, 발광 소자 칩(21)이 상방으로 출사하는 광량이 상대적으로 많은 경우나, 측방으로 출사하는 광량이 상대적으로 많은 경우, 내측면(31)의 위치에 따른 곡률이 서로 달라질 수 있다.
본 발명의 일 실시예에 있어서, 리플렉터(30)의 내측면(31)은 포물면일 수 있으며, 발광 소자 다이오드는 포물면의 초점에 배치될 수 있다. 다시 말에, 리플렉터(30)의 단면도에 있어서, 내측면(31)에 대응하는 변이 포물선으로 이루어질 수 있으며, 발광 소자 다이오드는 포물선의 초점에 배치될 수 있다. 이 경우, 발광 소자 다이오드로부터 출사된 광 중 리플렉터(30)의 내측면(31)에 의해 반사된 광은 상방으로 평행하게 진행될 수 있다.
본 발명의 일 실시예에서는 내측면(31)이 곡면인 것만 도시하였으나, 내측면(31)의 형상은 이에 한정되는 것은 아니다. 내측면(31)은 적어도 하나의 곡면, 적어도 하나의 평면이 섞인 형태일 수 있으며, 평면의 경사도나 곡면의 곡률은 다양하게 설정될 수 있다.
도 7을 참조하면, 리플렉터(30)는 반사율을 높이기 위한 반사막(39)을 가질 수 있다. 반사막(39)은 발광 소자 칩(21)으로부터의 광 반사율이 높은 재료로 도금 또는 코팅된 것일 수 있다. 리플렉터(30)는 그 전체 표면에 반사막(39)을 가질 수도 있으나, 반사막(39)은 실제 광이 반사되는 부분인 내측면(31)에 제공될 수 있다.
리플렉터(30)에 반사막(39)이 제공되는 경우, 반사막(39)을 제외한 부분은 금속으로 제공될 수도 있으나, 금속 이외의 세라믹이나 유기 고분자 등으로 이루어질 수도 있다. 예를 들어, 폴리카보네이트(PC), 폴리에테르 설폰(Polyether Sulfone), 트리아세틸셀룰로오스(TAC), 폴리메틸메타크릴레이트(PMMA), 폴리바이닐알콜(PVA), 폴리이미드(PI), 씨클릭올레핀 코폴리머(COC), 테플론(Teflon), 폴리테트라플루오로에틸렌(ePTFE) 등과 같은 유기 고분자가 사용될 수 있다. 다만, 리플렉터(30)를 이루는 재료 중에서, 발광 소자 칩(21)으로부터 발산되는 열이나 자외선에 대한 내성이 강한 재료가 선택될 수 있다.
반사막(39)은 알루미늄 및/또는 알루미늄 합금 이외에도 반사성이 높은 재료, 예를 들어, 은, 금, 주석, 구리, 크롬, 니켈, 몰리브덴, 티타늄 등 다양한 금속 및/또는 이를 포함하는 합금이나, 반사성 유기 고분자 등으로 이루어질 수 있다.
본 발명의 일 실시예에 있어서, 리플렉터(30) 및/또는 반사막(39)에는 발광 소자 칩(21)으로부터 출사된 광의 산란을 향상시킴으로써 출광 효율을 높이기 위한 거칠기(roughness)가 제공될 수 있다. 특히, 거칠기는 리플렉터(30)의 내측 경사면 및/또는 반사막(39)에 제공될 수 있으며, 필요에 따라 기판(10)의 상면 상에도 추가적으로 제공될 수도 있다.
도 8을 참조하면, 커버(43)와 리플렉터(30)에는 조립성을 향상하기 위한 체결 부재가 더 제공될 수 있다. 예를 들어, 커버(43) 및 리플렉터(30)에는 서로 마주 보는 면에 서로 체결되는 나사산(35)이 제공될 수 있다. 커버(43) 및 리플렉터(30)의 나사산(35)은 서로 맞물리는 형태로 체결된다.
이에 따라, 커버(43)와 리플렉터(30)는 더욱 단단하게 체결될 수 있다.
본 발명의 일 실시예에 있어서, 상술한 발광 소자 패키지는 다양한 형태의 광 조사 장치에 적용될 수 있는 바, 예를 들어, 자외선 경화기, 살균기 등에 적용될 수 있다. 이 경우, 광 조사 장치는 적어도 하나의 발광 소자 패키지와, 적어도 하나의 발광 소자 패키지가 장착된 본체를 포함한다. 본체는 전원을 제공하기 위한 전원 공급부, 발광 소자 패키지로부터 출사되는 광량을 제어하기 위한 제어부 등이 더 제공될 수 있다.
이상에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자 또는 해당 기술 분야에 통상의 지식을 갖는 자라면, 후술될 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허청구범위에 의해 정하여져야만 할 것이다.

Claims (20)

  1. 발광 소자 칩이 실장되는 실장 영역을 갖는 기판;
    상기 기판의 실장 영역 상에 실장된 발광 소자 칩;
    상기 발광 소자 칩 둘레에 제공되고, 상기 기판의 실장 영역을 노출하는 개구를 가지며, 탄성을 가짐으로써 직경의 변경이 가능한 리플렉터; 및
    상기 리플렉터의 둘레를 감싸는 커버를 포함하는 발광 소자 패키지.
  2. 제1 항에 있어서,
    상기 리플렉터에 있어서, 상기 개구를 이루는 내측면은 상기 기판의 면에 대해 경사진 발광 소자 패키지.
  3. 제2 항에 있어서,
    상기 리플렉터에 있어서, 상기 개구를 이루는 내측면은 그 단면이 포물선을 이루는 발광 소자 패키지.
  4. 제3 항에 있어서,
    상기 발광 소자 칩은 상기 포물선의 초점에 제공된 발광 소자 패키지.
  5. 제1 항에 있어서,
    상기 리플렉터는 평면 상에서 볼 때 고리 형상을 갖는 발광 소자 패키지.
  6. 제5 항에 있어서,
    상기 리플렉터는 일측에 상기 리플렉터의 일부가 제거된 슬릿을 가지며, 상기 슬릿에 의해 상기 리플렉터가 분리되어 서로 마주보는 양 단부를 갖는 발광 소자 패키지.
  7. 제6 항에 있어서,
    상기 슬릿은 상기 고리의 중심을 지나는 선 상에 있거나 상기 선에 대해 비스듬한 발광 소자 패키지.
  8. 제1 항에 있어서,
    상기 리플렉터의 외측벽은 상기 커버의 내측면과 접촉하는 발광 소자 패키지.
  9. 제8 항에 있어서,
    상기 리플렉터의 외측벽과 상기 커버의 내측면은 서로 체결되는 발광 소자 패키지.
  10. 제9 항에 있어서,
    상기 리플렉터의 외측벽과 상기 커버의 내측면은 각각 서로 맞물리는 나사산을 갖는 발광 소자 패키지.
  11. 제1 항에 있어서,
    상기 리플렉터의 내측면 상에 제공된 반사막을 더 포함하는 발광 소자 패키지.
  12. 제1 항에 있어서,
    상기 커버에 연결되며 상기 발광 소자 칩으로부터 출사된 광을 투과시키는 윈도우를 더 포함하며,
    상기 윈도우는 상기 리플렉터의 상기 개구를 커버하는 발광 소자 패키지.
  13. 제12 항에 있어서,
    상기 윈도우는 상기 리플렉터의 개구를 충진하는 발광 소자 패키지.
  14. 기판 상에 발광 소자 칩을 실장하는 단계;
    커버를 준비하는 단계;
    리플렉터의 둘레에 상기 커버를 장착하는 단계; 및
    상기 리플렉터가 삽입된 커버를 상기 기판 상에 연결하는 단계를 포함하는 발광 소자 패키지 제조 방법.
  15. 제14 항에 있어서,
    상기 리플렉터는 그 일부가 제거됨으로써 탄성력을 제공하는 슬릿을 가지며, 상기 슬릿에 의해 상기 리플렉터의 외경이 조절되는 발광 소자 패키지 제조 방법.
  16. 제15 항에 있어서,
    상기 리플렉터는 상기 커버의 내경과 동일하거나 더 작은 외경을 갖도록 조절된 상태에서 상기 커버에 삽입되는 발광 소자 패키지 제조 방법.
  17. 제15 항에 있어서,
    상기 커버에 윈도우를 장착하는 단계를 더 포함하는 발광 소자 패키지 제조 방법.
  18. 적어도 하나의 발광 소자 패키지; 및
    상기 적어도 하나의 발광 소자 패키지가 장착된 본체를 포함하며,
    상기 발광 소자 패키지는,
    발광 소자 칩이 실장되는 실장 영역을 갖는 기판;
    상기 기판의 실장 영역 상에 실장된 발광 소자 칩;
    상기 발광 소자 칩 둘레에 제공되고, 상기 기판의 실장 영역을 노출하는 개구를 가지며 탄성을 가짐으로써 직경이 변경 가능한 리플렉터; 및
    상기 리플렉터 둘레를 감싸는 커버를 포함하는 광 조사 장치.
  19. 제18 항에 있어서,
    상기 개구를 이루는 내측면은 경사진 광 조사 장치.
  20. 제19 항에 있어서,
    상기 리플렉터는 고리 형상으로 제공되고, 일측에 상기 리플렉터의 일부가 제거된 슬릿을 가지며, 상기 슬릿에 의해 상기 리플렉터가 분리되어 서로 마주보는 양 단부를 갖는 광 조사 장치.
PCT/KR2019/006930 2018-06-08 2019-06-10 발광 소자 패키지 및 이의 제조 방법 WO2019235900A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19815307.4A EP3806172A4 (en) 2018-06-08 2019-06-10 ELECTROLUMINESCENT DEVICE HOUSING AND METHOD OF MAKING IT
CN201911389651.3A CN111092143B (zh) 2018-06-08 2019-06-10 发光元件封装件
CN201980002623.3A CN110832649B (zh) 2018-06-08 2019-06-10 发光元件封装件及该发光元件封装件的制造方法
JP2020568305A JP2021527324A (ja) 2018-06-08 2019-06-10 発光素子パッケージ及びその製造方法
US17/113,448 US20210091278A1 (en) 2018-06-08 2020-12-07 Light-emitting device package and manufacturing method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180065751A KR102624113B1 (ko) 2018-06-08 2018-06-08 발광 소자 패키지 및 이의 제조 방법
KR10-2018-0065751 2018-06-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/113,448 Continuation US20210091278A1 (en) 2018-06-08 2020-12-07 Light-emitting device package and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2019235900A1 true WO2019235900A1 (ko) 2019-12-12

Family

ID=68769385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/006930 WO2019235900A1 (ko) 2018-06-08 2019-06-10 발광 소자 패키지 및 이의 제조 방법

Country Status (6)

Country Link
US (1) US20210091278A1 (ko)
EP (1) EP3806172A4 (ko)
JP (1) JP2021527324A (ko)
KR (1) KR102624113B1 (ko)
CN (3) CN110832649B (ko)
WO (1) WO2019235900A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210288233A1 (en) * 2020-03-11 2021-09-16 Lextar Electronics Corporation Led package structure

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102624113B1 (ko) * 2018-06-08 2024-01-12 서울바이오시스 주식회사 발광 소자 패키지 및 이의 제조 방법
CN114038983A (zh) * 2021-11-17 2022-02-11 厦门瑶光半导体科技有限公司 深紫外led光源封装结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050213320A1 (en) * 2004-03-23 2005-09-29 Miyashita Kazuhiro Illuminator
JP2008288394A (ja) * 2007-05-17 2008-11-27 Sharp Corp 金属反射壁の製造方法
KR101201307B1 (ko) * 2005-06-30 2012-11-14 엘지디스플레이 주식회사 백라이트유닛
KR101505654B1 (ko) * 2013-12-24 2015-03-24 동부라이텍 주식회사 조명장치 및 이에 사용되는 리플렉터
KR20160088674A (ko) * 2015-01-16 2016-07-26 이우필 리플렉터, 리플렉터가 결합된 엘이디패키지 및 그 제조방법

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6063970A (ja) * 1983-09-17 1985-04-12 Fanuc Ltd 平行光線を放射する発光ダイオ−ド
JP4572891B2 (ja) * 2002-06-19 2010-11-04 サンケン電気株式会社 半導体発光装置
US7429757B2 (en) * 2002-06-19 2008-09-30 Sanken Electric Co., Ltd. Semiconductor light emitting device capable of increasing its brightness
JP2006049624A (ja) * 2004-08-05 2006-02-16 Sharp Corp 発光素子
JP2007086367A (ja) * 2005-09-21 2007-04-05 Ibiden Co Ltd 光ピン、光ピンコネクタ及び光路変換用モジュール
KR100643919B1 (ko) * 2005-11-24 2006-11-10 삼성전기주식회사 렌즈를 구비한 발광 다이오드 패키지
KR100648628B1 (ko) * 2005-12-29 2006-11-24 서울반도체 주식회사 발광 다이오드
JP4828248B2 (ja) * 2006-02-16 2011-11-30 新光電気工業株式会社 発光装置及びその製造方法
JP2007227480A (ja) * 2006-02-21 2007-09-06 Toshiba Corp 半導体発光装置
KR20070094247A (ko) * 2006-03-17 2007-09-20 서울반도체 주식회사 반사기를 구비하는 측면 발광 다이오드 패키지
EP2073280A1 (de) * 2007-12-20 2009-06-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Reflektive Sekundäroptik und Halbleiterbaugruppe sowie Verfahren zu dessen Herstellung
US20100181582A1 (en) * 2009-01-22 2010-07-22 Intematix Corporation Light emitting devices with phosphor wavelength conversion and methods of manufacture thereof
DE102012109131A1 (de) * 2012-09-27 2014-03-27 Osram Opto Semiconductors Gmbh Optoelektronische Bauelementevorrichtung, Verfahren zum Herstellen einer optoelektronischen Bauelementevorrichtung und Verfahren zum Betreiben einer optoelektronischen Bauelementevorrichtung
KR20140134202A (ko) * 2013-05-13 2014-11-21 서울반도체 주식회사 소형 발광소자 패키지 및 그 제조 방법
JP2017503352A (ja) * 2014-01-06 2017-01-26 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. カメラのための薄いledフラッシュ
US20160163935A1 (en) * 2014-12-03 2016-06-09 Avago Technologies General Ip (Singapore) Pte. Ltd. Semiconductor device that accommodates thermal expansion of an encapsulant
CN110890353B (zh) * 2015-09-08 2023-12-26 首尔伟傲世有限公司 发光二极管封装件
JP7065382B2 (ja) * 2016-07-19 2022-05-12 パナソニックIpマネジメント株式会社 光反射体用成形材料及びその製造方法、光反射体、ベース体及びその製造方法、並びに発光装置
KR102624113B1 (ko) * 2018-06-08 2024-01-12 서울바이오시스 주식회사 발광 소자 패키지 및 이의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050213320A1 (en) * 2004-03-23 2005-09-29 Miyashita Kazuhiro Illuminator
KR101201307B1 (ko) * 2005-06-30 2012-11-14 엘지디스플레이 주식회사 백라이트유닛
JP2008288394A (ja) * 2007-05-17 2008-11-27 Sharp Corp 金属反射壁の製造方法
KR101505654B1 (ko) * 2013-12-24 2015-03-24 동부라이텍 주식회사 조명장치 및 이에 사용되는 리플렉터
KR20160088674A (ko) * 2015-01-16 2016-07-26 이우필 리플렉터, 리플렉터가 결합된 엘이디패키지 및 그 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3806172A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210288233A1 (en) * 2020-03-11 2021-09-16 Lextar Electronics Corporation Led package structure
US11670748B2 (en) * 2020-03-11 2023-06-06 Lextar Electronics Corporation LED package structure

Also Published As

Publication number Publication date
JP2021527324A (ja) 2021-10-11
CN110832649B (zh) 2024-04-19
CN111092143A (zh) 2020-05-01
CN209896099U (zh) 2020-01-03
US20210091278A1 (en) 2021-03-25
CN110832649A (zh) 2020-02-21
EP3806172A1 (en) 2021-04-14
EP3806172A4 (en) 2022-03-09
KR102624113B1 (ko) 2024-01-12
CN111092143B (zh) 2024-05-07
KR20190139371A (ko) 2019-12-18

Similar Documents

Publication Publication Date Title
WO2015194804A1 (ko) 발광 소자 및 이를 포함하는 발광소자 패키지
JP4888280B2 (ja) 発光装置
EP1953835B1 (en) Light-emitting device
WO2019235900A1 (ko) 발광 소자 패키지 및 이의 제조 방법
JP3978451B2 (ja) 発光装置
WO2014157905A1 (ko) 발광소자 패키지
CN1707823A (zh) 大功率led封装
CN102214647A (zh) 表面安装器件薄型封装
JP5036222B2 (ja) 発光装置
WO2019168233A1 (ko) 발광소자 패키지 및 발광소자 패키지 제조 방법
WO2016080676A1 (ko) 발광소자 패키지
WO2013162337A1 (en) Light emitting device and light emitting device package
JP4847793B2 (ja) 発光装置
CN103765585A (zh) 具有倒装芯片式安装的固态辐射传感器的固态辐射传感器装置及其相关联系统及方法
WO2014010816A1 (en) Light emitting device, and method for fabricating the same
JP2007214592A (ja) 発光装置
WO2011049373A2 (ko) 발광소자 패키지 및 이를 구비한 조명 시스템
US20120211785A1 (en) High power plastic leaded chip carrier with integrated metal reflector cup and direct heat sink
WO2021134748A1 (zh) 发光装置及发光设备
WO2019112345A1 (ko) 발광소자 패키지 및 광원 장치
WO2017003095A1 (ko) 발광소자 패키지 이를 포함하는 발광소자 모듈
WO2016200012A1 (ko) 광 출사 유닛 및 이를 포함하는 광원 유닛
CN111029335B (zh) 深紫外发光装置
WO2014054891A1 (ko) 발광소자 및 발광소자 패키지
WO2019212285A1 (ko) 반도체 소자 패키지 및 이를 포함하는 광 조사장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815307

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020568305

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019815307

Country of ref document: EP

Effective date: 20210111