WO2019233655A1 - Verfahren zum befeuchten eines reaktanten und brennstoffzellensystem zur durchführung des verfahrens - Google Patents

Verfahren zum befeuchten eines reaktanten und brennstoffzellensystem zur durchführung des verfahrens Download PDF

Info

Publication number
WO2019233655A1
WO2019233655A1 PCT/EP2019/058857 EP2019058857W WO2019233655A1 WO 2019233655 A1 WO2019233655 A1 WO 2019233655A1 EP 2019058857 W EP2019058857 W EP 2019058857W WO 2019233655 A1 WO2019233655 A1 WO 2019233655A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
liquid water
channels
humidifier
cathode
Prior art date
Application number
PCT/EP2019/058857
Other languages
English (en)
French (fr)
Inventor
Rune Staeck
Original Assignee
Audi Ag
Volkswagen Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Audi Ag, Volkswagen Ag filed Critical Audi Ag
Priority to US16/972,519 priority Critical patent/US11695134B2/en
Priority to CN201980037399.1A priority patent/CN112204788A/zh
Priority to KR1020207034715A priority patent/KR102558346B1/ko
Priority to JP2020560755A priority patent/JP7123171B2/ja
Publication of WO2019233655A1 publication Critical patent/WO2019233655A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • H01M8/04141Humidifying by water containing exhaust gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • H01M8/04149Humidifying by diffusion, e.g. making use of membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04164Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal by condensers, gas-liquid separators or filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • H01M8/04507Humidity; Ambient humidity; Water content of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • H01M8/04514Humidity; Ambient humidity; Water content of anode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • H01M8/04522Humidity; Ambient humidity; Water content of cathode exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04828Humidity; Water content
    • H01M8/04835Humidity; Water content of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04828Humidity; Water content
    • H01M8/04843Humidity; Water content of fuel cell exhausts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a method for humidifying a reactant in a fuel cell system having a fuel cell stack which is fluidly connected to a humidifier, wherein the humidifier has a membrane, on the surface of which channels are formed, wherein at least one of the channels, a memory element for temporary storage of Associated with liquid water, comprising the following steps:
  • the invention further relates to a fuel cell system for carrying out the method, comprising a fuel cell stack which is connected to an anode supply line for anode-side supply of an anode gas and an anode exhaust gas line for discharging the anode exhaust gas, and which is connected to a cathode supply line for cathode-side supply - Cathode gas and is connected to a cathode exhaust gas line.
  • the cathode exhaust gas line is fluid-connected to a humidifier and the humidifier has a water-vapor-permeable membrane, at the top of which Surface channels are formed, wherein at least one of the channels is assigned a storage element for the temporary storage of liquid water.
  • the humidifier is supplied with liquid water on the cathode side from the cathode discharge line.
  • the humidifier further includes a flow field with storage elements for receiving liquid water which is delivered via a membrane to the dry cathode gas and moistening it.
  • liquid water in fuel cell systems, liquid water generally accumulates, which, when entering the fuel cell stack, can impair the operation and damage the stack. Usually, therefore, the liquid water is collected in separators and continuously discharged by switching valves in the gas flow or on the road and thus largely unused.
  • the liquid water is removed from the fuel cell stack both on the anode side and on the cathode side.
  • the temporary storage and subsequent removal of liquid water in the flow field requires less liquid water transfer through the humidifier membrane, which can reduce the membrane area and, as a result, the size of the humidifier.
  • the liquid water Not only on the cathode side, but also on the anode side is supplied to the humidifier, a larger volume of liquid water can be stored in the humidifier and removed if necessary.
  • the water that accumulates in the anode rooms and cathode compartments anyway does not have to be discharged unused, but can continue to be used.
  • the emptying of the liquid water from the storage element takes place when the humidity of the membrane falls below a predetermined or predefinable threshold.
  • This threshold value could be determined by means of an electrical conductivity of the humidifier.
  • the liquid water from the storage elements can be automatically emptied even in regular time cycles.
  • the storage elements are emptied when no liquid water is supplied or can be supplied from the fuel cell stack, or the fuel cell system operates in an operating mode in which a higher water requirement exists.
  • a liquid water supply line connected to the anode waste gas line is provided, which is connected directly or indirectly to the humidifier for the anode-side supply of liquid water into the humidifier.
  • the anode exhaust gas line can be connected directly to the humidifier via the wet feed line, in that the humidifier has an additional connection for the wet feed line.
  • the anode exhaust gas line is indirectly connected to the humidifier by the wet supply line is connected to the cathode exhaust gas line and / or to the cathode supply line.
  • the moist feed line is connected to the cathode feed line downstream of a compressor. This allows the supply of liquid water from two sides of the humidifier and leads to a more uniform filling and storage of the liquid water in a flow field.
  • an actuator formed as a valve is arranged in the liquid water line at the connection to the anode exhaust gas line and / or at the connection to the cathode exhaust gas line and / or at the connection to the cathode exhaust line for controlling the supply of the Liquid water in the humidifier.
  • a plurality of memory elements assigned to the channels is provided, so that a larger flow field with stored liquid water and thus uniform humidification of the reactant with a reduced size of the humidifier is made possible.
  • the storage elements can be distributed (regularly) over the entire surface, or alternatively can be arranged in individual regions of the surface, in particular in those which are particularly dry.
  • the channels are formed by a plurality of flow webs arranged on the surface, and if at least one of the flow webs has a connecting channel running perpendicular to a longitudinal extension of the flow webs for pressure equalization between the channels. This allows a more even distribution of the liquid water to be stored and leads to an improved stability of the humidifier. It is provided in particular that the at least one storage element is formed in the channel and / or is arranged formed on the flow web. In this context it is preferred if the number of connection channels is adapted to the number of memory elements.
  • the diameter of the connecting channel is chosen such that the surface tension of the liquid water in the storage element prevents passage of the liquid water through the connecting channel. This allows the liquid water to be held in the storage element.
  • the flow webs are arranged to each other such that wide channels are formed with a first diameter and narrow channels with a smaller diameter relative to the first diameter or are present.
  • the storage element is formed as a catch formed or arranged on the flow web, in which the liquid water can be absorbed.
  • the pocket is preferably facing the flow direction open, formed in the wide channels.
  • a particularly easy-to-manufacture embodiment of the membrane provides that at least two elevations are formed in one of the channels, such that the memory element is formed as a pocket between the two surveys.
  • the elevations can be formed, for example, as nubs.
  • At least two elevations are formed in one of the wide channels. in such a way that the storage element is formed as a pocket formed between the two elevations.
  • a plurality of elevations may be arranged in the wide channels.
  • Fig. 1 is a schematic representation of a fuel cell system.
  • FIG. 2 is a schematic representation of a first embodiment of a membrane of a humidifier
  • FIG. 3 is a schematic representation of a second embodiment of a membrane of a humidifier
  • FIG. 4 shows a schematic illustration of a third embodiment of a membrane of a humidifier
  • FIG. 1 shows a fuel cell system 1 according to a preferred embodiment of the present invention.
  • the fuel cell system 1 is part of a vehicle not shown in detail, in particular a fuel cell vehicle, which has an electric traction motor which is supplied with electrical energy by means of the fuel cell system 1.
  • the fuel cell system 1 comprises, as the core component, a fuel cell stack 2 which has a multiplicity of fuel cells arranged in stack form and not shown in greater detail.
  • a fuel cell is assigned an anode space 18 and a cathode space 19, wherein the anode and the cathode are separated from one another by an ion-conducting polymer electrolyte membrane.
  • a bipolar plate is arranged between two such membrane-electrode arrangements, which serves for feeding the reactants into the anode and cathode spaces 18, 19 and also for the electrical connection between the electrodes produces individual fuel cells.
  • the fuel cell stack 2 is connected on the anode side to an anode supply line 20 for supplying a hydrogen-containing anode gas from an anode gas reservoir 22 and to an anode exhaust line 21 for removing unreacted anode gas.
  • the anode operating pressure on the anode side of the fuel cell stack 2 is adjustable via a first actuator 23 in the anode supply line 20.
  • the fuel cell system 1 on the anode side may have a fuel recirculation line 24, which connects the anode exhaust gas line 21 to the anode supply line 20.
  • the recirculation of fuel is customary in order to return and utilize the fuel, which is usually used more than stoichiometrically, to the fuel cell stack 2.
  • an unillustrated recirculation fan can be arranged, with which the recirculation rate is adjustable.
  • a second actuator 29 may be present.
  • the fuel cell stack 2 is connected to a cathode supply line 4 for supplying the oxygen-containing cathode gas.
  • a compressor 3 is arranged in a part of the cathode supply line 4 designed as a drying line 9.
  • the compressor 3 is designed as a compressor 3 driven mainly by an electric motor, the drive of which is effected via an electric motor 26 equipped with a corresponding power electronics 25.
  • the cathode gas which was sucked from the environment, led to a humidifier 10 by means of the dry feed line 9.
  • a second part of the cathode supply line 4 connects the humidifier 10 to the fuel cell stack 2 and leads humidified cathode gas to the cathode compartments 18 of the fuel cell stack 2.
  • liquid water and unreacted cathode gas are conveyed via a cathode.
  • the exhaust gas line 5 is passed back to the humidifier 10 or the unreacted cathode exhaust gas (in particular the exhaust air) is optionally supplied from the cathode chambers 18 of the fuel cell stack 2 to an exhaust system, not shown.
  • the humidifier 10 also has a humidifier discharge line 27, in which a turbine 28 is arranged, which is driven by the humidifier exhaust gas flowing through the humidifier discharge line 27 and in turn supports the drive of the compressor 3 by means of a common shaft (not shown).
  • the humidifier discharge line 27 also has a water separator (not shown) in front of the turbine 28, which prevents the turbine 28 from being damaged by water vapor entrained even after the humidifier 10 has flowed through the cathode exhaust gas.
  • a liquid water supply line 7 is provided, which connects the anode exhaust gas line 21 indirectly with the humidifier 10 by the anode exhaust gas line 21 is connected to the cathode exhaust gas line 5 by means of the liquid sigwasserzuschreibtechnisch 7.
  • the liquid water supply line 7 is connected to the cathode feed line 4 downstream of the compressor 3, that is, to the dry feed line 9. This allows both the supply of liquid water (product water) arising on the cathode side and liquid water arising in the fuel cell stack 2 on the anode side into the humidifier 10.
  • a third actuator 30 for controlling the supply of the liquid sigwassers from the anode exhaust gas line 21, a fourth actuator 31 for controlling the supply of the liquid water in the cathode exhaust gas line 5 and a fifth actuator 32 for controlling the supply of the liquid water in the cathode supply line 4 or in the dry feed line 9 arranged.
  • the humidifier 10 has a plurality of water vapor permeable membranes 11, which are formed flat. In this case, one side of the membranes 11 is overflowed by the comparatively dry cathode gas and the other side by the comparatively moist cathode exhaust gas (exhaust gas). Driven by the higher partial pressure of water vapor in the cathode denabgas it comes to a transfer of water vapor over the membrane
  • the dry feed line 9 is connected to the humidifier discharge line 27 via a bypass line 34 which has a bypass actuator.
  • FIGS. 2 to 4 show a greatly simplified illustration of various embodiments of a surface 12 of the membrane 11 of the humidifier 10.
  • a plurality of channels 13 for flowing a liquid stream of gas through a flow direction 35 are formed on the surface 12.
  • the channels 13 are through at the surface
  • the flow webs 6 are arranged such that wide channels 15 with a first diameter and narrow channels 16 with a smaller diameter with respect to the first diameter are formed.
  • the storage elements 14 designed as pockets are arranged in the wide channels 15. These are preferably open against the direction of flow 35.
  • the gas stream moves in the wide channels 15 at a slower rate than in the narrow channels 16, so that there is a lower static pressure in the narrow channels 16 than in the wide channels 15.
  • Each wide channel 15 is adjacent to a narrow channel 16 arranged and two each a first narrow channel 16 forming flow webs 6 are arranged alternately offset from each other. This in turn makes it possible for the storage elements 14 to be arranged offset relative to one another and correspondingly larger.
  • the flow field formed by the storage elements 14 has a larger storage capacity of liquid water.
  • the size of the humidifier 10 can be reduced.
  • the flow webs 6 have a plurality of perpendicular to a longitudinal direction of the flow webs 6 extending Connecting channels 8 on to pressure equalization between the narrow and the wide channels 15,16. This causes the liquid water to be sucked into the storage elements 14.
  • the diameters of the connecting channels 8 are selected such that the surface tension of the liquid water in the storage elements 14 prevents a passage of the liquid water through the connecting channel 8.
  • a second membrane 11 of the humidifier 10 shown in FIG. 3 also has wide and narrow channels 15, 16 on the surface 12.
  • a narrow channel 16 is in each case arranged adjacent to a further narrow channel 16 and to a wide channel 15.
  • Only every second flow web 6 has a plurality of connecting channels 8 formed perpendicular to the longitudinal extent of the flow webs 6.
  • a plurality of elevations 17 are formed next to one of the flow webs 6, wherein in each case a connecting channel 8 is formed between the elevations 17 on the flow web 6.
  • the storage elements 14 are formed as pockets between the elevations 17.
  • 8 liquid water is sucked into the storage elements 14 and held therein by means of the connecting channels.
  • Figure. 4 shows a particularly easy to manufacture third embodiment of the membrane 11 of the humidifier 10. It differs in that the flow webs 6 are arranged to each other such that the channels 13 have approximately the same diameter. In addition, elevations 17 are formed on the flow webs, such that the storage elements 14 are formed between the elevations 17.
  • the method for humidifying the reactant in the fuel cell system 1 comprises the following steps:
  • liquid water is taken out of the fuel cell stack 2. This takes place both on the anode side by the liquid water from the anode chambers 19 by means of the liquid water supply line 7 into the cathode exhaust gas line 5 or into the cathode feed line 4 and thus to the humidifier 10 is guided, and the cathode side by liquid water from the cathode chambers 18 by means of the cathode exhaust gas line 5 is guided into the humidifier 10.
  • the liquid water thus guided into the membrane 11 by means of the gas flow flows through the channels 13 formed on the surface 12 and is at least partially received in the storage elements 14 or also in a part of the storage elements 14 and temporarily stored.
  • the storage elements 14 are at least partially emptied by evaporation of the liquid water contained therein and humidifies the cathode gas to be supplied to the fuel cell stack 2 by means of the evaporated liquid water.
  • the emptying takes place in particular when the fuel cell system 1 operates in an operating mode in which more water is required, or when the membrane 11 falls below a predetermined or predefinable moisture threshold. Due to the temporary storage and the subsequent removal of the liquid water in the flow field of the membrane 11 of the humidifier 10 formed by the storage elements, a lower liquid water transfer through the membrane 11 is required, whereby the membrane area and thus also the size of the humidifier 10 can be reduced ,

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Befeuchten eines Reaktanten in einem Brennstoffzellensystem (1) mit einem Brennstoffzellenstapel (2), der mit einem Befeuchter (10) fluidverbunden ist, wobei der Befeuchter (10) eine Membran (11) aufweist, an deren Oberfläche (12) Kanäle (13) ausgebildet sind. Zumindest einem der Kanäle (13) ist ein Speicherelement (14) zur zeitweisen Speicherung von Flüssigwasser zugeordnet, wobei das Verfahren die folgenden Schritte umfasst: - Entnahme des Flüssigwassers aus dem Brennstoffzellenstapel (2) und Zuführen des Flüssigwassers an den Befeuchter (10), - Aufnahme zumindest eines Teils des Flüssigwassers in das Speicherelement (14) und Zwischenspeichern des Teils darin, - Zumindest teilweises Entleeren des Speicherelements (14) durch Verdampfen des Flüssigwassers und Befeuchten des dem Brennstoffzellenstapel (2) zuzuführenden Reaktanten mittels des verdampften Flüssigwassers, wobei das Flüssigwasser aus dem Brennstoffzellenstapel (2) sowohl anodenseitig als auch kathodenseitig entnommen wird. Darüber hinaus betrifft die Erfindung ein Brennstoffzellensystem (1) zur Durchführung des Verfahrens.

Description

Verfahren zum Befeuchten eines Reaktanten und Brennstoffzellensystem zur
Durchführung des Verfahrens
BESCHREIBUNG:
Die Erfindung betrifft ein Verfahren zum Befeuchten eines Reaktanten in ei- nem Brennstoffzellensystem mit einem Brennstoffzellenstapel, der mit einem Befeuchter fluidverbunden ist, wobei der Befeuchter eine Membran aufweist, an deren Oberfläche Kanäle ausgebildet sind, wobei zumindest einem der Kanäle ein Speicherelement zur zeitweisen Speicherung von Flüssigwasser zugeordnet ist, umfassend die folgenden Schritte:
Entnahme des Flüssigwassers aus dem Brennstoffzellenstapel und Zuführen des Flüssigwassers an den Befeuchter,
Aufnahme zumindest eines Teils des Flüssigwassers in das Spei- cherelement und Zwischenspeichern des Teils darin,
Zumindest teilweises Entleeren des Speicherelements durch Ver- dampfen des Flüssigwassers und Befeuchten des dem Brennstoff- zellenstapel zuzuführenden Reaktanten mittels des verdampften Flüssigwassers.
Die Erfindung betrifft darüber hinaus ein Brennstoffzellensystem zur Durch- führung des Verfahrens, mit einem Brennstoffzellenstapel, der mit einer Ano- denzufuhrleitung zur anodenseitigen Zuführung eines Anodengases und ei- ner Anodenabgasleitung zum Abführen des Anodenabgases verbunden ist, und der mit einer Kathodenzufuhrleitung zur kathodenseitigen Zuführung ei- nes Kathodengases und mit einer Kathodenabgasleitung verbunden ist. Die Kathodenabgasleitung ist mit einem Befeuchter fluidverbunden und der Be- feuchter weist eine wasserdampfdurchlässige Membran auf, an deren Ober- fläche Kanäle ausgebildet sind, wobei zumindest einem der Kanäle ein Spei- cherelement zur zeitweisen Speicherung von Flüssigwasser zugeordnet ist.
Die DE 10 2015 122 144 A1 beschreibt ein Brennstoffzellensystem mit einem Befeuchter. Dem Befeuchter wird Flüssigwasser kathodenseitig von der Ka- thodenabfuhrleitung zugeführt. Der Befeuchter umfasst darüber hinaus ein Strömungsfeld mit Speicherelementen zur Aufnahme von flüssigem Wasser, das über eine Membran an das trockene Kathodengas abgegeben wird und dieses befeuchtet.
Darüber hinaus fällt bei Brennstoffzellensystemen generell Flüssigwasser an, was bei Eintreten in den Brennstoffzellenstapel zur Beeinträchtigung des Be- triebs und zur Schädigung des Stapels führen kann. Üblicherweise wird des- wegen das Flüssigwasser in Abscheidern gesammelt und kontinuierlich durch das Schalten von Ventilen in die Gasströmung oder auf die Fahrbahn abgelassen und damit zum Großteil nicht genutzt.
Es ist Aufgabe der vorliegenden Erfindung, ein Verfahren zum Befeuchten eines Reaktanten, und ein Brennstoffzellensystem zur Durchführung des Verfahrens bereitzustellen, mittels derer eine Reduzierung der Baugröße des Befeuchters bei gleichzeitig adäquater Befeuchtung des Reaktanten ermög- licht wird.
Der das Verfahren betreffende Teil der Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungen mit zweckmäßigen Weiterbildungen des Verfahrens sind in den davon abhängi- gen Ansprüchen angegeben.
Insbesondere wird das Flüssigwasser aus dem Brennstoffzellenstapel so- wohl anodenseitig als auch kathodenseitig entnommen. Durch das zeitweise Speichern und die anschließende Entnahme von Flüssigwasser im Flussfeld ist eine geringere Flüssigwasserübertragung durch die Befeuchtermembran erforderlich, wodurch die Membranfläche und infolgedessen die Baugröße des Befeuchters reduziert werden kann. Dadurch, dass das Flüssigwasser nicht nur kathodenseitig, sondern auch anodenseitig dem Befeuchter zuge- führt wird, kann in dem Befeuchter ein größeres Volumen an Flüssigwasser gespeichert und bei Bedarf entnommen werden. Das so ohnehin in den Ano- denräumen und Kathodenräumen anfallende Wasser muss nicht ungenutzt ausgeleitet werden, sondern kann weiterverwendet werden.
In einer vorteilhaften Ausgestaltung ist es vorgesehen, dass das Entleeren des Flüssigwassers aus dem Speicherelement erfolgt, wenn die Feuchte der Membran einen vorgegebenen oder vorgebbaren Schwellwert unterschreitet. Dieser Schwellwert könnte mittels einer elektrischen Leitfähigkeit des Be- feuchters bestimmt werden. Alternativ kann das Flüssigwasser aus den Speicherelementen auch in regelmäßigen zeitlichen Zyklen automatisch ent- leert werden. In einer weiteren alternativen Ausgestaltung werden die Spei- cherelemente dann entleert, wenn kein Flüssigwasser von dem Brennstoff- zellenstapel zugeführt wird oder zugeführt werden kann, oder das Brenn- stoffzellensystem in einem Betriebsmodus operiert, in dem ein höherer Was- serbedarf besteht.
Der das Brennstoffzellensystem betreffende Teil der Aufgabe wird durch ein Brennstoffzellensystem mit den Merkmalen des Anspruchs 3 gelöst. Vorteil- hafte Ausgestaltungen mit zweckmäßigen Weiterbildungen des Brennstoff- zellensystems sind in den davon abhängigen Ansprüchen angegeben.
Insbesondere ist eine mit der Anodenabgasleitung verbundene Flüssigwas- serzufuhrleitung vorgesehen, die mittelbar oder unmittelbar mit dem Be- feuchter verbunden ist zur anodenseitigen Zuführung von Flüssigwasser in den Befeuchter. Dies ermöglicht, dass auch das anodenseitig anfallende Wasser nicht ungenutzt aus dem Brennstoffzellensystem abgeführt wird, sondern dem Befeuchter zugeführt werden kann, um in dem mindestens ei- nen Speicherelement zeitweise gespeichert zu werden. Durch diese effektive zeitweise Speicherung des Flüssigwassers in dem mindestens einen Spei- cherelement kann, bei Entnahme des Flüssigwassers, eine Befeuchtung des Reaktanten erfolgen, wodurch weniger Wasserübertragung durch die Memb- ran des Befeuchters erforderlich ist, wodurch die Membranfläche und infolge dessen die Baugröße des Befeuchters reduziert werden können. Dabei kann in einer Ausgestaltung die Anodenabgasleitung unmittelbar über die Feucht- zufuhrleitung mit dem Befeuchter verbunden sein, indem der Befeuchter ei- nen zusätzlichen Anschluss für die Feuchtzufuhrleitung aufweist. In einer alternativen und bevorzugten Ausgestaltung ist die Anodenabgasleitung mit- telbar mit dem Befeuchter verbunden, indem die Feuchtzufuhrleitung mit der Kathodenabgasleitung und/oder mit der Kathodenzufuhrleitung verbunden ist. Besonders bevorzugt ist die Feuchtzufuhrleitung mit der Kathodenzufuhr- leitung stromabwärts eines Verdichters verbunden. Dies ermöglicht die Zu führung des Flüssigwassers von zwei Seiten des Befeuchters und führt zu einer gleichmäßigeren Befüllung und Speicherung des Flüssigwassers in einem Flussfeld. Dabei ist es besonders bevorzugt, wenn in der Flüssigwas- serleitung an der Verbindung zur Anodenabgasleitung und/oder an der Ver- bindung zur Kathodenabgasleitung und/oder an der Verbindung zur Katho- denzufuhrleitung jeweils ein als Ventil gebildetes Stellglied angeordnet ist zur Steuerung der Zuführung des Flüssigwassers in den Befeuchter. Insbeson- dere ist es bevorzugt, wenn eine Mehrzahl von den Kanälen zugeordneten Speicherelementen vorgesehen ist, so dass ein größeres Flussfeld mit ge- speichertem Flüssigwasser und damit eine gleichmäßige Befeuchtung des Reaktanten bei einer reduzierten Baugröße des Befeuchters ermöglicht wird. Die Speicherelemente können über die gesamte Oberfläche (regelmäßig) verteilt angeordnet sein, oder alternativ in einzelnen Bereichen der Oberflä- che, insbesondere in solchen angeordnet sein, die besonders trocken sind.
Insbesondere ist es vorteilhaft, wenn die Kanäle durch eine Mehrzahl von an der Oberfläche angeordneten Strömungsstegen gebildet sind, und wenn zu- mindest einer der Strömungsstege einen senkrecht zu einer Längserstre- ckung der Strömungsstege verlaufenden Verbindungskanal aufweist zum Druckausgleich zwischen den Kanälen. Dies ermöglicht eine gleichmäßigere Verteilung des zu speichernden Flüssigwassers und führt zu einer verbesser- ten Stabilität des Befeuchters. Dabei ist es insbesondere vorgesehen, dass das mindestens eine Speicherelement im Kanal ausgebildet ist und/oder am Strömungssteg ausgebildet angeordnet ist. In diesem Zusammenhang ist es bevorzugt, wenn die Anzahl der Verbindungskanäle angepasst ist an die An- zahl der Speicherelemente.
Weiterhin ist es bevorzugt, wenn der Durchmesser des Verbindungskanals derart gewählt ist, dass die Oberflächenspannung des Flüssigwassers im Speicherelement einen Durchtritt des Flüssigwassers durch den Verbin- dungskanal verhindert. Dies ermöglicht, dass das Flüssigwasser im Spei- cherelement gehalten werden kann.
Vorteilhafterweise sind die Strömungsstege derart zueinander angeordnet, dass breite Kanäle mit einem ersten Durchmesser und schmale Kanäle mit einem bezüglich des ersten Durchmessers kleineren Durchmessers gebildet werden oder vorhanden sind. Insbesondere ist es bevorzugt, wenn mindes- tens einer der schmalen Kanäle benachbart zu einem der breiten Kanäle an- geordnet ist. Dies ermöglicht, dass das Flüssigwasser sich in den schmalen Kanälen mit einer höheren Geschwindigkeit als in den breiten Kanälen be- wegt, also der statische Druck in den schmalen Kanälen niedriger ist als in den breiten Kanälen. Durch die Verbindungskanäle wird ein Druckausgleich erzielt und das Flüssigwasser in die Speicher gesogen.
In einer alternativen Ausgestaltung ist es vorgesehen, dass das Spei- cherelement als eine am Strömungssteg ausgebildete oder angeordnete Ta sche gebildet ist, in der das Flüssigwasser aufgenommen werden kann. Die Tasche ist bevorzugt entgegen der Strömungsrichtung weisend offen, in den breiten Kanälen ausgebildet.
Eine besonders einfach zu fertigende Ausgestaltung der Membran sieht vor, dass in einem der Kanäle mindestens zwei Erhebungen ausgebildet sind, derart, dass das Speicherelement als ein Tasche zwischen den zwei Erhe- bungen gebildet ist. Die Erhebungen können beispielsweise als Noppen ge- bildet sein.
In einer weiteren alternativen Ausgestaltung ist es vorgesehen, dass in ei- nem der breiten Kanäle mindestens zwei Erhebungen ausgebildet sind, der- art, dass das Speicherelement als eine zwischen den zwei Erhebungen aus- gebildete Tasche gebildet ist. Insbesondere können eine Mehrzahl von Er- hebungen in den breiten Kanälen angeordnet sein. Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus den Ansprüchen, der nachfolgenden Beschreibung der bevorzugten Ausfüh- rungsform, sowie anhand der Zeichnung. Dabei zeigt:
Fig. 1 eine schematische Darstellung eines Brennstoffzellensystems.
Fig. 2 eine schematische Darstellung einer ersten Ausführungsform einer Membran eines Befeuchters,
Fig. 3 eine schematische Darstellung einer zweiten Ausführungsform einer Membran eines Befeuchters,
Fig. 4 eine schematische Darstellung einer dritten Ausführungsform einer Membran eines Befeuchters und Figur 1 zeigt ein Brennstoffzellensystem 1 gemäß einer bevorzugten Ausge- staltung der vorliegenden Erfindung. Das Brennstoffzellensystem 1 ist Teil eines nicht weiter dargestellten Fahrzeugs, insbesondere eines Brennstoff- zellenfahrzeugs, das einen Elektrotraktionsmotor aufweist, der mittels des Brennstoffzellensystems 1 mit elektrischer Energie versorgt wird.
Das Brennstoffzellensystem 1 umfasst als Kernkomponente einen Brenn- stoffzellenstapel 2, der eine Vielzahl von in Stapelform angeordneten nicht näher dargestellten Brennstoffzellen aufweist. Jeder Brennstoffzelle ist je- weils ein Anodenraum 18 sowie ein Kathodenraum 19 zugeordnet, wobei die Anode und die Kathode durch eine ionenleitfähige Polymerelektrolytmemb- ran voneinander getrennt sind. Zwischen zwei solchen Membran-Elektroden- Anordnungen ist ferner jeweils eine nicht näher dargestellte Bipolarplatte an- geordnet, welche der Zuführung der Reaktanten in die Anoden- und Katho- denräume 18,19 dient und ferner die elektrische Verbindung zwischen den einzelnen Brennstoffzellen herstellt.
Um den Brennstoffzellenstapel 2 mit den Reaktanten zu versorgen, ist der Brennstoffzellenstapel 2 anodenseitig mit einer Anodenzufuhrleitung 20 zur Zuführung eines wasserstoffhaltigen Anodengases aus einem Anodengasre- servoir 22 sowie mit einer Anodenabgasleitung 21 zum Abtransport von nicht reagiertem Anodengas verbunden.
Der Anodenbetriebsdruck auf der Anodenseite des Brennstoffzellenstapels 2 ist über ein erstes Stellglied 23 in der Anodenzufuhrleitung 20 einstellbar. Darüber hinaus kann das Brennstoffzellensystem 1 anodenseitig wie darge- stellt eine Brennstoffrezirkulationsleitung 24 aufweisen, welche die Ano- denabgasleitung 21 mit der Anodenzufuhrleitung 20 verbindet. Die Rezirkula- tion von Brennstoff ist üblich, um den zumeist überstöchiometrisch einge- setzten Brennstoff dem Brennstoffzellenstapel 2 zurückzuführen und zu nut- zen. In der Brennstoffrezirkulationsleitung 24 kann ein nicht dargestelltes Rezirkulationsgebläse angeordnet sein, mit welchem die Rezirkulationsrate einstellbar ist. Auch ein zweites Stellglied 29 kann vorhanden sein.
Kathodenseitig ist der Brennstoffzellenstapel 2 mit einer Kathodenzufuhrlei- tung 4 verbunden zur Zuführung des sauerstoffhaltigen Kathodengases. Zur Förderung und Verdichtung des Kathodengases ist in einem als Trockenzu- fuhrleitung 9 ausgebildeten Teil der Kathodenzufuhrleitung 4 ein Verdichter 3 angeordnet. In der dargestellten Ausgestaltung ist der Verdichter 3 als ein hauptsächlich elektromotorisch angetriebener Verdichter 3 ausgestaltet, des- sen Antrieb über einen mit einer entsprechenden Leistungselektronik 25 ausgestatteten Elektromotor 26 erfolgt.
Über den Verdichter 3 wird das Kathodengas, welches aus der Umgebung angesaugt wurde, zu einem Befeuchter 10 mittels der Trockenzufuhrleitung 9 geführt. Ein zweiter Teil der Kathodenzufuhrleitung 4 verbindet den Befeuch- ter 10 mit dem Brennstoffzellenstapel 2 und leitet befeuchtetes Kathodengas zu den Kathodenräumen 18 des Brennstoffzellenstapels 2. Darüber hinaus wird Flüssigwasser und nicht reagiertes Kathodengas über eine Katho- denabgasleitung 5 zurück zum Befeuchter 10 geleitet oder das nicht reagier- te Kathodenabgas (insbesondere die Abluft) wird gegebenenfalls aus den Kathodenräumen 18 des Brennstoffzellenstapels 2 zu einer nicht dargestell- ten Abgasanlage zugeführt. Schließlich weist der Befeuchter 10 noch eine Befeuchterabfuhrleitung 27 auf, in der eine Turbine 28 angeordnet ist, die mittels des durch die Befeuchterabfuhrleitung 27 strömenden Befeuchterab- gases angetrieben wird und dadurch wiederum den Antrieb des Verdichters 3 mittels einer nicht dargestellte gemeinsame Welle unterstützt. Die Befeuch- terabfuhrleitung 27 weist vor der Turbine 28 zudem einen nicht dargestellten Wasserabscheider auf, der die Turbine 28 vor Beschädigungen durch auch noch nach Durchströmen des Befeuchters 10 im Kathodenabgas mitgeführ- ten Wasserdampf verhindert.
Darüber hinaus ist eine Flüssigwasserzufuhrleitung 7 vorgesehen, die die Anodenabgasleitung 21 mittelbar mit dem Befeuchter 10 verbindet, indem die Anodenabgasleitung 21 mit der Kathodenabgasleitung 5 mittels der Flüs- sigwasserzufuhrleitung 7 verbunden ist. Darüber hinaus ist die Flüssigwas- serzufuhrleitung 7 mit der Kathodenzufuhrleitung 4 stromabwärts des Ver- dichters 3, also mit der Trockenzufuhrleitung 9, verbunden. Dies ermöglicht sowohl das Zuführen von kathodenseitig anfallendem Flüssigwasser (Pro- duktwasser) als auch von anodenseitig im Brennstoffzellenstapel 2 anfallen- dem Flüssigwasser in den Befeuchter 10. In der Flüssigwasserzufuhrleitung 7 sind dabei ein drittes Stellglied 30 zur Steuerung der Zuführung des Flüs sigwassers aus der Anodenabgasleitung 21 , ein viertes Stellglied 31 zur Steuerung der Zuführung des Flüssigwassers in die Kathodenabgasleitung 5 und ein fünftes Stellglied 32 zur Steuerung der Zuführung des Flüssigwas- sers in die Kathodenzufuhrleitung 4 bzw. in die Trockenzufuhrleitung 9 ange- ordnet.
Der Befeuchter 10 weist eine Mehrzahl von wasserdampfpermeablen Memb- ranen 11 auf, die flächig ausgebildet sind. Dabei wird eine Seite der Memb- ranen 11 von dem vergleichsweise trockenen Kathodengas überströmt und die andere Seite von dem vergleichsweise feuchten Kathodenabgas (Abgas). Getrieben durch den höheren Partialdruck an Wasserdampf in dem Katho- denabgas kommt es zu einem Übertritt von Wasserdampf über die Membran
11 in das Kathodenbetriebsgas, das auf diese Weise befeuchtet wird.
Schließlich ist die Trockenzufuhrleitung 9 über eine ein Bypassstellglied auf- weisende Bypassleitung 34 mit der Befeuchterabfuhrleitung 27 verbunden.
Figuren 2 bis 4 zeigen eine stark vereinfachte Darstellung verschiedener Ausgestaltungen einer Oberfläche 12 der Membran 11 des Befeuchters 10. Dabei sind an der Oberfläche 12 eine Mehrzahl von Kanälen 13 zum Durch- strömen eines Flüssigwasser enthaltenen Gasstroms entlang einer Strö- mungsrichtung 35 ausgebildet. Die Kanäle 13 sind durch an der Oberfläche
12 angeordnete Strömungsstege 6 gebildet und ihnen ist eine Mehrzahl von Speicherelementen 14 zugeordnet zur zeitweisen Speicherung von Flüssig wasser.
In der in Figur 2 dargestellten Ausgestaltung der Membran 11 sind die Strö- mungsstege 6 derart angeordnet, dass breite Kanäle 15 mit einem ersten Durchmesser und schmale Kanäle 16 mit einem bezüglich des ersten Durchmessers kleineren Durchmessers gebildet sind. An den Strömungsste- gen 6 sind in den breiten Kanälen 15 die als Taschen ausgebildeten Spei- cherelemente 14 angeordnet. Diese sind bevorzugt entgegen die Strömungs- richtung 35 weisend offen ausgebildet. Der Gasstrom bewegt sich in den breiten Kanälen 15 mit einer langsameren Geschwindigkeit als in den schmalen Kanälen 16, so dass in den schmalen Kanälen 16 ein niedrigerer statischer Druck vorliegt als in den breiten Kanälen 15. Jeder breite Kanal 15 ist benachbart zu einem schmalen Kanal 16 angeordnet und je zwei einen ersten schmalen Kanal 16 bildende Strömungsstege 6 sind abwechselnd zueinander versetzt angeordnet. Dies ermöglicht wiederum, dass die Spei- cherelemente 14 versetzt zueinander angeordnet und dementsprechend größer ausgebildet werden können. Dies führt dazu, dass das durch die Speicherelemente 14 ausgebildete Flussfeld eine größere Speicherkapazität von Flüssigwasser aufweist. Dadurch kann wiederum die Baugröße des Be- feuchters 10 reduziert werden. Die Strömungsstege 6 weisen eine Mehrzahl von senkrecht zu einer Längsrichtung der Strömungsstege 6 verlaufende Verbindungskanäle 8 auf zum Druckausgleich zwischen den schmalen und den breiten Kanälen 15,16. Dies führt dazu, dass das Flüssigwasser in die Speicherelemente 14 gesogen werden. Darüber hinaus sind die Durchmes- ser der Verbindungskanäle 8 derart gewählt, dass die Oberflächenspannung des Flüssigwassers in den Speicherelementen 14 einen Durchtritt des Flüs- sigwassers durch den Verbindungskanal 8 verhindert.
Eine in Figur 3 dargestellte zweite Membran 11 des Befeuchters 10 weist ebenfalls an der Oberfläche 12 breite und schmale Kanäle 15, 16 auf. Aller- dings ist je ein schmaler Kanal 16 benachbart zu einem weiteren schmalen Kanal 16 und zu einem breiten Kanal 15 angeordnet. Nur jeder zweite Strö- mungssteg 6 weist eine Mehrzahl von senkrecht zur Längserstreckung der Strömungsstege 6 ausgebildete Verbindungskanäle 8 auf. Weiterhin sind in den breiten Kanälen 15 eine Mehrzahl von Erhebungen 17 neben einem der Strömungsstege 6 ausgebildet, wobei zwischen den Erhebungen 17 an dem Strömungssteg 6 jeweils ein Verbindungskanal 8 ausgebildet ist. Dadurch werden zwischen den Erhebungen 17 die Speicherelemente 14 als Taschen gebildet. Außerdem wird mittels der Verbindungskanäle 8 Flüssigwasser in die Speicherelemente 14 gesaugt und darin gehalten.
Figur. 4 zeigt eine besonders einfach zu fertigende dritte Ausgestaltung der Membran 11 des Befeuchters 10. Sie unterscheidet sich dadurch, dass die Strömungsstege 6 derart zueinander angeordnet sind, dass die Kanäle 13 annähernd denselben Durchmesser aufweisen. Zudem sind auf den Strö- mungsstegen 6 Erhebungen 17 ausgebildet, derart, dass die Speicherele- mente 14 zwischen den Erhebungen 17 ausgebildet sind.
Das Verfahren zum Befeuchten des Reaktanten in dem Brennstoffzellensys- tem 1 umfasst dabei die folgenden Schritte:
Zunächst wird Flüssigwasser aus dem Brennstoffzellenstapel 2 entnommen. Dies geschieht sowohl anodenseitig, indem das Flüssigwasser von den Ano- denräumen 19 mittels der Flüssigwasserzufuhrleitung 7 in die Kathodenab- gasleitung 5 oder in die Kathodenzufuhrleitung 4 und damit zum Befeuchter 10 geführt wird, als auch kathodenseitig, indem Flüssigwasser von den Ka- thodenräumen 18 mittels der Kathodenabgasleitung 5 in den Befeuchter 10 geführt wird. Das so mittels des Gasstroms in die Membran 11 geführte Flüssigwasser strömt durch die an der Oberfläche 12 ausgebildeten Kanäle 13 und wird zumindest teilweise in die Speicherelemente 14 oder auch in einen Teil der Speicherelemente 14 aufgenommen und zwischengespei- chert. Schließlich werden die Speicherelemente 14 durch Verdampfen des darin enthaltenen Flüssigwassers zumindest teilweise entleert und das dem Brennstoffzellenstapel 2 zuzuführende Kathodengas mittels des verdampften Flüssigwassers befeuchtet. Das Entleeren erfolgt dabei insbesondere dann, wenn das Brennstoffzellensystem 1 in einem Betriebsmodus operiert, indem mehr Wasser benötigt wird, oder wenn die Membran 11 einen vorgegebenen oder vorgebbaren Feuchteschwellwert unterschreitet. Durch das zeitweise Speichern und die anschließende Entnahme des Flüs- sigwassers im durch die Speicherelemente gebildeten Flussfeld der Memb- ran 11 des Befeuchters 10 ist eine geringere Flüssigwasserübertragung durch die Membran 11 erforderlich, wodurch die Membranfläche und damit auch die Baugröße des Befeuchters 10 reduziert werden können.
BEZUGSZEICHENLISTE:
1 Brennstoffzellensystem
2 Brennstoffzellenstapel
3 Verdichter
4 Kathodenzufuhrleitung
5 Kathodenabgasleitung
6 Strömungssteg
7 Flüssigwasserzufuhrleitung
8 Verbindungskanal
9 Trockenzufuhrleitung
10 Befeuchter
11 Membran (Befeuchter)
12 Oberfläche
13 Kanal
14 Speicherelement
15 breiter Kanal
16 schmaler Kanal
17 Erhebung
18 Anodenraum
19 Kathodenraum
20 Anodenzufuhrleitung
21 Anodenabgasleitung
22 Anodengasreservoir
23 erstes Stellglied
24 Brennstoffzellenrezirkulationsleitung
25 Leistungselektronik
26 Elektromotor
27 Befeuchterabfuhrleitung
28 Turbine
29 zweites Stellglied
30 drittes Stellglied
31 viertes Stellglied
32 fünftes Stellglied 33 Bypassstellglied
34 Bypassleitung
35 Strömungsrichtung

Claims

ANSPRÜCHE:
1. Verfahren zum Befeuchten eines Reaktanten in einem Brennstoffzellen- system (1 ) mit einem Brennstoffzellenstapel (2), der mit einem Befeuch- ter (10) fluidverbunden ist, wobei der Befeuchter (10) eine Membran (11 ) aufweist, an deren Oberfläche (12) Kanäle (13) ausgebildet sind, wobei zumindest einem der Kanäle (13) ein Speicherelement (14) zur zeitwei- sen Speicherung von Flüssigwasser zugeordnet ist, umfassend die fol- genden Schritte:
Entnahme des Flüssigwassers aus dem Brennstoffzellenstapel (2) und Zuführen des Flüssigwassers an den Befeuchter (10),
Aufnahme zumindest eines Teils des Flüssigwassers in das Spei- cherelement (14) und Zwischenspeichern des Teils darin,
Zumindest teilweises Entleeren des Speicherelements (14) durch Verdampfen des Flüssigwassers und Befeuchten des dem Brenn- stoffzellenstapel (2) zuzuführenden Reaktanten mittels des ver- dampften Flüssigwassers,
dadurch gekennzeichnet, dass das Flüssigwasser aus dem Brennstoff- zellenstapel (2) sowohl anodenseitig als auch kathodenseitig entnommen wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass das Entlee- ren des Flüssigwassers aus dem Speicherelement (14) erfolgt, wenn die Feuchte der Membran (11 ) einen vorgegebenen oder vorgebbaren Schwellwert unterschreitet.
3. Brennstoffzellensystem (1 ) zur Durchführung des Verfahrens nach An- spruch 1 oder 2, mit einem Brennstoffzellenstapel (2), der mit einer Ano- denzufuhrleitung (20) zur anodenseitigen Zuführung eines Anodengases und einer Anodenabgasleitung (21 ) zum Abführen des Anodenabgases verbunden ist, und der mit einer Kathodenzufuhrleitung (4) zur kathoden- seitigen Zuführung eines Kathodengases und mit einer Kathodenabgas- leitung (5) verbunden ist, wobei die Kathodenabgasleitung (5) mit einem Befeuchter (10) fluidverbunden ist und der Befeuchter (10) eine wasser- dampfdurchlässige Membran (11 ) aufweist, an deren Oberfläche (12) Kanäle (13) ausgebildet sind, wobei zumindest einem der Kanäle (13) ein Speicherelement (14) zur zeitweisen Speicherung von Flüssigwasser zugeordnet ist, dadurch gekennzeichnet, dass eine mit der Anodenab- gasleitung (21 ) verbundene Flüssigwasserzufuhrleitung (7) vorgesehen ist, die mittelbar oder unmittelbar mit dem Befeuchter (10) zur anodensei- tigen Zuführung von Flüssigwasser zum Befeuchter (10) verbunden ist.
4. Brennstoffzellensystem (1 ) nach Anspruch 3, dadurch gekennzeichnet, dass die Flüssigwasserzufuhrleitung (7) mit der Kathodenabgasleitung (5) und/oder mit der Kathodenzufuhrleitung (4) verbunden ist.
5. Brennstoffzellensystem (1 ) nach Anspruch 3 oder 4, dadurch gekenn- zeichnet, dass die Kanäle (13) durch eine Mehrzahl von an der Oberflä- che (12) angeordneten Strömungsstegen (6) gebildet sind, und dass zu- mindest einer der Strömungsstege (6) einen senkrecht zu einer Längser- streckung der Strömungsstege (6) verlaufenden Verbindungskanal (8) aufweist zum Druckausgleich zwischen den Kanälen (13).
6. Brennstoffzellensystem (1 ) nach Anspruch 5, dadurch gekennzeichnet, dass der Durchmesser des Verbindungskanals (8) derart gewählt ist, dass die Oberflächenspannung des Flüssigwassers im Speicherelement (14) einen Durchtritt des Flüssigwassers durch den Verbindungskanal (8) verhindert.
7. Brennstoffzellensystem (1 ) nach Anspruch 5 oder 6, dadurch gekenn- zeichnet, dass die Strömungsstege (6) derart zueinander angeordnet sind, dass breite Kanäle (15) mit einem ersten Durchmesser und schma- le Kanäle (16) mit einem bezüglich des ersten Durchmessers kleineren Durchmessers gebildet werden, und dass mindestens einer der schma- len Kanäle (16) benachbart zu einem der breiten Kanäle (15) angeordnet ist.
8. Brennstoffzellensystem (1 ) nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass das Speicherelement (14) als eine am Strömungs- steg (6) ausgebildete oder angeordnete Tasche gebildet ist.
9. Brennstoffzellensystem (1 ) nach Anspruch 7, dadurch gekennzeichnet, dass in einem der Kanäle (13) mindestens zwei Erhebungen (17) ausge- bildet sind, derart, dass das Speicherelement (14) als eine zwischen den zwei Erhebungen (17) ausgebildete Tasche gebildet ist.
10. Brennstoffzellensystem (1 ) nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, dass in einem der breiten Kanäle mindestens zwei Er- hebungen (17) ausgebildet sind, derart, dass das Speicherelement (14) als eine zwischen den zwei Erhebungen (17) ausgebildete Tasche gebil- det ist.
PCT/EP2019/058857 2018-06-07 2019-04-09 Verfahren zum befeuchten eines reaktanten und brennstoffzellensystem zur durchführung des verfahrens WO2019233655A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/972,519 US11695134B2 (en) 2018-06-07 2019-04-09 Method for humidifying a reactant, and fuel cell system for carrying out the method
CN201980037399.1A CN112204788A (zh) 2018-06-07 2019-04-09 用于加湿反应物的方法和用于执行该方法的燃料电池系统
KR1020207034715A KR102558346B1 (ko) 2018-06-07 2019-04-09 반응물을 가습하기 위한 방법 및 이 방법을 실행하기 위한 연료 전지 시스템
JP2020560755A JP7123171B2 (ja) 2018-06-07 2019-04-09 反応物を加湿する方法、および該方法を実行する燃料電池システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018208989.2 2018-06-07
DE102018208989.2A DE102018208989A1 (de) 2018-06-07 2018-06-07 Verfahren zum Befeuchten eines Reaktanten und Brennstoffzellensystem zur Durchführung des Verfahrens

Publications (1)

Publication Number Publication Date
WO2019233655A1 true WO2019233655A1 (de) 2019-12-12

Family

ID=66223679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/058857 WO2019233655A1 (de) 2018-06-07 2019-04-09 Verfahren zum befeuchten eines reaktanten und brennstoffzellensystem zur durchführung des verfahrens

Country Status (6)

Country Link
US (1) US11695134B2 (de)
JP (1) JP7123171B2 (de)
KR (1) KR102558346B1 (de)
CN (1) CN112204788A (de)
DE (1) DE102018208989A1 (de)
WO (1) WO2019233655A1 (de)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030190511A1 (en) * 2002-04-03 2003-10-09 Nissan Motor Co., Ltd. Control of fuel cell power plant
US20060147774A1 (en) * 2004-11-24 2006-07-06 Motohiro Suzuki Humidifier for fuel cell system
DE102011111742A1 (de) * 2011-08-24 2013-02-28 Daimler Ag Brennstoffzellensystem
DE102011122306A1 (de) * 2011-12-23 2013-06-27 Daimler Ag Brennstoffzellensystem
DE102013014952A1 (de) * 2013-09-10 2015-03-12 Daimler Ag Gas/Gas-Befeuchter
CN106784929A (zh) * 2016-12-07 2017-05-31 同济大学 一种用于燃料电池的加湿器
DE102015122144A1 (de) 2015-12-17 2017-06-22 Volkswagen Ag Befeuchter mit integriertem Wasserabscheider für ein Brennstoffzellensystem, Brennstoffzellensystem sowie Fahrzeug mit einem solchen

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19921007C1 (de) 1999-05-06 2000-11-16 Dornier Gmbh Befeuchtung einer Brennstoffzelle
US6893708B2 (en) * 2002-12-09 2005-05-17 Palcan Fuel Cell Co. Ltd. Fuel cell flowfield design for improved water management
US20040258968A1 (en) 2003-03-21 2004-12-23 Voss Mark G. Cathode inlet gas humidification system and method for a fuel cell system
DE102004023116A1 (de) 2004-05-11 2005-12-08 Ufermann, Rüdiger Brennstoffzelle mit protonenleitendem Wasserstoffbrückenbindungs-Polplatten-Kapillarspalt
DE102004056952A1 (de) * 2004-11-25 2006-06-08 Nucellsys Gmbh Brennstoffzellensystem mit Flüssigkeitsabscheider
JP2006269160A (ja) 2005-03-23 2006-10-05 Nissan Motor Co Ltd 燃料電池
KR101265879B1 (ko) * 2008-02-13 2013-05-20 지멘스 악티엔게젤샤프트 가습 전지
JP6126974B2 (ja) * 2013-11-05 2017-05-10 本田技研工業株式会社 燃料電池システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030190511A1 (en) * 2002-04-03 2003-10-09 Nissan Motor Co., Ltd. Control of fuel cell power plant
US20060147774A1 (en) * 2004-11-24 2006-07-06 Motohiro Suzuki Humidifier for fuel cell system
DE102011111742A1 (de) * 2011-08-24 2013-02-28 Daimler Ag Brennstoffzellensystem
DE102011122306A1 (de) * 2011-12-23 2013-06-27 Daimler Ag Brennstoffzellensystem
DE102013014952A1 (de) * 2013-09-10 2015-03-12 Daimler Ag Gas/Gas-Befeuchter
DE102015122144A1 (de) 2015-12-17 2017-06-22 Volkswagen Ag Befeuchter mit integriertem Wasserabscheider für ein Brennstoffzellensystem, Brennstoffzellensystem sowie Fahrzeug mit einem solchen
CN106784929A (zh) * 2016-12-07 2017-05-31 同济大学 一种用于燃料电池的加湿器

Also Published As

Publication number Publication date
JP7123171B2 (ja) 2022-08-22
DE102018208989A1 (de) 2019-12-12
US20210273246A1 (en) 2021-09-02
US11695134B2 (en) 2023-07-04
CN112204788A (zh) 2021-01-08
KR102558346B1 (ko) 2023-07-24
JP2021520043A (ja) 2021-08-12
KR20210013701A (ko) 2021-02-05

Similar Documents

Publication Publication Date Title
DE102007026331B4 (de) Brennstoffzellensystem mit verbessertem Feuchtemanagement und dessen Verwendung in einem Fahrzeug
WO2017102538A1 (de) Befeuchter mit integriertem wasserabscheider für ein brennstoffzellensystem, brennstoffzellensystem sowie fahrzeug mit einem solchen
DE102014223520A1 (de) Befeuchtungsvorrichtung für Brennstoffzelle und Brennstoffzellensystem mit derselben
DE10304657A1 (de) Brennstoffzellenstapel und Verfahren zum Betrieb eines Brennstoffzellensystems mit einem solchen Brennstoffzellenstapel
DE102013225368A1 (de) Brennstoffzellensystem und verfahren zum befeuchten und kühlen desselben
WO2020224860A1 (de) Flussfeldplatte
DE102016116004A1 (de) Verfahren zum Bestimmen des Feuchtigkeitsgehalts eines Betriebsmediums, Brennstoffzellensystem zum Durchführen eines solchen Verfahrens und Verwendung eines Verdichters als Feuchtigkeitssensor
DE102015122115A1 (de) Befeuchter mit integriertem Wasserabscheider für ein Brennstoffzellensystem, Brennstoffzellensystem mit Befeuchter sowie Fahrzeug mit einem solchen
DE102014018141A1 (de) Brennstoffzellenstapel
DE102014211847A1 (de) Brennstoffzellensystem
WO2011157334A1 (de) Vorrichtung zur befeuchtung von anodengas
DE112019006607T5 (de) Brennstoffzellensystem und verfahren zum steuern eines brennstoffzellensystems
WO2019233655A1 (de) Verfahren zum befeuchten eines reaktanten und brennstoffzellensystem zur durchführung des verfahrens
DE102018210187A1 (de) Befeuchtungssystem und Brennstoffzellensystem
EP4008035B1 (de) Befeuchter, brennstoffzellenvorrichtung mit befeuchter sowie kraftfahrzeug
DE102019205809A1 (de) Flussfeldplatte, Brennstoffzellenstapel mit einer Flussfeldplatte und Brennstoffzellensystem
DE102019205813A1 (de) Brennstoffzellenstapel mit einer hygroskopischen Struktur
EP3959767B1 (de) Befeuchtermodul, befeuchter, brennstoffzellensystem mit einem solchen, sowie verfahren zur befeuchtung eines gases
DE102019126308A1 (de) Befeuchter, Brennstoffzellenvorrichtung sowie Kraftfahrzeug mit einer Brennstoffzellenvorrichtung
DE102019211583A1 (de) Verfahren zur Herstellung eines Befeuchters sowie Befeuchter
DE102018219206A1 (de) Brennstoffzellensystem
EP4037812B1 (de) Befeuchter, brennstoffzellenvorrichtung sowie kraftfahrzeug mit einer brennstoffzellenvorrichtung
DE102012014611A1 (de) Brennstoffzellensystem mit wenigstens einer Brennstoffzelle
DE102012014609B3 (de) Brennstoffzellensystem mit wenigstens einer Brennstoffzelle
DE102017215260A1 (de) Klappenventilanordnung für ein Brennstoffzellensystem und Brennstoffzellensystem mit Klappenventilanordnung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19718278

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020560755

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19718278

Country of ref document: EP

Kind code of ref document: A1