WO2019233499A2 - 激光雷达、激光器、激光器发射板组件及激光器的封装方法 - Google Patents

激光雷达、激光器、激光器发射板组件及激光器的封装方法 Download PDF

Info

Publication number
WO2019233499A2
WO2019233499A2 PCT/CN2019/098623 CN2019098623W WO2019233499A2 WO 2019233499 A2 WO2019233499 A2 WO 2019233499A2 CN 2019098623 W CN2019098623 W CN 2019098623W WO 2019233499 A2 WO2019233499 A2 WO 2019233499A2
Authority
WO
WIPO (PCT)
Prior art keywords
laser
light emitting
circuit board
lidar
axis direction
Prior art date
Application number
PCT/CN2019/098623
Other languages
English (en)
French (fr)
Other versions
WO2019233499A3 (zh
Inventor
李家盛
李娜
向少卿
Original Assignee
上海禾赛光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海禾赛光电科技有限公司 filed Critical 上海禾赛光电科技有限公司
Priority to EP19814737.3A priority Critical patent/EP3855209A4/en
Publication of WO2019233499A2 publication Critical patent/WO2019233499A2/zh
Publication of WO2019233499A3 publication Critical patent/WO2019233499A3/zh
Priority to US17/115,567 priority patent/US20210190918A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers

Definitions

  • the invention relates to the technical field of laser detection, in particular to a laser radar, a laser, a laser emitting board assembly and a packaging method of the laser.
  • LIDAR has undertaken important tasks such as roadside detection, obstacle recognition, and real-time positioning and mapping (SLAM) in autonomous driving.
  • the LIDAR system includes a laser transmitting system and a receiving system.
  • the laser transmitting system generates and emits light pulses, hits the object and reflects back, and is finally received by the receiver.
  • the receiver accurately measures the propagation time of a light pulse from its emission to its reflection back. Because the light pulse travels at the speed of light, the receiver always receives the previous reflected pulse before the next pulse is sent. Given that the speed of light is known, the time of flight can be converted into a measurement of distance.
  • Lidar can accurately measure target position (distance and angle), movement state (speed, vibration and attitude) and shape, and detect, identify, distinguish and track targets. Due to the advantages of fast measurement speed, high accuracy, and long distance measurement, lidar has been widely used in smart cars.
  • a laser radar In order to increase the number of lines, a laser radar is nothing more than arranging lasers at different heights of the image plane of the transmitting lens. The smaller the height difference, the greater the number of lines and the higher the line angle resolution. The more the number of columns, the more difficult the production and adjustment, the more complicated the process, and the lower the production efficiency; the low space utilization in the system, the crowded position at the focal plane, the large amount of heat, and the heat is difficult to be exported. Less fever and less fever.
  • the layout of the laser involves the layout of the entire laser emitting device.
  • the size of the light emitting area of the conventional semiconductor laser pulse diode is very small, but in fact, due to the influence of the chip package and the size of the driving circuit, the spacing between the lasers cannot be very dense.
  • most of the current lidar power transmission methods use wireless power transmission devices, and their specific layout will affect the overall lidar performance. Therefore, it is necessary to propose a new type of lidar.
  • the heat dissipation of the laser and the reduction of the overall size must be considered while reducing the difficulty of installation and adjustment.
  • the present invention discloses a laser radar, which specifically includes the following aspects:
  • a laser radar includes a rotor, a laser transmitting system, and a receiving system.
  • the rotor has a transmitting cabin and a receiving cabin which are isolated from each other.
  • the laser transmitting system is disposed on the transmitting platform.
  • the receiving system is disposed in the receiving cabin; the laser emitting system includes: a laser bracket, the laser bracket is used for fixing at least one laser emitting board.
  • the laser emitting plate is fixed by the laser bracket in a direction perpendicular to the first plane; or the laser emitting plate is fixed by the laser bracket in a direction parallel to the first plane.
  • the first plane is the plane defined by the rotation direction of the lidar rotor. In an optional example, the lidar is placed horizontally.
  • the first plane is a plane parallel to the horizontal plane. Of course, the horizontal plane is not used as the first plane in this specification. Location restrictions.
  • a laser radar which includes a rotor, a laser transmitting system, and a receiving system.
  • the rotor has a transmitting cabin and a receiving cabin which are isolated from each other.
  • the laser transmitting system is disposed in the transmitting cabin.
  • the receiving system is disposed in the receiving compartment; the rotor further includes an outer cylinder and an inner cylinder, and a mounting structure for a transmitting lens group and a receiving lens group is provided on a cylinder wall of the outer cylinder.
  • a laser radar which includes a rotor, a laser transmitting system, and a receiving system.
  • the rotor has a transmitting cabin and a receiving cabin that are isolated from each other.
  • the laser transmitting system is disposed in the transmitting cabin.
  • the receiving system is disposed in the receiving cabin; the laser emitting system includes a first reflecting mirror group and a transmitting lens group, and the first reflecting mirror group is used to change the exit beam path of the laser to enter the laser beam To the transmitting lens group; the transmitting lens group is used for transmitting detection light; and / or, the receiving system includes a receiving lens group, a second reflecting lens group, and a receiving device, and the receiving lens group is used for converging the test object The second reflected mirror group is used to change the path of the light beam and enter the reflected light into the receiving device.
  • a laser radar which includes a rotor, a laser transmitting system, and a receiving system.
  • the rotor has a transmitting cabin and a receiving cabin which are isolated from each other.
  • the laser transmitting system is disposed in the transmitting cabin.
  • the receiving system is disposed in the receiving cabin;
  • a wireless power transmission device includes a wireless power transmitting component and a wireless power receiving component, the wireless power transmitting component is spaced from the wireless power receiving component, and the wireless power transmitting component includes a transmitting A coil and a transmitting circuit board, the transmitting coil is connected to the transmitting circuit board;
  • the wireless power receiving component includes a receiving coil and a magnetic isolation element, and the first surface of the receiving coil and the second surface of the transmitting coil are spaced apart
  • the magnetic isolation element is disposed on a side of the receiving coil away from the transmitting coil.
  • the first surface of the receiving coil and the second surface of the transmitting coil are planes close to each other.
  • the present invention relates to a laser radar, comprising: a rotor having a transmitting cabin and a receiving cabin that are separated from each other, wherein the transmitting cabin and the receiving cabin are asymmetrically distributed; a laser emitting system, and the laser emitting system is provided In the transmitting cabin, the laser emitting system includes a laser bracket and at least one laser emitting board fixed on the laser bracket; and a receiving system, the receiving system is disposed in the receiving cabin.
  • the laser emitting plate is fixed by the laser bracket in a direction perpendicular to the first plane; or, the laser emitting plate is fixed by the laser bracket in a direction parallel to the first plane.
  • the laser holder has a comb-tooth structure having at least one card slot, and the laser emitting plate is fixed to the card slot.
  • the laser emitting plate is at a preset angle with a horizontal plane; the laser emitting plate is provided with at least one laser, and a light emitting surface of the laser is located at a focal plane of an output optical system of the laser radar on.
  • the laser emitting plates when the laser emitting plates are fixed by the laser holder in a direction perpendicular to the first plane, the laser emitting plates are spaced apart in a direction perpendicular to the first plane.
  • the laser emitting plates when the laser emitting plates are fixed by the laser holder in a direction parallel to the first plane, the laser emitting plates are spaced apart in a direction parallel to the first plane.
  • the laser emitting system includes a laser provided on the laser emitting board
  • the laser includes: a substrate having a positioning portion on the substrate; and a laser chip provided on the substrate,
  • the laser chip has a light emitting surface; and a laser beam shaping element, which is positioned by the positioning portion and is opposite to the light emitting surface of the laser chip.
  • the positioning portion includes one or more of a V-shaped groove, a U-shaped groove, and a step
  • the laser beam shaping element includes one of an optical fiber, a cylindrical lens, a D lens, or an aspherical mirror or Multiple.
  • the laser chip is of an edge emission type
  • the light emitting surface has a slow axis direction and a fast axis direction, wherein the slow axis direction is parallel to an extending direction of the laser beam shaping element
  • the laser beam shaping element is a fast axis compression element configured to compress a divergence angle of the laser light emitted from the light emitting surface in the fast axis direction.
  • the pedestal is a silicon pedestal
  • the positioning portion is formed on the silicon pedestal by an etching process
  • the laser further includes an electrode provided on the substrate, and An electrode is configured to power the laser chip, and the electrode includes a positive electrode and a negative electrode separated by a spacer.
  • the positive electrode and the negative electrode are both disposed on a surface of the substrate that is the same as the laser chip, and a side surface of the substrate that is perpendicular to the light emitting surface.
  • the positive electrode and the negative electrode are both disposed on a surface of the substrate that is the same as the laser chip, and an end surface of the substrate that is parallel to the light emitting surface.
  • the laser emitting board includes a circuit board and a plurality of the lasers provided on the circuit board, and the light emitting surfaces of the laser chips of the lasers face the same direction.
  • the plurality of lasers are soldered to the circuit board, and a slow axis direction of a light emitting surface of the plurality of lasers is perpendicular to the circuit board.
  • the plurality of lasers are soldered to the circuit board, and the slow axis direction of the light emitting surfaces of the plurality of lasers is parallel to the circuit board,
  • the light emitting surfaces of the laser chips in the laser are staggered from each other in the fast axis direction.
  • the laser holder has a comb-tooth structure having a plurality of vertical card slots, and a laser emitting board is respectively disposed in the plurality of card slots, and the laser of the laser emitting plate in the plurality of card slots is a laser.
  • the light emitting surfaces of the chip are offset from each other in the fast axis direction.
  • a center of the laser beam shaping element is equal to a center of a light emitting surface of the laser chip.
  • the invention also relates to a laser radar, comprising: a rotor having a launch cabin and a receiving cabin which are separated from each other, wherein the launch cabin and the receiving cabin are asymmetrically distributed; a laser emitting system, the laser emitting system And the receiving system is arranged in the receiving cabin; wherein the rotor further comprises an outer cylinder and an inner cylinder, and the cylinder wall of the outer cylinder is provided with a transmitting lens group And receiving lens group mounting structure.
  • a receiving cavity is formed between the outer tube and the inner tube, and a partition plate is provided in the receiving cavity, and one end of the partition plate is connected to the outer tube, and the partition plate The other end is connected to the inner cylinder, and the partition partitions the accommodating cavity to form the transmitting compartment and the receiving compartment.
  • a third weight structure is provided on the rotor, the third weight structure is provided on both sides of the mounting structure, and the third weight structure includes a plurality of first recesses.
  • a connecting rib is formed between each adjacent two first grooves.
  • a cylinder wall of the outer cylinder includes a movable wall and a fixed wall, and the movable wall and the fixed wall are detachably connected, and the movable wall is provided with at least one first counterweight. Piece.
  • the lidar further comprises a chassis, the chassis is disposed at the bottom of the rotor, and the chassis is provided with at least one second weight block.
  • the laser emitting system includes a laser
  • the laser includes: a substrate having a positioning portion on the substrate; a laser chip disposed on the substrate, the laser chip having a light emitting surface; and
  • the laser beam shaping element is positioned by the positioning portion and is opposite to the light emitting surface of the laser chip.
  • the positioning portion includes one or more of a V-shaped groove, a U-shaped groove, and a step
  • the laser beam shaping element includes one of an optical fiber, a cylindrical lens, a D lens, or an aspherical mirror or Multiple.
  • the laser chip is of an edge emission type
  • the light emitting surface has a slow axis direction and a fast axis direction, wherein the slow axis direction is parallel to an extending direction of the laser beam shaping element
  • the laser beam shaping element is a fast axis compression element configured to compress a divergence angle of the laser light emitted from the light emitting surface in the fast axis direction.
  • the pedestal is a silicon pedestal
  • the positioning portion is formed on the silicon pedestal by an etching process
  • the laser further includes an electrode provided on the substrate, and An electrode is configured to power the laser chip, and the electrode includes a positive electrode and a negative electrode separated by a spacer.
  • the positive electrode and the negative electrode are both disposed on a surface of the substrate that is the same as the laser chip, and a side surface of the substrate that is perpendicular to the light emitting surface.
  • the positive electrode and the negative electrode are both disposed on a surface of the substrate that is the same as the laser chip, and an end surface of the substrate that is parallel to the light emitting surface.
  • the laser emitting system includes a laser holder and at least one laser emitting board fixed on the laser holder
  • the laser emitting board includes a circuit board and a plurality of circuit boards disposed on the circuit board.
  • the laser, and the light emitting surfaces of the laser chips of the laser face the same direction.
  • the plurality of lasers are soldered to the circuit board, and a slow axis direction of a light emitting surface of the plurality of lasers is perpendicular to the circuit board.
  • the plurality of lasers are soldered to the circuit board, and the slow axis direction of the light emitting surfaces of the plurality of lasers is parallel to the circuit board,
  • the light emitting surfaces of the laser chips in the laser are staggered from each other in the fast axis direction.
  • the laser holder has a comb-tooth structure having a plurality of vertical card slots, and a laser emitting board is respectively disposed in the plurality of card slots, and the laser of the laser emitting plate in the plurality of card slots is a laser.
  • the light emitting surfaces of the chip are offset from each other in the fast axis direction.
  • a center of the laser beam shaping element is equal to a center of a light emitting surface of the laser chip.
  • the present invention relates to a laser radar, comprising: a rotor having a transmitting cabin and a receiving cabin that are separated from each other, wherein the transmitting cabin and the receiving cabin are asymmetrically distributed; a laser emitting system, and the laser emitting system is provided In the transmitting cabin; and a receiving system, the receiving system is arranged in the receiving cabin; wherein the laser emitting system includes a laser, a first mirror group, and a transmitting lens group, and the first mirror group is used for For changing the path of the laser beam of the laser so that the laser beam is incident on the transmitting lens group; the transmitting lens group is used for transmitting detection light; and / or, the receiving system includes a receiving lens group, a second A reflecting lens group and a receiving device, the receiving lens group is used to collect the reflected light of the object to be measured, and the second reflecting lens group is used to change the path of the light beam so that the reflected light is incident on the receiving device.
  • the lidar further includes a light blocking plate and a light blocking frame, the light blocking plate is disposed between the transmitting lens group and the receiving lens group, and one end of the light blocking plate is disposed at Between the second reflecting mirror and the fourth reflecting mirror, the other end of the light blocking sheet is attached to the light blocking frame.
  • the lidar further includes a fixing block, and an overlapping bar is provided on the fixing block, and one end of the overlapping bar is connected to the inner cylinder, and the other of the overlapping bar is One end is overlapped on the outer cylinder.
  • the receiving device includes a filter, a receiving device, a receiving circuit support, and a plurality of receiving circuit boards, the receiving device and the receiving circuit board are mounted on the receiving circuit support, so The filter is used for filtering stray light.
  • the receiving device includes a substrate and at least one APD detector, the substrate is fixed on the receiving circuit support, and the APD detector is disposed on a side of the substrate.
  • the lidar further includes a base, a cover, and a top cover, one end of the cover is connected to the base, and the other end of the cover is connected to the top cover, the base, the cover The cover is connected with the top cover in turn to form a closed cavity.
  • the closed cavity is used to accommodate the rotor, the laser emitting system, and the receiving system.
  • the receiving device includes a plurality of APD detectors
  • the APD detectors are arranged as an APD linear array detector or an APD area array detector.
  • the laser includes: a substrate having a positioning portion on the substrate; a laser chip disposed on the substrate, the laser chip having a light emitting surface; and a laser beam shaping element through the The positioning portion is positioned opposite to a light emitting surface of the laser chip.
  • the positioning portion includes one or more of a V-shaped groove, a U-shaped groove, and a step
  • the laser beam shaping element includes one of an optical fiber, a cylindrical lens, a D lens, or an aspherical mirror or Multiple.
  • the laser chip is of an edge emission type
  • the light emitting surface has a slow axis direction and a fast axis direction, wherein the slow axis direction is parallel to an extending direction of the laser beam shaping element
  • the laser beam shaping element is a fast axis compression element configured to compress a divergence angle of the laser light emitted from the light emitting surface in the fast axis direction.
  • the pedestal is a silicon pedestal
  • the positioning portion is formed on the silicon pedestal by an etching process
  • the laser further includes an electrode provided on the substrate, and An electrode is configured to power the laser chip, and the electrode includes a positive electrode and a negative electrode separated by a spacer.
  • the positive electrode and the negative electrode are both disposed on a surface of the substrate that is the same as the laser chip, and a side surface of the substrate that is perpendicular to the light emitting surface.
  • the positive electrode and the negative electrode are both disposed on a surface of the substrate that is the same as the laser chip, and an end surface of the substrate that is parallel to the light emitting surface.
  • the laser emitting system includes a laser holder and at least one laser emitting board fixed on the laser holder
  • the laser emitting board includes a circuit board and a plurality of circuit boards disposed on the circuit board.
  • the laser, and the light emitting surfaces of the laser chips of the laser face the same direction.
  • the plurality of lasers are soldered to the circuit board, and a slow axis direction of a light emitting surface of the plurality of lasers is perpendicular to the circuit board.
  • the plurality of lasers are soldered to the circuit board, and the slow axis direction of the light emitting surfaces of the plurality of lasers is parallel to the circuit board,
  • the light emitting surfaces of the laser chips in the laser are staggered from each other in the fast axis direction.
  • the laser holder has a comb-tooth structure having a plurality of vertical card slots, and a laser emitting board is respectively disposed in the plurality of card slots, and the laser of the laser emitting plate in the plurality of card slots is a laser.
  • the light emitting surfaces of the chip are offset from each other in the fast axis direction.
  • a center of the laser beam shaping element is equal to a center of a light emitting surface of the laser chip.
  • the invention also relates to a laser radar, comprising: a rotor having a launch cabin and a receiving cabin which are separated from each other, wherein the launch cabin and the receiving cabin are asymmetrically distributed; a laser emitting system, the laser emitting system A receiving system is provided in the receiving cabin; and a wireless power transmission device is provided on the top side inside the lidar, and includes a wireless power transmitting component and a wireless power receiving component, The wireless power transmitting component is spaced from the wireless power receiving component.
  • the wireless power transmitting component includes a transmitting coil and a transmitting circuit board, and the transmitting coil is connected to the transmitting circuit board.
  • the wireless power receiving component includes a receiving coil and At least one receiving circuit board, the receiving coil and the transmitting coil are spaced apart, and the receiving coil is connected to the receiving circuit board.
  • the wireless power receiving component further includes a magnetic isolation element, the magnetic isolation element is a magnetic isolation plate, and the magnetic isolation plate is disposed on a side of the receiving coil away from the transmitting coil.
  • the receiving circuit board includes a fourth circuit board and a fifth circuit board
  • a first side of the fourth circuit board is disposed at a distance from a second side of the fifth circuit board
  • a fifth circuit board is connected to the magnetic isolation board, and the magnetic isolation board is disposed on a side of the fifth circuit board facing the fourth circuit board.
  • the laser emitting system includes a laser
  • the laser includes: a substrate having a positioning portion on the substrate; a laser chip disposed on the substrate, the laser chip having a light emitting surface; and
  • the laser beam shaping element is positioned by the positioning portion and is opposite to the light emitting surface of the laser chip.
  • the positioning portion includes one or more of a V-shaped groove, a U-shaped groove, and a step
  • the laser beam shaping element includes one of an optical fiber, a cylindrical lens, a D lens, or an aspherical mirror or Multiple.
  • the laser chip is of an edge emission type
  • the light emitting surface has a slow axis direction and a fast axis direction, wherein the slow axis direction is parallel to an extending direction of the laser beam shaping element
  • the laser beam shaping element is a fast axis compression element configured to compress a divergence angle of the laser light emitted from the light emitting surface in the fast axis direction.
  • the pedestal is a silicon pedestal
  • the positioning portion is formed on the silicon pedestal by an etching process
  • the laser further includes an electrode provided on the substrate, and An electrode is configured to power the laser chip, and the electrode includes a positive electrode and a negative electrode separated by a spacer.
  • the positive electrode and the negative electrode are both disposed on a surface of the substrate that is the same as the laser chip, and a side surface of the substrate that is perpendicular to the light emitting surface.
  • the positive electrode and the negative electrode are both disposed on a surface of the substrate that is the same as the laser chip, and an end surface of the substrate that is parallel to the light emitting surface.
  • the laser emitting system includes a laser holder and at least one laser emitting board fixed on the laser holder
  • the laser emitting board includes a circuit board and a plurality of circuit boards disposed on the circuit board.
  • the laser, and the light emitting surfaces of the laser chips of the laser face the same direction.
  • the plurality of lasers are soldered to the circuit board, and a slow axis direction of a light emitting surface of the plurality of lasers is perpendicular to the circuit board.
  • the plurality of lasers are soldered to the circuit board, and the slow axis direction of the light emitting surfaces of the plurality of lasers is parallel to the circuit board,
  • the light emitting surfaces of the laser chips in the laser are staggered from each other in the fast axis direction.
  • the laser holder has a comb-tooth structure having a plurality of vertical card slots, and a laser emitting board is respectively disposed in the plurality of card slots, and the laser of the laser emitting plate in the plurality of card slots is a laser.
  • the light emitting surfaces of the chip are offset from each other in the fast axis direction.
  • a center of the laser beam shaping element is equal to a center of a light emitting surface of the laser chip.
  • the invention also relates to a laser, comprising: a substrate having a positioning portion on the substrate; a laser chip disposed on the substrate, the laser chip having a light emitting surface; and a laser beam shaping element for positioning by the positioning portion And opposite to the light emitting surface of the laser chip.
  • the positioning portion includes one or more of a V-shaped groove, a U-shaped groove, and a step.
  • the laser beam shaping element includes one or more of an optical fiber, a lenticular lens, a D lens, or an aspherical mirror.
  • the laser chip is of an edge emission type
  • the light emitting surface has a slow axis direction and a fast axis direction, wherein the slow axis direction is parallel to an extending direction of the laser beam shaping element
  • the laser beam shaping element is a fast axis compression element configured to compress a divergence angle of the laser light emitted from the light emitting surface in the fast axis direction.
  • the base is a silicon base
  • the positioning portion is formed on the silicon base by an etching process.
  • the laser further includes an electrode disposed on the substrate, and the electrode is configured to be capable of supplying power to the laser chip.
  • the electrode includes a positive electrode and a negative electrode separated by a spacer.
  • the positive electrode and the negative electrode are both disposed on a surface of the substrate that is the same as the laser chip, and a side surface of the substrate that is perpendicular to the light emitting surface.
  • the positive electrode and the negative electrode are both disposed on a surface of the substrate that is the same as the laser chip, and an end surface of the substrate that is parallel to the light emitting surface.
  • the center of the laser beam shaping element is the same height as the center of the light emitting surface of the laser chip.
  • the invention also relates to a laser emitting board assembly, comprising: a circuit board; a plurality of lasers as described above are arranged on the circuit board, and the light emitting surfaces of the laser chips of the lasers face the same direction.
  • the plurality of lasers are soldered to the circuit board, and a slow axis direction of a light emitting surface of the plurality of lasers is perpendicular to the circuit board.
  • the plurality of lasers are soldered to the circuit board, and the slow axis direction of the light emitting surfaces of the plurality of lasers is parallel to the circuit board,
  • the light emitting surfaces of the laser chips in the laser are staggered from each other in the fast axis direction.
  • the laser emitting system includes a plurality of the circuit boards, and each of the circuit boards is provided with a plurality of the lasers, and a light emitting surface of a laser chip in the lasers on the plurality of circuit boards is at The fast axis directions are staggered from each other.
  • a center of the laser beam shaping element is equal to a center of a light emitting surface of the laser chip.
  • the invention also relates to a laser radar, comprising a laser emission system as described above.
  • the invention also relates to a method for packaging a laser, including:
  • the positioning portion is used to position the laser beam shaping element on the substrate, so that the light emitting surface of the laser chip is opposite to the laser beam shaping element.
  • the laser chip is of an edge emission type
  • the light emitting surface has a slow axis direction and a fast axis direction, wherein the slow axis direction is parallel to an extending direction of the laser beam shaping element
  • the laser beam shaping element is a fast axis compression element configured to compress a divergence angle of the laser light emitted from the light emitting surface in the fast axis direction.
  • the substrate is a silicon substrate.
  • the method further includes making the center of the laser beam shaping element the same height as the center of the light emitting surface of the laser chip.
  • the laser radar according to the present invention has the following beneficial effects:
  • the laser transmitting device of the laser radar of the present invention uses a laser bracket and a transmitting circuit bracket to respectively mount a laser transmitting board and a transmitting circuit group, so that the space of the laser radar transmitting cabin is more flexible, and the volume of the laser transmitting board can be reduced, reducing the system size and Weight, which is convenient to realize the low cost and miniaturization of the lidar; and the arrangement of the laser emitting board in the laser holder and the arrangement of the laser emitters is easy to realize the lidar with higher wiring;
  • the laser array of the laser emitting device of the laser radar of the present invention can be arranged in a non-uniform distribution.
  • a higher vertical angular resolution can be achieved, saving costs and reducing volume;
  • the laser radar of the present invention provides a third counterweight structure symmetrically on both sides of the transmitting lens group and the receiving lens group, which improves the flexibility of the rotor counterweight and increases the surface area of the cylinder wall of the outer cylinder, thereby effectively improving the rotor.
  • the third counterweight structure includes a plurality of first grooves. While increasing the surface area and improving heat dissipation efficiency, the first groove structure can be effectively reduced on the wall of the outer cylinder of the rotor to effectively reduce the rotor's The overall weight minimizes the weight of the rotor and effectively reduces the energy consumption during the rotation of the rotor.
  • the weight material can be flexibly added to the first groove structure to achieve the rotor's
  • the effective adjustment of the overall balance improves the flexibility of the overall balance adjustment of the rotor, and a connecting rib is formed between adjacent first grooves, which acts as a reinforcing rib and improves the overall strength of the rotor;
  • the lidar divides the cylinder wall of the outer cylinder into a movable wall and a fixed wall through a reinforcing bar and a partition, which improves the overall injection molding process of the rotor and facilitates the installation of the launching component. Effectively reduce the resistance of the rotor during the rotation and reduce the energy consumption consumed to overcome the resistance;
  • the laser radar of the present invention completely separates the transmitting cabin and the receiving cabin by setting a fixed block, a light barrier and a light barrier to avoid mutual interference of the optical paths in the transmitting cabin and the receiving cabin, and improves the measurement accuracy of the lidar, and
  • the launching and receiving cabins are asymmetrically distributed, which can be adapted to the specific structure and volume of the laser transmitting and receiving systems;
  • the receiving device filter of the laser radar of the present invention is disposed on the side of the receiving device facing the second reflecting mirror group, and can filter stray light.
  • the APD detector of the receiving device is also provided with a metal protective shell, which can Protect the receiving device from foreign objects such as dust from damaging the device.
  • Figure 1 is a schematic diagram of the structure of a lidar rotor
  • FIG. 2 is a light path diagram of a lidar
  • Figure 3 is a top view of Figure 1;
  • FIG. 4 is a schematic diagram of another structure of a lidar rotor
  • FIG. 5 is a schematic diagram of another structure of a lidar rotor
  • FIG. 6 is a schematic diagram of another structure of a lidar rotor
  • FIG. 7 is a schematic diagram of another structure of a lidar rotor
  • FIG. 8 is a schematic diagram of another structure of a lidar rotor
  • FIG. 9 is a schematic structural diagram of a laser radar rotor bottom plate
  • FIG. 10 is a schematic structural diagram of a lidar chassis
  • FIG. 11 is a schematic structural diagram of a lidar base
  • Figure 12 is a sectional view of a lidar base
  • FIG. 13 is a schematic diagram of a laser emitting device according to Embodiment 3 of the present invention.
  • FIG. 14 is a schematic assembly diagram of a laser holder and a laser emitting board according to Embodiment 3 of the present invention.
  • FIG. 15 is a schematic perspective view of a laser holder according to Embodiment 3 of the present invention.
  • FIG. 16 is an assembly schematic diagram of a transmitting circuit bracket and a transmitting circuit group according to the present invention.
  • FIG. 17 is a schematic perspective view of a transmitting circuit bracket of the present invention.
  • FIG. 18 is a schematic diagram of a laser holder according to Embodiment 4 of the present invention.
  • FIG. 19 is a schematic diagram of a layout of a laser emitting board according to Embodiment 4 of the present invention.
  • FIG. 20 is a schematic diagram of a layout of a laser emitting board according to Embodiment 5 of the present invention.
  • FIG. 21 is a schematic diagram of a laser radar receiving system according to Embodiment 6 of the present invention.
  • FIG. 22 is a schematic diagram of a laser radar receiving system according to Embodiment 6 of the present invention from another perspective;
  • FIG. 23 is a schematic diagram of a receiving device of a lidar receiving system according to Embodiment 6 of the present invention.
  • FIG. 24 is a front view of a receiving device according to Embodiment 6 of the present invention.
  • FIG. 25 is a left side view of a receiving device according to Embodiment 6 of the present invention.
  • 26 is a schematic diagram of a receiving circuit bracket according to Embodiment 6 of the present invention.
  • FIG. 27 is another perspective view of a receiving circuit support according to Embodiment 6 of the present invention.
  • FIG. 28 is a partial structural schematic diagram of a wireless power transmission device according to Embodiment 9 of the utility model.
  • FIG. 29 is a partial front view of the structure of a wireless power transmission device according to Embodiment 9 of the utility model;
  • FIG. 30 is a schematic structural diagram of a lidar of the first embodiment of the utility model
  • FIG. 31A is a schematic diagram of a laser radar
  • FIG. 31B is a schematic diagram of an edge-emitting laser chip
  • FIG. 31C is a schematic diagram of an arrangement manner of a conventional semiconductor laser chip and a circuit board
  • 32 is a schematic diagram of another arrangement manner of a conventional semiconductor laser chip and a circuit board
  • FIG. 33A is a perspective view of a laser according to the first aspect of the present invention viewed from the front side
  • FIG. 33B is a perspective view of the laser viewed from the rear side
  • FIGS. 33C and 33D are renderings of FIGS. 33A and 33B, respectively;
  • Figure 34A shows the divergence angle of the laser beam emitted by the laser chip along the slow axis direction and the divergence angle along the fast axis direction
  • Figures 34B and 34C show the laser beam emitted by the laser chip after passing through the D lens and the optical fiber, respectively , Where the divergence angle in the fast axis direction is reduced;
  • 35A and 35B illustrate a laser according to another embodiment of the present invention.
  • FIGS. 36A and 36B illustrate a laser according to another embodiment of the present invention
  • FIGS. 36C and 36D are renderings of FIGS. 36A and 36B, respectively;
  • FIG. 38 shows a laser emitting board assembly according to a preferred embodiment of the present invention.
  • FIG. 39A shows a laser emitting board assembly according to a preferred embodiment of the present invention
  • FIG. 39B shows a laser emitting board assembly according to another preferred embodiment of the present invention
  • FIG. 40 shows a laser emitting board assembly according to a preferred embodiment of the present invention.
  • FIG. 41 shows a laser emitting board assembly according to a preferred embodiment of the present invention.
  • FIG. 42 shows a method for packaging a laser according to the present invention.
  • 201-Laser emission device 2011-Laser bracket; 20111-Second base plate; 201111-First mounting hole; 20112-First side plate; 201121-Comb; 201122-Card slot; 2012-Emission circuit group; 20121-Emission Motherboard; 20122-first launch daughter board; 20123-second launch daughter board; 20124-third launch daughter board; 2013- launch circuit bracket; 20131- third base plate; 201311- second mounting hole; 20132- second Side plate; 201321-first side; 201322-second side; 20133-assembly projection; 201331-first assembly hole; 20134-protrusion; 2014-laser emission plate; 2015-laser; 20161-first screw; 20162 -First nut; 20163-first washer; 20164-second screw.
  • one embodiment or “an embodiment” refers to a particular feature, structure, or characteristic that can be included in at least one implementation of the present invention.
  • orientations or positional relationships indicated by the terms “upper”, “lower”, “top”, “bottom” and the like are based on the orientations or positional relationships shown in the drawings, and are only for It is convenient to describe the present invention and simplify the description, rather than indicating or implying that the device or element referred to must have a specific orientation, be constructed and operate in a specific orientation, and therefore cannot be understood as a limitation on the present invention.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. Moreover, the terms “first”, “second”, and the like are used to distinguish similar objects, and are not necessarily used to describe a specific order or sequence. It should be understood that the data used in this way are interchangeable where appropriate, so that the embodiments of the invention described herein can be implemented in an order other than those illustrated or described herein.
  • installation should be understood in a broad sense unless explicitly stated and limited otherwise.
  • they may be fixed connections or removable.
  • Connected or integrated it can be mechanical, electrical, or can communicate with each other; it can be directly connected, or it can be indirectly connected through an intermediate medium, it can be the internal communication of two elements or the interaction of two elements relationship.
  • the specific meanings of the above terms in the present invention can be understood according to specific situations.
  • the first feature “above” or “below” the second feature may include the first and second features in direct contact, and may also include the first and second features Not directly, but through another characteristic contact between them.
  • the first feature is “above”, “above”, and “above” the second feature, including that the first feature is directly above and obliquely above the second feature, or merely indicates that the first feature is higher in level than the second feature.
  • the first feature is “under”, “below” and “below” of the second feature, including the fact that the first feature is directly above and obliquely above the second feature, or merely indicates that the first feature is less horizontal than the second feature.
  • Various embodiments of the first aspect of the present invention relate to lidar, which are described in detail below with reference to FIGS. 1-30.
  • Embodiment 1 relates to a laser radar, which includes a rotor 1, a laser transmitting system, and a receiving system.
  • the rotor 1 has a transmitting compartment 13 and a receiving compartment 14 (see FIG. 3) which are isolated from each other.
  • the laser emitting system is disposed in the transmitting compartment 13, and the receiving system is disposed in the receiving compartment 14.
  • the laser transmitting system and the receiving system will be described in detail below.
  • the laser emitting system includes a laser emitting device 201 including a laser bracket 2011, a transmitting circuit group 2012, a transmitting circuit bracket 2013, and at least one laser emitting board 2014, the laser bracket 2011 It can be spaced from the transmitting circuit bracket 2013, the laser emitting board 2014 is mounted on the laser bracket 2011, and the laser emitting board 2014 is provided with at least one laser 2015 (see FIG. 14).
  • the transmitting circuit group 2012 is mounted on the transmitting circuit support 2013, and the transmitting circuit group 2012 is electrically connected to the laser transmitting board 2014.
  • the laser emitting device 201 further includes a plurality of flexible electrical connectors, the transmitting circuit group 2012 and the laser emitting board 2014 are connected through the flexible electrical connectors, and the transmitting circuit group 2012 can be provided through the flexible electrical connectors.
  • the laser transmitting board 2014 provides driving signals and power.
  • the lidar further includes a base 3, an outer cover 36, and a top cover 37.
  • One end of the outer cover 36 is cooperatively connected to the base 3, and the other end of the outer cover 36 is cooperatively connected to the top cover 37.
  • the base 3, the outer cover 36 and the top cover 37 are sequentially connected and enclosed to form a closed cavity.
  • the closed cavity is used to receive the rotor 1, a laser emitting system, and a receiving system.
  • the laser emitting system further includes a first mirror group 202 and a transmitting lens group 203.
  • the first mirror group 202 is configured to receive a laser beam emitted by the laser 2015 and change the laser beam.
  • the path of the laser beam is such that the laser beam is incident on the transmitting lens group 203; the transmitting lens group 203 is configured to emit detection light.
  • the receiving system includes a receiving lens group 301, a second reflecting mirror group 302, and a receiving device 303.
  • the receiving lens group 301 is configured to collect reflected light from an object to be measured.
  • the second mirror group 302 is configured to change a path of a light beam, and incident the reflected light to the receiving device 303.
  • the transmitting cabins 13 and the receiving cabins 14 are distributed asymmetrically.
  • the asymmetric distribution of the launching and receiving cabins is conducive to the rational arrangement of the laser emitting and receiving systems.
  • the laser emitting system includes a laser holder 2011 (on which a laser emitting board 2014 is carried), a transmitting circuit holder 2013 (on which a transmitting circuit group 2012 is carried), and a first reflecting mirror group 202 and a transmitting lens group 203, the number of parts More and heavier.
  • the receiving system includes a receiving lens group 301, a second reflecting mirror group 302, and a receiving device 303, with relatively few components and light weight. Therefore, the asymmetrical arrangement of the launching compartment and the receiving compartment can facilitate the distribution of the components in the laser transmitting system and the receiving system as evenly as possible in the lidar to avoid causing an imbalance in weight.
  • the lidar includes a base 3 and an outer cover 36.
  • the base 3 and the outer cover 36 cooperate to form a closed cavity.
  • the rotor 1 is disposed on the base 3, and the rotor 1 can rotate relative to the base 3.
  • the lidar further includes a wireless power transmission device, the wireless power transmission device includes a wireless power transmitting component and a wireless power receiving component, and the wireless power transmitting component is disposed on a side of the top of the housing 36 facing the base 3,
  • the wireless power receiving component is disposed on a side of the rotor 1 facing the wireless power transmitting component.
  • the lidar further includes a center shaft 32, and a wire groove is formed on a side wall of the center shaft 32.
  • the lidar further includes a plurality of electrical connection wires, the electrical connection wires are laid in the wire grooves, one end of the electrical connection wires is connected to the wireless power transmission transmitting component, and the other end of the electrical connection wires is The circuit parts in the base are connected.
  • a second embodiment of the present invention relates to a lidar device, which is described with reference to FIGS. 1 to 12.
  • the lidar device includes a rotor 1 including an outer cylinder 11 and an inner cylinder 12.
  • a cylinder wall of the outer cylinder 11 is provided with a receiving lens group 301 and a transmitting lens group 203.
  • the mounting structure has a third weight structure 5 distributed on both sides of the mounting structure, as shown in FIG. 7.
  • the third weight structure 5 includes a weight structure I and a weight structure II, and each of the weight structure I and the weight structure II includes a plurality of first grooves 51.
  • the structures of the plurality of first grooves 51 may be the same or different.
  • a plurality of first grooves 51 constituting the third weight structure 5 is taken as an example: the third weight structure includes 12 first grooves 51, which are specifically included in all The four rectangular grooves arranged in a straight line in the vertical direction of the cylinder wall of the outer cylinder 11 and the eight wedge-shaped grooves symmetrically arranged on both sides of the rectangular groove.
  • the rectangular grooves have the same depth and the wedge In the direction of the groove close to the rectangular groove, the depth gradually deepens inward along the radial direction of the rotor 1.
  • the depth of the rectangular groove and the gradual depth of the wedge-shaped groove are set according to actual conditions. .
  • a connecting rib 52 is formed between two adjacent first grooves 51, which functions as a reinforcing rib and improves the overall strength of the rotor 1. Furthermore, a plurality of The third counterweight structure 5 composed of the first groove 51 increases the surface area of the outer cylinder wall of the rotor 1 and improves the heat dissipation efficiency of the rotor 1. At the same time, the arrangement of the first groove 51 reduces the rotor 1 The overall weight makes the rotor 1 lighter, which effectively reduces the energy consumption of the rotor 1 during rotation, and further, it can flexibly insert different weight materials into the first groove 51 to adjust the overall balance of the rotor 1 The flexibility of the overall balance adjustment of the rotor 1 is improved.
  • the third weight structure 5 is symmetrically distributed on both sides of the mounting structure of the receiving lens group 301 and the transmitting lens group 203 for adjusting the balance of the rotor 1.
  • the laser transmitting system has a large number of components and a relatively large weight, so it may cause the laser transmitting system side to be heavier and the receiving system side to be lighter.
  • an appropriate weight can be placed in the first groove 51 of the weight structure 5 on the side of the receiving system, for example, the weight is bonded in the first groove 51 by means of bonding, so that the rotor 1 Achieve weight balance around its rotating shaft to avoid problems such as vibration or reduced accuracy due to unbalanced weight during high-speed rotation.
  • a person skilled in the art can select the number, material, and location of the counterweights as required.
  • the symmetrical distribution of the third weight structure 5 described above on both sides of the mounting structure is only a preferred solution, and it is not limited thereto.
  • the third weight structure can be arranged on the rotor as required. Either position.
  • a receiving cavity is formed between the outer cylinder 11 and the inner cylinder 12, and a partition plate 16 is disposed in the receiving chamber.
  • the cylinder 11 is connected, and the other side of the partition plate 16 is connected to the inner cylinder 12.
  • the partition 16 divides the accommodating cavity into a launching cabin 13 and a receiving cabin 14.
  • the volumes of the launching cabin 13 and the receiving cabin 14 may be different, or the launching cabin 13 and the receiving cabin 14 may be non-rotating on the rotor. Symmetrical distribution.
  • the inner cylinder 12 includes an inner cylinder inner wall and an inner cylinder outer wall
  • the outer cylinder 11 includes an outer cylinder inner wall and an outer cylinder outer wall
  • the accommodation cavity is formed between the outer cylinder inner wall and the inner cylinder outer wall.
  • the inner wall of the outer cylinder and the outer wall of the inner cylinder constitute an inner wall of the accommodating cavity.
  • Both the outer wall of the inner cylinder and the inner wall of the outer cylinder are formed with avoidance grooves 9, as shown in FIG. 6. It can be understood that the number and position of the avoidance grooves 9 can be set according to the assembly position of the assembly component, so as to avoid the interference of assembly component assembly, and the size of the avoidance groove can be determined according to the size of the assembly component.
  • the number and position of the avoidance grooves 9 are set preferentially based on the assembly positions of the assembly components.
  • a first mounting plane is provided on the inner wall of the outer cylinder 11.
  • 111 and a third mounting plane 112 a second mounting plane 121, a fourth mounting plane 122, and a mating surface 123 are provided on an outer wall of the inner cylinder 12, wherein the first mounting plane 111 and the second mounting plane 121
  • the third mounting plane 112 and the fourth mounting plane 122 are disposed in the receiving cabin 14.
  • the abutting surface 123 spans the transmitting cabin 13 and the receiving cabin 14.
  • the first mounting plane 111 and the second mounting plane 121 are opposite to each other, the second mounting plane 121 and the fourth mounting plane 122 are connected by a bonding surface 123, and the third mounting plane 112 and the fourth mounting plane The planes 122 are oppositely disposed. Further, both sides of the first mounting plane 111, the second mounting plane 121, the third mounting plane 112, and the fourth mounting plane 122 are provided with avoidance grooves 9.
  • a laser emitting device 201 and a first mirror group 202 are disposed in the transmitting cabin 13.
  • the first reflecting mirror group 202 includes a first reflecting mirror 2021 and a second reflecting mirror 2022, which are used to reflect the detection light of the laser emitting device 201 twice.
  • the first reflecting mirror 2021 is attached to the first mounting plane 111
  • the second reflecting mirror 2022 is attached to the second mounting plane 121. Avoidance grooves 9 on both sides of the first installation plane 111 and the second installation plane 121 provide an escape space for the installation of the first reflecting mirror 2021 and the second reflecting mirror 2022, and facilitate the first reflecting mirror 2021 and the second reflecting mirror.
  • the first reflector 2021 and the second reflector 2022 are prevented from interfering with the cylinder walls on both sides of the installation plane.
  • the transmitting lens group 203 and the receiving lens group 301 are arranged symmetrically.
  • the transmitting lens group 203 is in communication with the transmitting module 13, and the receiving lens group 301 is in communication with the receiving module 14.
  • the second reflecting mirror group 302 includes a third reflecting mirror 3021 and a fourth reflecting mirror 3022, and is configured to twice reflect the reflected light passing through the receiving lens group 301 to the receiving device 303.
  • the third reflecting mirror 3021 is attached to the third mounting plane 112
  • the fourth reflecting mirror 3022 is attached to the fourth mounting plane 122
  • the third mounting plane 112 and the first The avoidance grooves 9 on both sides of the four mounting planes 122 provide an escape space for the installation of the third reflector 3021 and the fourth reflector 3022, and facilitate the installation of the third reflector 3021 and the fourth reflector 3022.
  • the third mirror 3021 and the fourth mirror 3022 interfere with the cylinder walls on both sides of the mounting plane.
  • the first mirror group 202 and the second mirror group 302 each include two mirrors.
  • the scope of protection of the present invention is not limited to the specific number of mirrors, and may include one mirror or a larger number of mirrors.
  • Those skilled in the art may follow the specific design requirements of the lidar. Decisions, such as the size of the lidar, optical performance parameters, etc., are all within the scope of the present invention.
  • the lidar device further includes a light blocking sheet 41 and a light blocking frame 42.
  • the light blocking sheet 41 is used to separate the transmitting lens group 203 and the receiving lens group 301.
  • One end of the light blocking sheet 41 is disposed between the second reflecting mirror 2022 and the fourth reflecting mirror 3022, and the other end of the light blocking sheet 41 is attached to the light blocking frame 42.
  • the light blocking sheet 41 is mainly used for separating the transmitting lens group 203 and the receiving lens group 301, and its shape includes, but is not limited to, a rectangular shape, a regular T-shape, or an irregular T-shape.
  • the thickness of the light blocking sheet 41 is 2 mm to 5 mm, so that it can withstand its own gravity after installation, avoiding the sticking between the transmitting lens group 203 and the receiving lens group 301 caused by the bending of the light blocking sheet 41 due to gravity. Close together to avoid light leakage.
  • the rotor 1 further includes a first bottom plate 17 and an upper plane 113.
  • One end of the light-blocking frame 42 is disposed on the first bottom plate 17 of the rotor 1, and the other end of the light-blocking frame 42 is flush with the upper plane 113 of the rotor 1 or extends above the rotor 1. Plane 113.
  • the light blocking frame 42 is preferably a T-shaped structure. After the light-blocking sheet 41 and the light-blocking frame 42 are installed, the height of the light-blocking frame 42 is higher than that of the light-blocking sheet 41 to further block stray light and suppress light interference.
  • the first bottom plate 17 is used to seal a gap between the bottom of the inner tube 12 and the bottom of the outer tube 11.
  • the transmitting circuit bracket 2013, the laser transmitting board bracket 2011, and the receiving circuit board bracket 3033 are all disposed on the first base plate 17, and positions on the first base plate 17 can be adjusted as required.
  • the first bottom plate 17 includes an upper plane and a lower plane, and a concave portion 171 is provided on the upper plane, as shown in FIG. 1.
  • the upper plane includes a first recessed portion 1711, a second recessed portion 1712, and a third recessed portion 1713.
  • the first recessed portion 1711 and the second recessed portion 1712 are both disposed in the upper portion.
  • a plurality of recessed portions 171 are also provided on a lower plane of the first bottom plate 17, and preferably include a fourth recessed portion corresponding to the first recessed portion 1711, the second recessed portion 1712, and the third recessed portion 1713.
  • the depressed portion, the fifth depressed portion, and the sixth depressed portion By providing the recessed portion 171, the overall weight of the rotor 1 can be reduced, the weight of the rotor 1 can be reduced, and the energy consumption when the rotor 1 is rotated can be reduced.
  • the set number and the set position of the recessed portions 171 on the upper and lower planes of the first bottom plate 17 are only a preferred solution, and are not limited thereto.
  • the specific position and number may be Set as required.
  • the second reflecting mirror 2022 is attached to the second mounting plane 121
  • the fourth reflecting mirror 3022 is attached to the fourth mounting plane 122.
  • a part of the second reflecting mirror 2022 extending out of the second mounting plane 121 abuts on a side of the light blocking sheet 41
  • a part of the fourth reflecting mirror 3022 extending out of the fourth mounting plane 122 abuts On the other side of the light blocking sheet 41, a triangular accommodating space is formed between the extending portion of the second reflecting mirror 2022 and the extending portion of the fourth reflecting mirror 3022.
  • a fixing block 8 is further provided in the accommodating cavity.
  • the fixing block 8 has a triangular structure, and the fixing block 8 includes an upper surface, The lower surface, the first side, and the second side.
  • the illustrated upper surface is fixedly provided with an overlapping strip 81.
  • the lower surface abuts on the second reflecting mirror 2022 and the fourth reflecting mirror 3022.
  • the side surface is attached to the abutting surface 123, the second side surface is attached to the inner wall of the outer cylinder 11, one end of the overlap bar 81 is overlapped on the inner tube 12, and the overlap bar 81 The other end is overlapped on the outer cylinder 11.
  • the fixing block 8 is provided to separate the reflecting compartment 13 and the receiving compartment 14.
  • the fixing block 8 is preferably a triangular structure, which is adapted to the triangular shape of the triangular accommodation space formed between the second reflecting mirror 2022 and the fourth reflecting mirror 3022, and the fixing block of the triangular structure is arranged in the Above the second reflecting mirror 2022 and the fourth reflecting mirror 3022, the distance between the reflecting mirror and the top of the rotor 1 can be filled, avoiding interference between the detection light and the received light, and improving detection accuracy.
  • the principle of the optical path is as follows:
  • the laser 2015 of the laser emitting device 201 (refer to FIG. 2) emits a laser beam as detection light, and the detection light is sent to the first reflection mirror 2021 and reflected to the second reflection mirror 2021.
  • the reflecting mirror 2022, and then the second reflecting mirror 2022 reflects the detection light to the transmitting lens group 203, the detection light passes through the transmitting lens group 203 and irradiates the object to be detected, and the object to be detected is reflected to the receiving lens group 301 reflected light, the reflected light reflected by the detection object passes through the receiving lens group 301 and is incident on the third reflection mirror 3021, reflected by the third reflection mirror 3021 to the fourth reflection mirror 3022, and then reflected by the fourth reflection
  • the mirror 3022 reflects the reflected light to the receiving device 303 after the second reflection.
  • the rotor 1 further includes a cover plate assembly 10, which includes a launch cabin cover and a receive cabin cover 103, and the launch cabin cover is provided in the launch cabin 13.
  • the receiving compartment cover 103 is disposed above the receiving compartment 14.
  • the launching cover includes a first cover 101 and a second cover 102, the first cover 101 is disposed above the laser emitting device 201, and the second cover 102 is disposed at The upper part of the first mirror group 202 is described.
  • a baffle structure is provided on the first cover plate 101, the second cover plate 102, and the receiving compartment cover plate 103 at positions corresponding to the avoidance grooves 9.
  • a step for supporting the first cover plate 101, the second cover plate 102, and the receiving compartment cover plate 103 is provided on the top of the inner wall of the accommodating cavity, and the depth of the step is the same as that of the first cover plate 101 and the first cover plate. The thicknesses of the two cover plates 102 and the receiving compartment cover plate 103 are matched.
  • a first through hole 7 is provided on the cover of the launching compartment for passing through the conductive member 6 to supply power to the launching circuit board 1312.
  • the first through hole 7 is provided on the second cover plate 102 or on the receiving compartment cover 103 for passing through the conductive member 6.
  • the conductive member 6 is preferably a flexible electrical connector.
  • a sealing gasket 71 is provided on the first through hole to realize the sealing of the first through hole, avoiding shaking of the conductive member 6 when the rotor 1 rotates, and improving the stability of circuit transmission. .
  • a reinforcing strip 15 is further provided in the accommodating cavity, as shown in FIG. 1.
  • One end of the reinforcing bar 15 is connected to the outer cylinder 11, the other end of the reinforcing bar 15 is connected to the inner cylinder 12, and the reinforcing bar 15 and the partition plate 16 are disposed at an angle between them.
  • the angle between the reinforcing strip 15 and the partition 16 is 120 ° -150 °.
  • the reinforcing strip 15 and the partition plate 16 divide the cylinder wall of the outer cylinder 11 into a movable wall 114 and a fixed wall 115.
  • the movable wall 114 and the fixed wall 115 are detachably connected to each other.
  • the movable wall 114 is engaged with the fixed wall 115.
  • the fixed wall 115 is an arc-shaped structure, including a first open end and a second open end. The first open end and the second open end are both provided with a slot structure.
  • the movable wall 114 is The inferior arc structure that cooperates with the fixed wall 115 of the superior arc structure includes a first connection end and a second connection end, and the first connection end and the second connection end are respectively locked in the card slot structure. .
  • the partition 16 divides the accommodating cavity into a launching cabin 13 and a receiving cabin 14, and the volumes of the launching cabin 13 and the receiving cabin 14 may be unequal and distributed asymmetrically.
  • the movable wall 114 and the fixed wall 115 are not limited to a snap connection, and may be connected by screws or riveted.
  • the above-mentioned clamping is only a preferred embodiment, and is not limited thereto.
  • the wall of the outer cylinder 11 is divided into a movable wall 114 and a fixed wall 115 by the reinforcing bar 15 and the partition plate 16, which improves the overall injection molding process of the rotor 1 and facilitates the installation of the laser emitting device 201.
  • the movable wall 114 is made of copper, aluminum alloy, or other materials with good heat dissipation effect and certain hardness
  • the fixed wall 115 is made of aluminum alloy.
  • the movable wall 114 includes an arc-shaped portion 1142 and a flow-guiding portion 1143, and the arc-shaped portion 1142 and the flow-guiding portion 1143 are smoothly connected, and the flow-guiding The portion 1143 has a non-uniform wall thickness, and the arc-shaped portion 1142 has a uniform wall thickness.
  • the minimum wall thickness of the flow guiding portion 1143 is greater than the wall thickness of the arc-shaped portion 1142.
  • the flow guiding portion 1143 is a streamlined structure, which can reduce the resistance when the rotor 1 rotates.
  • setting the movable wall 114 to a material such as copper, copper-aluminum alloy or the like can speed up the heat dissipation of the heat generated when the transmitting circuit board 1312 works.
  • the fixed wall 115 with an aluminum alloy, the weight of the rotor 1 can be reduced.
  • At least one first weight block 1141 is disposed on the movable wall 114.
  • a first weight block 1141 is disposed on the movable wall 114, and the first weight block 1141 is disposed on the flow guide portion 1143 and the arc of the movable wall 114.
  • the connecting portion of the shaped portion 1142 is disposed near the top of the movable wall 114.
  • the first weight block 1141 is a hammer-shaped structure, and includes a front end and a rear end.
  • the thickness of the front end is smaller than the thickness of the rear end.
  • the front end is disposed near the flow guide portion 1143 and the rear end is close to the arc shape.
  • the section 1142 is provided.
  • the first weight block 1141 is threadedly connected to the movable wall 114.
  • the lidar further includes a chassis 2, and the chassis 2 is used to support the rotor 1.
  • FIG. 10 shows the chassis 2.
  • the chassis 2 is provided with at least one second weight block 21, and the second weight block 21 is received under the first bottom plate 17 of the rotor 1. Inside the depression on the plane.
  • the first weight 1141 and the second weight 21 are provided to adjust the balance of the rotor 1.
  • the lidar further includes a rotor base 3, the chassis is disposed on the base 3, the rotor base 3 is provided with a center shaft 32, and the rotor is provided with a set It is set on the central shaft 32, and the rotor 1 rotates around the central shaft 32.
  • the rotor base 3 is also provided with a drying chamber for placing a desiccant.
  • the rotor base 3 is further provided with a driving device 33 for driving the rotor 1 to rotate, as shown in FIG. 12.
  • the driving device 33 is a motor, including a motor rotor and a motor stator.
  • the motor stator is fixedly disposed on the central shaft 32.
  • the motor rotor is connected to the rotor 1 and the inner surface of the motor rotor is connected to the motor.
  • the outer surface of the stator is opposite.
  • a first bearing 34 and a second bearing 35 are provided between the bottom shaft 32 and the inner cylinder of the rotor 1 of the lidar, so as to support the rotation of the rotor 1.
  • the first bearing 34 is disposed between the rotor base 3 of the lidar and the inner cylinder of the rotor 1, and is connected to the bottom bracket 32.
  • the second bearing 35 is disposed on the rotor 1.
  • the top of the inner cylinder is connected to the bottom shaft 32.
  • a driving force is provided for the rotation of the rotor 1 by the driving device 33, and the rotation of the rotating member is supported by the first bearing 34 and the second bearing 35 together to reduce the friction coefficient during the movement of the rotor 1 and make the rotor 1 1 It can maintain stability during rotation to ensure its rotation accuracy, and overcomes the problems of using a single bearing to support the rotation of the rotating parts in the prior art, resulting in low scanning speed and poor rotation stability, so that the laser ranging achieves the best results. Increase the scanning speed and improve the working efficiency of Lidar.
  • a plurality of first weight structures 1131 are disposed on the upper plane 113 of the rotor 1.
  • the first counterweight structure 1131 includes a plurality of counterweight slots and a plurality of counterweight holes.
  • the plurality of counterweight slots are arranged at intervals. Both sides of the slot.
  • the counterweight tank includes a first counterweight tank and a second counterweight tank, the first counterweight tank and the second counterweight tank are spaced apart, and the first counterweight tank and the second counterweight tank
  • the heavy grooves have the same shape and different sizes.
  • the first and second weight grooves are both waist-shaped structures, and the groove depths of the first and second weight grooves are the same.
  • the center lines of the first weight groove and the second weight groove coincide, and the arc radius of the waist structure of the first weight groove is equal to the arc radius of the waist structure of the second weight groove. double.
  • the number of the first counterweight grooves is three
  • the number of the second counterweight grooves is three
  • the first counterweight groove and the second counterweight groove are arranged at intervals.
  • the partition plate 16 is provided with a second counterweight structure 161, and the second counterweight structure 161 is disposed near the cylinder wall of the outer cylinder 11.
  • the second weight structure 161 is a circular hole structure.
  • the rotor 1 can be adjusted for balance while reducing the weight of the rotor 1.
  • the first weight structure 1131 and the second weight can be formed by slots or holes.
  • a weight material is added to the weight structure 161 to further adjust the balance of the rotor 1.
  • the number, shape, and arrangement position of the first weight structure 1131 and the second weight structure 161 described above are only a preferred embodiment and are not limited thereto.
  • the first The counterweight structure 1131 may also be a counterweight groove structure.
  • the counterweight groove structure may be the same rectangular structure or a different rectangular structure, or a combination of a waist structure and a rectangular structure.
  • the specific shape can be determined according to the process and weight.
  • the second weight structure 161 may be a rectangular structure with the same structure or a rectangular structure or a waist structure with a different structure.
  • the specific structure can be set according to the process requirements and weight requirements. .
  • a laser emitting device includes a laser bracket 2011, a transmitting circuit group 2012, a transmitting circuit bracket 2013, at least one laser emitting board 2014, and a plurality of flexible electrical connectors.
  • the laser bracket 2011 and the transmitting circuit bracket 2013 are spaced apart, the laser emitting board 2014 is mounted on the laser bracket 2011, and the laser emitting board 2014 is provided with at least one laser 2015.
  • the transmitting circuit group 2012 is mounted on the transmitting circuit bracket 2013, and the transmitting circuit group 2012 and the laser transmitting board 2014 are connected through the flexible electrical connector to provide driving signals for the laser transmitting board 2014 And power.
  • the laser holder 2011 includes a second bottom plate 20111 and a first side plate 20112, the second bottom plate 20111 is connected to the first side plate 20112, and the first side plate 20112 has A plurality of comb teeth 201121 are arranged side by side, and a card slot 201122 for mounting the laser emitting board 2014 is formed between two adjacent comb teeth 201121, and the laser emitting board 2014 is inserted in the card slot 201122.
  • the laser emitting board 2014 is connected to the first side plate 20112.
  • the laser emitting plate 2014 is glued to the first side plate 20112. If using hot melt adhesive.
  • the laser holder 2011 is, for example, T-shaped.
  • the width of the card slot 201122 is the same.
  • the lengths of two adjacent slots 201122 are not equal.
  • the laser emitting plate 2014 is at a first predetermined angle with the horizontal plane.
  • One of the laser emitting boards 2014 is provided with a plurality of the lasers 2015, and a light emitting surface of the lasers 2015 is located on a focal plane of an output optical system of a laser radar.
  • a plurality of the laser emitting plates 2014 are arranged in different directions along the first side plate 20112 in a vertical direction.
  • a plurality of the lasers 2015 are disposed at an end of the laser emitting board 2014 at intervals, the plurality of the lasers 2015 are arranged in an emitting array, and the plurality of the lasers 2015 are vertically different along the first side plate 20112 Settings.
  • the lasers 2015 of the emission array are non-uniformly distributed. As shown in FIG. 14, the lasers 2015 of the emission array are distributed in the vertical direction with sparse ends and dense centers.
  • the length direction of the card slot 201122 is disposed along the vertical direction of the first side plate 20112.
  • the vertical direction of the first side plate is consistent with the vertical direction of the lidar.
  • the laser holder 2011 is made of, for example, aluminum alloy or copper.
  • the card slots 201122 have different depths.
  • the position of the light emitting surface of the laser 2015 on the laser emitting board 2014 is determined.
  • the light emitting surfaces of the lasers on the plurality of laser emitting boards 2014 are located at different vertical heights of the focal plane of the exit optical system of the lidar. Those skilled in the art can easily understand that the heights of the plurality of laser emitting boards 2014 may be the same or different, the number of lasers on each emitting board may be the same or different, and the emitted light beams may be uniformly distributed or non-uniformly distributed.
  • the transmitting circuit bracket 2013 is, for example, L-shaped.
  • the transmitting circuit bracket 2013 includes a third bottom plate 20131 and a second side plate 20132.
  • the third bottom plate 20131 is connected to the second side plate 20132.
  • the second side plate 20132 has a first side surface 201321 and a second side surface 201322, and the transmitting circuit group 2012 is mounted on one side of the first side surface 201321.
  • the first side plate 20112 and the second side plate 20132 are at a second preset angle.
  • a plurality of mounting protrusions 20133 are provided on the first side 201321, and the mounting protrusions 20133 are provided with a first mounting hole 201331 for mounting the transmitting circuit group 2012.
  • two mounting protrusions 20133 are spaced from the top of the first side 201321 and three mounting protrusions 20133 are spaced from the bottom of the first side 201321.
  • the laser emitting device further includes a first screw 20161, a first nut 20162, and a first washer 20163.
  • the first washer 20163 is sleeved on the first screw 20161.
  • the first screw 20161 is cooperatively connected with the first nut 20162.
  • the transmitting circuit group 2012 includes a transmitting mother board 20121 and a plurality of transmitting daughter boards, and the transmitting mother board 20121 is spaced apart from a plurality of the transmitting daughter boards.
  • Adjacent launch daughter boards are connected through electrical connectors, and the launch daughter boards include a first launch daughter board 20122, a second launch daughter board 20123, and a third launch daughter board 20124.
  • the first launch daughter board 20122 and the transmitting motherboard 20121 are connected through an electrical connector.
  • the electrical connector may be rigidly connected in a flexible connection and / or a plug-in connector docking manner.
  • the first screw 20161 passes through the first mounting hole 201331, the launch mother board 20121, the first launch daughter board 20122, the second launch daughter board 20123, and the first The three launch daughter boards 20124 are connected in cooperation with the first nut 20162.
  • the transmitting mother board 20121 and the first transmitting daughter board 20122 are separated by the first washer 20163; between the first transmitting daughter board 20122 and the second transmitting daughter board 20123 It is separated by the first washer 20163; the second launch daughter board 20123 and the launch mother board 20121 are separated by the first washer 20163.
  • the spacing between the plurality of launch daughter boards and the spacing between the launch daughter boards and the launch motherboard 20121 can be adjusted by the thickness of the first gasket 20163.
  • the material of the first washer 20163 is an insulator material, such as plastic, ceramic, or the like.
  • the laser emitting device further includes a plurality of second screws 20164.
  • the corner of the side of the transmitting motherboard 20121 near the laser bracket 2011 is fixed to the corresponding mounting post 20133 by the second screw 20164.
  • a width of the third emission daughter board 20124 is smaller than a width of the emission mother board 20121.
  • the width of the first emission daughter board 20122 and the second emission daughter board 20123 is between the width of the emission mother board 20121 and the width of the third emission daughter board 20124.
  • the transmitting mother board 20121 is different from a plurality of the transmitting daughter boards in width, and it is convenient to connect the transmitting circuit group 2012 and the laser emitting board 2014 with the flexible electrical connector by avoiding assembly space.
  • the second side 201322 is provided with a protrusion 20134, which is beneficial to heat dissipation and adjustment of the weight of the lidar.
  • the second bottom plate 20111 is provided with a plurality of first mounting holes 201111 for fixing the position of the laser bracket 2011, and the second bottom plate 20111 is fixed to the lidar by the second screw 20164 On the rotor.
  • the number of the first mounting holes 201111 is three, and the first mounting holes 201111 are distributed at three corners of the second bottom plate 20111.
  • a corner of the second bottom plate 20111 is provided with a first chamfer, and the first chamfer is a straight chamfer, an arc chamfer, or a right-angle chamfer.
  • the third bottom plate 20131 is provided with a plurality of second mounting holes 201311 for fixing the transmitting circuit bracket 2013, and the third bottom plate 20131 is fixed by the second screw 20164 On the lidar rotor.
  • the number of the mounting holes of the third bottom plate 20131 is three.
  • a second chamfer is provided on the edge of the third bottom plate 20131.
  • the second chamfer is a straight edge chamfer, a circular arc chamfer or a right angle chamfer.
  • the laser holder 2011 is an integrated structure.
  • the transmitting circuit bracket 2013 is an integrated structure.
  • the materials of the laser holder 2011 and the transmitting circuit holder 2013 are any one or a combination of copper, molybdenum, and aluminum.
  • the transmitting circuit group 2012 is provided with a plurality of driving circuits, and the driving circuits are connected to the plurality of lasers 2015 to drive the plurality of lasers 2015 to emit light.
  • Each of the driving circuits drives one or more of the lasers 2015.
  • the transmitting circuit group 2012 is further provided with a laser control module, and the laser control module is configured to control the driving circuit to drive the corresponding laser 2015 to emit light.
  • the lengths of two adjacent card slots 201122 may be equal, and the lasers 5 of the emission array may be evenly distributed.
  • the laser emitting device of the present invention uses a laser bracket and a transmitting circuit bracket to respectively install a laser transmitting board and a transmitting circuit group, so that the space of the laser radar transmitting cabin is more flexible, and the volume of the laser transmitting board can be reduced, reducing the system size and weight, and facilitating the implementation of lasers. Low cost and miniaturization of radar.
  • the laser array of the laser emitting device of the present invention can be arranged in a non-uniform distribution.
  • the non-uniform distribution of the laser beam is used to design a lower wire harness, it can achieve a higher vertical angular resolution, save costs and reduce volume.
  • a laser emitting device includes a laser holder 2011, a transmitting circuit group 2012, a transmitting circuit holder 2013, at least one laser transmitting board 2014, and a plurality of flexible electrical connectors.
  • the transmitting circuit bracket 2013 is arranged at intervals, the laser transmitting board 2014 is mounted on the laser bracket 2011, and the laser transmitting board 2014 is provided with at least one laser 2015; the transmitting circuit group 2012 is mounted on the transmitting circuit bracket On 2013, the transmitting circuit group 2012 and the laser emitting board 2014 are connected through the flexible electrical connection member.
  • the laser holder 2011 includes a second bottom plate 20111 and a first side plate 20112, the second bottom plate 20111 is connected to the first side plate 20112, and the first side plate 20112 has a plurality of side by side A comb tooth 201121 is provided, and a card slot 201122 for installing the laser emitting board 2014 is formed between two adjacent comb teeth 201121, and the laser emitting board 2014 is inserted in the card slot 201122, and the laser The transmitting board 2014 is connected to the first side plate 20112.
  • the laser emitting plate 2014 is glued to the first side plate 20112.
  • the laser holder 2011 is L-shaped.
  • the width of the card slot 201122 is the same.
  • the lengths of two adjacent slots 201122 are equal.
  • the laser emitting plate 2014 is at a first predetermined angle with the horizontal plane.
  • One of the laser emitting boards 2014 is provided with a plurality of the lasers 2015, and a light emitting surface of the lasers 2015 is located on a focal plane of an output optical system of a laser radar.
  • a plurality of the laser emitting plates 2014 are arranged in different directions along the first side plate 20112 in a vertical direction.
  • a plurality of the lasers 2015 are spaced apart from one end of the laser emitting board 2014, a plurality of the lasers 2015 are arranged in an emission array, and a plurality of the lasers 2015 are vertically along the first Different height settings of the side plate 20112.
  • the length direction of the card slot 201122 is disposed along the horizontal direction of the first side plate 20112.
  • the width direction of the first side plate is consistent with the horizontal direction of the lidar.
  • a plurality of the laser emitting plates 2014 are arranged in parallel and spaced apart, a plurality of the lasers 2015 are relatively disposed on opposite sides of the laser emitting plate 2014, and a plurality of the lasers 2015 are distributed in all
  • the laser emitting board 2014 is directed toward one end edge of the lidar exit optical system.
  • the distances between the adjacent laser emitting plates 2014 are different, and the lasers 2015 of the emitting array are distributed in a vertical direction with sparse ends and dense centers.
  • the laser emitting plate 2014 is parallel to a horizontal plane, and the adjacent laser emitting plates 2014 correspond to a vertical direction.
  • the transmitting circuit bracket 2013 is L-shaped, and the transmitting circuit bracket 2013 includes a third base plate 20131 and a second side plate 20132.
  • the third base plate 20131 and A second side plate 20132 is connected.
  • the second side plate 20132 has a first side surface 201321 and a second side surface 201322, and the transmitting circuit group is installed on the first side surface 201321.
  • the first side plate 20112 and the second side plate 20132 are at a second preset angle.
  • a plurality of mounting protrusions 20133 are provided on the first side 201321, and the mounting protrusions 20133 are provided with a first mounting hole 201311 for mounting the transmitting circuit group 2012.
  • Two mounting protrusions 20133 are spaced from the top of the first side 201321, and three mounting protrusions 20133 are spaced from the bottom of the first side 201321.
  • the laser emitting device further includes a first screw 20161, a first nut 20162, and a first washer 20163.
  • the first washer 20163 is sleeved on the first screw 20161, and the first screw 20161 and the first The nut 20162 is matingly connected.
  • the transmitting circuit group 2012 includes a transmitting mother board 20121 and a plurality of transmitting daughter boards, and the transmitting mother board 20121 is spaced from the plurality of transmitting daughter boards.
  • Adjacent transmitting daughter boards are connected by a flexible electrical connection, and the transmitting daughter boards include a first transmitting daughter board 20122, a second transmitting daughter board 20123, and a third transmitting daughter board 20124.
  • the 20122 and the transmitting motherboard 20121 are connected through a flexible electrical connection.
  • the first screw 20161 passes through the first mounting hole 201311, the launch mother board 20121, the first launch daughter board 20122, the second launch daughter board 20123, and the third launch daughter board 20124 and Cooperate with the first nut 20162.
  • the launch mother board 20121 and the first launch daughter board 20122 are separated by the first gasket 20163; the first launch daughter board 20122 and the second launch daughter board 20123 are separated by the first gasket 20163; the second launch daughter board 20123 and the launch mother board 20121 are separated by the first washer 20163.
  • the spacing between the plurality of launch daughter boards and the spacing between the launch daughter boards and the launch motherboard 20121 can be adjusted by the thickness of the first gasket 20163.
  • the material of the first washer 20163 is an insulator material, such as plastic, ceramic, or the like.
  • the laser emitting device further includes a plurality of second screws 20164.
  • a corner of the transmitting mother board 20121 near the laser bracket 2011 is fixed to the corresponding mounting post 20133 by the second screw 20164.
  • a width of the third emission daughter board 20124 is smaller than a width of the emission mother board 20121.
  • the width of the first emission daughter board 20122 and the second emission daughter board 20123 is between the width of the emission mother board 20121 and the width of the third emission daughter board 20124.
  • the transmitting mother board 20121 is different from a plurality of the transmitting daughter boards in width, and there is a method of using a flexible electrical connector and / or a rigid electrical connector to connect the transmitting circuit group 2012 and the laser emission by avoiding assembly space and conveniently using flexible electrical connectors and / or rigid electrical connectors. Board 2014. Specifically, the rigid electrical connector is a connector.
  • the second side 201322 is provided with a protrusion 20134, which is beneficial for heat dissipation and adjustment of the weight of the lidar.
  • the second bottom plate 20111 is provided with a plurality of first mounting holes 201111 for fixing the position of the laser bracket 2011, and the second bottom plate 20111 is fixed to the rotor of the lidar by the second screw 20164.
  • the number of the mounting holes is three, and the first mounting holes 201111 are distributed at three corners of the second bottom plate 20111.
  • the second bottom plate 20111 is provided with a first chamfer, and the first chamfer is a straight edge chamfer, a circular arc chamfer, or a right angle chamfer.
  • the third bottom plate 20131 is provided with a plurality of second mounting holes 201311 for fixing the transmitting circuit bracket 2013, and the third bottom plate 20131 is fixed on the rotor of the lidar by the second screw 20164.
  • the number of the mounting holes of the third bottom plate 20131 is three.
  • the third bottom plate 20131 is provided with a second chamfer.
  • the second chamfer is a circular arc chamfer.
  • the laser holder 2011 is an integrated structure.
  • the transmitting circuit bracket 2013 is an integrated structure.
  • the materials of the laser holder 2011 and the transmitting circuit holder 2013 are any one or a combination of copper, molybdenum, and aluminum.
  • the transmitting circuit group 2012 is provided with a plurality of driving circuits, and the driving circuits are connected to the plurality of lasers 2015 to drive the plurality of lasers 2015 to emit light.
  • Each of the driving circuits drives one or more of the lasers 2015.
  • the transmitting circuit group 2012 is further provided with a laser control module, and the laser control module is configured to control the driving circuit to drive the corresponding laser 2015 to emit light.
  • the lengths of two adjacent slots 201122 may be different.
  • this embodiment is different from Embodiment 4 in that a plurality of the laser emitting plates 2014 are arranged in parallel and spaced apart, and the lasers 2015 are relatively disposed on the laser emitting plate 2014. The distance between the adjacent laser emitting plates 2014 is equal.
  • the laser emitting plate 2014 is parallel to a horizontal plane, and the adjacent laser emitting plates 2014 correspond to a vertical direction.
  • a receiving system for a lidar includes a receiving lens group 301, a second reflecting mirror group 302, and a receiving device 303.
  • a receiving lens group 301 configured to collect reflected light from a target
  • a second mirror group 302, configured to change a path of a light beam and incident the reflected light to the receiving device 303;
  • the receiving device 303 includes an optical filter 3031, a receiving device 3032, a receiving circuit support 3033, and a plurality of receiving circuit boards 3034 (see FIG. 23).
  • the receiving device 3032 and the receiving circuit board 3034 are mounted on the receiving circuit.
  • the filter 3031 is disposed on a side of the receiving device 3032 facing the second reflector group 302, and is configured to filter stray light.
  • Light of various wavelengths can enter the receiving lens group 301 and pass through the second reflecting mirror group 302 to be reflected on the receiving device 303. Of the incident light, only light of a specific wavelength represents useful reflected light, that is, light corresponding to the wavelength of the laser 2015 is signal light, and light of other wavelengths is interference light or stray light.
  • the filter 3031 can allow only light with a wavelength corresponding to the laser 2015 to pass, and light with other wavelengths can be blocked and filtered, thereby improving the lidar signal-to-noise ratio and improving the ranging performance.
  • the receiving device 3032 is configured to acquire distance information and convert the received optical signal into an electrical signal; the receiving circuit board 3034 is configured to process the distance information obtained by the receiving device 3032.
  • the receiving device 3032 includes a substrate 30321, an APD array detector (not shown), and a protective case 30323.
  • the substrate 30321 is fixed on the receiving circuit support 3033.
  • An APD array detector is disposed on one side of the substrate 30321, the protective case 30323 is disposed over the APD array detector, and the protective case 30323 is mounted on the substrate 30321.
  • the filter 3031 is attached to a side of the protective shell 30323 away from the APD array detector.
  • the APD array detector is an APD area array detector, which is composed of N ⁇ N area array avalanche photodiodes.
  • the avalanche effect of photodiodes is used to convert optical signals into electrical signals, where M ⁇ 2 and N ⁇ 2.
  • 4 ⁇ 4, 4 ⁇ 8, 8 ⁇ 8, etc., specifically, the N ⁇ N arrangement depends on the laser arrangement of the laser radar.
  • the material of the protective shell 30323 is metal.
  • the receiving device 303 further includes a flexible electrical connector, and two adjacent receiving circuit boards 3034 are connected through the flexible electrical connector.
  • the receiving circuit bracket 3033 includes a fourth bottom plate 30331 and a third side plate 30332, the fourth bottom plate 30331 is connected to the third side plate 30332, and the third side plate 30332 has a third side surface 303321 and a fourth side surface 303322.
  • a plurality of the receiving circuit boards 3034 are sequentially installed at intervals on the third side surface 303321, and the receiving device 3032 is installed at the fourth side surface 303322.
  • the third side surface 303321 is provided with a second groove 303323, and a second through hole 303324 is opened in the second groove 303323, and the second through hole 303324 runs through the first through hole 303324.
  • the second groove 303323 is used to reduce the weight of the bracket while facilitating the assembly of the receiving circuit board 3034, and sufficiently avoiding the assembly space of the circuit board chip and other components;
  • the second through holes 303324 are used to reduce the weight of the bracket, and at the same time facilitate the assembly of the substrate 30321, and avoid the assembly space of the components such as the chip of the substrate 30321.
  • the receiving device 303 further includes a third screw 3035, a second nut 3036, and a second washer 3037.
  • the second washer 3037 is sleeved on the third screw 3035, and the third screw 3035 is cooperatively connected with the second nut 3036.
  • corners of the substrate 30321, the third side plate 30332, and the receiving circuit board 3034 are correspondingly provided with second mounting holes 303326.
  • the third screw 3035 passes through the base plate 30321, the third side plate 30332, and the receiving circuit board 3034 in sequence, and is mated with the second nut 3036.
  • the receiving circuit board 3034 includes a first circuit board 30341, a second circuit board 30342, and a third circuit board 30343.
  • the first circuit board 30341 and the second circuit board 30342 are separated by the second gasket 3037; the second circuit board 30342 and the third circuit board 30343 are separated by the second gasket 3037 separated.
  • the interval between the plurality of receiving circuit boards 3034 can be adjusted by the thickness of the second washer 3037.
  • the material of the second washer 3037 is an insulator material.
  • the third side plate 30332 is vertically connected to the fourth bottom plate 30331, and the projection of the fourth side surface 303322 on the fourth bottom plate 30331 is far from the fourth bottom plate 30331.
  • the distance between the edges of the fourth side surface 303322 is equal to the thickness of the substrate 30321.
  • the fourth side surface 303322 is further provided with a positioning plate 303325 along the height direction of the third side plate 30332 for quickly positioning the mounting position of the substrate 30321.
  • a convex plate 303311 extends from an end of the fourth bottom plate 30331 far from the third side surface 303321.
  • the convex plate 303311 is provided with a plurality of third mounting holes for fixing the receiving circuit bracket 3033. 303313;
  • an end of the fourth bottom plate 30331 far from the second and third side plate 30332 is further extended with a mounting ear 303312.
  • the mounting ear 303312 is provided with a third mounting for fixing the receiving circuit bracket 3033. Hole 303313.
  • the receiving device 303 further includes a plurality of fourth screws 3038.
  • the fourth screws 3038 pass through the third mounting hole 303313 to fix the receiving circuit bracket 3033 on the rotor of the lidar.
  • the receiving circuit support 3033 is an integrated structure.
  • the material of the receiving circuit bracket 3033 is any one or a combination of copper, molybdenum, and aluminum.
  • the second mirror group 302 includes a third mirror 3021 and a fourth mirror 3022, and the third mirror 3021 and the fourth mirror 3022 are oppositely disposed.
  • the reflected light of the target collected by the receiving lens group 301 must meet the requirements of the viewing field angle of the APD array detector.
  • the fourth bottom plate 30331 is provided with a chamfer.
  • the chamfer is a straight edge chamfer, a circular arc chamfer or a right angle chamfer.
  • APD (Avalanche Photo Diode) array detector is an avalanche photodiode detector which is integrated by multiple independent APD unit detectors. Its compact structure, small size and light weight.
  • the APD detector is an APD unit detector, which can realize non-scanning laser detection, and three-dimensional imaging can be achieved with a single pulse; the APD array detector can directly acquire three-dimensional information, which has a faster imaging speed and a simple system structure.
  • the detection system performs multi-channel parallel processing on the laser echo signals received by each unit of the array detector, thereby achieving linear array imaging.
  • the APD array detector is an APD linear array detector, which is composed of n avalanche photodiodes.
  • the avalanche effect of the photodiodes is used to convert optical signals into electrical signals, where n ⁇ 1 .
  • n depends on the laser arrangement of the laser radar.
  • the receiving device includes a substrate and an APD detector, the substrate is fixed on the receiving circuit support, and the APD detector is disposed on one side of the substrate; the receiving device further includes a protective shell, the protective shell The cover is disposed on the APD detector and the protective shell is mounted on the substrate.
  • a wireless power transmission device includes a wireless power transmitting component and a wireless power receiving component.
  • the wireless power transmitting component is spaced apart from and opposite to the wireless power receiving component.
  • the wireless power transmitting component includes a transmitting coil 406 and a transmitting circuit board 407, and the transmitting coil 406 is connected to the transmitting circuit board 407;
  • the wireless power receiving component includes a receiving coil 401, a magnetic isolation plate 402, and two receiving circuit boards 403.
  • the receiving coil 401 and the transmitting coil 406 are opposite to each other.
  • the magnetic isolation plate 402 is disposed on the receiving coil 401. A side far from the transmitting coil 406, the magnetic isolation plate 402 covers the receiving coil 401, and the receiving coil 401 is connected to the receiving circuit board 403.
  • the receiving circuit board 403 includes a fourth circuit board 4031 and a fifth circuit board 4032.
  • the fourth circuit board 4031 and the fifth circuit board 4032 are spaced apart and oppositely disposed.
  • the fifth circuit board 4032 is connected to the magnetic isolation board 402, and the magnetic isolation board 402 is disposed on a side of the fifth circuit board 4032 facing the fourth circuit board 4031.
  • a plurality of copper pillar tubes 404 are provided between the fourth circuit board 4031 and the fifth circuit board 4032, and are used to adjust the distance between the fourth circuit board 4031 and the fifth circuit board 4032.
  • the wireless power transmission device further includes a plurality of fifth screws 4051 and a third nut 4052 fitted with the fifth screws 4051.
  • the fourth circuit board 4031 and the fifth circuit board 4032 pass through the fifth screws 4051.
  • the fifth screw 4051 corresponds to the copper pillar tube 404 in a one-to-one manner, and the fifth screw 4051 passes through the fifth circuit board 4032, the copper pillar tube 404, and the fourth circuit board 4031 in sequence.
  • the third nut 4052 is cooperatively connected.
  • the fourth circuit board 4031 is provided with a first mounting hole through which the fifth screw 4051 passes, and the copper pillar tube 404 is provided with a plug-in portion that cooperates with the first mounting hole, and the copper pillar tube 404 is fixed to the fourth circuit board 4031 through the plug-in part, which is convenient for assembly.
  • the fourth circuit board 4031 is a circular circuit board. A center position of the fourth circuit board 4031 is provided with a fourth through-hole 40311, and the fourth through-hole 40311 runs through two opposite sides of the fourth circuit board 4031.
  • the fourth through hole 40311 is a circular through hole.
  • the fourth circuit board 4031 is also provided with a first perforation 40312 and a second perforation 40313.
  • the fourth circuit board 4031 is connected to a transmitting circuit group of the lidar.
  • the fourth circuit board 4031 is connected to the lidar.
  • the receiving circuit group is connected.
  • the fourth circuit board 4031 is provided with a plurality of first mounting holes at intervals in the circumferential direction.
  • the fourth circuit board 4031 is fixed to the rotor of the lidar through a screw through the first mounting hole.
  • the fifth circuit board 4032 is a special-shaped circuit board.
  • the fifth circuit board 4032 includes a first connection portion 40321 and a second connection portion 40322.
  • the first connection portion 40321 is circular
  • the second connection portion 40322 is fan-shaped
  • the second connection portion 40322 and A part of an outer edge of the first connecting portion 40321 is connected by abutment.
  • a notch is also provided on one side of the outer edge of the second connecting portion 40322, which is convenient for assembly.
  • the shape of the magnetic isolation plate 402 is similar to that of the fifth circuit board 4032, and the outline size of the magnetic isolation plate 402 is smaller than the outline size of the fifth circuit board 4032.
  • the magnetic isolation plate 402 includes a third connection portion 4021 and a fourth connection portion 4022.
  • the third connection portion 4021 is circular
  • the fourth connection portion 4022 is fan-shaped
  • the fourth connection portion 4022 and the A part of the outer edge of the third connecting portion 4021 is connected in a fitting manner.
  • the thickness of the fourth connection portion 4022 is smaller than the thickness of the third connection portion 4021.
  • the second connection portion 40322 is provided with a plurality of glue injection holes 40323, and the magnetic isolation plate 402 is glued to the fifth circuit board 4032.
  • a ring-shaped boss 24 is provided on a side of the magnetic isolation plate 402 facing the fifth circuit board 4032, and the receiving coil 401 is connected to the ring-shaped boss 24.
  • the first connecting portion is provided with a fifth through hole 40324 opposite to the fourth through hole 40311.
  • the size of the fifth through hole 40324 is larger than the fourth through hole 40311.
  • the magnetic isolation plate 402 is provided with a third through hole 4023 opposite to the fourth through hole 40311.
  • the fourth through hole 40311 and the fifth through hole 40324 are coaxially disposed with the third through hole 4023.
  • the orthographic projection of the receiving coil 401 in the direction of the magnetic isolation plate 402 is located in the magnetic isolation plate 402.
  • the magnetic isolation plate 402 is a ferrite magnet or an amorphous magnet or a flexible soft magnet, and is used to electromagnetically shield the inside of the lidar rotor.
  • the transmitting coil 406 and the receiving coil 401 are spirally arranged on the same plane, respectively.
  • a fourth through hole is provided at the center of the transmitting coil 406, a fifth through hole is provided at the center of the receiving coil 401, and the fourth through hole is coaxially disposed with the fifth through hole.
  • This wireless power transmission device uses the principle of electromagnetic induction, which means that a conductor placed in a changing magnetic flux will generate electromotive force. This electromotive force is called induced electromotive force or induced electromotive force. If the conductor is closed into a loop, the electromotive force will drive electrons to form an induced current.
  • the electromagnetic transmitting coil acts as an electromagnetic transmitting end to generate a magnetic field. The generated magnetic field causes the receiving coil to generate a current, thereby supplying power to the rotor.
  • a second aspect of the present invention relates to a laser or a laser module, which is described in detail below with reference to the drawings.
  • LiDAR is a collective name for laser active detection sensor devices. Its working principle is roughly as follows: The laser radar transmitter emits a laser beam. After the laser beam encounters the object, it diffusely reflects and returns to the laser receiver. The radar module The distance between the transmitter and the object can be calculated by multiplying the time interval between sending and receiving signals by the speed of light and then dividing by 2. Depending on the number of laser beams, there are usually single-line lidar, 4-wire lidar, 8/16/32 / 64-line lidar, and so on. One or more laser beams are emitted at different angles in the vertical direction and scanned in the horizontal direction to detect the three-dimensional contour of the target area.
  • FIG. 31A schematically illustrates an example of a lidar.
  • the lidar is a 16-line lidar, which can emit a total of 16 lines of laser beams L1, L2, ..., L15, and L16 in the vertical plane in the figure for detecting the surrounding environment.
  • the lidar can be rotated along its vertical axis.
  • each channel of the lidar emits a laser beam in sequence at a certain time interval (for example, 1 microsecond) and performs detection to complete a vertical vision.
  • Line scan on the field and then perform a next line scan of the vertical field of view at a certain angle (such as 0.1 degrees or 0.2 degrees) in the horizontal field of view, so that multiple points can be formed during the rotation to form a point cloud.
  • a certain angle such as 0.1 degrees or 0.2 degrees
  • FIG. 31B Semiconductor laser chips currently used in mechanical lidars are mostly edge-emitting.
  • the light-emitting surface of the edge-emitting laser has a fast axis direction and a slow-axis direction, as shown schematically in FIG. 31B.
  • the size of the edge-emitting laser along the slow axis direction is relatively large, for example, on the order of hundreds of ⁇ m, and along the fast axis.
  • the size in the direction is small, for example on the order of ten ⁇ m.
  • FIG. 31B also schematically illustrates the negative electrode N of the laser chip, and the positive electrode P is located on the lower surface opposite to the negative electrode N, for example.
  • FIG. 31C schematically illustrates a mounting diagram of a laser chip in a mechanical lidar.
  • the circuit board of FIG. 31C is disposed in the lidar along the vertical direction in FIG. 31A, and along the vertical direction of the focal plane of the lidar exit optical system (vertical in FIG. 31A) (Direction) is provided with a plurality of edge emitting laser chips as shown in FIG. 31B.
  • the laser chip emits a laser beam from a light emitting surface, and the laser beam is directed to an exit optical system.
  • the slow axis direction of the light emitting surface is parallel to the electrode, and in the ordinary application process, the electrode of the laser chip is directly mounted on the circuit board, so the slow axis direction of the light emitting surface is parallel to the circuit board (such as Figure 31C).
  • a plurality of side-emitting laser chips are provided along the vertical direction of the lidar. Therefore, the slow axis direction of the light emitting surface of the laser chip in FIG. 31C (the vertical dotted line in FIG. 31C) is the vertical direction in FIG. 31A.
  • the fast axis direction of the light emitting surface is a direction perpendicular to the paper surface.
  • the size of the light emitting surface in the vertical direction should be as small as possible.
  • a plurality of laser chips need to be arranged along the vertical direction of the lidar, and the slow axis direction of the laser chip needs to be arranged along the vertical direction in the figure.
  • the shaft size is large (on the order of hundreds of ⁇ m), so within the limited vertical dimension range of the focal plane, the laser chip cannot be arranged more densely, which is not conducive to improving the limit of the angular resolution in the vertical direction.
  • the circuit board is placed horizontally, and the laser chip is directly attached to the circuit board. It has the following disadvantages.
  • each different vertical angle requires a laser with a different vertical height (at the focal plane of the transmitting lens), then a corresponding number of circuit boards need to be placed horizontally (such as 64 lines, 64 circuits are required) Plate) and staggered in the vertical direction. Therefore, within a certain size, the limit of vertical angular resolution of the lidar will be greatly restricted by the thickness of the circuit board and the height of components on the circuit board.
  • FIG. 33A is a perspective view of the laser 510 viewed from the front side
  • FIG. 33B is a perspective view of the laser 510 viewed from the rear side
  • FIGS. 33C and 33D are renderings of FIGS. 33A and 33B, respectively, for greater clarity Shows the detailed structure of the laser.
  • the laser 510 includes a substrate 511, a laser chip 512, and a laser beam shaping element 513.
  • the laser chip 512 is disposed on the substrate 511.
  • the laser chip 512 has a light emitting surface 5121. After being driven by a voltage, a laser beam is emitted from the light emitting surface 5121.
  • the laser beam shaping element 513 is opposed to the light emitting surface 5121.
  • a positioning portion 5111 is formed on the substrate 511 for positioning the laser beam shaping element 513.
  • 33B and 33D show the positioning portion 5111 more clearly.
  • the working principle and mode of the laser 510 are as follows.
  • the substrate 511 provides support and positioning for other optoelectronic components of the laser 510.
  • the laser chip 512 After being driven by the voltage, the laser chip 512 emits a laser beam from its light emitting surface 5121. Since the light emitting surface 5121 is opposite to the laser beam shaping element 513, the emitted laser beam is optically shaped and modulated by the laser beam shaping element 513 to change its Some optical parameters and properties, then continue to emit.
  • an appropriate laser beam shaping element 513 and its implemented functions can be selected according to actual needs. For example, the laser beam shaping element 513 can compress the laser beam emitted from the light emitting surface 5121 in a certain direction to reduce the divergence angle along the direction.
  • the laser beam shaping element 513 can adjust the diameter of the laser beam emitted from the light emitting surface 5121.
  • the laser beam shaping element 513 may include one or more of an optical fiber, a cylindrical lens, a D lens, or an aspherical mirror.
  • the invention is not limited to the specific type of laser beam shaping element 513 and the shaping and modulation achieved. These are all within the scope of this disclosure.
  • the positioning portion 5111 is provided such that the center height of the laser beam shaping element 513 is equal to the center of the light emitting surface 5121 of the laser chip 512, so as to facilitate the adjustment of the laser beam by the laser beam shaping element 513.
  • the laser chip 512 is a side-emitting laser chip, such as a side-emitting type designed by DBR (distributed Bragg reflector), and a side-emitting type designed by DFB (distributed feedback).
  • the light emitting surface of the edge-emitting laser has a slow axis direction and a fast axis direction.
  • the fast axis direction and the slow axis direction of the light emitting surface of the laser chip 512 are schematically shown in FIG. 33A.
  • the size of the light emitting surface of the edge-emitting laser in the slow axis direction is usually large, and the size in the fast axis direction is usually small (that is, the size in the thickness direction of the laser chip 512 in the figure).
  • the divergence angle of the laser beam emitted by the edge-emitting laser in the fast axis direction and the slow axis direction is usually different. Generally, the divergence angle in the slow axis direction is smaller and the divergence in the fast axis direction is smaller. The angle is larger.
  • FIG. 34A shows a divergence angle ⁇ of the laser beam emitted from the laser chip along the slow axis direction and a divergence angle ⁇ along the fast axis direction.
  • the divergence angle ⁇ in the fast axis direction is significantly larger than the divergence angle ⁇ in the slow axis direction.
  • the divergence angles ⁇ and ⁇ shown in FIG. 34A are only schematic, and do not mean that the divergence angle of the actual laser chip is so large.
  • the divergence angle ⁇ along the slow axis direction is, for example, about 10 degrees
  • the divergence angle ⁇ along the fast axis direction is, for example, about 30 degrees.
  • the laser chip 512 is attached to the substrate 511, for example, so that the light emitting surface 5121 is perpendicular to the attached surface and parallel to the extending direction of the positioning portion 5111, as shown in FIGS. 33A and 33B.
  • the laser chip 512 and the laser beam shaping element 513 are arranged on the substrate 511 such that the slow axis direction of the light emitting surface 5121 is parallel to the extending direction of the laser beam shaping element 513, thereby reducing the height of the light emitting surface of the laser 510, that is, The size of the light emitting surface in the vertical direction in FIG. 33 is reduced.
  • the laser beam shaping element 513 is, for example, a fast axis compression element, which can compress the divergence angle of the laser light emitted from the light emitting surface 5121 in the fast axis direction, so that the emitted laser beam passes through the laser beam shaping element 513 After that, the divergence angle in the direction of the fast axis is smaller, and the degree of convergence is higher.
  • 34B and 34C show a situation where the divergence angle ⁇ of the laser beam emitted from the light emitting surface 5121 of the laser chip 512 after passing through the laser beam shaping element 513 in the fast axis direction decreases.
  • a case where a D lens is used as the laser beam shaping element 513 is shown in FIG.
  • FIG. 34B a case where an optical fiber is used as the laser beam shaping element 513 is shown in FIG. 34C.
  • the dotted line shows the optical path without compression
  • the corresponding solid line is the optical path after fast axis compression.
  • the divergence angle ⁇ in the fast axis direction of the laser beam is significantly reduced.
  • the laser chip and the laser beam shaping element 513 shown in FIGS. 34B and 34C are spaced apart from each other by a certain distance, which is merely for the purpose of illustration and does not limit the protection scope of the present invention, and the two may also be closely adjacent.
  • a certain distance which is merely for the purpose of illustration and does not limit the protection scope of the present invention, and the two may also be closely adjacent.
  • the laser beam passes through the laser beam shaping element 513, its divergence angle ⁇ in the fast axis direction is compressed to be equivalent to the divergence angle ⁇ in the slow axis direction, for example, reduced from 30 degrees to 10 degrees.
  • the laser beam shaping element 513 may include one or more of an optical fiber, a cylindrical lens, a D lens, or an aspherical mirror.
  • the shaping and modulation of the laser beam emitted from the light emitting surface 5121 can be achieved.
  • the most common method is to use a lenticular lens to compress the divergence angle of the laser beam along the fast axis.
  • the positioning portion 5111 includes one or more of a V-shaped groove, a U-shaped groove, and a step for precisely positioning the laser beam shaping element 513.
  • the positioning portion 5111 is, for example, a microstructure located near one end of the substrate.
  • a microstructure such as a V-groove or a groove or a step on the silicon substrate can be processed on the front end by an etching process on the silicon substrate.
  • the microstructure is used for precise positioning of the laser beam shaping element 513.
  • the laser beam shaping element 513 can be directly embedded in the V-shaped groove for positioning.
  • the laser beam shaping element 513 can be positioned close to the step.
  • the positioning portion 5111 includes a V-shaped groove, for example, at a position near the end of the base 511.
  • the laser beam shaping element 513 is an optical fiber and is fixed in the V-shaped groove. It is shown in FIGS. 33A and 33B that the positioning portion 5111 further includes a step.
  • the combination of the V-shaped groove and the step helps to accurately position the laser beam shaping element 513 relative to the light emitting surface 5121 of the laser chip 512, and to accurately modulate and adjust the laser beam emitted from the light emitting surface 5121. Shaping.
  • the V-groove alone or the step alone can be used as a positioning portion to achieve accurate positioning of the laser chip 5121 relative to the laser beam shaping element. These are all within the protection scope of the present invention.
  • the positioning portion referred to in the present invention refers to a portion or an element that facilitates positioning of the laser beam shaping element, and is not limited to positioning the laser beam shaping element through the positioning portion alone without requiring other components. This is easily understood by those skilled in the art.
  • the positioning effect may be enhanced by means of an adhesive or the like. I won't repeat them here.
  • the semiconductor laser structure with the precise positioning structure shown in FIGS. 33A, 33B, 33C, and 33D can conveniently modulate the beam of the laser chip and facilitate installation.
  • 35A and 35B show a laser 510 according to another embodiment of the present invention, wherein the positioning portion 5111 includes a step, and the laser beam shaping element 513 is a D lens, and is positioned against the step.
  • the laser beam emitted from the light emitting surface 5121 of the laser chip 512 enters one side of the plane of the D lens, and exits from the other side at a smaller divergence angle in the fast axis direction.
  • Those skilled in the art can also contemplate other shapes and types of positioning portions and laser beam shaping elements under the teaching and inspiration of the present invention, which are all within the protection scope of the present invention.
  • the pedestal is a pedestal made of silicon (preferably high-resistance silicon), or made of other materials capable of precisely controlling the processing depth through an etching or chemical etching process.
  • the positioning portion 5111 is formed on the silicon base by an etching or chemical etching process. Compared with ceramic materials, silicon is easier to etch, and accurately controls the position and size of the positioning portion, so that the laser beam shaping element 513 can be accurately positioned by the positioning portion 5111, and the laser light emitted from the light emitting surface of the laser chip The beam is shaped and modulated to reduce the divergence angle along the fast axis.
  • the laser 510 further includes an electrode 514 disposed on the substrate, and the electrode is configured to power the laser chip.
  • FIGS. 33A and 33B An electrode 514 according to a preferred embodiment of the present invention is shown in FIGS. 33A and 33B.
  • the electrode 514 includes a positive electrode 5141 and a negative electrode 5142.
  • the positive electrode 5141 and the negative electrode 5142 are, for example, a metal plate or a thin layer of metal (such as gold foil), and are attached to the surface of the substrate 511 by electroplating, for example.
  • the positive electrode 5141 and the negative electrode 5142 are spaced apart from each other by a spacer 516.
  • the spacer 516 is an integral part of the substrate 511, for example, and does not have a metal plate or a thin metal layer thereon.
  • both the positive electrode 5141 and the negative electrode 5142 are spaced apart (as shown more clearly in Figures 33C and 33D).
  • the spacer 516 may be a separate non-conductive layer, such as a silicon dioxide layer.
  • Both the positive electrode 5141 and the negative electrode 5142 can be disposed on the same surface of the substrate as the laser chip, and on a side of the substrate that is perpendicular to the light emitting surface.
  • the positive electrode 5141 and the negative electrode 5142 both extend over both surfaces of the substrate 511, that is, the top surface in FIG. 33A and the side surface of the side close to the observer, for easy installation.
  • the electrode and the circuit board are soldered on the side of the base. In FIG.
  • the direction in which the upper portions of the positive electrode 5141 and the negative electrode 5142 (the portion on the substrate on the same surface as the laser chip) extend (as shown by the double-headed arrow on the upper portion of the positive electrode 5141 in FIG. 33A) ) Is substantially parallel to the light emitting surface 5121 of the laser chip 512 and parallel to the extending direction of the laser beam shaping element 513.
  • the lower surface of the laser chip 512 is attached to the negative electrode 5142 with the same potential as the negative electrode 5142; the upper surface of the laser chip 512 is coupled to the positive electrode 5141 through a wire (such as a gold wire) 515, and the potential is Same as the positive electrode 5141.
  • the positive electrode 5141 and the negative electrode 5142 are spaced apart by a substrate having no electrode material (for example, as shown in a V groove penetrating the upper surface of the substrate on the left in FIG. 33A).
  • a voltage difference exists between the positive electrode 5141 and the negative electrode 5142, thereby driving the laser chip 512 to emit a laser beam from its light emitting surface.
  • the polarities of the positive electrode 5141 and the negative electrode 5142 can be interchanged, which is also within the protection scope of the present disclosure.
  • the arrangement of the electrodes of FIGS. 35A and 35B is similar to that of FIGS. 33A and 33B, and will not be repeated here.
  • the components of the laser 510 shown in FIGS. 33A, 33B, 35A, and 35B are very compact. Especially when used for the transmitting end of a lidar, they can be densely arranged.
  • the limit between the distances between the lasers 510 can be lasers.
  • the thickness of the chip (that is, the size along the fast axis direction) greatly increases the limit of the angular resolution of the lidar in the vertical direction.
  • FIGS. 36A and 36B illustrate a laser 520 according to another embodiment of the present invention
  • FIGS. 36C and 36D are renderings of FIGS. 36A and 36B, showing the structure thereof more clearly.
  • the laser 520 includes a base 521, a laser chip 522, and a laser beam shaping element 523.
  • the base 521 has a positioning portion 5211 for assisting the precise positioning of the laser beam shaping element 523, which is similar to that shown in FIGS. 33A and 33B. Here, No longer.
  • the laser 520 also has an electrode 524 including a positive electrode 5241 and a negative electrode 5242.
  • the laser chip 522 is attached to the negative electrode 5242.
  • the upper surface of the laser chip 522 is connected to the positive electrode 5241 through a wire (such as a gold wire) 525.
  • a wire such as a gold wire
  • the positive electrode 5241 and the negative electrode 5242 are spaced apart from each other by a spacer.
  • the positive electrode and the negative electrode are both disposed on a surface of the substrate that is the same as the laser chip, and an end surface of the substrate that is parallel to the light emitting surface.
  • the positive electrode 5241 and the negative electrode 5242 also extend across two surfaces of the substrate 521, that is, the top surface and one of the end surfaces in FIG. 36A. As shown in FIGS.
  • the extending direction of the upper portion of the positive electrode 5241 and the negative electrode 5242 (the portion on the substrate on the same surface as the laser chip) is perpendicular to the light emitting surface 5221 of the laser chip 522 and perpendicular to The extending direction of the laser beam shaping element 523.
  • a portion where the electrode is soldered to the circuit board is located on the end surface of the base.
  • the positive electrode 5241 and the negative electrode 5242 are separated by a substrate without an electrode material.
  • the arrangement of the electrodes 524 is similar to that of FIGS. 36A and 36B, but a D lens and a step positioning portion are used therein, and details are not described herein again.
  • the angular resolution limit of the mechanical lidar in the vertical direction can be further improved. This advantage will be apparent and easily understood from the description below.
  • a third aspect of the present invention relates to a laser emitting board assembly including a circuit board and a plurality of lasers as described above. These lasers are disposed on the circuit board, and the light emitting surfaces of the laser chips of the lasers face the same direction, thereby emitting laser beams in a common direction.
  • FIG. 38 shows a laser emitting board assembly 530 according to a preferred embodiment of the present invention, which includes a circuit board 531 and a plurality of lasers provided on the circuit board, such as the laser 510 shown in FIGS. 33A, 33B, 35A, and 35B.
  • the upper electrodes 5141 and 5142 are soldered on the pads 5311 and 5312 of the circuit board 531.
  • the slow axis directions of the light emitting surfaces of the plurality of lasers 510 are perpendicular to the circuit board 531.
  • the circuit board 531 provides driving voltage for the laser chip 512 in the laser 510 through the pads 5311 and 5312 thereon.
  • the laser chip 512 emits a laser beam from its light emitting surface 5121, and after the laser beam shaping element is shaped, , Continue to propagate with a reduced divergence angle in the fast axis direction.
  • FIG. 38 is adapted to show that the laser 510 has an optical fiber as a laser beam shaping element, but it is easy to understand that other types of laser beam shaping elements may also be provided, such as a cylindrical lens, a D lens, or an aspherical mirror.
  • the double-headed arrow in FIG. 38 shows the vertical direction of the lidar of FIG. 31A. Compared with the arrangement of the laser chip of FIG. 31C, in the technical solution of FIG.
  • the light emitting surface of the laser chip is turned 90 °, and at the same time, the fast axis direction (smaller size) of the laser chip and the vertical direction of the lidar Overlap, so more laser chips can be arranged in the vertical direction of the lidar, and the angular resolution of the lidar in the vertical direction can be improved.
  • the laser emitting board assembly 530 includes a plurality of the circuit boards 531, and each of the circuit boards is provided with a plurality of the lasers 510, among which the lasers on the plurality of circuit boards 531
  • the light emitting surfaces 5121 of the laser chip 512 in 510 are staggered from each other in the fast axis direction.
  • four circuit boards 531 are provided along the slow axis direction, and four lasers 510 are provided on each circuit board, for a total of 16 lasers 510.
  • the fast axis direction in FIG. 39 that is, the vertical direction of the lidar corresponding to FIG.
  • the positions of the 16 lasers 510 are staggered with each other, and no overlap occurs.
  • the 16 lasers 510 are respectively located at different vertical heights of the focal plane of the lidar's exit optical system, so that laser beams can be emitted at different positions for detecting the surrounding environment.
  • FIG. 39A includes a plurality of the circuit boards of FIG. 38 and the lasers thereon, and is a view viewed from the left side of FIG. 38. At the same time, for clarity, gold wires and laser beam shaping elements are omitted. As shown in FIG. 39A, the plurality of circuit boards 531 are stacked along a slow axis direction of the light emitting surface. With this arrangement and the laser module described above, the angular resolution limit of the lidar in the vertical direction can be greatly improved. For example, in FIG. 39A, although the laser chip of the laser 510 on a single circuit board 531 is limited by the thickness of the substrate, it needs to be spaced a certain distance (the limit of stacking) in the vertical direction (fast axis direction) in the figure.
  • the lasers on different circuit boards 531 need not be limited by the thickness of the substrate and can be staggered in the fast axis direction with each other.
  • the laser chips of the lasers on multiple circuit boards are continuous in the fast axis direction. For example, as shown in FIG.
  • the method of soldering the pads and electrodes shown in FIG. 39 is applicable to the semiconductor lasers shown in FIGS. 33A, 33B, 35A, and 35B.
  • the circuit PCB boards By arranging a plurality of the circuit PCB boards, multiple semiconductor lasers are realized at the focal plane of the transmitting lens Different heights in order to achieve high angular resolution in the vertical field of view.
  • the base has no effect on the final thickness, and the laser can be staggered along the fast axis.
  • FIG. 40 shows a laser emitting board assembly 540 according to a preferred embodiment of the present invention, which includes a circuit board 541 and a plurality of lasers, such as the laser 520 shown in FIGS. 36A, 36B, 37A, and 37B.
  • the laser 520 is soldered on the pads 5411 and 5412 of the circuit board 541 for obtaining the driving voltage through the pads 5411 and 5412, and the slow axis direction of the light emitting surfaces of the laser chips 522 of the plurality of lasers 520 is parallel to the Mentioned circuit boards.
  • FIG. 41 shows a laser emitting board assembly 540 according to a preferred embodiment of the present invention.
  • FIG. 41 includes a plurality of columns of lasers.
  • FIG. 41 is a view viewed from the left side of FIG. 40.
  • the light emitting surfaces of the laser chips among the plurality of lasers on the circuit board are staggered from each other in the fast axis direction.
  • the light emitting surfaces thereof are shifted from each other in the fast axis direction. Therefore, this arrangement method realizes the arrangement density in the fast axis direction as the size in the fast axis direction of the laser chip, which greatly increases the limit of the angular resolution of the lidar in the vertical direction.
  • the method of soldering pads and electrodes in the embodiment shown in FIG. 41 is applicable to the semiconductor lasers shown in FIGS. 36A, 36B, 37A, and 37B, and is achieved by arranging a plurality of the semiconductor lasers on a single circuit PCB board. Multiple semiconductor lasers have different heights on the focal plane of the transmitting lens, thereby achieving high angular resolution in the vertical field of view direction.
  • a fourth aspect of the present invention also relates to a laser radar, which includes the laser emitting board assembly 530 or 540 as described above.
  • the third aspect of the present invention can further improve the optical limit of the vertical resolution of the lidar and improve the ranging performance.
  • the lidar may further include a transmitting lens, which is located downstream of the laser transmitting board assembly and is used for further modulating the laser beam emitted by the laser transmitting board assembly, for example, changing its convergence And / or direction.
  • a transmitting lens which is located downstream of the laser transmitting board assembly and is used for further modulating the laser beam emitted by the laser transmitting board assembly, for example, changing its convergence And / or direction.
  • FIG. 42 shows a laser packaging method 550 according to a fifth aspect of the present invention.
  • the method 550 includes the following steps.
  • a substrate is provided or prepared.
  • the substrate is usually made of a material capable of precisely controlling the processing depth by an etching or chemical etching process, such as silicon (preferably high-resistance silicon).
  • a positioning portion is formed on the substrate by etching or chemical etching.
  • the positioning portion is, for example, in the form of a V-shaped groove, a U-shaped groove, a step, or a combination thereof.
  • a laser chip is mounted on the silicon substrate. During the installation process, it may be necessary to couple the laser chip with the electrodes of the substrate in order to provide a driving voltage for the laser chip.
  • the positioning part is used to position the laser beam shaping element on the substrate, so that the light emitting surface of the laser chip is opposite to the laser beam shaping element.
  • the positioning portion is used to find the precise positioning position of the laser beam shaping element.
  • the positioning portion may be configured to directly fix the laser beam shaping element in place.
  • the laser beam shaping element is positioned thereon by means of bonding or the like.
  • the packaging method 550 further includes: making the center of the laser beam shaping element 513 equal to the center of the light emitting surface 5121 of the laser chip 512.
  • the laser chip is, for example, an edge emitting type, and a light emitting surface thereof has a slow axis direction and a fast axis direction, wherein the slow axis direction is parallel to the extending direction of the laser beam shaping element,
  • the laser beam shaping element is a fast axis compression element configured to compress a divergence angle of the laser light emitted from the light emitting surface in the fast axis direction.
  • the limit of the angular resolution in the vertical direction of the laser emitting board assembly of the present invention can be greatly improved.
  • This method can perform accurate fast-axis compression while realizing that the light emitting surface of the chip is turned 90 °.
  • Materials such as silicon can precisely control the processing depth and size by using the etching process, and prepare a pedestal with precise graphic dimensions, which effectively controls the fast axis divergence angle and beam directivity after compression, and improves ranging performance.
  • the light emitting surface of the chip can be turned 90 °, which is more conducive to reducing the measurement errors of ground lanes, pedestrian lines, and distant ground.
  • the laser radar in the first aspect can be arbitrarily combined with the technical solutions disclosed in the second, third, fourth, and fifth aspects.
  • At least one laser 2015 is provided on the laser emitting board 2014, and the laser 2015 may be, for example, FIGS. 33A-33D, FIG. 35A, and FIG. 35B, FIGS. 36A-36D, and lasers 510 and / or 520 shown in FIGS. 37A and 37D.
  • the laser emission board 2014 includes, for example, a laser emission board assembly 530 (as shown in FIG. 38) according to the third aspect of the present invention.
  • the laser emission board assembly 530 includes a circuit board 531 and a plurality of circuit boards disposed on the circuit board.
  • Laser 510 With reference to FIG. 14, FIG. 38, and FIG. 39, the laser holder 2011 has a comb-tooth structure having a plurality of vertical card slots.
  • a plurality of card slots 201122 are respectively provided with a laser emitting board (corresponding to the laser emitting board assembly 530 or including a laser (Emitting board assembly 530), the light emitting surfaces of the laser chips of the laser emitting board assemblies in the plurality of card slots are staggered from each other in the fast axis direction.
  • a plurality of laser emitting boards 2014 are provided in the card slot 201122 of the comb structure. Each laser emitting board 2014 is provided with a laser emitting board assembly 530 shown in FIG. 38, and each laser emitting board assembly 530 includes a vertical direction.
  • the plurality of lasers 510 are arranged, and the light emitting surfaces 5121 of the laser chips 512 in the lasers 510 on the plurality of circuit boards 531 are staggered from each other in the fast axis direction to form a light emitting structure as shown in FIG. 39. As shown in FIG. 39, the plurality of circuit boards 531 are stacked along a slow axis direction of the light emitting surface. With this arrangement and the laser as described above, the angular resolution limit of the lidar in the vertical direction can be greatly improved.
  • the laser chip of the laser 510 on a single circuit board 531 is limited by the thickness of the substrate, it needs to be spaced a certain distance (the limit of stacking) in the vertical direction (fast axis direction) in the figure Is the bottom surface of the upper laser and contacts the top surface of the lower laser), but the lasers on different circuit boards 531 need not be limited by the thickness of the substrate and can be staggered in the fast axis direction with each other. In one extreme case, the laser chips of the lasers on multiple circuit boards are continuous in the fast axis direction. Therefore, compared with the arrangement of FIG. 31 and FIG. 32, this method of the present invention can greatly improve the limit of the angular resolution of the lidar in the vertical direction.
  • the laser emitting board assembly 540 shown in FIGS. 40 and 41 is incorporated into the embodiments shown in FIGS. 1 to 30.
  • the laser bracket 2011 may not be provided with the comb tooth structure shown in FIG. 14, and may only include a bracket structure for supporting or fixing the laser emitting board assembly 540 shown in FIGS. 40 and 41.
  • the board assembly can effectively increase the limit of the angular resolution of the lidar in the vertical direction, which is not repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Semiconductor Lasers (AREA)
  • Lasers (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明提供一种激光雷达,所述激光雷达包括转子、激光发射系统和接收系统,所述转子具有相互隔离的发射舱和接收舱,所述激光发射系统设置于所述发射舱内,所述接收系统设置于所述接收舱内;所述激光发射系统包括:激光器支架,所述激光器支架用于固定至少一个激光器发射板。本发明激光雷达通过激光器发射板在所述激光器支架布置方式配合激光发射器的排列方式容易实现更高线束的激光雷达;激光器阵列采用非均匀分布使得低线束能够实现高垂直角分辨率;转子设有第三配重结构,调节配重同时能够实现更好的散热和激光雷达的轻量化。

Description

激光雷达、激光器、激光器发射板组件及激光器的封装方法 技术领域
本发明涉及激光探测技术领域,特别涉及一种激光雷达、激光器、激光器发射板组件以及该激光器的封装方法。
背景技术
作为智能车环境感知硬件系统的重要一环,激光雷达(LIDAR)在自动驾驶中承担了路沿检测、障碍物识别以及实时定位与绘图(SLAM)等重要任务。LIDAR系统包括激光发射系统和一个接收系统。激光器发射系统产生并发射光脉冲,打在物体上并反射回来,最终被接收器所接收。接收器准确地测量光脉冲从发射到被反射回的传播时间。因为光脉冲以光速传播,所以接收器总会在下一个脉冲发出之前收到前一个被反射回的脉冲。鉴于光速是已知的,传播时间即可被转换为对距离的测量。激光雷达能精确测量目标位置(距离和角度)、运动状态(速度、振动和姿态)和形状,探测、识别、分辨和跟踪目标。由于具有测量速度快、精度高和测距远等优点,激光雷达在智能车上得到了广泛应用。
目前的机械式多线激光雷达产生多线的方式是多个激光光源复用同一个或一组透镜,排布在透镜的焦平面上不同高度。由此产生垂直方向不同的指向性,构成多线。激光雷达为了实现线数的提高,无非是在发射透镜像面的不同高度上排布激光器。高度差越小,则线数越多,线角度分辨率越高。列数越多,生产装调难度大,工艺越复杂,且生产效率越低;系统内空间利用率低,焦平面位置处特别挤,发热量又大,热量很难被导出,而其他地方器件少,发热也少。激光器的布置涉及到整个激光发射装置的布局,常规使用的半导体激光脉冲二极管发光区尺寸很小,但是实际上由于芯片封装以及驱动电路尺寸的影响,激光器之间的间距无法变得很密。此外,目前激光雷达输电方式大多采用无线输电装置,其具体布置会影响整个激光雷达性能。因此有必要提出一种新的激光雷达,降低装调难度的同时要考虑激光器的散热和整体尺寸的缩小。
发明内容
为解决上述技术问题中的至少一个,本发明公开了一种激光雷达,具体包括如下几个方面:
本发明的第一方面,提出一种激光雷达,所述激光雷达包括转子、激光发射系统和接收系统,所述转子具有相互隔离的发射舱和接收舱,所述激光发射系统设置于所述发射舱内,所述接收系统设置于所述接收舱内;所述激光发射系统包括:激光器支架,所述激光器支架用于固定至少一个激光器发射板。
进一步地,所述激光器发射板被所述激光器支架沿垂直于第一平面的方向固定;或者,所述激光器发射板被所述激光器支架沿平行于第一平面的方向固定。第一平面是激光雷达转子旋转方向所定义的平面,在一个可选的示例中,激光雷达水平放置,第一平面为平行于水平面的平面,当然水平平面并不作为本说明书中对第一平面的位置限制。
本发明的第二方面,提出一种激光雷达,包括转子、激光发射系统和接收系统,所述转子具有相互隔离的发射舱和接收舱,所述激光发射系统设置于所述发射舱内,所述接收系统设置于所述接收舱内;所述转子还包括外筒和内筒,所述外筒的筒壁上设置有用于发射透镜组和接收透镜组的安装结构。
本发明的第三方面,提出一种激光雷达,包括转子、激光发射系统和接收系统,所述转子具有相互隔离的发射舱和接收舱,所述激光发射系统设置于所述发射舱内,所述 接收系统设置于所述接收舱内;所述激光发射系统包括第一反射镜组和发射透镜组,所述第一反射镜组用于改变所述激光器的出射光束路径将所述激光光束入射至所述发射透镜组;所述发射透镜组用于发射探测光;和/或,所述接收系统包括接收透镜组、第二反射镜组和接收装置,所述接收透镜组用于汇聚待测物的反射光,所述第二反射镜组用于改变光束的路径将所述反射光入射到所述接收装置。
本发明的第四方面,提出一种激光雷达,包括转子、激光发射系统和接收系统,所述转子具有相互隔离的发射舱和接收舱,所述激光发射系统设置于所述发射舱内,所述接收系统设置于所述接收舱内;无线输电装置,包括无线供电发射组件和无线供电接收组件,所述无线供电发射组件与所述无线供电接收组件间隔设置,所述无线供电发射组件包括发射线圈和发射电路板,所述发射线圈和所述发射电路板连接;所述无线供电接收组件包括接收线圈和隔磁元件,所述接收线圈第一面和所述发射线圈的第二面间隔设置,所述隔磁元件设置于所述接收线圈远离所述发射线圈的一侧。在具体示例中,接收线圈第一面与发射线圈的第二面是二者相互靠近的平面。
本发明涉及一种激光雷达,包括:转子,所述转子具有相互隔离的发射舱和接收舱,其中所述发射舱和所述接收舱为非对称分布;激光发射系统,所述激光发射系统设置于所述发射舱内,所述激光发射系统包括激光器支架和固定在所述激光器支架上的至少一个激光器发射板;和接收系统,所述接收系统设置于所述接收舱内。
根据本发明的一个方面,其中所述激光器发射板被所述激光器支架沿垂直于第一平面的方向固定;或者,所述激光器发射板被所述激光器支架沿平行于第一平面的方向固定。
根据本发明的一个方面,其中所述激光器支架呈具有至少一个卡槽的梳齿结构,所述激光器发射板固定于所述卡槽。
根据本发明的一个方面,其中所述激光器发射板与水平面呈一预设夹角;所述激光器发射板上设置有至少一个激光器,所述激光器的发光面位于激光雷达的出射光学系统的焦平面上。
根据本发明的一个方面,其中当激光器发射板被所述激光器支架沿垂直于第一平面的方向固定时,所述激光器发射板垂直所述第一平面的方向间隔设置。
根据本发明的一个方面,其中当所述激光器发射板被所述激光器支架沿平行于第一平面的方向固定时,所述激光器发射板沿平行于所述第一平面的方向间隔设置。
根据本发明的一个方面,其中所述激光发射系统包括设置在所述激光器发射板上的激光器,所述激光器包括:基底,所述基底上具有定位部;激光器芯片,设置在所述基底上,所述激光器芯片具有发光面;和激光光束整形元件,通过所述定位部定位,并与所述激光器芯片的发光面相对。
根据本发明的一个方面,其中所述定位部包括V形槽、U形槽、台阶中的一个或多个,所述激光光束整形元件包括光纤、柱镜、D透镜或非球面镜中的一个或多个。
根据本发明的一个方面,其中所述激光器芯片为边发射型,所述发光面具有慢轴方向和快轴方向,其中所述慢轴方向与所述激光光束整形元件的延伸方向平行,所述激光光束整形元件为快轴压缩元件,配置成可压缩从所述发光面发射的激光在所述快轴方向上的发散角。
根据本发明的一个方面,其中所述基座为硅基座,所述定位部通过刻蚀工艺形成在 所述硅基座上,所述激光器还包括设置在所述基底上的电极,所述电极配置成可对所述激光器芯片供电,所述电极包括由间隔部隔开的正电极和负电极。
根据本发明的一个方面,其中所述正电极和负电极均设置在基底上的与所述激光器芯片相同的一表面上、以及所述基底上的与所述发光面垂直的一侧面上。
根据本发明的一个方面,其中所述正电极和负电极均设置在基底上的与所述激光器芯片相同的一表面上、以及所述基底上的与所述发光面平行的一端面上。
根据本发明的一个方面,其中所述激光器发射板包括电路板和设置在所述电路板上的多个所述激光器,并且所述激光器的激光器芯片的发光面朝向相同的方向。
根据本发明的一个方面,其中所述多个激光器焊接在所述电路板上,并且所述多个激光器的发光面的慢轴方向垂直于所述电路板。
根据本发明的一个方面,其中所述多个激光器焊接在所述电路板上,并且所述多个激光器的发光面的慢轴方向平行于所述电路板,所述电路板上的多个所述激光器中的激光器芯片的发光面在快轴方向上相互错开。
根据本发明的一个方面,其中所述激光器支架呈具有多个竖直卡槽的梳齿结构,多个卡槽中分别设置一激光器发射板,所述多个卡槽中的激光器发射板的激光器芯片的发光面在快轴方向上相互错开。
根据本发明的一个方面,其中所述激光光束整形元件的中心与所述激光器芯片的发光面的中心等高。
本发明还涉及一种激光雷达,包括:转子,所述转子具有相互隔离的发射舱和接收舱,其中所述发射舱和所述接收舱为非对称分布;激光发射系统,所述激光发射系统设置于所述发射舱内;和接收系统,所述接收系统设置于所述接收舱内;其中所述转子还包括外筒和内筒,所述外筒的筒壁上设置有用于发射透镜组和接收透镜组的安装结构。
根据本发明的一个方面,其中所述外筒和内筒之间形成容置腔,所述容置腔内设置有隔板,所述隔板的一端与所述外筒连接,所述隔板的另一端与所述内筒连接,所述隔板将所述容置腔分隔形成所述发射舱和所述接收舱。
根据本发明的一个方面,其中所述转子上设置有第三配重结构,所述第三配重结构设置在所述安装结构的两侧,所述第三配重结构包括多个第一凹槽,每相邻两个第一凹槽之间形成有连接筋。
根据本发明的一个方面,其中所述外筒的筒壁包括活动壁和固定壁,所述活动壁与所述固定壁之间可拆卸连接,所述活动壁上设置有至少一个第一配重块。
根据本发明的一个方面,其中所述激光雷达还包括底盘,所述底盘设置于所述转子底部,所述底盘上设置有至少一个第二配重块。
根据本发明的一个方面,其中所述激光发射系统包括激光器,所述激光器包括:基底,所述基底上具有定位部;激光器芯片,设置在所述基底上,所述激光器芯片具有发光面;和激光光束整形元件,通过所述定位部定位,并与所述激光器芯片的发光面相对。
根据本发明的一个方面,其中所述定位部包括V形槽、U形槽、台阶中的一个或多个,所述激光光束整形元件包括光纤、柱镜、D透镜或非球面镜中的一个或多个。
根据本发明的一个方面,其中所述激光器芯片为边发射型,所述发光面具有慢轴方向和快轴方向,其中所述慢轴方向与所述激光光束整形元件的延伸方向平行,所述激光光束整形元件为快轴压缩元件,配置成可压缩从所述发光面发射的激光在所述快轴方向 上的发散角。
根据本发明的一个方面,其中所述基座为硅基座,所述定位部通过刻蚀工艺形成在所述硅基座上,所述激光器还包括设置在所述基底上的电极,所述电极配置成可对所述激光器芯片供电,所述电极包括由间隔部隔开的正电极和负电极。
根据本发明的一个方面,其中所述正电极和负电极均设置在基底上的与所述激光器芯片相同的一表面上、以及所述基底上的与所述发光面垂直的一侧面上。
根据本发明的一个方面,其中所述正电极和负电极均设置在基底上的与所述激光器芯片相同的一表面上、以及所述基底上的与所述发光面平行的一端面上。
根据本发明的一个方面,其中所述激光发射系统包括激光器支架和固定在所述激光器支架上的至少一个激光器发射板,所述激光器发射板包括电路板和设置在所述电路板上的多个所述激光器,并且所述激光器的激光器芯片的发光面朝向相同的方向。
根据本发明的一个方面,其中所述多个激光器焊接在所述电路板上,并且所述多个激光器的发光面的慢轴方向垂直于所述电路板。
根据本发明的一个方面,其中所述多个激光器焊接在所述电路板上,并且所述多个激光器的发光面的慢轴方向平行于所述电路板,所述电路板上的多个所述激光器中的激光器芯片的发光面在快轴方向上相互错开。
根据本发明的一个方面,其中所述激光器支架呈具有多个竖直卡槽的梳齿结构,多个卡槽中分别设置一激光器发射板,所述多个卡槽中的激光器发射板的激光器芯片的发光面在快轴方向上相互错开。
根据本发明的一个方面,其中所述激光光束整形元件的中心与所述激光器芯片的发光面的中心等高。
本发明涉及一种激光雷达,包括:转子,所述转子具有相互隔离的发射舱和接收舱,其中所述发射舱和所述接收舱为非对称分布;激光发射系统,所述激光发射系统设置于所述发射舱内;和接收系统,所述接收系统设置于所述接收舱内;其中所述激光发射系统包括激光器、第一反射镜组和发射透镜组,所述第一反射镜组用于改变所述激光器的激光光束的路径,使所述激光光束入射至所述发射透镜组;所述发射透镜组用于发射探测光;和/或,所述接收系统包括接收透镜组、第二反射镜组和接收装置,所述接收透镜组用于汇聚待测物的反射光,所述第二反射镜组用于改变光束的路径,使所述反射光入射到所述接收装置。
根据本发明的一个方面,其中所述激光雷达还包括隔光片和隔光架,所述隔光片设置在所述发射透镜组和接收透镜组之间,且所述隔光片一端设置在第二反射镜和第四反射镜之间,所述隔光片的另一端贴合在所述隔光架上。
根据本发明的一个方面,其中所述激光雷达还包括固定块,所述固定块上设置有搭接条,所述搭接条一端搭接在所述内筒上,所述搭接条的另一端搭接在所述外筒上。
根据本发明的一个方面,其中所述接收装置包括滤光片、接收器件、接收电路支架和多块接收电路板,所述接收器件和所述接收电路板安装于所述接收电路支架上,所述滤光片用于过滤杂散光。
根据本发明的一个方面,其中所述接收器件包括基板和至少一个APD探测器,所述基板固定于所述接收电路支架上,所述APD探测器设置于所述基板一侧面。
根据本发明的一个方面,其中所述激光雷达还包括底座、外罩和顶盖,所述外罩的 一端与所述底座配合连接,所述外罩的另一端与顶盖配合连接,所述底座、外罩和顶盖依次连接围合形成密闭腔体,所述密闭腔体用于容纳所述转子、激光发射系统和接收系统。
根据本发明的一个方面,其中所述接收器件包括多个APD探测器,所述APD探测器排列为APD线阵探测器或APD面阵探测器。
根据本发明的一个方面,其中所述激光器包括:基底,所述基底上具有定位部;激光器芯片,设置在所述基底上,所述激光器芯片具有发光面;和激光光束整形元件,通过所述定位部定位,并与所述激光器芯片的发光面相对。
根据本发明的一个方面,其中所述定位部包括V形槽、U形槽、台阶中的一个或多个,所述激光光束整形元件包括光纤、柱镜、D透镜或非球面镜中的一个或多个。
根据本发明的一个方面,其中所述激光器芯片为边发射型,所述发光面具有慢轴方向和快轴方向,其中所述慢轴方向与所述激光光束整形元件的延伸方向平行,所述激光光束整形元件为快轴压缩元件,配置成可压缩从所述发光面发射的激光在所述快轴方向上的发散角。
根据本发明的一个方面,其中所述基座为硅基座,所述定位部通过刻蚀工艺形成在所述硅基座上,所述激光器还包括设置在所述基底上的电极,所述电极配置成可对所述激光器芯片供电,所述电极包括由间隔部隔开的正电极和负电极。
根据本发明的一个方面,其中所述正电极和负电极均设置在基底上的与所述激光器芯片相同的一表面上、以及所述基底上的与所述发光面垂直的一侧面上。
根据本发明的一个方面,其中所述正电极和负电极均设置在基底上的与所述激光器芯片相同的一表面上、以及所述基底上的与所述发光面平行的一端面上。
根据本发明的一个方面,其中所述激光发射系统包括激光器支架和固定在所述激光器支架上的至少一个激光器发射板,所述激光器发射板包括电路板和设置在所述电路板上的多个所述激光器,并且所述激光器的激光器芯片的发光面朝向相同的方向。
根据本发明的一个方面,其中所述多个激光器焊接在所述电路板上,并且所述多个激光器的发光面的慢轴方向垂直于所述电路板。
根据本发明的一个方面,其中所述多个激光器焊接在所述电路板上,并且所述多个激光器的发光面的慢轴方向平行于所述电路板,所述电路板上的多个所述激光器中的激光器芯片的发光面在快轴方向上相互错开。
根据本发明的一个方面,其中所述激光器支架呈具有多个竖直卡槽的梳齿结构,多个卡槽中分别设置一激光器发射板,所述多个卡槽中的激光器发射板的激光器芯片的发光面在快轴方向上相互错开。
根据本发明的一个方面,其中所述激光光束整形元件的中心与所述激光器芯片的发光面的中心等高。
本发明还涉及一种激光雷达,包括:转子,所述转子具有相互隔离的发射舱和接收舱,其中所述发射舱和所述接收舱为非对称分布;激光发射系统,所述激光发射系统设置于所述发射舱内;接收系统,所述接收系统设置于所述接收舱内;和无线输电装置,设置在激光雷达内部的顶部侧,包括无线供电发射组件和无线供电接收组件,所述无线供电发射组件与所述无线供电接收组件间隔设置,所述无线供电发射组件包括发射线圈和发射电路板,所述发射线圈和所述发射电路板连接;所述无线供电接收组件包括接收 线圈和至少一个接收电路板,所述接收线圈和所述发射线圈间隔设置,所述接收线圈与所述接收电路板连接。
根据本发明的一个方面,其中所述无线供电接收组件还包括隔磁元件,所述隔磁元件为隔磁板,所述隔磁板设置于所述接收线圈远离所述发射线圈的一侧。
根据本发明的一个方面,其中所述接收电路板包括第四电路板和第五电路板,所述第四电路板的第一面与所述第五电路板的第二面间隔设置,所述第五电路板与所述隔磁板连接,所述隔磁板设置于所述第五电路板朝向所述第四电路板的一侧。
根据本发明的一个方面,其中所述激光发射系统包括激光器,所述激光器包括:基底,所述基底上具有定位部;激光器芯片,设置在所述基底上,所述激光器芯片具有发光面;和激光光束整形元件,通过所述定位部定位,并与所述激光器芯片的发光面相对。
根据本发明的一个方面,其中所述定位部包括V形槽、U形槽、台阶中的一个或多个,所述激光光束整形元件包括光纤、柱镜、D透镜或非球面镜中的一个或多个。
根据本发明的一个方面,其中所述激光器芯片为边发射型,所述发光面具有慢轴方向和快轴方向,其中所述慢轴方向与所述激光光束整形元件的延伸方向平行,所述激光光束整形元件为快轴压缩元件,配置成可压缩从所述发光面发射的激光在所述快轴方向上的发散角。
根据本发明的一个方面,其中所述基座为硅基座,所述定位部通过刻蚀工艺形成在所述硅基座上,所述激光器还包括设置在所述基底上的电极,所述电极配置成可对所述激光器芯片供电,所述电极包括由间隔部隔开的正电极和负电极。
根据本发明的一个方面,其中所述正电极和负电极均设置在基底上的与所述激光器芯片相同的一表面上、以及所述基底上的与所述发光面垂直的一侧面上。
根据本发明的一个方面,其中所述正电极和负电极均设置在基底上的与所述激光器芯片相同的一表面上、以及所述基底上的与所述发光面平行的一端面上。
根据本发明的一个方面,其中所述激光发射系统包括激光器支架和固定在所述激光器支架上的至少一个激光器发射板,所述激光器发射板包括电路板和设置在所述电路板上的多个所述激光器,并且所述激光器的激光器芯片的发光面朝向相同的方向。
根据本发明的一个方面,其中所述多个激光器焊接在所述电路板上,并且所述多个激光器的发光面的慢轴方向垂直于所述电路板。
根据本发明的一个方面,其中所述多个激光器焊接在所述电路板上,并且所述多个激光器的发光面的慢轴方向平行于所述电路板,所述电路板上的多个所述激光器中的激光器芯片的发光面在快轴方向上相互错开。
根据本发明的一个方面,其中所述激光器支架呈具有多个竖直卡槽的梳齿结构,多个卡槽中分别设置一激光器发射板,所述多个卡槽中的激光器发射板的激光器芯片的发光面在快轴方向上相互错开。
根据本发明的一个方面,其中所述激光光束整形元件的中心与所述激光器芯片的发光面的中心等高。
本发明还涉及一种激光器,包括:基底,所述基底上具有定位部;激光器芯片,设置在所述基底上,所述激光器芯片具有发光面;和激光光束整形元件,通过所述定位部定位,并与所述激光器芯片的发光面相对。
根据本发明的一个方面,其中所述定位部包括V形槽、U形槽、台阶中的一个或多个。
根据本发明的一个方面,其中所述激光光束整形元件包括光纤、柱镜、D透镜或非球面镜中的一个或多个。
根据本发明的一个方面,其中所述激光器芯片为边发射型,所述发光面具有慢轴方向和快轴方向,其中所述慢轴方向与所述激光光束整形元件的延伸方向平行,所述激光光束整形元件为快轴压缩元件,配置成可压缩从所述发光面发射的激光在所述快轴方向上的发散角。
根据本发明的一个方面,其中所述基座为硅基座,所述定位部通过刻蚀工艺形成在所述硅基座上。
根据本发明的一个方面,所述的激光器还包括设置在所述基底上的电极,所述电极配置成可对所述激光器芯片供电。
根据本发明的一个方面,其中所述电极包括由间隔部隔开的正电极和负电极。
根据本发明的一个方面,其中所述正电极和负电极均设置在基底上的与所述激光器芯片相同的一表面上、以及所述基底上的与所述发光面垂直的一侧面上。
根据本发明的一个方面,其中所述正电极和负电极均设置在基底上的与所述激光器芯片相同的一表面上、以及所述基底上的与所述发光面平行的一端面上。
根据本发明的一个方面,所述激光光束整形元件的中心与所述激光器芯片的发光面的中心等高。
本发明还涉及一种激光器发射板组件,包括:电路板;多个如上所述的激光器,设置在所述电路板上,并且所述激光器的激光器芯片的发光面朝向相同的方向。
根据本发明的一个方面,其中所述多个激光器焊接在所述电路板上,并且所述多个激光器的发光面的慢轴方向垂直于所述电路板。
根据本发明的一个方面,其中所述多个激光器焊接在所述电路板上,并且所述多个激光器的发光面的慢轴方向平行于所述电路板,所述电路板上的多个所述激光器中的激光器芯片的发光面在快轴方向上相互错开。
根据本发明的一个方面,其中所述激光发射系统包括多个所述电路板,每个电路板上设置有多个所述激光器,其中多个电路板上的激光器中的激光器芯片的发光面在快轴方向上相互错开。
根据本发明的一个方面,其中所述激光光束整形元件的中心与所述激光器芯片的发光面的中心等高。
本发明还涉及一种激光雷达,包括如上所述的激光发射系统。
本发明还涉及一种激光器的封装方法,包括:
提供或制备基底;
在所述基底上通过刻蚀或化学腐蚀形成定位部;
将激光器芯片安装在所述基底上;
利用所述定位部,将激光光束整形元件定位在所述基底上,使得所述激光器芯片的发光面与所述激光光束整形元件相对。
根据本发明的一个方面,其中所述激光器芯片为边发射型,所述发光面具有慢轴方向和快轴方向,其中所述慢轴方向与所述激光光束整形元件的延伸方向平行,所述激光光束整形元件为快轴压缩元件,配置成可压缩从所述发光面发射的激光在所述快轴方向上的发散角。
根据本发明的一个方面,所述基底为硅基底。
根据本发明的一个方面,所述方法还包括使得所述激光光束整形元件的中心与所述激光器芯片的发光面的中心等高。
采用上述技术方案,本发明所述的激光雷达具有如下有益效果:
1)本发明激光雷达的激光发射装置采用激光器支架和发射电路支架分别安装激光器发射板和发射电路组,使得激光雷达发射舱的空间更加灵活,且激光器发射板的体积可以缩小,降低系统尺寸和重量,便于实现激光雷达的低成本和小型化;且激光器发射板在所述激光器支架布置方式配合激光发射器的排列方式容易实现更高线束的激光雷达;
2)本发明激光雷达的激光发射装置的激光器阵列可以采用非均匀分布设置,使用激光光束非均匀分布设计在较低线束时,能够实现较高的垂直角分辨率,节约成本,减小体积;
3)本发明激光雷达通过在发射透镜组和接收透镜组的两侧对称设置第三配重结构,提高了转子配重的灵活性的同时可以增大外筒的筒壁的表面积,有效提高转子的散热效果;第三配重结构包括多个第一凹槽,在增大表面积,提高散热效率的同时,通过在转子外筒的筒壁上设置第一凹槽结构,可以有效减小转子的整体重量,使转子重量最小化,有效降低转子转动过程中的能耗,在提高散热效率、降低能耗的同时,可以灵活的在所述第一凹槽结构中添加配重材料,实现转子的整体平衡的有效调整,提高了转子整体平衡调整的灵活性,并且,相邻第一凹槽之间形成有连接筋,起到加强筋作用,提高转子的整体强度;
4)本发明中激光雷达通过加强条和隔板将外筒的筒壁分隔为活动壁和固定壁,改善转子整体注塑工艺的同时,方便发射组件的安装,活动壁结构包括导流部,可以有效减小转子在旋转的过程中的阻力,降低为克服阻力而消耗的能耗;
5)本发明激光雷达通过设置固定块、隔光片和隔光架配合将发射舱和接收舱完全的隔离,避免发射舱和接收舱内的光路的相互干扰,提高激光雷达的测量精度,且发射舱和接收舱采用非对称分布,能够适应于激光发射系统和接收系统的具体结构以及具体体积;
6)本发明激光雷达的接收装置滤光片设置于所述接收器件朝向所述第二反射镜组的一侧,能够过滤杂散光,接收器件的APD探测器还罩设有金属保护壳,能够保护接收器件,避免灰尘等异物进入损坏器件。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为激光雷达转子结构示意图;
图2为激光雷达的光路图;
图3为图1的俯视图;
图4为激光雷达转子的又一种结构的示意图;
图5为激光雷达转子的又一种结构的示意图;
图6为激光雷达转子的又一种结构的示意图;
图7为激光雷达转子的又一种结构的示意图;
图8为激光雷达转子的又一种结构的示意图;
图9为激光雷达转子底板的结构示意图;
图10为激光雷达底盘的结构示意图;
图11为激光雷达底座的结构示意图;
图12为激光雷达底座的剖视图;
图13为本发明实施例3激光发射装置示意图;
图14为本发明实施例3激光器支架与激光器发射板的装配示意图;
图15为本发明实施例3激光器支架立体示意图;
图16为本发明发射电路支架与发射电路组装配示意图;
图17为本发明发射电路支架立体示意图;
图18为本发明实施例4激光器支架示意图;
图19为本发明实施例4激光器发射板布置示意图;
图20为本发明实施例5激光器发射板布置示意图。
图21为该发明实施例6激光雷达接收系统的示意图;
图22为该发明实施例6激光雷达接收系统另一视角的示意图;
图23为该发明实施例6激光雷达接收系统的接收装置示意图;
图24为该发明实施例6接收器件的主视图;
图25为该发明实施例6接收器件的左视图;
图26为该发明实施例6接收电路支架的示意图;
图27为该发明实施例6接收电路支架的另一视角示意图;
图28为该实用新型实施例9无线输电装置的部分结构示意图;
图29为该实用新型实施例9无线输电装置的部分结构主视图;
图30为该实用新型实施例1激光雷达结构示意图;
图31A是激光雷达的示意图;图31B是边发射型激光器芯片的示意图;
图31C是现有半导体激光器芯片和电路板的的一种设置方式的示意图;
图32是现有半导体激光器芯片和电路板的的另一种设置方式的示意图;
图33A是根据本发明第一方面的激光器从前侧观察的立体图,图33B是该激光器从后侧观察的立体图,图33C和33D分别是图33A和33B的渲染图;
图34A示出了激光器芯片发出的激光光束沿着慢轴方向的发散角和沿着快轴方向的发散角;图34B和34C示出了激光器芯片发射的激光光束,分别经过D透镜和光纤后,其快轴方向的发散角减小的情况;
图35A和35B示出了根据本发明另一个实施例的激光器;
图36A和36B示出了根据本发明另一个实施例的激光器,图36C和36D分别是图36A和36B的渲染图;
图37A和37B示出了根据图36A和36B激光器的一个变型;
图38示出了根据本发明一个优选实施例的激光器发射板组件;
图39A示出了根据本发明一个优选实施例的激光器发射板组件,图39B示出了根据本发明另一个优选实施例的激光器发射板组件;
图40示出了根据本发明的一个优选实施例的激光器发射板组件;
图41示出了根据本发明的一个优选实施例的激光器发射板组件;和
图42示出了根据本发明的一种激光器的封装方法。
以下对附图作补充说明:
1-转子,11-外筒,111-第一安装平面,112-第三安装平面,113-上平面,1131-第一配重结构,114-活动壁,1141-第一配重块,1142-弧形部,1143-导流部,115-固定壁,12-内筒,121-第二安装平面,122-第四安装平面,123-贴合面,13-发射舱,14-接收舱,15-加强条,16-隔板,161-第二配重结构,17-第一底板,171-凹陷部,1711-第一凹陷部,1712-第二凹陷部,1713-第三凹陷部,2-底盘,21-第二配重块,3-底座,31-干燥腔,32-中轴,33-驱动装置,34-第一轴承,35-第二轴承,36-外罩;37-顶盖;41-隔光片,42-隔光架,5-第三配重结构,51-第一凹槽,52-连接筋,6-导电部件,7-第一通孔,71-密封垫片,8-固定块,81-搭接条,9-避让槽,10-盖板组件,101-第一盖板,102-第二盖板,103-接收舱盖板;
201-激光发射装置;2011-激光器支架;20111-第二底板;201111-第一安装孔;20112-第一侧板;201121-梳齿;201122-卡槽;2012-发射电路组;20121-发射母板;20122-第一发射子板;20123-第二发射子板;20124-第三发射子板;2013-发射电路支架;20131-第三底板;201311-第二安装孔;20132-第二侧板;201321-第一侧面;201322-第二侧面;20133-装配凸柱;201331-第一装配孔;20134-凸起;2014-激光器发射板;2015-激光器;20161-第一螺钉;20162-第一螺母;20163-第一垫圈;20164-第二螺钉。202-第一反射镜组;2021-第一反射镜;2022-第二反射镜;203-发射透镜组;
301-接收透镜组;302-第二反射镜组;3021-第三反射镜;3022-第四反射镜;303-接收装置;3031-滤光片;3032-接收器件;30321-基板;30323-保护壳;3033-接收电路支架;30331-第四底板;303311-凸板;303312-装配耳;303313-第三安装孔;30332-第三侧板;303321-第三侧面;303322-第四侧面;303323-第二凹槽;303324-第二通孔;303325-定位板;303326-第二装配孔;3034-接收电路板;30341-第一电路板;30342-第二电路板;30343-第三电路板;3035-第三螺钉;3036-第二螺母;3037-第二垫圈;3038-第四螺钉。
401-接收线圈;402-隔磁板;4021-第三连接部;4022-第四连接部;4023-第三通孔;403-接收电路板;4031-第四电路板;40311-第四通孔;40312-第一穿孔;40313-第二穿孔;4032-第五电路板;40321-第一连接部;40322-第二连接部;40323-注胶孔;40324-第五通孔;404-铜柱管;4051-第五螺钉;4052-第三螺母;406-发射线圈;407-发射电路板。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
此处所称的“一个实施例”或“实施例”是指可包含于本发明至少一个实现方式中的特定特征、结构或特性。在本发明的描述中,需要理解的是,术语“上”、“下”、“顶”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、 以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含的包括一个或者更多个该特征。而且,术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。
在本发明的描述中,需要理解的是,术语"中心"、"纵向"、"横向"、"长度"、"宽度"、"厚度"、"上"、"下"、"前"、"后"、"左"、"右"、"坚直"、"水平"、"顶"、"底"、"内"、"外"、"顺时针"、"逆时针"等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。在本发明的描述中,"多个"的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语"安装"、"相连"、"连接"应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接:可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之"上"或之"下"可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征"之上"、"上方"和"上面"包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征"之下"、"下方"和"下面"包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
第一方面
本发明的第一方面的各个实施例涉及激光雷达,以下参考图1-30详细描述。
实施例1:
实施例1涉及一种激光雷达,包括转子1、激光发射系统和接收系统。所述转子1具有相互隔离的发射舱13和接收舱14(参见图3),所述激光发射系统设置于所述发射舱13内,所述接收系统设置于所述接收舱14内。激光发射系统和接收系统将在下文详细描述。
如图13所示,所述激光发射系统包括激光发射装置201,所述激光发射装置201包括激光器支架2011、发射电路组2012、发射电路支架2013和至少一个激光器发射板2014,所述激光器支架2011和所述发射电路支架2013可间隔设置,所述激光器发射板2014安装于所述激光器支架2011上,所述激光器发射板2014上设置有至少一个激光器2015(参 见图14)。所述发射电路组2012安装于所述发射电路支架2013上,所述发射电路组2012与所述激光器发射板2014电连接。
所述激光发射装置201还包括多个柔性电连接件,所述发射电路组2012与所述激光器发射板2014通过所述柔性电连接件连接,发射电路组2012可通过所述柔性电连接件给激光器发射板2014提供驱动信号及供电。
如图12所示,所述激光雷达还包括底座3、外罩36和顶盖37,所述外罩36的一端与所述底座3配合连接,所述外罩36的另一端与顶盖37配合连接,所述底座3、外罩36和顶盖37依次连接围合形成密闭腔体,所述密闭腔体用于容纳所述转子1、激光发射系统和接收系统。
如图6和图7所示,所述激光发射系统还包括第一反射镜组202和发射透镜组203,所述第一反射镜组202用于接收所述激光器2015发射的激光光束,并改变激光光束的路径,将所述激光光束入射至所述发射透镜组203;所述发射透镜组203用于发射探测光。
如图6、图7和图21所示,所述接收系统包括接收透镜组301、第二反射镜组302和接收装置303,所述接收透镜组301用于汇聚来自待测物的反射光,所述第二反射镜组302用于改变光束的路径,将所述反射光入射到所述接收装置303。
根据本发明的优选实施例,发射舱13和所述接收舱14为非对称分布。发射舱和接收舱非对称分布,有利于合理地布置激光发射系统和接收系统。如上所述,激光发射系统包括激光器支架2011(其上承载激光器发射板2014)、发射电路支架2013(其上承载发射电路组2012)、以及第一反射镜组202和发射透镜组203,部件数目较多,重量较大。接收系统包括接收透镜组301、第二反射镜组302和接收装置303,部件相对较少,重量较轻。因此,将发射舱和接收舱非对称布置,可以便于将激光发射系统和接收系统中的部件尽可能均匀地分布在激光雷达中,避免造成重量上的失衡。
激光雷达包括底座3和外罩36,所述底座3和所述外罩36配合连接形成密闭的腔体,所述转子1设置于所述底座3上,所述转子1能够相对于所述底座3旋转;所述激光雷达还包括无线输电装置,所述无线输电装置包括无线供电发射组件和无线供电接收组件,所述无线供电发射组件设置于所述外罩36顶端朝向所述底座3的一侧,所述无线供电接收组件设置于所述转子1朝向所述无线供电发射组件的一侧。
如图11和图12所示,所述激光雷达还包括中轴32,所述中轴32侧壁上开设有导线凹槽。所述激光雷达还包括若干电连接线,所述电连接线铺设于所述导线凹槽内,所述电连接线的一端与所述无线输电发射组件连接,所述电连接线的另一端与所述底座内的电路部分连接。
实施例2:
本发明的第二实施例涉及一种激光雷达装置,参阅图1至图12描述。如图1所示,所述激光雷达装置包括转子1,所述转子1包括外筒11和内筒12,所述外筒11的筒壁上设置有用于安装接收透镜组301和发射透镜组203的安装结构,所述安装结构的两侧分布有第三配重结构5,如图7所示。所述第三配重结构5包括配重结构I和配重结构II,所述配重结构I和配重结构II均包括多个第一凹槽51。作为优选的,所述多个第一凹槽51的结构可以相同,也可以不同。作为一个优选实施例,本实施例中,以组成第三配重结构5的多个第一凹槽51为例:所述第三配重结构包括12个第一凹槽51,具体包括在所述外筒11的筒壁竖直方向上直线排布的4个矩形凹槽和对称设置在所述矩形凹槽 两侧的8个楔形凹槽,所述矩形凹槽是深度相同,所述楔形凹槽向靠近所述矩形凹槽的方向上,深度沿转子1的径向向内逐渐加深,具体的,所述矩形凹槽的深度以及所述楔形凹槽的渐变深度根据实际情况进行设定。进一步的,相邻的两个第一凹槽51之间形成有连接筋52,起到加强筋的作用,提高了转子1的整体强度,并且,通过在该安装结构的两侧设置由多个第一凹槽51组成的第三配重结构5,增大了转子1的外筒筒壁的表面积,提高了转子1的散热效率,同时第一凹槽51的设置,减小了转子1的整体重量,使转子1轻量化,有效降低了转子1在旋转过程中的能耗,并且进一步的,可以灵活的在第一凹槽51内塞入不同的配重材料以调整转子1的整体平衡,提高了转子1整体平衡调整的灵活性。
如图7所示,第三配重结构5对称地分布在接收透镜组301和发射透镜组203的安装结构的两侧,用于调节转子1的平衡。如前所述,激光发射系统的部件数量多,重量相对大,因此可能会造成激光发射系统一侧的较重,而接收系统一侧较轻。为此,可以在接收系统一侧的配重结构5的第一凹槽51中放入适当的配重,例如通过粘结的方式将配重粘结在第一凹槽51中,使得转子1围绕其转轴实现重量平衡,以避免在高速转动过程中因重量不平衡而造成震动或精度下降等问题。本领域技术人员可以根据需要选择配重的数量、材料以及放置的位置。
可以理解的是,上述所述的第三配重结构5对称分布在所述安装结构的两侧仅是一个优选方案,并不对其进行限定,可以根据需要将第三配重结构设置在转子的任一位置。
进一步的,如图1和图3所示,所述外筒11和内筒12之间形成容置腔,所述容置腔内设置有隔板16,所述隔板16一边与所述外筒11连接,所述隔板16的另一边与所述内筒12连接。所述隔板16将所述容置腔分隔为发射舱13和接收舱14,所述发射舱13和接收舱14的体积可以不相等,或者发射舱13和接收舱14在转子上可以呈非对称分布。具体的,所述内筒12包括内筒内壁和内筒外壁,所述外筒11包括外筒内壁和外筒外壁,所述容置腔形成于所述外筒内壁和内筒外壁之间,且所述外筒内壁和内筒外壁组成所述容置腔的内壁。所述内筒外壁和外筒内壁上均形成有避让槽9,如图6所示。可以理解的是,所述避让槽9的个数以及位置可以根据装配部件的装配位置设定,以起到避免装配部件装配干涉的作用,避让槽的大小可以根据装配部件的尺寸确定。具体的,在本实施例中,避让槽9的个数以及位置优先以装配部件的装配位置设定,具体的,如图3所示,所述外筒11的内壁上设置有第一安装平面111和第三安装平面112,所述内筒12的外壁上设置有第二安装平面121、第四安装平面122和贴合面123,其中,所述第一安装平面111和第二安装平面121设置在所述发射舱13内,所述第三安装平面112和第四安装平面122设置在所述接收舱14内,所述贴合面123横跨所述发射舱13和接收舱14,所述第一安装平面111和第二安装平面121相对设置,所述第二安装平面121与所述第四安装122平面之间通过贴合面123连接,所述第三安装平面112和第四安装平面122相对设置。进一步的,所述第一安装平面111、第二安装平面121、第三安装平面112和第四安装平面122的两侧均设置有避让槽9。
如图6和图13所示,所述发射舱13内设置有激光发射装置201和第一反射镜组202。
如图6所示,所述第一反射镜组202包括第一反射镜2021和第二反射镜2022,用于二次反射所述激光发射装置201的探测光。具体的,结合图3和图6,所述第一反射镜2021贴合在所述第一安装平面111上,所述第二反射镜2022贴合在所述第二安装平面 121上,所述第一安装平面111和第二安装平面121两侧的避让槽9为所述第一反射镜2021和第二反射镜2022的安装提供避让空间,方便所述第一反射镜2021和第二反射镜2022安装的同时,避免第一反射镜2021以及第二反射镜2022与安装平面两侧的筒壁发生干涉。
所述发射透镜组203和所述接收透镜组301对称设置。所述发射透镜组203与所述发射舱13连通,所述接收透镜组301与所述接收舱14连通。
如图6所示,所述接收舱14内设置有第二反射镜组302和接收装置303。所述第二反射镜组302包括第三反射镜3021和第四反射镜3022,用于二次反射从所述接收透镜组301中穿过的反射光至接收装置303。具体的,所述第三反射镜3021贴合在所述第三安装平面112上,所述第四反射镜3022贴合在所述第四安装平面122上,所述第三安装平面112和第四安装平面122两侧的避让槽9为所述第三反射镜3021和第四反射镜3022的安装提供避让空间,方便所述第三反射镜3021和第四反射镜3022安装的同时,避免所述第三反射镜3021和第四反射镜3022与安装平面两侧的筒壁发生干涉。
以上实施例中,第一反射镜组202和第二反射镜组302均包括两个反射镜。本领域普通技术人员容易理解,本发明的保护范围不限于反射镜的具体数目,可以包括一个反射镜,也可以包括更多数目的反射镜,本领域技术人员可根据激光雷达的具体设计要求来决定,例如激光雷达的尺寸、光学性能参数等,这些都在本发明的保护范围内。
如图2、图21和图22所示,所述激光雷达装置还包括隔光片41和隔光架42,所述隔光片41用于分隔所述发射透镜组203和接收透镜组301,所述隔光片41的一端设置在第二反射镜2022和第四反射镜3022之间,所述隔光片41的另一端贴合在所述隔光架42上。
可以理解的是,所述隔光片41主要以分隔所述发射透镜组203和接收透镜组301为目的,其形状包括但不限于矩形形状、规则T型形状或者不规则T型形状。作为优选的,所述隔光片41的厚度为2mm~5mm,从而在安装后能够承受自身重力,避免因重力导致隔光片41发生弯曲而导致发射透镜组203和接收透镜组301之间贴合不紧密,避免造成漏光。
如图1和图7所示,所述转子1还包括第一底板17和上平面113。所述隔光架42一端设置在所述转子1的第一底板17上,所述隔光架42的另一端与所述转子1的上平面113齐平,或者伸出所述转子1的上平面113。所述隔光架42优选为T型结构。所述隔光片41以及隔光架42安装完成后,所述隔光架42的高度高于所述隔光片41,进一步阻隔杂光,抑制光相互干涉。
所述第一底板17用于密封所述内筒12底部和外筒11底部之间的间隙。所述发射电路支架2013、激光器发射板支架2011以及接收电路板支架3033均设置在所述第一底板17上,在所述第一底板17上的位置可以根据需要调动。作为优选方案,所述第一底板17包括上平面和下平面,所述上平面上设置有凹陷部171,如图1所示。作为优选的,如图9所示,所述上平面包括第一凹陷部1711、第二凹陷部1712和第三凹陷部1713,所述第一凹陷部1711和第二凹陷部1712均设置在所述发射舱13底部的第一底板上,且所述第一凹陷部1711和第二凹陷部1712设置在所述加强条15(参考图1)的两侧,所述第三凹陷部1713设置在所述接收舱14底部的第一底板上,所述发射电路支架2013、激光器发射板支架2011以及接收电路板支架3033均设置在所述凹陷部171内。所述第 一底板17的下平面上也设置有多个凹陷部171,作为优选的,包括与所述第一凹陷部1711、第二凹陷部1712和第三凹陷部1713一一对应的第四凹陷部、第五凹陷部和第六凹陷部。通过设置凹陷部171可以减轻转子1的整体重量,使转子1轻量化,降低转子1转动时的能耗。
可以理解的是,所述第一底板17的上平面和下平面上的凹陷部171的设定个数和设定位置仅是一个优选方案,并不对其进行限定,具体的位置以及个数可以根据需要设定。
进一步的,如图3和图6所示,所述第二反射镜2022贴合在所述第二安装平面121上,所述第四反射镜3022贴合在所述第四安装平面122上后,所述第二反射镜2022延伸出所述第二安装平面121的部分抵靠在所述隔光片41的一侧,所述第四反射镜3022延伸出第四安装平面122的部分抵靠在所述隔光片41的另一侧,所述第二反射镜2022的延伸部分和第四反射镜3022的延伸部分之间形成有三角形容置空间。
进一步的,如图6所示,所述容置腔内还设置有固定块8,作为优选的,在本实施例中,所述固定块8为三角形结构,所述固定块8包括上表面、下表面、第一侧面和第二侧面,所示上表面上固定设置有搭接条81,所述下表面抵靠在所述第二反射镜2022和第四反射镜3022上,所述第一侧面与所述贴合面123贴合,所述第二侧面与所述外筒11的内壁贴合,所述搭接条81一端搭接在所述内筒上12,所述搭接条81的另一端搭接在所述外筒11上。通过设置固定块8,将所述反射舱13和接收舱14分隔开。所述固定块8优选为三角形结构,该结构适应于第二反射镜2022和第四反射镜3022之间形成的三角形容置空间的三角形形状,且将所述三角型结构的固定块设置在所述第二反射镜2022和第四反射镜3022的上方,能够填充反射镜与所述转子1顶部的间距,避免探测光与接收光之间的干扰,提高了探测精度。
具体的,光路原理如下:激光发射装置201(参考图2)的激光器2015发射激光光束作为探测光,该探测光被发送给第一反射镜2021,经过所述第一反射镜2021反射给第二反射镜2022,随后,所述第二反射镜2022将该探测光反射给发射透镜组203,探测光穿过所述发射透镜组203后照射到待探测物上,待探测物反射给接收透镜组301反射光,该经探测物反射后的反射光穿过所述接收透镜组301后入射到第三反射镜3021上,经第三反射镜3021反射给第四反射镜3022,随后经第四反射镜3022二次反射后,将反射光反射给接收装置303。
如图4所示,所述转子1还包括盖板组件10,所述盖板组件10包括发射舱盖板和接收舱盖板103,所述发射舱盖板盖设在所述发射舱13的上方,所述接收舱盖板103盖设在所述接收舱14的上方。作为优选的,所述发射舱盖板包括第一盖板101和第二盖板102,所述第一盖板101设置在所述激光发射装置201上方,所述第二盖板102设置在所述第一反射镜组202的上方。
进一步的,所述第一盖板101,第二盖板102和接收舱盖板103上与所述避让槽9的相应位置处凸出设置有挡板结构。所述容置腔的内壁的顶部设置有用于支撑所述第一盖板101、第二盖板102和接收舱盖板103的台阶,所述台阶的深度与所述第一盖板101、第二盖板102以及接收舱盖板103的厚度相匹配。
如图4所示,所述发射舱盖板上设置有第一通孔7,用于穿过导电部件6,为所述发射电路板1312供电。作为优选的,所述第一通孔7设置在所述第二盖板102上,或者设置在所述接收舱盖板103上用于穿过导电部件6。该导电部件6优选为柔性电连接件,所 述第一通孔上设置有密封垫片71,实现第一通孔的密封,避免转子1转动时导电部件6的晃动,提高电路传输的稳定性。
进一步的,在本实施例中,作为一个优选方案,所述容置腔内还设置有加强条15,如图1所示。所述加强条15一端与所述外筒11连接,所述加强条15的另一端与所述内筒12连接,所述加强条15与隔板16之间以一定角度设置,作为优选的,所述加强条15与隔板16之间的角度值为120°~150°。通过设置加强条15,有利于提高转子1的强度,尤其是发射舱13的强度,具体的,所述加强条15将所述发射装置201和所述第一反射镜组202分隔在其两侧。所述加强条15和隔板16将所述外筒11的筒壁分隔为活动壁114和固定壁115,如图4所示,所述活动壁114与所述固定壁115之间可拆卸连接。作为优选的,所述活动壁114与所述固定壁115之间卡接。具体的,所述固定壁115为一个优弧型结构,包括第一开放端和第二开放端,所述第一开放端和第二开放端均设置有卡槽结构,所述活动壁114为与所述优弧型结构的固定壁115配合的劣弧型结构,包括第一连接端和第二连接端,所述第一连接端和第二连接端分别卡接在所述卡槽结构内。所述隔板16将所述容置腔分隔为发射舱13和接收舱14,所述发射舱13和接收舱14的体积可以不相等,呈不对称分布。
可以理解的是,所述活动壁114与所述固定壁115之间不限于卡接,也可以通过螺纹连接,或者铆接。上述卡接仅是一个优选实施例,并不对其进行限定。
通过加强条15和隔板16将外筒11的筒壁分隔为活动壁114和固定壁115,改善转子1整体注塑工艺的同时,方便激光发射装置201的安装。
所述活动壁114为铜、铝合金或其它散热效果较好且具有一定硬度的材料,所述固定壁115为铝合金。
进一步的,如图4和图8所示,所述活动壁114包括弧形部1142和导流部1143,所述弧形部1142与所述导流部1143之间平滑连接,所述导流部1143为非均匀壁厚,所述弧形部1142为均匀壁厚。
作为一个优选方案,所述导流部1143的最小壁厚大于所述弧形部1142的壁厚。所述导流部1143为流线型结构,可以减小转子1转动时的阻力。且将所述活动壁114设置为铜、铜铝合金等材料,可以加快发射电路板1312工作时所产生的热量散热。通过铝合金制造固定壁115,可以减轻转子1的重量。
进一步的,如图8所示,所述活动壁114上设置有至少一个第一配重块1141。
作为一个优选方案,在本实施例中,所述活动壁114上设置有1个第一配重块1141,所述第一配重块1141设置在所述活动壁114的导流部1143与弧形部1142的连接处,且所述第一配重块1141靠近所述活动壁114的顶部设置。
所述第一配重块1141为锤形结构,包括前端和后端,所述前端的厚度小于后端的厚度,所述前端靠近所述导流部1143设置,所述后端靠近所述弧形部1142设置。所述第一配重块1141与所述活动壁114之间螺纹连接。
进一步的,如图1和图2所示,所述激光雷达还包括底盘2,所述底盘2用于支撑所述转子1。图10示出了底盘2,如图所示,所述底盘2上设置有至少一个第二配重块21,所述第二配重块21容纳于所述转子1的第一底板17的下平面上的凹陷部内。
作为一个优选方案,在本实施例中,所述第二配重块21为1个,所述第二配重块21设置在所述光学组件的光接收件的下方。
通过设置第一配重块1141和第二配重块21用以实现转子1平衡的调整。
进一步的,如图30和图11所示,所述激光雷达还包括转子底座3,所述底盘设置在所述底座3上,所述转子底座3上设置有中轴32,所述转子1套设在所述中轴32上,且所述转子1绕所述中轴32旋转,所述转子底座3上还设置有用于放置干燥剂的干燥仓。所述转子底座3上还设置有用于驱动所述转子1转动的驱动装置33,如图12所示。作为优选的,所述驱动装置33为电机,包括电机转子和电机定子,所述电机定子固定设置在中轴32上,所述电机转子与所述转子1连接且所述电机转子内表面与电机定子外表面相对。
进一步的,如图12所示,所述中轴32与所述激光雷达的转子1的内筒之间设置有第一轴承34与第二轴承35,用以支承转子1的转动。具体的,所述第一轴承34设置于所述激光雷达的转子底座3与所述转子1的内筒之间,与所述中轴32连接,所述第二轴承35设置于所述转子1的内筒的顶部,与所述中轴32连接。本实施例中,通过驱动装置33为转子1的转动提供了驱动力,并通过第一轴承34和第二轴承35共同支承转动部件的转动,降低转子1运动过程中的摩擦系数,并使转子1在转动时可以保持平稳,保证其回转精度,克服了现有技术中采用单轴承支承转动部件旋转、造成扫描转速低、转动平稳性差的问题,使得激光测距达到最好的效果,同时可以提高扫描速度,提高了激光雷达的工作效率。
进一步的,如图4所示,所述转子1的上平面113上设置有多个第一配重结构1131。
作为一个优选方案,所述第一配重结构1131包括多个配重槽和多个配重孔,所述多个配重槽间隔设置,所述多个配重孔对称设置在所述配重槽的两侧。
作为一个优选方案,所述配重槽包括第一配重槽和第二配重槽,所述第一配重槽和第二配重槽间隔设置,所述第一配重槽和第二配重槽形状相同,大小不等。作为优选的,在本实施例中,所述第一配重槽和第二配重槽均为腰型结构,所述第一配重槽和第二配重槽的槽深相同。所述第一配重槽和第二配重槽的中心线重合,所述第一配重槽的腰型结构的圆弧半径为所述第二配重槽的腰型结构的圆弧半径的两倍。
作为优选的,所述第一配重槽为3个,所述第二配重槽为3个,第一配重槽和第二配重槽间隔设置。
所述配重孔为两个,对称设置在所述配重槽的两侧。
进一步的,如图4所示,所述隔板16上设置有第二配重结构161,所述第二配重结构161靠近所述外筒11的筒壁设置。
作为一个优选方案,所述第二配重结构161为圆孔结构。
通过设置第一配重结构1131和第二配重结构161,实现转子1减重的同时,实现转子1平衡的调整,同时,可以在由槽或孔构成的第一配重结构1131和第二配重结构161中增加配重材料,进一步实现转子1平衡的调整。
上述中所述第一配重结构1131和第二配重结构161的个数、形状以及排列位置仅是一个优选的实施方式,并不对进行限定,在其它可选实施例中,所述第一配重结构1131也可以均为配重槽结构,该配重槽结构可以是相同的矩形结构或者是不同的矩形结构,或者是腰型结构和矩形结构的组合,其具体形状可以根据工艺以及配重的要求设定,同理,所述第二配重结构161也可以是相同结构的矩形结构或不同结构的矩形结构或者腰型结构,其具体结构可以根据工艺要求以及配重要求进行设定。
实施例3:
结合图13至图17所示,根据本发明的一种激光发射装置包括激光器支架2011、发射电路组2012、发射电路支架2013、至少一个激光器发射板2014和多个柔性电连接件。
所述激光器支架2011和所述发射电路支架2013间隔设置,所述激光器发射板2014安装于所述激光器支架2011上,所述激光器发射板2014上设置有至少一个激光器2015。
所述发射电路组2012安装于所述发射电路支架2013上,所述发射电路组2012与所述激光器发射板2014通过所述柔性电连接件连接,用于为所述激光器发射板2014提供驱动信号和供电。
如图14和图15所示,所述激光器支架2011包括第二底板20111和第一侧板20112,所述第二底板20111与所述第一侧板20112连接,所述第一侧板20112具有多个并排设置的梳齿201121,相邻两个所述梳齿201121之间形成用于安装所述激光器发射板2014的卡槽201122,所述激光器发射板2014插接于所述卡槽201122,所述激光器发射板2014与所述第一侧板20112连接。
所述激光器发射板2014与所述第一侧板20112胶合连接。如采用热熔胶。
所述激光器支架2011例如呈T形。所述卡槽201122的宽度相同。相邻两个所述卡槽201122的长度不相等。所述激光器发射板2014与水平面呈第一预设夹角。
一个所述激光器发射板2014设置有多个所述激光器2015,所述激光器2015的发光面位于激光雷达的出射光学系统的焦平面上。多个所述激光器发射板2014在竖直方向沿所述第一侧板20112的不同高度布置。
多个所述激光器2015间隔设置于所述激光器发射板2014的一端,多个所述激光器2015排列成发射阵列,多个所述激光器2015在竖直方向沿所述第一侧板20112的不同高度设置。所述发射阵列的激光器2015非均匀分布。如图14所示,所述发射阵列的激光器2015在竖直方向上分布为两端疏、中间密。所述卡槽201122的长度方向沿所述第一侧板20112的竖直方向设置。第一侧板的竖直方向与激光雷达的竖直方向一致。
所述激光器支架2011例如由铝合金、铜制成。优选地,所述卡槽201122具有不同的深度。当把激光器发射板2014固定在该卡槽中之后,该激光器发射板2014上的激光器2015的发光面位置就被确定下来。优选地,多个激光器发射板2014上的激光器的发光面位于激光雷达的出射光学系统的焦平面的不同竖直高度处。本领域技术人员容易理解,多个激光器发射板2014的高度可以相同或不同,每个发射板上激光器的数量可以相同或不同,形成出射光束可以是均匀分布或非均匀分布。
如图17所示,所述发射电路支架2013例如为L形,所述发射电路支架2013包括第三底板20131和第二侧板20132,所述第三底板20131与第二侧板20132连接,所述第二侧板20132具有第一侧面201321和第二侧面201322,所述发射电路组2012安装于所述第一侧面201321一侧。
所述第一侧板20112和所述第二侧板20132呈第二预设夹角。
所述第一侧面201321上设有多个装配凸柱20133,所述装配凸柱20133设有用于安装所述发射电路组2012的第一装配孔201331。
如图17所示,所述第一侧面201321顶端间隔设有两个所述装配凸柱20133,所述第一侧面201321底端间隔设置有三个所述装配凸柱20133。
如图13和图16所示,所述激光发射装置还包括第一螺钉20161、第一螺母20162和 第一垫圈20163,所述第一垫圈20163套设与所述第一螺钉20161上,所述第一螺钉20161与所述第一螺母20162配合连接。
如图16所示,所述发射电路组2012包括发射母板20121和多个发射子板,所述发射母板20121与多个所述发射子板间隔设置。
相邻的所述发射子板之间通过电连接件连接,所述发射子板包括第一发射子板20122、第二发射子板20123和第三发射子板20124,所述第一发射子板20122与所述发射母板20121之间通过电连接件连接,具体的,电连接件可以为柔性连接和/或插接件对接方式刚性连接。
如图16所示,所述第一螺钉20161穿过所述第一装配孔201331、所述发射母板20121、所述第一发射子板20122、所述第二发射子板20123和所述第三发射子板20124并与所述第一螺母20162配合连接。
如图16所示,所述发射母板20121与第一发射子板20122之间通过所述第一垫圈20163隔开;所述第一发射子板20122和所述第二发射子板20123之间通过所述第一垫圈20163隔开;所述第二发射子板20123与所述发射母板20121之间通过所述第一垫圈20163隔开。多个所述发射子板的间距以及所述发射子板与所述发射母板20121之间的间距能够通过所述第一垫圈20163的厚度调整。
所述第一垫圈20163的材质为绝缘体材料,如塑料、陶瓷等。
所述激光发射装置还包括多个第二螺钉20164。结合图13、图16和图17所示,所述发射母板20121靠近所述激光器支架2011一侧的边角通过所述第二螺钉20164固定于相应的所述装配凸柱20133上。所述第三发射子板20124的宽度小于所述发射母板20121的宽度。所述第一发射子板20122和所述第二发射子板20123的宽度位于所述发射母板20121的宽度和所述第三发射子板20124的宽度之间。所述发射母板20121与多个所述发射子板的宽度不同,有利用避让出装配空间且方便用所述柔性电连接件连接所述发射电路组2012与所述激光器发射板2014。
如图16和图17所示,所述第二侧面201322设有凸起20134,有利于散热和调节激光雷达的配重。
如图15所示,所述第二底板20111上设有多个用于固定所述激光器支架2011位置的第一安装孔201111,所述第二底板20111通过所述第二螺钉20164固定于激光雷达的转子上。
如图15所示,所述第一安装孔201111的数量为三个,所述第一安装孔201111分布在所述第二底板20111的三个边角处。
如图15和图16所示,所述第二底板20111的边角棱边设有第一倒角,所述第一倒角为直边倒角、圆弧倒角或直角倒角。
如图17和图18所示,所述第三底板20131上设有多个用于固定所述发射电路支架2013的第二安装孔201311,所述第三底板20131通过所述第二螺钉20164固定于激光雷达的转子上。
所述第三底板20131安装孔的数量为三个。
所述第三底板20131边角棱边设有第二倒角。
所述第二倒角为直边倒角、圆弧倒角或直角倒角。
所述激光器支架2011为一体成型结构。
所述发射电路支架2013为一体成型结构。
所述激光器支架2011和所述发射电路支架2013的材质均为铜、钼、铝中的任意一种或几种的组合。
所述发射电路组2012设有多个驱动电路,所述驱动电路与多个所述激光器2015连接以驱动多个所述激光器2015发光。
每个该驱动电路驱动一个或多个所述激光器2015。
所述发射电路组2012还设有激光器控制模块,所述激光器控制模块用于控制所述驱动电路驱动对应的所述激光器2015发光。
此外,相邻两个所述卡槽201122的长度还可以相等,所述发射阵列的激光器5还可以均匀分布。
本发明激光发射装置采用激光器支架和发射电路支架分别安装激光器发射板和发射电路组,使得激光雷达发射舱的空间更加灵活,且激光器发射板的体积可以缩小,降低系统尺寸和重量,便于实现激光雷达的低成本和小型化。
本发明激光发射装置的激光器阵列可以采用非均匀分布设置,使用激光光束非均匀分布设计在较低线束时,能够实现较高的垂直角分辨率,节约成本,减小体积。
实施例4:
参考图13和图14所示,一种激光发射装置包括激光器支架2011、发射电路组2012、发射电路支架2013、至少一个激光器发射板2014和多个柔性电连接件,所述激光器支架2011和所述发射电路支架2013间隔设置,所述激光器发射板2014安装于所述激光器支架2011上,所述激光器发射板2014上设置有至少一个激光器2015;所述发射电路组2012安装于所述发射电路支架2013上,所述发射电路组2012与所述激光器发射板2014通过所述柔性电连接件连接。
如图18所示,所述激光器支架2011包括第二底板20111和第一侧板20112,所述第二底板20111与所述第一侧板20112连接,所述第一侧板20112具有多个并排设置的梳齿201121,相邻两个所述梳齿201121之间形成用于安装所述激光器发射板2014的卡槽201122,所述激光器发射板2014插接于所述卡槽201122,所述激光器发射板2014与所述第一侧板20112连接。
所述激光器发射板2014与所述第一侧板20112胶合连接。
所述激光器支架2011呈L形。所述卡槽201122的宽度相同。相邻两个所述卡槽201122的长度相等。所述激光器发射板2014与水平面呈第一预设夹角。
一个所述激光器发射板2014设置有多个所述激光器2015,所述激光器2015的发光面位于激光雷达的出射光学系统的焦平面上。多个所述激光器发射板2014在竖直方向沿所述第一侧板20112的不同高度布置。
如图19所示,多个所述激光器2015间隔设置于所述激光器发射板2014的一端,多个所述激光器2015排列成发射阵列,多个所述激光器2015在竖直方向沿所述第一侧板20112的不同高度设置。
所述卡槽201122的长度方向沿所述第一侧板20112的水平方向设置。第一侧板的宽度方向与激光雷达的水平方向一致。
如图19所示,多个所述激光器发射板2014平行且间隔设置,多个所述激光器2015相对设置于所述激光器发射板2014相对的两侧面上,且多个所述激光器2015分布于所 述激光器发射板2014朝向激光雷达出射光学系统的一端边缘。
如图19所示,相邻所述激光器发射板2014之间的距离不等,所述发射阵列的激光器2015在竖直方向上分布为两端疏、中间密。所述激光器发射板2014与水平面平行,相邻所述激光器发射板2014在竖直方向相对应。
与实施例3相同,如图16和图17所示,所述发射电路支架2013为L形,所述发射电路支架2013包括第三底板20131和第二侧板20132,所述第三底板20131与第二侧板20132连接,所述第二侧板20132具有第一侧面201321和第二侧面201322,所述发射电路组安装于所述第一侧面201321一侧。
所述第一侧板20112和所述第二侧板20132呈第二预设夹角。所述第一侧面201321上设有多个装配凸柱20133,所述装配凸柱20133设有用于安装所述发射电路组2012的第一装配孔201311。所述第一侧面201321顶端间隔设有两个所述装配凸柱20133,所述第一侧面201321底端间隔设置有三个所述装配凸柱20133。
所述激光发射装置还包括第一螺钉20161、第一螺母20162和第一垫圈20163,所述第一垫圈20163套设与所述第一螺钉20161上,所述第一螺钉20161与所述第一螺母20162配合连接。
所述发射电路组2012包括发射母板20121和多个发射子板,所述发射母板20121与多个所述发射子板间隔设置。
相邻所述发射子板之间通过柔性电连接件连接,所述发射子板包括第一发射子板20122、第二发射子板20123和第三发射子板20124,所述第一发射子板20122与所述发射母板20121之间通过柔性电连接件连接。
所述第一螺钉20161穿过所述第一装配孔201311、所述发射母板20121、所述第一发射子板20122、所述第二发射子板20123和所述第三发射子板20124并与所述第一螺母20162配合连接。
所述发射母板20121与第一发射子板20122之间通过所述第一垫圈20163隔开;所述第一发射子板20122和所述第二发射子板20123之间通过所述第一垫圈20163隔开;所述第二发射子板20123与所述发射母板20121之间通过所述第一垫圈20163隔开。
多个所述发射子板的间距以及所述发射子板与所述发射母板20121之间的间距能够通过所述第一垫圈20163的厚度调整。所述第一垫圈20163的材质为绝缘体材料,如塑料、陶瓷等。
所述激光发射装置还包括多个第二螺钉20164。所述发射母板20121靠近所述激光器支架2011一侧的边角通过所述第二螺钉20164固定于相应的所述装配凸柱20133上。所述第三发射子板20124的宽度小于所述发射母板20121的宽度。所述第一发射子板20122和所述第二发射子板20123的宽度位于所述发射母板20121的宽度和所述第三发射子板20124的宽度之间。所述发射母板20121与多个所述发射子板的宽度不同,有利用避让出装配空间且方便用柔性电连接件和/或刚性电连接件连接所述发射电路组2012与所述激光器发射板2014。具体的,刚性电连接件为接插件。
所述第二侧面201322设有凸起20134,有利于散热和调节激光雷达的配重。所述第二底板20111上设有多个用于固定所述激光器支架2011位置的第一安装孔201111,所述第二底板20111通过所述第二螺钉20164固定于激光雷达的转子上。所述安装孔的数量为三个,所述第一安装孔201111分布在所述第二底板20111的三个边角处。
所述第二底板20111设有第一倒角,所述第一倒角为直边倒角、圆弧倒角或直角倒角。
所述第三底板20131上设有多个用于固定所述发射电路支架2013的第二安装孔201311,所述第三底板20131通过所述第二螺钉20164固定于激光雷达的转子上。所述第三底板20131安装孔的数量为三个。
所述第三底板20131设有第二倒角。所述第二倒角为圆弧倒角。
所述激光器支架2011为一体成型结构。所述发射电路支架2013为一体成型结构。所述激光器支架2011和所述发射电路支架2013的材质均为铜、钼、铝中的任意一种或几种的组合。
所述发射电路组2012设有多个驱动电路,所述驱动电路与多个所述激光器2015连接以驱动多个所述激光器2015发光。
每个该驱动电路驱动一个或多个所述激光器2015。所述发射电路组2012还设有激光器控制模块,所述激光器控制模块用于控制所述驱动电路驱动对应的所述激光器2015发光。
此外,相邻两个所述卡槽201122的长度还可以不相等。
实施例5:
如图18所示,该实施例与实施例4的区别在于:多个所述激光器发射板2014平行且间隔设置,所述激光器2015相对设置于所述激光器发射板2014上。相邻所述激光器发射板2014之间的距离相等。所述激光器发射板2014与水平面平行,相邻所述激光器发射板2014在竖直方向相对应。
实施例6:
如图21和图22所示,一种用于激光雷达的接收系统,包括接收透镜组301、第二反射镜组302和接收装置303;
接收透镜组301,用于汇聚来自目标物的反射光;
第二反射镜组302,用于改变光束的路径,并将所述反射光入射到所述接收装置303;
所述接收装置303包括滤光片3031、接收器件3032、接收电路支架3033和多块接收电路板3034(见图23),所述接收器件3032和所述接收电路板3034安装于所述接收电路支架3033上,所述滤光片3031设置于所述接收器件3032朝向所述第二反射镜组302的一侧,用于过滤杂散光。各个波长的光线均可以进入接收透镜组301,并通过第二反射镜组302,被反射到接收装置303上。在入射的光线中,只有特定波长的光线代表有用的反射光,即与激光器2015的波长对应的光线为信号光,其他波长的光线为干扰光或杂散光。因此,滤光片3031可以使得只有与激光器2015对应波长的光线才能通过,其他波长的光线将被阻隔和滤除,从而提高激光雷达信噪比,提高测距性能。所述接收器件3032用于获取距离信息,将接收的光信号转换成电信号;所述接收电路板3034用于处理所述接收器件3032获取的距离信息。
结合图23至图25所示,所述接收器件3032包括基板30321、APD阵列探测器(图中未示出)和保护壳30323,所述基板30321固定于所述接收电路支架3033上,所述APD阵列探测器设置于所述基板30321一侧面,所述保护壳30323罩设于所述APD阵列探测器,且所述保护壳30323安装于所述基板30321上。
结合图23至图25所示,所述滤光片3031贴合安装于所述保护壳30323远离所述APD 阵列探测器的一侧面。
所述APD阵列探测器为APD面阵探测器,由N×N排布的面阵雪崩光电二极管组成,利用光电二极管的雪崩效应将光信号转换为电信号,其中M≥2,N≥2。如4×4,4×8,8×8等,具体地,所述N×N排布取决于激光雷达的激光器布置方式。
所述保护壳30323的材质为金属。
所述接收装置303还包括柔性电连接件,相邻两个接收电路板3034之间通过所述柔性电连接件连接。
结合图23、图26和图27所示,所述接收电路支架3033包括第四底板30331和第三侧板30332,所述第四底板30331与第三侧板30332连接,所述第三侧板30332具有第三侧面303321和第四侧面303322,多个所述接收电路板3034依次间隔安装于所述第三侧面303321,所述接收器件3032安装于所述第四侧面303322。
如图26和图27所示,所述第三侧面303321设有第二凹槽303323,所述第二凹槽303323内开设有第二通孔303324,所述第二通孔303324贯穿所述第二凹槽303323的底面和所述第四侧面303322,
所述第二凹槽303323用于减轻支架的重量同时便于接收电路板3034的装配,充分避让出电路板芯片等元件的装配空间;
所述第二通孔303324用于减轻支架的重量,同时便于基板30321的装配,避让出基板30321芯片等元件的装配空间。
如图23所示,所述接收装置303还包括第三螺钉3035、第二螺母3036和第二垫圈3037,所述第二垫圈3037套设与所述第三螺钉3035上,所述第三螺钉3035与所述第二螺母3036配合连接。
结合图23、图26和图27所示,所述基板30321、所述第三侧板30332和所述接收电路板3034的边角处对应设有第二装配孔303326,
所述第三螺钉3035依次穿过所述基板30321、所述第三侧板30332和所述接收电路板3034并与所述第二螺母3036配合连接。
如图23所示,所述接收电路板3034包括第一电路板30341、第二电路板30342和第三电路板30343。
所述第一电路板30341与所述第二电路板30342之间通过所述第二垫圈3037隔开;所述第二电路板30342与所述第三电路板30343之间通过所述第二垫圈3037隔开。多个所述接收电路板3034之间的间距能够通过所述第二垫圈3037的厚度调整。所述第二垫圈3037的材质为绝缘体材料。
如图26和图27所示,所述第三侧板30332与所述第四底板30331垂直连接,且所述第四侧面303322在所述第四底板30331的投影与所述第四底板30331远离所述第四侧面303322板边之间的距离等于所述基板30321的厚度。
如图27所示,所述第四侧面303322沿所述第三侧板30332的高度方向还设有定位板303325,用于快速定位所述基板30321的安装位置。
如图26所示,所述第四底板30331远离所述第三侧面303321的一端延伸有凸板303311,所述凸板303311开设有多个用于固定所述接收电路支架3033的第三安装孔303313;
如图27所示,所述第四底板30331远离所述第二第三侧板30332的一端还延伸有装 配耳303312,所述装配耳303312开设有用于固定所述接收电路支架3033的第三安装孔303313。
如图23所示,所述接收装置303还包括多个第四螺钉3038,所述第四螺钉3038穿过所述第三安装孔303313将所述接收电路支架3033固定于激光雷达的转子上。
所述接收电路支架3033为一体成型结构。所述接收电路支架3033的材质为铜、钼、铝中的任意一种或几种的组合。
如图21所示,所述第二反射镜组302包括第三反射镜3021和第四反射镜3022,所述第三反射镜3021和第四反射镜3022相对设置。
所述接收透镜组301汇聚的目标物反射光,需满足所述APD阵列探测器接收视场角的要求。
所述第四底板30331均设有倒角。所述倒角为直边倒角、圆弧倒角或直角倒角。
APD(Avalanche Photo Diode)阵列探测器即雪崩光电二极管探测器是由多个独立APD单元探测器集成,其结构紧凑、体积小、重量轻。所述APD探测器即为APD单元探测器,可以实现无扫描激光探测,单脉冲即可三维成像;APD阵列探测器能直接获取三维信息,成像速度更快,且系统结构简单。探测系统对阵列探测器每一单元接收到的激光回波信号进行多路并行处理,进而实现线阵成像。
实施例7:
该实施例与实施例6的区别在于:所述APD阵列探测器为APD线阵探测器,由n个雪崩光电二极管组成,利用光电二极管的雪崩效应将光信号转换为电信号,其中n≥1。如1,4,16,32等,具体地,所述n取决于激光雷达的激光器布置方式。
实施例8:
该实施例与实施例6的区别在于:
所述接收器件包括基板和一个APD探测器,所述基板固定于所述接收电路支架上,所述APD探测器设置于所述基板一侧面;所述接收器件还包括保护壳,所述保护壳罩设于所述APD探测器且所述保护壳安装于所述基板上。
实施例9:
结合图28和图29所示,并参考图30,一种无线输电装置,包括无线供电发射组件和无线供电接收组件,所述无线供电发射组件与所述无线供电接收组件间隔且相对设置,所述无线供电发射组件包括发射线圈406和发射电路板407,所述发射线圈406和所述发射电路板407连接;
所述无线供电接收组件包括接收线圈401、隔磁板402和两块接收电路板403,所述接收线圈401和所述发射线圈406相对设置,所述隔磁板402设置于所述接收线圈401远离所述发射线圈406的一侧,所述隔磁板402覆盖所述接收线圈401,所述接收线圈401与所述接收电路板403连接。
所述接收电路板403包括第四电路板4031和第五电路板4032,所述第四电路板4031与所述第五电路板4032间隔且相对设置。所述第五电路板4032与所述隔磁板402连接,所述隔磁板402设置于所述第五电路板4032朝向所述第四电路板4031的一侧。所述第四电路板4031与所述第五电路板4032之间设有多个的铜柱管404,用于调节所述第四电路板4031与所述第五电路板4032之间的间距。
所述无线输电装置还包括多个第五螺钉4051和与所述第五螺钉4051配合的第三螺 母4052,所述第四电路板4031与所述第五电路板4032通过所述第五螺钉4051和所述第三螺母4052连接。所述第五螺钉4051与所述铜柱管404一一对应,所述第五螺钉4051依次穿过所述第五电路板4032、所述铜柱管404和所述第四电路板4031与所述第三螺母4052配合连接。所述第四电路板4031设有供所述第五螺钉4051穿过的第一装配孔,所述铜柱管404设有与所述第一装配孔配合的插接部,所述铜柱管404通过所述插接部固定于所述第四电路板4031,方便装配。
第四电路板4031为圆形电路板,第四电路板4031的中心位置设有第四通孔40311,所述第四通孔40311贯穿所述第四电路板4031相对的两个侧面。所述第四通孔40311为圆形通孔。所述第四电路板4031还设有第一穿孔40312和第二穿孔40313,所述第四电路板4031与所述激光雷达的发射电路组连接,所述第四电路板4031与所述激光雷达的接收电路组连接。
所述第四电路板4031的周向间隔设有多个第一安装孔。所述第四电路板4031通过螺钉穿过所述第一安装孔固定于所述激光雷达的转子上。
所述第五电路板4032为异形电路板。所述第五电路板4032包括第一连接部40321和第二连接部40322,所述第一连接部40321为圆形,所述第二连接部40322为扇形,所述第二连接部40322与所述第一连接部40321的部分外边沿贴合连接。
所述第二连接部40322的外边沿一侧还设有缺角,便于装配。所述隔磁板402的形状与所述第五电路板4032的形状相似,所述隔磁板402的轮廓尺寸小于所述第五电路板4032的轮廓尺寸。
所述隔磁板402包括第三连接部4021和第四连接部4022,所述第三连接部4021为圆形,所述第四连接部4022为扇形,所述第四连接部4022与所述第三连接部4021的部分外边沿贴合连接。所述第四连接部4022的厚度小于所述第三连接部4021的厚度。所述第二连接部40322设有多个注胶孔40323,所述隔磁板402与所述第五电路板4032胶合连接。
所述隔磁板402朝向所述第五电路板4032的一侧设有环形凸台24,所述接收线圈401与所述环形凸台24贴合连接。
所述第一连接部设有与所述第四通孔40311相对的第五通孔40324,所述第五通孔40324的尺寸大于所述第四通孔40311。
所述隔磁板402设有与所述第四通孔40311相对的第三通孔4023。
所述第四通孔40311、所述第五通孔40324与所述第三通孔4023同轴设置。所述接收线圈401向所述隔磁板402方向的正投影位于所述隔磁板402内。所述隔磁板402为铁氧体磁体或者非晶磁体或者柔性软磁,用于对所述激光雷达转子内进行电磁屏蔽。
所述发射线圈406和接收线圈401分别在同一平面上螺旋排布。所述发射线圈406的中心位置设有第四通孔,所述接收线圈401的中心位置设有第五通孔,所述第四通孔与所述第五通孔同轴设置。
无线输电装置的工作原理:
该无线输电装置利用电磁感应原理,电磁感应原理是指放在变化磁通量中的导体,会产生电动势。此电动势称为感应电动势或感生电动势,若将此导体闭合成一回路,则该电动势会驱使电子流动,形成感应电流。当发射线圈接通电源后,电磁发射线圈作为电磁发射端产生磁场,产生的磁场使接收线圈产生电流,从而给转子内部供电。
第二方面
本发明的第二方面涉及激光器或者激光器模组,下面参考附图详细描述。
激光雷达LiDAR是激光主动探测传感器设备的一种统称,其工作原理大致如下:激光雷达的发射器发射出一束激光,激光光束遇到物体后,经过漫反射,返回至激光接收器,雷达模块根据发送和接收信号的时间间隔乘以光速,再除以2,即可计算出发射器与物体的距离。根据激光线束的多少,通常有例如单线激光雷达、4线激光雷达、8/16/32/64线激光雷达等。一个或多个激光束在竖直方向沿着不同的角度发射,经水平方向扫描,实现对目标区域三维轮廓的探测。多个测量通道(线)相当于多个角度的扫描平面,因此垂直视场内激光线束越多,其竖直方向的角分辨率就越高,激光点云的密度就越大。图31A示意性示出了激光雷达的一个实例。该激光雷达为16线激光雷达,即在图中的竖直平面中可发射L1、L2、…、L15、L16共16线激光束,用于对周围环境进行探测。在探测过程中,该激光雷达可沿着其竖直轴线旋转,在旋转过程中,激光雷达的各个通道根据一定的时间间隔(例如1微秒)依次发射激光束并进行探测从而完成一次垂直视场上的线扫描,之后在水平视场方向上间隔一定角度(例如0.1度或0.2度)进行下一次垂直视场的线扫描,从而在旋转过程中进行多次探测形成点云,即可感知周围环境的状况。
目前应用在机械激光雷达中的半导体激光器芯片大多为边发射型。边发射型激光器的发光面具有快轴方向和慢轴方向,如图31B示意性所示,其中边发射型激光器沿着慢轴方向的尺寸较大,例如为百μm量级,沿着快轴方向的尺寸较小,例如为十μm量级。另外图31B中同时示意性示出了激光器芯片的负电极N,正电极P例如位于与负电极N相对的下表面上。
图31C示意性示出了激光器芯片在机械激光雷达中的一种安装示意图。结合图31A、31B和31C,图31C的电路板沿着图31A中的竖直方向设置在激光雷达中,其上沿着激光雷达出射光学系统焦平面的竖直方向(图31A中的竖直方向)设置有多个图31B所示的边发射型的激光器芯片,激光器芯片自发光面出射激光束,激光束指向出射光学系统。由于发光面的慢轴方向与电极是平行的,而在常规应用过程中,激光器芯片的电极是直接贴装于电路板上的,所以其发光面慢轴方向与电路板是平行设置的(如图31C所示)。图31C中沿着激光雷达的竖直方向设置有多个边发射型的激光器芯片,因此图31C中激光器芯片的发光面的慢轴方向(图31C中竖直虚线)即为图31A中的竖直方向,发光面的快轴方向为垂直于纸面的方向。对于激光雷达,如果需要提高垂直方向角分辨率的极限,则需要发光面在竖直方向尺寸尽可能小。图31C所示的结构中,需要将多个激光器芯片沿着激光雷达的竖直方向设置,同时需要使得激光器芯片的慢轴方向沿着图中的竖直方向设置,而边发射型激光器的慢轴尺寸较大(百μm量级),因此在焦平面有限的竖直方向尺寸范围内,无法将激光器芯片布置的更为密集,不利于提高垂直方向角分辨率的极限。基于以上情况,现有技术中存在将电路板水平放置的解决方案,如图32所示。
图32的技术方案中,是将电路板水平放置,激光器芯片直接贴在电路板上。其具有以下缺点。
首先对于激光雷达,每一个不同的垂直角度,都需要一个(在发射透镜焦平面处)竖直高度不同的激光器,那么就需要对应个数的电路板水平放置(如64线则需要64块电路板),并在竖直方向上错开。因此在一定尺寸内,激光雷达的垂直角分辨率极限会极大 地受制于电路板板厚以及电路板上的元器件高度等。
其次,为了保证激光雷达垂直角度的一致性,需要对承载每个激光器的电路板的位置做精确固定,过程繁琐复杂。
因此,现有技术中持续存在对于能够提高垂直方向角分辨率的激光器和激光雷达广泛的需求。
本发明的第二方面涉及一种激光器510,如图33A、33B、33C和33D所示。下面参考图33A和33B详细描述,其中图33A是激光器510从前侧观察的立体图,图33B是激光器510从后侧观察的立体图,图33C和33D分别是图33A和33B的渲染图,以更清晰的示出激光器的详细结构。
如图33A和33B所示,激光器510包括基底511、激光器芯片512、以及激光光束整形元件513。其中,激光器芯片512设置在基底511上,激光器芯片512具有发光面5121,在受电压驱动后,激光光束从该发光面5121出射。激光光束整形元件513与该发光面5121相对。其中为了将激光光束整形元件513精确地定位在基底上,在基底511上形成有定位部5111,用于定位该激光光束整形元件513。图33B和33D更清晰地示出了定位部5111。
激光器510的工作原理和方式如下。基底511为激光器510的其他光电部件提供支撑和定位。激光器芯片512在受电压驱动后,从其发光面5121发射出激光光束,由于发光面5121与激光光束整形元件513相对,发射出的激光束由激光光束整形元件513进行光学整形和调制,改变其一些光学参数和性质,然后继续出射。本领域技术人员能够理解,根据实际的需求可以选择适当的激光光束整形元件513及其所实现的功能。例如激光光束整形元件513可以对发光面5121出射的激光光束进行某一方向的压缩,以减小沿该方向的发散角。或者,激光光束整形元件513可以调节从发光面5121出射的激光光束的直径。激光光束整形元件513可以包括光纤、柱镜、D透镜或非球面镜中的一个或多个。本发明不限于激光光束整形元件513的具体类型和所实现的整形以及调制。这些都在本公开的范围内。优选地,所述定位部5111设置成使得所述激光光束整形元件513的中心高度与所述激光器芯片512的发光面5121的中心等高,以利于通过所述激光光束整形元件513来调节激光光束的光学参数。
根据本发明的一个优选实施例,激光器芯片512为边发射型的激光器芯片,如DBR(分布式布拉格反射器)设计的边发射型,DFB(分布式反馈)设计的边发射型等。边发射型激光器的发光面具有慢轴方向和快轴方向。图33A中示意性示出了激光器芯片512的发光面的快轴方向和慢轴方向。其中边发射型的激光器的发光面的慢轴方向的尺寸通常较大,快轴方向的尺寸通常较小(即图中激光器芯片512的厚度方向的尺寸)。边发射型的激光器发出的激光光束,在快轴方向上和慢轴方向上的发散角通常会有所区别,一般来说沿着慢轴方向的发散角较小,沿着快轴方向的发散角较大。图34A示出了激光器芯片发出的激光光束沿着慢轴方向的发散角θ和沿着快轴方向的发散角α。其中可以明显看出,快轴方向的发散角α明显大于慢轴方向的发散角θ。本领域技术人员容易理解,图34A中示出的发散角α和θ仅是示意性的,并不意味着实际激光器芯片的发散角有如此之大。根据一个实施例,沿着慢轴方向的发散角θ例如为10度左右,沿着快轴方向的发散角α例如为30度左右。
激光器芯片512例如贴附在基底511上,设置成使得发光面5121垂直于所贴附的表面,平行于所述定位部5111的延伸方向,如图33A和33B所示。激光器芯片512和激光 光束整形元件513在基底511上设置成使得所述发光面5121的慢轴方向平行于所述激光光束整形元件513的延伸方向,从而减小了激光器510的发光面高度,即减小了沿着图33中的竖直方向的发光面的尺寸。所述激光光束整形元件513例如为快轴压缩元件,可压缩从所述发光面5121发射的激光在所述快轴方向上的发散角,从而使得出射的激光光束经过所述激光光束整形元件513之后,在所述快轴方向上的发散角更小,汇聚度更高。图34B和34C示出了激光器芯片512的发光面5121发射的激光光束,经过激光光束整形元件513后,其快轴方向的发散角α减小的情况。图34B中示出了使用D透镜作为激光光束整形元件513的情形,图34C示出了使用光纤作为激光光束整形元件513的情形。其中,虚线示出了不经过压缩的光路,与之对应的实线为经过快轴压缩之后的光路。如图所示,经过D透镜或者光纤之后,激光光束的快轴方向的发散角α明显减小。
另外,图34B和34C中所示的激光器芯片与激光光束整形元件513相互间隔开一定距离,仅仅是为了说明的目的,并不限制本发明的保护范围,二者也可以是紧密相邻的。根据本发明的一个实施例,激光光束在经过激光光束整形元件513之后,其沿着快轴方向的发散角α压缩到和沿慢轴方向的发散角θ相当,例如从30度减小为例如10度。
根据本发明的一个优选实施例,所述激光光束整形元件513可以包括光纤、柱镜、D透镜或非球面镜中的一个或多个。通过以上所列举的激光光束整形元件513的各种实例,均可以实现发光面5121出射的激光光束的整形和调制。例如最常见的,通过柱镜来压缩激光光束沿着快轴方向上的发散角。
根据本发明的一个优选实施例,所述定位部5111包括V形槽、U形槽、台阶中的一个或多个,用于精确定位所述激光光束整形元件513。所述定位部5111例如为位于基底的一端附近的微结构,例如在硅基座上可利用刻蚀工艺在前端加工出μm量级的V槽或基它槽形、台阶等微结构,所述微结构用于激光光束整形元件513的精确定位。对于V形槽的情形,可以直接将激光光束整形元件513嵌入该V形槽中进行定位。对于台阶的情形,可以将激光光束整形元件513紧靠台阶进行定位。本领域技术人员容易理解,激光光束整形元件513被精确定位之后,可通过其他附加的手段将其固定就位,例如通过粘结剂的方式将其固定在基底511上。
图33A和33B中示出了定位部5111包括V形槽,例如位于靠近基底511的端部的位置处。其中激光光束整形元件513为光纤,卡固在该V形槽中。图33A和33B中示出了定位部5111还包括台阶。通过V形槽和台阶的组合,有助于将所述激光光束整形元件513相对于所述激光器芯片512的发光面5121进行精确定位,并对从发光面5121出射的激光光束进行精确的调制和整形。本领域技术人员理解,单独地通过V形槽,或者单独地通过台阶,均可以作为定位部,实现激光器芯片5121相对于激光光束整形元件的精确定位。这些都在本发明的保护范围内。
注意,本发明中所称的定位部,是指有助于激光光束整形元件定位的部分或者元件,并非局限于单独通过该定位部而不需要其他部件即可以定位该激光光束整形元件。这对于本领域技术人员是容易理解的。例如在图33A和33B的实施例中,除了定位部5111,还可以通过粘结剂等方式来加强其定位效果。此处不再赘述。
图33A、33B、33C、33D示出的具有精确定位结构的半导体激光器结构,可以方便地调制激光器芯片的光束,便于安装。
图35A、35B示出了根据本发明另一个实施例的激光器510,其中的定位部5111包括 台阶,激光光束整形元件513为D透镜,抵靠着该台阶被定位。从激光器芯片512的发光面5121出射的激光光束进入D透镜的平面一侧,并从另外一侧以更小的快轴方向发散角出射。本领域技术人员在本发明的教导和启示下,还可以构思出其他形状和类型的定位部以及激光光束整形元件,这些都在本发明的保护范围内。
根据本发明的一个优选实施例,所述基座为硅(优选为高阻硅)制成的基座,或者由其他能够通过刻蚀或化学腐蚀工艺精确控制加工深度的材料制成。定位部5111通过刻蚀或者化学腐蚀工艺形成在所述硅基座上。相比于陶瓷材料,硅更容易进行刻蚀,并精确地控制定位部的位置和尺寸,从而使得激光光束整形元件513能够通过该定位部5111精准地定位,对激光器芯片的发光面出射的激光束进行整形和调制,减小沿着快轴方向的发散角。
根据本发明的一个优选实施例,激光器510还包括设置在所述基底上的电极514,所述电极配置成可对所述激光器芯片供电。下面参考附图详细描述。
图33A和33B中示出了根据本发明一个优选实施例的电极514。如图33A所示,电极514包括正电极5141和负电极5142。正电极5141和负电极5142例如为金属板或者金属薄层(例如金箔),例如通过电镀的方式被贴附设置于基底511的表面上。如图33A所示,正电极5141和负电极5142通过一间隔部516相互间隔开,间隔部516例如是基底511的一个整体的部分,其上不具有金属板或者金属薄层,从而将正电极5141和负电极5142间隔开(如图33C和33D更清楚的所示)。可替换的,间隔部516也可以是单独的一个不导电层,例如二氧化硅层。所述正电极5141和负电极5142均可设置在基底上的与所述激光器芯片相同的一表面上、以及所述基底上的与所述发光面垂直的一侧面上。例如正电极5141和负电极5142例如均延伸过基底511的两个表面,即图33A中的顶面以及靠近观察者的一侧的侧面,以方便安装。其中所述电极与电路板焊接的部分位于所述基座的所述侧面上。图33A中,正电极5141和负电极5142的上部(位于基底上的与所述激光器芯片相同的一表面上的部分)的延伸的方向(如图33A中正电极5141的上部上的双向箭头所示)大致平行于所述激光器芯片512的发光面5121,平行于所述激光光束整形元件513的延伸方向。激光器芯片512的下表面贴附于所述负电极5142上,电位与所述负电极5142相同;激光器芯片512的上表面通过导线(诸如金线)515耦接到所述正电极5141上,电位与所述正电极5141相同。正电极5141和负电极5142之间通过不具有电极材料的基底间隔开(例如图33A中左侧的贯穿基底上表面的V槽所示)。当激光器510通电时,正电极5141和负电极5142之间存在电压差,从而驱动激光器芯片512,从其发光面发射出激光光束。另外,正电极5141和负电极5142的极性可以互换,这也在本公开的保护范围内。图35A和35B的电极的排布方式与图33A和33B的类似,此处不再赘述。
图33A、33B、35A和35B所示的激光器510的各个部件的设置非常紧凑,尤其是当用于激光雷达的发射端时,可以密集排布,各个激光器510之间的间距的极限可以是激光器芯片的厚度(即沿着快轴方向的尺寸),极大地提高了激光雷达在垂直方向上的角度分辨率的极限。
图36A和36B示出了根据本发明另一个实施例的激光器520,图36C和36D是图36A和36B的渲染图,更清晰地显示了其结构。激光器520包括基底521、激光器芯片522、以及激光光束整形元件523,基底521中具有定位部5211,用于辅助该激光光束整形元 件523的精确定位,与图33A和33B所示的类似,此处不再赘述。激光器520中还具有电极524,包括正电极5241和负电极5242,激光器芯片522贴附在负电极5242上,激光器芯片522的上表面通过导线(诸如金线)525连接到正电极5241。如图36A和36B所示,正电极5241和负电极5242通过一间隔部相互间隔开。所述正电极和负电极均设置在基底上的与所述激光器芯片相同的一表面上、以及所述基底上的与所述发光面平行的一端面上。例如,正电极5241和负电极5242同样延伸过基底521的两个表面,即图36A中的顶面和其中一个端面。如图36A和36B,正电极5241和负电极5242的上部(位于基底上的与所述激光器芯片相同的一表面上的部分)的延伸方向垂直于所述激光器芯片522的发光面5221,垂直于所述激光光束整形元件523的延伸方向。其中,所述电极与电路板焊接的部分位于基座的所述端面上。正电极5241和负电极5242之间,通过不具有电极材料的基底间隔开。图37A和37B中,电极524的排布方式与图36A和36B的类似,但其中采用了D透镜和台阶定位部,此处不再赘述。
本发明的上述实施例的激光器,在应用于激光雷达时,能够进一步提高机械激光雷达在垂直方向上的角度分辨率极限。通过下文的描述,该优势将是显而易见和容易理解的。
第三方面
本发明的第三方面涉及一种激光器发射板组件,包括:电路板和多个如上所述的激光器。这些激光器设置在所述电路板上,并且所述激光器的激光器芯片的发光面朝向相同的方向,从而朝着共同的方向发射激光光束。
图38示出了根据本发明一个优选实施例的激光器发射板组件530,包括电路板531和设置在电路板上的多个激光器,诸如图33A、33B、35A、35B所示的激光器510,其上的电极5141和5142被焊接在电路板531的焊盘5311和5312上。如图38所示,多个激光器510的发光面的慢轴方向垂直于所述电路板531。在工作时,所述电路板531通过其上的焊盘5311和5312,为激光器510中的激光器芯片512提供驱动电压,激光器芯片512从其发光面5121发出激光光束,经过激光光束整形元件整形之后,以减小的快轴方向发散角继续传播。
注意,图38中适应示出了激光器510上具有光纤作为激光光束整形元件,但容易理解,还可以具有其他类型的激光光束整形元件,例如柱镜、D透镜或非球面镜等。图38中的双向箭头示出了图31A激光雷达的竖直方向。与图31C的激光器芯片的设置方式相比,图38的技术方案中,实现了激光器芯片的发光面翻转90°,同时,激光器芯片的快轴方向(尺寸较小)与激光雷达的竖直方向重合,因而能够在激光雷达的竖直方向上布置更多的激光器芯片,提高激光雷达在竖直方向的角分辨率。
另外更优选的,如图39所示,所述激光器发射板组件530包括多个所述电路板531,每个电路板上设置有多个所述激光器510,其中多个电路板531上的激光器510中的激光器芯片512的发光面5121在快轴方向上相互错开。例如在图39中,沿着慢轴方向设置有四个电路板531,每个电路板上设置有四个激光器510,共计16个激光器510。沿着图39中的快轴方向(即对应于图38的激光雷达竖直方向),16个激光器510的位置相互交错,不发生重合。换言之,当布置到激光雷达中时,16个激光器510分别位于激光雷达出射光学系统焦平面的不同竖直高度处,从而能够在不同的位置处发出激光线束,用于探测周围环境。
图39A中包括了多个图38的电路板以及其上的激光器,并且是从图38的左侧方向观察的视图,同时为了清楚起见,省略了金线以及激光光束整形元件等。如图39A所示,所述多个电路板531沿着所述发光面的慢轴方向堆叠。通过这种设置方式以及如上所述的激光模组,可以极大地提高激光雷达在垂直方向上的角度分辨率极限。例如在图39A中,虽然单个电路板531上的激光器510的激光器芯片之间,受限于基底的厚度,在图中的竖直方向上(快轴方向)需要间隔开一定距离(堆叠的极限为上面一个激光器的底面,接触下面一个激光器的顶面),但是在不同电路板531上的激光器之间,不必受限于基底的厚度,相互之间在快轴方向上错开即可。在一种极限情况中,多个电路板上的激光器的激光器芯片,在快轴方向上是连续的。例如如图39B所示,其中示意性示出了四个电路板531,每个上分别具有激光器510-1、510-2、510-3和510-4,其中激光器510-1的激光器芯片的下表面与激光器510-2的激光器芯片的上表面重合,激光器510-2的激光器芯片的下表面与激光器510-3的激光器芯片的上表面重合,激光器510-3的激光器芯片的下表面与激光器510-4的激光器芯片的上表面重合,如图39B中的虚线所示。通过这种方式,能够使得沿着激光雷达的竖直方向上尽可能多的布置激光器。本领域技术人员容易理解,每个电路板531上可设置多个激光器。因此,相对于图31和图32的布置方式,本发明的这种方式能够极大地提高激光雷达在垂直方向上的角度分辨率的极限。
图39所示的焊盘与电极的焊接方式适用于图33A、33B、35A、35B所示的半导体激光器,通过多个所述电路PCB板的排布,实现多个半导体激光器在发射透镜焦平面上的不同高度,进而实现垂直视场方向高角度分辨率。基座对最终厚度没有影响,将激光器沿着快轴方向错开即可。
图40示出了根据本发明的一个优选实施例的激光器发射板组件540,其包括电路板541和多个激光器,诸如图36A、36B、37A和37B所示的激光器520。激光器520焊接在所述电路板541的焊盘5411和5412上,用于通过焊盘5411和5412获得驱动电压,并且所述多个激光器520的激光器芯片522的发光面的慢轴方向平行于所述电路板。
图41示出了根据本发明的一个优选实施例的激光器发射板组件540。图41与图40的主要区别在于,图41中包括了多列的激光器。容易理解,图41是从图40的左侧观察的视图。所述电路板上的多个所述激光器中的激光器芯片的发光面在快轴方向上相互错开。如图41所示,多列的激光器中的激光器,其发光面在快轴方向上相互错开。因此这种排布方式,将快轴方向的排布密度,实现为激光器芯片的快轴方向的尺寸,大大提高了激光雷达在垂直方向上的角度分辨率的极限。
图41所示的实施例中的焊盘与电极的焊接方式适用于图36A、36B、37A和37B所示的半导体激光器,通过多个所述半导体激光器在单个电路PCB板上的排布,实现多个半导体激光器在发射透镜焦平面上的不同高度,进而实现垂直视场方向高角度分辨率。
第四方面
本发明的第四方面还涉及一种激光雷达,包括如上所述的激光器发射板组件530或540。本发明第三方面能够进一步提高激光雷达垂直方向角度分辨率光学极限并提升测距性能。
根据本发明的一个优选实施例,所述激光雷达还可包括发射透镜,位于所述激光器发射板组件的下游,用于对所述激光器发射板组件发出的激光光束进一步调制,例如改变其汇聚性和/或方向。
第五方面
图42示出了根据本发明第五方面的一种激光器的封装方法550。该方法550包括以下步骤。
在步骤S551,提供或制备基底。基底通常可由能够通过刻蚀或化学腐蚀工艺精确控制加工深度的材料制成,例如硅(优选高阻硅)。
在步骤S552,在所述基底上通过刻蚀或者化学腐蚀的方式形成定位部。定位部例如为V形槽、U形槽、台阶或者其组合的形式。
在步骤S553,将激光器芯片安装在所述硅基底上。在安装过程中,可能需要将激光器芯片与基底的电极相耦合,以便于为激光器芯片提供驱动电压。
在步骤S554,利用所述定位部,将激光光束整形元件定位在所述基底上,使得所述激光器芯片的发光面与所述激光光束整形元件相对。例如,通过定位部来找到激光光束整形元件的精确定位位置。所述定位部可配制成直接将激光光束整形元件固定就位。或者可另外的,在定位之后,通过粘接等方式,将激光光束整形元件定位在其上。
优选地,所述封装方法550还包括:使得所述激光光束整形元件513的中心与所述激光器芯片512的发光面5121的中心等高。
根据本公开的一个优选实施例,所述激光器芯片例如为边发射型,其发光面具有慢轴方向和快轴方向,其中所述慢轴方向与所述激光光束整形元件的延伸方向平行,所述激光光束整形元件为快轴压缩元件,配置成可压缩从所述发光面发射的激光在所述快轴方向上的发散角。
本发明激光器发射板组件垂直方向角分辨率的极限(仅受限于快轴尺寸)能够得到极大提升。该方法可以在实现芯片发光面翻转90°的同时,进行精确的快轴压缩。硅等材料本身利用刻蚀工艺可以精确控制加工深度及尺寸,制备出一个图形尺寸精确的基座,有效控制压缩后的快轴发散角与光束指向性,提升测距性能。而且芯片发光面实现翻转90°,更有利于减少地面车道线、人行线、以及远处地面的测量误差。
本领域技术人员容易理解,上述第一方面的激光雷达可以与上述第二、第三、第四、第五方面所公开的技术方案任意地结合。
例如,如图14所示,在根据本发明第一方面的实施例的激光雷达中,激光器发射板2014上设置有至少一个激光器2015,该激光器2015例如可以是图33A-33D、图35A、图35B、图36A-36D、以及图37A、图37D所示的激光器510和/或520。
另外,所述激光器发射板2014例如包括如本发明第三方面所涉及的激光器发射板组件530(如图38所示),激光器发射板组件530包括电路板531和设置在电路板上的多个激光器510。结合图14、图38和图39,激光器支架2011呈具有多个竖直卡槽的梳齿结构,多个卡槽201122中分别设置一激光器发射板(对应于激光器发射板组件530,或包括激光器发射板组件530),所述多个卡槽中的激光器发射板组件的激光器芯片的发光面在快轴方向上相互错开。在梳齿结构的卡槽201122中设置多个激光器发射板2014,每个激光器发射板2014上设置有图38所示的激光器发射板组件530,每个激光器发射板组件530上包括沿着垂直方向排布的多个激光器510,并且其中多个电路板531上的激光器510中的激光器芯片512的发光面5121在快轴方向上相互错开,形成如图39所示的发光结构。如图39所示,所述多个电路板531沿着所述发光面的慢轴方向堆叠。通过这种设置方式以及如上所述的激光器,可以极大地提高激光雷达在垂直方向上的角度分辨率极限。 例如在图39中,虽然单个电路板531上的激光器510的激光器芯片之间,受限于基底的厚度,在图中的竖直方向上(快轴方向)需要间隔开一定距离(堆叠的极限为上面一个激光器的底面,接触下面一个激光器的顶面),但是在不同电路板531上的激光器之间,不必受限于基底的厚度,相互之间在快轴方向上错开即可。在一种极限情况中,多个电路板上的激光器的激光器芯片,在快轴方向上是连续的。因此,相对于图31和图32的布置方式,本发明的这种方式能够极大地提高激光雷达在垂直方向上的角度分辨率的极限。
另外,本领域技术人员也可以构思,将图40和41所示的激光器发射板组件540结合到图1-图30所示的实施例中。例如,激光器支架2011可以不设置图14所示的梳齿结构,仅包括用于支撑或固定图40和41所示的激光器发射板组件540的支架结构即可,通过图40和41的激光器发射板组件,可以有效地提高激光雷达在垂直方向上的角度分辨率的极限,此处不再赘述。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (84)

  1. 一种激光雷达,包括:
    转子(1),所述转子(1)具有相互隔离的发射舱(13)和接收舱(14),其中所述发射舱和所述接收舱为非对称分布;
    激光发射系统,所述激光发射系统设置于所述发射舱(13)内,所述激光发射系统包括激光器支架和固定在所述激光器支架上的至少一个激光器发射板;和
    接收系统,所述接收系统设置于所述接收舱(14)内。
  2. 根据权利要求1所述的激光雷达,其中所述激光器发射板被所述激光器支架沿垂直于第一平面的方向固定;
    或者,所述激光器发射板被所述激光器支架沿平行于第一平面的方向固定。
  3. 根据权利要求1所述的激光雷达,其中所述激光器支架呈具有至少一个卡槽的梳齿结构,所述激光器发射板固定于所述卡槽。
  4. 根据权利要求1所述的激光雷达,其中所述激光器发射板与水平面呈一预设夹角;所述激光器发射板上设置有至少一个激光器,所述激光器的发光面位于激光雷达的出射光学系统的焦平面上。
  5. 根据权利要求2所述的激光雷达,其中当激光器发射板被所述激光器支架沿垂直于第一平面的方向固定时,所述激光器发射板垂直所述第一平面的方向间隔设置。
  6. 根据权利要求2所述的激光雷达,其中当所述激光器发射板被所述激光器支架沿平行于第一平面的方向固定时,所述激光器发射板沿平行于所述第一平面的方向间隔设置。
  7. 根据权利要求1所述的激光雷达,其中所述激光发射系统包括设置在所述激光器发射板上的激光器,所述激光器包括:
    基底,所述基底上具有定位部;
    激光器芯片,设置在所述基底上,所述激光器芯片具有发光面;和
    激光光束整形元件,通过所述定位部定位,并与所述激光器芯片的发光面相对。
  8. 根据权利要求7所述的激光雷达,其中所述定位部包括V形槽、U形槽、台阶中的一个或多个,所述激光光束整形元件包括光纤、柱镜、D透镜或非球面镜中的一个或多个。
  9. 根据权利要求7或8所述的激光雷达,其中所述激光器芯片为边发射型,所述发光面具有慢轴方向和快轴方向,其中所述慢轴方向与所述激光光束整形元件的延伸方向平行,所述激光光束整形元件为快轴压缩元件,配置成可压缩从所述发光面发射的激光在所述快轴方向上的发散角。
  10. 根据权利要求7或8所述的激光雷达,其中所述基座为硅基座,所述定位部通过刻蚀工艺形成在所述硅基座上,所述激光器还包括设置在所述基底上的电极,所述电极配置成可对所述激光器芯片供电,所述电极包括由间隔部隔开的正电极和负电极。
  11. 根据权利要求10所述的激光雷达,其中所述正电极和负电极均设置在基底上的与所述激光器芯片相同的一表面上、以及所述基底上的与所述发光面垂直的一侧面上。
  12. 根据权利要求10所述的激光雷达,其中所述正电极和负电极均设置在基底上的与所述激光器芯片相同的一表面上、以及所述基底上的与所述发光面平行的一端面上。
  13. 根据权利要求7所述的激光雷达,其中所述激光器发射板包括电路板和设置在所述电路板上的多个所述激光器,并且所述激光器的激光器芯片的发光面朝向相同的方向。
  14. 根据权利要求13述的激光雷达,其中所述多个激光器焊接在所述电路板上,并且所述多个激光器的发光面的慢轴方向垂直于所述电路板。
  15. 根据权利要求13述的激光雷达,其中所述多个激光器焊接在所述电路板上,并且所述多个激光器的发光面的慢轴方向平行于所述电路板,所述电路板上的多个所述激光器中的激光器芯片的发光面在快轴方向上相互错开。
  16. 根据权利要求14所述的激光雷达,其中所述激光器支架呈具有多个竖直卡槽的梳齿结构,多个卡槽中分别设置一激光器发射板,所述多个卡槽中的激光器发射板的激光器芯片的发光面在快轴方向上相互错开。
  17. 根据权利要求7或8所述的激光雷达,其中所述激光光束整形元件的中心与所述激光器芯片的发光面的中心等高。
  18. 一种激光雷达,包括:
    转子(1),所述转子(1)具有相互隔离的发射舱(13)和接收舱(14),其中所述发射舱和所述接收舱为非对称分布;
    激光发射系统,所述激光发射系统设置于所述发射舱(13)内;和
    接收系统,所述接收系统设置于所述接收舱(14)内;
    其中所述转子(1)还包括外筒(11)和内筒,所述外筒(11)的筒壁上设置有用于发射透镜组(203)和接收透镜组(301)的安装结构。
  19. 根据权利要求18所述的种激光雷达,其中所述外筒(11)和内筒之间形成容置腔,所述容置腔内设置有隔板(16),所述隔板(16)的一端与所述外筒(11)连接,所述隔板(16)的另一端与所述内筒连接,所述隔板(16)将所述容置腔分隔形成所述发射舱(13)和所述接收舱(14)。
  20. 根据权利要求18或19所述的激光雷达,其中所述转子(1)上设置有第三配重结构(5),所述第三配重结构(5)设置在所述安装结构的两侧,所述第三配重结构(5)包括多个第一凹槽(51),每相邻两个第一凹槽(51)之间形成有连接筋(52)。
  21. 根据权利要求20所述的激光雷达,其中所述外筒(11)的筒壁包括活动壁(114)和固定壁(115),所述活动壁(114)与所述固定壁(115)之间可拆卸连接,所述活动壁(114)上设置有至少一个第一配重块(1141)。
  22. 根据权利要求20所述的激光雷达,其中所述激光雷达还包括底盘(2),所述底盘(2)设置于所述转子(1)底部,所述底盘(2)上设置有至少一个第二配重块(21)。
  23. 根据权利要求18所述的激光雷达,其中所述激光发射系统包括激光器,所述激光器包括:
    基底,所述基底上具有定位部;
    激光器芯片,设置在所述基底上,所述激光器芯片具有发光面;和
    激光光束整形元件,通过所述定位部定位,并与所述激光器芯片的发光面相对。
  24. 根据权利要求23所述的激光雷达,其中所述定位部包括V形槽、U形槽、台阶中的一个或多个,所述激光光束整形元件包括光纤、柱镜、D透镜或非球面镜中的一个或多个。
  25. 根据权利要求23或24所述的激光雷达,其中所述激光器芯片为边发射型,所述发光面具有慢轴方向和快轴方向,其中所述慢轴方向与所述激光光束整形元件的延伸方向平行,所述激光光束整形元件为快轴压缩元件,配置成可压缩从所述发光面发射的激 光在所述快轴方向上的发散角。
  26. 根据权利要求23或24所述的激光雷达,其中所述基座为硅基座,所述定位部通过刻蚀工艺形成在所述硅基座上,所述激光器还包括设置在所述基底上的电极,所述电极配置成可对所述激光器芯片供电,所述电极包括由间隔部隔开的正电极和负电极。
  27. 根据权利要求26所述的激光雷达,其中所述正电极和负电极均设置在基底上的与所述激光器芯片相同的一表面上、以及所述基底上的与所述发光面垂直的一侧面上。
  28. 根据权利要求26所述的激光雷达,其中所述正电极和负电极均设置在基底上的与所述激光器芯片相同的一表面上、以及所述基底上的与所述发光面平行的一端面上。
  29. 根据权利要求23所述的激光雷达,其中所述激光发射系统包括激光器支架和固定在所述激光器支架上的至少一个激光器发射板,所述激光器发射板包括电路板和设置在所述电路板上的多个所述激光器,并且所述激光器的激光器芯片的发光面朝向相同的方向。
  30. 根据权利要求29述的激光雷达,其中所述多个激光器焊接在所述电路板上,并且所述多个激光器的发光面的慢轴方向垂直于所述电路板。
  31. 根据权利要求29述的激光雷达,其中所述多个激光器焊接在所述电路板上,并且所述多个激光器的发光面的慢轴方向平行于所述电路板,所述电路板上的多个所述激光器中的激光器芯片的发光面在快轴方向上相互错开。
  32. 根据权利要求30中任一项述的激光雷达,其中所述激光器支架呈具有多个竖直卡槽的梳齿结构,多个卡槽中分别设置一激光器发射板,所述多个卡槽中的激光器发射板的激光器芯片的发光面在快轴方向上相互错开。
  33. 根据权利要求23或24所述的激光雷达,其中所述激光光束整形元件的中心与所述激光器芯片的发光面的中心等高。
  34. 一种激光雷达,包括:
    转子(1),所述转子(1)具有相互隔离的发射舱(13)和接收舱(14),其中所述发射舱和所述接收舱为非对称分布;
    激光发射系统,所述激光发射系统设置于所述发射舱(13)内;和
    接收系统,所述接收系统设置于所述接收舱(14)内;
    其中所述激光发射系统包括激光器、第一反射镜组(202)和发射透镜组(203),所述第一反射镜组(202)用于改变所述激光器的激光光束的路径,使所述激光光束入射至所述发射透镜组(203);所述发射透镜组(203)用于发射探测光;
    和/或,所述接收系统包括接收透镜组(301)、第二反射镜组(302)和接收装置(303),所述接收透镜组(301)用于汇聚待测物的反射光,所述第二反射镜组(302)用于改变光束的路径,使所述反射光入射到所述接收装置(303)。
  35. 根据权利要求34所述的激光雷达,其中所述激光雷达还包括隔光片(41)和隔光架(42),所述隔光片(41)设置在所述发射透镜组(203)和接收透镜组(301)之间,且所述隔光片(41)一端设置在第二反射镜(2022)和第四反射镜(3022)之间,所述隔光片(41)的另一端贴合在所述隔光架(42)上。
  36. 根据权利要求35所述的激光雷达,其中所述激光雷达还包括固定块(8),所述固定块(8)上设置有搭接条(81),所述搭接条(81)一端搭接在所述内筒上,所述搭接条(81)的另一端搭接在所述外筒(11)上。
  37. 根据权利要求34所述的激光雷达,其中所述接收装置(303)包括滤光片(3031)、接收器件(3032)、接收电路支架(3033)和多块接收电路板(3034),所述接收器件(3032)和所述接收电路板(3034)安装于所述接收电路支架(3033)上,所述滤光片(3031)用于过滤杂散光。
  38. 根据权利要求37所述的激光雷达,其中所述接收器件(3032)包括基板(30321)和至少一个APD探测器,所述基板(30321)固定于所述接收电路支架(3033)上,所述APD探测器设置于所述基板(30321)一侧面。
  39. 根据权利要求34所述的激光雷达,其中所述激光雷达还包括底座、外罩(36)和顶盖(37),所述外罩(36)的一端与所述底座配合连接,所述外罩(36)的另一端与顶盖(37)配合连接,所述底座、外罩(36)和顶盖(37)依次连接围合形成密闭腔体,所述密闭腔体用于容纳所述转子(1)、激光发射系统和接收系统。
  40. 根据权利要求37所述的激光雷达,其中所述接收器件(3032)包括多个APD探测器,所述APD探测器排列为APD线阵探测器或APD面阵探测器。
  41. 根据权利要求34所述的激光雷达,其中所述激光器包括:
    基底,所述基底上具有定位部;
    激光器芯片,设置在所述基底上,所述激光器芯片具有发光面;和
    激光光束整形元件,通过所述定位部定位,并与所述激光器芯片的发光面相对。
  42. 根据权利要求41所述的激光雷达,其中所述定位部包括V形槽、U形槽、台阶中的一个或多个,所述激光光束整形元件包括光纤、柱镜、D透镜或非球面镜中的一个或多个。
  43. 根据权利要求41或42所述的激光雷达,其中所述激光器芯片为边发射型,所述发光面具有慢轴方向和快轴方向,其中所述慢轴方向与所述激光光束整形元件的延伸方向平行,所述激光光束整形元件为快轴压缩元件,配置成可压缩从所述发光面发射的激光在所述快轴方向上的发散角。
  44. 根据权利要求41或42所述的激光雷达,其中所述基座为硅基座,所述定位部通过刻蚀工艺形成在所述硅基座上,所述激光器还包括设置在所述基底上的电极,所述电极配置成可对所述激光器芯片供电,所述电极包括由间隔部隔开的正电极和负电极。
  45. 根据权利要求44所述的激光雷达,其中所述正电极和负电极均设置在基底上的与所述激光器芯片相同的一表面上、以及所述基底上的与所述发光面垂直的一侧面上。
  46. 根据权利要求44所述的激光雷达,其中所述正电极和负电极均设置在基底上的与所述激光器芯片相同的一表面上、以及所述基底上的与所述发光面平行的一端面上。
  47. 根据权利要求41所述的激光雷达,其中所述激光发射系统包括激光器支架和固定在所述激光器支架上的至少一个激光器发射板,所述激光器发射板包括电路板和设置在所述电路板上的多个所述激光器,并且所述激光器的激光器芯片的发光面朝向相同的方向。
  48. 根据权利要求47述的激光雷达,其中所述多个激光器焊接在所述电路板上,并且所述多个激光器的发光面的慢轴方向垂直于所述电路板。
  49. 根据权利要求47述的激光雷达,其中所述多个激光器焊接在所述电路板上,并且所述多个激光器的发光面的慢轴方向平行于所述电路板,所述电路板上的多个所述激光器中的激光器芯片的发光面在快轴方向上相互错开。
  50. 根据权利要求48中任一项述的激光雷达,其中所述激光器支架呈具有多个竖直卡槽的梳齿结构,多个卡槽中分别设置一激光器发射板,所述多个卡槽中的激光器发射板的激光器芯片的发光面在快轴方向上相互错开。
  51. 根据权利要求41或42所述的激光雷达,其中所述激光光束整形元件的中心与所述激光器芯片的发光面的中心等高。
  52. 一种激光雷达,包括:
    转子(1),所述转子(1)具有相互隔离的发射舱(13)和接收舱(14),其中所述发射舱和所述接收舱为非对称分布;
    激光发射系统,所述激光发射系统设置于所述发射舱(13)内;
    接收系统,所述接收系统设置于所述接收舱(14)内;和
    无线输电装置,设置在所述激光雷达内部的顶部侧,包括无线供电发射组件和无线供电接收组件,所述无线供电发射组件与所述无线供电接收组件间隔设置,所述无线供电发射组件包括发射线圈(406)和发射电路板(407),所述发射线圈(406)和所述发射电路板(407)连接;所述无线供电接收组件包括接收线圈(401)和至少一个接收电路板(403),所述接收线圈(401)和所述发射线圈(406)间隔设置,所述接收线圈(401)与所述接收电路板(403)连接。
  53. 根据权利要求52所述的激光雷达,其中所述无线供电接收组件还包括隔磁元件,所述隔磁元件为隔磁板(402),所述隔磁板(402)设置于所述接收线圈(401)远离所述发射线圈(406)的一侧。
  54. 根据权利要求53所述的激光雷达,其中所述接收电路板(403)包括第四电路板(4031)和第五电路板(4032),所述第四电路板的第一面(4031)与所述第五电路板(4032)的第二面间隔设置,所述第五电路板(4032)与所述隔磁板(402)连接,所述隔磁板(402)设置于所述第五电路板(4032)朝向所述第四电路板(4031)的一侧。
  55. 根据权利要求52所述的激光雷达,其中所述激光发射系统包括激光器,所述激光器包括:
    基底,所述基底上具有定位部;
    激光器芯片,设置在所述基底上,所述激光器芯片具有发光面;和
    激光光束整形元件,通过所述定位部定位,并与所述激光器芯片的发光面相对。
  56. 根据权利要求55所述的激光雷达,其中所述定位部包括V形槽、U形槽、台阶中的一个或多个,所述激光光束整形元件包括光纤、柱镜、D透镜或非球面镜中的一个或多个。
  57. 根据权利要求55或56所述的激光雷达,其中所述激光器芯片为边发射型,所述发光面具有慢轴方向和快轴方向,其中所述慢轴方向与所述激光光束整形元件的延伸方向平行,所述激光光束整形元件为快轴压缩元件,配置成可压缩从所述发光面发射的激光在所述快轴方向上的发散角。
  58. 根据权利要求55或56所述的激光雷达,其中所述基座为硅基座,所述定位部通过刻蚀工艺形成在所述硅基座上,所述激光器还包括设置在所述基底上的电极,所述电极配置成可对所述激光器芯片供电,所述电极包括由间隔部隔开的正电极和负电极。
  59. 根据权利要求58所述的激光雷达,其中所述正电极和负电极均设置在基底上的与所述激光器芯片相同的一表面上、以及所述基底上的与所述发光面垂直的一侧面上。
  60. 根据权利要求58所述的激光雷达,其中所述正电极和负电极均设置在基底上的与所述激光器芯片相同的一表面上、以及所述基底上的与所述发光面平行的一端面上。
  61. 根据权利要求55所述的激光雷达,其中所述激光发射系统包括激光器支架和固定在所述激光器支架上的至少一个激光器发射板,所述激光器发射板包括电路板和设置在所述电路板上的多个所述激光器,并且所述激光器的激光器芯片的发光面朝向相同的方向。
  62. 根据权利要求61述的激光雷达,其中所述多个激光器焊接在所述电路板上,并且所述多个激光器的发光面的慢轴方向垂直于所述电路板。
  63. 根据权利要求61述的激光雷达,其中所述多个激光器焊接在所述电路板上,并且所述多个激光器的发光面的慢轴方向平行于所述电路板,所述电路板上的多个所述激光器中的激光器芯片的发光面在快轴方向上相互错开。
  64. 根据权利要求62所述的激光雷达,其中所述激光器支架呈具有多个竖直卡槽的梳齿结构,多个卡槽中分别设置一激光器发射板,所述多个卡槽中的激光器发射板的激光器芯片的发光面在快轴方向上相互错开。
  65. 根据权利要求55或56所述的激光雷达,其中所述激光光束整形元件的中心与所述激光器芯片的发光面的中心等高。
  66. 一种激光器,包括:
    基底,所述基底上具有定位部;
    激光器芯片,设置在所述基底上,所述激光器芯片具有发光面;和
    激光光束整形元件,通过所述定位部定位,并与所述激光器芯片的发光面相对。
  67. 根据权利要求66所述的激光器,其中所述定位部包括V形槽、U形槽、台阶中的一个或多个。
  68. 根据权利要求66或67所述的激光器,其中所述激光光束整形元件包括光纤、柱镜、D透镜或非球面镜中的一个或多个。
  69. 根据权利要求66或67所述的激光器,其中所述激光器芯片为边发射型,所述发光面具有慢轴方向和快轴方向,其中所述慢轴方向与所述激光光束整形元件的延伸方向平行,所述激光光束整形元件为快轴压缩元件,配置成可压缩从所述发光面发射的激光在所述快轴方向上的发散角。
  70. 根据权利要求66或67所述的激光器,其中所述基座为硅基座,所述定位部通过刻蚀工艺形成在所述硅基座上。
  71. 根据权利要求66或67所述的激光器,还包括设置在所述基底上的电极,所述电极配置成可对所述激光器芯片供电。
  72. 根据权利要求71所述的激光器,其中所述电极包括由间隔部隔开的正电极和负电极。
  73. 根据权利要求72所述的激光器,其中所述正电极和负电极均设置在基底上的与所述激光器芯片相同的一表面上、以及所述基底上的与所述发光面垂直的一侧面上。
  74. 根据权利要求72所述的激光器,其中所述正电极和负电极均设置在基底上的与所述激光器芯片相同的一表面上、以及所述基底上的与所述发光面平行的一端面上。
  75. 根据权利要求66或67所述的激光器,其中所述激光光束整形元件的中心与所述激光器芯片的发光面的中心等高。
  76. 一种激光器发射板组件,包括:
    电路板;
    多个如权利要求66-75中任一项所述的激光器,设置在所述电路板上,并且所述激光器的激光器芯片的发光面朝向相同的方向。
  77. 根据权利要求76述的激光器发射板组件,其中所述多个激光器焊接在所述电路板上,并且所述多个激光器的发光面的慢轴方向垂直于所述电路板。
  78. 根据权利要求76述的激光器发射板组件,其中所述多个激光器焊接在所述电路板上,并且所述多个激光器的发光面的慢轴方向平行于所述电路板,所述电路板上的多个所述激光器中的激光器芯片的发光面在快轴方向上相互错开。
  79. 根据权利要求77中任一项述的激光器发射板组件,其中所述激光器发射板组件包括多个所述电路板,每个电路板上设置有多个所述激光器,其中多个电路板上的激光器中的激光器芯片的发光面在快轴方向上相互错开。
  80. 一种激光雷达,包括如权利要求76-79中任一项所述的激光器发射板组件。
  81. 一种激光器的封装方法,包括:
    提供或制备基底;
    在所述基底上通过刻蚀或化学腐蚀形成定位部;
    将激光器芯片安装在所述基底上;
    利用所述定位部,将激光光束整形元件定位在所述基底上,使得所述激光器芯片的发光面与所述激光光束整形元件相对。
  82. 根据权利要求81所述的方法,其中所述激光器芯片为边发射型,所述发光面具有慢轴方向和快轴方向,其中所述慢轴方向与所述激光光束整形元件的延伸方向平行,所述激光光束整形元件为快轴压缩元件,配置成可压缩从所述发光面发射的激光在所述快轴方向上的发散角。
  83. 根据权利要求81或82所述的方法,其中所述基底为硅基底。
  84. 根据权利要求81或82所述的方法,还包括使得所述激光光束整形元件的中心与所述激光器芯片的发光面的中心等高。
PCT/CN2019/098623 2018-06-08 2019-07-31 激光雷达、激光器、激光器发射板组件及激光器的封装方法 WO2019233499A2 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19814737.3A EP3855209A4 (en) 2018-06-08 2019-07-31 LIDAR, LASER, LASER EMISSION PANEL ASSEMBLY AND CONDITIONING METHOD FOR LASER
US17/115,567 US20210190918A1 (en) 2018-06-08 2020-12-08 Lidar, laser emitter, laser emitter emitting board assembly, and method for manufacturing laser emitter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810589960.4A CN108828558B (zh) 2018-06-08 2018-06-08 一种激光雷达
CN201810589960.4 2018-06-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/115,567 Continuation US20210190918A1 (en) 2018-06-08 2020-12-08 Lidar, laser emitter, laser emitter emitting board assembly, and method for manufacturing laser emitter

Publications (2)

Publication Number Publication Date
WO2019233499A2 true WO2019233499A2 (zh) 2019-12-12
WO2019233499A3 WO2019233499A3 (zh) 2020-01-30

Family

ID=64144515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098623 WO2019233499A2 (zh) 2018-06-08 2019-07-31 激光雷达、激光器、激光器发射板组件及激光器的封装方法

Country Status (4)

Country Link
US (1) US20210190918A1 (zh)
EP (1) EP3855209A4 (zh)
CN (3) CN112327274B (zh)
WO (1) WO2019233499A2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113093203A (zh) * 2021-04-02 2021-07-09 探维科技(北京)有限公司 一种线阵探测器扫描激光雷达
CN113404980A (zh) * 2021-06-17 2021-09-17 河南惠德工程咨询有限公司 一种建筑物激光测量装置
WO2022133462A1 (en) * 2020-12-16 2022-06-23 Continental Automotive Systems, Inc. Hermetically-sealed vehicle lidar assembly
WO2022146652A1 (en) * 2020-12-28 2022-07-07 Beijing Voyager Technology Co., Ltd. Methods and apparatuses for thermal management of a detection sensor assembly in a lidar system

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112327274B (zh) * 2018-06-08 2022-11-22 上海禾赛科技有限公司 一种激光雷达
EP3830533A4 (en) 2018-07-30 2022-04-20 SeekOps Inc. ULTRA-LIGHT HANDHELD GAS LEAK DETECTION DEVICE
DE102018214228A1 (de) * 2018-08-23 2020-02-27 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Bamberg Elektronik eines Elektromotors eines Kraftfahrzeugs
CN109444857A (zh) * 2018-12-05 2019-03-08 宁波傲视智绘光电科技有限公司 一种可隔离杂光的激光雷达
CN109444852A (zh) * 2018-12-05 2019-03-08 宁波傲视智绘光电科技有限公司 一种激光雷达
CN109581331A (zh) * 2019-01-02 2019-04-05 宁波傲视智绘光电科技有限公司 一种激光雷达及其旋转镜配平方法
CN109884609A (zh) * 2019-02-27 2019-06-14 深圳市杰普特光电股份有限公司 激光雷达
US11994464B2 (en) 2019-04-05 2024-05-28 Seekops Inc. Analog signal processing for a lightweight and compact laser-based trace gas sensor
CN110753855A (zh) * 2019-04-15 2020-02-04 深圳市速腾聚创科技有限公司 一种激光雷达及智能感应设备
CN109917357B (zh) * 2019-04-28 2020-05-19 上海禾赛光电科技有限公司 激光雷达的整体对光方法以及激光雷达的对光装置
CN110753854B (zh) * 2019-05-30 2023-04-18 深圳市速腾聚创科技有限公司 激光雷达及智能感应设备
USD935915S1 (en) * 2019-06-05 2021-11-16 Hesai Technology Co., Ltd. Lidar
CN112585490B (zh) * 2019-07-29 2023-08-04 深圳市速腾聚创科技有限公司 激光发射模组及其装调方法、激光雷达及智能感应设备
CN110231609B (zh) * 2019-08-07 2022-09-13 深圳市速腾聚创科技有限公司 激光雷达
CN110308434B (zh) * 2019-08-27 2020-02-07 深圳市速腾聚创科技有限公司 一种激光雷达
CN110231608A (zh) * 2019-08-07 2019-09-13 深圳市速腾聚创科技有限公司 激光雷达及智能感应设备
EP4006577A4 (en) 2019-08-07 2022-09-07 Suteng Innovation Technology Co., Ltd. LASER RADAR AND INTELLIGENT MEASUREMENT DEVICE
CN113866784B (zh) * 2019-08-08 2023-02-03 上海禾赛科技有限公司 激光雷达及其控制方法
CN110618415B (zh) * 2019-09-25 2021-11-30 深圳市速腾聚创科技有限公司 一种用于激光雷达的挡板固定结构及激光雷达
USD959305S1 (en) * 2019-10-31 2022-08-02 Hesai Technology Co., Ltd. Lidar
CN110780280A (zh) * 2019-11-07 2020-02-11 上海禾赛光电科技有限公司 激光雷达
CN110716192B (zh) * 2019-11-07 2022-09-02 上海禾赛科技有限公司 一种激光雷达以及应用于激光雷达的装配方法
CN110988898A (zh) * 2019-12-02 2020-04-10 北京石头世纪科技股份有限公司 激光测距装置和机器人
US11988598B2 (en) 2019-12-31 2024-05-21 Seekops Inc. Optical cell cleaner
WO2021134690A1 (zh) * 2019-12-31 2021-07-08 深圳市大疆创新科技有限公司 测距装置和测距系统
CN113589302B (zh) * 2020-05-14 2022-06-21 北京一径科技有限公司 激光雷达和激光雷达用窗
USD939366S1 (en) * 2020-01-09 2021-12-28 Hesai Technology Co., Ltd. Lidar
US12055485B2 (en) 2020-02-05 2024-08-06 Seekops Inc. Multispecies measurement platform using absorption spectroscopy for measurement of co-emitted trace gases
WO2021195394A1 (en) 2020-03-25 2021-09-30 Seekops Inc. Logarithmic demodulator for laser wavelength-modulaton spectroscopy
USD1000978S1 (en) * 2020-04-23 2023-10-10 Hesai Technology Co., Ltd. Lidar
CN114207464B (zh) * 2020-06-29 2023-11-24 深圳市速腾聚创科技有限公司 一种激光接收装置和激光雷达
US20220018967A1 (en) * 2020-07-20 2022-01-20 Beijing Voyager Technology Co., Ltd. METHODS AND APPARATUSES FOR SECURING OPTICAL MODULES IN A LiDAR SYSTEM
CN114545363A (zh) * 2020-11-26 2022-05-27 上海禾赛科技有限公司 发射电路板组件、发射模组及其组装方法与激光雷达
USD955905S1 (en) * 2020-12-08 2022-06-28 Beijing Voyager Technology Co., Ltd. Light detection and ranging (LIDAR) component
USD955904S1 (en) * 2020-12-08 2022-06-28 Beijing Voyager Technology Co., Ltd. Light detection and ranging (LIDAR) component
CN115407314A (zh) * 2021-05-26 2022-11-29 锐驰智光(北京)科技有限公司 激光发射模块及具有此的激光雷达
CN113341424B (zh) * 2021-08-05 2021-11-05 锐驰智光(北京)科技有限公司 防止漏光的激光雷达
WO2023045457A1 (zh) * 2021-09-26 2023-03-30 杭州欧镭激光技术有限公司 一种用于激光雷达的窗罩及激光雷达
CN113671463A (zh) * 2021-09-26 2021-11-19 杭州欧镭激光技术有限公司 一种用于激光雷达的窗罩及激光雷达
CN114558797A (zh) * 2022-03-07 2022-05-31 重庆翰博显示科技研发中心有限公司 一种通过调控静电作用力巨量转移micro-LED的装置及其工作方法
WO2023235358A1 (en) * 2022-05-31 2023-12-07 Seekops Inc. Laser assembly having alignment mounts for herriott cell
CN114755772B (zh) * 2022-06-13 2022-09-09 耀芯电子(浙江)有限公司 一种非接触式信号传输连接器
US20240069166A1 (en) * 2022-08-23 2024-02-29 Lg Innotek Co., Ltd. Sensor head assembly having opposing sensor configuration with mount
CN116047471B (zh) * 2023-03-28 2023-06-27 北醒(北京)光子科技有限公司 一种雷达发射系统
CN117086895B (zh) * 2023-08-31 2024-04-05 中山市博测达电子科技有限公司 一种激光雷达装调设备及其方法

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100456581C (zh) * 2006-10-12 2009-01-28 飞秒光电科技(西安)有限公司 半导体激光器整形装置
TW200921046A (en) * 2007-11-15 2009-05-16 Quanyi Instr Co Ltd Measuring instrument
CN101834402B (zh) * 2009-09-24 2012-06-27 西安炬光科技有限公司 一种半导体激光器侧泵模块
TWI416168B (zh) * 2010-02-05 2013-11-21 Ind Tech Res Inst 光學多環掃描元件
EP3901653A3 (en) * 2010-05-17 2022-03-02 Velodyne Lidar USA, Inc. High definition lidar system
US20130080111A1 (en) * 2011-09-23 2013-03-28 Honeywell International Inc. Systems and methods for evaluating plane similarity
CN102385125A (zh) * 2011-10-28 2012-03-21 江苏奥雷光电有限公司 多通道小封装收发器及组装方法
CN103608696B (zh) * 2012-05-22 2016-05-11 韩国生产技术研究院 3d扫描系统和获得3d图像的方法
CN105408764B (zh) * 2013-05-06 2019-08-09 丹麦科技大学 同轴直接检测lidar系统
US20140340207A1 (en) * 2013-05-14 2014-11-20 Charles William Priest, III Vibrating Alert Device for Radar and Lidar Warning Receiver
JP6292533B2 (ja) * 2013-12-06 2018-03-14 株式会社リコー 物体検出装置及びセンシング装置
EP2887009A1 (en) * 2013-12-23 2015-06-24 Universität Zürich Method for reconstructing a surface using spatially structured light and a dynamic vision sensor
US9547074B2 (en) * 2014-04-09 2017-01-17 Digital Signal Corporation System and method for using combining couplers with asymmetric split ratios in a lidar system
WO2016026095A1 (zh) * 2014-08-20 2016-02-25 黄智� 薄型高效率无线充电线圈及其无线充电系统
US9678199B2 (en) * 2015-01-30 2017-06-13 Qualcomm Incorporated Propulsion device lidar system and method
US10088571B2 (en) * 2015-02-17 2018-10-02 Florida Atlantic University Board Of Trustees Underwater sensing system
US9651658B2 (en) * 2015-03-27 2017-05-16 Google Inc. Methods and systems for LIDAR optics alignment
US10326252B2 (en) * 2015-05-06 2019-06-18 Microsoft Technology Licensing, Llc Beam projection for fast axis expansion
CN104849946B (zh) * 2015-06-10 2017-11-24 魅族科技(中国)有限公司 一种拍摄辅助装置及其装配方法及终端
US9823118B2 (en) * 2015-12-26 2017-11-21 Intel Corporation Low power, high resolution solid state LIDAR circuit
CN105824029B (zh) * 2016-05-10 2018-09-04 深圳市速腾聚创科技有限公司 多线激光雷达
CN106019293A (zh) * 2016-05-19 2016-10-12 上海思岚科技有限公司 一种激光扫描测距装置
US10624245B2 (en) * 2016-06-23 2020-04-14 Laird Technologies, Inc. Laser weldable brackets for attachment of heat sinks to board level shields
CN106199556B (zh) * 2016-06-24 2019-01-18 南京理工大学 一种自主驾驶用车载激光雷达的旋转扫描装置
CN106200710A (zh) * 2016-08-26 2016-12-07 陈国庆 防止锅具干烧的控制系统及其安装方法
CN206411269U (zh) * 2016-10-25 2017-08-15 深圳市镭神智能系统有限公司 一种多线激光雷达测距系统
CN206180708U (zh) * 2016-10-28 2017-05-17 深圳市镭神智能系统有限公司 一种具有无线传电功能的激光雷达
CN117491975A (zh) * 2016-10-31 2024-02-02 深圳市镭神智能系统有限公司 一种基于飞行时间原理的激光雷达光路系统
CN106597457A (zh) * 2016-11-08 2017-04-26 上海禾赛光电科技有限公司 基于光谱技术的测距仪及方法
KR20180060783A (ko) * 2016-11-29 2018-06-07 한국해양대학교 산학협력단 드론을 이용한 무선전력전송 방법 및 시스템
CN106980160B (zh) * 2017-03-07 2018-11-20 中国科学院微电子研究所 基于混合集成的片上光源结构及其制备方法
CN106814366B (zh) * 2017-03-23 2024-04-30 上海思岚科技有限公司 一种激光扫描测距装置
CN107064957B (zh) * 2017-04-05 2023-08-15 南京信息工程大学 一种用于液态水云测量的多视场激光雷达探测系统及方法
CN206863211U (zh) * 2017-06-06 2018-01-09 保定市天河电子技术有限公司 一种小型化激光雷达
CN206773192U (zh) * 2017-06-19 2017-12-19 上海禾赛光电科技有限公司 基于多个非均匀分布激光器的激光雷达
CN107131963B (zh) * 2017-06-15 2019-12-27 南京理工大学 无线传输式湿式离合器摩擦钢片瞬态温度场测量系统
CN113552554B (zh) * 2017-06-19 2023-04-25 上海禾赛科技有限公司 多线激光雷达以及使用多线激光雷达进行探测的方法
CN206773188U (zh) * 2017-06-19 2017-12-19 上海禾赛光电科技有限公司 基于阵列式激光器和探测器的多线激光雷达
CN206773185U (zh) * 2017-06-19 2017-12-19 上海禾赛光电科技有限公司 基于电机顶置的多线激光雷达
CN107271983B (zh) * 2017-06-19 2023-06-16 上海禾赛科技有限公司 多线激光雷达
CN107238839A (zh) * 2017-07-19 2017-10-10 北醒(北京)光子科技有限公司 一种红外探测与测量装置
CN207396721U (zh) * 2017-09-05 2018-05-22 深圳市镭神智能系统有限公司 一种多线激光雷达
CN207318708U (zh) * 2017-09-27 2018-05-04 北京因泰立科技有限公司 一种基于mems微镜的三维扫描激光雷达
CN107796331B (zh) * 2017-10-13 2019-06-21 中国科学院南京土壤研究所 基于推扫式LiDAR的土壤表面形态监测装置、土壤表面形态监测及数据分析方法
CN108107459A (zh) * 2017-12-11 2018-06-01 浙江捷尚人工智能研究发展有限公司 基于导航系统的机器人方位检测方法、装置及系统
CN112327274B (zh) * 2018-06-08 2022-11-22 上海禾赛科技有限公司 一种激光雷达
JP2021535996A (ja) * 2018-09-06 2021-12-23 ブリックフェルト ゲーエムベーハー 光検出および測距、すなわち、lidar測定のための同軸設定
CN113193471B (zh) * 2019-07-31 2022-12-20 上海禾赛科技有限公司 激光器、激光器发射板组件、激光雷达和激光器封装方法
CN110579751B (zh) * 2019-08-27 2022-08-09 上海禾赛科技有限公司 可用于激光雷达的发射系统、激光雷达以及激光发射方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022133462A1 (en) * 2020-12-16 2022-06-23 Continental Automotive Systems, Inc. Hermetically-sealed vehicle lidar assembly
US12019184B2 (en) 2020-12-16 2024-06-25 Continental Autonomous Mobility US, LLC Hermetically-sealed vehicle lidar assembly
WO2022146652A1 (en) * 2020-12-28 2022-07-07 Beijing Voyager Technology Co., Ltd. Methods and apparatuses for thermal management of a detection sensor assembly in a lidar system
CN113093203A (zh) * 2021-04-02 2021-07-09 探维科技(北京)有限公司 一种线阵探测器扫描激光雷达
CN113093203B (zh) * 2021-04-02 2023-11-21 探维科技(北京)有限公司 一种线阵探测器扫描激光雷达
CN113404980A (zh) * 2021-06-17 2021-09-17 河南惠德工程咨询有限公司 一种建筑物激光测量装置
CN113404980B (zh) * 2021-06-17 2024-01-26 河南惠德工程咨询有限公司 一种建筑物激光测量装置

Also Published As

Publication number Publication date
CN112327274A (zh) 2021-02-05
WO2019233499A3 (zh) 2020-01-30
CN112327274B (zh) 2022-11-22
EP3855209A4 (en) 2022-02-16
CN108828558A (zh) 2018-11-16
CN108828558B (zh) 2020-10-09
US20210190918A1 (en) 2021-06-24
CN112327269A (zh) 2021-02-05
EP3855209A2 (en) 2021-07-28

Similar Documents

Publication Publication Date Title
WO2019233499A2 (zh) 激光雷达、激光器、激光器发射板组件及激光器的封装方法
CN108594206B (zh) 光传输模块、激光发射模块、激光雷达系统及车辆
CN108535737B (zh) 一种激光雷达装置
US20210281040A1 (en) Laser diode packaging module, distance detection device, and electronic device
WO2020062110A1 (zh) 扫描模组、测距装置、测距组件、距离探测设备及移动平台
CN108828557B (zh) 一种激光雷达
CN109613515A (zh) 一种激光雷达系统
CN208421227U (zh) 一种激光雷达
WO2019109993A1 (zh) 激光雷达系统及其控制方法、扫描角度的获取方法及车辆
JP7542658B2 (ja) レーザレーダ及び測距方法
CN220271559U (zh) 激光雷达及移动设备
CN110596675A (zh) 一种激光发射装置及激光雷达系统
WO2020062115A1 (zh) 距离探测设备及移动平台
CN114706092A (zh) 飞行时间模组及其组装方法、拍摄组件和终端
CN211206787U (zh) 测距组件及移动平台
CN213462065U (zh) 小体积tof摄像模组
CN115453496B (zh) 谐振式mems激光雷达
CN218497141U (zh) Mems振镜谐振角度光学检测组件
CN219122402U (zh) 激光雷达
CN116609766B (zh) 激光雷达及可移动设备
KR102622602B1 (ko) 멀티 채널을 가지는 라이다 장치 및 이를 이용한 거리측정 방법
CN220983495U (zh) 一种基于mems镜阵的扫描模组和激光雷达
CN219302660U (zh) 一种扫描式激光雷达
CN218584990U (zh) 激光雷达
WO2023123984A1 (zh) 光收发模组及激光雷达

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19814737

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019814737

Country of ref document: EP

Effective date: 20210111