WO2021134690A1 - 测距装置和测距系统 - Google Patents

测距装置和测距系统 Download PDF

Info

Publication number
WO2021134690A1
WO2021134690A1 PCT/CN2019/130929 CN2019130929W WO2021134690A1 WO 2021134690 A1 WO2021134690 A1 WO 2021134690A1 CN 2019130929 W CN2019130929 W CN 2019130929W WO 2021134690 A1 WO2021134690 A1 WO 2021134690A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
measuring device
distance measuring
optical
sub
Prior art date
Application number
PCT/CN2019/130929
Other languages
English (en)
French (fr)
Inventor
吴敬阳
梁震
娄元帅
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/130929 priority Critical patent/WO2021134690A1/zh
Priority to CN201980059920.1A priority patent/CN114174851A/zh
Publication of WO2021134690A1 publication Critical patent/WO2021134690A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00

Definitions

  • This application relates to the technical field of distance measuring equipment, and in particular to a distance measuring device and a distance measuring system.
  • the working principle of distance measuring devices such as lidar is to first transmit the detection light pulse to the detection object, and then receive the reflected light pulse reflected from the detection object. Finally, the distance measuring device compares the detection light pulse and the reflected light pulse and processes them appropriately. Then you can get the relevant feature information of the probe, such as the parameter information such as the distance and azimuth of the probe.
  • the overall size of the current distance measuring device is relatively large, which is not conducive to the miniaturization of the product design.
  • the present application provides a distance measuring device and a distance measuring system, aiming at optimizing the overall size of the distance measuring device and facilitating the miniaturization design of the product.
  • the present application provides a distance measuring device, the distance measuring device includes:
  • the light transmitter is arranged in the light emitting path and is used to generate the first light pulse
  • An optical receiver arranged in the receiving optical path, for receiving a second optical pulse, wherein the second optical pulse is an optical pulse formed after the first optical pulse is reflected by the probe;
  • An optical structure for guiding the first light pulse to the probe, and guiding at least part of the second light pulse to the light receiver;
  • At least part of the optical structure is located on the emitting optical path; and at least part of the optical structure is located on the receiving optical path for separating the first optical pulse and the second optical pulse.
  • the present application provides a distance measuring device, which includes: an optical transmitter arranged in the transmitting optical path for generating a first light pulse; an optical receiver arranged in the receiving optical path for Receiving a second light pulse, where the second light pulse is a light pulse formed after the first light pulse is reflected by a probe; an optical structure for guiding the first light pulse emitted by the light emitter To the detection object, and guide at least part of the second light pulse reflected by the detection object to the light receiver; a light shielding member, the optical structure, the light confinement member, and the light receiver Are arranged in sequence along the receiving light path; the shading member is used to block stray light and allow the light beam of the receiving light path to pass through; the stray light is scattered light or scattered light received by the light receiver from a direction outside the receiving light path reflected light.
  • the present application provides a distance measuring device, including: an optical transmitter arranged in the transmitting optical path for generating a first light pulse; an optical receiver arranged in the receiving optical path for Receiving a second light pulse, where the second light pulse is a light pulse formed after the first light pulse is reflected by a probe; an optical structure for guiding the first light pulse emitted by the light emitter To the detection object, and guide at least part of the second light pulses reflected by the detection object to the light receiver; a light confinement member, the light emitter, the light confinement member, and the optical The structures are arranged in sequence along the emission light path; the light confinement member is used to confine the first light pulse generated by the light emitter, so as to reduce the beam size of the first light pulse passing through the light confinement member.
  • the present application provides a distance measuring system, including: a housing; and the above-mentioned distance measuring device, which is provided on the housing.
  • the embodiments of the application provide a distance measuring device and a distance measuring system.
  • the transmitting light path formed by the first light pulse and the receiving light path formed by the second light pulse can be folded through the optical structure, so that the first light pulse and the second light pulse can be folded.
  • the two light pulses are separated in space, which effectively reduces the size of the distance measuring device, thereby meeting the requirement of a smaller volume and further optimizing the overall size of the product.
  • FIG. 1 is a schematic structural diagram of a ranging system provided by an embodiment of the present application.
  • FIG. 2a is a schematic structural diagram of a distance measuring device provided by an embodiment of the present application at one angle;
  • 2b is a schematic structural diagram of the distance measuring device provided by an embodiment of the present application at another angle;
  • FIG. 3 is a schematic cross-sectional view of a distance measuring device provided by an embodiment of the present application at an angle;
  • FIG. 4 is a schematic cross-sectional view of the distance measuring device provided by an embodiment of the present application at another angle;
  • 5 is a schematic cross-sectional view of the distance measuring device provided by an embodiment of the present application at another angle;
  • Fig. 6a is a schematic diagram of optical path folding of the first light pulse and the second light pulse provided by an embodiment of the present application
  • FIG. 6b is a schematic diagram of the optical path expansion of the first light pulse and the second light pulse provided by an embodiment of the present application;
  • FIG. 7 is a schematic diagram of the sensing principle of a distance measuring device provided by an embodiment of the present application.
  • FIG. 8 is an exploded schematic diagram of a distance measuring device provided by an embodiment of the present application at an angle
  • FIG. 9 is an exploded schematic diagram of the distance measuring device provided by an embodiment of the present application at another angle.
  • FIG. 10 is a schematic structural diagram of an optical component provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of an optical component provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of the relative positions of an optical transmitter, an optical structure, and an optical receiver provided by an embodiment of the present application;
  • FIG. 13 is a schematic structural view of a light-shielding member provided by an embodiment of the present application at an angle;
  • FIG. 14 is a schematic structural diagram of the shading member provided by an embodiment of the present application at another angle
  • 15 is a schematic cross-sectional view of a shading member provided by an embodiment of the present application.
  • 16 is a schematic diagram of the optical receiver of the distance measuring device according to an embodiment of the present application when sensing a second light pulse, wherein the distance measuring device is not provided with a light shield;
  • FIG. 17 is a schematic diagram of the optical receiver of the distance measuring device according to an embodiment of the present application when sensing a second light pulse, wherein the distance measuring device is provided with a light shield;
  • FIG. 18 is a schematic structural diagram of a shading member provided by an embodiment of the present application, in which the second light pulse passes through the shading member;
  • 19 is a schematic partial cross-sectional view of a distance measuring device provided by an embodiment of the present application, in which a light shielding member and a light receiver are shown, and the second light pulse is transmitted to the light receiver through the light shielding member;
  • 20 is a schematic diagram of a part of the structure of a distance measuring device provided by an embodiment of the present application at an angle, which shows the transmitting bracket and the light restraining member;
  • FIG. 21 is a partial structural diagram of the distance measuring device provided by an embodiment of the present application at another angle, which shows the transmitting bracket and the light restraining member;
  • FIG. 22 is a partial structural diagram of the distance measuring device provided by an embodiment of the present application at another angle, in which the transmitting bracket and the light restraining member are shown;
  • FIG. 23 is a schematic diagram of a part of the optical path of the first light pulse provided by an embodiment of the present application, in which the light confinement member is not provided to restrict the first light pulse;
  • 24 is a schematic diagram of a light emitter emitting a first light pulse according to an embodiment of the present application, wherein a light confinement member is provided to confine the first light pulse;
  • 25a is a schematic diagram of a part of the structure of a distance measuring device provided by an embodiment of the present application at an angle, in which the first light pulse passes through the light channel;
  • FIG. 25b is a schematic partial structural diagram of a distance measuring device provided by an embodiment of the present application, in which the first light pulse passes through the light channel;
  • FIG. 26 is a partial structural diagram of the distance measuring device provided by an embodiment of the present application at another angle, in which the first light pulse passes through the light channel;
  • Fig. 27 is a partial enlarged schematic diagram of the distance measuring device in Fig. 5 at A;
  • Fig. 28 is a partial enlarged schematic diagram of the distance measuring device in Fig. 20 at B;
  • FIG. 29 is a partial schematic diagram of a distance measuring device provided by an embodiment of the present application, which shows a base, a part of a support, and a part of the optical structure, and the distance measuring device is in a first temperature environment;
  • FIG. 30 is a partial schematic diagram of a distance measuring device provided by an embodiment of the present application, which shows the base, part of the support, and part of the optical structure, and the distance measuring device is in a second temperature environment, and the second temperature is greater than the first temperature;
  • FIG. 31 is a partial schematic diagram of a distance measuring device provided by an embodiment of the present application, which shows a base, a cover, a part of a bracket, and a part of the optical structure, and the distance measuring device is in a first temperature environment;
  • FIG. 32 is a partial schematic diagram of a distance measuring device provided by an embodiment of the present application, which shows a base, a cover, a light emitter, a part of a bracket, and a part of the optical structure;
  • Fig. 33 is a partial schematic diagram of a distance measuring device provided by an embodiment of the present application, which shows a base, a cover, a light emitter, a part of a bracket, and a part of the optical structure.
  • Ranging device 101. TOF unit;
  • Optical component 321. Light-transmitting area; 322. Reflecting area; 3221, first edge portion; 3222, second edge portion; 323, base body; 3231, light-transmitting portion; 3232, peripheral portion; 3233, first surface ; 3234, the second surface; 324, the reflective layer; 3241, the light hole;
  • connection structure 51. Transmitting bracket; 52. Receiving bracket; 53, Optical bracket; 531. First sub-frame; 532. Second sub-frame; 533. Collimation sub-frame; 534. Third sub-frame. 541, the first connecting piece; 542, the second connecting piece; 543, the mounting part; 544, the assembling part;
  • Shading member 71. Shading part; 72. Light channel part; 721. First sub-channel; 722. Second sub-channel;
  • Optical restraint 81, light passage; 82, first restraint part; 821, connecting section; 822, restraint section; 83, second restraint part, 831, connecting subsection; 832, restraining subsection; 8321 Sub-part body; 8322, first connection surface; 8323, second connection surface; 833, extension sub-part; 84, connection part;
  • the laser distance measuring device is a device that can actively emit laser light (ie, outgoing light), and calculate the distance information between the probe and the laser distance measuring device by using the light reflected by the probe. It is widely used in single point rangefinder, 2D lidar and 3D lidar, etc.
  • the laser distance measuring device contains a light transmitter, a light receiver and a collimating lens.
  • the laser distance measuring device may also include some filter lenses and reflective lenses according to the needs of the optical path design.
  • its optical design determines its core performance such as range and accuracy in compliance with laser safety regulations, and its structural design determines its size, weight, cost, reliability and other indicators.
  • the size of the laser distance measuring device in the direction of the optical axis of the collimating lens will be large, which is not conducive to the miniaturized design or size of the product optimization.
  • an embodiment of the present application provides a distance measuring device, including: an optical transmitter, which is arranged in the transmitting optical path, and is used to generate a first light pulse; an optical receiver, which is arranged in the receiving optical path, and is used to receive the second light.
  • the second light pulse is the light pulse formed after the first light pulse is reflected by the probe; the optical structure is used to guide the first light pulse to the probe, and at least Part of the second optical pulse is guided to the optical receiver; wherein, at least part of the optical structure is located on the transmitting optical path; and at least part of the optical structure is located on the receiving optical path for transferring the The first light pulse is separated from the second light pulse.
  • An embodiment of the present application provides a ranging system 1000, which can be used to determine the distance and/or direction of the probe 2000 relative to the ranging system 1000.
  • the distance measurement system 1000 may be electronic equipment such as laser distance measurement equipment and lidar.
  • the ranging system 1000 may be used to sense external environment information.
  • the external environment information may be at least one of distance information, azimuth information, speed information, and reflection intensity information of the environmental target.
  • the ranging system 1000 may be mounted on a carrier and used to detect the probe 2000 around the carrier.
  • the distance measurement system 1000 is specifically used to detect the distance between the probe 2000 and the distance measurement system 1000.
  • the carrier may include any suitable carrier such as unmanned aerial vehicles, mobile robots, mobile vehicles, and mobile ships. Understandably, one carrier can be equipped with one or more ranging systems 1000, and different ranging systems 1000 can be used to detect objects in different orientations.
  • the distance measurement system 1000 can detect the probe 2000 and the distance measurement by measuring the time of light propagation between the distance measurement system 1000 and the probe 2000, that is, the time-of-flight (TOF).
  • TOF time-of-flight
  • the ranging system 1000 can also detect the distance between the probe 2000 and the ranging system 1000 through other technologies, such as a ranging method based on frequency shift measurement, or based on phase shift. There are no restrictions on the distance measurement method of the measurement.
  • the distance and/or azimuth detected by the ranging system 1000 can be used for remote sensing, obstacle avoidance, surveying and mapping, modeling, navigation, and the like.
  • the ranging system 1000 may be mounted on a carrier, which may include any suitable carrier such as an unmanned aerial vehicle, a movable robot, a movable vehicle, a movable ship, etc., for detecting detection around the carrier. ⁇ 2000.
  • the detection object 2000 may be an obstacle or a target of interest, and the ranging system 1000 may be specifically used to detect the distance between the detection object 2000 and the ranging system 1000.
  • the distance measuring system 1000 includes a housing 200 and a distance measuring device 100 provided on the housing 200.
  • the housing 200 is formed with a cavity, and at least part of the distance measuring device 100 is housed in the cavity to reduce the influence of the external environment on the distance measuring device 100, for example, to reduce the influence of water vapor, dust, stray light, etc. on the distance measuring device 100. influences.
  • the distance measuring device 100 is used to transmit or generate light pulses to the probe 2000, receive the light pulses reflected by the probe 2000, and determine the distance between the probe 2000 and the distance measurement system 1000 based on the reflected light pulses.
  • the distance measuring device 100 includes an optical transmitter 10, an optical receiver 20 and an optical structure 30.
  • the light transmitter 10 is arranged in the light emitting path and is used to generate the first light pulse 300.
  • the optical receiver 20 is arranged in the receiving optical path and is used to receive the second optical pulse 400.
  • the second light pulse 400 refers to the light pulse formed after the first light pulse 300 is reflected by the probe 2000.
  • At least part of the optical structure 30 is located on the transmitting light path; and at least part of the optical structure 30 is located on the receiving light path, for separating the first light pulse 300 and the second light pulse 400.
  • the transmitting light path formed by the first light pulse 300 and the receiving light path formed by the second light pulse 400 can be folded through the optical structure 30, so that the first light pulse 300 and the second light pulse
  • the 400 realizes space separation, effectively reduces the size of the product, makes full use of optical characteristics and space in different directions for optical path design, so as to meet the requirement of smaller volume and further optimize the overall size of the product.
  • the first light pulse 300 is emitted by the light emitter 10 and guided to the probe 2000 through the optical structure 30, so as to emit the first light pulse 300 to the probe 2000.
  • the first light pulse 300 After the first light pulse 300 reaches the probe 2000, it can be reflected on the surface of the probe 2000.
  • the light pulse formed after the first light pulse 300 is reflected by the probe 2000 is called the second light pulse 400.
  • Part of the second light pulse 400 may reach the optical structure 30 and be guided by the optical structure 30 to the light receiver 20, and the light receiver 20 receives the second light pulse 400 and generates an electrical signal.
  • the first light pulse 300 is emitted from the light emitter 10
  • the light path that reaches the probe 2000 through at least a part of the optical structure 30 is the emission light path.
  • the first light pulse 300 is reflected by the detection object 2000 to form a second light pulse 400, and the light path through which the second light pulse 400 reaches the light receiver 20 through at least part of the optical structure 30 is the receiving light path.
  • the distance measuring device 100 may adopt a coaxial or coaxial optical path scheme, that is, the transmitting optical path and the receiving optical path use coaxial optical paths, that is, the first light pulse 300 emitted by the optical transmitter 10 and the second light reflected by the probe 2000
  • the pulse 400 shares at least part of the optical path in the distance measuring device 100.
  • the distance measuring device 100 may also be based on a dual-axis solution, etc., which is not limited here.
  • the first light pulse 300 and the second light pulse 400 may be configured to travel along different light paths.
  • the light transmitter 10 can emit light pulses, that is, generate a first light pulse 300.
  • the first light pulse 300 may be a single light pulse or a series of light pulses.
  • the optical transmitter 10 may be a semiconductor laser, a fiber laser, or the like.
  • the light emitter 10 may include at least one of a light emitting diode (Light Emitting Diode, LED), a laser diode (Laser Diode, LD), a semiconductor laser array, and the like.
  • the semiconductor laser array may be, for example, a VCSEL (Vertical Cavity Surface Emitting Laser) array or multiple laser diode arrays.
  • a plurality of laser diode arrays form a multi-line light emitter 10, so that the light emitter 10 can emit multiple first light pulses at the same time.
  • the light receiver 20 includes at least one of a photodiode, an avalanche photodiode (APD), a Geiger-mode avalanche photodiode (GM-APD), a charge-coupled element, and the like.
  • a photodiode an avalanche photodiode (APD), a Geiger-mode avalanche photodiode (GM-APD), a charge-coupled element, and the like.
  • APD avalanche photodiode
  • GM-APD Geiger-mode avalanche photodiode
  • charge-coupled element and the like.
  • the light transmitter 10 may generate the first light pulse 300 at the nanosecond (ns) level.
  • the light transmitter 10 can generate a laser pulse with a duration close to 8 ns, and the light receiver 20 can detect a return signal with a close duration, that is, the second light pulse 400.
  • a measuring circuit for example, a time-of-flight (TOF) unit 101
  • the actual cost, D is the distance between the distance measuring device 100 and the probe 2000
  • c is the speed of light.
  • the distance measuring device 100 can measure the distance to the probe 2000 based on the time difference between the first light pulse 300 generated by the light transmitter 10 and the second light pulse 400 received by the light receiver 20.
  • the optical structure 30 includes an optical element 31, an optical component 32 and a collimating element 33.
  • the light emitter 10, the optical element 31, the optical component 32 and the collimating element 33 are arranged in sequence along the emission light path. That is, the light emitter 10, the optical element 31, the optical component 32 and the collimating element 33 are arranged in sequence along the transmission direction of the first light pulse 300.
  • the optical element 31 is used to change the direction of the light path of the first light pulse 300 generated by the light transmitter 10.
  • the optical element 31 may include a mirror.
  • the reflective surface of the optical element 31 is arranged facing the light emitter 10 so that the first light pulse 300 generated by the light emitter 10 can reach the optical element 31.
  • the optical element 31 is arranged between the light emitter 10 and the optical component 32 along the emission light path.
  • the optical element 31 can change the optical path direction of the first light pulse 300 generated by the light emitter 10.
  • the first light pulse 300 reaching the optical element 31 can reach the optical component 32 after being reflected by the optical element 31.
  • the external dimensions of the optical element 31 can be flexibly set according to actual requirements.
  • the shape and size of the optical element 31 is adapted to the beam size of the first light pulse 300 reaching the optical element 31.
  • the first light pulse 300 can be effectively transmitted, and the light emitter 10 can produce
  • the first light pulse 300 can reach the optical component 32 as much as possible to avoid the energy loss of the first light pulse 300; and it can effectively reduce the stray light reaching the light receiver 20.
  • the outer dimensions of the optical element 31 are as follows: the length is 20 mm, the width is 15 mm, and the thickness is 2 mm.
  • the optical component 32 is used to separate the first light pulse 300 and the second light pulse 400. Specifically, the optical component 32 is disposed between the optical component 31 and the collimating component 33 along the emission light path, and the collimating component 33 is disposed on the side of the optical component 32 away from the optical component 31.
  • the optical component 32 includes at least one of an apertured mirror, a half mirror, a polarization beam splitter, and a beam splitter using a coating method.
  • the optical component 32 is used to transmit the first light pulse 300 after the optical path direction is adjusted by the optical element 31 on the one hand, and on the other hand to reflect the second light pulse 400 converged by the collimating element 33.
  • the light-transmitting area and the reflective area can be any suitable structure, for example, the light-transmitting area is a structure such as a hole structure or glass, and the first light pulse 300 can pass through the light-transmitting area of the optical component 32 or on the light-transmitting area of the optical component 32 Refraction occurs, so that the first light pulse 300 can be projected onto the collimating element 33 according to a preset light path.
  • the light-transmitting area is a structure such as a hole structure or glass
  • the first light pulse 300 can pass through the light-transmitting area of the optical component 32 or on the light-transmitting area of the optical component 32 Refraction occurs, so that the first light pulse 300 can be projected onto the collimating element 33 according to a preset light path.
  • the optical component 32 includes a light-transmitting area 321 and a reflective area 322.
  • the light-transmitting area 321 is used for the first light pulse 300 to pass through.
  • the reflective area 322 extends outward along the circumference of the transparent area 321 and is used to reflect the second light pulse 400 passing through the reflective area 322.
  • the light-transmitting area 321 can transmit the first light pulse 300 whose light path direction is adjusted by the optical element 31.
  • the reflective area 322 can be used to reflect the second light pulse 400 that reaches the reflective area 322 after being converged by the collimating element 33, so that the second light pulse 400 can reach the light receiver 20.
  • the spatial separation of the first light pulse 300 and the second light pulse 400 can be achieved.
  • the light-transmitting area 321 may be made of a light-transmitting material, for example, it may be made of a material with high light transmittance such as plastic, resin, and glass.
  • the light-transmitting area 321 and the reflective area 322 can be designed in any suitable shape according to actual requirements.
  • the longitudinal section of the light-transmitting area 321 is trapezoidal or approximately trapezoidal.
  • the longitudinal section of the light-transmitting region 321 refers to a section parallel to the longitudinal extension direction of the optical component 32, and the longitudinal section is also perpendicular to the XOY plane in FIGS. 6a and 6b.
  • An approximate trapezoid refers to a shape equivalent to a trapezoid, such as a shape obtained by chamfering the adjacent sides of a trapezoid.
  • the long sides of the trapezoid and the short sides of the trapezoid are arranged at intervals along the length extension direction of the optical component 32.
  • the long side of the trapezoid is parallel to the short side of the trapezoid.
  • the trapezoid is an isosceles trapezoid.
  • the longitudinal section of the reflective area 322 is square or approximately square.
  • the longitudinal section of the reflective area 322 refers to a section parallel to the length extension direction of the optical component 32, and the longitudinal section is also perpendicular to the XOY plane in FIGS. 6a and 6b.
  • the square can be a rectangle or a square.
  • An approximate square refers to a shape equivalent to a square, for example, a shape obtained by chamfering adjacent sides of a square.
  • the reflective area 322 includes a first edge portion 3221 and a second edge portion 3222.
  • the first edge portion 3221 is spaced apart from the long side of the trapezoid by a first predetermined distance d1.
  • the second edge portion 3222 is opposite to the first edge portion 3221.
  • the second edge portion 3222 is spaced apart from the short side of the trapezoid by a second predetermined distance d2.
  • the first preset distance d1 is greater than the second preset distance.
  • the first preset distance d1 and the second preset distance d2 can be designed as any suitable values according to actual requirements.
  • the size of the reflective area 322 and the light-transmitting area 321 and the relative position relationship between the two can be flexibly set according to actual requirements.
  • the size of the light-transmitting area 321 is adapted to the beam size of the first light pulse 300 reaching the optical component 32
  • the size of the reflective area 322 is the same as the beam size of the second light pulse 400 reaching the optical component 32. adaptation. In this way, the first light pulse 300 can be effectively transmitted and the energy loss of the first light pulse 300 can be avoided; and the stray light reaching the light receiver 20 can be effectively reduced.
  • the outer shape of the optical component 32 is close to a rectangle, and its outer dimensions are as follows: a length of 50.2 mm, a width of 40 mm, and a thickness of 2.0 mm. More specifically, the light-transmitting area 321 of the optical component 32 is close to a trapezoid, and the dimensions of the trapezoid are as follows: the length of the short side is 11.3 mm, the angle between the two sides is 6.1°, and the first preset distance d1 is 12.2 mm, the second preset distance d2 is 5.1 mm.
  • the optical component 32 has a base 323 and a reflective layer 324 formed on the substrate.
  • the base 323 includes a light-transmitting part 3231 and a peripheral part 3232.
  • the light-transmitting portion 3231 is used for passing the first light pulse 300 whose light path direction is adjusted by the optical element 31.
  • the light-transmitting portion 3231 is made of light-transmitting materials, such as plastic, glass, vertical and other materials with high light transmittance.
  • the area on the base 323 excluding the light-transmitting portion 3231 is the peripheral portion 3232.
  • the peripheral portion 3232 may be made of metals with low light transmittance such as copper and aluminum.
  • the material of the peripheral portion 3232 can also be the same as the material of the light-transmitting portion 3231, that is, made of the above-mentioned light-transmitting material.
  • the peripheral portion 3232 and the light-transmitting portion 3231 can be integrally formed.
  • the base 323 also has a first surface 3233 and a second surface 3234 disposed opposite to each other.
  • the optical element 31 and the light emitter 10 are located on the side of the first surface 3233 of the base 323, and the collimating element 33 and the optical device 34 are located on the second surface of the base 323.
  • the reflective layer 324 is disposed on the side of the base 323 away from the optical element 31, that is, on the second surface 3234.
  • the reflective layer 324 is provided with a light passing hole 3241.
  • the light-passing hole 3241 is arranged corresponding to the position of the light-transmitting portion 3231.
  • the first light pulse 300 whose light path direction is changed by the optical element 31 passes through the light-transmitting portion 3231 and the light-transmitting hole and then exits.
  • the light-passing hole 3241 and the light-transmitting portion 3231 cooperate to form the aforementioned light-transmitting area 321.
  • the reflective layer 324 can be made of any suitable metal material such as aluminum, gold, silver, palladium, or titanium.
  • the material of the outer portion 3232 and the transparent portion 3231 are the same, the light reaching the outer portion 3232 (for example, the first light pulse 300 (Or stray light) can be blocked by the reflective layer 324, and the reflective layer 324 can also reflect most or almost all of the second light pulse 400 incident from the outside of the distance measuring device 100.
  • the collimating element 33 is used to collimate the first light pulse 300.
  • the first light pulse 300 can reach the detection object 2000 after being collimated by the collimating element 33.
  • the collimating element 33 is located on the emission light path. More specifically, the collimating element 33 is disposed on the side of the optical component 32 away from the optical element 31.
  • the first light pulse 300 passing through the optical component 32 may be collimated by the collimating element 33.
  • the collimating element 33 can collimate the first light pulse 300 passing through the optical component 32 into a parallel light pulse or an approximately parallel light pulse.
  • the collimated light pulse basically does not spread when the light propagates.
  • the collimating element 33 includes at least one of elements capable of collimating light pulses, such as a collimating lens, a concave mirror, or a microlens array.
  • the collimating element 33 can be designed as any optical component with collimating function according to actual needs, and can be, but not limited to, a collimating lens or a concave mirror.
  • the collimating lens may include any one of the following: a single plano-convex lens, a single biconvex lens, a double plano-convex lens (such as a double cemented lens), and the like.
  • the collimating element 33 may also be a micro lens array. It is understandable that the collimation effect will be better when the spacing between the microlenses of the microlens array is the same as the spacing between the lasers of the laser array.
  • the collimating element 33 may also be composed of multiple lenses.
  • the collimating element 33 includes a concave lens and a convex lens.
  • the collimating element 33 adopts a telescope structure, including a meniscus and a convex lens, which can better correct aberrations and obtain a collimated light sequence.
  • the collimating element 33 is also used to converge at least part of the second light pulse 400 reflected back by the probe 2000 onto the optical component 32. That is, the transmitting light path and the receiving light path share the same collimating element 33 to reduce the cost and make the light path more compact, which facilitates the miniaturization of the product design.
  • the transmitting optical path and the receiving optical path adopt a coaxial optical path, that is, the first optical pulse 300 emitted by the optical transmitter 10 and the second optical pulse 400 received by the optical receiver 20 share the optical path between the optical component 32 and the collimating element 33, Therefore, the transmitting optical path and the receiving optical path can share the same collimating element 33.
  • the distance measuring device 100 does not need to use two collimating elements 33 to respectively collimate and focus the first light pulse 300 and the second light pulse 400, and only one collimating element 33 is required. , Reduce the cost of raw materials.
  • the transmitting optical path and the receiving optical path of the distance measuring device 100 can share at least part of the optical path, thereby making the optical path more compact and facilitating the miniaturization of the product.
  • the outer dimensions of the collimating element 33 can be designed as any suitable optical or outer dimensions according to actual requirements.
  • the collimating element 33 is adapted to the beam size of the light pulse reaching the collimating element 33. In this way, the optical pulse can be effectively transmitted and the energy loss of the optical pulse can be avoided; and the stray light reaching the optical receiver 20 can be effectively reduced.
  • the collimating element 33 is a collimating lens
  • the larger the optical effective diameter of the collimating lens the stronger the energy of the second light pulse 400 entering the light receiver 20, which can ensure that the range of the distance measuring device 100 is sufficiently far.
  • the longer the focal length of the collimating lens the better the collimation effect of the first light pulse 300 emitted by the light transmitter 10 is. The less likely the light spot formed by the first light pulse 300 is to spread during the propagation process, the more accurate the measurement accuracy will be.
  • the outer diameter of the collimating element 33 of the embodiment of the present application is 50mm, the optical effective diameter is 48mm, and the focal length is 85mm, so as to ensure that the range and measurement accuracy of the distance measuring device 100 are better than those of existing ones. Most ranging devices 100.
  • the first light pulse 300 emitted by the light transmitter 10 changes the direction of the light path through the optical element 31 and changes the direction of the light path from the optical component 32. After the area 321 passes through, it is collimated into parallel light or nearly parallel light by the collimating element 33.
  • the second light pulse 400 is focused by the collimating element 33 and collected from the reflective area 322 of the optical component 32 and the optical device 34 to the light receiver 20.
  • the light-emitting surface of the light emitter 10 and/or the light-sensitive surface of the light receiver 20 should be located at, near, and at the focal point of the collimating element 33 as much as possible.
  • the light emitting surface of the light emitter 10 may be set on the focal point or on the focal plane.
  • the light emitting surface of the light emitter 10 may also be arranged adjacent to the focal point or adjacent to the focal plane.
  • the photosensitive surface of the light receiver 20 may be set on the focal point or on the focal plane.
  • the photosensitive surface of the light receiver 20 may also be arranged adjacent to the focal point or adjacent to the focal plane.
  • a folded light path is formed, that is, at least one of the transmitting light path and the receiving light path has a folded portion to reduce the size of the collimating element 33 in the optical axis direction, thereby Optimize product size to facilitate product miniaturization design.
  • the light emitting surface of the light transmitter 10 and the light receiving surface of the light receiver 20 are approximately located at the same optically. Location. In this way, it can be ensured that after the first light pulse 300 emitted by the light transmitter 10 is reflected by the probe 2000 to form the second light pulse 400, as much energy as possible can return to the distance measuring device 100 and enter the photosensitive surface of the light receiver 20. The more energy that returns from the surface of the probe 2000 and enters the photosensitive surface of the light receiver 20, and the farther the range of the distance measuring device 100 is, the higher the measurement accuracy.
  • the light-emitting surface of the light emitter 10 and the light-receiving surface of the light receiver 20 are approximately located at the same optical position, which means that after the folded optical path is unfolded, as shown in FIG. 6b, the light-emitting surface of the light transmitter 10 and the light receiver 20
  • the light-sensing surface of both roughly coincides with the focal plane ⁇ of the collimating element 33; or both the light-emitting surface of the light emitter 10 and the light-sensing surface of the light receiver 20 pass roughly the focal point F of the collimating element 33.
  • roughly coincident can mean that the angle between the light-emitting surface or the photosensitive surface and the focal plane ⁇ is 0°-6°, that is, the angle between the two is 0°, 6°, and any other suitable angle between 0°-6° .
  • roughly coincident can mean that the light-emitting surface (or photosensitive surface) is parallel to the focal plane ⁇ , and the distance between the light-emitting surface (or photosensitive surface) and the focal plane ⁇ is 0mm-6mm, that is, the distance between the two is 0mm, 6mm And any other suitable distance between 0mm-6mm.
  • the distance between the focal point F of the collimating element 33 and the light-emitting surface (or photosensitive surface) is 0mm-6mm, that is, the distance from the focal point F to the light-emitting surface (or photosensitive surface) is 0mm, 6mm, and any other suitable distances between 0mm-6mm.
  • the distance measuring device 100 further includes an optical device 34 for changing the optical path direction of the second light pulse 400 reflected by the optical component 32.
  • the collimating element 33, the optical component 32, the optical device 34 and the light receiver 20 are sequentially arranged along the reflection direction of the second light pulse 400.
  • the optical device 34 and the optical component 32 are provided on the same side of the collimating element 33.
  • the optical element 31 and the optical device 34 are provided on opposite sides of the optical component 32. More specifically, the optical device 34, the optical component 32, the optical element 31, the light emitter 10, and the light receiver 20 are provided on the same side of the collimating element 33.
  • the optical element 31 and the light emitter 10 are arranged on the side of the first surface 3233 of the base 323.
  • the optical device 34 and the collimating element 33 are arranged on the side of the second surface 3234 of the base 323.
  • the optical device 34 includes a mirror.
  • the reflective surface of the optical device 34 is disposed facing the optical component 32 so that the second light pulse 400 reflected by the reflective area 322 of the optical component 32 can reach the optical device 34.
  • the reflective surface of the optical device 34 is disposed facing the light emitter 10 so that the second light pulse 400 reflected by the optical device 34 can reach the optical device 34.
  • the optical device 34 is arranged between the optical component 32 and the light receiver 20 along the emission light path. The optical device 34 can change the direction of the light path of the second light pulse 400 generated by the light emitter 10.
  • the second light pulse 400 reaching the optical device 34 can reach the optical receiver 20 after being reflected by the optical device 34.
  • the outer dimensions of the optical device 34 can be flexibly set according to actual requirements.
  • the shape and size of the optical device 34 is adapted to the beam size of the first light pulse 300 reaching the optical device 34. In this way, the first light pulse 300 can be effectively transmitted and the light emitter 10 can be generated. After reaching the optical device 34, the first light pulse 300 can reach the optical component 32 as much as possible to avoid the energy loss of the first light pulse 300; and it can effectively reduce the stray light reaching the light receiver 20.
  • the outer dimensions of the optical device 34 are as follows: the length is 22 mm, the width is 20 mm, and the thickness is 2 mm.
  • the relative positions (such as the included angle or relative distance) of the optical element 31, the optical component 32, the collimating element 33, and the optical device 34 can be flexibly set according to actual needs. 12, for example, the angle ⁇ between the optical axis ⁇ of the optical element 31 and the collimating element 33 is 60°, the angle ⁇ between the optical component 32 and the optical axis ⁇ of the collimating element 33 is 49°, and the optical The included angle ⁇ between the device 34 and the second light pulse 400 reflected by the optical device 34 is 49°.
  • the included angle between a certain optical component and the optical axis ⁇ of the collimating element 33 refers to the included angle between the optical surface of a certain optical component and the optical axis ⁇ of the collimating element 33.
  • the angle between the optical component and the second light pulse 400 reflected by a certain device refers to the angle between the optical surface of the optical component and the second light pulse 400 reflected by the main optical axis of the optical component.
  • the optical axis ⁇ of the collimating element 33 intersects with the collimating element 33 to form a first intersection point U
  • the optical axis ⁇ of the collimating element 33 intersects with the optical component 32 to form a second intersection point V
  • the light of the collimating element 33 The axis ⁇ intersects the optical element 31 to form a third intersection point M.
  • the length of the line segment UV between the first intersection U and the second intersection V is 31.4 mm.
  • the length of the line segment VM between the second intersection V and the third intersection M is 18.2 mm.
  • the optical surface of the optical device 34 is parallel to the optical surface of the optical component 32.
  • the distance between the optical surface of the optical device 34 and the optical surface of the optical component 32 is 25.0 mm.
  • the optical transmission distance d3 of the second light pulse 400 transmitted along the optical axis ⁇ of the collimating element 33 between the optical surface of the optical component 32 and the optical surface of the optical device 34 is 33.125 mm.
  • the optical transmission distance d4 of the second light pulse 400 transmitted along the optical axis ⁇ of the collimating element 33 between the optical surface of the optical device 34 and the light receiver 20 is 20.475 mm.
  • the relative positions of the optical element 31, the optical component 32, the collimating element 33, and the optical device 34 can make the light emitting surface of the light emitter 10 and the photosensitive surface of the light receiver 20 be located at approximately the same optical position to ensure that the light emitter After the first light pulse 300 emitted by 10 is reflected by the probe 2000 to form the second light pulse 400, as much energy as possible can return to the distance measuring device 100 and enter the photosensitive surface of the light receiver 20, thereby increasing the distance measuring device 100 The measurement range is increased to improve the measurement accuracy. It can be understood that the relative positions of the optical element 31, the optical component 32, the collimating element 33, and the optical device 34 are not limited to the above-listed relative positions.
  • the light transmitter 10 emits a first light pulse 300.
  • the optical element 31 changes the direction of the light path, that is, changes the transmission direction of the first light pulse 300.
  • the first light pulse 300 whose light path direction is changed by the optical element 31 passes through the light-transmitting area 321 of the optical component 32 and then is collimated by the collimating element 33.
  • the collimated first light pulse 300 is emitted and projected onto the probe 2000.
  • the first light pulse 300 reaches the probe 2000 and is reflected by the probe 2000 to form a second light pulse 400.
  • the second light pulse 400 is converged to the reflection area 322 of the optical component 32 through the collimating element 33.
  • the reflection area 322 reflects at least a part of the second light pulse 400 to the optical device 34.
  • the optical device 34 changes the direction of the light path, that is, changes the second light. Transmission direction of pulse 400.
  • the second optical pulse 400 whose optical path direction is changed by the optical device 34 reaches the optical receiver 20, and the optical receiver 20 receives the second optical pulse 400.
  • the receiving process may include converting the received second light pulse 400 into an electrical signal pulse.
  • the distance measuring device 100 determines the light pulse receiving time based on the rising edge of the electrical signal pulse. In this way, the distance measuring device 100 can calculate the flight time using the receiving time information of the second light pulse 400 and the sending time information of the first light pulse 300, so as to determine the distance between the probe 2000 and the distance measuring device 100.
  • the direction of the probe 2000 relative to the distance measuring device 100 can also be determined according to light pulses in different directions.
  • the distance measuring device 100 further includes a first substrate 41 and a second substrate 42.
  • the light emitter 10 is provided on the first substrate 41.
  • the light receiver 20 is provided on the second substrate 42.
  • the materials of the first substrate 41 and the second substrate 42 can be designed according to actual needs.
  • the first substrate 41 can be made of epoxy, ceramic, or HDI (High Density Interconnect) epoxy fiberglass cloth. to make.
  • the distance measuring device 100 further includes a connecting structure 50.
  • the light transmitter 10, the light receiver 20 and the optical structure 30 are arranged on the connection structure 50.
  • the light emitter 10 is provided on the first substrate 41.
  • the light receiver 20 is provided on the second substrate 42.
  • the first substrate 41, the second substrate 42 and the optical structure 30 are all disposed on the connection structure 50.
  • the connection structure 50 includes a transmitting bracket 51, a receiving bracket 52 and an optical bracket 53.
  • the first substrate 41 is disposed on the launch bracket 51.
  • the second substrate 42 is disposed on the receiving bracket 52.
  • the optical structure 30 is arranged on the optical support 53.
  • the optical bracket 53 includes a first sub-frame body 531, a second sub-frame body 532, a collimating sub-frame body 533 and a third sub-frame body 534.
  • the optical element 31 is disposed on the first sub-frame body 531.
  • the optical component 32 is disposed on the second sub-frame body 532.
  • the collimating element 33 is arranged on the collimating sub-frame 533.
  • the optical device 34 is arranged on the third sub-frame body 534.
  • the number of sub-frames in the optical bracket 53 is adapted to the optical components included in the optical structure 30.
  • the third sub-frame 534 is also omitted accordingly.
  • the distance measuring device 100 further includes a base 61, and the connection structure 50 is provided on the base 61.
  • the transmitting bracket 51, the receiving bracket 52 and the optical bracket 53 are all arranged on the base 61. More specifically, the transmitting bracket 51, the receiving bracket 52, the first sub-frame body 531, the second sub-frame body 532, the collimating sub-frame body 533, and the third sub-frame body 534 are all set on the base 61.
  • connection mode of the base 61 and the connection structure 50 can be set according to actual needs.
  • the base 61 and the connecting structure 50 may be integrally formed or separately provided; or the base 61 and a part of the connecting structure 50 may be integrally formed, and the base 61 and the other part of the connecting structure 50 may be formed separately.
  • the connection between the two can be realized by a connection method such as a snap connection, a quick-release connection such as a screw, and the like.
  • the optical component 32 can realize the spatial separation of the first light pulse 300 and the second light pulse 400.
  • the transmitting light path formed by the first light pulse 300 can be folded through the optical element 31, and the receiving light path formed by the second light pulse 400 can be folded through the optical device 34, effectively reducing the optical axis direction of the collimating element 33.
  • the reduction in volume brought about by the folding of the light path of the transmitting light path and the receiving light path is also conducive to reducing the amount of thermal deformation of the distance measuring device 100 under high and low temperature conditions, and prevents optical components such as the light transmitter 10 and the light receiver 20 from being caused by Defocus occurs due to temperature changes, thereby enhancing the temperature reliability of the distance measuring device 100.
  • the core principle of ranging systems such as laser ranging devices is to make laser beams and other light beams be emitted according to a pre-designed optical path, then the beams are reflected back after irradiating the detection object, and then transmitted to the optical receiver according to the designed optical path.
  • the transparent optical lens and other optical components in the distance measuring system have a certain reflectivity, which will reflect and scatter the light beam, resulting in a lot of unwanted stray light inside the distance measuring device. If these stray light enter the optical receiver of the ranging system, it will interfere with the normal operation of the ranging system and reduce the measurement accuracy and range of the ranging system.
  • an embodiment of the present application improves the distance measuring device to reduce stray light reaching the optical receiver and avoid stray light from interfering with the normal operation of the distance measuring device, thereby improving the measurement accuracy and range of the distance measuring device.
  • a distance measuring device including: an optical transmitter, which is arranged in the transmitting optical path, and is used to generate a first light pulse; an optical receiver, which is arranged in the receiving optical path, and is used to receive the second light.
  • the second light pulse is the light pulse formed after the first light pulse is reflected by the probe;
  • the optical structure is used to guide the first light pulse emitted by the light emitter to the detection And guide at least part of the second light pulses reflected by the detection object to the light receiver; a light shielding member, the optical structure, the light confinement member, and the light receiver along the receiving The light paths are arranged in sequence; wherein, the shading member is used to block stray light and allow the light beam of the receiving light path to pass through; the stray light is scattered light or scattered light received by the light receiver from a direction outside the receiving light path reflected light.
  • the optical structure of the distance measuring device may be the same as or different from the optical structure of the foregoing embodiment, and the present application is not limited to this.
  • the following explanation will be given by taking the same optical structure as the optical structure of the foregoing embodiment as an example.
  • the distance measuring device 100 further includes a light shielding member 70.
  • the optical structure 30, the shading member 70 and the light receiver 20 are arranged in sequence along the receiving light path.
  • the light shielding member 70 is used for shielding stray light and allowing the light beam of the receiving optical path to pass through. Stray light is scattered light or reflected light received by the light receiver 20 from a direction outside the receiving optical path.
  • the shading member 70 is provided between the optical structure 30 and the light receiver 20.
  • the light shielding member 70 is provided between the optical device 34 and the light receiver 20, that is, the optical device 34, the light shielding member 70 and the light receiver 20 are sequentially arranged along the receiving light path.
  • the light beam of the receiving optical path whose direction has been changed by the optical device 34 can pass through the light shielding member 70 and be received by the light receiver 20.
  • the light beam of the receiving optical path refers to the second light pulse 400 described above.
  • certain components are arranged in sequence along the emitting light path or the receiving light path, which may generally refer to a situation where a certain component and another component may partially overlap on the optical path.
  • the component H1 and the component H2 are arranged in sequence along the receiving optical path, and a part of the component H1 and at least a part of the component H2 are both located on a certain optical path section of the receiving optical path.
  • this type of situation also belongs to the range in which the light shielding member 70 and the light receiver 20 are sequentially arranged along the receiving light path.
  • the light shielding member 70 can shield the following stray light: light reflected or scattered by components existing in the distance measuring device 100 or light outside the receiving area observed from the light receiver 20.
  • stray light light reflected or scattered by components existing in the distance measuring device 100 or light outside the receiving area observed from the light receiver 20.
  • FIG. 16 and FIG. 17 assuming that the area outside the receiving area is the area ⁇ 1 in FIG. 16 and FIG. 17, and the area ⁇ 2 is the receiving area, and the receiving area is shown as the area ⁇ 2 in FIG. 16 and FIG. It can be seen from FIGS. 16 and 17 that the distance measuring device 100 provided with the light shielding member 70 can effectively shield the stray light, and the stray light received by the light receiver 20 is significantly reduced or even eliminated.
  • the distance measuring device 100 of the above embodiment can shield the light outside the receiving optical path as much as possible, reduce the stray light reaching the optical receiver 20, and make the light beam of the receiving optical path, that is, the second light pulse 400 reliably received by the optical receiver 20, effectively
  • the optical receiver 20 is protected to prevent stray light from interfering with the normal operation of the distance measuring device 100, thereby improving the measurement accuracy and range of the distance measuring device 100.
  • the light shielding member 70 includes a light shielding portion 71 and a light channel portion 72.
  • the light shielding portion 71 is used to shield stray light to reduce interference such as noise caused by the stray light reaching the light receiver 20, thereby improving the measurement accuracy and range of the distance measuring device 100.
  • the light channel part 72 is provided on the light shielding part 71 for passing the light beam of the receiving light path.
  • the profile of the light channel portion 72 matches the profile of the beam of the receiving light path. In this way, it can be ensured that the second light pulse 400 can enter the optical receiver 20 through the optical channel portion 72, and stray light can be prevented from entering the optical channel portion 72 and being received by the optical receiver 20.
  • the light-shielding member 70 can take any suitable shape, such as a circular tube, an elliptical tube, a waist tube, a square tube, or a polygonal tube, which can shield at least part of the light that interferes with the operation of the distance measuring device 100, and can make it receive A structure in which the light beam of the optical path passes through and is projected onto the light receiver 20.
  • the light shielding member 70 is a closed-loop tubular structure.
  • the size of the closed loop tube is adapted to the beam of the receiving optical path. In this way, the light beam outside the receiving optical path can be prevented from entering the optical channel portion 72 and being received by the light receiver 20, and at the same time, it can be ensured that the light beam of the receiving optical path is projected to the light receiver 20 as much as possible, and the energy loss of the light beam of the receiving optical path can be avoided. , Improve the accuracy and range of the distance measuring device 100.
  • the light shielding portion 71 extends outwardly along the outer circumference of the light channel portion 72.
  • the light channel portion 72 has a through hole structure, and the through hole structure penetrates the light shielding portion 71. That is, the shading member 70 is hollow, the middle portion of the shading member 70 can allow the second light pulse 400 to pass through, and the outer surface of the shading member 70 can block stray light.
  • the light-shielding portion 71 is made of a material that does not transmit light or has a low light transmittance, for example, is made of a material with a low light transmittance such as copper and aluminum.
  • the light channel part 72 includes a first sub-channel 721 and a second sub-channel 722. At least part of the optical receiver 20 is provided in the first sub-channel 721.
  • the second sub-channel 722 is in communication with the first sub-channel 721, and the light beam of the receiving optical path can enter the first sub-channel 721 through the second sub-channel 722.
  • the second light pulse 400 guided by the optical device 34 can enter the first sub-channel 721 through the second sub-channel 722, so that at least part of the optical receivers located in the first sub-channel 721 20 can receive the second light pulse 400.
  • the channel size of the first sub-channel 721 is larger than the channel size of the second sub-channel 722.
  • the channel size of the first sub-channel 721 may also be smaller than or equal to the channel size of the second sub-channel 722.
  • the shading member 70 can be arranged at any suitable position according to actual needs. Illustratively, referring to FIGS. 3 to 5 again, the light shielding member 70 is disposed on the receiving bracket 52. It is understandable that the shading member 70 can be integrally formed with the receiving bracket 52; it can also be provided separately, for example, connected by a snap connection, a quick-release member such as a screw, or the like.
  • the distance measuring device 100 further includes a light confinement member 80, which is used to confine the first light pulse 300 generated by the light emitter 10 to reduce The beam size of the first light pulse 300 through the light confinement member 80 is small.
  • the emission light path can be made to conform to the preset light path, and the emission accuracy of the first light pulse 300 can be improved, so that the first light pulse 300 is emitted according to the preset light path, shielding light outside the preset light path, and reducing unnecessary stray light. produce.
  • the preset optical path can be designed according to actual needs and is not limited here.
  • the light confinement member 80 is disposed between the light emitter 10 and the optical structure 30, that is, the light emitter 10, the light confinement member 80, and the optical structure 30 are sequentially disposed along the emission light path.
  • the light restricting member 80 can restrict the beam size of the first light pulse 300 in any direction according to actual needs. Since the array of light-emitting components in the light emitter 10 is usually not arranged in a circular shape, it may be difficult to achieve the best confinement effect by directly using a circular light-shielding tube. In order to restrict the first light pulse 300 emitted by the light transmitter 10 in a targeted manner, in some embodiments, the light restricting member 80 can restrict the beam size of the first light pulse 300 in the optically sensitive direction, that is, restrict the beam size of the first light pulse 300 in the optically sensitive direction. The beam size of the first light pulse 300 of the restricting member 80 in the optically sensitive direction.
  • the optically sensitive direction refers to the direction in which the light emitter 10 has a larger divergence angle.
  • the divergence angle ⁇ 1 of the light emitter 10 along the i direction is greater than the divergence angle ⁇ 2 of the light emitter 10 along the j direction, so the i direction is the optically sensitive direction.
  • ⁇ 1 is the profile of the first light pulse 300 that is not constrained by the light confinement member 80.
  • ⁇ 2 is the profile of the first light pulse 300 after being constrained by the light confinement member 80. It can be seen from FIGS.
  • the contour size of the first light pulse 300 after being constrained by the light confinement member 80 is smaller than the contour size of the first light pulse 300 not constrained by the light confinement member 80, which shields the light outside the preset optical path. Light, reduce the generation of unnecessary stray light.
  • the light restricting member 80 is formed with a light-passing channel 81, and the light-passing channel 81 can restrict the beam size of the first light pulse 300 in the optically sensitive direction.
  • the light passage 81 can allow at least a part of the first light pulse 300 to pass through, and the wall surface of the light passage 81 can constrain the first light pulse 300 in the optically sensitive direction, so that the first light pulse 300 is preset The light path emits, reducing the generation of unnecessary stray light.
  • the channel size of the light-passing channel 81 matches the beam size of the first light pulse 300.
  • the beam size of the first light pulse 300 is also the profile size of the first light pulse 300.
  • the beam size of the first light pulse 300 in the optically sensitive direction in the preset optical path is matched with the channel size of the light passage 81 in the optically sensitive direction. In this way, on the one hand, the light outside the preset optical path can be shielded from entering In the light-passing channel 81, unnecessary stray light can be reduced; on the other hand, it can ensure that the light in the preset light path passes through the light-passing channel 81 to the greatest extent, so as to avoid energy loss.
  • the light constraining member 80 includes a first constraining portion 82 and a second constraining portion 83.
  • the first restricting portion 82 and the second restricting portion 83 are arranged opposite to each other along the optically sensitive direction to form a light passage 81.
  • the first constraining portion 82 includes a connecting section 821 and a constraining section 822.
  • the constraining section 822 is connected to the connecting section 821, and the constraining section 822 extends in a direction away from the light emitter 10.
  • the light transmitter 10, the connecting section 821 and the constraining section 822 are arranged in sequence along the emission light path.
  • the second constraining part 83 includes a connecting sub-part 831 and a constraining sub-part 832.
  • the constraining sub-part 832 is connected to an end of the connecting sub-part 831 facing away from the light emitter 10.
  • the constraining sub-part 832 cooperates with the constraining section 822 to constrain the beam size of the first light pulse 300 in the optically sensitive direction.
  • the side of the connecting section 821 facing the light passage 81 has a curved surface.
  • the connecting sub-part 831 has an arc surface on the side facing the light passage 81.
  • the side of the connecting sub-part 831 away from the light passage 81 may also have a curved surface to facilitate processing.
  • the surface of the side facing the light passage 81 and the surface of the connecting sub-part 831 can also be designed into any other suitable shapes, such as curved surfaces, according to actual requirements.
  • the constraining sub-part 832 has a sub-part body 8321, a first connecting surface 8322, and a second connecting surface 8323.
  • the sub-part body 8321 is connected to the connecting sub-part 831.
  • the first connection surface 8322 and the second connection surface 8323 are both provided on the side of the sub-part body 8321 adjacent to the light passage 81.
  • the first connecting surface 8322 is connected to the surface of the connecting sub-part 831 facing the light passage 81.
  • the second connecting surface 8323 is provided on a side of the sub-part body 8321 adjacent to the light passage 81.
  • the second connecting surface 8323 is connected to a side of the first connecting surface 8322 away from the connecting sub-part 831.
  • the sub-part body 8321 can be designed in any suitable shape according to actual needs, as long as the connection between the first connection surface 8322 and the second connection surface 8323 can constrain the size of the first light pulse 300 in the optically sensitive direction.
  • a triangle an arc curved toward the light path, a semi-arc convex toward the light path, other suitable regular or irregular shapes, etc.
  • FIGS. 27 and 28 in conjunction with FIGS.
  • the size of the sub-part body 8321 along the optically sensitive direction gradually decreases from the side adjacent to the connecting sub-part 831 toward the light passage 81 extends so that the constraining sub-part 832 at one end away from the connecting sub-part 831 can constrain the size of the first light pulse 300 in the optically sensitive direction.
  • the first connecting surface 8322 is arc-shaped.
  • the second connecting surface 8323 is arc-shaped.
  • the curvature of the first connecting surface 8322 may be the same or substantially the same as the curvature of the arc-shaped surface of the connecting sub-part 831 to facilitate processing. Understandably, in other embodiments, the first connection surface 8322 and the second connection surface 8323 may also have any other suitable shapes.
  • the connection between the first connection surface 8322 and the second connection surface 8323 is away from the light emitter 10 with the first constraining portion 82
  • the ends of the two cooperate to constrain the beam size of the first light pulse 300 in the optically sensitive direction.
  • the fixed end of the constraining section 822 is connected to the connecting section 821, and the free end of the constraining section 822 can cooperate with the connection of the first connecting surface 8322 and the second connecting surface 8323 to restrain the first light pulse 300 in the optically sensitive direction. Beam size.
  • connection between the first connecting surface 8322 and the second connecting surface 8323 can be designed in any shape according to actual needs, such as a flat surface, a curved surface, a curved surface, etc., as long as it can cooperate with the free end of the constraining section 822 to restrain the first light.
  • the beam size of the pulse 300 in the optically sensitive direction is sufficient.
  • the end of the light emitter 10 and the first constraining portion 82 away from the light emitter 10 and the connection are sequentially arranged along the emission light path. Specifically, the light emitter 10, the free end of the constrained section 822 and the connection are projected on the optical axis of the emission light path, and the end of the light emitter 10 and the first constraining portion 82 away from the light emitter 10 and the connection They are arranged in sequence along the optical axis of the emission light path.
  • the second constraining portion 83 further includes an extension sub-portion 833.
  • the extension sub-portion 833 is connected to a side of the second connecting surface 8323 facing away from the first connecting surface 8322. Specifically, the extension sub-part 833 is substantially parallel to the constraining section 822.
  • the above-mentioned connection, the end of the first constraining portion 82 away from the light emitter 10, and the free end of the extension sub-portion 833 are sequentially spaced apart along the emission light path.
  • the connection between the first connection surface 8322 and the second connection surface 8323, the free end of the constraining section 822, and the free end of the extension sub-part 833 are projected on the optical axis of the emission light path, and the first connection surface 8322 and the second connection surface 8323 are The junction of the connecting surface 8323, the free end of the constraining section 822, and the free end of the extension sub-part 833 are sequentially arranged along the optical axis of the emission light path.
  • the end of the first constraining portion 82 away from the light emitter 10 and the free end of the extension sub-portion 833 may be at the same position or at least partially overlapped in the emission light path; or, the above-mentioned connection point and extension sub-portion
  • the free end of the 833 and the end of the first constraining portion 82 away from the light emitter 10 may be arranged at intervals along the emission light path in sequence.
  • the extension sub-part 833 may be omitted.
  • the light restraint member 80 can also restrain the beam size of the first light pulse 300 in the optically sensitive direction.
  • the connection between the first connection surface 8322 and the second connection surface 8323 cooperates with the end of the first constraining portion 82 away from the light emitter 10 to constrain the beam size of the first light pulse 300 in the optically sensitive direction.
  • the fixed end of the constraining section 822 is connected to the connecting section 821, and the free end of the constraining section 822 can cooperate with the connection of the first connecting surface 8322 and the second connecting surface 8323 to restrain the first light pulse 300 in the optically sensitive direction.
  • the light confinement member 80 further includes a connecting portion 84.
  • the connecting portion 84 cooperates with the first restricting portion 82 and the second restricting portion 83 to form a light passage 81.
  • the arrangement of the connecting portion 84 may also constrain the optical size of the first light pulse 300 in some cases.
  • the connecting portion 84 may also implement other suitable functions, which are not limited herein.
  • the connecting portion 84 can be designed in any suitable shape according to actual needs, such as a plate shape, etc., which is not limited herein.
  • the connecting portion 84 may also be omitted.
  • the light restraint member 80 can also restrain the beam size of the first light pulse 300 in the optically sensitive direction.
  • the light confinement member 80 can be made of a material with low reflectivity and opaque, so as to absorb or shield unnecessary light to the greatest extent and reduce the generation of stray light.
  • the light confinement member 80 can also be made of a material with low reflectivity and low light transmittance.
  • the light restraining member 80 is disposed on the emitting bracket 51. It is understandable that the light constraining member 80 can be integrally formed with the emitting bracket 51; it can also be provided separately, for example, connected by a snap connection, a quick-release member such as a screw, or the like.
  • the light constraining member 80 and the first substrate 41 are provided on opposite sides of the emitting bracket 51, and the emitting bracket 51 is provided with light passing openings for the first light pulse 300 emitted by the light emitter 10 to pass through. Over.
  • the light-passing opening communicates with the light-passing channel 81.
  • the first light pulse 300 emitted by the light emitter 10 enters the light passage 81 through the light passage opening, and is constrained by the light passage 81 to be projected onto the optical element 31.
  • the relative position of the light-passing opening and the light-passing channel 81 can be flexibly set according to actual requirements. For example, the light-passing opening can be set away from the light-passing channel 81.
  • the beam size of the first light pulse 300 is larger than the preset size, when the first light pulse 300 is projected to the optical component 32, the first light pulse 300 within the preset size range can be on the light-transmitting area 321 Pierce or refract to project to the collimating element 33.
  • the first light pulse 300 outside the preset size range will be reflected on the reflective area 321 of the optical component 32 to generate stray light.
  • light outside the distance measuring device 100 may also be projected to the reflective area 322 of the optical component 32 to generate stray light. If the stray light is received by the optical receiver 20, it will interfere with the normal operation of the distance measuring device 100, and affect the measurement accuracy and range of the distance measuring device 100.
  • the distance measuring device 100 can block or shield the stray light only by providing the shading member 70, so as to reduce the stray light reaching the light receiver 20, so that the light receiver 20 receives the second light path on the preset optical path.
  • Two light pulses 400 improve the measurement accuracy and range of the distance measuring device 100.
  • the distance measuring device 100 may restrict the beam size of the first light pulse 300 by only setting the light restraining member 80, so that the beam size of the first light pulse 300 projected on the optical component 32 is less than or equal to a preset value.
  • the size so as to ensure that the first light pulse 300 can be penetrated or refracted from the light-transmitting area 321 of the optical component 32, so as to prevent part of the first light pulse 300 projected to the reflective area 322 of the optical component 32 from being reflected and generating stray light, Thereby, stray light reaching the light receiver 20 is reduced or avoided, and the measurement accuracy and range of the distance measuring device 100 are improved.
  • the distance measuring device 100 can be provided with the light shielding member 70 and the light restricting member 80 at the same time to reduce or avoid stray light reaching the light receiver 20, which effectively protects the light receiver 20 and improves the measurement of the distance measuring device 100. Precision and range.
  • the stray light is not limited to the type mentioned in the above embodiment.
  • the light generated during the transmission of the first light pulse 300 and the second light pulse 400 does not meet the preset conditions (for example, does not meet the preset optical path). It belongs to the range of stray light in the embodiments of the present application.
  • the distance measuring device 100 may adopt a coaxial or coaxial optical path scheme, that is, the transmitting optical path and the receiving optical path adopt a coaxial optical path, that is, the first optical pulse 300 and the first optical pulse 300 transmitted by the optical transmitter 10 and the receiving optical path are coaxial.
  • the second light pulse 400 reflected by the probe 2000 shares at least a part of the light path in the distance measuring device 100.
  • the distance measuring device 100 may also be based on a dual-axis solution, etc., which is not limited here. In this case, the first light pulse 300 and the second light pulse 400 may be configured to travel along different light paths. .
  • Laser distance measuring equipment such as laser distance measuring device is a device that can actively emit laser light (that is, outgoing light), and calculate the distance information between the detected object and the laser distance measuring device by using the light reflected by the probe, which is widely used Single-point rangefinder, 2D lidar and 3D lidar, etc.
  • the laser distance measuring device contains a laser transmitter, a receiver, and a collimating lens. It may also include some filter lenses and reflective lenses according to the needs of the optical path design. These optoelectronic components and optical lenses are fixed on the main structure, and their positional relationship determines the main performance indicators such as the range and measurement accuracy of the laser distance measuring device.
  • the vertical brackets that fix the optoelectronic components and optical lenses are connected to each other to form at least part of the main structure. This will cause the positional deviation of the optical components to be affected by the thermal deformation of the vertical bracket, and the vertical bracket cannot be relaxed. The material of the bracket is limited.
  • the current laser distance measuring device usually uses a single material as the material of the main structure, and the main structure is mainly made of plastic, aluminum alloy, steel or special metal.
  • the main structure of the laser distance measuring device made of plastic because the linear expansion coefficient of plastic is usually larger than that of metal, the problem of thermal expansion and contraction of the main structure is more obvious in the high and low temperature environment, so the optoelectronic devices and optical lenses fixed on the main structure The position between the two will be severely shifted, resulting in a decrease in the performance of the laser distance measuring device.
  • the laser ranging device with the main structure made of aluminum alloy the linear expansion coefficient of aluminum alloy is smaller than plastic but larger than steel.
  • aluminum alloy parts have higher density than plastics and higher manufacturing costs, and product weight and cost are difficult to continue to optimize; for precision instruments, if you need to further improve the high and low temperature performance of the laser distance measuring device, usually consider replacing the aluminum alloy It is steel or special metal.
  • the main structure of the laser ranging device is made of steel.
  • the thermal deformation linear expansion coefficient of steel is smaller than that of aluminum alloy, which is beneficial to improve the high and low temperature performance of the laser ranging device.
  • the density of steel is higher than that of aluminum alloy, and the weight of the product is difficult to continue. optimization.
  • the laser distance measuring device with the main structure made of special metals some special metals have extremely low linear expansion coefficients, such as Invar alloy.
  • Invar alloy is often used in precision optical instruments that need to withstand temperature changes, but Invar alloy has poor processing performance and material cost is several times higher than aluminum alloy and ordinary steel. Product quality consistency and cost are difficult to obtain during mass production. Continue to optimize.
  • the inventor of the present application has improved the distance measuring device to reduce the range and measurement accuracy of the distance measuring device affected by thermal deformation, and to ensure that the performance level of the distance measuring device in a high and low temperature environment is comparable to that in a normal temperature environment. Similar performance levels.
  • an embodiment of the present application provides a distance measuring device, including: a base; a first substrate for setting a light emitter; a second substrate for setting a light receiver; an optical structure for emitting the light
  • the first light pulse emitted by the detector is guided to the probe, and at least part of the second light pulse reflected by the probe is guided to the light receiver;
  • the connection structure is arranged on the base;
  • the connection structure includes a plurality of brackets, and the first substrate, the second substrate, and the optical structure are respectively arranged on the plurality of brackets; wherein the plurality of brackets are separately arranged on the base.
  • the connection structure 50 includes a plurality of brackets.
  • the light transmitter 10, the light receiver 20 and the optical structure 30 are respectively arranged on a plurality of supports.
  • the light emitter 10 is provided on the first substrate 41.
  • the light receiver 20 is provided on the second substrate 42.
  • the first substrate 41, the second substrate 42 and the optical structure 30 are respectively arranged on a plurality of supports.
  • a plurality of brackets are separately provided on the base 61 respectively.
  • each bracket includes the above-mentioned transmitting bracket 51, receiving bracket 52, and optical bracket 53.
  • the transmitting bracket 51, the receiving bracket 52, and the optical bracket 53 are separately provided on the base 61.
  • each bracket includes the above-mentioned transmitting bracket 51, receiving bracket 52, a first sub-frame body 531, a second sub-frame body 532, a collimating sub-frame body 533, and a third sub-frame body 534.
  • the first sub-frame body 531, the second sub-frame body 532, the collimating sub-frame body 533, and the third sub-frame body 534 are separately arranged on the base 61.
  • each bracket and the base 61 need to be made of materials with a low linear expansion coefficient.
  • the positional deviation of the optical components will be affected by the thermal deformation of each bracket, and the material restriction of each bracket cannot be relaxed, which is not conducive to the optimization of weight and cost.
  • each bracket is independently set on the base 61, and there is no direct connection between each other. .
  • the amount of thermal deformation of the base 61 is large, the position deviation of all brackets on the section of the base 61 is large; when the amount of thermal deformation of the base 61 is small, the position deviation of all brackets on the section of the base 61 is small, thereby reducing the measurement.
  • the range and measurement accuracy of the distance measuring device 100 are affected by temperature, to avoid the influence of thermal deformation of the distance measuring device 100, and to ensure that the performance level of the distance measuring device 100 in a high and low temperature environment is similar to that in a normal temperature environment.
  • the brackets of the above-mentioned distance measuring device 100 are like floating islands arranged on the base 61, and the position and angle changes between the brackets on the cross section of the base 61 are mainly determined by the thermal deformation of the base 61, and the optical structures in the optical structure 30
  • the position deviation of the components on the cross section of the base 61 is less affected by the thermal deformation of the bracket, or even hardly affected by the thermal deformation of the bracket, which helps to relax the material restrictions of each bracket, and you can choose lighter and cheaper materials. Therefore, the weight and cost of the product can be optimized under the condition of ensuring the product's temperature resistance or high and low temperature reliability.
  • the cross-section of the base 61 is parallel or coincides with the XOY plane in FIG. 6a or FIG. 6b.
  • Each bracket is set on the base 61 to form a positional relationship adapted to the preset optical requirements.
  • the light transmitter 10 and the light receiver 20 are arranged adjacent to the focal point or focal plane, or are arranged on the focal point or focal plane. If the distance measuring device 100 is to resist the influence of temperature changes, the relative positions of the optical components such as the optical transmitter 10, the optical receiver 20, and the collimating element 33 need not be changed, otherwise the optical transmitter 10 or the optical receiver 20 will be affected.
  • the optical components When the relative collimating element 33 is out of focus, the optical components will deviate from the original position, and the actual optical path will deviate from the preset optical path, resulting in a decrease in the range and measurement accuracy of the distance measuring device 100, resulting in degradation or failure of the performance of the distance measuring device 100. Since optical components such as the light transmitter 10, the light receiver 20, and the collimating element 33 are fixed on the corresponding brackets, and the relative position between the brackets mainly depends on the base 61. Therefore, the thermal deformation of the base 61 and each bracket directly affects the performance of the distance measuring device 100 under different temperature environments.
  • the base 61 and each bracket can be made of materials with the smallest possible linear expansion coefficient. At the same time, considering the weight and cost factors, only the materials of key components can be restricted.
  • each bracket Since each bracket is separated, the position and angle of each bracket on the cross-section of the base 61 mainly depend on the thermal deformation of the base 61. Therefore, in some embodiments, only the material of the base 61 may be restricted, that is, the base 61 A low expansion coefficient can be used. Specifically, in order to reduce the position change of each optical component, the linear expansion coefficient of each bracket is greater than the linear expansion coefficient of the base 61. More specifically, the linear expansion coefficients of the transmitting bracket 51, the receiving bracket 52, the first sub-frame body 531, the second sub-frame body 532, the collimating sub-frame body 533, and the third sub-frame body 534 are all greater than the linear expansion of the base 61 coefficient. In this way, it can be ensured that the mutual position and angular relationship changes of the optical components such as the optical transmitter 10, the optical receiver 20, and the collimating element 33 on the cross section of the base 61 are controlled.
  • the linear expansion coefficients of the brackets are the same to further ensure that the mutual position and angular relationship changes of the optical components such as the optical transmitter 10, the optical receiver 20, and the collimating element 33 are controlled.
  • the linear expansion coefficients of the transmitting bracket 51, the receiving bracket 52, the first sub-frame body 531, the second sub-frame body 532, the collimating sub-frame body 533, and the third sub-frame body 534 are the same.
  • the material of the base 61 and each bracket can be made of any suitable material, such as plastic, aluminum alloy, steel, and Invar alloy.
  • the linear expansion coefficient of each bracket is greater than the linear expansion coefficient of the base 61.
  • the material of each bracket can be selected from a material with a lower density or cost relative to the base 61.
  • plastic aluminum alloy, steel, and Invar alloy
  • weight of each material plastic ⁇ aluminum alloy ⁇ steel ⁇ Invar alloy.
  • finishing cost plastic ⁇ aluminum alloy ⁇ steel ⁇ Invar alloy.
  • linear expansion coefficient Invar alloy ⁇ steel ⁇ aluminum alloy ⁇ plastic, that is, the linear expansion coefficient of Invar alloy is the smallest, and the linear expansion coefficient of plastic is the largest.
  • the weight class I means the lightest weight
  • the finishing cost class I means the lowest finishing cost
  • the performance class I under the temperature change environment means the best resistance to thermal deformation. Understandably, Table 1 is only a general reference for most situations, and there may be differences in actual applications due to different structural designs. Refer to Table 1, taking combination serial number 1 as an example. If a certain type of distance measuring device 100 is cost-sensitive and wants to work in a small range of fluctuating temperature, you can choose aluminum alloy as the base 61, and choose a certain brand of plastic as The material of all brackets. Take the combination number 3 as an example. If a certain type of distance measuring device 100 is sensitive to weight and cost, and wants to continue to work in a wide range of fluctuating temperatures, steel plate can be used as the base 61, and aluminum alloy can be used as the base for all brackets. material.
  • each optical component in the Z direction mainly depends on the thermal deformation of each bracket in the height direction.
  • the mounting surfaces of the brackets on the base 61 are located on the same predetermined plane.
  • the optical axis of the collimating element 33 is substantially parallel to the preset plane.
  • each bracket is installed on the same geometric plane of the base 61.
  • the optical axis of the collimating element 33 is approximately parallel to the geometric plane. In this way, it can be ensured that the change of the positional relationship of the optical components in the Z direction is controlled, and the influence of thermal deformation is further reduced or eliminated, and the temperature resistance or high and low temperature reliability of the distance measuring device 100 is further improved.
  • the Z direction is the direction shown in Fig. 6a or Fig. 6b.
  • substantially parallel means that the angle between the two is any suitable angle from -8° to 8°, for example, -8°, 0°, 8°, and any other suitable angle from -8° to 8°. angle.
  • the mounting surface of each bracket on the base 61 is located on the same preset plane, which generally refers to the plane where the mounting surface of each bracket on the base 61 is located on the same preset plane. Even if the mounting surface of each bracket on the base 61 is incomplete, or the mounting surfaces are not connected, as long as the plane where the mounting surface of each bracket on the base 61 is located on the same preset plane is within the scope of the embodiments of the present application Inside.
  • is the linear expansion coefficient
  • L is the initial distance between the two points of interest
  • ⁇ T is the environmental temperature change
  • ⁇ L is the deformation of the two points of interest.
  • each optical component in the Z-direction changes mainly due to the height between the flush portion of each bracket that is flush with the optical axis of the collimating element 33 and the mounting surface of the base 61. Since the optical axis is parallel to the mounting surface of the base 61, the initial distance L between the flush portion of each bracket and the mounting surface is equal. For the same distance measuring device 100, ignoring the internal temperature difference, the ambient temperature change ⁇ T of each bracket is also equal. Substituting the above formula, we can know the offset ⁇ L between the flush part of each bracket and the mounting surface of the base 61 in the Z direction. Also equal. Therefore, the position change law of all the optical components in the Z-direction is consistent, and the position misalignment between each other is extremely small, which can meet the high and low temperature reliability requirements of the distance measuring device 100.
  • each bracket includes a first connecting member 541 and a second connecting member 542.
  • the first connecting member 541 is provided on the base 61.
  • the second connecting member 542 is disposed on the first connecting member 541 and connected to one of the first substrate 41, the second substrate 42 and at least part of the optical structure 30.
  • the first connecting member 541 of the launching bracket 51 is connected to the base 61, and the second connecting member 542 and the base 61 of the launching bracket 51 are both connected to different parts of the first connecting member 541 of the launching bracket 51.
  • the first substrate 41 is disposed on the second connecting member 542 of the emitting bracket 51, and the light emitter 10 is disposed on the first substrate 41.
  • the first connecting member 541 of the receiving bracket 52 is connected to the base 61, and the second connecting member 542 of the receiving bracket 52 and the base 61 are both connected to different parts of the first connecting member 541 of the receiving bracket 52.
  • the second substrate 42 is disposed on the second connecting member 542 of the receiving bracket 52, and the light receiver 20 is disposed on the second substrate 42. As shown in FIG.
  • the first connecting member 541 of the collimating sub-frame 533 is connected to the base 61, and the second connecting member 542 and the base 61 of the collimating sub-frame 533 are both connected to different parts of the first connecting member 541 of the collimating sub-frame 533.
  • the collimating element 33 is disposed on the second connecting member 542 of the collimating sub-frame 533.
  • the first connection member 541 of the first sub-frame body 531 is connected to the base 61, and the second connection member 542 and the base 61 of the first sub-frame body 531 are both connected to different parts of the first connection member 541 of the first sub-frame body 531 .
  • the optical element 31 is disposed on the second connecting member 542 of the first sub-frame body 531.
  • the first connecting member 541 of the second sub-frame body 532 is connected to the base 61, and the second connecting member 542 and the base 61 of the second sub-frame body 532 are both connected to the second sub-frame body 532.
  • the optical component 32 is disposed on the second connecting member 542 of the second sub-frame body 532.
  • the first connection member 541 of the third sub-frame body 534 is connected to the base 61, and the second connection member 542 and the base 61 of the third sub-frame body 534 are both connected to different parts of the first connection member 541 of the third sub-frame body 534 .
  • the optical device 34 is disposed on the second connecting member 542 of the third sub-frame body 534.
  • optical components 32 and 34 in FIGS. 29 to 31 may also be optical components such as the light transmitter 10, the light receiver 20, and other parts of the optical structure 30.
  • FIGS. 29 to 31 The second sub-rack body 532 and the third sub-rack body 534 may be brackets corresponding to the corresponding optical institute devices, and the embodiment of the present application is not limited thereby.
  • the linear expansion coefficient of each first connecting member 541 is greater than the linear expansion coefficient of each first connecting member 541.
  • the linear expansion coefficient of each first connecting member 541 is greater than the linear expansion coefficient of the base 61. In this way, it can be ensured that the mutual position and angular relationship changes of the optical components such as the optical transmitter 10, the optical receiver 20, and the collimating element 33 are controlled.
  • the linear expansion coefficient of each first connecting member 541 is the same as the linear expansion coefficient of the base 61.
  • the linear expansion coefficient of each second connecting member 542 is greater than the linear expansion coefficient of each first connecting member 541.
  • each first connecting member 541 and the base 61 can be made of the same material.
  • Each first connecting member 541 is separately arranged on the base 61.
  • Each of the first connecting members 541 may be integrally formed with the base 61 or separately provided; or a part of each of the first connecting members 541 may be integrally formed with the base 61, and the other part may be formed separately from the base 61.
  • the linear expansion coefficient of each second connecting member 542 is greater than the linear expansion coefficient of each first connecting member 541.
  • the linear expansion coefficients of the second connecting members 542 are the same, so as to further ensure that the positional relationship between the second connecting members 542 remains relatively immobile under the environment of temperature changes, so that the The mutual position and angular relationship changes of the optical components such as the optical transmitter 10, the optical receiver 20, and the collimating element 33 on the connecting member 542 are controlled to the greatest extent.
  • the distance between each optical component and the preset plane is the same, that is, each optical component is located at the same height, so as to provide that the distance between each optical component does not change in a temperature changing environment. Guaranteed. Specifically, the distance between the light transmitter 10 and the preset plane, the distance between the light receiver 20 and the preset plane, the distance between the optical element 31 and the preset plane, the distance between the optical component 32 and the preset plane The distance between, the distance between the collimating element 33 and the preset plane, and the distance between the optical device 34 and the preset plane are all the same.
  • FIGS. 29 to 31 Please refer to FIGS. 29 to 31.
  • the following takes the optical component 32, the optical device 34, the second sub-frame body 532, and the third sub-frame body 534 as examples to illustrate the distance measuring device 100 under the condition of temperature changes, the optical component 32 and the optical The relative position of the device 34 changes.
  • the material of the first connecting member 541 of the second sub-frame body 532 is A1
  • the material of the first connecting member 541 of the third sub-frame body 534 is A2
  • the material of the base 61 is A3.
  • the material of the second connecting member 542 of the second sub-frame body 532 is B1
  • the material of the second connecting member 542 of the third sub-frame body 534 is B2.
  • the relationship between the linear expansion coefficients of the two materials is satisfied: It is also satisfied that the optical component 32 and the optical component 34 are at the same height, and it can also be ensured that the distance between the optical component 32 and the optical component 34 will not change at all in the environment of temperature changes.
  • the distance measuring device 100 may work in an environment between a first temperature and a second temperature, and the second temperature is greater than the first temperature.
  • the thermal deformation of the materials selected for the above-mentioned components can satisfy the temperature change interval of the above-mentioned linear expansion coefficient formula.
  • the first temperature and the second temperature can be set according to actual needs. Exemplarily, the first temperature is -40° and the second temperature is 85°, and the distance measuring device 100 can work normally at any suitable temperature between -40°, 85°, and -40° to 85°.
  • the distance measuring device 100 further includes a cover 62 to enhance the measurement Vibration reliability of the distance device 100.
  • the cover 62 is connected to at least part of the connecting structure 50.
  • the cover 62 and the base 61 are respectively arranged on both sides of the connecting structure 50.
  • the cover 62 is connected to at least two of the brackets.
  • each bracket is connected to the cover 62.
  • the receiving bracket 52, the optical bracket 53, the first sub-frame body 531, the second sub-frame body 532, the collimating sub-frame body 533 and the third sub-frame body 534 are all connected to the cover 62.
  • the receiving bracket 52, the optical bracket 53, the first sub-frame body 531, the second sub-frame body 532, the collimating sub-frame body 533, and the third sub-frame body 534 cooperate to form an open ⁇
  • the receiving bracket 52, the optical bracket 53, the first sub-frame body 531, the second sub-frame body 532, the collimating sub-frame body 533, and the third sub-frame body 534 are all connected to the cover 62, and the cover 62 is connected to The opening is adapted to further improve the vibration reliability of the distance measuring device 100.
  • the cover 62 can also be connected to only a few of the brackets, such as FIG. 33, which is not limited here.
  • the cover 62 can be integrally formed with each bracket, or can be provided separately.
  • the cover 62 is integrally formed with a part of each bracket, and is provided separately from the remaining part.
  • the cover 62 and the bracket are arranged separately, the two can be fixed by means of snap connection, screw connection and the like.
  • the linear expansion coefficient of the cover 62 is the same as the linear expansion coefficient of the base 61. In this way, under the condition of ignoring the internal temperature difference of the distance measuring device 100, the thermal deformation of the cover 62 and the base 61 are the same, avoiding or reducing the amount of thermal deformation of the distance measuring device 100 under high and low temperature conditions, and preventing the light emitter 10 and the light receiving The optical components such as the sensor 20 are defocused due to temperature changes, thereby further enhancing the high and low temperature reliability of the distance measuring device 100.
  • the shape of the base 61, the brackets and the cover 62 can be designed in any suitable shape according to actual requirements.
  • the base 61 has a plate shape
  • the cover 62 has a plate shape.
  • each bracket includes a mounting portion 543, and the mounting portion 543 is used for connecting with the base 61.
  • the joint surface of each mounting portion 543 connected to the base 61 may be located on the same predetermined plane.
  • the shape of the mounting portion 543 can be designed into any suitable shape, such as a triangle, according to actual requirements.
  • each bracket includes an assembly portion 544 for connecting with the cover 62.
  • the shape of the assembling part 544 can be designed into any suitable shape according to actual requirements, such as a triangle.
  • the assembling part 544 may be parallel to the mounting part 543 or not, which is not limited here.
  • the material of the cover 62 can be designed according to actual requirements, for example, the material is the same as the material of the base 61, of course, it can also be different from the material of the base 61.
  • both the base 61 and the cover 62 are made of steel plates, and each bracket is made of aluminum alloy.
  • Both the base 61 and the cover 62 are made of steel plates, which can reduce the defocusing of the light transmitter 10 and the light receiver 20 due to thermal deformation of the distance measuring device 100 in a high and low temperature environment, and improve the high and low temperature reliability of the distance measuring device 100.
  • the use of aluminum alloy for each bracket can reduce the overall weight of the distance measuring device 100 and facilitate the optimization of the weight of the product.
  • optical element 31, the optical component 32, the collimating element 33, and the optical device 34 can be connected to the corresponding bracket in any suitable connection manner according to actual needs, such as a snap connection, which is not limited herein.
  • optical components 31, optical components 32, collimating components 33, and optical components 34 can all be designed with fool-proof structures, such as optical components.
  • fool-proof structures such as optical components.
  • Four corners are formed between the four edges of the device. One of the corners is designed to be rounded, and the other three corners are rounded.
  • the fool-proof structure can also be any other suitable fool-proof design, which is not limited here.
  • the optical element 31, the optical component 32, and the optical device 34 may be configured according to actual requirements, for example, one of them is omitted, or two of them are omitted, or both are omitted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种测距装置(100)和测距系统(1000),测距装置(100)包括光发射器(10)、光接收器(20)和光学结构(30),至少部分光学结构(30)位于发射光路上;且至少部分光学结构(30)位于接收光路上,用于将第一光脉冲(300)和第二光脉冲(400)分离。

Description

测距装置和测距系统 技术领域
本申请涉及测距设备技术领域,尤其涉及一种测距装置和测距系统。
背景技术
激光雷达等测距装置的工作原理是先向探测物发射探测光脉冲,而后接收从探测物反射回来的反射光脉冲,最后测距装置将探测光脉冲和反射光脉冲进行比较以及适当处理后,即可获知探测物的相关特征信息,例如探测物距离、方位等参数信息。然而,目前的测距装置整体尺寸比较大,不利于产品的小型化设计。
发明内容
基于此,本申请提供了一种测距装置和测距系统,旨在优化测距装置的整体尺寸,便于产品的小型化设计。
根据本申请的第一方面,本申请提供了一种测距装置,所述测距装置包括:
光发射器,设于发射光路中,用于产生第一光脉冲;
光接收器,设于接收光路中,用于接收第二光脉冲,其中所述第二光脉冲为所述第一光脉冲被探测物反射后所形成的光脉冲;
光学结构,用于将所述第一光脉冲导引至所述探测物,并将至少部分所述第二光脉冲导引至所述光接收器;
其中,至少部分所述光学结构位于所述发射光路上;且至少部分所述光学结构位于所述接收光路上,用于将所述第一光脉冲和所述第二光脉冲分离。
根据本申请的第二方面,本申请提供了一种测距装置,包括:光发射器,设于发射光路中,用于产生第一光脉冲;光接收器,设于接收光路中,用于接收第二光脉冲,其中所述第二光脉冲为所述第一光脉冲被探测物反射后所形成的光脉冲;光学结构,用于将所述光发射器发射的第一光脉冲导引至所述探测物,并将所述探测物反射的至少部分所述第二光脉冲导引至所述光接收器;遮 光件,所述光学结构、所述光约束件和所述光接收器沿所述接收光路依次设置;所述遮光件用于遮挡杂散光,并供接收光路的光束穿过;所述杂散光为所述光接收器从所述接收光路外的方向接收的散射光或反射光。
根据本申请的第三方面,本申请提供了一种测距装置,包括:光发射器,设于发射光路中,用于产生第一光脉冲;光接收器,设于接收光路中,用于接收第二光脉冲,其中所述第二光脉冲为所述第一光脉冲被探测物反射后所形成的光脉冲;光学结构,用于将所述光发射器发射的第一光脉冲导引至所述探测物,并将所述探测物反射的至少部分所述第二光脉冲导引至所述光接收器;光约束件,所述光发射器、所述光约束件和所述光学结构沿所述发射光路依次设置;所述光约束件用于约束所述光发射器产生的第一光脉冲,以减小经所述光约束件的所述第一光脉冲的光束尺寸。
根据本申请的第四方面,本申请提供了一种测距系统,包括:壳体;以及上述的测距装置,设于所述壳体上。
本申请实施例提供了一种测距装置和测距系统,第一光脉冲所形成的发射光路和第二光脉冲所形成的接收光路通过光学结构可以实现光路折叠,使得第一光脉冲和第二光脉冲实现空间分离,有效减小测距装置的尺寸,从而满足更小的体积要求,进一步优化产品的整体尺寸。
附图说明
为了更清楚地说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例提供的测距系统的结构示意图;
图2a是本申请一实施例提供的测距装置在一角度的结构示意图;
图2b是本申请一实施例提供的测距装置在另一角度的结构示意图;
图3是本申请一实施例提供的测距装置在一角度的剖面示意图;
图4是本申请一实施例提供的测距装置在另一角度的剖面示意图;
图5是本申请一实施例提供的测距装置在又一角度的剖面示意图;
图6a是本申请一实施例提供的第一光脉冲和第二光脉冲的光路折叠示意图;
图6b是本申请一实施例提供的第一光脉冲和第二光脉冲的光路展开示意图;
图7是本申请一实施例提供的测距装置的感测原理示意图;
图8是本申请一实施例提供的测距装置在一角度的分解示意图;
图9是本申请一实施例提供的测距装置在另一角度的分解示意图;
图10是本申请一实施例提供的光学部件的结构示意图;
图11是本申请一实施例提供的光学部件的示意图;
图12是本申请一实施例提供的光发射器、光学结构和光接收器的相对位置示意图;
图13是本申请一实施例提供的遮光件在一角度的结构示意图;
图14是本申请一实施例提供的遮光件在另一角度的结构示意图;
图15是本申请一实施例提供的遮光件的剖面示意图;
图16是本申请一实施例提供的测距装置的光接收器在感测第二光脉冲时的示意图其中,测距装置未设置遮光件;
图17是本申请一实施例提供的测距装置的光接收器在感测第二光脉冲时的示意图其中,测距装置设置有遮光件;
图18是本申请一实施例提供的遮光件的结构示意图,其中第二光脉冲穿设遮光件;
图19是本申请一实施例提供的测距装置的部分剖面示意图,其中示出了遮光件和光接收器,第二光脉冲穿设遮光件传输至光接收器;
图20是本申请一实施例提供的测距装置在一角度的部分结构示意图,其中示出了发射支架和光约束件;
图21是本申请一实施例提供的测距装置在另一角度的部分结构示意图,其中示出了发射支架和光约束件;
图22是本申请一实施例提供的测距装置在又一角度的部分结构示意图,其中示出了发射支架和光约束件;
图23是本申请一实施例提供的第一光脉冲的部分光路示意图,其中,未设置光约束件约束第一光脉冲;
图24是本申请一实施例提供的光发射器发射第一光脉冲的示意图,其中,设置有光约束件约束第一光脉冲;
图25a是本申请一实施例提供的测距装置在一角度的部分结构示意图,其中第一光脉冲穿设通光通道;
图25b是本申请一实施例提供的测距装置的部分结构示意图,其中第一光脉冲穿设通光通道;
图26是本申请一实施例提供的测距装置在另一角度的部分结构示意图,其中第一光脉冲穿设通光通道;
图27是图5中的测距装置在A处的局部放大示意图;
图28是图20中的测距装置在B处的局部放大示意图;
图29是本申请一实施例提供的测距装置的部分示意图,其中示出了底座、部分支架和部分光学结构,且测距装置处于第一温度环境下;
图30是本申请一实施例提供的测距装置的部分示意图,其中示出了底座、部分支架和部分光学结构,且测距装置处于第二温度环境下,第二温度大于第一温度;
图31是本申请一实施例提供的测距装置的部分示意图,其中示出了底座、盖合件、部分支架和部分光学结构,且测距装置处于第一温度环境下;
图32是本申请一实施例提供的测距装置的部分示意图,其中示出了底座、盖合件、光发射器、部分支架和部分光学结构;
图33是本申请一实施例提供的测距装置的部分示意图,其中示出了底座、盖合件、光发射器、部分支架和部分光学结构。
附图标记说明:
1000、测距系统;
100、测距装置;101、TOF单元;
10、光发射器;20、光接收器;
30、光学结构;
31、光学元件;
32、光学部件;321、透光区域;322、反射区域;3221、第一边缘部;3222、第二边缘部;323、基体;3231、透光部;3232、外围部;3233、第一面;3234、第二面;324、反射层;3241、通光孔;
33、准直元件;34、光学器件;
41、第一基板;42、第二基板;
50、连接结构;51、发射支架;52、接收支架;53、光学支架;531、第一子架体;532、第二子架体;533、准直子架体;534、第三子架体;541、第一连接件;542、第二连接件;543、安装部;544、装配部;
61、底座;62、盖合件;
70、遮光件;71、遮光部;72、光通道部;721、第一子通道;722、第二子通道;
80、光约束件;81、通光通道;82、第一约束部;821、连接段;822、约束段;83、第二约束部;831、连接子部;832、约束子部;8321、子部本体;8322、第一连接面;8323、第二连接面;833、延伸子部;84、连接部;
200、壳体;
300、第一光脉冲;400、第二光脉冲;
2000、探测物。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
还应当理解,在此本申请说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本申请。如在本申请说明书和所附权利要求书中所使用的那样,除非上下文清楚地指明其它情况,否则单数形式的“一”、“一个”及“该”意在包括复数形式。
还应当进一步理解,在本申请说明书和所附权利要求书中使用的术语“和/或”是指相关联列出的项中的一个或多个的任何组合以及所有可能组合,并且包括这些组合。
本申请的发明人发现,激光测距装置是一种能主动发射激光(即出射光),并利用探测物反射回的光线计算得出探测物与激光测距装置之间距离信息的装 置,被广泛应用于单点测距仪、2D激光雷达和3D激光雷达等中。激光测距装置内部包含光发射器、光接收器和准直透镜。激光测距装置也可能根据光路设计需要,包含一些滤光镜片和反光镜片。对于激光测距装置而言,其光学设计决定了它在符合激光安全规范下的量程、精度等核心性能,其结构设计决定了它的尺寸、重量、成本、可靠性等指标。若激光测距装置的出射光或探测物反射回的光线没有经反光镜折叠,则激光测距装置在准直透镜的光轴方向上的尺寸会很大,不利于产品的小型化设计或尺寸优化。
针对该发现,本申请的发明人对测距装置进行了改进,以优化测距装置的尺寸,实现产品的小型化设计。具体地,本申请实施例提供一种测距装置,包括:光发射器,设于发射光路中,用于产生第一光脉冲;光接收器,设于接收光路中,用于接收第二光脉冲,其中所述第二光脉冲为所述第一光脉冲被探测物反射后所形成的光脉冲;光学结构,用于将所述第一光脉冲导引至所述探测物,并将至少部分所述第二光脉冲导引至所述光接收器;其中,至少部分所述光学结构位于所述发射光路上;且至少部分所述光学结构位于所述接收光路上,用于将所述第一光脉冲和所述第二光脉冲分离。
下面结合附图,对本申请的一些实施方式作详细说明。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
本申请实施例提供一种测距系统1000,该测距系统1000可以用来确定探测物2000相对测距系统1000的距离和/或方向。该测距系统1000可以是激光测距设备、激光雷达等电子设备。在一些实施方式中,测距系统1000可以用于感测外部环境信息。外部环境信息可以是环境目标的距离信息、方位信息、速度信息、反射强度信息等中的至少一种。
在一些实施方式中,该测距系统1000可以搭载在载体上,用于检测载体周围的探测物2000。该测距系统1000具体用于检测探测物2000与测距系统1000之间的距离。该载体可以包括无人飞行器、可移动机器人、可移动车辆、可移动船舶等任意合适的载体上。可以理解地,一个载体可以配置一个或多个测距系统1000,不同的测距系统1000可以用于探测不同方位的物体。
在一些实施方式中,测距系统1000可以通过测量测距系统1000和探测物2000之间光传播的时间,即光飞行时间(Time-of-Flight,TOF),来探测探测物2000与测距系统1000之间的距离。可以理解地,测距系统1000也可以通过 其他技术来探测探测物2000与测距系统1000之间的距离,例如基于频率移动(frequency shift)测量的测距方法,或者基于相位移动(phase shift)测量的测距方法等,在此不做限制。测距系统1000探测到距离和/或方位可以用于遥感、避障、测绘、建模、导航等。
在一些实施例中,该测距系统1000可以搭载在载体上,该载体可以包括无人飞行器、可移动机器人、可移动车辆、可移动船舶等任意合适的载体上,用于检测载体周围的探测物2000。该探测物2000可以是障碍物或感兴趣的目标等,该测距系统1000具体可以用于检测探测物2000与该测距系统1000之间的距离等。
请参阅图1和图2a,其中,测距系统1000包括壳体200和设于壳体200上的测距装置100。具体地,壳体200形成有腔体,至少部分测距装置100收容于该腔体内,以减少外界环境对测距装置100的影响,例如减少水汽、灰尘、杂光等对测距装置100的影响。测距装置100用于向探测物2000发射或产生光脉冲,并接收探测物2000反射回的光脉冲,以及根据反射回的光脉冲确定探测物2000与测距系统1000的距离。
请参阅图2a、图2b、图3至图5,在一些实施例中,测距装置100包括光发射器10、光接收器20和光学结构30。光发射器10设于发射光路中,用于产生第一光脉冲300。光接收器20设于接收光路中,用于接收第二光脉冲400。其中第二光脉冲400是指第一光脉冲300被探测物2000反射后所形成的光脉冲。至少部分光学结构30位于发射光路上;且至少部分所述光学结构30位于接收光路上,用于将第一光脉冲300和第二光脉冲400分离。
上述实施例的测距装置100,第一光脉冲300所形成的发射光路和第二光脉冲400所形成的接收光路通过光学结构30可以实现光路折叠,使得第一光脉冲300和第二光脉冲400实现空间分离,有效减小产品的尺寸,充分利用光学特性和不同方向的空间进行光路设计,从而满足更小的体积要求,进一步优化产品的整体尺寸。
请参阅图6a和图7,具体地,第一光脉冲300是由光发射器10发射,并经光学结构30导引至探测物2000,从而向探测物2000发射第一光脉冲300。第一光脉冲300到达探测物2000后,可以在探测物2000表面发生反射。第一光脉冲300被探测物2000反射后所形成的光脉冲称之为第二光脉冲400。部分 第二光脉冲400可以到达光学结构30,并由光学结构30导引至光接收器20,光接收器20接收第二光脉冲400并产生电信号。第一光脉冲300从光发射器10发射后,经至少部分光学结构30到达探测物2000的光路即为发射光路。第一光脉冲300被探测物2000反射后形成第二光脉冲400,第二光脉冲400经至少部分光学结构30到达光接收器20的光路即为接收光路。
测距装置100可以采用共轴或同轴光路方案,即发射光路和接收光路采用共轴光路,亦即,光发射器10发射的第一光脉冲300和经探测物2000反射回来的第二光脉冲400在测距装置100内共用至少部分光路。当然,在其他实施例中,测距装置100也可以基于双轴方案等,在此不做限制,此时,第一光脉冲300和第二光脉冲400可以被配置为沿不同的光路行进。
光发射器10可以发射光脉冲,即产生第一光脉冲300。第一光脉冲300可以是单个光脉冲或一系列光脉冲。光发射器10可以是半导体激光器或者光纤激光器等。示例性地,光发射器10可以包括发光二极管(Light Emitting Diode,LED)、激光二极管(Laser Diode,LD)、半导体激光阵列等中的至少一种。半导体激光阵列例如可以为VCSEL(Vertical Cavity Surface Emitting Laser,垂直腔面发射激光器)阵列或者多个激光二极管阵列。在一些具体实施方式中,多个激光二极管阵列形成多线光发射器10,使得光发射器10能够同时发射多束第一光脉冲。
光接收器20包括光电二极管、雪崩光电二极管(Avalanche Photo Diode,APD)、盖革模式雪崩光电二极管(Geiger-mode Avalanche Photodiode,GM-APD)、电荷耦合元件等中的至少一种。
在一些实施例中,光发射器10可以在纳秒(ns)水平产生第一光脉冲300。示例性地,光发射器10可以产生持续时间接近8ns的激光脉冲,并且光接收器20可以检测到接近的持续时间的返回信号,即第二光脉冲400。
请参阅图7,测量电路(例如光飞行时间(TOF)单元101)可以用于测量TOF以检测到探测物2000的距离。示例性地,TOF单元101可以基于距离计算公式t=2D/c,计算探测物2000的距离,其中,t为光从测距装置100到探测物2000再返回测距装置100的往返光程所花费的实际,D为测距装置100与探测物2000之间的距离,c为光速。因而,测距装置100可以基于光发射器10产生的第一光脉冲300和光接收器20接收到的第二光脉冲400之间的时间差来测 量到探测物2000的距离。
请参阅图3至图6a、图6b、图8和图9,在一些实施例中,光学结构30包括光学元件31、光学部件32和准直元件33。其中,光发射器10、光学元件31、光学部件32和准直元件33沿发射光路依次设置。即述光发射器10、光学元件31、光学部件32和准直元件33沿第一光脉冲300的传输方向依次设置。
其中,光学元件31用于改变光发射器10产生的第一光脉冲300的光路方向。在一些实施例中,光学元件31可以包括反射镜。光学元件31的反射面面向光发射器10设置,以使得光发射器10产生的第一光脉冲300能够到达光学元件31。该光学元件31沿发射光路设于光发射器10和光学部件32之间。该光学元件31能够改变光发射器10产生的第一光脉冲300的光路方向。到达光学元件31的第一光脉冲300经光学元件31的反射,即可到达光学部件32。
光学元件31的外形尺寸可以根据实际需求进行灵活设置。在一些实施方式中,光学元件31的外形尺寸与到达光学元件31的第一光脉冲300的光束尺寸相适配,如此,既能够使得第一光脉冲300能够有效传输,保证光发射器10产生的第一光脉冲300到达光学元件31后能够尽可能多地到达光学部件32,避免第一光脉冲300能量损失;又能够有效减少到达光接收器20的杂散光。示例性地,光学元件31的外形尺寸如下:长度为20mm,宽度为15mm,厚度为2mm。
其中,光学部件32用于将第一光脉冲300和第二光脉冲400分离。具体地,光学部件32沿发射光路上设置于光学元件31和准直元件33之间,准直元件33设于光学部件32背离光学元件31的一侧。
在一些实施例中,光学部件32包括开孔反射镜、半透半反镜、偏振分光镜和采用镀膜方式的分光镜等中的至少一种。该光学部件32一方面用于透射经光学元件31调整光路方向后的第一光脉冲300,另一方面用于反射经准直元件33汇聚后的第二光脉冲400。透光区域和反射区域可以是任意合适的结构,例如透光区域为孔结构或玻璃等结构,第一光脉冲300能够穿设光学部件32的透光区域或者在光学部件32的透光区域上发生折射,以使得第一光脉冲300能够按照预设光路投影至准直元件33上。
请参阅图10,在一些实施例中,光学部件32包括透光区域321和反射区域322。透光区域321用于供第一光脉冲300穿过。反射区域322沿透光区域321的周向向外延伸,用于反射经反射区域322的第二光脉冲400。具体地,透 光区域321能够透射经光学元件31调整光路方向后的第一光脉冲300。反射区域322能够用于反射经准直元件33汇聚后到达反射区域322的第二光脉冲400,以使第二光脉冲400能够到达光接收器20。通过光学部件32的透光区域321和反射区域322,可以实现第一光脉冲300和第二光脉冲400的空间分离。
透光区域321可以采用透光材料制成,比如可以采用塑料、树脂、玻璃等透光率较高的材料制成。
请参阅图10,可以理解地,透光区域321和反射区域322可以根据实际需求设计为任意合适的形状。示例性地,透光区域321的纵截面呈梯形或近似梯形。透光区域321的纵截面是指与光学部件32的长度延伸方向平行的截面,该纵截面亦垂直于图6a和图6b中的XOY平面。近似梯形是指与梯形等同的形状,比如梯形的相邻边之间采用倒角处理后的形状。具体地,梯形的长边和梯形的短边沿光学部件32的长度延伸方向间隔设置。梯形的长边与梯形的短边平行设置。在一些实施方式中,梯形为等腰梯形。
在一些实施例中,反射区域322的纵截面呈方形或近似方形。反射区域322的纵截面是指与光学部件32的长度延伸方向平行的截面,该纵截面亦垂直于图6a和图6b中的XOY平面。方形可以为长方形、正方形。近似方形是指与方形等同的形状,例如,方形的相邻边之间采用倒角处理后的形状。
请参阅图10,在一些实施例中,反射区域322包括第一边缘部3221和第二边缘部3222。第一边缘部3221与梯形的长边间隔第一预设距离d1设置。第二边缘部3222与第一边缘部3221相对设置。且第二边缘部3222与梯形的短边间隔第二预设距离d2设置。第一预设距离d1大于第二预设距离。第一预设距离d1和第二预设距离d2可以根据实际需求设计为任意合适的数值。
反射区域322和透光区域321的尺寸以及二者的相对位置关系可以根据实际需求进行灵活设置。在一些实施方式中,透光区域321的尺寸与到达光学部件32的第一光脉冲300的光束尺寸相适配,反射区域322的尺寸与到达光学部件32的第二光脉冲400的光束尺寸相适配。如此,既能够使得第一光脉冲300能够有效传输,避免第一光脉冲300能量损失;又能够有效减少到达光接收器20的杂散光。
示例性地,光学部件32的外形接近长方形,其外形尺寸如下:长度为50.2mm,宽度为40mm,厚度为2.0mm。更为具体地,光学部件32的透光区域321接近梯 形,该梯形的尺寸如下:短边的长度为11.3mm,两侧边之间的夹角为6.1°,第一预设距离d1为12.2mm,第二预设距离d2为5.1mm。
请参阅图11,在一些实施例中,光学部件32具有基体323和形成于基材上的反射层324。基体323包括透光部3231和外围部3232。透光部3231用于供经光学元件31调整光路方向后的第一光脉冲300穿过。透光部3231采用透光的材料制成,比如采用塑料、玻璃、竖直等透光率较高的材料制成。基体323上除透光部3231之外的区域为外围部3232。外围部3232可以采用铜、铝等透光率较小的金属制成。当然,外围部3232的材料也可以与透光部3231的材料相同,即采用上述透光的材料制成,此时外围部3232可以与透光部3231一体成型。基体323还具有相背设置的第一面3233和第二面3234,光学元件31和光发射器10位于基体323的第一面3233所在侧,准直元件33和光学器件34位于基体323的第二面3234所在侧。
反射层324设置在基体323背离光学元件31的一侧,即设置于第二面3234。反射层324上设有通光孔3241。通光孔3241与透光部3231的位置对应设置。经光学元件31改变光路方向后的第一光脉冲300穿过透光部3231和透光孔后出射。通光孔3241与透光部3231配合形成上述透光区域321。
反射层324可以采用铝、金、银、钯或钛等任意合适的金属材料制成,当外围部3232与透光部3231的材料相同时,抵达外围部3232的光(例如第一光脉冲300或杂散光)能够被反射层324阻挡,而且反射层324还能够将从测距装置100外部入射的第二光脉冲400大部分或几乎全部反射。
请再次参阅图6a、图6b和图7,其中,准直元件33用于准直第一光脉冲300。第一光脉冲300经准直元件33准直后可以到达探测物2000。具体地,准直元件33位于发射光路上。更为具体地,准直元件33设置于光学部件32背离光学元件31的一侧。从光学部件32穿过的第一光脉冲300可以被准直元件33准直。具体地,准直元件33能够将从光学部件32穿过的第一光脉冲300准直为平行的光脉冲或近似平行的光脉冲。被准直的光脉冲在光传播时基本不会扩散。
准直元件33包括包括准直透镜、凹面反射镜或微透镜阵列等能够准直光脉冲的元件中的至少一种。具体地,准直元件33可以根据实际需要设计为任意具有准直功能的光学元器件,可以但不限于为准直透镜或凹面反射镜。其中,准 直透镜可以包括如下中的任一种:单片平凸透镜、单片双凸透镜、双片平凸透镜(如双胶合透镜)等。考虑到光电式接近传感器芯片的光发射器10可以是半导体激光阵列(例如VCSEL(Vertical Cavity Surface Emitting Laser,垂直腔面发射激光器)阵列),因此准直元件33还可以是微透镜阵列。可以理解地,微透镜阵列的微透镜之间的间距与激光阵列的激光之间的间距相同时准直效果会更好。准直元件33还可以由多个透镜组成,例如,准直元件33包括一个凹透镜和一个凸透镜。又如,准直元件33采用望远镜结构,包括一个弯月镜和一个凸透镜,这样设置能较好地矫正像差,得到准直光序列。
请再次参阅图6a和图7,在一些实施例中,准直元件33还用于将经探测物2000反射回的至少部分第二光脉冲400汇聚至光学部件32上。即发射光路和接收光路共用同一个准直元件33,以降低成本,并使光路更加紧凑,便于产品的小型化设计。具体地,发射光路和接收光路采用同轴光路,即光发射器10发射的第一光脉冲300和光接收器20接收的第二光脉冲400共用光学部件32和准直元件33之间的光路,使得发射光路和接收光路可以共用同一个准直元件33。与异轴光路设计相比,该测距装置100无需使用两个准直元件33分别对第一光脉冲300和第二光脉冲400分别进行准直和聚焦,仅需一个准直元件33即可,降低了原材料成本。此外,与异轴光路设计相比,该测距装置100的发射光路和接收光路可以共用至少部分光路,因而能够使光路更加紧凑,便于产品的小型化设计。
准直元件33的外形尺寸均可以根据实际需求设计为任意合适的光学尺寸或外形尺寸。在一些实施方式中,准直元件33与到达准直元件33的光脉冲的光束尺寸适配。如此,既能够使得光脉冲能够有效传输,避免光脉冲能量损失;又能够有效减少到达光接收器20的杂散光。
准直元件33为准直透镜时,准直透镜的光学有效径越大进入光接收器20的第二光脉冲400能量就越强,能够保证测距装置100的量程足够远。准直透镜的焦距越长,光发射器10发射的第一光脉冲300被准直的效果越好,第一光脉冲300形成的光斑在传播过程中越不容易产生扩散,测量精度就越准确。在满足激光安全规范的前提下,本申请实施例的准直元件33的外径为50mm,光学有效径为48mm,焦距为85mm,以保证测距装置100的量程和测量精度优于现有的多数的测距装置100。
上述实施例的测距装置100,由于设置有光学元件31、光学部件32和光学器件34,光发射器10发出的第一光脉冲300经过光学元件31改变光路方向并从光学部件32的透光区域321穿过后,再经准直元件33处被准直为平行光或近似平行光。第二光脉冲400则是经准直元件33聚焦并从光学部件32的反射区域322以及光学器件34后,汇聚至光接收器20上。
在一些实施例中,为了保证测距装置100的量程和测量精度,光发射器10的发光面和/或光接收器20的感光面应尽量处于准直元件33的焦点上、焦点附近、焦平面上或焦平面附近。具体地,光发射器10的发光面可以设于焦点上或焦平面上。光发射器10的发光面也可以邻近焦点或邻近焦平面设置。光接收器20的感光面可以设于焦点上或焦平面上。光接收器20的感光面也可以邻近焦点或邻近焦平面设置。第一光脉冲300和第二光脉冲400经光学结构30处理后会形成折叠光路,即发射光路和接收光路至少一者具有折叠部分,以减小准直元件33的光轴方向的尺寸,从而优化产品尺寸,便于产品小型化设计。
请参阅图6b,在一些实施方式中,在折叠光路展开后,即在发射光路和接收光路的折叠部分展开后,光发射器10的发光面和光接收器20的感光面大致位于光学上的同一位置上。如此,能够保证光发射器10发出的第一光脉冲300在经过探测物2000反射形成第二光脉冲400后,能有尽量多的能量返回测距装置100并进入光接收器20的感光面。从探测物2000表面返回并进入光接收器20感光面的能量越多,测距装置100的量程越远,测量精度越高。其中,光发射器10的发光面和光接收器20的感光面大致位于光学上的同一位置上,是指在折叠光路展开后,如图6b所示,光发射器10的发光面和光接收器20的感光面均与准直元件33的焦平面Φ大致重合;或者光发射器10的发光面和光接收器20的感光面均大致经过准直元件33的焦点F。
其中,大致重合可以指发光面或感光面与焦平面Φ的夹角为0°-6°,即二者的夹角在0°、6°以及0°-6°之间的其他任意合适角度。当然,大致重合可以指发光面(或感光面)与焦平面Φ平行,发光面(或感光面)与焦平面Φ之间的距离在0mm-6mm,即二者之间的距离在0mm、6mm以及0mm-6mm之间的其他任意合适距离。大致经过准直元件33的焦点F,可以指准直元件33的焦点F与发光面(或感光面)之间的距离为0mm-6mm,即焦点F到发光面(或感光面)的距离为0mm、6mm以及0mm-6mm之间的其他任意合适距离。
请再次参阅图5和图6a,在一些实施例中,测距装置100还包括光学器件34,光学器件34用于改变光学部件32反射的第二光脉冲400的光路方向。准直元件33、光学部件32、光学器件34和光接收器20沿第二光脉冲400的反射方向依次设置。具体地,光学器件34和光学部件32设于准直元件33的同一侧。光学元件31和光学器件34设于光学部件32的相对两侧。更为具体地,光学器件34、光学部件32、光学元件31、光发射器10和光接收器20设于准直元件33的同一侧。光学元件31和光发射器10设于基体323的第一面3233所在侧。光学器件34和准直元件33设于基体323的第二面3234所在侧。
在一些实施例中,光学器件34包括反射镜。光学器件34的反射面面向光学部件32设置,以使得经光学部件32的反射区域322反射的第二光脉冲400能够到达光学器件34。此外,光学器件34的反射面面向光发射器10设置,以使得经光学器件34反射的第二光脉冲400能够到达光学器件34。该光学器件34沿发射光路设于光学部件32和光接收器20之间。该光学器件34能够改变光发射器10产生的第二光脉冲400的光路方向。到达光学器件34的第二光脉冲400经光学器件34的反射,即可到达光接收器20。
其中,光学器件34的外形尺寸可以根据实际需求进行灵活设置。在一些实施方式中,光学器件34的外形尺寸与到达光学器件34的第一光脉冲300的光束尺寸相适配,如此,既能够使得第一光脉冲300能够有效传输,保证光发射器10产生的第一光脉冲300到达光学器件34后能够尽可能多地到达光学部件32,避免第一光脉冲300能量损失;又能够有效减少到达光接收器20的杂散光。示例性地,光学器件34的外形尺寸如下:长度为22mm,宽度20mm,厚度为2mm。
请参阅图12,在一些实施例中,光学元件31、光学部件32、准直元件33和光学器件34的相对位置(比如夹角或相对距离)可以根据实际需求进行灵活设置。请参阅图12,示例性地,光学元件31与准直元件33的光轴ω的夹角α为60°,光学部件32与准直元件33的光轴ω的夹角β为49°,光学器件34与光学器件34反射的第二光脉冲400之间的夹角γ为49°。可以理解地,某光学元器件与准直元件33的光轴ω的夹角是指,某光学元器件的光学面与准直元件33的光轴ω的夹角。光学元器件与某器件反射的第二光脉冲400之间的夹角,是指光学元器件的光学面与光学元器件主光轴反射的第二光脉冲400之间的夹角。
请参阅图12,准直元件33的光轴ω相交于准直元件33形成第一交点U,准直元件33的光轴ω相交于光学部件32形成第二交点V,准直元件33的光轴ω相交于光学元件31形成第三交点M。第一交点U与第二交点V之间的线段UV的长度为31.4mm。第二交点V与第三交点M之间的线段VM的长度为18.2mm。光学器件34的光学面平行于光学部件32的光学面。光学器件34的光学面与光学部件32的光学面之间的距离为25.0mm。沿准直元件33的光轴ω传输的第二光脉冲400在光学部件32的光学面和光学器件34的光学面之间光传输路程d3为33.125mm。沿准直元件33的光轴ω传输的第二光脉冲400在光学器件34的光学面与光接收器20之间光传输路程d4为20.475mm。
上述光学元件31、光学部件32、准直元件33和光学器件34的相对位置能够使光发射器10的发光面和光接收器20的感光面大致位于光学上的同一位置上,以保证光发射器10发出的第一光脉冲300在经过探测物2000反射形成第二光脉冲400后,能有尽量多的能量返回测距装置100并进入光接收器20的感光面,从而增大测距装置100的量程,提高测量精度。可以理解地,光学元件31、光学部件32、准直元件33和光学器件34之间不限于上述列举的相对位置。
上述测距装置100工作时,光发射器10发出第一光脉冲300,该第一光脉冲300到达光学元件31后,由光学元件31改变光路方向即改变第一光脉冲300的传输方向。经光学元件31改变光路方向的第一光脉冲300从光学部件32的透光区域321穿过后被准直元件33准直,准直后的第一光脉冲300出射并投射到探测物2000上。第一光脉冲300到达探测物2000上后经探测物2000反射形成第二光脉冲400。第二光脉冲400经过准直元件33汇聚到光学部件32的反射区域322,反射区域322将至少一部分的第二光脉冲400反射至光学器件34上,光学器件34改变光路方向即改变第二光脉冲400的传输方向。经光学器件34改变光路方向的第二光脉冲400到达光接收器20上,光接收器20接收第二光脉冲400。示例性地,接收过程可以包括将所接收的第二光脉冲400转换为电信号脉冲。测距装置100再通过该电信号脉冲的上升边缘确定光脉冲接收时间。如此,测距装置100可以利用第二光脉冲400的接收时间信息和第一光脉冲300的发出时间信息计算飞行时间,从而确定探测物2000到测距装置100的距离。另外,根据不同方向的光脉冲还可以确定探测物2000相对于测距装置100的方向。
请参阅图3至图5、图8和图9,在一些实施例中,测距装置100还包括第一基板41和第二基板42。光发射器10设于第一基板41上。光接收器20设于第二基板42上。第一基板41和第二基板42的材料可以根据实际需求进行设计,例如第一基板41可以采用环氧树脂、陶瓷或高密度互联的(High Density Interconnect,HDI)环氧玻纤布等材料制成。
请参阅图3至图5、图8和图9,在一些实施例中,测距装置100还包括连接结构50。光发射器10、光接收器20和光学结构30设于连接结构50上。具体地,光发射器10设于第一基板41上。光接收器20设于第二基板42上。第一基板41、第二基板42、光学结构30均设于连接结构50上。具体地,连接结构50包括发射支架51、接收支架52和光学支架53。第一基板41设于发射支架51上。第二基板42设于接收支架52上。光学结构30设于光学支架53上。
在一些实施例中,光学支架53包括第一子架体531、第二子架体532、准直子架体533和第三子架体534。光学元件31设于第一子架体531上。光学部件32设于第二子架体532上。准直元件33设于准直子架体533上。光学器件34设于第三子架体534上。
可以理解地,光学支架53中子架体的数量与光学结构30中所包含的光学元器件适配。例如,在一些实施例中,光学器件34省略时,第三子架体534也相应省略。
请参阅图2a、图2b、图3至图5、图8和图9,在一些实施例中,测距装置100还包括底座61,连接结构50设于底座61上。具体地,发射支架51、接收支架52和光学支架53均设于底座61上。更为具体地,发射支架51、接收支架52、第一子架体531、第二子架体532、准直子架体533和第三子架体534均设于底座61上。
可以理解地,底座61和连接结构50的连接方式可以根据实际需求进行设置。具体地,底座61和连接结构50可以一体成型,也可以分体设置;或者底座61和连接结构50的其中一部分一体成型,底座61和连接结构50的另一部分分体设置。当底座61和至少部分连接结构50分体设置时,可以采用卡扣连接、螺钉等快拆件连接等连接方式实现二者的连接。
上述实施例的测距装置100,通过光学部件32可以实现第一光脉冲300和第二光脉冲400的空间分离。第一光脉冲300所形成的发射光路通过光学元件 31可以实现光路折叠,第二光脉冲400所形成的接收光路通过光学器件34可以实现光路折叠,有效减小准直元件33的光轴方向上的尺寸,充分利用光学特性和不同方向的空间进行光路设计,从而满足更小的体积要求,进一步优化产品的整体尺寸。此外,发射光路和接收光路的光路折叠所带来的体积减小也有利于减小测距装置100在高低温条件下的热变形量,防止光发射器10和光接收器20等光学元器件因为温度变化发生离焦,从而增强测距装置100的温度可靠性。
激光测距装置等测距系统的核心原理是使激光等光束按照预先设计好的光路发射后,光束照射到探测物之后被反射回来,再按照设计好的光路传输至光接收器中。然而,即使光路完全符合预先设计,测距系统内的透明光学镜片等光学元器件具有一定的反射率,会对光束进行反射和散射,从而导致测距装置内部产生很多不需要的杂散光。这些杂散光若进入测距系统的光接收器,会干扰测距系统的正常工作,降低测距系统的测量精度和范围。
针对该发现,本申请实施例对测距装置进行了改进,以减少到达光接收器的杂散光,避免杂散光干扰测距装置的正常工作,从而提高测距装置的测量精度和范围。具体地,本申请实施例提供一种测距装置,包括:光发射器,设于发射光路中,用于产生第一光脉冲;光接收器,设于接收光路中,用于接收第二光脉冲,其中所述第二光脉冲为所述第一光脉冲被探测物反射后所形成的光脉冲;光学结构,用于将所述光发射器发射的第一光脉冲导引至所述探测物,并将所述探测物反射的至少部分所述第二光脉冲导引至所述光接收器;遮光件,所述光学结构、所述光约束件和所述光接收器沿所述接收光路依次设置;其中,所述遮光件用于遮挡杂散光,并供所述接收光路的光束穿过;所述杂散光为所述光接收器从所述接收光路外的方向接收的散射光或反射光。
该测距装置的光学结构可以与上述实施例的光学结构相同,也可以不同,本申请不限于此。为了更清楚地对说明减少杂散光干扰测距装置正常工作的技术方案,下面以光学结构与上述实施例的光学结构相同为例进行解释说明。
请参阅图13至图15,结合图3、图6a和图6b,在一些实施例中,测距装置100还包括遮光件70。光学结构30、遮光件70和光接收器20沿所述接收光路依次设置。遮光件70用于遮挡杂散光,并供接收光路的光束穿过。杂散光为光接收器20从接收光路外的方向接收的散射光或反射光。遮光件70设于光学 结构30和光接收器20之间。具体地,遮光件70设于光学器件34与光接收器20之间,即光学器件34、遮光件70和光接收器20沿接收光路依次设置。经光学器件34改变方向后的接收光路的光束能够穿过遮光件70被光接收器20接收。其中,接收光路的光束是指上述第二光脉冲400。
在一些实施例中,某几个部件沿发射光路或接收光路依次设置,可以泛指某一个部件与另一个部件在光路上可能有部分重合的情形。比如,部件H1、部件H2沿接收光路依次设置,部件H1的其中一部分与部件H2的至少一部分均位于接收光路的某个光路段上。具体地,当光接收器20部分或全部位于遮光件70内时,该类情形也属于遮光件70和光接收器20沿接收光路依次设置的范围。
具体地,遮光件70能够对以下杂散光进行遮挡:测距装置100内存在的部件反射或散射的光,或者从光接收器20观察的接收区域之外的光。示例性地,请参阅图16和图17,假设接收区域之外的区域如图16和图17中的区域ε1,ε2为接收区域,接收区域如图16和图17的区域ε2所示。从图16和图17可知,设置有遮光件70的测距装置100,遮光件70能够有效遮挡杂散光,光接收器20所接收到的杂散光明显减少甚至消除。
上述实施例的测距装置100能够尽可能屏蔽接收光路之外的光,减少到达光接收器20的杂散光,使接收光路的光束即第二光脉冲400可靠地被光接收器20接收,有效保护了光接收器20,避免杂散光干扰测距装置100的正常工作,从而提高测距装置100的测量精度和范围。
请参阅图13至图15,在一些实施例中,遮光件70包括遮光部71和光通道部72。遮光部71用于遮挡杂散光,以减少杂散光到达光接收器20而产生噪声等干扰,从而提高测距装置100的测量精度和范围。光通道部72设于遮光部71上,用于供接收光路的光束穿过。
请参阅图18和图19,可以理解地,光通道部72的轮廓与接收光路的光束轮廓匹配。如此,既能够保证第二光脉冲400能够经光通道部72进入光接收器20,又能够避免杂散光进入光通道部72而被光接收器20接收。遮光件70可以采用任意合适的形状,例如为圆形管、椭圆形管、腰形管、方形管、或者多边形管等能够对干扰测距装置100工作的至少部分光进行遮挡,并能够使接收光路的光束通过而投射至光接收器20上的结构。示例性地,遮光件70为闭环管状结构。该闭环管状的尺寸与接收光路的光束适配。如此,能够避免接收光路 之外的光束进入光通道部72内而被光接收器20接收,同时又能保证接收光路的光束尽可能多地投射至光接收器20,避免接收光路的光束损失能量,提高测距装置100的精度和范围。
请参阅图13至图15,遮光部71沿光通道部72的外周向外延伸设置。具体地,光通道部72为通孔结构,该通孔结构贯穿于遮光部71设置。即遮光件70呈中空设置,遮光件70的中部可供第二光脉冲400穿过,遮光件70的外表面可遮挡杂散光。
可以理解地,遮光部71采用不透光或透光率小的材料制成,例如采用铜、铝等透光率较小的材料制成。
请参阅图13至图15,在一些实施例中,光通道部72包括第一子通道721和第二子通道722。至少部分光接收器20设于第一子通道721内。第二子通道722与第一子通道721连通,接收光路的光束能够经第二子通道722进入第一子通道721。请参阅图19,具体地,经光学器件34导引的第二光脉冲400能够经第二子通道722进入第一子通道721内,从而使得位于第一子通道721内的至少部分光接收器20能够接收第二光脉冲400。
请参阅图15,在一些实施例中,第一子通道721的通道尺寸大于第二子通道722的通道尺寸。当然,在其他实施例中,第一子通道721的通道尺寸也可以小于或等于第二子通道722的通道尺寸。
遮光件70可以根据实际需求设于任意合适的位置。示例性地,请再次参阅图3至图5,遮光件70设于接收支架52上。可以理解地,遮光件70可以与接收支架52一体成型;也可以分体设置,例如通过卡扣连接、螺钉等快拆件连接等。
由于光发射器10发出的第一光脉冲300若不经过处理,往往不能精确地符合设计的光路,由此会使得测量装置内部会出现很多不需要的杂散光。为此,请参阅图20至图22,在一些实施例中,测距装置100还包括光约束件80,该光约束件80用于约束光发射器10产生的第一光脉冲300,以减小经光约束件80的第一光脉冲300的光束尺寸。
由此可以使得发射光路符合预设光路,提高第一光脉冲300的发射精度,使得第一光脉冲300按照预设光路进行发射,屏蔽预设光路之外的光,减少不必要的杂散光的产生。其中预设光路可以根据实际需求进行设计,在此不作限 定。
请再次参阅图3至图6b,其中,光约束件80设于光发射器10和光学结构30之间,即光发射器10、光约束件80和光学结构30沿发射光路依次设置。
可以理解地,光约束件80可以根据实际需要约束第一光脉冲300沿任意方向的光束尺寸。由于光发射器10中的发光元器件阵列通常不会呈圆形排布,直接使用圆形遮光筒可能难以达到最佳的约束效果。为了有针对性地对光发射器10发出的第一光脉冲300进行约束,在一些实施方式中,光约束件80能够约束第一光脉冲300在光学敏感方向上的光束尺寸,即约束经光约束件80的第一光脉冲300在光学敏感方向上的光束尺寸。需要说明的是,光学敏感方向是指光发射器10发散角较大的方向。具体地,请参阅图23,光发射器10沿i方向的发散角度η1大于光发射器10沿j方向的发散角度η2,因而i方向为光学敏感方向。请参阅图23和图24,图23和图24中δ1是未经光约束件80约束的第一光脉冲300的轮廓。图24中δ2是经光约束件80约束后的第一光脉冲300的轮廓。从图23和图24可知,经过光约束件80约束后的第一光脉冲300的轮廓尺寸比未经光约束件80约束的第一光脉冲300的轮廓尺寸小,屏蔽预设光路之外的光,减少不必要的杂散光的产生。
请再次参阅图20至图22,在一些实施例中,光约束件80形成有通光通道81,通光通道81能够约束第一光脉冲300在光学敏感方向上的光束尺寸。具体地,通光通道81可以供至少部分第一光脉冲300穿过,且通光通道81的壁面能够对光学敏感方向上的第一光脉冲300进行约束,使得第一光脉冲300按照预设光路进行发射,减少不必要的杂散光的产生。
请参阅图25a、图25b和图26,在一些实施例中,通光通道81的通道尺寸与第一光脉冲300的光束尺寸匹配。第一光脉冲300的光束尺寸亦即第一光脉冲300的轮廓尺寸。具体地,预设光路中第一光脉冲300在光学敏感方向上的光束尺寸与通光通道81在该光学敏感方向上的通道尺寸匹配,如此,一方面能够屏蔽预设光路之外的光进入通光通道81内,从而减少不必要的杂散光;另一方面能够保证预设光路之内的光最大程度地穿过通光通道81,避免能量损失。
请参阅图27和图28,结合图20至图22,在一些实施例中,光约束件80包括第一约束部82和第二约束部83。第一约束部82与第二约束部83沿光学敏感方向间隔相对设置以形成通光通道81。
请参阅图27和图28,在一些实施例中,第一约束部82包括连接段821和约束段822。约束段822与连接段821连接,且约束段822朝向背离光发射器10的方向延伸。具体地,光发射器10、连接段821和约束段822沿发射光路依次设置。
请参阅图27和图28,在一些实施例中,第二约束部83包括连接子部831和约束子部832。约束子部832连接于连接子部831背离光发射器10的一端。约束子部832与约束段822共同配合以约束第一光脉冲300在光学敏感方向上的光束尺寸。
请参阅图27和图28,结合图20至图22,为了方便加工,连接段821朝向通光通道81的一侧具有弧面。连接子部831朝向通光通道81的一侧具有弧形面。当然,连接子部831背离通光通道81的一侧也可以具有弧面,以方便加工。可以理解地,在其他实施例中,朝向通光通道81的一侧的表面以及连接子部831的表面也可以根据实际需求设计为其他任意合适形状,例如曲面等。
请参阅图27和图28,在一些实施例中,约束子部832具有子部本体8321、第一连接面8322和第二连接面8323。子部本体8321与连接子部831连接。第一连接面8322和第二连接面8323均设于子部本体8321邻近通光通道81的一侧。第一连接面8322与连接子部831朝向通光通道81的表面连接。第二连接面8323设于子部本体8321邻近通光通道81的一侧。第二连接面8323与第一连接面8322背离连接子部831的一侧连接。
可以理解地,子部本体8321可以根据实际需求设计为任意合适形状,只要第一连接面8322与第二连接面8323的连接处能够约束第一光脉冲300在光学敏感方向上的尺寸即可,例如三角形、朝向通光光道弯曲的弧形、朝向通光光道凸设的半弧形、其他合适的规则形状或不规则形状等。请参阅图27和图28,结合图20至图22,在一些实施方式中,子部本体8321沿光学敏感方向的尺寸以逐渐减小的方式从邻近连接子部831的一侧朝向通光通道81延伸,以使背离连接子部831一端的约束子部832能够约束第一光脉冲300在光学敏感方向上的尺寸。
请参阅图27和图28,在一些实施例中,为了方便加工,第一连接面8322呈弧形。第二连接面8323呈弧形。具体地,第一连接面8322的曲率可以与连接子部831的弧形面的曲率相同或大致相同,以便于加工。可以理解地,在其 他实施例中,第一连接面8322和第二连接面8323也可以是其他任意合适的形状。
请参阅图25a、图25b和图26,结合图27和图28,在一些实施例中,第一连接面8322与第二连接面8323的连接处,与第一约束部82背离光发射器10的端部共同配合以约束第一光脉冲300在光学敏感方向上的光束尺寸。具体地,约束段822的固定端与连接段821连接,约束段822的自由端能够与第一连接面8322和第二连接面8323的连接处配合约束第一光脉冲300在光学敏感方向上的光束尺寸。可以理解地,第一连接面8322和第二连接面8323的连接处可以根据实际需求设计为任意形状,例如平面、弧面、曲面等,只要能够与约束段822的自由端配合约束第一光脉冲300在光学敏感方向上的光束尺寸即可。
请参阅图25a和图26,结合图27和28,在一些实施例中,光发射器10、第一约束部82背离光发射器10的端部和连接处沿发射光路依次设置。具体地,将光发射器10、约束段822的自由端和该连接处在发射光路的光轴上投影,光发射器10、第一约束部82背离光发射器10的端部和该连接处沿发射光路的光轴依次设置。
请参阅图20至图22、图25a、图27和图28,在一些实施例中,第二约束部83还包括延伸子部833。延伸子部833与第二连接面8323背离第一连接面8322的一侧连接。具体地,延伸子部833与约束段822大致平行。
在一些实施方式中,上述连接处、第一约束部82背离光发射器10的端部和延伸子部833的自由端沿发射光路依次间隔设置。具体地,将第一连接面8322与第二连接面8323的连接处、约束段822的自由端和延伸子部833的自由端在发射光路的光轴上投影,第一连接面8322与第二连接面8323的连接处、约束段822的自由端和延伸子部833的自由端沿发射光路的光轴依次设置。
当然,在其他实施方式中,第一约束部82背离光发射器10的端部和延伸子部833的自由端在发射光路可以处于同一位置或至少部分重叠;或者,上述连接处、延伸子部833的自由端和第一约束部82背离光发射器10的端部可以沿发射光路依次间隔设置等。
请参阅图25b,在一些实施例中,延伸子部833可以省略,此时,光约束件80同样能够约束第一光脉冲300在光学敏感方向上的光束尺寸。具体地第一 连接面8322与第二连接面8323的连接处,与第一约束部82背离光发射器10的端部共同配合以约束第一光脉冲300在光学敏感方向上的光束尺寸。更为具体地,约束段822的固定端与连接段821连接,约束段822的自由端能够与第一连接面8322和第二连接面8323的连接处配合约束第一光脉冲300在光学敏感方向上的光束尺寸。
请参阅图21、图22、图27和图28,在一些实施例中,光约束件80还包括连接部84。连接部84与第一约束部82和第二约束部83配合形成通光通道81。具体地,连接部84的设置在某些情况下也可以约束第一光脉冲300的光学尺寸,当然,连接部84也可以实现其他合适的功能,在此不作限定。该连接部84可以根据实际需求设计为任意合适形状,例如板状等,在此不作限制。
请参阅图25b,在一些实施例中,连接部84也可以省略,此时,光约束件80同样能够约束第一光脉冲300在光学敏感方向上的光束尺寸。
可以理解地,光约束件80可以采用低反射率且不透光的材料制成,以便最大程度地吸收或屏蔽不必要的光,减少杂散光的产生。当然,光约束件80也可以采用低反射率且透光率低的材料制成。
请参阅图3至图5,在一些实施例中,光约束件80设于发射支架51上。可以理解地,光约束件80可以与发射支架51一体成型;也可以分体设置,例如通过卡扣连接、螺钉等快拆件连接等。
在一些实施方式中,光约束件80和第一基板41设于发射支架51的相对两侧,发射支架51上设有通光开口,用于供光发射器10发出的第一光脉冲300穿过。该通光开口与通光通道81连通。光发射器10发出的第一光脉冲300穿过通光开口进入通光通道81,经通光通道81约束后投射至光学元件31上。通光开口与通光通道81的相对位置可以根据实际需求进行灵活设置,例如通光开口可以偏离通光通道81设置。
可以理解地,若第一光脉冲300的光束尺寸大于预设尺寸,则第一光脉冲300投射至光学部件32时,在预设尺寸范围内的第一光脉冲300能够在透光区域321上穿设或折射以投射至准直元件33。在预设尺寸范围之外的第一光脉冲300则会在光学部件32的反射区域321上发生反射而产生杂散光。此外,测距装置100之外的光也可能会投影至光学部件32的反射区域322而产生杂散光。这些杂散光若被光接收器20接收,则会干扰测距装置100的正常工作,影响测 距装置100的测量精度和范围。
为此,在一些实施方式中,测距装置100可以只通过设置遮光件70对杂散光进行遮挡或屏蔽,减少到达光接收器20的杂散光,使得光接收器20接收预设光路上的第二光脉冲400,提高测距装置100的测量精度和范围。
在另一些实施方式中,测距装置100可以只通过设置光约束件80约束第一光脉冲300的光束尺寸,使得投射至光学部件32上的第一光脉冲300的光束尺寸小于或等于预设尺寸,如此能够保证第一光脉冲300均能够从光学部件32的透光区域321上穿设或折射,避免部分第一光脉冲300投影至光学部件32的反射区域322发生反射而产生杂散光,从而减少或避免到达光接收器20的杂散光,提高测距装置100的测量精度和范围。
在又一些实施方式中,测距装置100可以同时设置遮光件70和光约束件80,以减少或避免到达光接收器20的杂散光,有效保护了光接收器20,提高测距装置100的测量精度和范围。
可以理解地,杂散光不限于上述实施例所提到的类型,在第一光脉冲300和第二光脉冲400传输过程中产生的不符合预设条件(比如不符合预设光路)的光均属于本申请实施例的杂散光范围内。
可以理解地,在一些实施例中,测距装置100可以采用同轴或共轴光路方案,即发射光路和接收光路采用共轴光路,亦即,光发射器10发射的第一光脉冲300和经探测物2000反射回来的第二光脉冲400在测距装置100内共用至少部分光路。当然,在另一些实施例中,测距装置100也可以基于双轴方案等,在此不做限制,此时,第一光脉冲300和第二光脉冲400可以被配置为沿不同的光路行进。
激光测距装置等测距设备是一种能主动发射激光(即出射光),并利用探测物反射回的光线计算得出探测物与激光测距装置之间距离信息的装置,被广泛应用于单点测距仪、2D激光雷达和3D激光雷达等中。激光测距装置内部包含激光发射器、接收器和准直透镜,也可能根据光路设计需要,包含一些滤光镜片和反光镜片。这些光电元器件、光学镜片是固定在主体结构上的,它们之间的位置关系决定了激光测距装置的量程、测量精度等主要性能指标。
而在高低温环境下,由于主体结构的冷热变形,这些光电元器件和光学镜片的位置关系会发生变化,导致激光测距装置的量程和测量精度等性能受影响。 而随着激光测距装置的应用日益广泛,越来越多的场景要求激光测距装置工作在-40℃到85℃甚至更宽的温度区间,例如酷暑寒冬、荒原旷野、矿堆煤山甚至云层或太空外,因而对激光测距装置提出了更高的耐温要求。
然而目前激光测距装置中,固定各光电元器件和光学镜片的各立式支架互相连接形成至少部分主体结构,这样会导致光学元器件位置偏移受立式支架热变形影响,无法放宽立式支架的材质的限制。
此外目前激光测距装置通常以单一材料作为主体结构的材质,主要采用塑料、铝合金、钢材或特种金属制作主体结构。采用塑料制作主体结构的激光测距装置,由于塑料的线性膨胀系数通常比金属大,在高低温环境下主体结构的热胀冷缩问题更加明显,因此固定于主体结构上的光电器件、光学镜片之间的位置将发生严重偏移,导致激光测距装置的性能下降。
采用铝合金制作主体结构的激光测距装置,铝合金的线性膨胀系数比塑料小但比钢材大。但是铝合金零件比塑料密度更大,制造成本更高,产品重量和成本很难得到继续优化;对于精密仪器而言,若需要进一步提升激光测距装置的高低温性能,通常考虑将铝合金换为钢材或特种金属。
采用钢材制作主体结构的激光测距装置,钢材的热变形线性膨胀系数比铝合金小,有利于提升激光测距装置的高低温性能,但钢材密度比铝合金更大,产品重量很难得到继续优化。
采用特种金属制作主体结构的激光测距装置,某些特种金属拥有极低的线性膨胀系数,比如Invar合金。Invar合金常用于需要承受温度变化的精密光学仪器中,但Invar合金加工性能不佳,材料成本也比铝合金、普通钢材高数倍,在产品大规模生产时产品品质一致性以及成本很难得到继续优化。
针对该发现,本申请的发明人对测距装置进行了改进,以减小测距装置的量程和测量精度受热变形的影响,保证测距装置在高低温环境下的性能水平与常温环境下的性能水平相近。具体地,本申请实施例提供一种测距装置,包括:底座;第一基板,用于设置光发射器;第二基板,用于设置光接收器;光学结构,用于将所述光发射器发射的第一光脉冲导引至所述探测物,并将所述探测物反射的至少部分第二光脉冲导引至所述光接收器;连接结构,设于所述底座上;所述连接结构包括多个支架,所述第一基板、所述第二基板和所述光学结构分别设于多个所述支架上;其中,多个所述支架各自分离地设置在所述底座 上。
下面结合附图,对本申请实施例的一些实施方式作详细说明。
请参阅图2a至图6b、图8和图9,在一些实施例中,连接结构50包括多个支架。光发射器10、光接收器20和光学结构30分别设于多个支架上。具体地,光发射器10设于第一基板41上。光接收器20设于第二基板42。第一基板41、第二基板42和光学结构30分别设于多个支架上。多个支架各自分离地设置在底座61上。具体地,各支架包括上述发射支架51、接收支架52和光学支架53。发射支架51、接收支架52和光学支架53各自分离地设置在底座61上。更为具体地,各支架包括上述发射支架51、接收支架52、第一子架体531、第二子架体532、准直子架体533和第三子架体534,发射支架51、接收支架52、第一子架体531、第二子架体532、准直子架体533和第三子架体534各自分离地设置在底座61上。
需要说明的是,若多个支架中相互连接地设置在底座61上,则在高低温环境下,各支架和底座61均需要选用线性膨胀系数低的材质。光学元器件的位置偏移会受各支架热变形的影响,无法放宽各支架的材质限制,不利于重量和成本的优化。
与多个支架中相互连接地设置在底座61上相比,本申请实施例的各支架各自分离,即各支架两两之间都是独立设在底座61上的,相互之间没有直接的连接。这样,底座61热变形量大的时候,所有支架在底座61截面的位置偏差值就大;底座61热变形量小的时候,所有支架在底座61截面的位置偏差值就小,从而减小测距装置100的量程和测量精度受温度的影响,避免测距装置100受热变形的影响,保证测距装置100在高低温环境下的性能水平与常温环境下的性能水平相近。此外,上述测距装置100的各支架就像设置在底座61上的浮岛,各支架之间在底座61截面上的位置和角度变化主要取决于底座61的热变形,光学结构30中各光学元器件在底座61截面上的位置偏移受支架热变形影响小,甚至几乎不受支架热变形影响,因而有助于放宽各支架的材质限制,可以选择更轻质、更低价的材料,从而在保证产品的耐温性或高低温可靠性的条件下,优化产品的重量、成本。
在一些实施例中,该底座61截面平行或重合于图6a或图6b中XOY平面。
各支架均设置在底座61上,形成与预设光学需求适配的位置关系,比如光 发射器10和光接收器20邻近焦点或焦平面设置,或者设置在焦点或焦平面上。若要测距装置100抵抗温度变化的影响,则需要光发射器10、光接收器20和准直元件33等光学元器件的相对位置不发生改变,否则光发射器10或光接收器20会相对准直元件33发生离焦,光学元器件会偏离原来的位置,实际光路与预设光路发生偏离,导致测距装置100的量程和测量精度下降,致使测距装置100性能降级或失效。由于光发射器10、光接收器20、准直元件33等光学元器件固定在相应支架上,并且各支架之间的相对位置主要取决于底座61。因而,底座61和各支架的热变形直接影响了在不同温度环境下测距装置100的性能。
为了尽量减小热变形对测距装置100性能的影响,底座61和各支架可以使用线性膨胀系数尽量小的材料进行制作。同时考虑到重量和成本因素,可以只限制关键部件的材料即可。
由于各支架是各自分离的,各支架在底座61截面上的位置和角度变化主要取决于底座61的热变形,因此在某些实施例中,可以只对底座61的材料进行限制,即底座61采用低膨胀系数即可。具体地,为了减小各光学元器件的位置变化,各支架的线性膨胀系数均大于底座61的线性膨胀系数。更为具体地,发射支架51、接收支架52、第一子架体531、第二子架体532、准直子架体533和第三子架体534的线性膨胀系数均大于底座61的线性膨胀系数。如此,可以保证光发射器10、光接收器20和准直元件33等光学元器件在底座61截面上的相互位置和角度关系变化得到控制。
在一些实施例中,各支架的线性膨胀系数相同,以进一步保证光发射器10、光接收器20和准直元件33等光学元器件的相互位置和角度关系变化得到控制。具体地,发射支架51、接收支架52、第一子架体531、第二子架体532、准直子架体533和第三子架体534的线性膨胀系数相同。
可以理解地,底座61和各支架的材料可以采用任意合适的材料制成,例如塑料、铝合金、钢材和Invar合金。为了减小各光学元器件的位置变化,各支架的线性膨胀系数均大于底座61的线性膨胀系数。为了优化产品的重量,各支架的材料可以选用相对于底座61密度或成本较低的材料。
下面对塑料、铝合金、钢材和Invar合金四种材料的性能进行说明,但这仅是示例说明,不因此而限制底座61和各支架的材料。各材料在重量方面:塑 料<铝合金<钢材<Invar合金。在精加工成本方面:塑料<铝合金<钢材<Invar合金。线性膨胀系数方面:Invar合金<钢材<铝合金<塑料,即Invar合金的线性膨胀系数最小,塑料的线性膨胀系数最大。
为了更清楚地解释本实施例的技术方案,下面对底座61和各支架的材料组合进行举例,但不因此限制本申请实施例。
表1不同材质组合的底座和各支架性能对比
Figure PCTCN2019130929-appb-000001
表1中,重量等级I表示重量最轻,精加工成本等级I表示精加工成本最低,温度变化环境下的性能等级I表示抵抗热变形性能最好。可以理解地,表1仅是针对大多数情况的通用参考,在实际应用中可能因结构设计的不同而存在差异。参考表1,以组合序号1为例,如果某款测距装置100对成本敏感,且希望工作在一个小范围内波动的温度里,可以选用铝合金做底座61,并选用某牌号的塑料作为所有支架的材料。以组合序号3为例,如果某款测距装置100对重量和成本敏感,且希望持续工作在一个较大范围内波动的温度里,可以选用钢板做底座61,并选用铝合金作为所有支架的材料。
由于各光学元器件在Z方向上的位置变化主要取决于各支架在高度方向上的热变形。为此,在一些实施例中,各支架在底座61上的安装面位于同一预设平面上。准直元件33的光轴与预设平面大致平行。具体地,各支架均安装在底座61的同一个几何平面上。准直元件33的光轴与该几何平面大致平行。如此, 可以保证各光学元器件在Z方向上的位置关系变化得到控制,进一步减少或消除热变形的影响,进一步提高测距装置100的耐温性或高低温可靠性。其中Z方向为如图6a或图6b所示的方向。
在一些实施例中,大致平行是指二者的夹角为-8°至8°中的任意一合适角度,例如-8°、0°、8°以及-8°至8°中任意其他合适角度。各支架在底座61上的安装面位于同一预设平面上,泛指各支架在底座61上的安装面所在的平面位于同一预设平面上。即使各支架在底座61上的安装面不完整,或者各安装面中没有相连接,只要各支架在底座61上的安装面所在的平面位于同一预设平面上均在本申请实施例的范围之内。
下面对各光学元器件在Z向的位置变化进行分析:
根据线性膨胀系数公式:
α*L*ΔT=ΔL
其中,α为线性膨胀系数;L为所关注的两点初始距离;ΔT为环境温度变化;ΔL为所关注两点的形变量。
可以理解地,各光学元器件在Z向的位置变化,主要是每个支架中与准直元件33的光轴平齐的平齐部位与底座61的安装面之间的高度。由于光轴与底座61的安装面平行,所以每个支架的平齐部位与该安装面的初始距离L都相等。对同一测距装置100而言,忽略内部温差,每个支架所处的环境温度变化ΔT也相等,代入上述公式可知每个支架的平齐部位与底座61安装面在Z向的偏移量ΔL也相等。因此所有光学元器件的在Z向的位置变化规律一致,相互之间的位置错动量极小,可以满足测距装置100的高低温可靠性的要求。
请参阅图29至图31,在一些实施例中,每一支架均包括第一连接件541和第二连接件542。第一连接件541设于底座61上。第二连接件542设于第一连接件541上,且连接于第一基板41、第二基板42和至少部分光学结构30中的其中一者。
具体地,发射支架51的第一连接件541连接于底座61,发射支架51的第二连接件542和底座61均连接于发射支架51的第一连接件541的不同部位。第一基板41设于发射支架51的第二连接件542上,光发射器10设于第一基板41上。接收支架52的第一连接件541连接于底座61,接收支架52的第二连接件542和底座61均连接于接收支架52的第一连接件541的不同部位。第二基 板42设于接收支架52的第二连接件542上,光接收器20设于第二基板42上。
准直子架体533的第一连接件541连接于底座61,准直子架体533的第二连接件542和底座61均连接于准直子架体533的第一连接件541的不同部位。准直元件33设于准直子架体533的第二连接件542上。第一子架体531的第一连接件541连接于底座61,第一子架体531的第二连接件542和底座61均连接于第一子架体531的第一连接件541的不同部位。光学元件31设于第一子架体531的第二连接件542上。请参阅图29至图31,第二子架体532的第一连接件541连接于底座61,第二子架体532的第二连接件542和底座61均连接于第二子架体532的第一连接件541的不同部位。光学部件32设于第二子架体532的第二连接件542上。第三子架体534的第一连接件541连接于底座61,第三子架体534的第二连接件542和底座61均连接于第三子架体534的第一连接件541的不同部位。光学器件34设于第三子架体534的第二连接件542上。可以理解地,图29至图31中的光学部件32和光学器件34也可以是光发射器10、光接收器20、光学结构30的其他部件等光学元器件,相应地,图29至图31中的第二子架体532和第三子架体534可以是相应光学院器件对应的支架,本申请实施例并不因此而受限制。
在一些实施例中,各第一连接件541的线性膨胀系数大于各第一连接件541的线性膨胀系数。各第一连接件541的线性膨胀系数均大于底座61的线性膨胀系数。如此,能够保证光发射器10、光接收器20和准直元件33等光学元器件的相互位置和角度关系变化得到控制。
在一些实施方式中,各第一连接件541的线性膨胀系数均与底座61的线性膨胀系数相同。各第二连接件542的线性膨胀系数均大于各第一连接件541的线性膨胀系数。具体地,各第一连接件541和底座61可以采用同一种材料进行制作。各第一连接件541均各自分离地设置在底座61上。各第一连接件541可以和底座61一体成型,也可以分体设置;或者各第一连接件541中的一部分与底座61一体成型,另一部分与底座61分体设置。各第二连接件542的线性膨胀系数均大于各第一连接件541的线性膨胀系数。如此,能够保证各第二连接件542之间的位置关系在温度变化的情况下,相对保持不动,从而使得设于各第二连接件542上的光发射器10、光接收器20和准直元件33等光学元器件的相互位置和角度关系变化最大程度得到控制,减少或消除热变形的影响,进 一步提高测距装置100的耐温性或高低温可靠性。
在一些实施例中,各第二连接件542的线性膨胀系数相同,以进一步保证各第二连接件542之间的位置关系在温度变化的环境下相对保持不动,从而使得设于各第二连接件542上的光发射器10、光接收器20和准直元件33等光学元器件的相互位置和角度关系变化最大程度得到控制。
在一些实施例中,各光学元器件与预设平面之间的距离相同,即各光学元器件位于同一个高度,从而为各光学元器件之间的距离在温度变化的环境中不发生改变提供了保障。具体地,光发射器10与预设平面之间的距离、光接收器20与预设平面之间的距离、光学元件31与预设平面之间的距离、光学部件32与预设平面之间的距离、准直元件33与预设平面之间的距离和光学器件34与预设平面之间的距离均相同。
请参阅图29至图31,下面以光学部件32、光学器件34、第二子架体532、第三子架体534为例说明测距装置100在温度变化的条件下,光学部件32和光学器件34的相对位置变化。
请参阅图29和图31,第二子架体532的第一连接件541的材质为A1、第三子架体534的第一连接件541的材质为A2、底座61的材质为A3。第二子架体532的第二连接件542的材质为B1、第三子架体534的第二连接件542的材质为B2。假设A1、A2、A3材质的线性膨胀系数均为α1,B1、B2材质的线性膨胀系数均为α2。
根据图29中的的距离关系可知,光学部件32与光学器件34之间的距离D=X3-X1-X2。如果温度变化为△T,则如图30中,△X1=△T*α2*X1;△X1=△T*α2*X2;△X3=△T*α1*X3。
此时,光学部件32与光学器件34之间的距离D’=(X3+△X3)-(X1+△X1)-(X2+△X2)。如果光学部件32与光学器件34在温度变化情况下保持完全不动,则可设D=D’,解方程组可得:
Figure PCTCN2019130929-appb-000002
因此,按照图29或图30的结构形式进行设计,满足两种材质的线性膨胀系数关系为
Figure PCTCN2019130929-appb-000003
并满足光学部件32与光学器件34处在同一个高度上,也可以保证光学部件32与光学器件34之间的距离在温度变化的环境中完全不会发生改变。
在一些实施例中,测距装置100可以在第一温度到第二温度之间的环境下工作,第二温度大于第一温度。在第一温度到第二温度之间的环境下工作,上述各部件所选用的材料热变形能够满足上述的线性膨胀系数公式的温度变化区间。第一温度和第二温度可以根据实际需求进行设置。示例性地,第一温度为-40°,第二温度为85°,测距装置100可以在-40°、85°以及-40°至85°之间的任意合适温度下正常工作。
由于各支架的重心距离底座61较远,在振动环境下容易发生变形,导致光发射器10和光接收器20离焦。为了加强各支架的抗振性能,请参阅图32和图33,结合图2a、图2b、图8和图9,在一些实施例中,测距装置100还包括盖合件62,以提升测距装置100的振动可靠性。其中,盖合件62与至少部分连接结构50连接。且盖合件62和底座61分别设于连接结构50的两侧。具体地,盖合件62与各支架中的至少两者连接。
请参阅图2a、图2b和图32,在一些实施方式中,各支架均与盖合件62连接。具体地,接收支架52、光学支架53、第一子架体531、第二子架体532、准直子架体533和第三子架体534均与盖合件62连接。更为具体地,在背离底座61的一侧,接收支架52、光学支架53、第一子架体531、第二子架体532、准直子架体533和第三子架体534配合形成敞口,接收支架52、光学支架53、第一子架体531、第二子架体532、准直子架体533和第三子架体534均与盖合件62连接,且盖合件62与该敞口适配,以进一步提升测距装置100的振动可靠性。可以理解地,在其他实施方式中,盖合件62也可以仅与各支架的其中几个连接,例如图33,在此不作限定。
可以理解地,盖合件62可以与各支架一体成型,也可以分体设置。或者,盖合件62与各支架中的其中部分一体成型,与剩余部分分体设置。当盖合件62与支架分体设置时,可以通过卡扣连接、螺钉连接等方式实现二者的固定。
在一些实施例中,盖合件62的线性膨胀系数与底座61的线性膨胀系数相同。如此,在忽略测距装置100内部温差条件下,盖合件62和底座61的热变形一致,避免或减小测距装置100在高低温条件下的热变形量,防止光发射器10和光接收器20等光学元器件因为温度变化发生离焦,从而进一步增强测距装置100的高低温可靠性。
底座61、各支架和盖合件62的形状可以根据实际需求设计为任意合适形 状。比如底座61呈板状,盖合件62呈板状。在一些实施例中,请参阅图3至图5、图8和图9,各支架均包括安装部543,该安装部543用于与底座61连接。各安装部543与底座61连接的结合面可以位于同一预设平面上。安装部543的形状可以根据实际需求设计为任意合适形状,例如三角形等。
请参阅图8和图9,在一些实施例中,各支架均包括装配部544,该装配部544用于与盖合件62连接。装配部544的形状可以根据实际需求设计为任意合适形状,例如三角形等。装配部544可以与安装部543平行,也可以不平行,在此不作限定。
在一些实施例中,盖合件62的材质可以根据实际需求进行设计,例如与底座61的材质相同,当然也可以与底座61的材质不同。示例性地,底座61和盖合件62均采用钢板,各支架均采用铝合金。底座61和盖合件62均采用钢板材质可以减小测距装置100在高低温环境下由于热变形导致的光发射器10和光接收器20离焦,提升测距装置100的高低温可靠性。与各支架采用钢材相比,各支架采用铝合金可以减小测距装置100的整体重量,便于优化产品的重量。
可以理解地,光学元件31、光学部件32、准直元件33和光学器件34可以根据实际需求与相应支架采用任意合适的连接方式连接,例如卡合连接等,在此不作限定。为了便于安装,防止光学元器件在装配时出现装反或装错的问题,光学元件31、光学部件32、准直元件33和光学器件34等光学元器件均可以设计防呆结构,例如光学元器件的四个边缘之间形成四个角,其中一个角设计为倒圆角,另外三个角为倒直角。当然,防呆结构也可以是其他任意合适的防呆设计,在此不作限定。
可以理解地,在一些实施例中,光学元件31、光学部件32和光学器件34可以根据实际需求进行设置,例如省略其中一个、或省略其中两个或者均省略。
需要说明的是,上述对于测距系统1000各组成部分的命名仅是出于标识的目的,并不应理解为对本申请的实施例的限制。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (80)

  1. 一种测距装置,其特征在于,所述测距装置包括:
    光发射器,设于发射光路中,用于产生第一光脉冲;
    光接收器,设于接收光路中,用于接收第二光脉冲,其中所述第二光脉冲为所述第一光脉冲被探测物反射后所形成的光脉冲;
    光学结构,用于将所述第一光脉冲导引至所述探测物,并将至少部分所述第二光脉冲导引至所述光接收器;
    其中,至少部分所述光学结构位于所述发射光路上;且至少部分所述光学结构位于所述接收光路上,用于将所述第一光脉冲和所述第二光脉冲分离。
  2. 根据权利要求1所述测距装置,其特征在于,所述发射光路和所述接收光路采用同轴光路。
  3. 根据权利要求1所述测距装置,其特征在于,光发射器的发光面和/或光接收器的感光面邻近焦点或焦平面设置;或,光发射器的发光面和/或光接收器的感光面设于焦平面上。
  4. 根据权利要求1所述测距装置,其特征在于,所述发射光路和所述接收光路中的至少一者具有折叠部分,在所述折叠部分展开后,所述光发射器的发光面和所述光接收器的感光面大致位于光学上的同一位置上。
  5. 根据权利要求1所述测距装置,其特征在于,所述光发射器包括发光二极管、激光二极管、半导体激光阵列中的至少一种。
  6. 根据权利要求1所述测距装置,其特征在于,光接收器包括光电二极管、雪崩光电二极管、盖革模式雪崩光电二极管、电荷耦合元件中的至少一种。
  7. 根据权利要求1所述测距装置,其特征在于,所述光学结构包括:
    光学元件,用于改变所述光发射器产生的第一光脉冲的光路方向;
    光学部件,用于将所述第一光脉冲和所述第二光脉冲分离;
    准直元件,用于准直所述第一光脉冲;
    其中,所述光发射器、所述光学元件、所述光学部件和所述准直元件沿所述发射光路依次设置。
  8. 根据权利要求7所述测距装置,其特征在于,所述光学元件包括反射镜。
  9. 根据权利要求7所述测距装置,其特征在于,所述准直元件还用于将经 所述探测物反射回的至少部分第二光脉冲汇聚至所述光学部件上。
  10. 根据权利要求7所述测距装置,其特征在于,所述光学部件包括开孔反射镜、半透半反镜、偏振分光镜和采用镀膜方式的分光镜中的至少一种。
  11. 根据权利要求7所述测距装置,其特征在于,所述光学部件包括:
    透光区域,用于供所述第一光脉冲穿过;
    反射区域,沿所述透光区域的周向向外延伸,用于反射经所述反射区域的所述第二光脉冲。
  12. 根据权利要求11所述测距装置,其特征在于,所述透光区域的纵截面呈梯形。
  13. 根据权利要求12所述测距装置,其特征在于,所述梯形为等腰梯形。
  14. 根据权利要求11所述测距装置,其特征在于,所述反射区域的纵截面呈方形或近似方形。
  15. 根据权利要求12所述测距装置,其特征在于,所述反射区域包括:
    第一边缘部,与所述梯形的长边间隔第一预设距离设置;
    第二边缘部,与所述第一边缘部相对设置,并与所述梯形的短边间隔第二预设距离设置;所述第一预设距离大于所述第二预设距离。
  16. 根据权利要求7所述测距装置,其特征在于,所述准直元件包括准直透镜、凹面反射镜或微透镜阵列中的至少一种。
  17. 根据权利要求7所述测距装置,其特征在于,所述测距装置还包括:
    光学器件,用于改变所述光学部件反射的所述第二光脉冲;所述准直元件、所述光学部件、所述光学器件和所述光接收器沿所述第二光脉冲的反射方向依次设置。
  18. 根据权利要求17所述测距装置,其特征在于,所述光学器件包括反射镜。
  19. 根据权利要求7所述测距装置,其特征在于,所述测距装置还包括:
    连接结构,所述光发射器、所述光接收器和所述光学结构设于所述连接结构上。
  20. 根据权利要求19所述测距装置,其特征在于,所述连接结构包括:
    多个支架,所述光发射器、所述光接收器和所述光学结构分别设于多个所述支架上;和/或,所述连接结构包括:
    发射支架,所述光发射器设于所述发射支架上;
    接收支架,所述光接收器设于所述接收支架上;
    光学支架,所述光学结构设于所述光学支架上。
  21. 根据权利要求20所述测距装置,其特征在于,所述光学支架包括:
    第一子架体,所述光学元件设于所述第一子架体上;
    第二子架体,所述光学部件设于所述第二子架体上;
    准直子架体,所述准直元件设于所述准直子架体上。
  22. 根据权利要求21所述测距装置,其特征在于,所述测距装置还包括光学器件,所述准直元件、所述光学部件、所述光学器件和所述光接收器沿所述第二光脉冲的反射方向依次设置,所述光学器件用于改变所述光学部件反射的所述第二光脉冲;
    所述光学支架还包括:第三子架体,所述光学器件设于所述第三子架体上。
  23. 根据权利要求20所述测距装置,其特征在于,所述测距装置还包括:
    底座,所述连接结构设于所述底座上。
  24. 根据权利要求23所述测距装置,其特征在于,各所述支架安共面安装在所述底座上。
  25. 根据权利要求23所述测距装置,其特征在于,各所述支架在所述底座上的安装面位于同一预设平面上;和/或,所述准直元件的光轴与所述预设平面大致平行。
  26. 根据权利要求23所述测距装置,其特征在于,各所述支架的线性膨胀系数均大于所述底座的线性膨胀系数;和/或,各所述支架的线性膨胀系数相同。
  27. 根据权利要求23所述测距装置,其特征在于,所述测距装置还包括:盖合件,与至少部分所述连接结构连接,且所述盖合件和所述底座分别设于所述连接结构的两侧。
  28. 根据权利要求1-27任一项所述测距装置,其特征在于,所述测距装置还包括:
    遮光件,所述光学结构、所述遮光件和所述光接收器沿所述接收光路依次设置;所述遮光件用于遮挡杂散光,并供所述第二光脉冲穿过;所述杂散光为所述光接收器从所述接收光路外的方向接收的散射光或反射光。
  29. 根据权利要求28所述测距装置,其特征在于,所述遮光件包括:
    遮光部,用于遮挡所述杂散光;
    光通道部,设于所述遮光部上,用于供接收光路的光束穿过。
  30. 根据权利要求29所述测距装置,其特征在于,所述光通道部的轮廓与所述接收光路的光束轮廓匹配。
  31. 根据权利要求29所述测距装置,其特征在于,所述遮光部沿所述光通道部的外周向外延伸设置。
  32. 根据权利要求29所述测距装置,其特征在于,所述光通道部包括:
    第一子通道,至少部分所述光接收器设于所述第一子通道内;
    第二子通道,与所述第一子通道连通,所述第二光脉冲能够经所述第二子通道进入所述第一子通道。
  33. 根据权利要求32所述测距装置,其特征在于,所述第一子通道的通道尺寸大于所述第二子通道的通道尺寸。
  34. 根据权利要求28所述测距装置,其特征在于,所述遮光件为封闭环形结构。
  35. 根据权利要求1-27任一项所述测距装置,其特征在于,所述测距装置还包括:
    光约束件,所述光发射器、所述光约束件和所述光学结构沿所述发射光路依次设置;所述光约束件用于约束所述光发射器产生的第一光脉冲,以减小经所述光约束件的所述第一光脉冲的光束尺寸。
  36. 根据权利要求35所述测距装置,其特征在于,所述光约束件能够约束所述第一光脉冲在光学敏感方向上的光束尺寸。
  37. 根据权利要求36所述测距装置,其特征在于,所述光约束件形成有通光通道,所述通光通道能够约束所述第一光脉冲在所述光学敏感方向上的光束尺寸。
  38. 根据权利要求37所述测距装置,其特征在于,所述通光通道的通道尺寸与所述第一光脉冲的光束尺寸匹配。
  39. 根据权利要求38所述测距装置,其特征在于,所述通光通道的通道尺寸与所述第一光脉冲在光学敏感方向的光束尺寸匹配。
  40. 根据权利要求37所述测距装置,其特征在于,所述光约束件包括:
    第一约束部;
    第二约束部,与所述第一约束部沿所述光学敏感方向间隔相对设置以形成所述通光通道。
  41. 根据权利要求40所述测距装置,其特征在于,所述第一约束部包括:
    连接段;
    约束段,与所述连接段连接,并朝向背离所述光发射器的方向延伸。
  42. 根据权利要求41所述测距装置,其特征在于,所述连接段朝向所述通光通道的一侧具有弧面。
  43. 根据权利要求41所述测距装置,其特征在于,所述第二约束部包括:
    连接子部;
    约束子部,连接于所述连接子部背离所述光发射器的一端;与所述约束段共同配合以约束所述第一光脉冲在所述光学敏感方向上的光束尺寸。
  44. 根据权利要求43所述测距装置,其特征在于,所述连接子部朝向所述通光通道的一侧具有弧形面。
  45. 根据权利要求43所述测距装置,其特征在于,所述约束子部具有:
    子部本体,与所述连接子部连接;
    第一连接面,设于所述子部本体邻近所述通光通道的一侧,并与所述子部本体朝向所述通光通道的表面连接;
    第二连接面,设于所述子部本体邻近所述通光通道的一侧,并与所述第一连接面背离所述连接子部的一侧连接。
  46. 根据权利要求45所述测距装置,其特征在于,所述子部本体沿所述光学敏感方向的尺寸以逐渐减小的方式从邻近连接子部的一侧朝向所述通光通道延伸。
  47. 根据权利要求45所述测距装置,其特征在于,所述第一连接面呈弧形;和/或,所述第二连接面呈弧形。
  48. 根据权利要求45所述测距装置,其特征在于,所述第一连接面与所述第二连接面的连接处,与所述第一约束部背离所述光发射器的端部共同配合以约束所述第一光脉冲在所述光学敏感方向上的光束尺寸。
  49. 根据权利要求48所述测距装置,其特征在于,所述光发射器、所述第一约束部背离所述光发射器的端部和所述连接处沿所述发射光路依次设置。
  50. 根据权利要求45所述测距装置,其特征在于,所述第二约束部还包括:
    延伸子部,与所述第二连接面背离所述第一连接面的一侧连接。
  51. 根据权利要求40所述测距装置,其特征在于,所述光约束件还包括:
    连接部,与所述第一约束部和所述第二约束部配合形成所述通光通道。
  52. 根据权利要求35所述测距装置,其特征在于,所述光约束件采用低反射率且不透光的材料制成。
  53. 一种测距装置,其特征在于,包括:
    光发射器,设于发射光路中,用于产生第一光脉冲;
    光接收器,设于接收光路中,用于接收第二光脉冲,其中所述第二光脉冲为所述第一光脉冲被探测物反射后所形成的光脉冲;
    光学结构,用于将所述光发射器发射的第一光脉冲导引至所述探测物,并将所述探测物反射的至少部分所述第二光脉冲导引至所述光接收器;
    遮光件,所述光学结构、所述遮光件和所述光接收器沿所述接收光路依次设置;所述遮光件用于遮挡杂散光,并供接收光路的光束穿过;所述杂散光为所述光接收器从所述接收光路外的方向接收的散射光或反射光。
  54. 根据权利要求53所述测距装置,其特征在于,所述遮光件包括:
    遮光部,用于遮挡所述杂散光;
    光通道部,设于所述遮光部上,用于供接收光路的光束穿过。
  55. 根据权利要求54所述测距装置,其特征在于,所述光通道部的轮廓与所述接收光路的光束轮廓匹配。
  56. 根据权利要求54所述测距装置,其特征在于,所述遮光部沿所述光通道部的外周向外延伸设置。
  57. 根据权利要求54所述测距装置,其特征在于,所述光通道部包括:
    第一子通道,至少部分所述光接收器设于所述第一子通道内;
    第二子通道,与所述第一子通道连通,所述第二光脉冲能够经所述第二子通道进入所述第一子通道。
  58. 根据权利要求57所述测距装置,其特征在于,所述第一子通道的通道尺寸大于所述第二子通道的通道尺寸。
  59. 根据权利要求53所述测距装置,其特征在于,所述遮光件为封闭环形结构。
  60. 一种测距装置,其特征在于,包括:
    光发射器,设于发射光路中,用于产生第一光脉冲;
    光接收器,设于接收光路中,用于接收第二光脉冲,其中所述第二光脉冲为所述第一光脉冲被探测物反射后所形成的光脉冲;
    光学结构,用于将所述光发射器发射的第一光脉冲导引至所述探测物,并将所述探测物反射的至少部分所述第二光脉冲导引至所述光接收器;
    光约束件,所述光发射器、所述光约束件和所述光学结构沿所述发射光路依次设置;所述光约束件用于约束所述光发射器产生的第一光脉冲,以减小经所述光约束件的所述第一光脉冲的光束尺寸。
  61. 根据权利要求60所述测距装置,其特征在于,所述光约束件能够约束所述第一光脉冲在光学敏感方向上的光束尺寸。
  62. 根据权利要求61所述测距装置,其特征在于,所述光约束件形成有通光通道,所述通光通道能够约束所述第一光脉冲在所述光学敏感方向上的光束尺寸。
  63. 根据权利要求62所述测距装置,其特征在于,所述通光通道的通道尺寸与所述第一光脉冲的光束尺寸匹配。
  64. 根据权利要求63所述测距装置,其特征在于,所述通光通道的通道尺寸与所述第一光脉冲在光学敏感方向的光束尺寸匹配。
  65. 根据权利要求62所述测距装置,其特征在于,所述光约束件包括:
    第一约束部;
    第二约束部,与所述第一约束部沿所述光学敏感方向间隔相对设置以形成所述通光通道。
  66. 根据权利要求65所述测距装置,其特征在于,所述第一约束部包括:
    连接段;
    约束段,与所述连接段连接,并朝向背离所述光发射器的方向延伸。
  67. 根据权利要求66所述测距装置,其特征在于,所述连接段朝向所述通光通道的一侧具有弧面。
  68. 根据权利要求66所述测距装置,其特征在于,所述第二约束部包括:
    连接子部;
    约束子部,连接于所述连接子部背离所述光发射器的一端;与所述约束段共同配合以约束所述第一光脉冲在所述光学敏感方向上的光束尺寸。
  69. 根据权利要求68所述测距装置,其特征在于,所述连接子部朝向所述通光通道的一侧具有弧形面。
  70. 根据权利要求68所述测距装置,其特征在于,所述约束子部具有:
    子部本体,与所述连接子部连接;
    第一连接面,设于所述子部本体邻近所述通光通道的一侧,并与所述子部本体朝向所述通光通道的表面连接;
    第二连接面,设于所述子部本体邻近所述通光通道的一侧,并与所述第一连接面背离所述连接子部的一侧。
  71. 根据权利要求70所述测距装置,其特征在于,所述子部本体沿所述光学敏感方向的尺寸以逐渐减小的方式从邻近连接子部的一侧朝向所述通光通道延伸。
  72. 根据权利要求70所述测距装置,其特征在于,所述第一连接面呈弧形;和/或,所述第二连接面呈弧形。
  73. 根据权利要求70所述测距装置,其特征在于,所述第一连接面与所述第二连接面的连接处,与所述第一约束部背离所述光发射器的端部共同配合以约束所述第一光脉冲在所述光学敏感方向上的光束尺寸。
  74. 根据权利要求73所述测距装置,其特征在于,所述光发射器、所述第一约束部背离所述光发射器的端部和所述连接处沿所述发射光路依次设置。
  75. 根据权利要求70所述测距装置,其特征在于,所述第二约束部还包括:
    延伸子部,与所述第二连接面背离所述第一连接面的一侧连接。
  76. 根据权利要求65所述测距装置,其特征在于,所述光约束件还包括:
    连接部,与所述第一约束部和所述第二约束部配合形成所述通光通道。
  77. 根据权利要求60所述测距装置,其特征在于,所述光约束件采用低反射率且不透光的材料制成。
  78. 一种测距系统,其特征在于,包括:
    壳体;以及
    权利要求1-52任一项所述的测距装置,设于所述壳体上。
  79. 一种测距系统,其特征在于,包括:
    壳体;以及
    权利要求53-59任一项所述的测距装置,设于所述壳体上。
  80. 一种测距系统,其特征在于,包括:
    壳体;以及
    权利要求60-77任一项所述的测距装置,设于所述壳体上。
PCT/CN2019/130929 2019-12-31 2019-12-31 测距装置和测距系统 WO2021134690A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/130929 WO2021134690A1 (zh) 2019-12-31 2019-12-31 测距装置和测距系统
CN201980059920.1A CN114174851A (zh) 2019-12-31 2019-12-31 测距装置和测距系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/130929 WO2021134690A1 (zh) 2019-12-31 2019-12-31 测距装置和测距系统

Publications (1)

Publication Number Publication Date
WO2021134690A1 true WO2021134690A1 (zh) 2021-07-08

Family

ID=76686229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/130929 WO2021134690A1 (zh) 2019-12-31 2019-12-31 测距装置和测距系统

Country Status (2)

Country Link
CN (1) CN114174851A (zh)
WO (1) WO2021134690A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103954955A (zh) * 2014-04-25 2014-07-30 南京先进激光技术研究院 合成孔径激光成像雷达收发同轴光学天线
CN204855796U (zh) * 2015-06-01 2015-12-09 中国工程物理研究院激光聚变研究中心 一种激光测距光学系统
CN108761471A (zh) * 2018-06-08 2018-11-06 上海禾赛光电科技有限公司 一种激光雷达
CN108828558A (zh) * 2018-06-08 2018-11-16 上海禾赛光电科技有限公司 一种激光雷达
CN109001747A (zh) * 2018-06-20 2018-12-14 合肥菲涅尔光电科技有限公司 一种无盲区激光雷达系统
US10324170B1 (en) * 2018-04-05 2019-06-18 Luminar Technologies, Inc. Multi-beam lidar system with polygon mirror

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103954955A (zh) * 2014-04-25 2014-07-30 南京先进激光技术研究院 合成孔径激光成像雷达收发同轴光学天线
CN204855796U (zh) * 2015-06-01 2015-12-09 中国工程物理研究院激光聚变研究中心 一种激光测距光学系统
US10324170B1 (en) * 2018-04-05 2019-06-18 Luminar Technologies, Inc. Multi-beam lidar system with polygon mirror
CN108761471A (zh) * 2018-06-08 2018-11-06 上海禾赛光电科技有限公司 一种激光雷达
CN108828558A (zh) * 2018-06-08 2018-11-16 上海禾赛光电科技有限公司 一种激光雷达
CN109001747A (zh) * 2018-06-20 2018-12-14 合肥菲涅尔光电科技有限公司 一种无盲区激光雷达系统

Also Published As

Publication number Publication date
CN114174851A (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
CN108594206B (zh) 光传输模块、激光发射模块、激光雷达系统及车辆
KR101979404B1 (ko) 거리 측정 센서 조립체 및 그를 갖는 전자기기
CN101452076B (zh) 半导体激光云高自动测量仪光机系统
US20070030474A1 (en) Optical range finder
US10935638B2 (en) Laser radar system
JP7312979B2 (ja) レーザートランシーバーモジュールおよびその光学調整方法、レーザーレーダーおよび自動運転装置
US10067222B2 (en) Laser rangefinder
CN110235025B (zh) 距离探测装置
CN112513669A (zh) 激光收发模块和激光雷达
JP2007333592A (ja) 距離測定装置
CN115268097A (zh) 光学系统及具有此的激光雷达
WO2020223879A1 (zh) 一种测距装置及移动平台
CN108490556B (zh) 光模块
WO2021134689A1 (zh) 测距装置和测距系统
JP7473067B2 (ja) 光走査装置、物体検出装置及びセンシング装置
CN116793329A (zh) 干涉式光纤陀螺用光收发一体模块
JP2024056743A (ja) リアルタイムlidar距離校正のためのシステムおよび方法
WO2021134690A1 (zh) 测距装置和测距系统
CN212275966U (zh) 测距装置
CN212275965U (zh) 遮光组件
CN114779267A (zh) 激光测距系统以及激光测距装置
CN221056668U (zh) 测距装置及测距系统
CN216083083U (zh) 用于激光测距的共轴光学系统
KR100820004B1 (ko) 양방향 광 신호 송수신 장치
KR20190032813A (ko) 수광렌즈 모듈 및 라이다

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19958624

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19958624

Country of ref document: EP

Kind code of ref document: A1