WO2019233490A1 - 用于运输和投送运载物的载物无人机及相关装置、方法 - Google Patents

用于运输和投送运载物的载物无人机及相关装置、方法 Download PDF

Info

Publication number
WO2019233490A1
WO2019233490A1 PCT/CN2019/090450 CN2019090450W WO2019233490A1 WO 2019233490 A1 WO2019233490 A1 WO 2019233490A1 CN 2019090450 W CN2019090450 W CN 2019090450W WO 2019233490 A1 WO2019233490 A1 WO 2019233490A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
load
vehicle
bearing
telescopic
Prior art date
Application number
PCT/CN2019/090450
Other languages
English (en)
French (fr)
Inventor
彭文平
Original Assignee
Peng Wenping
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peng Wenping filed Critical Peng Wenping
Publication of WO2019233490A1 publication Critical patent/WO2019233490A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D9/00Equipment for handling freight; Equipment for facilitating passenger embarkation or the like

Definitions

  • the present disclosure relates to the field of logistics equipment and technology, and in particular, to an unmanned aerial vehicle and related devices and methods for transporting and delivering objects.
  • UAV unmanned aerial vehicle
  • the process of existing drones participating in the logistics industry is generally: in the logistics base, logistics personnel place the cargo to be transported and delivered into the logistics industry.
  • the special vehicle of the drone such as a flexible trawl, a fixed fixture and a rigid box, the drone is lifted off and goes to the unloading place.
  • the drone arrives at the unloading place, the drone landed on the ground and The special vehicle is opened by the consignee at the unloading place, the carrier is taken out, and the drone returns to the logistics base, that is, the distribution task of one destination is completed through one journey.
  • Chinese patent document CN106828935A provides a jig, which includes a carrier, a blocking member and a driving mechanism, wherein the carrier contains a cavity for restraining a carrier, and the clamp can only transport and deliver a carrier at one destination per trip And, if the volume of the carrier in a certain stroke is smaller than the maximum capacity of the chamber, the space resources of the clamp chamber will be wasted.
  • Chinese patent document CN106892119A provides an automatic unloading carrier.
  • the space for carrying a load object formed by multiple object loading arms can be large or small.
  • the carrier can only transport and deliver one purpose per trip. When the ground is loaded and the space occupied by the loaded object is less than the maximum space that can be formed when the load arms are folded, the space resources of the vehicle will be wasted.
  • Chinese patent document CN206171821U provides an air drop box which contains a storage space for carrying cargo, and only one destination can be transported and delivered on one flight itinerary, since it is impossible to use one carrier at a time Objects fill the containment cavity, so it is easy to waste space in the drop box.
  • the present inventor believes that there are the following deficiencies: First, in the process of the existing unmanned aerial vehicle carrying a carrier, one flight or operation trip to and from the logistics base Can only transport and deliver the carrier at one destination, complete a distribution task, and easily cause waste of space resources of the carrier. Second, the center of gravity of the carrier may move relatively horizontally before and after loading and unloading the carrier. When the relative horizontal movement exceeds a certain range, it may cause the vehicle or the drone to lose balance and tilt or cause an accident during subsequent trips, reducing the safety and working efficiency of the drone. The above disadvantages will increase the cost of using the UAV in the logistics industry.
  • the present inventor believes that how to make the load-carrying drone of the logistics industry can transport the load-carrying objects of multiple destinations in one trip, and how to maintain the load-carrying drone or its carrier to maintain balance before and after loading and unloading the load-carrying vehicle Not tilting becomes a problem to be solved.
  • embodiments of the present disclosure provide a carrier-laid drone and related devices and methods for transporting and delivering carriers.
  • a vehicle carrying a drone including:
  • a carrier comprising a carrier space capable of accommodating a carrier and an opening for the carrier to enter and exit the carrier space;
  • a plurality of restraint members any of the restraint members is connected to the carrier and is used to restrain the carrier in the carrier space, and is also used to release the restraint so that the carrier is separated from the carrier;
  • a plurality of independent telescopic members the first end of any of the telescopic members is connected to the carrier, and the second end, that is, the moving end thereof, can approach and deviate from the opening in the loading space. Movement to achieve extension and contraction of the telescopic element.
  • the telescopic element includes a plurality of telescopic rods, and each of the telescopic rods can be relatively movably inserted in order from the inside to the outside, wherein one end of an outermost telescopic rod is connected to the carrier, and the telescopic The moving direction of the telescopic rod of the piece is perpendicular to the plane on which the opening is located or a section of the opening.
  • the restraint member is a load bearing bar
  • One end of the load-bearing rod is connected to the load-bearing body, and the other end, that is, the moving end of the load-bearing rod, can move from outside the load-bearing space to the opening or can move at the opening.
  • two adjacent load-bearing rods may be locked to form a standard load-bearing rod by a locking device, and any two of the load-bearing rods that cannot be locked with each other are independent of each other, and a plurality of the standard load-bearing rods may form a fence type
  • the frame structure blocks the opening at least partially.
  • the load-bearing rod can be locked with the carrier through a locking device, or the load-bearing rod can be locked with a power-assisted bracket installed on the carrier to form a stable load-bearing structure, any two The load-bearing rods are independent of each other.
  • the telescopic element and the standard load-bearing rod may be locked to form a “ ⁇ ” -shaped structure through a locking device, and the “ ⁇ ” -shaped structure may be unlocked to form a “ ⁇ ” -shaped structure.
  • the restraining member is a clamping device, and the clamping device is installed at the moving end of the telescopic element and can move with the moving end.
  • the clamping device is a vacuum chuck, and at any time in any stroke, a vacuum chuck exerts a restraining effect on at most one carrier.
  • the carrier includes a safety net, which is arranged at the opening and can move or rotate linearly relative to the opening, and the safety net is used to intercept all the clamping devices that are released in advance.
  • the safety net may not be in contact with the carrier when the carrier is not released from all its clamping devices in advance.
  • the telescopic element is provided with a bellows, and the bellows is sealedly connected to the vacuum chuck, and a gas channel is formed inside the two.
  • an object-laid drone including:
  • a machine body and a carrier installed below the machine body; and a connecting member installed between the machine body and the carrier, the connecting member being driven by a driving device to drive the center of gravity of the machine relative to the carrier A state of moving in the X direction and / or a state of moving in the Y direction.
  • the driving device includes:
  • the X-direction linear movement mechanism is installed at the bottom of the connecting member and has an active end connected to the connecting member.
  • the connecting member performs a linear movement in the X direction relative to the carrier under the action of the active end;
  • the Y-direction linear motion mechanism is installed between the X-direction linear motion mechanism and the carrier, and its force drives the X-direction linear motion mechanism and its active end to perform a linear motion in the Y direction relative to the carrier. .
  • the X direction is perpendicular to the Y direction.
  • the loaded UAV includes:
  • a sensor configured to generate a feedback signal and send the sensed inclination angle of the vehicle and / or a force value of a component of the vehicle;
  • a controller in communication with the sensor, the controller being configured to receive the feedback signal and control the operation of the driving device according to the feedback signal.
  • the carrier of the UAV is a carrier provided by any of the above technical solutions.
  • a driving device for an unmanned aerial vehicle including:
  • the X-direction linear movement mechanism has an active end for connecting with the body of the load-carrying drone, and the center of gravity of the body performs a linear movement in the X direction relative to the bracket under the action of the active end;
  • the Y-direction linear movement mechanism is installed between the bracket and the X-direction linear movement mechanism, and its acting force drives the X-direction linear movement mechanism and its active end to perform a linear movement in the Y direction relative to the bracket.
  • a method for transporting and delivering a carrier includes:
  • Cargo from multiple destinations enters the cargo space of the vehicle
  • the method includes extending a portion of the telescoping member into a cavity occupied by the delivered vehicle before it leaves the vehicle.
  • the load drone Before and after the load drone loads the load, if its center of gravity moves relatively horizontally, its body can move relative to its load to achieve balance; the load drone can transport and deliver multiple destinations in one trip. Carry.
  • FIG. 1 is a cross-sectional view of a use state of a first vehicle provided by an embodiment of the present disclosure
  • FIG. 2 is a perspective view of a use-loaded drone provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a “ ⁇ ” -shaped structure formed in a vehicle according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a driving device for an object-laden drone according to an embodiment of the present disclosure
  • FIG. 5 is a cross-sectional view of a first use state of a second vehicle provided by an embodiment of the present disclosure
  • FIG. 6 is a cross-sectional view of a second use state of a second vehicle provided by an embodiment of the present disclosure
  • FIG. 7 is a cross-sectional view of a third vehicle in use according to an embodiment of the present disclosure.
  • FIG. 8 is a cross-sectional view of a use state of a fourth vehicle provided by an embodiment of the present disclosure.
  • FIG. 9 is a cross-sectional view of a fifth vehicle in use according to an embodiment of the present disclosure.
  • the lateral direction of the vehicle is referred to as the X direction
  • the longitudinal direction of the vehicle is referred to as the Y direction
  • the lateral direction of the vehicle is approximately parallel to the lateral direction of the vehicle.
  • the direction is called the X direction
  • the direction approximately parallel to the longitudinal direction of the vehicle is called the Y direction.
  • a trip referred to in the description of the present disclosure is a process in which a drone or a vehicle travels to and from the same logistics base once or from one logistics base to another logistics base, which is used to load and carry a cargo drone Place of things.
  • the locking device in the description of the present disclosure is a device that can connect two objects, the connection is called a lock, and breaking the connection is called unlocking.
  • the locking device can also be regarded as a locking device for the new object, and the two locking devices become one after the other locking devices are locked together. Locking device.
  • the distance that the gravity line of the vehicle is allowed to deviate from the center of gravity of the aircraft is set to a preset range, and when the offset distance is within the preset range, the unmanned aerial vehicle is unmanned.
  • the aircraft does not tilt.
  • the load drone tilts.
  • UAVs work most efficiently.
  • FIG. 1 is a cross-sectional view of a use state of a first vehicle provided by an embodiment of the present disclosure.
  • each telescopic element of the first carrier 8 is evenly distributed inside the carrier, and a vacuum suction cup is installed at the moving end of each telescopic element.
  • a vacuum suction cup X1 is installed at the end of the telescopic element S1, where each telescopic element contains A plurality of rigid telescopic rods that are inserted from the inside to the outside, each outermost telescopic rod is fixedly connected to the top of the first type of carrier 8, each telescopic rod has a corrugated tube (not shown) inside, and the corrugated tube and the vacuum suction cup are sealed A gas channel (not shown) is connected and formed inside the two, and the movement direction of each telescopic rod is perpendicular to the plane where the bottom opening of the carrier is located.
  • the first carrier W1 and the second carrier W2 where the upper side area of the first carrier W1 is larger and the telescopic member S2 and telescopic element S3 and their respective vacuum chucks are constrained in the load space, and the upper side area of the second carrier W2 is small, and only the telescopic element S4 and the vacuum chuck are confined in the load space.
  • the telescopic element S1 is fully extended under the action of gravity.
  • FIG. 1 there is not a vacuum suction cup which exerts a restraining effect on multiple carriers at the same time.
  • Any one of the two free-falling bodies opens from the opening of the safety net 9.
  • the opening of the first carrier 8 does not affect the other, for example, when the first carrier W1 needs to be delivered, the vacuum suction cups on the telescopic members S2 and S3 need to be eliminated through the gas channel at the same time, and The second carrier W2 is still maintained in the carrier space by the vacuum chuck under the telescopic element S4 until the destination of the second carrier W2 is reached.
  • Each telescopic rod of the first carrier 8 in FIG. 1 is rigid. After the first carrier W1 is delivered, the second carrier W2 will not shake or shift into the space occupied by the first carrier W1. .
  • the net-shaped fabric safety net 9 in FIG. 1 is mainly used to prevent the carrier from accidentally detaching from the first suction cup 8 in advance. Before reaching the destination, the safety net 9 is closed, which can at least partially block the opening. After arriving at the destination, before launching any carrier, opening the safety net 9 can help the carrier to escape from the first vehicle 8 smoothly.
  • the safety net 9 in the embodiment shown in FIG. 1 is opened and closed by sliding along a straight guide rod (not shown).
  • the safety net can also be connected to the opening of the carrier through rotation, through Turn to open and close.
  • the safety net 9 can intercept the carrier only when a carrier is released from all its clamping devices, that is, all the vacuum suction cups, for example, when the first carrier W1 is released from the telescope in advance.
  • the vacuum chucks on the pieces S2 and S3 can be intercepted by the safety net 9 only.
  • the first carrier W1 does not come into contact with the safety net 9 unless all the vacuum chucks are detached in advance.
  • the size and specifications of the carriers in different strokes may be different.
  • the carriers of different sizes and specifications need to be restrained by different numbers of vacuum suction cups to be successfully delivered, so , Any two vacuum chucks may simultaneously restrain the same carrier in one trip, may also separately restrain different carriers in another trip, and may not impose restrictions on carriers in other trips. Or only one of the vacuum chucks exerts a restraining effect on the carrier. Therefore, for the embodiment shown in FIG. 1, when there is no mutual influence and control between any two vacuum chucks, the restraint can be randomly imposed on the carrier, that is, any The two vacuum chucks are independent of each other.
  • each carrier As the area of the upper side of each carrier is different in different itineraries, the number of carriers that can be accommodated in different itineraries of the same vehicle can vary;
  • a carrier can be loaded into the carrier automatically by approaching the carrier directly above the carrier and placing a restraint on it by a vacuum chuck;
  • the same vehicle can allow multiple carriers at different destinations in one trip, and they can all be delivered automatically;
  • each vacuum sucker in each stroke can be used to constrain the load. At this time, the maximum utilization of the vehicle load space can be achieved;
  • the more vacuum suction cups provided on the same carrier the more fine restraint can be imposed on the carrier, that is, no matter how small the area of the upper side of the carrier can be restrained in the carrier or can be delivered separately, Helps improve vehicle space utilization.
  • FIG. 2 is a perspective view of a loaded UAV in use according to an embodiment of the present disclosure.
  • the unmanned aerial vehicle 1 shown in FIG. 2 includes a body provided with an organic wing 2, a connecting member 5 provided with a ball hinge, a carrier 3, an X-direction linear movement mechanism (not shown) provided with an active end 41, and a Y-directional straight line.
  • the body 2 is connected to the carrier 3 through the connecting member 5
  • the driving structure of the X-direction linear motion mechanism (not shown) is the driving assembly 43
  • the Y-direction linear motion mechanism 42 is driven.
  • the structure is a motor 43A
  • a spirit level 45L is provided on the upper surface 44 of the carrier 3, and is communicatively connected to a controller (not shown) capable of controlling the operation of the X-direction linear motion mechanism and the Y-direction linear motion mechanism.
  • the telescopic members 32 fixed to the top of the carrier body 34 are evenly distributed in the carrier body 34.
  • the movement direction of the telescopic rods of the telescopic member 32 is perpendicular to the plane where the opening 34A is located.
  • the carrier body 34 includes 5 closed sides and one at the bottom.
  • the opening 34A includes a hollow space structure (not shown) on the side of the bearing body 34.
  • a plurality of load-bearing rods 31 are provided at the opening 34A.
  • Each load-bearing rod 31 has two locking devices (not shown). There is a locking device (not shown) at the moving end of each telescopic element 32, and two adjacent load-bearing rods 31 mounted on different sides of the carrier 34 are each locked by a locking device (not shown) at its moving end.
  • the steps of using the object-laden drone of FIG. 2 in one journey may include:
  • Step a In the logistics base, after the spirit level 45L indicates that the upper surface 44 is parallel to the horizontal plane, the first carrier W1 and the second carrier W2 enter the load space 34B of the load body 34 from the opening 34A, and then load all The rod 31 is locked to form a plurality of standard load-bearing rods;
  • Step b While the first carrier W1 and the second carrier W2 enter the carrier space 34B, both of them exert a force in the contraction direction of the part of the telescopic member 32, so that the part of the telescopic member 32 contracts, and the other part is not contracted.
  • the telescopic element 32 and the standard load-bearing rod are locked by a locking device to form a “ ⁇ ” -shaped structure, so that two chambers that are not interoperable with the carrier are formed, and the first carrier W1 and the second carrier W2 are separated.
  • Step c After taking off of the object-carrying drone 1, the level 45L detects that the upper surface 44 is no longer parallel to the horizontal plane, and the carrier 3 is tilted, because of the effect of the ball hinge, the body 2 is not tilted;
  • Step d The controller (not shown) instructs the driving component 43 to drive the acting end 41 of the X-direction linear motion mechanism and instructs the Y-direction linear motion mechanism 42 to drive the X-direction linear motion mechanism, so that the connecting member 5 acted by the acting end 41 is driven.
  • the center of gravity of the body 2 moves in the X direction and the Y direction at the same time relative to the upper surface 44, so that the intersection angle between the upper surface 44 and the horizontal plane becomes smaller and smaller, until the upper surface 44 is completely parallel to the horizontal plane, the above driving action is stopped, and the connecting member 5 is no longer driven
  • the center of gravity of the body 2 moves relative to the upper surface 44;
  • Step e After reaching the destination of the first carrier W1, the driving mechanism (not shown) of the vehicle 3 unlocks the load-bearing rod 31 restraining the first carrier W1 or unlocks the corresponding “ ⁇ ” -shaped structure.
  • the first carrier W1 The opening of the chamber in which it is located is opened, so that the first carrier W1 is separated from the carrier 34 from the opening, and the retractable member 32 partially contracted in the foregoing step is fully extended under the action of gravity into the first carrier W1.
  • the driving mechanism recovers and releases the load-bearing rod 31 released after unlocking in a hollow space structure (not shown) of the carrier 34;
  • Step f After the UAV 1 takes off and flies to the destination of the second carrier W2, the level 45L detects that the upper surface 44 is not parallel to the horizontal plane, and the carrier 3 tilts. Because of the effect of the ball hinge, the body 2 and No tilt
  • Step g The controller instructs the driving component 43 to drive the X-direction linear motion mechanism acting end 41 and the Y-direction linear motion mechanism 42 to drive the X-direction linear motion mechanism, so that the center of gravity of the body 2 moves in the X direction and the Y direction relative to the upper surface 44 at the same time.
  • the intersection angle between the upper surface 44 and the horizontal plane becomes smaller and smaller, until the upper surface 44 is completely parallel to the horizontal plane, the aforementioned driving action is stopped, and the connecting member 5 no longer moves the center of gravity of the motor body 2 relative to the upper surface 44.
  • the telescopic parts can expand and contract under the action of gravity to help save energy;
  • the gravity line of the body 2 of the loaded drone 1 in the working state or even the gravity line of the unloaded loaded drone 1 is configured to correspond to the gravity line of the unloaded carrier 3 (there is no carrier in the carrier 3).
  • the carrier W1 and the carrier W2 enter and exit the carrier 3 are the reasons that cause the carrier 3 and even the body 2 to tilt. Therefore, when the entire gravity line of the carrier in the carrier space 34B deviates from the empty carrier 3
  • the gravity line of the vehicle 3 will deviate from the center of gravity of the body 2 until the deviation distance exceeds a preset range.
  • the inclination of the vehicle 3 and the upper surface 44 can be monitored by a level 45L installed on the upper surface 44 and generated.
  • the feedback signal occurs to a controller (not shown), and the controller sends a control instruction to control the work of the driving device;
  • Steps d and g are also skipped and not performed.
  • FIG. 3 is a schematic structural diagram of a “ ⁇ ” -shaped structure formed in a carrier provided by an embodiment of the present disclosure.
  • FIG. 3 shows a “ ⁇ ” -shaped structure formed by the load-bearing rod of FIG. 2 in a stroke after the load-bearing rod forms a standard load-bearing rod and is locked with a telescopic element.
  • the standard load-bearing rod formed by locking the first load-bearing rod 31A and the second load-bearing rod 31B has three locking devices, and the working length of the standard load-bearing rod is its opening width in the open installation position, where At the middle locking device, the standard load-bearing rod and the telescopic element 32 form a “ ⁇ ” -shaped structure, and the telescopic element 32 divides the load space into the left chamber A and the right chamber B. Chambers.
  • the carrier 3 belonging to the structure of FIG. 3 is in a trip. After the carrier of one destination is delivered, the carrier 3 will not change the restraining effect on the carriers to be delivered at other destinations, such as in FIG. 3
  • the " ⁇ " -shaped structure is unlocked for the first time to release the first load-bearing rod 31A, and the movement end of the first load-bearing rod 31A is under the action of gravity.
  • the telescopic member 32 continues with the second load
  • the rod 31B remains locked and becomes a “ ⁇ ” -shaped structure, so the second load-bearing rod 31B continues to maintain a restraining effect on the load in the right chamber B, and at the same time, the telescopic member 32 can also block the pending investment in the right chamber B Send the carrier to prevent it from moving into the left chamber A and leave the carrier in advance.
  • the carrier in the right chamber B needs to be delivered, release the second load-bearing rod 31B for the second time to release the binding force. That is, of course, when needed, the second load-bearing rod 31B can also be unlocked and released for the first time. Delivery of the cargo in the right chamber B.
  • the standard load-bearing rod of FIG. 3 may be formed at a position different from the locking device forming a “ ⁇ ” -shaped structure and other telescopic parts different from FIG. 3. ⁇ "glyph structure.
  • FIG. 4 it is a schematic structural diagram of a driving device for an unmanned aerial vehicle provided by an embodiment of the present disclosure. Specifically shown is the driving device for the drone 1 of FIG. 2.
  • a bracket 42A for fixing the bracket 44A mounted on the upper surface 44 of the carrier 3 is provided with a screw rod 42A in a Y-direction linear movement mechanism.
  • the axial centerline of the screw rod 42A is parallel to the Y direction (the longitudinal direction of the bracket 44A).
  • the two ends of the X-direction linear motion mechanism 42 are respectively mounted on sliders (not shown) of the screw rods 42A on both sides.
  • the sliders are threadedly mounted on the screw rods 42A.
  • One end of the active end 41 of the X-direction linear motion mechanism 42 is installed.
  • the axial center line of the guide rail is parallel to the X direction (the lateral direction of the bracket 44A).
  • the active end 41 can be driven by the driving component 43 in the guide rail to move in the X direction relative to the bracket 44A, and the X-direction linear movement mechanism 42 can be moved in the Y direction relative to the bracket 44A under the action of the Y-direction linear movement mechanism.
  • the Y-direction linear motion mechanism is driven by its motor 43A.
  • the Y-direction linear movement mechanism 42 In order to move the active end 41 of FIG. 4 to the circular designated area 44Z on the bracket 44A, the Y-direction linear movement mechanism 42 first drives the X-direction linear movement mechanism relative to the bracket 44A to move directly above the designated area 44Z in the Y direction, and then The X-direction linear motion mechanism then drives its active end 41 to move directly above the designated area 44Z in the X direction. At this time, the axial centerline of the active end 41 passes the center of the designated area 44Z.
  • the active end 41 is connected to the body of the load-carrying drone through the connecting part, and the active end 41 acts on the connecting part and the body, the movement state of the active end 41, the connecting part, and the center of gravity of the machine can be realized, and the body can also be realized.
  • the line of gravity passes through the center of the circle.
  • the body's gravity line can pass through any point on the plane of the bracket 44A as required, or the body's gravity line can reach any designated area on the plane of the bracket 44A as needed.
  • the Y-direction linear motion mechanism 42 drives the X-direction linear motion mechanism and the X-direction linear motion mechanism and its active end. 41 can be connected in any order, and it can also be understood that when the center of the circle of the designated area 44Z and the current line of gravity are in the same plane parallel to the Y direction, only the Y-direction linear motion mechanism 42 is required.
  • the line of gravity of the machine passes through the center of the circle; when the center of the circle of the designated area 44Z and the line of gravity of the current machine are in the same plane parallel to the X direction, only the line of X-direction is required
  • the movement mechanism drives the connecting member to move the center of gravity with the motive force in the X direction, so that the line of gravity of the machine passes through the center of the circle.
  • the body center of gravity needs to be moved in the X direction or the Y direction to achieve balance without tilting.
  • An object-laden drone equipped with a driving device as shown in FIG. 4 can be installed between the top of the vehicle and the connector at the bottom of the body, and then the sensor can be further configured with the driver and electrically connected to it.
  • the controller may be an inclination sensor or / and a pressure sensor, and is used for sensing the tilt angle of the UAV or its components and the force value of the vehicle restraint components, respectively, and generating a feedback signal.
  • the controller After the controller obtains the feedback signal sent by the sensor, if it is necessary to correct the tilt state of the load-carrying drone or prevent the load-carrying drone from tilting according to the signal, the controller sends a control instruction to the drive device to control its X-direction linear motion
  • the work of the mechanism or / and the Y-direction linear movement mechanism makes the center of gravity of the aircraft move in the X direction or / and the Y direction relative to the carrier until the load drone no longer tilts or does not tilt.
  • FIG 5 is a cross-sectional view of a first use state of a second vehicle provided by an embodiment of the present disclosure.
  • the carrier 3 shown in FIG. 5 is the carrier 3 of the unmanned aerial vehicle 1 in FIG. 2. It can be seen from FIG. 5 that the loading position and size specifications of the carrier in the itinerary relative to the second carrier.
  • the active end 41 on the carrier 3 in equilibrium is relatively close to the carrier W1, which indicates that the center of gravity of the carrier 3 is biased toward the first carrier W1 at this time.
  • the telescopic member 32 of the carrier 3 divides the carrier space 34B into two chambers which are not interoperable with the carrier, and respectively accommodates the first carrier W1 and the second carrier W2, and the telescopic member 32A participating in the partition chamber It can prevent the objects in any of the chambers from moving to the other chamber.
  • the locking device CF2 is locked.
  • a sufficient number of such load-bearing poles are connected in this way to form a plurality of standard load-bearing poles to form a load-bearing fence-type frame structure, which can completely restrain the first carrier W1 and the second carrier W2.
  • the load-carrying space 34B there are three corresponding telescopic members 32 above the locking device of the standard load-bearing bar. Only the telescopic member 32A of the three telescopic members 32 in the stroke is formed at the second locking device CF2. " ⁇ " -shaped structure CS2, other telescopic elements 32 are blocked by the carrier The role and relative contraction.
  • the center of gravity of the carrier 3 is on the axial centerline of the telescopic member 32A, and the axial centerline of the active end 41 and the telescopic member 32A coincide to maintain balance.
  • the center of gravity of the vehicle 3 has moved horizontally to the position of the first carrier W1.
  • the active end 41 of the X-direction linear motion mechanism needs to move horizontally accordingly, so that the connection affected by it
  • the center of gravity of the piece-driven machine is shifted horizontally to a suitable position from the position of the first carrier W1.
  • FIG. 6 is a cross-sectional view of a second use state of a second carrier provided by an embodiment of the present disclosure.
  • FIG. 6 follows FIG. 5. After the “5” -shaped structure CS2 is unlocked for the first time, FIG. 5 releases the first load-bearing rod 31A and releases the first carrier W1 from the carrier 3 to become FIG. 6. The process is: “ ⁇ ” -shaped structure After CS2 unlocks for the first time and releases the first load-bearing rod 31A, the chamber in which the first carrier W1 is located is opened, the first carrier W1 loses restraint and leaves the carrier 3, and the corresponding telescopic member 32B is fully extended under the action of gravity. In the cavity occupied by the first carrier W1, the first load-bearing rod 31A is recovered by the driving mechanism and stored in the hollow space structure 34K.
  • the carrier 3 does not change the restraining effect on the second carrier W2, and thus the second The carrier W2 may remain in the carrier space 34B of the vehicle 3 until the second carrier W2 is automatically delivered at its destination.
  • the active end 41 of FIG. 6 Relative to the position of the active end 41 in FIG. 5, the active end 41 of FIG. 6 has undergone relative movement and reached a new position, and a new balance of the carrier 3 after the first carrier W1 is delivered is achieved.
  • the result of the drone's drive Relative to the position of the active end 41 in FIG. 5, the active end 41 of FIG. 6 has undergone relative movement and reached a new position, and a new balance of the carrier 3 after the first carrier W1 is delivered is achieved.
  • any two load-bearing rods of the second type of vehicle may constrain different or unconstrained loads, or may constrain the same load at the same time.
  • the load-bearing state or restraining effect in the process is random.
  • the first load-bearing rod 31A and the second load-bearing rod 31B in FIG. 6 may interlock with each other to form a standard load-bearing rod in a certain stroke, but do not form a “ ⁇ ” -shaped structure.
  • restraining and releasing the carrier requires changing the locked state and the unlocked state of the first load-bearing rod 31A and the second load-bearing rod 31B at the same time.
  • the first load-bearing rod 31A and the second load-bearing rod 31B The locked state of each other affects and controls each other, and the unlocked state also affects and controls each other, but only to this, the locked state and unlocked state of the first load-bearing rod 31A and the second load-bearing rod 31B are not subject to any other arbitrary
  • the influence and control of the load-bearing bar can be regarded as the first load-bearing bar 31A and the second load-bearing bar 31B and any other load-bearing bar are independent of each other, so any two non-locking load-bearing bars are independent of each other .
  • the space occupied by multiple carriers at different destinations after entering any of the existing carriers is at least one cavity, since the existing carriers can only carry carriers at one destination during one trip, When the vehicle is fully filled, the space resources of the vehicle's load space will be wasted. Therefore, under the condition that it can ensure that the loads of different destinations can be transported and delivered separately, the predetermined maximum load space of the vehicle can be determined. Separation is performed. When the carrier at one destination cannot fill the carrier, the carrier at the second destination or more carriers are loaded until all carriers fill the carrier space of the carrier.
  • the carrier space of the second carrier can be randomized by the expansion or contraction of the telescopic member as needed. Divided into multiple chambers that are not interoperable for the carrier, so that each carrier to be delivered in any trip enters the chamber and carriers at the same destination enter the same chamber, which can be unlocked When the load of the same destination is delivered by the load-bearing rod corresponding to any one of the chambers, the constraint state of the other destinations in other chambers is not changed, so that different destinations can be automatically transported with one itinerary. And delivery, that is, to complete multiple distribution tasks with a single trip, reducing the cost of transporting and delivering carriers with a carrier drone.
  • the telescopic element extends into the cavity space occupied by the delivered carrier before it leaves the carrier, which can prevent the carrier to be delivered from moving to the chamber and leave the carrier in advance.
  • FIG. 7 is a cross-sectional view of a third carrier in use according to an embodiment of the present disclosure.
  • one end of a load-bearing rod 731A of the carrier 730 is connected to one side of the carrier 734, and the other end is its movement.
  • the other end is connected to the other side of the bearing body 734 by a locking device.
  • the load bearing rod 731A is a standard load bearing rod.
  • the working length of the load bearing rod 731A is its opening width in the open installation position. There are enough such load bearing rods.
  • the load-bearing fence-type frame structure After being installed in the above manner, it becomes a load-bearing fence-type frame structure that can constrain all the loads including the load 7W1 in the load space 734B of the load bearing body 734, and the side of the load bearing body 734 contains a ring 734Q, which bears the load.
  • the steps of using the vehicle-mounted drone equipped with the vehicle 730 shown in FIG. 7 in one journey may include:
  • Step a When multiple carriers including the first carrier W1 are loaded into the carrier space 734B, the multiple carriers exert a force on some of the telescopic members 732 to cause them to contract, and after forming multiple chambers, the carrier 7W1 Enter the corresponding chamber and lock all load-bearing bars, including the load-bearing bar 731A;
  • Step b When the load 7W1 needs to be delivered, the locking device of the load-bearing rod 731A is unlocked. Under the action of gravity, the moving end of the load-bearing rod 731A rotates to the ground, and the load 7W1 restrained by the load-bearing rod 731A detaches from the load-bearing body 734 and loads. When the rod 731A is rotated to a proper position, it can be recovered by the driving mechanism of the carrier 730 and stored in the ring 734Q of the carrier 734;
  • Step c After the carrier 7W1 is unloaded, the corresponding telescopic element 732, which is contracted because the carrier 7W1 enters the carrier space 734B, can be fully extended into the cavity space occupied by the carrier 7W1 under the action of the driving mechanism.
  • the telescopic part of the third type of vehicle When the telescopic part of the third type of vehicle is empty and the opening is facing upwards (equivalent to the vehicle being inverted), the telescopic part can be fully contracted under the action of gravity, so that it is convenient to load the carrier into its carrier and load it. After the entire load is carried, the telescopic element that does not bear the pressure or gravity of the load can be fully extended under the force of the driving mechanism to form a cavity;
  • the driving mechanism needs to unlock all load-bearing bars of the restraint load 7W1 to deliver the load 7W1.
  • all loads of the restraint load 7W1 are unlocked.
  • the pole does not affect the unlocked and locked state of the load-bearing pole that restrains other destinations;
  • any two load-bearing rods of the third vehicle may constrain different or non-constrained loads at random, or may constrain the same load at the same time, or there may be only one load-bearing rod to constrain the load. Therefore, the locked state and unlocked state of any two load-bearing rods must be free of mutual influence and control in order to realize that any load-bearing rod can be unlocked randomly on demand, which means that any two load-bearing rods in this embodiment are independent of each other. of.
  • FIG. 8 it is a cross-sectional view of a use state of a fourth vehicle provided by an embodiment of the present disclosure.
  • a bracket 844 of a driving device is fixedly mounted on the upper side of the carrier 834 of the carrier 830, and two adjacent first and second load-bearing rods 831A and 831B at the opening 834A are respectively rotated through their respective ends. Connected to different sides of the carrier 834, and then locked by a locking device at each moving end to form a standard load-bearing rod.
  • the first load-bearing rod 831A and the second load-bearing rod 831B each have three locking devices, and each is also provided with a sensor 833 of the load drone driving device, wherein the locking devices of the first load-bearing rod 831A are the first The locking device 8CF1, the second locking device 8CF2, and the third locking device 8CF3.
  • the locking devices of the second load bearing rod 831B are the third locking device 8CF3, the fourth locking device 8CF4, and the fifth locking device 8CF5.
  • the third locking device 8CF3 of the first load-bearing rod 831A and the third locking device 8CF3 of the second load-bearing rod 831B are interlocked with each other to become the third locking device 8CF3 on the standard load-bearing rod.
  • the number of sensors 833 is greater than three. These sensors can be placed on a flat surface, and each sensor will The sensed force value is sent to the computing processor of the controller, and the computing processor can calculate the intersection point between the gravity line of the current vehicle 830 and the plane, and compare it with the gravity line of the vehicle 830 at no load. Or the parameters of the intersection of the gravity line of the body and the plane are compared, and the distance between the gravity line of the carrier 830 and the center of gravity of the unloaded carrier 830 or the center of gravity of the machine at any time in each stroke can be obtained.
  • the controller instructs the driving device to drive the connecting member arranged between the top of the vehicle 830 and the bottom of the body and connected to the active end 841.
  • the center of gravity of the aircraft moves so that the center of gravity of the aircraft is at a vertical line with the center of gravity of the vehicle 830 at the current moment, or the distance of the gravity line of the vehicle 830 from the center of gravity of the current moment does not exceed a preset range, avoiding Inclined or correct loading of the vehicle or UAV.
  • the gravity line of the body of the unloaded drone and the gravity line of the unloaded drone are arranged in the same line as the gravity line of the unloaded vehicle in the working state, which can ensure that The safety and efficiency of the unloaded drone when it is running, and during the transportation process, it provides computing comparison parameters for the computing processor, so that the computing processor can quickly and accurately calculate the weight according to the tilt angle and / or force value sensed by the sensor. Whether the center of gravity is at a vertical line with the center of gravity of the vehicle 830 at the current time, or calculate whether the distance between the gravity line of the vehicle 830 at the current time and the center of gravity of the machine or the center of gravity of the empty vehicle 830 exceeds a preset range.
  • the above-mentioned computing processor may be disposed in the on-board drone, or may be disposed on a remote server that is communicatively connected with the on-board drone.
  • the fourth step of using the fourth vehicle in one trip may include:
  • Step a In the logistics base, a plurality of carriers including the first carrier 8W1 and the second carrier 8W2 enter the carrier 834 from the opening 834A of the empty carrier 830, respectively. After all entering the bearing body 834, all load-bearing rods are locked to form a plurality of standard load-bearing rods;
  • Step b At the same time when the above-mentioned multiple carriers start to enter the carrier 834, the driving mechanism exerts a force on the corresponding part of the telescopic member 832, so that it contracts with the first carrier 8W1 and the second carrier 8W2, etc.
  • the surface is in contact or not, but the driving mechanism does not exert force on the telescopic element 832A.
  • Some of the telescopic elements 832, including the telescopic element 832A divide the load space 834B into two chambers.
  • the lock forms a “ ⁇ ” -shaped structure, and the telescopic member 832A can participate in blocking the first carrier 8W1 and the second carrier 8W2 from moving between different chambers;
  • Step c Each sensor 833 senses the force exerted by the carrier in the current vehicle 830 and generates a feedback signal to send to the controller;
  • Step d When the computing processor calculates that the distance of the gravity line of the carrier 830 from the center of gravity of the machine exceeds the preset range at the current moment, the driving device drives the connector connected to the active end 841 to move with the center of gravity until the distance does not exceed Preset range
  • Step e After the UAV takes off and first reaches the destination of the first carrier 8W1, the driving structure unlocks the “ ⁇ ” -shaped structure 8CS2 for the first time to form a “ ⁇ ” -shaped structure and releases the corresponding first load-bearing rod 831A, so that The first carrier 8W1 is detached from the carrier 834, and the retractable part 832 partially contracted in the foregoing steps is fully extended into the cavity space occupied by the first carrier 8W1 under the force of the driving structure.
  • the driving mechanism will unlock the first carrier
  • the bearing rod 831A is recovered and stored in the hollow space structure 834K of the bearing body 834;
  • Step f Each sensor 833 senses the force exerted by the carrier in the current vehicle 830 and generates a feedback signal and sends it to the controller;
  • Step g When the computing processor calculates that the distance of the gravity line of the carrier 830 from the center of gravity of the machine exceeds the preset range at the current moment, the driving device drives the connector connected to the active end 841 to move with the center of gravity until the distance does not exceed Preset range
  • Step h The object-carrying drone flies to the destination of the second object 8W2.
  • the first load-bearing rod 831A becomes shorter, and the adjacent second load-bearing rod 831B becomes correspondingly longer at the same time, but at any time, the first load-bearing rod
  • the length of the standard load-bearing rod connected after the 831A and the second load-bearing rod 831B are locked will not change, and will still be the width of the opening in its installation position;
  • the tilt of the load drone or vehicle can be monitored with a spirit level, etc., the spirit level can be used to correct the tilt, and the pressure sensor can be used to prevent the tilt;
  • the size and specifications of the carriers may be different when they are transported and delivered at different destinations through different itineraries. Therefore, it is necessary to restrict each carrier in different itineraries.
  • the number of load-bearing bars may also be different, so as long as the carrier 830 is a load-bearing bar that is not interlocked, the locked and unlocked state of any load-bearing bar is not the same as the locked and unlocked state of another load-bearing bar Influence and control, which means that any two load-bearing rods that cannot be locked with each other are independent of each other.
  • the load-carrying drone may divide the load-carrying space into a plurality of chambers first, and the carriers at different destinations enter the different chambers one by one, or the carriers may enter the carrier.
  • the carrier or driving mechanism acts on the telescopic member to make the telescopic member expand and contract. After all the carriers are completely entered, multiple chambers are formed. It is also possible to expand and retract the corresponding telescopic member before and after each destination carrier is loaded. A cavity is formed until all the loads are loaded to form a plurality of cavities, that is, some steps of the method for transporting and delivering the loads by the load drone may be performed in no particular order.
  • the standard load-bearing rod When implementing the present disclosure, for the fourth type of vehicle, if a standard load-bearing rod is connected by two load-bearing rods containing multiple locking devices, or the standard load-bearing rod contains multiple locking devices, the standard load-bearing rod There are multiple ways to disconnect the poles to form 2 load-bearing poles, and the length of the same load-bearing pole formed by disconnecting in different ways is not the same. If the locking device on each standard load-bearing pole has a locking device at the same time Corresponding to the telescopic parts, it is easier to form different “ ⁇ ” -shaped structures on demand in different strokes, so that only a corresponding open portion needs to be opened to deliver a carrier.
  • each locking device is equipped with a corresponding telescopic member with a locking device to improve the load of the drone. Space utilization and reduce logistics costs.
  • FIG. 9 is a cross-sectional view of a fifth vehicle in use according to an embodiment of the present disclosure.
  • the first load-bearing rod 931A and the second load-bearing rod 931B of the fifth type of vehicle 930 located in the open 934A are respectively fixedly installed on different sides of the carrier 34 through their respective ends, and the first load-bearing rod 931A and the second load-bearing rod 931B are each other. Independently, after their respective moving ends are extended at the opening, they are locked with the extended power-assisted brackets 9CZ1 and 9CZ2 respectively through a locking device to form a stable load-bearing structure.
  • the first load-bearing rod 931A and the second load-bearing rod 931B are expanded and contracted at the opening by the movement of the moving end, wherein the opening can be at least partially blocked after being stretched, and the opening can be at least partially opened by being contracted.
  • the first load-bearing rod 931A and the second load-bearing rod 931B in FIG. 9 are not interlocked with each other.
  • the 931B is not locked with the corresponding telescopic element 32 to form a “ ⁇ ” -shaped structure.
  • the first carrier 9W1 is provided with a restraining effect by a load bearing bar including the first load bearing rod 931A
  • the second carrier 9W2 is provided with a second load bearing rod 931B.
  • An internal load-bearing bar provides restraint.
  • the telescopic element of the carrier 930 is not provided with a locking device, and functions to separate the load space into a plurality of non-interconnectable chambers.
  • the telescopic element is fixedly installed on the top of the inside of the carrier and in other embodiments is fixedly installed on each load bearing rod.
  • the above is functionally equivalent, but when installed on the top of the carrier, after the carrier is delivered through the opening at the bottom, it is convenient for the telescopic element to stretch under the action of gravity to restrain and prevent other carriers to be delivered from moving between different chambers. Therefore, energy saving is realized, and when the telescopic member is installed on the load bearing rod and needs to be extended, a driving mechanism is needed.
  • the moving end of the telescopic member fixedly mounted on the top of the carrier can move in the load space, wherein when the moving end moves away from the opening, the telescopic member performs a contraction movement; when the moving end tends to move When moving near the opening, the telescopic element is used for stretching.
  • the telescopic element if one end of the telescopic element is fixedly mounted on the load bearing rod, when the moving end moves away from the opening, the telescopic element is used for stretching. When the end approaches the open movement, the telescopic element performs a contraction movement.
  • the present disclosure provides a method for transporting and delivering a carrier in the above-mentioned embodiments.
  • the method is applied to the carrier-borne drone of the present disclosure, which can realize the transport of multiple carriers at different destinations and complete each
  • the automatic delivery or unloading of a carrier includes:
  • Cargo from multiple destinations enters the cargo space of the vehicle
  • the corresponding telescopic element can maintain the state before delivery, that is, keep the corresponding chamber unchanged, or change the state before delivery, that is, self-stretching into the cavity under the action of gravity Chamber, or under the action of the vehicle drive mechanism, stretches into the chamber.
  • the method may further include:
  • Part of the telescoping element extends into the cavity occupied by the delivered vehicle before it leaves the vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Abstract

一种用于运输和投送运载物的载物无人机及相关装置、方法,载物无人机(1)包括机体(2)、安装于机体下方的载具(3)和安装于机体和载具之间的连接件(5),该连接件在驱动装置作用下具有带动机体重心相对载具沿X方向运动的状态和/或沿Y方向运动的状态。借助驱动装置的驱动作用,机体可以相对载具沿X方向或/和Y方向运动而实现平衡;搭载配置有多个独立伸缩件(32)和多个约束部件的载具的载物无人机可以用一个行程运输和投送多个目的地的运载物,有助于实现用无人机低成本、高效率地运输和投送运载物。

Description

用于运输和投送运载物的载物无人机及相关装置、方法 技术领域
本公开涉及物流设备与技术领域,尤其涉及用于运输和投送运载物的载物无人机及相关装置、方法。
背景技术
将无人机(Unmanned Aerial Vehicle,UAV)应用于物流行业是目前的新趋势,现有无人机参与物流行业的过程一般是:物流基地内,物流人员将待运输和投送的运载物置入无人机的专用载具中,例如柔性的拖网、固定的夹具和刚性的箱子,然后无人机升空并前往卸货地点,当无人机抵达卸货地点后,无人机降落在地面,并由处于卸货地点的收货人员将专用载具打开,将运载物取出,无人机返回物流基地,即通过一个行程完成一个目的地的配送任务。
中国专利文献CN106828935A提供了一种夹具,其包括承载体、阻挡件和驱动机构,其中承载体含有用于约束运载物的腔室,该夹具一个行程只能运输、投送一个目的地的运载物,且若某个行程中的运载物的体积小于其腔室的最大容量,则会造成夹具腔室的空间资源浪费。
中国专利文献CN106892119A提供的一种自动卸货载具,其通过多个载物臂收拢所形成的承载被载物体的空间是可大可小的,该载具一个行程只能运输、投送一个目的地的被载物,且被载物体所占空间小于其载物臂收拢时所能形成的最大空间时,也会造成载具的空间资源浪费。
中国专利文献CN206171821U提供了一种空投箱,该空投箱含有一个装载运载物的收容腔,一个飞行行程也只能运输、投送一个目的地的运载物,鉴于不可能每次都能用一个运载物填满收容腔,所以容易造成空投箱的空间浪费。
对于物流行业上述的现有装置和已公开的技术,本发明人认为有如下不足:其一,现有的载物无人机运输运载物的过程中,往返一次物流基地的一个飞行或运行行程只能运输、投送一个目的地的运载物,完成一个配送任务,且容易造成载具的空间资源浪费;其二,无人机装、卸运载物前后,载具重心可能发生相对水平移动,相对水平移动超过一定范围时,可能会在随后的行程中造成载具或无人机失去平衡而倾斜或发生事故,降低了无人机的安全性和工作效率。以上缺点会增加物流行业载物无人机的使用成本。
因此,本发明人认为,如何使物流行业的载物无人机一个行程可以运输多个目的地的运载物,以及如何保持载物无人机或其载具在装、卸运载物前后保持平衡不倾斜,成为一个需要解决的问题。
发明内容
针对上述问题,本公开的实施例提供了一种用于运输和投送运载物的载物无人机及相关装置、方法。
根据本公开的实施例的一个方面,提供一种载物无人机的载具,包括:
承载体,所述承载体含有能容纳运载物的载物空间和用于运载物进出所述载物空间的敞口;以及
多个约束部件,任一所述约束部件连接所述承载体并用于约束运载物在所述载物空间内,还用于解除约束使得运载物脱离所述承载体;以及
多个独立的伸缩件,任一所述伸缩件的第一端连接所述承载体,第二端即其运动端在所述载物空间内可通过相对所述敞口作趋近运动和背离运动而实现所述伸缩件的伸展和收缩。
可选地,所述伸缩件含有多节伸缩杆,各所述伸缩杆由内向外依次可相对运动地插接,其中,最外层一节伸缩杆的一端连接所述承载体,所述伸缩件的伸缩杆的运动方向垂直于所述敞口所在平面或所述敞口的某个截面。
可选地,所述约束部件为承重杆;且,
所述承重杆的一端连接所述承载体、另一端即承重杆运动端可从所述载物空间外运动至所述敞口处或可在所述敞口处运动。
可选地,相邻两个所述承重杆可通过锁合装置锁合形成标准承重杆,任意两个不能相互锁合的所述承重杆彼此独立,多个所述标准承重杆可以形成栅栏式框架结构以至少部分堵住所述敞口。
可选地,所述承重杆可通过锁合装置与所述承载体锁合,或所述承重杆可与安装在所述承载体上的助力支架锁合形成稳定的可承重结构,任意两个所述承重杆彼此独立。
可选地,所述伸缩件与所述标准承重杆可通过锁合装置锁合形成“⊥”字形结构,所述“⊥”字形结构可解锁形成“∟”字形结构。
可选地,所述约束部件为夹紧装置,所述夹紧装置安装于所述伸缩件的运动端并可随所述运动端运动。
可选地,所述夹紧装置为真空吸盘,任一行程的任意时刻,一个真空吸盘至多只对一个运载物施加约束作用。
可选地,所述载具包括安全网,所述安全网设置在所述敞口处并可相对所述敞口直线移动或转动,所述安全网用于截住提前脱离其全部夹紧装置的运载物,未有运载物提前脱离其全部夹紧装置时,所述安全网可不与运载物接触。
可选地,所述伸缩件设置有波纹管,所述波纹管与所述真空吸盘密封连接,并在两者内部形成气体通道。
根据本公开的实施例的另一个方面,提供一种载物无人机,包括:
机体;以及安装于所述机体下方的载具;以及,安装于所述机体和所述载具之间的连接件,该连接件在驱动装置作用下具有带动所述机体重心相对所述载具沿X方向运动的状态和/或沿Y方向运动的状态。
可选地,所述驱动装置包括:
X向直线运动机构,安装于所述连接件底部,具有与所述连接件连接的作用端,所述连接件在所述作用端的作用下相对所述载具做沿X方向的直线运动;
Y向直线运动机构,安装于所述X向直线运动机构和所述载具之间,其作用力驱动所述X向直线运动机构及其作用端相对所述载具做沿Y方向的直线运动。
可选地,所述X方向与所述Y方向垂直。
可选地,所述载物无人机包含:
传感器,被配置成将所感测到的所述载具的倾斜角度和/或所述载具的部件的受力值生成反馈信号并发送;以及,
与所述传感器通信连接的控制器,所述控制器被配置成接收所述反馈信号并根据所述反馈信号控制所述驱动装置的工作。
可选地,所述载物无人机的载具为上述任一技术方案提供的载具。
根据本公开的实施例的又一个方面,提供一种用于载物无人机的驱动装置,包括:
支架;
X向直线运动机构,具有用于与载物无人机机体连接的作用端,所述机体的重心在所述作用端的作用下相对所述支架做沿X方向的直线运动;
Y向直线运动机构,安装于所述支架和所述X向直线运动机构之间,其作用力驱动所述X向直线运动机构及其作用端相对所述支架做沿Y方向的直线运动。
根据本公开的实施例的又一个方面,提供一种运输和投送运载物的方法,包括:
多个目的地的运载物进入载具的载物空间;
所述载具的伸缩件伸缩后将所述载物空间分隔成多个互不相通的腔室,使得每个运载物都进入腔室且相同目的地的运载物占据同一腔室;
到达其中一个目的地,解锁该目的地的运载物所处腔室对应的约束部件,使得该目的地的运载物脱离所述载具成为已投送运载物。
可选地,所述方法包括:部分伸缩件伸展进入所述已投送运载物在脱离所述载具前所占据的腔室。
本公开的示例性实施例提供的示例性解决方案可以带来如下技术效果中的至少一种:
载物无人机装载运载物前后,若其载具重心发生相对水平移动,其机体可以相对其载具运动而实现平衡;载物无人机可以用一个行程运输和投送多个目的地的运载物。
附图说明
为了更清楚地说明本公开的实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1为本公开实施例提供的第一种载具的使用状态的剖面图;
图2为本公开实施例提供的一载物无人机的使用状态透视图;
图3为本公开实施例提供的一载具中形成的“⊥”字形结构的结构示意图;
图4为本公开实施例提供的一载物无人机的驱动装置的结构示意图;
图5为本公开实施例提供的第二种载具的第一种使用状态的剖面图;
图6为本公开实施例提供的第二种载具的第二种使用状态的剖面图;
图7为本公开实施例提供的第三种载具的使用状态的剖面图;
图8为本公开实施例提供的第四种载具的使用状态的剖面图;
图9为本公开实施例提供的第五种载具的使用状态的剖面图。
具体实施方式
在以下段落中,更为详细地限定了实施例的不同方面,除非明确指出不可组合,如此限定的各方面可与任何其他的一个方面或多个方面组合,尤其是,被认为是优选的或有利的任何特征可与其他一个或多个被认为是优选的或有利的特征组合。
本公开的描述中,“底部”、“顶部”、“内”、“外”、“上”和“下”等指示方位或位置关系的用语仅是为了描述实施例中基于附图所示各个装置的相对方位或位置关系,而不是指示或暗示所指的装置必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开保护范围的限制。
本公开的描述中,出现的“第一”、“第二”和“第三”等术语仅用于描述目的,而不能理解为指示或暗示相对重要性或先后顺序,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以依具体情况理解上述术语在本公开中的具体含义。
在本公开的一个或多个实施例中,将载具的横向方向称为X方向,将载具的纵向方向称为Y方向;在其他实施例中,将近似平行于载具的横向方向的方向称为X方向,将近似平行于载具的纵向方向的方向称为Y方向。
本公开的描述中所指的一个行程是无人机或载具往返同一物流基地一次或从一个物流基地到另一物流基地的过程,所述物流基地是用于向载物无人机装载运载物的场所。
本公开的描述中的锁合装置是可以将两个物件连接起来的装置,所述连接称为锁合,断开所述连接称为解锁。两个物件当通过一个或两个锁合装置锁合形成新物件时,所述锁合装置也可以视为所述新物件的锁合装置,其中两个锁合装置相互锁合后,成为一个锁合装置。
本公开根据载物无人机机体的性能等客观条件将载具的重力线允许偏移机体重心的距离设置成预设范围,其中,偏移的距离在预设范围内时,载物无人机不发生倾斜;偏移的距离超过预设范围时,载物无 人机发生倾斜;在其他条件相同的情况下,一般认为,载具重力线延长线经过机体重心即无偏移时,载物无人机的工作效率最高。
图1为本公开实施例提供的第一种载具的使用状态的剖面图。
图1中,第一种载具8的各伸缩件均匀分布在承载体内部,各伸缩件的运动端安装有一个真空吸盘,比如伸缩件S1的末端安装有真空吸盘X1,其中各伸缩件含有多个依次由内向外插接的刚性伸缩杆,各最外层伸缩杆固接第一种载具8的顶部,各伸缩杆内贯穿有一波纹管(未示出),波纹管和真空吸盘密封连接并在两者内部形成气体通道(未示出),各伸缩杆的运动方向垂直于承载体的底部敞口所在平面。
图1中的第一种载具8内有2个不同目的地的运载物:第一运载物W1和第二运载物W2,其中因第一运载物W1的上侧面面积较大而由伸缩件S2和伸缩件S3及各自的真空吸盘约束在载物空间内、第二运载物W2的上侧面面积较小而只由伸缩件S4及真空吸盘约束在载物空间内,由于伸缩件S1和真空吸盘X1下面没有相应的运载物,所以伸缩件S1在重力作用下完全伸展。
图1中未有一个真空吸盘同时对多个运载物施加约束作用,第一运载物W1和第二运载物W2之间有间隙,两者之中的任一个自由落体从打开安全网9的敞口脱离第一种载具8时不影响另一个,比如需投送第一运载物W1时,只需通过气体通道将伸缩件S2和伸缩件S3上的真空吸盘同时消除压力差即可,而第二运载物W2仍由伸缩件S4下的真空吸盘维持在载物空间内直至达到第二运载物W2的目的地。
图1中第一种载具8的各伸缩杆是刚性的,当第一运载物W1被投送后,第二运载物W2不会摇晃或偏移进入第一运载物W1所占据的空间内。
图1中的网形织物安全网9主要用于防止运载物意外脱离真空吸盘而提前脱离第一种载具8,在到达目的地前,安全网9处于闭合状态,至少可以部分堵住敞口,到达目的地后,在投送任一运载物前,打开安全网9可以帮助运载物顺利脱离第一种载具8。
图1所示实施例中的安全网9是通过沿直导向杆(未示出)滑动实现打开和关闭,在其他实施例中,安全网还可通过转动连接在承载体的敞口处,通过转动实现打开和关闭。
针对图1所示实施例,需要说明的是,只有当一运载物脱离其全部夹紧装置即全部真空吸盘时,安全网9才能截住该运载物,比如当第一运载物W1提前脱离伸缩件S2和伸缩件S3上的真空吸盘后才能被安全网9截住,未提前脱离其全部真空吸盘时,第一运载物W1不与安全网9接触。
鉴于图1所示载具要反复使用,而不同行程中的运载物的尺寸规格是可能不一样的,不同尺寸规格的运载物需要由不同数量的真空吸盘施加约束作用才能被成功投送,所以,任意两个真空吸盘可能在一个行程中对同一个运载物同时施加约束作用,也有可能在另一行程中对不同的运载物分别施加约束作用,还可能在其他行程中都不对运载物施加约束作用或只有其中一个真空吸盘对运载物施加约束作用,于是,针对图1所示的实施例,任意两个真空吸盘间不存在相互影响和控制时,才能随机对运载物施加约束作用,即任意两个真空吸盘是彼此独立的。
针对图1所示实施例,可以合理推理得知:
随着不同行程中各运载物上侧面面积的不同,同一载具不同行程中可以容纳的运载物的数量是可以变化的;
一载具可以通过从运载物的正上方接近运载物并通过真空吸盘对其施加约束,可以实现将运载物的自动装载进载具;
同一载具一行程中可以允许有多个不同目的地的运载物存在,且都能被分别自动投送;
为了充分利用每个载具的载物空间,可使每个行程中的每个真空吸盘都对运载物施加约束作用,此时可达到载具载物空间的最大利用率;
同一载具上设置的真空吸盘越多,越能对运载物施行精细约束,也就是无论运载物的上侧面面积有多小,都能被约束在载具内,也都能被分别投送,有助于提高载具的空间利用率。
图2为本公开实施例提供的一载物无人机的使用状态透视图。
图2的载物无人机1包括设置有机翼的机体2、设有球铰的连接件5、载具3、设置有作用端41的X向直线运动机构(未示出)、Y向直线运动机构42和水平仪45L,其中载具3设置有多个承重杆31、多个由伸缩杆插接的伸缩件32和承载体34。
图2中上述部件的安装及实施方式为:机体2通过连接件5与载具3相连,X向直线运动机构(未示出)的驱动结构为驱动组件43,Y向直线运动机构42的驱动结构为电机43A,水平仪45L设置在载具3的上表面44上并与能控制X向直线运动机构和Y向直线运动机构的工作的控制器(未示出)通信连接,由最外层伸缩杆固接在承载体34内顶部的伸缩件32均匀分布在承载体34内,伸缩件32的伸缩杆的运动方向垂直于敞口34A所在平面,承载体34含有5个封闭侧面和一个位于底部的敞口34A,承载体34的侧面含有中空空间结构(未示出),敞口34A处设置有多个承重杆31,每个承重杆31有2个锁合装置(未示出),每个伸缩件32的运动端有一个锁合装置(未示出),安装在承载体34不同侧面上的相邻两个承重杆31各通过其运动端的一个锁合装置(未示出)相互锁合形成一个标准承重杆(标准承重杆的工作长度为其在敞口安装位置的敞口宽度),从而每个标准承重杆上有三个锁合装置,且每个锁合装置的正上方都有一个伸缩件32与之对应,任一伸缩件32可通过其锁合装置与标准承重杆的相应锁合装置锁合形成“⊥”字形结构。
图2的载物无人机在一个行程中的使用步骤可以包括:
步骤a.在物流基地中,水平仪45L指示上表面44平行于水平面后,第一运载物W1和第二运载物W2分别从敞口34A进入承载体34的载物空间34B,而后,将所有承重杆31锁合形成多个标准承重杆;
步骤b.第一运载物W1和第二运载物W2进入载物空间34B的同时,二者对部分伸缩件32施加沿其收缩方向的作用力,使得部分伸缩件32收缩,另一部分未收缩的伸缩件32与所述标准承重杆通过锁合装置锁合形成“⊥”字形结构,于是形成对运载物来说不互通的两个腔室,第一运载物W1和第二运 载物W2分处其中一个腔室;
步骤c.载物无人机1起飞后,水平仪45L监测到上表面44不再平行于水平面,载具3发生了倾斜,因为球铰链的作用,机体2并未发生倾斜;
步骤d.控制器(未示出)指令驱动组件43驱动X向直线运动机构的作用端41和指令Y向直线运动机构42驱动X向直线运动机构,使得作用端41所作用的连接件5带动机体2重心相对上表面44同时沿X方向和Y方向运动,使得上表面44与水平面的交角越来越小,直至上表面44完全平行于水平面时,停止上述驱动作用,连接件5不再带动机体2重心相对上表面44运动;
步骤e.达到第一运载物W1的目的地后,载具3的驱动机构(未示出)解锁约束第一运载物W1的承重杆31或解锁相应“⊥”字形结构,第一运载物W1所处的腔室的敞口被打开,使得第一运载物W1从敞口脱离承载体34,部分在前述步骤中收缩了的伸缩件32在重力作用下完全伸展进入第一运载物W1所处的腔室,驱动机构将解锁后被释放的承重杆31回收并收纳于承载体34的中空空间结构(未示出)内;
步骤f.载物无人机1再次起飞飞向第二运载物W2的目的地后,水平仪45L监测到上表面44不平行于水平面,载具3发生倾斜,因为球铰链的作用,机体2并未发生倾斜;
步骤g.控制器指令驱动组件43驱动X向直线运动机构作用端41和指令Y向直线运动机构42驱动X向直线运动机构,使得机体2重心相对上表面44同时沿X方向和Y方向运动,使得上表面44与水平面的交角越来越小,直至上表面44完全平行于水平面时,停止上述驱动作用,连接件5不再带动机体2重心相对上表面44运动。
针对图2所示的载物无人机,需要说明的是:
伸缩件在重力作用下可以伸缩有助于节能;
工作状态的载物无人机1的机体2的重力线乃至空载的载物无人机1的重力线被配置成与空载的载具3(载具3内没有运载物)的重力线在同一条直线上,从而运载物W1和运载物W2进出载具3是导致载具3乃至机体2倾斜的原因,于是当载物空间34B内运载物整体的重力线偏离空载载具3的重力线时,载具3的重力线将偏离机体2重心,直至偏离的距离超过预设范围,载具3和上表面44发生的倾斜可以用安装在上表面44上的水平仪45L监测并将生成的反馈信号发生给控制器(未示出),控制器发出控制指令控制驱动装置的工作;
上述步骤中,如果水平仪45L未监测到上表面44和载具3不平行于水平面,则驱动组件43不会驱动作用端41,Y向直线运动机构42不会驱动X向直线运动机构,相应的步骤d和步骤g也会被越过而不执行。
图3为本公开实施例提供的一载具中形成的“⊥”字形结构的结构示意图。
图3所示的是图2的载具3在一个行程中,其承重杆形成标准承重杆后并与一个伸缩件锁合形成的“⊥” 字形结构。
图3中由第一承重杆31A和第二承重杆31B锁合形成的标准承重杆上有3个锁合装置,该标准承重杆的工作长度为其在敞口安装位置的敞口宽度,其中,于中间的锁合装置处,该标准承重杆和伸缩件32形成了一个“⊥”字形结构,同时所述伸缩件32将载物空间分隔成左侧腔室A、右侧腔室B两个腔室。
图3结构所属的载具3在一个行程中,在投送完一个目的地的运载物后,载具3不会改变对其他目的地的待投送运载物的约束作用,比如在图3中,当需投送左侧腔室A内的运载物时,所述“⊥”字形结构第一次解锁释放第一承重杆31A,在重力的作用下所述第一承重杆31A的运动端向地面旋转,所述第一承重杆31A不再对运载物施加约束,左侧腔室A所对应的敞口部分被打开,运载物脱离左侧腔室A,但伸缩件32继续与第二承重杆31B维持锁合而成为“∟”字形结构,于是第二承重杆31B继续对右侧腔室B内的运载物维持约束作用,同时伸缩件32也可阻挡右侧腔室B内的待投送运载物,以避免其移动到左侧腔室A内而提前脱离载具,在需投送右侧腔室B内的运载物时,第二次解锁释放第二承重杆31B以解除约束力即可,当然,在需要时,也可以第一次解锁释放第二承重杆31B以先投送右侧腔室B内的运载物。
需要说明的是,在其他行程中,因运载物尺寸、规格的不同,图3的标准承重杆可以于不同于图3的形成“⊥”字形结构的锁合装置的位置和其他伸缩件形成“⊥”字形结构。
如图4所示,为本公开实施例提供的一载物无人机的驱动装置的结构示意图,具体所示的是图2无人机1的驱动装置。用以固定装配于载具3上表面44的支架44A两侧分别设置有Y向直线运动机构的一个丝杆42A,丝杆42A的轴向中心线平行于Y方向(支架44A的纵向方向),X向直线运动机构42的两端分别安装于两侧丝杆42A的滑块(未示出)上,滑块螺纹装配于丝杆42A上,X向直线运动机构42的作用端41的一端安装于X向直线运动机构42的导轨内,导轨轴向中心线平行于X方向(支架44A的横向方向)。
图4中,作用端41在导轨内可由驱动组件43驱动而相对支架44A沿X方向运动,X向直线运动机构42在所述Y向直线运动机构的作用下可相对所述支架44A沿Y方向运动,所述Y向直线运动机构由其电机43A驱动。
为使图4的作用端41移动到支架44A上的圆形的指定区域44Z,Y向直线运动机构42先驱动X向直线运动机构相对支架44A沿Y方向运动到指定区域44Z的正上方,然后X向直线运动机构再驱动其作用端41沿X方向运动到指定区域44Z的正上方,此时作用端41的轴向中心线经过指定区域44Z的圆心。若作用端41通过连接件连接了载物无人机的机体,作用端41作用于连接件和机体,则可实现作用端41、连接件和机体重心三者的运动状态一致,亦可实现机体的重力线经过所述圆心。
按照上述方式,在一个或多个实施例中,可实现机体的重力线按需经过支架44A平面上的任一点,或实现机体的重力线按需到达支架44A平面上的任一指定区域内。
需要说明的是,为使作用端41的轴向中心线或机体重力线经过支架44A上的指定目标点,Y向直线 运动机构42驱动X向直线运动机构与X向直线运动机构驱动与其作用端41连接的连接件可以不分先后顺序,并且,还可以理解到,当所述指定区域44Z的圆心与当前机体重力线在同一个平行于Y方向的平面时,只需Y向直线运动机构42驱动X向直线运动机构沿Y方向运动就可实现机体重力线经过所述圆心;当所述指定区域44Z的圆心与当前机体重力线在同一个平行于X方向的平面时,只需X向直线运动机构驱动连接件带动机体重心沿X方向运动就可实现机体重力线经过所述圆心。
上述实施方式表明,在一个或多个实施例中,机体重心只需沿X方向或Y方向运动,即可实现平衡而不倾斜。
配置有图4所示驱动装置的载物无人机,可将此驱动装置安装在载具的顶部与机体底部的连接件之间,然后还可以进一步为该驱动装置配置传感器及与之电连接的控制器,其中,传感器可以为倾角传感器或/和压力传感器,用以分别感测载物无人机或其部件的倾斜角度以及其载具约束部件的受力值并生成反馈信号。
控制器获得传感器发送的反馈信号后,如果根据该信号需要纠正载物无人机的倾斜状态或防止载物无人机发生倾斜,控制器发送控制指令给驱动装置,实现控制其X向直线运动机构或/和Y向直线运动机构的工作,使得机体重心相对载具沿X方向或/和Y方向运动,直至载物无人机不再倾斜或不会倾斜。
图5为本公开实施例提供的第二种载具的第一种使用状态的剖面图。
图5所示的载具3即为图2中载物无人机1的载具3,从图5中可以看出该行程中的运载物相对第二种载具的装载位置和尺寸规格。处于平衡中的载具3上的作用端41相对靠近运载物W1,说明此时载具3的重心偏向第一运载物W1。
载具3的伸缩件32将载物空间34B分隔成对运载物来说不互通的2个腔室,分别容纳第一运载物W1和第二运载物W2,其中参与分隔腔室的伸缩件32A可以阻挡其中任一腔室内的运载物移动到另一腔室中,位于敞口34A处的第一承重杆31A和第二承重杆31B锁合形成的标准承重杆上有3个锁合装置:第一锁合装置CF1、第二锁合装置CF2和第三锁合装置CF3,其中第二锁合装置CF2由第一承重杆31A的第二锁合装置CF2和第二承重杆31B的第二锁合装置CF2锁合而成,足够多的此种承重杆通过如此方式连接形成多个标准承重杆后成为可承重的栅栏式框架结构可以完全约束第一运载物W1和第二运载物W2在所述载物空间34B内,所述标准承重杆的锁合装置的上方有3个相应伸缩件32,该行程中上述3个伸缩件32中只有伸缩件32A在第二锁合装置CF2处形成“⊥”字形结构CS2,其他伸缩件32被运载物阻隔或作用而相对收缩。
图5中的载具3若空载时,载具3的重心在伸缩件32A的轴向中心线上,作用端41的轴向中心线与伸缩件32A的重合即可维持平衡,满载后,载具3的重心向第一运载物W1的位置发生了水平移动,为确保载具3在空中不发生倾斜,X向直线运动机构的作用端41需要相应地水平移动,使得受其作用的连接件带动机体重心偏向第一运载物W1的位置水平移动到合适位置。
图6为本公开实施例提供的第二种载具的第二种使用状态的剖面图。
图6承接图5,图5在“⊥”字形结构CS2第一次解锁释放第一承重杆31A并使得第一运载物W1脱离载具3后成为图6,其中过程是:“⊥”字形结构CS2第一次解锁释放第一承重杆31A后,第一运载物W1所处的腔室被打开,第一运载物W1失去约束而脱离载具3,相应伸缩件32B在重力作用下完全伸展进入第一运载物W1所占据的腔室,第一承重杆31A被驱动机构回收后收纳于中空空间结构34K内。
从图6中可看出,载具3投送第一运载物W1后,在第二运载物W2被投送前,载具3不会改变对第二运载物W2的约束作用,从而第二运载物W2可继续维持在载具3的载物空间34B内,直到第二运载物W2在其目的地被自动投送。
一般可以认为,载物运行中的载物无人机机体的重心与其载具的重心或重力线不偏离或偏离的距离在预设范围内时,载物无人机的运行是安全的和高效的。
相对图5中作用端41的位置,图6的作用端41已经发生了相对运动而达到了新的位置,实现了载具3在投送第一运载物W1后的新平衡,这是载物无人机的驱动装置作用的结果。
在某个行程中,第二种载具的任意两个承重杆都有可能分别约束不同的运载物或不约束运载物,也有可能同时约束同一运载物,意即任一承重杆在不同的行程中的承重状态或约束作用是随机的,鉴于图6的第一承重杆31A和第二承重杆31B在某个行程中有可能相互锁合形成标准承重杆后但不形成“⊥”字形结构地为一个运载物提供约束作用,约束和释放所述运载物需要同时改变第一承重杆31A、第二承重杆31B的锁合状态和解锁状态,此时第一承重杆31A和第二承重杆31B的锁合状态是分别相互影响和彼此控制的,解锁状态也是相互影响和彼此控制的,但是仅限于此,第一承重杆31A和第二承重杆31B的锁合状态和解锁状态不受其他任意承重杆的影响和控制,可视为第一承重杆31A和第二承重杆31B与其他任一承重杆彼此独立,所以任意两个不相互锁合的承重杆彼此独立。
鉴于多个不同目的地的运载物进入任意现有载具后所占据的空间至少为一个腔室,由于现有载具一个行程只能运输一个目的地的运载物,当一个行程中运载物不能装满载具时,会造成载具载物空间的空间资源浪费,于是,在能保证不同目的地的运载物能被分别运输和投送的情况下,可以通过对载具既定的最大载物空间进行分隔,当一个目的地的运载物不能装满载具时,再装载第二目的地的运载物或更多目的地的运载物,直至所有运载物将该载具的载物空间充满。
同时还由于不同的行程各运载物所需的腔室空间大小一般是不固定的,于是,实施本公开时,可按需通过伸缩件的伸展或收缩将第二种载具的载物空间随机分隔成多个对运载物来说不互通的腔室,使得任一行程中每个待投送的运载物都进入腔室且相同目的地的运载物进入同一腔室,从而可实现在解锁其中任一腔室对应的承重杆而投送同一目的地的运载物时,不改变其他腔室内的其他目的地的运载物的约束状态,从而实现不同目的地的运载物能用一个行程分别自动运输和投送,也就是用一个行程完成多个配送任务,降低了用载物无人机运输和投送运载物的成本。
进一步地,伸缩件伸展进入已投送运载物脱离载具前所占据的腔室空间,可阻止待投送运载物移动到该腔室而提前脱离载具。
图7为本公开实施例提供的第三种载具的使用状态的剖面图,在图7中,载具730的一个承重杆731A的一端转动连接承载体734的一个侧面,另一端即其运动端通过一个锁合装置连接所述承载体734的另一侧面,承重杆731A为标准承重杆,承重杆731A的工作长度为其在敞口安装位置的敞口宽度,足够多的此种承重杆按上述方式安装后成为可承重的栅栏式框架结构可以约束包括运载物7W1在内的全部运载物在所述承载体734的载物空间734B内,所述承载体734的侧面含有环734Q,承重杆731A的上方有相应7个伸缩件732,其中部分伸缩件732处于相对收缩状态与运载物的表面接触,其余未收缩的伸缩件732可约束阻挡运载物7W1在不同腔室间移动。
配置有图7所示载具730的载物无人机在一个行程中的使用步骤可以包括:
步骤a.包含第一运载物W1在内的多个运载物装载进入载物空间734B时,多个运载物对部分伸缩件732施加作用力使得其收缩,形成多个腔室后,运载物7W1进入相应腔室,锁合包括承重杆731A在内的全部承重杆;
步骤b.在需投送运载物7W1时,承重杆731A的锁合装置解锁,在重力的作用下,承重杆731A运动端向地面旋转,承重杆731A约束的运载物7W1脱离承载体734,承重杆731A旋转至合适位置时可以由载具730的驱动机构将其回收,收纳于所述承载体734的环734Q内;
步骤c.运载物7W1卸载后,因运载物7W1进入载物空间734B而收缩的相应伸缩件732可在驱动机构的作用下完全伸展进入运载物7W1所占据的腔室空间。
对于图7所示的第三种载具,需要说明的是:
第三种载具的伸缩件在该载具空载且敞口朝上时(相当于载具倒置),伸缩件可以在重力作用下全部收缩,从而便于往其承载体内装载运载物,而装载完全部运载物后,没有承受运载物压力或重力的伸缩件可在驱动机构的作用力下完全伸展而形成腔室;
运载物7W1若由包含承重杆731A在内的多个承重杆约束,则需要驱动机构解锁所有约束运载物7W1的承重杆才能将该运载物7W1投送,另外,解锁约束运载物7W1的所有承重杆不影响约束其他目的地运载物的承重杆的解锁和锁合状态;
在不同的行程中,第三种载具的任意两个承重杆有可能随机分别约束不同的运载物或不约束运载物,也有可能同时约束同一运载物,还有可能只有一个承重杆约束运载物,所以任意两个承重杆的锁合状态和解锁状态必须不存在相互影响和控制时,才能实现可按需随机解锁任一承重杆,意即本实施例中的任意两个承重杆是彼此独立的。
如图8所示,为本公开实施例提供的第四种载具的使用状态的剖面图。
在图8中,载具830的承载体834的上侧面固定安装有驱动装置的支架844,位于敞口834A处的两 相邻第一承重杆831A和第二承重杆831B分别通过各自的一端转动连接在所述承载体834的不同侧面,再通过各自运动端的锁合装置锁合形成一个标准承重杆。第一承重杆831A和第二承重杆831B分别有三个锁合装置,两者还分别设置有载物无人机驱动装置的一个传感器833,其中第一承重杆831A的锁合装置分别为第一锁合装置8CF1、第二锁合装置8CF2和第三锁合装置8CF3,第二承重杆831B的锁合装置分别为第三锁合装置8CF3、第四锁合装置8CF4和第五锁合装置8CF5,第一承重杆831A的第三锁合装置8CF3与第二承重杆831B的第三锁合装置8CF3相互锁合后成为标准承重杆上的第三锁合装置8CF3,于是所述标准承重杆上有5个锁合装置:第一锁合装置8CF1、第二锁合装置8CF2、第三锁合装置8CF3、第四锁合装置8CF4和第五锁合装置8CF5,所述标准承重杆上的每个锁合装置正上方各有1个伸缩件832与之对应,其中只有伸缩件832A通过其锁合装置与标准承重杆的第二锁合装置8CF2锁合形成一个“⊥”字形结构8CS2。
鉴于载具830的每个标准承重杆上有两个传感器833,而载具830不止一个标准承重杆,所以传感器833的数量大于3个,可以将这些传感器设置在一个平面上,每个传感器将感测到的受力值发送给控制器的运算处理器,运算处理器由此可以计算出当前载具830重力线与所述平面的交点,并将其与空载时载具830的重力线或机体的重力线与所述平面的交点的参数进行对比,就可得知每个行程中任一时刻载具830的重力线与空载的载具830的重心或机体重心的偏离距离,当偏离距离超过预设范围而影响载物无人机的安全性或\和运行效率时,控制器指令驱动装置驱动设置在载具830顶部和机体底部之间并于作用端841相连的连接件带动机体重心移动,使得机体重心与当前时刻载具830的重心在一条垂线上,或使得当前时刻载具830的重力线偏离机体重心的距离不超预设范围,避免或纠正载物无人机或载具的倾斜。
实施本公开时,将工作状态的载物无人机的机体的重力线乃至空载的载物无人机的重力线配置成与空载的载具的重力线在同一条直线上,能保证载物无人机空载运行时的安全和高效,并在运输过程中为运算处理器提供运算对比参数,使得运算处理器依据传感器所感测的倾斜角度和/或受力值快速、准确计算机体重心与当前时刻载具830的重心是否在一条垂线上,或计算当前时刻载具830的重力线偏离机体重心或空载载具830的重心的距离是否超预设范围。
在一个或多个实施例中,上述的运算处理器可以设置在载物无人机内,也可设置在与载物无人机通信连接的远程服务端上。
第四种载具在一个行程中的使用步骤可以包括:
步骤a.在物流基地中,包括第一运载物8W1和第二运载物8W2在内的多个运载物分别从空载的载具830的敞口834A进入承载体834内,上述多个运载物全部进入承载体834后,将所有承重杆锁合形成多个标准承重杆;
步骤b.上述多个运载物开始进入承载体834的同时,驱动机构对相应的部分伸缩件832施加作用力,使其收缩后与第一运载物8W1和第二运载物8W2等运载物的上表面接触或不接触,但驱动机构未对伸 缩件832A施加作用力,包括伸缩件832A在内的部分伸缩件832将载物空间834B分隔成两个腔室,伸缩件832A与其中一标准承重杆锁合形成一个“⊥”字形结构,伸缩件832A可以参与阻挡第一运载物8W1和第二运载物8W2在不同腔室间移动;
步骤c.各传感器833感测当前载具830内运载物施加的作用力并生成反馈信号向控制器发送;
步骤d.当运算处理器计算出当前时刻载具830的重力线偏离机体重心的距离超过预设范围时,驱动装置驱动与作用端841相连的连接件带动机体重心运动,直至所述距离不超预设范围;
步骤e.载物无人机起飞并首先达到第一运载物8W1的目的地后,驱动结构第一次解锁“⊥”字形结构8CS2形成“∟”字形结构,释放相应第一承重杆831A,使得第一运载物8W1脱离承载体834,部分在前述步骤中收缩了的伸缩件832在驱动结构的作用力下完全伸展进入第一运载物8W1所占据的腔室空间,驱动机构将解锁的第一承重杆831A回收并收纳于承载体834的中空空间结构834K内;
步骤f.各传感器833感测当前载具830内运载物施加的作用力并生成反馈信号向控制器发送;
步骤g.当运算处理器计算出当前时刻载具830的重力线偏离机体重心的距离超过预设范围时,驱动装置驱动与作用端841相连的连接件带动机体重心运动,直至所述距离不超预设范围;
步骤h.载物无人机飞向第二运载物8W2的目的地。
针对第四种载具,需要说明的是:
上述步骤中,投送第一运载物8W1后,第一承重杆831A变短了,相邻的与之锁合的第二承重杆831B相应同时变长了,但是无论何时,第一承重杆831A和第二承重杆831B锁合后连接而成的标准承重杆的长度不会变,仍旧为敞口在其安装位置的宽度;
载物无人机或载具发生的倾斜可以用水平仪等监测,并且,水平仪可用于纠正倾斜,而压力传感器可用于预防倾斜;
鉴于搭载载具830的载物无人机要反复使用,通过不同行程运输、投送各个目的地的运载物,其运载物的尺寸和规格可能各异,所以,不同行程中约束各个运载物需要的承重杆的数量也可能各不相同,于是,载具830的只要是不相互锁合的承重杆,任一承重杆的锁合和解锁状态与另一个承重杆的锁合和解锁状态不相互影响和控制,意即任意两个不能相互锁合的承重杆彼此独立。
通过上述的实施例可以直接得知或推理得知:
本公开的任一实施例中的载具,其伸缩件越多,运载物进入承载体的载物空间时就越容易从载物空间中分隔出空间大小不一的腔室以装载不同目的地的运载物;
载物无人机在某个行程中,可以是其伸缩件先将载物空间分隔成多个腔室后,不同目的地的运载物逐一进入不同的腔室,也可以是运载物进入载物空间同时,运载物或驱动机构作用于伸缩件使得伸缩件伸缩,直至全部运载物完全进入后,形成多个腔室,还可以是每装载完一个目的地的运载物前后,相应伸缩件伸缩,形成一个腔室,直至全部运载物装载完而形成多个腔室,即该载物无人机运输和投送运载物的方法的 部分步骤可以不分先后顺序。
实施本公开时,对于第四种载具,若一标准承重杆由2个含有多个锁合装置的承重杆连接而成,或所述标准承重杆含有多个锁合装置,从而该标准承重杆有多种方式断开连接以形成2个承重杆,且以不同方式断开连接形成的同一承重杆的长度不一样,如果同时每个标准承重杆上的锁合装置都有带锁合装置的伸缩件与之对应,则更容易在不同行程中按需形成不同的“⊥”字形结构,从而实现投送一个运载物只需打开相应的敞口部分即可。
所以,实施本公开时,建议载具多设置承重杆,承重杆上多设置锁合装置,同时为每个锁合装置配置相应的带锁合装置的伸缩件,以提高载物无人机的空间利用率,降低物流成本。
图9为本公开实施例提供的第五种载具的使用状态的剖面图。第五种载具930的位于敞口934A的第一承重杆931A和第二承重杆931B分别通过各自的一端固定安装在承载体34的不同侧面,第一承重杆931A与第二承重杆931B彼此独立,其各自的运动端在敞口处伸展后再通过锁合装置分别与伸展的助力支架9CZ1和9CZ2锁合形成稳定的可承重结构。第一承重杆931A和第二承重杆931B的通过运动端的运动而在敞口处进行伸缩,其中,伸展后可以至少部分堵住敞口,收缩可以至少部分打开敞口。
图9中的第一承重杆931A和第二承重杆931B不相互锁合,第一承重杆931A和第二承重杆931B的上方有7个伸缩件932,第一承重杆931A和第二承重杆931B的不与相应伸缩件32锁合形成“⊥”字形结构,第一运载物9W1由包含第一承重杆931A在内的承重杆提供约束作用,第二运载物9W2由包含第二承重杆931B在内的承重杆提供约束作用。
载具930的伸缩件不配置锁合装置,起分隔载物空间成多个不互通的腔室的作用,其伸缩件固定安装在承载体内侧顶部与在其他实施例中固定安装在各承重杆上功能上等效,只是安装在承载体顶部时,通过底部的敞口投送运载物后便于伸缩件在重力作用下自行伸展以约束阻止其他待投送的运载物在不同腔室间移动,从而实现节能,而伸缩件安装在承重杆上而需实现伸展时,需要借助驱动机构。
上述多个实施例中载具的固定安装在承载体顶部的伸缩件的运动端可在载物空间内运动,其中当运动端远离敞口运动时,伸缩件是作收缩运动;当运动端趋近敞口运动时,伸缩件是作伸展运动,在其他实施例中,如果伸缩件的一端固定安装在承重杆上,则当运动端远离敞口运动时,伸缩件是作伸展运动,当运动端趋近敞口运动时,伸缩件是作收缩运动。
本公开在上述实施例中提供了一种运输和投送运载物的方法,所述方法应用于本公开的载物无人机可以实现用一个行程运送多个不同目的地的运载物及完成各个运载物的自动投送或卸货,所述方法包括:
多个目的地的运载物进入载具的载物空间;
所述载具的伸缩件伸缩后将所述载物空间分隔成多个互不相通的腔室,使得每个运载物都进入腔室且相同目的地的运载物占据同一腔室;
到达其中一个目的地,解锁该目的地的运载物所处腔室对应的约束部件,使得所述目的地的运载物脱 离所述载具成为已投送运载物。
当投送完一个目的地的运载物后,相应伸缩件可以维持投送前的状态,即保持相应腔室不变,也可以改变投送前的状态,即在重力作用下自行伸展进入该腔室,或在载具驱动机构的作用下,伸展进入该腔室。
因此,所述方法还可以包括:
部分伸缩件伸展进入所述已投送运载物在脱离所述载具前所占据的腔室。
最后应说明的是:以上实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施例对本公开进行了详细的说明,本领域的技术人员应当理解,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,但这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (18)

  1. 一种载物无人机的载具,其特征在于,包括:
    承载体,所述承载体含有能容纳运载物的载物空间和用于运载物进出所述载物空间的敞口;以及
    多个约束部件,任一所述约束部件连接所述承载体并用于约束运载物在所述载物空间内,还用于解除约束使得运载物脱离所述承载体;以及
    多个独立的伸缩件,任一所述伸缩件的第一端连接所述承载体,第二端即其运动端在所述载物空间内可通过相对所述敞口作趋近运动和背离运动而实现所述伸缩件的伸展和收缩。
  2. 如权利要求1所述的载具,其特征在于,所述伸缩件含有多节伸缩杆,各所述伸缩杆由内向外依次可相对运动地插接,其中,最外层一节伸缩杆的一端连接所述承载体,所述伸缩件的伸缩杆的运动方向垂直于所述敞口所在平面或所述敞口的某个截面。
  3. 如权利要求1所述的载具,其特征在于:
    所述约束部件为承重杆;且,
    所述承重杆的一端连接所述承载体、另一端即承重杆运动端可从所述载物空间外运动至所述敞口处或可在所述敞口处运动。
  4. 如权利要求3所述的载具,其特征在于:相邻两个所述承重杆可通过锁合装置锁合形成标准承重杆,任意两个不能相互锁合的所述承重杆彼此独立,多个所述标准承重杆可以形成栅栏式框架结构以至少部分堵住所述敞口。
  5. 如权利要求3所述的载具,其特征在于,所述承重杆可通过锁合装置与所述承载体锁合,或所述承重杆可与安装在所述承载体上的助力支架锁合形成稳定的可承重结构,任意两个所述承重杆彼此独立。
  6. 如权利要求4所述的载具,其特征在于,所述伸缩件与所述标准承重杆可通过锁合装置锁合形成“⊥”字形结构,所述“⊥”字形结构可解锁形成“∟”字形结构。
  7. 如权利要求1所述的载具,其特征在于,所述约束部件为夹紧装置,所述夹紧装置安装于所述伸缩件的运动端并可随所述运动端运动。
  8. 如权利要求7所述的载具,其特征在于,所述夹紧装置为真空吸盘,任一行程的任意时刻,一个真空吸盘至多只对一个运载物施加约束作用。
  9. 如权利要求7所述的载具,其特征在于,包括安全网,所述安全网设置在所述敞口处并可相对所述敞口直线移动或转动,所述安全网用于截住提前脱离其全部夹紧装置的运载物,未有运载物提前脱离其全部夹紧装置时,所述安全网可不与运载物接触。
  10. 如权利要求8所述的载具,其特征在于,所述伸缩件设置有波纹管,所述波纹管与所述真空吸盘密封连接,并在两者内部形成气体通道。
  11. 一种载物无人机,其特征在于,包括:
    机体;以及
    安装于所述机体下方的载具;以及,
    安装于所述机体和所述载具之间的连接件,该连接件在驱动装置作用下具有带动所述机体重心相对所述载具沿X方向运动的状态和/或沿Y方向运动的状态。
  12. 如权利要求11所述的载物无人机,其特征在于,所述驱动装置包括:
    X向直线运动机构,安装于所述连接件底部,具有与所述连接件连接的作用端,所述连接件在所述作用端的作用下相对所述载具做沿X方向的直线运动;
    Y向直线运动机构,安装于所述X向直线运动机构和所述载具之间,其作用力驱动所述X向直线运动机构及其作用端相对所述载具做沿Y方向的直线运动。
  13. 如权利要求11所述的载物无人机,其特征在于,所述X方向与所述Y方向垂直。
  14. 如权利要求11所述的载物无人机,其特征在于,包含:
    传感器,被配置成将所感测到的所述载具的倾斜角度和/或所述载具的部件的受力值生成反馈信号并发送;以及,
    与所述传感器通信连接的控制器,所述控制器被配置成接收所述反馈信号并根据所述反馈信号控制所述驱动装置的工作。
  15. 如权利要求11所述的载物无人机,其特征在于,所述载具为权利要求1至10中任一权利要求所述的载具。
  16. 一种用于载物无人机的驱动装置,其特征在于,包括:
    支架;
    X向直线运动机构,具有用于与载物无人机机体连接的作用端,所述机体的重心在所述作用端的作用下相对所述支架做沿X方向的直线运动;
    Y向直线运动机构,安装于所述支架和所述X向直线运动机构之间,其作用力驱动所述X向直线运动机构及其作用端相对所述支架做沿Y方向的直线运动。
  17. 一种运输和投送运载物的方法,其特征在于,包括:
    多个目的地的运载物进入载具的载物空间;
    所述载具的伸缩件伸缩后将所述载物空间分隔成多个互不相通的腔室,使得每个运载物都进入腔室且相同目的地的运载物占据同一腔室;
    到达其中一个目的地,解锁该目的地的运载物所处腔室对应的约束部件,使得该目的地的运载物脱离所述载具成为已投送运载物。
  18. 如权利要求17所述的方法,其特征在于,包括:部分伸缩件伸展进入所述已投送运载物在脱离所述载具前所占据的腔室。
PCT/CN2019/090450 2018-06-08 2019-06-07 用于运输和投送运载物的载物无人机及相关装置、方法 WO2019233490A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810582703 2018-06-08
CN201810582702.3 2018-06-08
CN201810582703.8 2018-06-08
CN201810582702 2018-06-08

Publications (1)

Publication Number Publication Date
WO2019233490A1 true WO2019233490A1 (zh) 2019-12-12

Family

ID=68769251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/090450 WO2019233490A1 (zh) 2018-06-08 2019-06-07 用于运输和投送运载物的载物无人机及相关装置、方法

Country Status (1)

Country Link
WO (1) WO2019233490A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10152208A (ja) * 1996-11-21 1998-06-09 Hitachi Ltd 荷物運搬装置
CN206087329U (zh) * 2016-09-30 2017-04-12 于卫华 无人飞行器运送空降机器人交接货物快递装置
CN106986031A (zh) * 2017-03-18 2017-07-28 芜湖元航空科技有限公司 一种无人机抓取装置
CN206813325U (zh) * 2016-06-08 2017-12-29 青海山水生态科技有限公司 一种无人机挂载式灭火弹投放舱
CN206822983U (zh) * 2017-06-01 2018-01-02 国家电网公司 无人机灭火弹投放舱
CN107891986A (zh) * 2017-11-30 2018-04-10 上海孩子国科教设备有限公司 飞行器的抓取结构、飞行器、系统及其使用方法
CN208647159U (zh) * 2018-06-08 2019-03-26 彭文平 一种夹持式载具和无人机
CN208665552U (zh) * 2018-06-08 2019-03-29 彭文平 一种承载式载具和无人机

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10152208A (ja) * 1996-11-21 1998-06-09 Hitachi Ltd 荷物運搬装置
CN206813325U (zh) * 2016-06-08 2017-12-29 青海山水生态科技有限公司 一种无人机挂载式灭火弹投放舱
CN206087329U (zh) * 2016-09-30 2017-04-12 于卫华 无人飞行器运送空降机器人交接货物快递装置
CN106986031A (zh) * 2017-03-18 2017-07-28 芜湖元航空科技有限公司 一种无人机抓取装置
CN206822983U (zh) * 2017-06-01 2018-01-02 国家电网公司 无人机灭火弹投放舱
CN107891986A (zh) * 2017-11-30 2018-04-10 上海孩子国科教设备有限公司 飞行器的抓取结构、飞行器、系统及其使用方法
CN208647159U (zh) * 2018-06-08 2019-03-26 彭文平 一种夹持式载具和无人机
CN208665552U (zh) * 2018-06-08 2019-03-29 彭文平 一种承载式载具和无人机

Similar Documents

Publication Publication Date Title
JP6726803B2 (ja) ドローンの宅配物搭載装置
JP6375570B2 (ja) 無人航空機ベースステーション
KR20200033272A (ko) 반송차 및 반송 설비
ES2956870T3 (es) Contenedor de almacenamiento para sistema de almacenamiento y recuperación automatizado
KR20230106717A (ko) 고층 입체 창고에서 컨테이너의 입고 및 출고 또는이동 방법 및 그 장치
KR20100091889A (ko) 이송 장치
KR20170056441A (ko) 물품 반송 설비
WO2019233490A1 (zh) 用于运输和投送运载物的载物无人机及相关装置、方法
KR101511963B1 (ko) 카세트 공급시스템
JP2023518324A (ja) Isoコンテナの取扱及び保管のためのシステム
JP2023501431A (ja) レールシステムから動作不良車両を回収するための救助システムおよび方法
KR20200121868A (ko) 고층 입체 창고 내에서 컨테이너 이동을 위한 신축식 홀더
JP2021123427A (ja) 物品搬送装置
US20160272422A1 (en) Apparatus for storing and handling article at ceiling
KR102500718B1 (ko) 물품 보관 설비
JP5197180B2 (ja) 段積み装置
US11845374B2 (en) Loading system and method for laterally loading and unloading an upper body structure onto and from a vehicle platform of a motor vehicle
FI128572B (fi) Järjestelmä ja menetelmä miehittämättömän kuljetuslaitteen kuormaamiseksi
WO2009070039A2 (en) Method and apparatus for stacking loads in vehicles
CN110294148B (zh) 一种用于运载火箭回收的辅助回收系统
KR101899488B1 (ko) 수직승강장치를 구비한 스태커 크레인
US11498760B2 (en) Deployable and retrievable section dividers
KR20180111160A (ko) 적재물 인입출 대차
CN115535868A (zh) 卸货系统和卸货方法
CN208665552U (zh) 一种承载式载具和无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815776

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19815776

Country of ref document: EP

Kind code of ref document: A1