WO2019233121A1 - 有机发光二极管显示面板及其制造方法、显示装置 - Google Patents

有机发光二极管显示面板及其制造方法、显示装置 Download PDF

Info

Publication number
WO2019233121A1
WO2019233121A1 PCT/CN2019/075242 CN2019075242W WO2019233121A1 WO 2019233121 A1 WO2019233121 A1 WO 2019233121A1 CN 2019075242 W CN2019075242 W CN 2019075242W WO 2019233121 A1 WO2019233121 A1 WO 2019233121A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
desiccant
substrate
pixel defining
organic light
Prior art date
Application number
PCT/CN2019/075242
Other languages
English (en)
French (fr)
Inventor
万彬
黎敏
曾娅
孙玉龙
Original Assignee
京东方科技集团股份有限公司
重庆京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 重庆京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/493,617 priority Critical patent/US11594584B2/en
Publication of WO2019233121A1 publication Critical patent/WO2019233121A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/846Passivation; Containers; Encapsulations comprising getter material or desiccants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/874Passivation; Containers; Encapsulations including getter material or desiccant
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations

Definitions

  • the present disclosure relates to an organic light emitting diode display panel, a manufacturing method thereof, and a display device.
  • Current OLED display panels generally include a substrate and a packaging layer.
  • the surface of the substrate is provided with a pixel-defining layer.
  • the pixel-defining layer has a plurality of openings.
  • An organic light-emitting unit is arranged in each opening, and the packaging layer covers one of the pixel-defining layers. Side to isolate the organic light-emitting unit from the external environment and prevent the light-emitting unit from being affected by water in the external environment.
  • the organic light-emitting layer material and the cathode metal material of the organic light-emitting unit are easily affected by the moisture in the environment, and the material of the organic light-emitting layer of the organic light-emitting unit itself contains a certain amount of water, so that a certain amount of water will be contained in the process. Encapsulated between the substrate and the encapsulation layer, these moisture will release water vapor to affect the organic light emitting unit, which will damage the organic light emitting unit due to moisture absorption, thereby shortening the life of the OLED display panel.
  • Embodiments of the present disclosure provide an organic light emitting diode display panel, a manufacturing method thereof, and a display device.
  • an organic light emitting diode display panel including:
  • a pixel defining layer on the substrate A pixel defining layer on the substrate.
  • An encapsulation layer is located on the pixel defining layer, and at least one of the pixel defining layer and the encapsulating layer is doped with a desiccant.
  • a display device including any one of the foregoing organic light emitting diode display panels.
  • a method of manufacturing an organic light emitting diode display panel including:
  • An encapsulation layer is formed on the pixel defining layer, and at least one of the pixel defining layer and the encapsulating layer is doped with a desiccant.
  • FIG. 1 is a schematic partial structural diagram of an OLED display panel according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a method for manufacturing an OLED display panel according to an embodiment of the present disclosure
  • FIG. 3 is a flowchart of another method for manufacturing an OLED display panel according to an embodiment of the present disclosure
  • FIG. 4 is a flowchart of another method for manufacturing an OLED display panel according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a pixel defining layer and an opening provided by an embodiment of the present disclosure.
  • an organic light emitting diode display panel including: a substrate; a pixel defining layer on the substrate; and a packaging layer on the pixel defining layer, the pixel defining layer and the A desiccant is incorporated in at least one of the encapsulation layers.
  • the incorporated desiccant can remove moisture between the substrate and the encapsulation layer, thereby preventing OLED from absorbing moisture and facilitating the use of the OLED display panel. life.
  • FIG. 1 is a schematic partial structural diagram of an OLED display panel according to an embodiment of the present disclosure.
  • the OLED display panel includes a substrate 10, and a pixel defining layer 20 and a packaging layer 30 disposed on the substrate 10.
  • the pixel defining layer 20 is packaged between the packaging layer 30 and the substrate 10.
  • At least one of the pixel defining layer 20 and the encapsulating layer 30 is doped with a desiccant.
  • the desiccant is only incorporated into the pixel defining layer 20, and the desiccant in the pixel defining layer 20 can better absorb moisture between the substrate and the encapsulation layer to avoid OLED moisture absorption.
  • only the encapsulation layer 30 is doped with a desiccant. Due to the small amount of moisture in the outside air, the conventional encapsulation layer can play a certain insulation function to prevent the moisture in the outside air from contacting the inside of the OLED display panel. However, the moisture in the air will still slowly penetrate into the interior of the OLED display panel. After the desiccant is added to the packaging layer, the moisture will be confined in the packaging layer and cannot be further penetrated, thereby improving the ability of the packaging layer to block external moisture. To further prevent outside moisture from entering the OLED display panel.
  • the pixel-defining layer 20 and the encapsulating layer 30 are doped with a desiccant.
  • the encapsulating layer 30 prevents external moisture from entering the interior of the OLED display panel, and the pixel-defining layer 20 absorbs moisture between the substrate and the encapsulating layer. , As far as possible to avoid OLED moisture absorption.
  • the desiccant is doped in the encapsulation layer 30.
  • the OLED display panel further includes a surface encapsulation layer, the surface encapsulation layer is coated on the encapsulation layer 30, and the desiccant is not doped in the surface encapsulation layer. After the surface encapsulation layer is provided, the surface encapsulation layer isolates the external environment for the first time in an environment with high humidity, which can prevent the encapsulation layer 30 from absorbing excessive moisture from the external environment, thereby forming double protection for the OLED panel.
  • the substrate 10 may include a base substrate 11 and a plurality of thin film transistors 12 disposed on the base substrate 11.
  • the plurality of thin film transistors 12 may be distributed in an array on the base substrate 11.
  • the thin film transistor 12 includes a gate, a gate insulating layer, an active layer, a source, and a drain.
  • the substrate 10 is provided with an anode 41 of an array-distributed OLED, and the anode 41 is connected to a source or a drain of the thin film transistor 12.
  • the base substrate 11 may be a transparent substrate, such as a glass substrate, a silicon substrate, a plastic substrate, and the like.
  • the thin film transistor 12 may be an amorphous silicon thin film transistor, a low temperature polysilicon thin film transistor, or a metal oxide thin film transistor.
  • the anode 41 may be made of a high work function material with good electrical conductivity and chemical stability, such as indium tin oxide, silver, nickel oxide, graphene, and the like, and the thickness of the anode may be 1 to 2 microns.
  • the anode 41 may correspond to the thin film transistor 12, and the array is distributed on the substrate 10.
  • the pixel defining layer 20 may be made of a pixel defining layer substrate and a desiccant.
  • the pixel defining layer substrate may be a transparent insulating material.
  • the transparent insulating material may be polyimide, silicon nitride, or silicon oxide. . If only the desiccant is doped in the encapsulation layer 30 and the desiccant is not doped in the pixel defining layer 20, the pixel defining layer 20 may be made of only the pixel defining layer substrate.
  • an opening for exposing the anode 41 is provided on the pixel-defining layer 20 at a position corresponding to the anode 41, and an organic light-emitting functional layer 42 is arranged in each of the openings 41.
  • the organic light-emitting functional layer 42 includes but is not limited to being sequentially stacked on the anode 41 Hole injection layer, hole transport layer, organic light emitting layer, electron transport layer and electron injection layer.
  • Each opening in the pixel defining layer 20 corresponds to a sub-pixel. Since the colors of adjacent sub-pixels may be different, the materials of the corresponding organic light-emitting layers may also be different. After the openings are set, the generation of adjacent sub-pixels can be avoided. The phenomenon of cross-coloring improves the quality of the display screen.
  • the hole injection layer may be made of one of copper phthalocyanine, tetracyano-p-dimethylenebenzoquinone, and titanium oxyphthalocyanine.
  • the hole transporting layer can be made of materials such as triarylamine and diamine biphenyl derivatives with biphenyl as the core, and the thickness can be 10-50 nm.
  • the organic light-emitting layer may be a single organic substance, such as 8-hydroxyquinoline aluminum, rubrene, etc., or a dopant, such as 4,4′-N, N′-dicarbazole-biphenyl doped with rubrene It can also be a phosphorescent material, or a fluorescent material, and the thickness can be 1 to 50 nanometers.
  • the electron transport layer can be doped with materials such as metal cesium Cs, and the thickness can be 10-100 nm.
  • the electron injection layer may be made of lithium fluoride.
  • a cathode 43 is provided on the organic light-emitting functional layer 42.
  • the cathodes 43 on the plurality of organic light-emitting functional layers 42 are connected to each other to realize a common cathode connection to multiple OLEDs.
  • the cathodes 43 on the multiple organic light emitting functional layers 42 may not be connected.
  • the cathode 43 may be made of a metal material with high conductivity, such as metallic silver. During the manufacturing process, the cathode 43 may have sufficient light transmittance by adjusting the thickness of the cathode.
  • the encapsulation layer 30 may be made of an encapsulation layer substrate and a desiccant, wherein the encapsulation layer substrate may include polyethylene terephthalate, polyethylene terephthalate, polycarbonate, Any of polystyrene, polymethyl methacrylate, polyterephthalyl sulfone, and polybutylene terephthalate. These encapsulation substrates can better isolate moisture from the outside and avoid Water penetrates into the interior of the OLED display panel.
  • the packaging layer 30 may be a packaging film.
  • the encapsulation layer 30 may be made of only the encapsulation layer substrate.
  • the surface encapsulation layer may also be made of only the encapsulation layer substrate.
  • the desiccant may be a mixture of at least one of an oxide desiccant and a chloride desiccant with a water-absorbent resin.
  • Water-absorbent resins, oxide desiccants, and chloride desiccants all have a strong ability to absorb water, which can remove the moisture sealed between the substrate and the packaging layer.
  • Oxide desiccant and chloride desiccant will gradually become liquid after absorbing a large amount of water, and easily flow to the organic light-emitting layer or the cathode, while the water-absorbent resin has a good water retention effect, and the formed liquid can be kept in the water-absorbent resin. In order to prevent liquid from flowing onto the organic light-emitting layer or the cathode, damage may be avoided.
  • the desiccant may also be a mixture of an oxide desiccant, a chloride desiccant, and a water-absorbent resin, and the mass ratio of the water-absorbent resin, the oxide desiccant, and the chloride desiccant may be 10: (2 ⁇ 3): (1 to 1.5), the simultaneous use of chloride desiccant, oxide desiccant, and water-absorbent resin can further improve the drying capacity. Within this range, the desiccant's moisture absorption capacity and water retention capacity are better.
  • the water-absorbing resin may include at least one of polyacrylates, polyvinyl alcohols, polyoxyalkylenes, polyurethanes, general-purpose acrylates, and casein.
  • Polyacrylates, polyvinyl alcohols, polyoxyalkylenes, polyurethanes, general-purpose acrylates, and casein are the more common water-absorbent resins and are easy to obtain.
  • the molecular structure of the water-absorbent resin is a three-dimensional network structure with a certain crosslinking density, and the molecular structure contains a large number of hydrophilic groups (such as carboxyl, hydroxyl, sulfonic acid, and amide groups), and hydrophilic groups.
  • the chloride desiccant may include at least one of zinc chloride, calcium chloride, tin chloride, and antimony chloride.
  • Zinc chloride, calcium chloride, tin chloride, and antimony chloride are among the chloride desiccants that have strong hygroscopicity, which can better remove moisture from OLED display panels and prolong the service life of OLED display panels.
  • the oxide desiccant may include at least one of calcium oxide and alumina, and calcium oxide and alumina are common oxide desiccants, which is convenient to obtain and has low cost.
  • the desiccant doped in the pixel defining layer 20 and the encapsulating layer 30 may be the same or different.
  • a manufacturing method of an OLED display panel is also provided. As shown in FIG. 2, the manufacturing method includes:
  • An encapsulation layer is formed on the pixel defining layer, and at least one of the pixel defining layer and the encapsulating layer is doped with a desiccant.
  • the incorporated desiccant can remove moisture between the substrate and the encapsulation layer, thereby preventing OLED from absorbing moisture and facilitating the use of the OLED display panel. life.
  • FIG. 3 is a flowchart of another method of manufacturing an OLED display panel according to an embodiment of the present disclosure. The method may be used to manufacture the OLED display panel shown in FIG. 1. As shown in FIGS. 1, 3 and 5, the manufacturing method includes:
  • a pixel defining layer 20 is formed on the substrate 10 on which the anode 41 is manufactured.
  • a plurality of openings 50 are provided on the pixel defining layer 20 at positions corresponding to the anode 41 to expose the anode 41.
  • a cathode 43 is formed on the organic light emitting functional layer 42.
  • S16 forming an encapsulation layer 30.
  • the pixel defining layer 20, the organic light emitting functional layer 42 and the cathode 43 are encapsulated between the substrate 10 and the encapsulating layer 30, and at least one of the pixel defining layer 20 and the encapsulating layer 30 is doped with a desiccant.
  • the incorporated desiccant can remove moisture between the substrate and the encapsulation layer, thereby preventing OLED from absorbing moisture and facilitating the use of the OLED display panel. life.
  • the desiccant is only incorporated in the pixel defining layer, and the desiccant in the pixel defining layer can better absorb moisture between the substrate and the encapsulation layer to avoid OLED moisture absorption.
  • only the encapsulation layer is doped with a desiccant. Due to the small amount of moisture in the outside air, the conventional encapsulation layer can play a certain insulation function to prevent the moisture in the outside air from contacting the inside of the OLED display panel, but The moisture in the air will still slowly penetrate into the interior of the OLED display panel. After the desiccant is added to the packaging layer, the moisture will be confined in the packaging layer and cannot be further penetrated, thereby improving the ability of the packaging layer to block external moisture. Further prevent external moisture from entering the inside of the OLED display panel.
  • the pixel defining layer and the encapsulating layer are doped with a desiccant.
  • the encapsulating layer prevents external moisture from entering the interior of the OLED display panel.
  • the pixel defining layer absorbs moisture between the substrate and the encapsulating layer. Avoid OLED moisture absorption.
  • FIG. 4 is a flowchart of another method for manufacturing an OLED display panel according to an embodiment of the present disclosure. The method can be used to manufacture the OLED display panel shown in FIG. 1. As shown in Figures 1, 4 and 5, the manufacturing method includes:
  • the substrate may include a base substrate and thin film transistors disposed on the base substrate, and the thin film transistors may be distributed in an array on the base substrate.
  • the base substrate may be a transparent substrate, such as a glass substrate, a silicon substrate, a plastic substrate, and the like.
  • the anode can be manufactured by methods such as magnetron sputtering, evaporation, vapor deposition, and the like.
  • methods such as magnetron sputtering, evaporation, vapor deposition, and the like.
  • anode layer By forming an anode layer on the substrate and then etching the anode layer, a plurality of anodes are formed, and each anode is respectively connected to a source or a drain of a thin film transistor.
  • the anode can usually be made of high work function materials with good conductivity and chemical stability, such as indium tin oxide, silver, nickel oxide, graphene, etc.
  • the thickness of the anode can be 1 to 2 microns.
  • a pixel defining layer 20 is formed on the substrate 10 on which the anode 41 is manufactured.
  • a plurality of openings 50 are provided on the pixel defining layer 20 at positions corresponding to the anode 41 to expose the anode 41.
  • step S23 may include:
  • the pixel defining layer substrate may be a transparent insulating material.
  • the transparent insulating material may be polyimide, silicon nitride, or silicon oxide.
  • An opening is provided on the formed pixel defining layer corresponding to each anode, and the anode is exposed through the corresponding opening.
  • the pixel-defining film layer may be formed by using vapor deposition, spin coating, or blade coating, and different manufacturing methods may be selected according to the substrate of the pixel-defining layer.
  • the pixel definition film layer may be manufactured by spin coating or knife coating.
  • the patterning process may include pre-baking, exposure, development, and post-baking, and removing part of the moisture in the pixel-defining film layer through pre-baking, exposure and development.
  • the process can form openings in the pixel-defining film layer, wherein the exposure process can solidify the area of the pixel-defining film layer except the openings, and the post-baking process can remove the moisture in the substrate of the pixel-defining layer again, so that the remaining pixels are defined.
  • the layer substrate is completely cured to obtain a pixel defining layer.
  • composition of the desiccant refer to the specific description of the desiccant in the embodiment shown in FIG. 1, which is not described in detail here.
  • the organic light emitting functional layer may include a hole injection layer, a hole transport layer, an organic light emitting layer, an electron transport layer, and an electron injection layer that are sequentially stacked on the anode.
  • the hole injection layer, the hole transport layer, the organic light emitting layer, the electron transport layer and the electron injection layer can be manufactured by a conventional process.
  • the hole injection layer may be made of one of copper phthalocyanine, tetracyano-p-dimethylenebenzoquinone, and titanyl phthalocyanine. It can be formed by chemical vapor deposition, physical vapor deposition, or spin coating, and a hole transport layer can be formed on the base substrate on which the hole injection layer is formed.
  • the hole transport layer can be triarylamine with biphenyl as the core.
  • Diamine biphenyl derivatives and other materials can have a thickness of 10-50 nanometers; an organic light-emitting layer can be formed on the substrate forming the hole-transporting layer by evaporation, spin coating or inkjet printing, and the organic light-emitting layer can be a single Organic substances, such as 8-hydroxyquinoline aluminum, rubrene, etc., can also be dopants, such as 4,4′-N, N′-dicarbazole-biphenyl doped with rubrene, etc., or phosphorescent
  • the material can be a fluorescent material with a thickness of 1 to 50 nanometers; an electron transport layer can be formed on a substrate substrate prepared with an organic light-emitting layer by chemical vapor deposition, physical vapor deposition, or spin coating.
  • the electron transport layer can be Doped with metal cesium Cs and other materials, the thickness can be 10-100 nm.
  • the electron injection layer may be made of lithium fluoride.
  • Each opening on the pixel-defining layer corresponds to a sub-pixel. Because the colors of adjacent sub-pixels may be different, the materials of the corresponding organic light-emitting layers may also be different. After the openings are set, strings between adjacent sub-pixels can be avoided. Colored phenomenon.
  • the substrate can be dried, especially when it is manufactured by inkjet printing, which can speed up the drying of the pigment and reduce the moisture in the organic light emitting functional layer.
  • a cathode 43 is formed on the organic light emitting functional layer 42.
  • the cathode can be manufactured by methods such as magnetron sputtering, evaporation, and vapor deposition.
  • the cathodes of multiple organic light-emitting functional layers are connected to each other to achieve common cathode connection to multiple OLEDs. In other possible implementations, the cathodes of multiple organic light-emitting functional layers may not be connected.
  • the cathode can be made of a highly conductive metal material, such as metallic silver. During the manufacturing process, the cathode can have sufficient light transmission by adjusting the thickness of the cathode.
  • the material of the organic light-emitting layer of the OLED itself contains a certain amount of moisture, and in a process such as a patterning process, a certain amount of water may be left on the substrate, so the desiccant in the pixel-defining layer may have been absorbed. A certain amount of moisture decreases the moisture absorption capacity. After the cathode is formed, the substrate is dried to remove the moisture absorbed by the desiccant and improve the moisture absorption capacity of the desiccant.
  • the organic light-emitting functional layer 42 and the cathode 43 are encapsulated between the substrate 10 and the encapsulation layer 30.
  • An encapsulation layer is formed on the substrate by using an encapsulation layer substrate doped with a desiccant.
  • the encapsulation layer may be formed by a plasma enhanced chemical vapor deposition method.
  • the substrate of the encapsulation layer may be polyethylene terephthalate, polyethylene terephthalate, polycarbonate, polystyrene, polymethyl methacrylate, polyparaphenylene disulfone, poly
  • the material is made of any one of butylene terephthalate. The above materials can better isolate the moisture in the outside and prevent the moisture from penetrating into the interior of the OLED display panel.
  • the desiccant incorporated in the substrate of the encapsulation layer may be the same as the desiccant incorporated in the substrate of the pixel defining layer.
  • a desiccant may be incorporated into only one of the pixel defining layer and the encapsulating layer, or a desiccant may be incorporated into both the pixel defining layer and the encapsulating layer. If a desiccant is added only to the pixel defining layer, the encapsulation layer is manufactured by using an encapsulating layer base material not containing a desiccant in step S27. A pixel-defining layer is manufactured by using a pixel-defining layer substrate mixed with a desiccant.
  • the method may further include forming a surface encapsulation layer on the encapsulation layer.
  • the surface encapsulation layer may be formed using an encapsulation layer substrate, and the manufacturing process may be the same as that of the encapsulation layer.
  • the surface encapsulation layer is coated on the encapsulation layer.
  • the surface encapsulation layer is not doped with a desiccant. After the surface encapsulation layer is provided, the surface encapsulation layer isolates the external environment for the first time in a high humidity environment, which can avoid the encapsulation layer Absorb excessive moisture from the external environment.
  • An embodiment of the present disclosure further provides a display device including any one of the foregoing OLED display panels.
  • the display device may be a mobile phone, a tablet computer, a display, a navigator, or other devices with a display function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机发光二极管显示面板及其制造方法、显示装置。该有机发光二极管显示面板包括:基板(10);像素界定层(20),位于所述基板(10)上;和封装层(30),位于所述像素界定层(20)之上,像素界定层(20)和封装层(30)中的至少一个中掺有干燥剂。通过在像素界定层(20)和封装层(30)中的至少一个中掺入干燥剂,可以避免有机发光二极管吸潮,有利于延长有机发光二极管显示面板的使用寿命。

Description

有机发光二极管显示面板及其制造方法、显示装置
相关申请的交叉引用
本申请基于并且要求于2018年6月8日递交、名称为“OLED显示面板及其制造方法、显示装置”的中国专利申请第201810589788.2号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开涉及一种有机发光二极管显示面板及其制造方法、显示装置。
背景技术
目前的OLED显示面板通常包括基板和封装层,基板的表面设置有像素界定层,像素界定层上具有多个开口,每个开口中布置有一个有机发光单元,封装层覆盖在像素界定层的一侧,以将有机发光单元与外界环境隔离,避免发光单元受到外部环境中水的影响。
由于有机发光单元的有机发光层材料和阴极金属材料很容易受到环境中的水分的影响,而制造有机发光单元的有机发光层的材料本身含有一定的水分,使得在工艺制程中会有一定量的水分被封在基板和封装层之间,这些水分会释放出水汽对有机发光单元造成影响,使有机发光单元因为吸潮而损坏,从而缩短OLED显示面板的寿命。
发明内容
本公开实施例提供了一种有机发光二极管显示面板及其制造方法、显示装置。
根据本公开第一方面,提供了一种有机发光二极管显示面板,包括:
基板;
像素界定层,位于所述基板上;和
封装层,位于所述像素界定层之上,所述像素界定层和所述封装层中的至少一个中掺有干燥剂。
根据本公开的第二方面,提供了一种显示装置,包括前述的任一种有机发光二极管显示面板。
根据本公开的第三方面,提供了一种有机发光二极管显示面板的制造方法,所述制造方法包括:
提供基板;
在所述基板上形成像素界定层;以及
在所述像素界定层之上形成封装层,所述像素界定层和所述封装层中的至少一个中掺有干燥剂。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1是本公开实施例提供的一种OLED显示面板的局部结构示意图;
图2是本公开实施例提供的一种OLED显示面板的制造方法的流程图;
图3是本公开实施例提供的另一种OLED显示面板的制造方法的流程图;
图4是本公开实施例提供的又一种OLED显示面板的制造方法的流程图;
图5是本公开实施例提供的像素界定层和开口的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、 数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现在“包括”或者“包含”前面的元件或者物件涵盖出现在“包括”或者“包含”后面列举的元件或者物件及其等同,并不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
根据本公开实施例,提供一种有机发光二极管显示面板,包括:基板;像素界定层,位于所述基板上;和封装层,位于所述像素界定层之上,所述像素界定层和所述封装层中的至少一个中掺有干燥剂。
通过在像素界定层和封装层中的至少一个中掺入干燥剂后,掺入的干燥剂可以去除基板和封装层之间的水分,从而可以避免OLED吸潮,有利于延长OLED显示面板的使用寿命。
图1是本公开实施例提供的一种OLED显示面板的局部结构示意图。如图1所示,该OLED显示面板包括基板10、以及设置在基板10上的像素界定层20和封装层30,像素界定层20封装于封装层30和基板10之间。像素界定层20和封装层30中的至少一个中掺有干燥剂。
至少一些实施例中,仅像素界定层20中掺有所述干燥剂,像素界定层20中的干燥剂可以较好的吸收基板和封装层之间的水分,避免OLED吸潮。
至少一些实施例中,仅封装层30中掺有干燥剂,由于外界空气中存在少量的水分,常规的封装层可以起到一定的隔绝作用,避免外界空气中的水分接触到OLED显示面板内部,但是空气中的水分仍然会缓慢的渗透到OLED显示面板内部,通过在封装层中掺入干燥剂后,水分会被限制在封装层中而无法进一步渗透,从而提高了封装层隔绝外界水分的能力,进一步避免外界的水分进入到OLED显示面板内部。
至少一些实施例中,像素界定层20和封装层30中都掺有干燥剂,通过封装层30避免外界的水分进入到OLED显示面板内部,通过像素界定层20吸收基板和封装层之间的水分,可以尽可能的避免OLED吸潮。
至少一些实施例中,封装层30中掺有干燥剂,该OLED显示面板还包括表面封装层,表面封装层包覆在封装层30上,表面封装层中未掺有干燥剂。 设置表面封装层后,在湿度很大的环境下,表面封装层对外界环境进行第一次隔离,可以避免封装层30从外界环境中吸收过多的水分,从而形成对OLED面板的双重保护。
例如,如图1所示,基板10可以包括衬底基板11和设置在衬底基板11上的多个薄膜晶体管12,多个薄膜晶体管12可以在衬底基板11上阵列分布。例如,薄膜晶体管12包括栅极、栅极绝缘层、有源层、源极和漏极。基板10上设置有阵列分布的OLED的阳极41,阳极41与薄膜晶体管12的源极或漏极连接。
例如,衬底基板11可以为透明基板,例如玻璃基板、硅基板和塑料基板等。薄膜晶体管12可以是非晶硅薄膜晶体管、低温多晶硅薄膜晶体管、金属氧化物薄膜晶体管。可选地,阳极41可以选择具有良好的导电性和化学稳定性的高功函数材料制成,例如氧化铟锡、银、氧化镍、石墨烯等,阳极的厚度可以为1~2微米。阳极41可以与薄膜晶体管12对应,阵列分布在基板10上。
例如,像素界定层20可以采用像素界定层基材和干燥剂制成,像素界定层基材可以是透明绝缘材料,示例性地,透明绝缘材料可以是聚酰亚胺、氮化硅、氧化硅。若只在封装层30中掺有干燥剂,而像素界定层20中未掺有干燥剂,则像素界定层20可以只采用像素界定层基材制成。
例如,像素界定层20上对应阳极41的位置设置有露出阳极41的开口,每个开口41中均布置有一个有机发光功能层42,有机发光功能层42包括但不限于依次层叠在阳极41上的空穴注入层、空穴传输层、有机发光层、电子传输层和电子注入层。像素界定层20上的每一个开口对应一个子像素,由于相邻的子像素的颜色可能不同,所对应的有机发光层的材料也可能不同,设置开口后可以避免相邻的子像素之间产生串色的现象,提升显示画面的质量。
例如,空穴注入层可以采用酞菁铜、四氰代对二亚甲基苯醌、钛氧基酞菁中的一种制成。空穴传输层可以采用以联苯为核心的三芳香胺,二胺联苯衍生物等材料制成,厚度可以为10~50纳米。有机发光层可以为单一的有机物,如8羟基喹啉铝、红荧烯等,也可以是掺杂物,如4,4′-N,N′-二咔唑-联苯掺入红荧烯等,还可以是磷光材料,更可以为荧光材料,厚度可以为1~50纳米。电子传输层可以掺入金属铯Cs等材料,厚度可以为10~100纳米。 电子注入层可以采用氟化锂制成。
例如,如图1所示,有机发光功能层42上设置有阴极43,作为举例,在本实施例中多个有机发光功能层42上的阴极43相互连接,实现对多个OLED的共阴极连接,在其他可能的实现方式中,多个有机发光功能层42上的阴极43也可以不相连。
例如,在本实施例中,阴极43可以采用高导电性能的金属材料制成,例如金属银,在制造过程中可以通过调节阴极的厚度使阴极43具有足够的透光性。
可选地,封装层30可以采用封装层基材和干燥剂制成,其中封装层基材可以包括聚对苯二甲酸乙二醇酯、聚对萘二甲酸乙二醇酯、聚碳酸酯、聚苯乙烯、聚甲基丙烯酸甲酯、聚对苯二乙基砜、聚对苯二甲酸丁二醇酯中的任一种,这些封装层基材可以较好的隔绝外界中的水分,避免水分渗透到OLED显示面板内部。封装层30可以是封装薄膜。若只在像素界定层20中掺有干燥剂,而封装层30中未掺有干燥剂,则封装层30可以只采用封装层基材制成。表面封装层也可以仅采用封装层基材制成。
至少一些实施例中,该干燥剂可以为氧化物干燥剂和氯化物干燥剂中的至少一种与吸水性树脂的混合物。吸水性树脂、氧化物干燥剂和氯化物干燥剂都对水有较强的吸收能力,可以去除封在基板和封装层之间的水分。氧化物干燥剂和氯化物干燥剂在吸收大量水分后会逐渐成为液体,容易流动到有机发光层或阴极上,而吸水性树脂具有较好的保水作用,可以将形成的液体保持在吸水性树脂中,从而避免液体流动到有机发光层或阴极上造成损害。
至少一些实施例中,该干燥剂也可以为氧化物干燥剂、氯化物干燥剂和吸水性树脂的混合物,吸水性树脂、氧化物干燥剂和氯化物干燥剂质量比可以为10∶(2~3)∶(1~1.5),同时采用氯化物干燥剂和氧化物干燥剂以及吸水性树脂可以进一步提高干燥能力,在该比例范围内,干燥剂的吸湿能力和保水能力较好。
至少一些实施例中,吸水性树脂可以包括聚丙烯酸盐类、聚乙烯醇类、聚氧化烷烃类、聚氨酯、通用型丙烯酸酯和酪素中的至少一种。聚丙烯酸盐类、聚乙烯醇类、聚氧化烷烃类、聚氨酯、通用型丙烯酸酯和酪素为较常见的吸水性树脂,便于获取。吸水性树脂的分子结构为具有一定的交联密度的 三维网状结构,且分子结构中含有大量的亲水性基团(例如羧基、羟基、磺酸基、酰胺基),亲水性基团可以吸收水分,将水分子连接在网状结构中,从而可以将水保持在吸水性树脂中,避免干燥剂吸收的水分聚集流动到有机发光层或是阴极上对有机发光层或是阴极造成损害。
至少一些实施例中,氯化物干燥剂可以包括氯化锌、氯化钙、氯化锡和氯化锑中至少一种。氯化锌、氯化钙、氯化锡和氯化锑是氯化物干燥剂中具有较强吸湿能力的几种,能够较好的去除OLED显示面板中的水分,延长OLED显示面板的使用寿命。
至少一些实施例中,氧化物干燥剂可以包括氧化钙、氧化铝中的至少一种,氧化钙、氧化铝为常见的氧化物干燥剂,获取方便,成本低。
例如,当像素界定层20和封装层30中均掺有干燥剂时,像素界定层20和封装层30中掺的干燥剂可以相同也可以不同。
根据本公开实施例,还提供一种OLED显示面板的制造方法,如图2所示,所述制造方法包括:
提供基板;
在所述基板上形成像素界定层;以及
在所述像素界定层之上形成封装层,所述像素界定层和所述封装层中的至少一个中掺有干燥剂。
通过在像素界定层和封装层中的至少一个中掺入干燥剂后,掺入的干燥剂可以去除基板和封装层之间的水分,从而可以避免OLED吸潮,有利于延长OLED显示面板的使用寿命。
图3是本公开实施例提供的另一种OLED显示面板的制造方法的流程图,该方法可以用于制造如图1所示的OLED显示面板。如图1、图3和图5所示,该制造方法包括:
S11:提供基板10。
S12:在基板10上形成阳极41。
S13:在制造有阳极41的基板10上形成像素界定层20,像素界定层20上对应阳极41的位置设置有露出阳极41的多个开口50。
S14:在每个开口50中形成有机发光功能层42。
S15:在有机发光功能层42上形成阴极43。
S16:形成封装层30。这样,像素界定层20、有机发光功能层42和阴极43被封装在基板10和封装层30之间,像素界定层20和封装层30中的至少一个中掺有干燥剂。
通过在像素界定层和封装层中的至少一个中掺入干燥剂后,掺入的干燥剂可以去除基板和封装层之间的水分,从而可以避免OLED吸潮,有利于延长OLED显示面板的使用寿命。
至少一些实施例中,仅像素界定层中掺有所述干燥剂,像素界定层中的干燥剂可以较好的吸收基板和封装层之间的水分,避免OLED吸潮。
至少一些实施例中,仅封装层中掺有干燥剂,由于外界空气中存在少量的水分,常规的封装层可以起到一定的隔绝作用,避免外界空气中的水分接触到OLED显示面板内部,但是空气中的水分仍然会缓慢的渗透到OLED显示面板内部,通过在封装层中掺入干燥剂后,水分会被限制在封装层中而无法进一步渗透,从而提高了封装层隔绝外界水分的能力,进一步避免外界的水分进入到OLED显示面板内部。
至少一些实施例中,像素界定层和封装层中都掺有干燥剂,通过封装层避免外界的水分进入到OLED显示面板内部,通过像素界定层吸收基板和封装层之间的水分,可以尽可能的避免OLED吸潮。干燥剂的具体成分和含量可参见前面实施例中的描述,此处不再赘述。
图4是本公开实施例提供的又一种OLED显示面板的制造方法的流程图,该方法可以用于制造如图1所示的OLED显示面板。如图1、图4和图5所示,该制造方法包括:
S21:提供基板10。
例如,基板可以包括衬底基板和设置在衬底基板上的薄膜晶体管,薄膜晶体管可以在衬底基板上阵列分布。衬底基板可以为透明基板,例如玻璃基板、硅基板和塑料基板等。
S22:在基板10上形成阳极41。
示例性地,阳极可以采用磁控溅射、蒸镀、气相沉积等方法进行制造。通过在基板上形成阳极层,再对阳极层进行刻蚀,从而形成多个阳极,每个阳极分别与一个薄膜晶体管的源极或漏极连接。
阳极通常可以选择具有良好的导电性和化学稳定性的高功函数材料制 成,例如氧化铟锡、银、氧化镍、石墨烯等,阳极的厚度可以为1~2微米。
S23:在制造有阳极41的基板10上形成像素界定层20,像素界定层20上对应阳极41的位置设置有露出阳极41的多个开口50。
示例性地,步骤S23可以包括:
在制造有所述阳极的基板上形成像素界定层基材;在像素界定层基材中掺入干燥剂;采用掺有干燥剂的像素界定层基材,在基板上形成像素界定膜层;采用构图工艺在像素界定膜层上形成开口,得到像素界定层。
通过在像素界定层基材中掺入干燥剂后进行像素界定层的制造,可以不需要改变现有工艺。像素界定层基材可以为透明绝缘材料,示例性地,透明绝缘材料可以是聚酰亚胺、氮化硅、氧化硅。形成的像素界定层上对应每个阳极的位置均设置有一个开口,阳极露出于对应的开口。
例如,像素界定膜层可以采用气相沉积、旋涂或刮涂等方式形成,可以根据像素界定层基材选择不同的制造方法。例如当采用聚酰亚胺作为像素界定层基材时,可以采用旋涂或刮涂的方式制造像素界定膜层。当采用旋涂或刮涂的方式制造像素界定膜层时,构图工艺过程可以包括预烘烤、曝光、显影、后烘烤,通过预烘烤去除像素界定膜层中的部分水分,曝光和显影过程可以在像素界定膜层上形成开口,其中曝光过程可以使像素界定膜层上除开口之外的区域固化,后烘烤过程可以再次去除像素界定层基材中的水分,使保留的像素界定层基材完全固化,得到像素界定层。
该干燥剂的成分可以参见图1所示实施例中对于干燥剂的具体说明,此处不详述。
S24:在每个开口50中形成有机发光功能层42。
例如,有机发光功能层可以包括依次层叠在阳极上的空穴注入层、空穴传输层、有机发光层、电子传输层和电子注入层。空穴注入层、空穴传输层、有机发光层、电子传输层和电子注入层可以采用常规的工艺制程进行制造。
示例性地,空穴注入层可以采用酞菁铜、四氰代对二亚甲基苯醌、钛氧基酞菁中的一种制成。可以采用化学气相沉积、物理气相沉积或旋涂的方法形成,在形成有空穴注入层的衬底基板上形成空穴传输层,空穴传输层可以采用以联苯为核心的三芳香胺,二胺联苯衍生物等材料,厚度可以为10~50纳米;采用蒸镀、旋涂或喷墨打印的方法,在形成空穴传输层的基板上形成 有机发光层,有机发光层可以为单一的有机物,如8羟基喹啉铝、红荧烯等,也可以是掺杂物,如4,4′-N,N′-二咔唑-联苯掺入红荧烯等,还可以是磷光材料,更可以为荧光材料,厚度可以为1~50纳米;采用化学气相沉积、物理气相沉积或旋涂的方法,在制备有有机发光层的衬底基板上形成电子传输层,电子传输层可以掺入金属铯Cs等材料,厚度可以为10~100纳米。电子注入层可以采用氟化锂制成。
像素界定层上的每一个开口对应一个子像素,由于相邻的子像素的颜色可能不同,所对应的有机发光层的材料也可能不同,设置开口后可以避免相邻的子像素之间产生串色的现象。
在制造完成有机发光功能层后还可以对基板进行烘干,尤其是当采用喷墨打印的方式制造时,可以加快颜料干燥的速度,减少有机发光功能层中的水分。
S25:在有机发光功能层42上形成阴极43。
例如,阴极可以采用磁控溅射、蒸镀、气相沉积等方法进行制造。作为举例,在本实施例中多个有机发光功能层的阴极相互连接,实现对多个OLED的共阴极连接,在其他可能的实现方式中,多个有机发光功能层的阴极也可以不相连。
例如,阴极可以采用高导电性能的金属材料制成,例如金属银,在制造过程中可以通过调节阴极的厚度使阴极具有足够的透光性。
S26:烘干形成有阴极43的基板10。
由于制造OLED的有机发光层的材料本身含有一定的水分,且在工艺制程中,例如构图工艺,也有可能会在基板上留下一定量的水,因此像素界定层中的干燥剂可能已经吸收了一定量的水分,吸湿能力下降,在形成阴极后,对基板进行烘干,可以去除干燥剂吸收的水分,提高干燥剂的吸湿能力。
S27:形成封装层30。
通过形成封装层30,使得有机发光功能层42和阴极43被封装在基板10和封装层30之间。
例如,在形成封装层时,可以采用以下步骤:
在封装层基材中掺入干燥剂;以及
采用掺有干燥剂的封装层基材在基板上形成封装层。
例如,封装层可以采用等离子体增强化学气相沉积的方式形成。封装层基材可以是聚对苯二甲酸乙二醇酯、聚对萘二甲酸乙二醇酯、聚碳酸酯、聚苯乙烯、聚甲基丙烯酸甲酯、聚对苯二乙基砜、聚对苯二甲酸丁二醇酯中的任一种材料制成,以上材料可以较好的隔绝外界中的水分,避免水分渗透到OLED显示面板内部。
封装层基材中掺入的干燥剂可以与像素界定层基材中掺入的干燥剂相同,具体成分可以参见前面实施例对于干燥剂的说明。
在实现时,可以只在像素界定层和封装层中的一个中掺入干燥剂,也可以在像素界定层和封装层中都掺入干燥剂。若只在像素界定层中掺入干燥剂,则在步骤S27中采用未掺有干燥剂的封装层基材制造封装层,若只在封装层中掺入干燥剂,则在步骤S23中采用未掺有干燥剂的像素界定层基材制造像素界定层。
可选地,当封装层中掺有干燥剂时,该方法还可以包括在封装层上形成表面封装层。表面封装层可以采用封装层基材形成,制造工艺可以与封装层的制造工艺相同。表面封装层包覆在封装层上,表面封装层中未掺有干燥剂,设置表面封装层后,在湿度很大的环境下,表面封装层对外界环境进行第一次隔离,可以避免封装层从外界环境中吸收过多的水分。
本公开实施例还提供了一种显示装置,该显示装置包括前述的任一种OLED显示面板。该显示装置可以是手机、平板电脑、显示器、导航仪,或是其他具有显示功能的装置。
本文中,有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (20)

  1. 一种有机发光二极管显示面板,包括:
    基板;
    像素界定层,位于所述基板上;和
    封装层,位于所述像素界定层之上,所述像素界定层和所述封装层中的至少一个中掺有干燥剂。
  2. 根据权利要求1所述的有机发光二极管显示面板,其中所述像素界定层中掺有所述干燥剂。
  3. 根据权利要求1或2所述的有机发光二极管显示面板,其中所述封装层中掺有所述干燥剂。
  4. 根据权利要求1至3任一项所述的有机发光二极管显示面板,其中所述干燥剂为氧化物干燥剂和氯化物干燥剂中的至少一种与吸水性树脂的混合物。
  5. 根据权利要求4所述的有机发光二极管显示面板,其中所述干燥剂为氧化物干燥剂、氯化物干燥剂和吸水性树脂的混合物,所述吸水性树脂、氧化物干燥剂和氯化物干燥剂质量比为10∶(2~3)∶(1~1.5)。
  6. 根据权利要求4或5所述的有机发光二极管显示面板,其中所述吸水性树脂包括聚丙烯酸盐类、聚乙烯醇类、聚氧化烷烃类、聚氨酯、丙烯酸酯和酪素中的至少一种。
  7. 根据权利要求4或5所述的有机发光二极管显示面板,其中所述氯化物干燥剂包括氯化锌、氯化钙、氯化锡和氯化锑中至少一种。
  8. 根据权利要求4或5所述的有机发光二极管显示面板,其中所述氧化物干燥剂包括氧化钙、氧化铝中的至少一种。
  9. 一种显示装置,包括如权利要求1~8任一项所述的有机发光二极管显示面板。
  10. 一种有机发光二极管显示面板的制造方法,包括:
    提供基板;
    在所述基板上形成像素界定层;以及
    在所述像素界定层之上形成封装层,所述像素界定层和所述封装层中的 至少一个中掺有干燥剂。
  11. 根据权利要求10所述的制造方法,其中所述像素界定层中掺有所述干燥剂。
  12. 根据权利要求10或11所述的制造方法,其中所述封装层中掺有所述干燥剂。
  13. 根据权利要求10至12任一项所述的制造方法,其中所述干燥剂为氧化物干燥剂和氯化物干燥剂中的至少一种与吸水性树脂的混合物。
  14. 根据权利要求13所述的制造方法,其中所述吸水性树脂包括聚丙烯酸盐类、聚乙烯醇类、聚氧化烷烃类、聚氨酯、丙烯酸酯和酪素中的至少一种。
  15. 根据权利要求13所述的制造方法,其中所述氯化物干燥剂包括氯化锌、氯化钙、氯化锡和氯化锑中的至少一种。
  16. 根据权利要求13所述的制造方法,其中所述氧化物干燥剂包括氧化钙、氧化铝中的至少一种。
  17. 根据权利要求10至16任一项所述的制造方法,其中在所述基板上形成像素界定层之前,所述制造方法还包括:在所述基板上形成阳极;
    在所述基板上形成像素界定层包括:在制造有所述阳极的基板上形成所述像素界定层,所述像素界定层包括露出所述阳极的多个开口。
  18. 根据权利要求17所述的制造方法,其中所述在制造有所述阳极的基板上形成像素界定层,包括:
    在制造有所述阳极的基板上形成像素界定层基材;
    在所述像素界定层基材中掺入干燥剂;
    采用掺有干燥剂的像素界定层基材,在所述基板上形成像素界定膜层;以及
    采用构图工艺在所述像素界定膜层中形成所述多个开口,得到所述像素界定层。
  19. 根据权利要求17所述的制造方法,其中在所述形成封装层之前,所述制造方法还包括:
    在所述像素界定层的每个开口中形成有机功能层;
    在所述有机功能层上形成阴极;
    其中所述像素界定层、所述有机功能层和所述阴极被封装在所述基板和所述封装层之间。
  20. 根据权利要求12所述的制造方法,其中在所述形成封装层之前,所述方法还包括:
    烘干形成有所述阴极的基板。
PCT/CN2019/075242 2018-06-08 2019-02-15 有机发光二极管显示面板及其制造方法、显示装置 WO2019233121A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/493,617 US11594584B2 (en) 2018-06-08 2019-02-15 Organic light-emitting diode display panel, manufacturing method thereof and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810589788.2 2018-06-08
CN201810589788.2A CN108511631A (zh) 2018-06-08 2018-06-08 Oled显示面板及其制造方法、显示装置

Publications (1)

Publication Number Publication Date
WO2019233121A1 true WO2019233121A1 (zh) 2019-12-12

Family

ID=63403106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075242 WO2019233121A1 (zh) 2018-06-08 2019-02-15 有机发光二极管显示面板及其制造方法、显示装置

Country Status (3)

Country Link
US (1) US11594584B2 (zh)
CN (1) CN108511631A (zh)
WO (1) WO2019233121A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108511631A (zh) * 2018-06-08 2018-09-07 京东方科技集团股份有限公司 Oled显示面板及其制造方法、显示装置
CN109713155B (zh) * 2018-11-30 2021-07-13 云谷(固安)科技有限公司 封装薄膜、显示面板及其制备方法
CN109638045B (zh) * 2018-12-07 2020-06-16 武汉华星光电半导体显示技术有限公司 显示单元、显示单元的制作方法和有机发光二极管显示器
CN109638059A (zh) 2018-12-20 2019-04-16 武汉华星光电半导体显示技术有限公司 Oled显示面板及其制备方法、显示装置
CN111180481A (zh) * 2019-03-01 2020-05-19 广东聚华印刷显示技术有限公司 发光器件及其制备方法、薄膜封装结构和显示面板
CN112072001B (zh) * 2020-09-18 2023-05-26 京东方科技集团股份有限公司 显示基板及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103840087A (zh) * 2014-02-18 2014-06-04 京东方科技集团股份有限公司 显示背板及其制备方法和显示装置
CN103972267A (zh) * 2014-04-16 2014-08-06 京东方科技集团股份有限公司 一种有机发光显示装置
CN105826357A (zh) * 2016-05-16 2016-08-03 京东方科技集团股份有限公司 一种显示基板及oled显示装置
CN106935726A (zh) * 2017-02-28 2017-07-07 深圳市华星光电技术有限公司 有机电致发光显示装置及其制作方法
CN107452893A (zh) * 2016-05-31 2017-12-08 乐金显示有限公司 有机发光显示装置
CN207116481U (zh) * 2017-08-31 2018-03-16 京东方科技集团股份有限公司 显示基板、显示装置
CN108511631A (zh) * 2018-06-08 2018-09-07 京东方科技集团股份有限公司 Oled显示面板及其制造方法、显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003320215A (ja) * 2002-04-26 2003-11-11 Japan Gore Tex Inc 吸着材成形体、および吸着材ユニット
US20050062174A1 (en) * 2003-09-19 2005-03-24 Osram Opto Semiconductors Gmbh Encapsulated organic electronic device
US10290756B2 (en) * 2012-06-14 2019-05-14 Kuraray Co., Ltd. Multilayer structure, device using the same, method for producing the multilayer structure, and method for producing the device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103840087A (zh) * 2014-02-18 2014-06-04 京东方科技集团股份有限公司 显示背板及其制备方法和显示装置
CN103972267A (zh) * 2014-04-16 2014-08-06 京东方科技集团股份有限公司 一种有机发光显示装置
CN105826357A (zh) * 2016-05-16 2016-08-03 京东方科技集团股份有限公司 一种显示基板及oled显示装置
CN107452893A (zh) * 2016-05-31 2017-12-08 乐金显示有限公司 有机发光显示装置
CN106935726A (zh) * 2017-02-28 2017-07-07 深圳市华星光电技术有限公司 有机电致发光显示装置及其制作方法
CN207116481U (zh) * 2017-08-31 2018-03-16 京东方科技集团股份有限公司 显示基板、显示装置
CN108511631A (zh) * 2018-06-08 2018-09-07 京东方科技集团股份有限公司 Oled显示面板及其制造方法、显示装置

Also Published As

Publication number Publication date
US11594584B2 (en) 2023-02-28
CN108511631A (zh) 2018-09-07
US20210335933A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
WO2019233121A1 (zh) 有机发光二极管显示面板及其制造方法、显示装置
US9627645B2 (en) Mask plate, organic light-emitting diode (OLED) transparent display panel and manufacturing method thereof
US9825256B2 (en) Display panel having a top surface of the conductive layer coplanar with a top surface of the pixel define layer
US9640597B2 (en) Organic light-emitting diode (OLED) substrate and display device
US7663147B2 (en) Display apparatus and fabricating method thereof
US10297790B2 (en) Organic light emitting display apparatus and method of manufacturing organic light emitting display apparatus
TWI473317B (zh) 可撓性主動元件陣列基板以及有機電激發光元件
US20140191203A1 (en) Organic light-emitting display apparatus and method of manufacturing the same
US10454066B2 (en) Thin-film package structure and OLED component
JP2010238675A (ja) ディスプレイ装置
KR20100000407A (ko) 유기 발광 표시장치 및 그의 제조 방법
US11152600B2 (en) Organic light-emitting diode display panel and manufacture method thereof
KR101431466B1 (ko) 유기 발광 소자의 제조 방법
US20050122042A1 (en) Organic electroluminescent display device
WO2020172929A1 (zh) 一种柔性oled器件及其制备方法
US9093663B2 (en) Organic light-emitting display and methods of manufacturing the same
US20210328180A1 (en) Encapsulation thin film, method of manufacturing encapsulation thin film, organic light-emitting display panel, and method of manufacturing organic light-emitting display panel
KR20150001182A (ko) 유기발광 디스플레이 장치 및 그 제조 방법
KR20140041315A (ko) 유기전계발광표시장치의 제조방법
US10236445B2 (en) Organic optoelectronic component and method for producing an organic optoelectronic component
US20220293699A1 (en) Light-emitting device, substrate thereof and fabrication method
JP2004103502A (ja) 有機el表示装置
US9406906B2 (en) Encapsulation sheet, method of manufacturing organic light emitting display device using the same, and organic light emitting display device
CN113471380A (zh) 一种显示装置及其封装方法
CN111668285A (zh) Oled显示装置及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815320

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19815320

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19815320

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25-05-2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19815320

Country of ref document: EP

Kind code of ref document: A1