WO2019233052A1 - 一种孔径和物性无偏差的三维多孔金属材料的制备方法 - Google Patents

一种孔径和物性无偏差的三维多孔金属材料的制备方法 Download PDF

Info

Publication number
WO2019233052A1
WO2019233052A1 PCT/CN2018/118014 CN2018118014W WO2019233052A1 WO 2019233052 A1 WO2019233052 A1 WO 2019233052A1 CN 2018118014 W CN2018118014 W CN 2018118014W WO 2019233052 A1 WO2019233052 A1 WO 2019233052A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
porous metal
dimensional porous
plating
blind hole
Prior art date
Application number
PCT/CN2018/118014
Other languages
English (en)
French (fr)
Inventor
钟发平
李星
蒋素斌
彭为
肖进春
熊轶智
刘明亮
Original Assignee
常德力元新材料有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常德力元新材料有限责任公司 filed Critical 常德力元新材料有限责任公司
Publication of WO2019233052A1 publication Critical patent/WO2019233052A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/08Perforated or foraminous objects, e.g. sieves

Definitions

  • the invention relates to the three-dimensional porous metal industry, in particular to a method for preparing a three-dimensional porous metal material with no deviation in pore size and physical properties.
  • the existing three-dimensional porous metal is generally prepared by electroplating metal on the foam substrate, and the inconsistency of the pore size and density on the foam substrate also causes the inconsistency of the physical properties of the three-dimensional multi-hollow metal, which affects the areal density of the foam metal. And aperture. How to prepare a foam matrix with the same pore size and density has become a problem that needs to be solved first in the manufacture of three-dimensional multi-void metal with the same physical properties.
  • the thickness of the plating is another important factor affecting the physical properties of the three-dimensional porous metal, and an important factor affecting the thickness of the plating is the plating method.
  • Three-dimensional multi-empty metal materials are generally prepared by continuous plating, and continuous plating is suitable for batch production of wires and strips. Due to the constraints of electrochemical and geometric factors, the wire and strip produced by continuous plating have non-uniform thicknesses inside and outside the substrate, which affects the consistency of foam performance.
  • Document CN103147100A discloses a method for preparing a mixed porous metal material, which includes conducting treatment of a porous base material, pre-plating the porous base, and adding burnt particles for mixed plating, and finally burning the porous base and the burned particles and reducing to obtain a porous metal. material.
  • the physical properties of the porous metal material produced by this method cannot be consistent due to the limitation of the porous substrate, and the problem of uniformity of the coating has not been solved.
  • the technical problem to be solved by the present invention is to provide a method for preparing a three-dimensional porous metal material with no deviation in pore size and physical properties, which can keep the pore diameter and area density of the produced foam matrix consistent within the error range, while maintaining the maximum Outer coating consistency.
  • the content of the present invention includes the following steps:
  • a 3D printer to print a substrate with a uniform porous structure.
  • the substrate is provided with at least one blind hole, and the depth of the blind hole is 1/2 of the thickness of the substrate to obtain a substrate with blind holes.
  • 3D printing technology it can print Porous substrates with uniform pore diameters and areal densities allow the electroplated porous metal to have substantially the same pore size and areal density, so that the internal plating of the substrates is no longer restricted by geometric factors.
  • the plating efficiency will gradually decrease, thereby affecting the thickness of the plating layer inside and outside the substrate.
  • the thickness of the substrate is thin, generally 1-3mm, the attenuation of the plating efficiency from outside to inside is not obvious, so the thickness of the inner and outer coatings of materials prepared by continuous electroplating is not much different; and the porous metal materials prepared by rack plating, The thickness is generally greater than 8mm, and even reaches 100mm, the attenuation of the plating efficiency from the outside to the inside is more obvious, and the inside is difficult to plate through.
  • the blind holes are set to inject a plating solution into the substrate during the plating process, so that the internal plating of the substrate is no longer restricted by the plating solution, causing the internal plating layer to be thinner than the external plating layer, which affects the consistency of the porous structure performance. .
  • the injected plating solution diffuses 360 degrees at 1/2 of the interior of the substrate, but the scope of the diffusion is limited. Usually, it needs to be inserted into multiple uniformly arranged blind holes. Injecting a plating solution can complete the uniform plating of the entire substrate.
  • the conductive substrate is immersed in the plating solution, the ultrasonic vibration rod is inserted into the plating solution, the injection needle matching the blind hole is inserted into the blind hole, and a new plating solution is injected into the blind hole.
  • the volume concentration of the liquid is at least 1.5 times the volume concentration of the original plating solution, and then electroplating is started and the ultrasonic vibrating rod is started;
  • the plating solution is adjusted according to the plating of different metals, and the plating temperature is preferably controlled at 45-60 ° C. Will burn the substrate, and will also affect the uniformity of the plating layer inside and outside the substrate, because the plating rate will increase with the increase in temperature. When the temperature is too high, the consumption rate of metal ions inside the substrate will be greater than the replenishment rate. Widening of unevenness;
  • the consumption of metal ions inside the substrate is supplemented by the entry of metal ions from the outside of the substrate.
  • metal ions enter the inside of the substrate through the pores they are continuously attracted and consumed by the charge on the substrate. If the plating rate is too fast or the substrate is too thick In many cases, the metal ions inside the substrate will be insufficient to prevent the inside of the substrate from being plated through, which will affect the consistency of the porous structure performance.
  • the plating solution is injected into the blind hole.
  • the new plating solution has a more obvious diffusion effect to compensate for the difference in the concentration of metal ions inside and outside the substrate.
  • the current density at the beginning of plating is the calculated current density. After 2-3 minutes, adjust the current to adjust the current density to 1/3 to 1/2 of the calculated current density. After the current adjustment is completed, stop injecting the new plating solution. 3. Turn off the plating current and turn off the ultrasonic vibration rod to obtain a three-dimensional porous metal semi-finished product; the current density ASF can be calculated according to the thickness of the plating, the formula is as follows:
  • the constant C varies depending on the metal.
  • the C value of copper is 0.0202
  • the C value of nickel is 0.0182
  • the C value of tin is 0.0456.
  • the thickness of the plating layer needs to be determined to calculate the current density ASF.
  • pre-plating is performed for 2-3 minutes, and the current density is maintained to calculate the current density during the pre-plating process.
  • the current density was adjusted to 1/3 to 1/2 of the calculated current density for 30 minutes.
  • the plating efficiency of the outermost layer of the substrate will vary depending on the plating metal, and as the pores extend into the substrate, the plating efficiency of the substrate will gradually decrease.
  • the three-dimensional porous metal semi-finished product is washed and air-dried for 2-3 days, and then placed in an incinerator for incineration to remove the conductive substrate; the three-dimensional porous metal semi-finished product is placed in a reducing gas for reduction treatment.
  • the three-dimensional porous metal semi-finished product needs to be air-dried for 2-3 days and cannot be directly burned in an incinerator, because the plating layer is not stable when it is just plated on the substrate, and it takes a period of stability.
  • the reduction reaction temperature ranges from 710-950 ° C. When the temperature is higher than 900 ° C, the reduction reaction efficiency does not increase, so the reduction reaction temperature is 900 ° C as Preferably, a three-dimensional porous metal material with no deviation in pore size and physical properties is finally obtained.
  • the purpose of the present invention is to reduce other factors, such as the conductivity of the substrate inside and outside, and the difference in the concentration of metal ions inside and outside the substrate, which affect the amount of metal deposited inside and outside the substrate, make the overall physical properties of the substrate as consistent as possible, and keep the deviation of the plating layer within acceptable ranges.
  • the printing material used by the 3D printer in the step (1) is bioplastic polylactic acid.
  • Polylactic acid is a renewable plant resource in the 3D printing material. It is made of starch raw materials extracted from plants and is very environmentally friendly. Harmful gas, and it is not easy to be corroded by the acidic substances during electroplating;
  • the melting point of polylactic acid is not high, it is 155-185 ° C, and it can be incinerated at a temperature of 400 ° C.
  • the diameter of the blind holes is 2-10mm, and the distance between the blind holes is 30mm.
  • the diameter of the blind holes should not be too large, otherwise it will affect the physical properties of the porous metal. Less, the diffusion effect of the plating solution is not obvious; the spacing between the blind holes is preferably 30mm, and the spacing of the blind holes can be adjusted according to the concentration of the new plating solution.
  • the method of conducting the treatment in the step (2) is implemented by using one or a combination of PVD plating, chemical plating, and carbon coating treatment.
  • the carbon coating adhesive treatment includes immersing the substrate with blind holes in the carbon coating adhesive, and drying the substrate with blind holes through an ultrasonic vibration treatment to obtain a conductive substrate.
  • the conductive treatment includes coating the conductive liquid on the substrate with blind holes at least 3 times and drying at least 3 times each time. This step is to increase the conductivity of the substrate with blind holes.
  • the conductive substrate has small pores, when the conductive liquid enters the interior of the substrate through the holes in the substrate, due to the viscosity of the liquid, the conductive liquid cannot fully enter the interior of the substrate, resulting in uneven distribution of the conductive liquid inside the substrate, which will affect the substrate. Internal conductivity. And the ultrasonic vibration can make the conductive liquid get rid of the influence of the liquid viscosity, so that the conductive liquid can be evenly distributed inside the substrate, so that the internal plating of the substrate is no longer restricted by the unevenness of the internal conduction.
  • the injection rate of the new plating solution into the blind hole is 0.2-0.5m / min; the injection rate should not be too fast, otherwise the spraying effect of the new plating solution is obvious, which is not conducive to diffusion and will affect the substrate. In addition, the injection rate should not be too slow, otherwise the diffusion efficiency will be affected, and the rate should be 0.2-0.5m / min.
  • the incineration temperature of the incinerator is 400 ° C. and the time is 5 minutes.
  • the rate of specific surface area reduction is related to the incineration temperature and time. When the surface area reaches the limit, continued incineration will reduce the specific surface area, thus reducing Incineration temperature and shortening the incineration time can make the size of the specific surface area more controllable.
  • the incineration conditions are that the incineration temperature is 400 ° C and the time is 5 minutes.
  • the reducing gas is hydrogen, and the reduction reaction time is 15 minutes; the reducing gas may also be ammonia gas, and the reduction time is adjusted according to the reduction temperature.
  • the reduction temperature is 900 ° C
  • the reduction reaction time is 15 Minutes are appropriate; if the temperature is too high or the reduction reaction time is too long, the resulting three-dimensional porous metal will appear arched.
  • Injecting a plating solution into the substrate during the electroplating process can prevent the internal plating of the substrate from being restricted by the difference in the concentration of plating metal ions inside and outside the plating solution, and cause the lack of plating metal ions inside the substrate, thereby affecting the performance of the porous structure. consistency.
  • An ultrasonic vibrating rod is provided in the plating solution during electroplating.
  • the ultrasonic vibration can accelerate the exchange of the plating solution inside and outside the substrate, and promote the uniform distribution of metal ions.
  • Polylactic acid is a renewable plant resource in 3D printed materials. It is made from starch raw materials extracted from plants. It does not generate harmful gases when burned, and is not easily corroded by acidic substances during electroplating. It can be used at a temperature of 400 ° C. Was incinerated.
  • the injection rate should not be too fast, otherwise the spraying effect of the new plating solution is obvious, which is not conducive to diffusion and will affect the plating in the substrate. In addition, the injection rate should not be too slow, otherwise it will affect the diffusion efficiency.
  • the rate is 0.2- 0.5m / min is suitable.
  • the substrate is put into an incinerator for incineration, which can incinerate the conductive material and the conductive substrate, remove organic matter, and improve the flexibility of the plating layer.
  • the rate of reduction of the specific surface area of porous metals is related to the incineration temperature and time. When the surface area reaches the limit, continued incineration will reduce the specific surface area.
  • the incineration conditions are 400 ° C and 5 minutes.
  • the substrate is provided with at least one blind hole, and the depth of the blind hole is 1/2 of the thickness of the substrate to obtain a substrate with blind holes;
  • the substrate with blind holes is immersed in the conductive liquid coated carbon adhesive, and after ultrasonic vibration treatment, the conductive liquid is immersed at least 3 times and dried at least 3 times each time to obtain a conductive substrate;
  • the conductive substrate is immersed in a plating solution.
  • the plating solution includes nickel sulfate 60-70g / L, sodium hypophosphite 10-14g / L, sodium acetate 4-8g / L, boric acid 3-5g / L and chlorination.
  • Sodium 2-4g / L insert the ultrasonic vibrating rod into the plating solution, insert the injection needle matching the blind hole into the blind hole, and inject new plating solution into the blind hole, the volume concentration of the new plating solution is at least 1.5 times the volume concentration of the original plating solution, then start plating and start the ultrasonic vibration rod.
  • the current density at the beginning of the plating is the calculated current density.
  • the three-dimensional porous metal produced by using the 3D printing matrix has better physical properties than the three-dimensional porous metal produced by using the foam substrate.
  • the density deviation of the three-dimensional porous metal produced by using the 3D printed substrate is small, and the density of the three-dimensional porous metal produced by the foam substrate due to the periodic change of its pore diameter varies greatly; at the same time, the three-dimensional porous metal produced by using the 3D printed substrate
  • the physical structure is more stable, and the tensile strength and elongation are better than the three-dimensional porous metal produced by the foam matrix.
  • the larger the matrix size the more obvious the physical advantages of the 3D printed matrix over the foam matrix.
  • the 3D printed substrate is immersed in the conductive liquid coated carbon glue, and the conductive liquid is immersed at least 3 times, and each time is dried at least 3 times to obtain a conductive substrate;
  • the conductive substrate is immersed in a plating solution.
  • the plating solution includes nickel sulfate 60-70g / L, sodium hypophosphite 10-14g / L, sodium acetate 4-8g / L, boric acid 3-5g / L and chlorination. Sodium 2-4g / L, electroplating for 30 minutes to obtain a three-dimensional porous metal semi-finished product;
  • a 3D printed substrate with a specification of 95% porosity, an average pore diameter of 1.5 mm, a substrate thickness of 15 mm, and a substrate size of 30 mm ⁇ 30 mm was selected.
  • the experimental steps of this Comparative Example 2 are the same as those of Example 2, but in step (2) When the substrate is immersed in the conductive liquid coated carbon glue, an ultrasonic vibration rod is used to uniformly distribute the conductive liquid inside the substrate.
  • a 3D printed substrate with a porosity of 95%, an average pore diameter of 1.5 mm, a substrate thickness of 15 mm, and a substrate size of 30 mm ⁇ 30 mm was selected.
  • the experimental steps of this comparative example 3 are the same as those of Example 2, but in step (2) During the conductive treatment and the plating process in step (3), an ultrasonic vibration rod is inserted into the plating solution, so that the internal plating solution of the substrate can be effectively exchanged with the external plating solution.
  • a 3D printed substrate with a porosity of 95%, an average pore diameter of 1.5mm, a substrate thickness of 15mm, and a substrate size of 30mm ⁇ 30mm was selected.
  • the experimental steps of this comparative example 4 are the same as those of Example 2, but the steps of this comparative example (1 )
  • the printed substrate has blind holes with a diameter of 2-10mm and a pitch of 30mm, and in the plating process of step (3), the injection needle matched with the blind hole of 2mm is used to move the substrate at 0.3m / min.
  • the new plating solution is injected at a rate of at least 1.5 times the volume concentration of the original plating solution.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

本发明公开了一种孔径和物性无偏差的三维多孔金属材料的制备方法,包括用3D打印机,打印出多孔结构均匀一致的基体,基体上至少设置有1个盲孔,得到带盲孔基体;将带盲孔基体经过导电处理,得到导电基体;将导电基体浸没在电镀液中,将超声振动棒插入电镀液中,将与盲孔匹配的注液针插入盲孔内,往盲孔内注入新增电镀液,电镀完成后得到三维多孔金属半成品;将三维多孔金属半成品晾干后放入焚烧炉中焚烧除去导电基体,再将三维多孔金属半成品置于还原性气体中高温处理。本发明的有益效果是能使生产的泡沫基体孔径和面密度在误差范围内保持一致,同时最大限度的保持金属内部和外部镀层的一致性。

Description

一种孔径和物性无偏差的三维多孔金属材料的制备方法 技术领域
本发明涉及三维多孔金属行业,具体涉及到一种孔径和物性无偏差的三维多孔金属材料的制备方法。
背景技术
现有三维多孔金属的制备,一般是采用在泡沫基体上电镀金属的方式完成,而泡沫基体上孔径和密度的不一致,也造成了三维多空金属物性的不一致,从而影响了泡沫金属的面密度及孔径。如何制备孔径和密度一致的泡沫基体,成为了制造物性一致的三维多空金属首先需要解决的一个问题。
除了泡沫基体的孔径和密度外,电镀厚度是影响三维多孔金属物性一致性的另一个重要因素,而影响电镀厚度的一个重要因素是电镀方法。三维多空金属材料的制备一般采用连读镀的方式,连续镀适用于成批生产的线材和带材。连续镀生产的线材和带材由于受到电化学和几何等因素的制约,基体内外镀层厚度不均匀,影响了泡沫体性能的一致性。
文献CN103147100A公开了一种混杂多孔金属材料的制备方法,包括对多孔基体材料的导电化处理,预电镀多孔基体后再添加烧灼颗粒进行混合电镀,最后焚烧多孔基体和灼烧颗粒并还原得到多孔金属材料。该方法生产的多孔金属材料,物性受多孔基体的限制无法达到一致,同时镀层均匀性的问题也没有得到解决。
发明内容
本发明要解决的技术问题是提供一种孔径和物性无偏差的三维多孔金属材料的制备方法,能使生产的泡沫基体孔径和面密度在误差范围内保持一致,同时最大限度的保持金属内部和外部镀层的一致性。
本发明的内容包括以下步骤:
(1)用3D打印机,打印出多孔结构均匀一致的基体,基体上设置有至少1个盲孔,盲孔深度为基体厚度的1/2,得到带盲孔基体;使用3D打印技术,能够打印出孔径和面密度一致的多孔基体,使电镀出的多孔金属在孔径和面密度上能基本达到一致,从而使得使基体内部电镀不再受几何因素的制约。
经实验发现,基体从外向内延伸,电镀效率会逐渐减小,从而影响基体内外电镀层的厚度。在连续电镀中,因为基体厚度较薄,一般为1-3mm,电镀效率从外向内的衰减并不明显,因此连续电镀制备的材料内外镀层厚度区别不大;而挂镀制备的多孔金属材料,厚度一般大于8mm,甚至达到100mm,电镀效率从外向内的衰减较为明显,内部难以镀透。而盲孔的设置,正是为了在电镀过程中往基体内部注射电镀液,使基体内部电镀不再受电镀液的制约,造成 内部电镀层薄于外部电镀层,从而影响多孔结构性能的一致性。
当通过盲孔往基体内部注射电镀液时,注射的电镀液会在基体内部1/2处呈360度扩散,但扩散的影响范围是有限的,通常需要往多个均匀排布的盲孔内注射电镀液,才能完成对整个基体的均匀电镀。
(2)将带盲孔基体经过导电处理,得到导电基体;
(3)将导电基体浸没在电镀液中,将超声振动棒插入电镀液中,将与盲孔匹配的注液针插入盲孔内,往盲孔内注入新增电镀液,所述新增电镀液体积浓度至少为原电镀液体积浓度的1.5倍,然后开始电镀并启动超声振动棒;所述电镀液根据电镀不同的金属进行调节,电镀温度控制在45-60℃为宜,温度过高不仅会灼伤基体,还会影响基体内外电镀层的均匀性,因为电镀速率会随温度的升高而加快,当温度过高时,基体内部金属离子的消耗速率会大于补充速率,致使内外电镀层的不均匀性扩大;
在电镀过程中,基体内部金属离子的消耗是通过基体外部金属离子的进入而补充,金属离子通过孔隙进入基体内部时会不断被基体上的电荷吸引而消耗,若电镀速率过快或基体过厚,很多时候基体内部金属离子会出现不足的情况,使基体内部无法镀透,对多孔结构性能的一致性产生影响;通过在基体上设置直达基体中部的盲孔,往盲孔内注射电镀液,能够使基体内部金属离子得到补充,平衡基体内外沉积量;而超声振动的应用,则有利于基体内外电镀液的交换;所述新增电镀液体积浓度至少为原电镀液体积浓度的1.5倍,使新增电镀液有较明显的扩散效应,以弥补基体内外金属离子的浓度差。
开始电镀时的电流密度为计算电流密度,持续2-3分钟后,调节电流将电流密度调节为计算电流密度的1/3至1/2,电流调节完毕30分钟后,停止注入新增电镀液、关闭电镀电流并关闭超声振动棒,得到三维多孔金属半成品;电流密度ASF可根据需要电镀的厚度计算,公式如下:
电流密度(ASF)=电镀层厚度(um)/(电镀时间(min)×电镀效率×常数C)
其中常数C根据金属的不同而变化,如铜的C值为0.0202,镍的C值为0.0182,锡的C值为0.0456。在实际电镀前,需先确定电镀层厚度,计算出电流密度ASF,在电镀过程中,先预镀2-3分钟,预镀过程中保持电流密度为计算电流密度;预镀完成后,再将电流密度调节为计算电流密度的1/3至1/2,持续30分钟。其中,基体最外层电镀效率会因电镀金属的不同而有差异,且随着孔隙往基体内延伸,基体电镀效率会逐渐降低。
(4)将三维多孔金属半成品洗净后晾晒2-3天,放入焚烧炉中焚烧除去导电基体;将三维多孔金属半成品置于还原性气体中进行还原处理,还原反应温度为900℃,得到孔径和物性无偏差三维多孔的金属材料。三维多孔金属半成品需晾晒2-3天而不能直接放入焚烧炉中焚烧,因为电镀层刚被镀到基体上时尚未稳固,需要一段时间的稳固期。将基体放入焚烧炉 中焚烧,能够焚烧掉导电物质和导电基体,去除有机物以提高电镀层的柔韧性。因燃烧为氧化反应,因此燃烧完后还需经过还原处理,还原反应温度从710-950℃不等,当温度大于900℃时,还原反应效率不再增加,因此还原反应的温度以900℃为宜,最终得到孔径和物性无偏差三维多孔的金属材料。
理论上来说,即使用3D打印技术打印出孔径和面密度一致的多孔基体,但基体内外的金属沉积量还是无法完全达到一致,特别是在挂镀大规格多孔金属时。本发明目的在于减少其他因素,如基体内外导电性和基体内外金属离子浓度差,对基体内外金属沉积量的影响,使基体整体物性达到尽量一致,并使电镀层偏差保持在可接受范围内。
所述步骤(1)中3D打印机使用的打印材料为生物塑料聚乳酸,聚乳酸在3D打印材料中属于可再生植物资源,利用植物中提取的淀粉原料制成,非常环保,燃烧时不会产生有害气体,且不易被电镀时的酸性物质腐蚀;此外,聚乳酸熔点不高,为155-185℃,在400℃的温度中可被焚化。
所述步骤(1)中盲孔的直径为2-10mm,盲孔间的间距为30mm;盲孔的直径不宜过大,否则会影响多孔金属的物性,过小的话新增电镀液注入量则少,电镀液扩散效果不明显;盲孔间的间距以30mm为宜,盲孔间距可根据新增电镀液的浓度不同而进行调节。
所述步骤(2)中导电处理的方式为采用PVD电镀、化学镀、涂炭胶处理中的一种或以其组合的方式实施。
所述涂炭胶处理包括将带盲孔基体浸没在涂炭胶中,经过超声振动处理,将带盲孔基体烘干,得到导电基体。导电化处理包括在带盲孔基体上涂覆导电液至少3遍,每遍至少烘干3次,此步骤是为了增加带盲孔基体的导电性;
此外,因为导电基体孔隙较小,导电液在通过基体上的孔进入基体内部时,由于液体粘度的原因,导电液无法充分进入基体内部,造成导电液在基体内部分布不均匀,从而会影响基体内部的导电性。而超声振动能使导电液摆脱液体粘度的影响,使导电液能均匀的分布在基体内部,从而使基体内部电镀不再受内部导电不均匀的制约。
所述步骤(3)中往盲孔内注入新增电镀液的速率为0.2-0.5m/min;注液速率不宜过快,否则新增电镀液喷射效果明显,不利于扩散并会影响基体内的电镀;此外,注液速率也不宜过慢,否则会影响扩散效率,速率以0.2-0.5m/min为宜。
所述步骤(4)中焚烧炉的焚烧温度为400℃,时间为5分钟;比表面积减小的速度与焚烧温度和时间有关,当表面积达到极限后,继续焚烧会减小比表面积,因此降低焚烧温度和缩短焚烧时间,能使比表面积的大小更可控,焚烧条件以焚烧温度为400℃,时间为5分钟为宜。
所述步骤(4)中还原性气体为氢气,还原反应时间为15分钟;还原性气体还可以为氨 气,还原时间根据还原温度进行调节,当还原温度为900℃时,还原反应时间以15分钟为宜;若温度过高或还原反应时间过长,产生的三维多孔金属会出现拱起的现象。
本发明的有益效果是:
(1)使用3D打印技术,能够打印出孔径和面密度一致的多孔基体,使电镀出的多孔金属在孔径和面密度上能基本达到一致,从而使得使基体内部电镀不再受几何因素的制约。
(2)在电镀过程中往基体内部注射电镀液,能使基体内部电镀不再受电镀液内外电镀金属离子浓度差的制约,使基体内部发生电镀金属离子不足的情况,从而影响多孔结构性能的一致性。
(3)超声振动能使导电液摆脱液体粘度的影响,使导电液能均匀的分布在基体内部,从而使基体内部电镀电荷分布较为均匀。
(4)电镀时在电镀液中设置超声振动棒,超声振动能加快电镀液在基体内外的交换,对金属离子的均匀分布起促进作用。
(5)聚乳酸在3D打印材料中属于可再生植物资源,利用植物中提取的淀粉原料制成,燃烧时不会产生有害气体,不易被电镀时的酸性物质腐蚀,且可在400℃的温度中被焚化。
(6)注液速率不宜过快,否则新增电镀液喷射效果明显,不利于扩散并会影响基体内的电镀;此外,注液速率也不宜过慢,否则会影响扩散效率,速率以0.2-0.5m/min为宜。
(7)将基体放入焚烧炉中焚烧,能够焚烧掉导电物质和导电基体,去除有机物以提高电镀层的柔韧性。
(8)多孔金属的比表面积减小的速度与焚烧温度和时间有关,当表面积达到极限后,继续焚烧会减小比表面积,焚烧条件以焚烧温度为400℃,时间为5分钟为宜。
(9)当温度大于900℃时,还原反应效率不再增加,还原反应的温度以900℃为宜。
具体实施方式
实施例1:
为测试使用3D打印基体和泡沫基体对三维多孔金属物性的影响,现做使用两种不同基体关于三维多孔金属物性的对比实验。
3D打印基体
规格:孔隙率95%,平均孔径1.5mm,基体厚度15mm,基体尺寸30mm×30mm;
实验步骤:
(1)用3D打印机,打印出多孔结构均匀一致的基体,基体上至少设置有1个盲孔,盲孔深度为基体厚度的1/2,得到带盲孔基体;
(2)将带盲孔基体浸没在导电液涂炭胶中,经过超声振动处理,浸没导电液至少3遍,每遍至少烘干3次,得到导电基体;
(3)将导电基体浸没在电镀液中,电镀液包括硫酸镍60-70g/L,次亚磷酸钠10-14g/L,醋酸钠4-8g/L,硼酸3-5g/L和氯化钠2-4g/L,将超声振动棒插入电镀液中,将与盲孔匹配的注液针插入盲孔内,往盲孔内注入新增电镀液,所述新增电镀液体积浓度至少为原电镀液体积浓度的1.5倍,然后开始电镀并启动超声振动棒,开始电镀时的电流密度为计算电流密度,持续2-3分钟后,调节电流将电流密度调节为计算电流密度的1/3至1/2,电流调节完毕30分钟后,停止注入新增电镀液、关闭电镀电流并关闭超声振动棒,得到三维多孔金属半成品;
(4)晾晒2-3天后,将三维多孔金属半成品放入400℃的焚烧炉中焚烧5分钟除去导电基体,再将去除导电基体的三维多孔金属半成品置于氢气中进行还原反应,还原反应的温度为900℃,时间为15分钟,最后得到三维多孔金属成品,然后对三维多孔金属物性进行检测。对比例1:
泡沫基体
规格:孔隙率95-97%,平均孔径1.4-1.6mm,基体厚度15mm,基体尺寸30mm×30mm;
本对比例1的实验步骤与实施例1的实验步骤一致。
表1使用3D打印基体或泡沫基体对三维多孔金属物性的影响
Figure PCTCN2018118014-appb-000001
经实验表明,使用3D打印基体制造的三维多孔金属,物性上要优于使用泡沫基体制造的三维多孔金属。其中,使用3D打印基体制造的三维多孔金属面密度偏差较小,而泡沫基体由于自身孔径周期性的变化,产生的三维多孔金属面密度变化较大;同时,利用3D打印基体生产的三维多孔金属,物性结构更加稳定,在抗拉强度和延伸率上都要优于利用泡沫基体生产的三维多孔金属;此外,基体规格越大,3D打印基体对泡沫基体在物性上的优势会越明显。
实施例2:
为测试不同因素在电镀过程中,对基体内外电镀层均匀性的影响,对影响因素做相关对比试验。
基准试验
选用规格为孔隙率95%,平均孔径1.5mm,基体厚度15mm,基体尺寸30mm×30mm的3D打印基体;
基准试验的步骤为:
(1)用3D打印机,打印出上述规格且多孔结构均匀一致的基体,得到3D打印基体;
(2)将3D打印基体浸没在导电液涂炭胶中,浸没导电液至少3遍,每遍至少烘干3次,得到导电基体;
(3)将导电基体浸没在电镀液中,电镀液包括硫酸镍60-70g/L,次亚磷酸钠10-14g/L,醋酸钠4-8g/L,硼酸3-5g/L和氯化钠2-4g/L,电镀30分钟,得到三维多孔金属半成品;
(4)晾晒2-3天后,将三维多孔金属半成品放入400℃的焚烧炉中焚烧5分钟除去导电基体,再将去除导电基体的三维多孔金属半成品置于氢气中进行还原反应,还原反应的温度为900℃,时间为15分钟,最后得到三维多孔金属成品,然后对三维多孔金属物性进行检测。对比例2:
导电处理时使用超声振动棒
选用规格为孔隙率95%,平均孔径1.5mm,基体厚度15mm,基体尺寸30mm×30mm的3D打印基体;本对比例2的实验步骤与实施例2的实验步骤一致,但在步骤(2)中,基体浸没在导电液涂炭胶中时使用了超声振动棒,以使导电液均匀分布在基体内部。
对比例3:
电镀时使用超声振动棒
选用规格为孔隙率95%,平均孔径1.5mm,基体厚度15mm,基体尺寸30mm×30mm的3D打印基体;本对比例3的实验步骤与实施例2的实验步骤一致,但在步骤(2)的导电处理中和步骤(3)的电镀过程中,都将超声振动棒插入在电镀液中,使基体内部电镀液与外部电镀液能有效交换。
对比例4:
注入新增电镀液
选用规格为孔隙率95%,平均孔径1.5mm,基体厚度15mm,基体尺寸30mm×30mm的3D打印基体;本对比例4的实验步骤与实施例2的实验步骤一致,但本对比例步骤(1)打印出的基体上带有直径为2-10mm,间距为30mm的盲孔,并且在步骤(3)的电镀过程中利用与2mm盲孔匹配的注液针往基体内以0.3m/min的速率注入新增电镀液,所述新增电镀液体积浓度至少为原电镀液体积浓度的1.5倍。
对比例5:
导电和电镀时均使用超声震动棒+注入新增电镀液
选用规格为孔隙率95%,平均孔径1.5mm,基体厚度15mm,基体尺寸30mm×30mm的3D打印基体;本对比例5的实验步骤与实施例2的实验步骤一致,但步骤(1)打印出的基体上带有直径为2-10mm,间距为30mm的盲孔,并且在步骤(2)导电处理和步骤(3)电镀时均使用超声震动棒,电镀时往基体内以0.3m/min的速率注入与对比例4中相同的新增电镀 液。
表2电镀中不同因素对基体内外镍层厚度的影响
Figure PCTCN2018118014-appb-000002
经实验表明,当基体过厚时,基体内部镍离子不足对基体内外镍层的均匀性影响最大。往基体内部注入电镀液对镍层的均匀排布有促进作用,但当基体内外镍离子充足时,限制镍层均匀性的最大因素就变成了基体内外电荷排列的不均匀;将基体导电处理时,在导电液中使用超声振动棒,能使导电液充分浸入基体内部,使基体上的电荷相对排布均匀从而促进基体内外镍层的一致性;此外,电镀时在电镀液中设置超声振动棒,超声振动能加快电镀液内外的交换,对镍层均匀分布有一定有益效果;最后,同时使用上述三种方法,能最大限度的使三维多孔金属内外镍层在可接受偏差范围内保持一致,得到面密度和物性相对一致的多孔金属。

Claims (8)

  1. 一种孔径和物性无偏差的三维多孔金属材料的制备方法,其特征在于:包括以下步骤:
    (1)用3D打印机,打印出多孔结构均匀一致的基体,基体上至少设置有1个盲孔,盲孔深度为基体厚度的1/2,得到带盲孔基体;
    (2)将带盲孔基体经过导电处理,得到导电基体;
    (3)将导电基体浸没在电镀液中,将超声振动棒插入电镀液中,将与盲孔匹配的注液针插入盲孔内,往盲孔内注入新增电镀液,所述新增电镀液体积浓度至少为原电镀液体积浓度的1.5倍,然后开始电镀并启动超声振动棒,开始电镀时的电流密度为计算电流密度,持续2-3分钟后,调节电流将电流密度调节为计算电流密度的1/3至1/2,电流调节完毕30分钟后,停止注入新增电镀液、关闭电镀电流并关闭超声振动棒,得到三维多孔金属半成品;
    (4)将三维多孔金属半成品洗净后晾晒2-3天,放入焚烧炉中焚烧除去导电基体;将三维多孔金属半成品置于还原性气体中进行还原处理,还原反应温度为900℃,得到孔径和物性无偏差三维多孔的金属材料。
  2. 如权利要求1所述的孔径和物性无偏差的三维多孔金属材料的制备方法,其特征在于:所述步骤(1)中3D打印机使用的打印材料为生物塑料聚乳酸。
  3. 如权利要求1所述的孔径和物性无偏差的三维多孔金属材料的制备方法,其特征在于:所述步骤(1)中盲孔的直径为2-10mm,盲孔间的间距为30mm。
  4. 如权利要求1所述的孔径和物性无偏差的三维多孔金属材料的制备方法,其特征在于:所述步骤(2)中导电处理的方式为采用PVD电镀、化学镀、涂炭胶处理中的一种或以组合的方式实施。
  5. 如权利要求4所述的孔径和物性无偏差的三维多孔金属材料的制备方法,其特征在于:所述涂炭胶处理包括将带盲孔基体浸没在涂炭胶中,经过超声振动处理,将带盲孔基体烘干,得到导电基体。
  6. 如权利要求1所述的孔径和物性无偏差的三维多孔金属材料的制备方法,其特征在于:所述步骤(3)中往盲孔内注入新增电镀液的速率为0.2-0.5m/min。
  7. 如权利要求1所述的孔径和物性无偏差的三维多孔金属材料的制备方法,其特征在于:所述步骤(4)中焚烧炉的焚烧温度为400℃,时间为5分钟。
  8. 如权利要求1所述的孔径和物性无偏差的三维多孔金属材料的制备方法,其特征在于:所述步骤(4)中还原性气体为氢气,还原反应时间为15分钟。
PCT/CN2018/118014 2018-06-07 2018-11-28 一种孔径和物性无偏差的三维多孔金属材料的制备方法 WO2019233052A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810580338.7 2018-06-07
CN201810580338.7A CN108660489B (zh) 2018-06-07 2018-06-07 一种孔径和物性无偏差的三维多孔金属材料的制备方法

Publications (1)

Publication Number Publication Date
WO2019233052A1 true WO2019233052A1 (zh) 2019-12-12

Family

ID=63775652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118014 WO2019233052A1 (zh) 2018-06-07 2018-11-28 一种孔径和物性无偏差的三维多孔金属材料的制备方法

Country Status (2)

Country Link
CN (1) CN108660489B (zh)
WO (1) WO2019233052A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108660489B (zh) * 2018-06-07 2020-04-24 常德力元新材料有限责任公司 一种孔径和物性无偏差的三维多孔金属材料的制备方法
CN111575748A (zh) * 2020-05-07 2020-08-25 岭南师范学院 一种基于3d打印快速制模的电铸成型方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176829A (ja) * 2004-12-22 2006-07-06 Sumitomo Electric Ind Ltd 金属多孔体およびその製造方法
CN102534283A (zh) * 2010-12-10 2012-07-04 北京有色金属研究总院 一种多元合金泡沫材料及其制备方法
CN103147100A (zh) * 2013-04-02 2013-06-12 中南大学 一种混杂多孔金属材料的制备方法
CN105177338A (zh) * 2015-08-14 2015-12-23 华北电力大学 一种尺度可调的纳米多孔金属材料的制备方法
CN106680901A (zh) * 2015-11-11 2017-05-17 台湾创新材料股份有限公司 三维有序多孔微结构制造方法
CN106756186A (zh) * 2015-11-25 2017-05-31 常德力元新材料有限责任公司 多孔泡沫铁镍铬合金材料的制备方法
CN108660489A (zh) * 2018-06-07 2018-10-16 常德力元新材料有限责任公司 一种孔径和物性无偏差的三维多孔金属材料的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101298686B (zh) * 2007-04-30 2010-09-29 比亚迪股份有限公司 一种泡沫金属的制备方法
CN102485965A (zh) * 2010-12-06 2012-06-06 中国科学院微电子研究所 一种对深盲孔进行电镀的方法
CN102094224A (zh) * 2011-03-03 2011-06-15 常德力元新材料有限责任公司 多孔金属材料制备方法
CN203007457U (zh) * 2012-11-30 2013-06-19 东莞市富默克化工有限公司 一种pcb电镀槽
EP2971261A4 (en) * 2013-03-15 2017-05-31 Modumetal, Inc. Electrodeposited compositions and nanolaminated alloys for articles prepared by additive manufacturing processes
CN106011962A (zh) * 2016-07-13 2016-10-12 中南大学 一种超声外场作用下的tsv电镀方法及系统
CN106793576B (zh) * 2016-12-27 2019-04-02 江门崇达电路技术有限公司 一种pcb中盲孔的填孔方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006176829A (ja) * 2004-12-22 2006-07-06 Sumitomo Electric Ind Ltd 金属多孔体およびその製造方法
CN102534283A (zh) * 2010-12-10 2012-07-04 北京有色金属研究总院 一种多元合金泡沫材料及其制备方法
CN103147100A (zh) * 2013-04-02 2013-06-12 中南大学 一种混杂多孔金属材料的制备方法
CN105177338A (zh) * 2015-08-14 2015-12-23 华北电力大学 一种尺度可调的纳米多孔金属材料的制备方法
CN106680901A (zh) * 2015-11-11 2017-05-17 台湾创新材料股份有限公司 三维有序多孔微结构制造方法
CN106756186A (zh) * 2015-11-25 2017-05-31 常德力元新材料有限责任公司 多孔泡沫铁镍铬合金材料的制备方法
CN108660489A (zh) * 2018-06-07 2018-10-16 常德力元新材料有限责任公司 一种孔径和物性无偏差的三维多孔金属材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUN, TONG ET AL.: "Preparation and Performance of Two Nickel Nature Porous Carriers of Catalyst", NONFERROUS METALS, vol. 57, no. 4, 25 December 2005 (2005-12-25), pages 31 - 34, ISSN: 2095-1744 *

Also Published As

Publication number Publication date
CN108660489A (zh) 2018-10-16
CN108660489B (zh) 2020-04-24

Similar Documents

Publication Publication Date Title
US2819962A (en) Method of producing sintered plates for galvanic cells
US8980438B2 (en) Porous metal foil and production method therefor
CN101649477B (zh) 一种金属碳气凝胶复合材料的制备方法
WO2019233052A1 (zh) 一种孔径和物性无偏差的三维多孔金属材料的制备方法
US20130323602A1 (en) Composite metal foil and production method therefor
JP6055378B2 (ja) 金属多孔体及びその製造方法
CH634881A5 (de) Verfahren zum elektrolytischen abscheiden von metallen.
FR2529582A1 (fr) Procede perfectionne de revetement electrolytique de surfaces non metalliques
CN105339528A (zh) 金属多孔体、金属多孔体的制造方法和燃料电池
US9631282B2 (en) Method for depositing a nickel-metal layer
CN114883560B (zh) 一种三维集流体/Zn/Zn-E复合负极及其制备和在水系锌离子电池中的应用
CN102698615A (zh) 一种制备钯膜及其复合膜的方法
Li et al. Electroless deposition of nickel on the surface of silicon carbide/aluminum composites in alkaline bath
CN108425135B (zh) 电解铜箔的生产设备及其电流调整控制装置
CN108712830B (zh) 一种电路板的无钯化学镀铜工艺
CN112701436B (zh) 带有盲孔和通孔的陶瓷介质滤波器的均匀电镀增厚方法
JP2003277967A (ja) 水素発生用陰極の製造方法
RU2312159C2 (ru) Способ получения высокопористого хромаля
US3592744A (en) Method of preventing rack plating in continuous plating cycle for nonconductive articles
CN109877927B (zh) 一种大密度各向导电异性金属化木材的制备方法
US3551209A (en) Formation of skeletal metal solid electrolyte fuel cell electrodes
CN217895149U (zh) 一种石英坩埚及石墨烯制造装置
CN116329501B (zh) 一种铝电解电容器用中高压阳极铝箔熔融预锡化渗透处理的方法
CN214937901U (zh) 一种新型电镀槽
TWM543878U (zh) 電解銅箔的生產設備及其電流調整控制裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921872

Country of ref document: EP

Kind code of ref document: A1