RU2312159C2 - Способ получения высокопористого хромаля - Google Patents

Способ получения высокопористого хромаля Download PDF

Info

Publication number
RU2312159C2
RU2312159C2 RU2006100784/02A RU2006100784A RU2312159C2 RU 2312159 C2 RU2312159 C2 RU 2312159C2 RU 2006100784/02 A RU2006100784/02 A RU 2006100784/02A RU 2006100784 A RU2006100784 A RU 2006100784A RU 2312159 C2 RU2312159 C2 RU 2312159C2
Authority
RU
Russia
Prior art keywords
sintering
suspension
iron
deposition
metal
Prior art date
Application number
RU2006100784/02A
Other languages
English (en)
Other versions
RU2006100784A (ru
Inventor
Владимир Никитович Анциферов (RU)
Владимир Никитович Анциферов
Владимир Дмитриевич Храмцов (RU)
Владимир Дмитриевич Храмцов
Григорий Владимирович Башкирцев (RU)
Григорий Владимирович Башкирцев
Original Assignee
Департамент промышленности и науки Пермской области
Федеральное государственное научное учреждение "Научный центр порошкового материаловедения"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Департамент промышленности и науки Пермской области, Федеральное государственное научное учреждение "Научный центр порошкового материаловедения" filed Critical Департамент промышленности и науки Пермской области
Priority to RU2006100784/02A priority Critical patent/RU2312159C2/ru
Publication of RU2006100784A publication Critical patent/RU2006100784A/ru
Application granted granted Critical
Publication of RU2312159C2 publication Critical patent/RU2312159C2/ru

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

Изобретение относится к порошковой металлургии, в частности к получению высокопористых проницаемых ячеистых материалов. Может применяться для изготовления фильтров, катализаторов, конструкционных материалов. Готовят суспензию смеси порошков хрома, алюминия и железа в водном растворе поливинилового спирта. Суспензию наносят на подложку из пористого полимерного материала с образованием заготовки, сушат и подвергают термической обработке при температуре не ниже 160°С. На заготовке создают электропроводный слой. Заготовку помещают между токонепроводящими экранами и проводят электрохимическое осаждение железа посредством реверсирования тока. Для удаления поливинилового спирта и подложки осуществляют термодеструкцию. Заготовку спекают в течение времени τc≥1,08(θd)2/D, где τc - время спекания, ч; 1,08 - константа; θ - относительная плотность получаемого высокопористого сплава; d - средний диаметр ячеек пористого полимерного материала, мм; D - величина коэффициента диффузии наименее подвижного компонента порошковой смеси в гальванически осажденном металле при температуре спекания, см2/с. Полученный материал имеет высокую пористость, однородность структуры и является однородным по площади и глубине. 4 з.п. ф-лы, 1 ил., 1 табл.

Description

Изобретение относится к металлургии, в частности к способам получения высокопористых проницаемых ячеистых материалов (ВПЯМ), а именно хромаля (сплава хрома с алюминием и железом), имеющего специфические, присущие данному сплаву свойства, позволяющие использовать его в качестве фильтров, катализаторов, конструкционных материалов и т.д.
В настоящее время существует, по крайней мере, пять принципиально различных способов получения ВПЯМ с пористостью 80-99% с использованием для этого в качестве первоосновы - подложки из пенополиуретана (ППУ): литейный, газофазный, химический, гальванический, суспензионный (шликерный) с применением суспензий дисперсных металлических порошков. Учитывая, что предлагаемое изобретение касается гальванического способа, то следует пояснить следующее.
Сущность гальванического способа получения металлических ВПЯМ заключается в нанесении на всю поверхность перемычек пенополиуретана металлического слоя и в последующей термической обработке.
Термообработка состоит из двух основных стадий:
а) удаление органических составляющих композиции при температурах деструкции органики;
б) спекание, если это необходимо, при температурах Тсп=0,7-0,9 Тпл, где Тсп - температура спекания по шкале Кельвина, Тпл - температура плавления спекаемого материала.
При гальваническом способе получения ВПЯМ производится электролитическое переосаждение металла с компактных металлических анодов на подготовленные пластины ППУ с заранее созданным на них электропроводным слоем. Гальванический способ получения ВПЯМ является одним из самых экономичных и производительных. Поэтому он наиболее распространен. К достоинствам способа следует отнести также возможность получения пластин ВПЯМ большой площади, при толщине, зависящей от диаметра ячеек ППУ. К недостаткам способа следует отнести невозможность прямого получения сплавов заданного состава, неоднородность толщины покрытия как по толщине листа ВПЯМ (во внутренних частях плотность меньше, чем в наружных), так и по площади (на периферических частях плотность больше, чем в центральных областях пластин).
Известен способ получения пористого ячеистого материала (Авторское свидетельство СССР №1366294, кл. В22F 5/00, от 1986 г.), включающий нанесение тонкого слоя металла на подложку из пористого полимерного материала с образованием заготовки, осаждение на нее электрохимическим методом другого металла путем циклического чередования процессов осаждения и растворения другого металла, при этом реверсирование тока осуществляют при отношении плотности тока осаждения к плотности тока растворения как 0,3÷0,5 и при отношении длительности процесса осаждения к длительности процесса растворения как 5÷7.
К достоинствам известного способа можно отнести то, что применение реверса тока снижает неоднородность плотности получаемого пористого материала по глубине получаемой пластины. Однако в то же время, даже при плотном прилегании заготовки к стенкам гальванической ванны, получается повышенная плотность по краям образующейся металлической пластины и, как следствие, неравномерность распределения пор по площади и объему пластины.
Наиболее близким к предлагаемому изобретению является способ получения высокопористого сплава (Патент РФ №2002580, кл. В22F 3/10, от 1992 г.), включающий приготовление суспензии смеси порошков, содержащей хром, алюминий, железо, в водном растворе органического вещества - поливинилового спирта, нанесение суспензии на подложку из пористого полимерного материала с образованием заготовки, сушку заготовки, термическую обработку ее при температуре +160÷180°С, нанесение на нее методом электрохимического осаждения другого металла, последующую термодеструкцию для удаления органического вещества и спекание.
Недостаток выбранного прототипа заключается в том, что распределение плотности гальванического осадка и всего образовавшегося сплава по площади и по глубине пластины неоднородно. Кроме того, известным способом не обеспечивается получение качественного сплава с крупным размером ячеек.
Технический результат, достигаемый предлагаемым изобретением, заключается в увеличении однородности получаемого сплава хромаля по плотности и составу, а также по площади и глубине при одновременном обеспечении получения сплава с повышенной пористостью.
Указанный технический результат достигается предлагаемым способом получения высокопористого хромаля путем приготовления суспензии смеси порошков, содержащей хром, алюминий, железо, в водном растворе органического вещества - поливинилового спирта, нанесения указанной суспензии на подложку из пористого полимерного материала с образованием заготовки, сушки полученной заготовки, ее последующей термической обработки при температуре не ниже +160°С, создание химическим осаждением электропроводного слоя, нанесения на нее методом электрохимического осаждения другого металла - железа, последующей термодеструкции для удаления органического вещества и спекания, причем в качестве другого металла используют металл, образующий при спекании с порошковой смесью сплав заданного состава, при этом новым является то, что перед нанесением на заготовку другого металла - железа последнюю помещают между токонепроводящими экранами, а нанесение на заготовку методом электрохимического осаждения другого металла производят посредством реверсирования тока, причем время спекания составляет не менее величины, рассчитанной по формуле:
τс=≥1,08(θd)2/D, где
τс - время спекания-гомогенизации, ч;
1,08 - константа;
θ - относительная плотность получаемого высокопористого сплава;
d - средний диаметр ячеек пористого полимерного материала, мм;
D - величина коэффициента диффузии наименее подвижного компонента порошковой смеси заготовки в гальванически осажденном металле при температуре спекания-гомогенизации, см2/c.
В качестве подложки из пористого полимерного материала используют подложку из пенополиуретана.
Массовое соотношение металлического порошка в суспензии и другого металла, наносимого на заготовку методом электрохимического осаждения, составляет 1:1.
В качестве токонепроводящих экранов используют пластиковые экраны П-образной формы.
Реверсирование тока осуществляют при отношении плотности тока осаждения к плотности тока растворения как 0,5÷0,75 и при отношении длительности процесса осаждения к длительности процесса растворения как 6÷7,5.
Благодаря тому, что перед нанесением другого металла на заготовку последнюю помещают между токонепроводящими экранами (которые могут быть выполнены в виде обычных пластин П-образной формы), достигается предотвращение излишнего подвода другого металла на заготовку, а значит, исключается неравномерная плотность его по краям образующегося материала.
Благодаря тому, что нанесение на заготовку методом электрохимического осаждения другого металла - железа производят посредством реверсирования тока, достигается увеличение однородности сплава по плотности и составу.
Благодаря тому, что время спекания составляет не менее величины, рассчитанной по определенной формуле, обеспечивается завершение процесса гомогенизации состава сплава во всем объеме, а значит, получаемый сплав будет характеризоваться однородностью и гомогенностью по глубине и по площади.
Воздействие на заготовку реверсивным током в присутствии токонепроводящих экранов обеспечивает получение, даже на высокопористой подложке (средний диаметр ячеек в 2-5 раза больше, чем у прототипа), качественного однородного сплава хромаля по объему.
Благодаря тому, что в качестве подложки из пористого полимерного материала используют подложку из пенополиуретана, достигается образование пор заданного размера диаметра.
Благодаря тому, что массовое соотношение металлического порошка в суспензии и другого металла, наносимого на заготовку методом электрохимического осаждения, составляет 1:1, обеспечиваются оптимальные показатели по увеличению однородности сплава по площади и глубине.
Благодаря тому, что в качестве токонепроводящих экранов используют пластиковые пластины (в оптимальном варианте П-образной формы), устанавливаемые без зазора к торцевым поверхностям заготовки и перекрывающие края заготовки, обеспечиваются оптимальные условия для электрохимического осаждения и исключается неравномерная плотность осаждения металла по краям, т.к. указанные экраны обеспечивают своеобразную защиту как торцов заготовки, так и частично и верхних и нижних участков заготовки, примыкающих к торцам.
Благодаря тому, что реверсирование тока осуществляют при отношении плотности тока осаждения к плотности тока растворения как 0,5÷0,75 и при отношении длительности процесса осаждения к длительности процесса растворения как 6÷7,5, обеспечивается образование более однородного гальванического осадка по площади и глубине образующейся пластины. Указанные параметры являются оптимальными, предлагаемый способ осуществим и при других их значениях.
При осуществлении предлагаемого способа выполняются следующие операции в нижеприведенной последовательности:
- готовят суспензию из смеси металлических порошков, содержащей хром, алюминий, железо, в водном растворе органического вещества - поливинилового спирта;
- наносят заданное количество указанной суспензии на подложку из пористого полимерного материала, например из пенополиуретана;
- сушат полученную заготовку;
- высушенную заготовку термически обрабатывают при температуре не ниже +160°С;
- активируют заготовку,
- затем химическим осаждением создают на ней электропроводный слой;
- помещают заготовку между токонепроводящими экранами, в качестве которых используют или обычные плоские экраны или П-образные экраны, из полимерного материала, например из оргстекла, таким образом, чтобы они соприкасались с торцами заготовки;
- соотносят взвешиванием массу порошковой смеси в суспензии и другого металла - железа, наносимого на заготовку методом электрохимического осаждения так, чтобы это отношение составляло 1:1;
- наносят на заготовку методом электрохимического осаждения другой металл - железо посредством реверсирования тока, причем при оптимальном варианте отношение плотности тока осаждения к плотности тока растворения должно составлять как 0,5÷0,75 и при отношении длительности процесса осаждения к длительности процесса растворения как 6÷7,5;
- удаляют подложку термодеструкцией;
- рассчитывают время спекания по формуле τс=≥1,08(θd)2/D,
- и производят спекание другого металла - железа с металлическим порошком - хромом, в результате чего получают сплав хромаль заданного состава.
Предлагаемый способ иллюстрируется чертежом, где показана схема расположения экранов относительно заготовки.
Заявляемый способ был опробован в экспериментальном производстве.
Пример получения высокопористого хромаля.
Первоначально готовят суспензию заданной относительной плотности 0,06-0,083 из смеси металлических порошков в 7%-ном водном растворе поливинилового спирта до содержания в заготовке указанной порошковой смеси по массе, составляющей 1/2 готового изделия, при следующем соотношении компонентов в порошковой смеси, масс.%:
Cr - 40
Al - 12
Fe - остальное.
Наносят на органическую ячеистую подложку, в качестве которой используют пенополиуретан со средними диаметрами ячеек 1,2 - 4,5, заданное количество суспензии, количество которой контролируют взвешиванием подложки при нанесении суспензии. Получают заготовку 1 для последующей обработки. Далее полученную заготовку 1 сушат в термошкафу при температуре +160°С (можно и при несколько большей температуре, лишь бы она не опускалась ниже +160°С) в течение 30 мин (возможно производить сушку и в течение часа). При этом производится перевод пленки поливинилового спирта из водорастворимой формы в нерастворимую. Высушенную заготовку 1 охлаждают при комнатной температуре. Затем заготовку 1 погружают на 15 мин при комнатной температуре в раствор активирования, содержащий:
PdCl2 - 0,5 г/л
HCI - 5,0 мл/л.
Затем активированной заготовке 1 придают электропроводность. Эта операция нужна для создания на заготовке 1 электропроводного подслоя толщиной около 1 мкм. Затем производят электрохимическое осаждение железного покрытия из электролита, следующего состава:
FeCl2-4H2O, г/л - 250
HCI, мл/л - 3,
при этом массовое соотношение металлического порошка в суспензии и другого металла - железа, наносимого на заготовку 1 методом электрохимического осаждения, составляет 1:1.
Далее заготовку 1 (согласно чертежу) помещают между токонепроводящими экранами 2, например, П-образными, таким образом, чтобы указанные экраны 2, выполненные, например, из оргстекла, касались торцов 3 заготовки. Но при этом П-образные края экранов 2 как бы перекрывают ("охватывают") края заготовки 1, а полочки 4 указанного экрана отступают от ее поверхности ориентировочно на 1,5-2,5 см.
Осаждение производят при габаритной плотности тока осаждения, равной 1 А/дм2, с циклическим чередованием процессов осаждения и растворения металлического покрытия путем реверсирования тока при отношении плотности тока осаждения к плотности тока растворения как 0,5÷0,75 и при отношении длительности процесса осаждения к длительности процесса растворения как 6÷7,5.
Далее заготовку 1 помещают в водородную печь.
Удаление органического вещества и подложки проводят путем постепенного в течение 3 ч нагрева указанной заготовки в печи с водородной атмосферой до 650°С, с выдержкой при этой температуре в течение 30 минут.
Спекание сплава проводят путем постепенного в течение 3 ч нагрева заготовки в вакуумной печи до температуры 1250°С, с выдержкой при этой температуре в течение времени спекания, соответствующего рассчитанному по формуле τс=≥1,08(θd)2/D, где τc - время спекания-гомогенизации, ч; 1,08 - константа; θ - относительная плотность получаемого высокопористого сплава; d - средний диаметр ячеек пористого полимерного материала, мм; D - величина коэффициента диффузии наименее подвижного компонента порошковой смеси заготовки в гальванически осажденном металле при температуре спекания-гомогенизации, см2/с (значение величин коэффициентов диффузии легирующих элементов из порошкового слоя в гальванически осажденный слой матричного металла рассчитывают по справочным данным).
Данные о гомогенности высокопористого хромаля, полученного предложенным способом, приведены в таблице.
Проанализировав приведенные в таблице результаты изготовления данным заявляемым способом высокопористого хромаля, можно сделать вывод, что положительный результат, т.е. гомогенность сплава, достигается только тогда, когда фактическое время спекания соответствует расчетному, как в примерах 1 и 3, и при использовании токонепроводящих экранов (в примере 2 способа не было выдержано фактическое время спекания, что не обеспечило получение качественного хромаля).
Кроме того, появилась возможность получения качественного сплава с повышенной пористостью (средний диаметр ячеек 4,5 мм, а в прототипе 0,85 мм), что позволит расширить область практического применения такого хромаля.
Таблица
Данные о гомогенности высокопористого хромаля (Cr 20%, Al 6%, Fe - основа), полученного предлагаемым способом, коэффициент диффузии Cr в Fe при 1250°С DCr-Fe,=2,14*10-10 см2/с; К=1,08
№ примера Относительная плотность, θ Средний диаметр ячеек d, мм Температура спекания Tcn, °C Коэффициент диффузии Cr в Fe i DCr-Ni, см2 Фактическое время спекания Т, час Расчетное время спекания τ1, час Гомогенность сплава
1 0,083 1,2 1250 2,14*10-10 (γ) 1,5 1,39 +
2 0,06 4,5 1250 2,14*10-10 (γ) 3 10,2 -
5,08*10-8 (α)
3 0,06 4,5 1250 2,14*10-10(γ) 10,5 10,2 +

Claims (5)

1. Способ получения высокопористого хромаля, включающий приготовление суспензии металлического порошка в водном растворе поливинилового спирта, нанесение суспензии на подложку из пористого полимерного материала с образованием заготовки, сушку, термическую обработку при температуре не ниже 160°С, создание электропроводного слоя, электрохимическое осаждение другого металла, термодеструкцию для удаления поливинилового спирта и подложки и спекание, отличающийся тем, что при приготовлении суспензии в качестве металлического порошка используют смесь порошков, содержащую хром, алюминий, железо, перед электрохимическим осаждением заготовку помещают между токонепроводящими экранами, электрохимическое осаждение проводят посредством реверсирования тока, при этом в качестве другого металла осаждают железо, а спекание осуществляют в течение времени, рассчитанного по формуле
τс≥1,08(θd)2/D,
где τc - время спекания, ч;
1,08 - константа;
θ - относительная плотность получаемого высокопористого сплава;
d - средний диаметр ячеек пористого полимерного материала, мм;
D - величина коэффициента диффузии наименее подвижного компонента порошковой смеси в гальванически осажденном металле при температуре спекания, см2/с.
2. Способ по п.1, отличающийся тем, что в качестве пористого полимерного материала используют пенополиуретан.
3. Способ по п.1, отличающийся тем, что на заготовку осаждают такое количество железа, чтобы массовое соотношение между ним и количеством металлического порошка в суспензии составляло 1:1.
4. Способ по п.1, отличающийся тем, что в качестве токонепроводящих экранов используют пластиковые экраны П-образной формы.
5. Способ по п.1, отличающийся тем, что реверсирование тока осуществляют при отношении плотности тока осаждения к плотности тока растворения 0,5-0,75 и при отношении длительности процесса осаждения к длительности процесса растворения 6-7,5.
RU2006100784/02A 2006-01-10 2006-01-10 Способ получения высокопористого хромаля RU2312159C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2006100784/02A RU2312159C2 (ru) 2006-01-10 2006-01-10 Способ получения высокопористого хромаля

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2006100784/02A RU2312159C2 (ru) 2006-01-10 2006-01-10 Способ получения высокопористого хромаля

Publications (2)

Publication Number Publication Date
RU2006100784A RU2006100784A (ru) 2007-07-20
RU2312159C2 true RU2312159C2 (ru) 2007-12-10

Family

ID=38430859

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006100784/02A RU2312159C2 (ru) 2006-01-10 2006-01-10 Способ получения высокопористого хромаля

Country Status (1)

Country Link
RU (1) RU2312159C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2464127C1 (ru) * 2011-03-30 2012-10-20 Владимир Никитович Анциферов Способ получения высокопористого ячеистого материала на основе хромаля
RU2601744C1 (ru) * 2015-11-10 2016-11-10 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" Комбинированный способ получения судовых высоковязких топлив и нефтяного кокса

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2464127C1 (ru) * 2011-03-30 2012-10-20 Владимир Никитович Анциферов Способ получения высокопористого ячеистого материала на основе хромаля
RU2601744C1 (ru) * 2015-11-10 2016-11-10 федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский горный университет" Комбинированный способ получения судовых высоковязких топлив и нефтяного кокса

Also Published As

Publication number Publication date
RU2006100784A (ru) 2007-07-20

Similar Documents

Publication Publication Date Title
US3694325A (en) Process for uniformly electroforming intricate three-dimensional substrates
KR101818085B1 (ko) 고내식성을 갖는 금속 다공체 및 그의 제조 방법
EP0392738A1 (en) Micro- and nano-porous metallic structures
Rebbecchi et al. Template-based fabrication of nanoporous metals
KR102032265B1 (ko) 리튬이차전지 음극 집전체용 다공성 구리의 제조 방법 및 이에 따라 제조된 다공성 구리 및 리튬이차전지 음극 집전체
JPH0681187A (ja) 金属発泡体の製造方法および得られた金属発泡体
RU2311470C2 (ru) Способ получения высокопористого никеля и его сплавов
Liu et al. Preparation and corresponding structure of nickel foam
KR960004786B1 (ko) 니켈피복물이 큰 확산깊이를 갖도록 전기 용착된 냉간 압연 강철 스트립 및 그 제조방법
RU2312159C2 (ru) Способ получения высокопористого хромаля
Schneider et al. Anodizing—The pore makes the difference
KR20020032542A (ko) 디프드로잉 또는 아이어닝 가공 가능한 고급 냉연스트립의 제조 방법 및 바람직하게는 원통 용기, 특히전지용 용기의 제조를 위한 냉연 스트립
Brown et al. Preparation of microporous nickel electrodeposits using a polymer matrix
CN106064241A (zh) 一种内径可控泡沫金属的制备方法
Liao et al. Mechanical properties of three-dimensional ordered macroporous Ni foam
JPH02254108A (ja) タンタル焼結体及びその製造方法
Elshenawy et al. Influence of electric current intensity on the performance of electroformed copper liner for shaped charge application
JPH10195689A (ja) 微細孔明き金属箔の製造方法
JPH08225866A (ja) 三次元網状構造金属多孔体およびその製造方法
Mishra et al. Corrosion behavior and degradation mechanism of micro‐extruded 3D printed ordered pore topological Fe scaffolds
CN100368574C (zh) 一种高孔率泡沫镍基合金及其制备方法
CN110184635A (zh) 一种在镁合金表面电镀铜的方法
KR101183608B1 (ko) 철 폼 및 그 제조방법
Chen et al. Influence of processing on surface morphology and specific surface area for the nickel foam made by electrodeposition
CN113557583B (zh) 一种电极结构体及其制备方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20110111