WO2019232813A1 - 一种整合式的液冷散热系统 - Google Patents

一种整合式的液冷散热系统 Download PDF

Info

Publication number
WO2019232813A1
WO2019232813A1 PCT/CN2018/091105 CN2018091105W WO2019232813A1 WO 2019232813 A1 WO2019232813 A1 WO 2019232813A1 CN 2018091105 W CN2018091105 W CN 2018091105W WO 2019232813 A1 WO2019232813 A1 WO 2019232813A1
Authority
WO
WIPO (PCT)
Prior art keywords
water tank
heat dissipation
heat
heat sink
integrated liquid
Prior art date
Application number
PCT/CN2018/091105
Other languages
English (en)
French (fr)
Inventor
肖启能
Original Assignee
东莞昂湃实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞昂湃实业有限公司 filed Critical 东莞昂湃实业有限公司
Publication of WO2019232813A1 publication Critical patent/WO2019232813A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20272Accessories for moving fluid, for expanding fluid, for connecting fluid conduits, for distributing fluid, for removing gas or for preventing leakage, e.g. pumps, tanks or manifolds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20218Modifications to facilitate cooling, ventilating, or heating using a liquid coolant without phase change in electronic enclosures
    • H05K7/20263Heat dissipaters releasing heat from coolant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0233Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels
    • F28D1/024Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels with an air driving element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05375Assemblies of conduits connected to common headers, e.g. core type radiators with particular pattern of flow, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0028Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for cooling heat generating elements, e.g. for cooling electronic components or electric devices
    • F28D2021/0031Radiators for recooling a coolant of cooling systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/08Fluid driving means, e.g. pumps, fans

Definitions

  • the present invention relates to a liquid-cooled heat dissipation system, and in particular, to an integrated liquid-cooled heat dissipation system applied to electronic equipment.
  • the subsequent liquid flows through the heat absorbing device again, and reciprocates continuously and continuously to transfer heat from the heating chip to the environment.
  • the fin radiator can be cooled by natural air or forced cooling by fans.
  • the cooling liquid can be deionized water, purified water mixed with antifreeze, or other liquids and mixtures (such as tetrafluoroethane R134a).
  • the technical problem to be solved by the present invention is to provide a comprehensive solution to the defects of the prior art liquid cooling system. Integrated liquid cooling system.
  • An integrated liquid-cooled heat dissipation system including a heat dissipation device, a pumping device, a water tank, and a heat absorption device, which are integrated and penetrated through the integration, and the heat dissipation
  • the device body is provided with the pumping device, wherein the water tank is integrally provided on the heat dissipation device, and a heat absorption device is further provided on the water tank.
  • the water tank is integrally disposed at the middle or one end or both ends of the cooling pipe of the heat sink.
  • the water tank has a certain volume for liquid storage or turnover, and the water tank is internally separated by at least two sections.
  • the pumping device includes a pump casing, an impeller, a motor, and a pump cover member, and the pumping device is locked and sealed with the water tank through a sealing device.
  • the heat absorption device is a metal piece with high thermal conductivity: it is sealed and sealed on the water tank by a sealing device, or is integrally welded and sealed to the water tank, or a heat absorption device is provided inside the water tank, Or the internal structure of the water tank constitutes the heat absorption device.
  • the sealing device is an elastic rubber-based sealing ring, an elastic rubber-based gasket, a gel-like filling sealing material, and the like.
  • N22 heat absorbing devices may be connected to and penetrate the water tank, and the water tank may be connected in series and connected in parallel to N2
  • the two heat dissipation devices and the pumping device are arranged on the heat dissipation device body.
  • the overall structure of the water tank includes an L-shape, a U-shape or an arc shape.
  • An integrated liquid-cooled heat dissipation system of the present invention is integrally provided on the heat dissipation device through the water tank, and a heat absorption device scheme design is also provided on the water tank, as opposed to a split design It saves the space occupied by the equipment, and is more convenient to install and use. After the water tank is partitioned, the water circulation process of the cooling liquid is sealed well, the service life is long, and no liquid leakage occurs.
  • the pumping device is integrated.
  • the installation on the heat dissipation device also improves the efficiency of the heat dissipation and pumping device itself.
  • the application of high-heat electronic equipment is more effective, and it can also dissipate heat from multiple heat source devices. At the same time, according to different equipment requirements, the customized heat dissipation requirements of different electronic equipment can be better applied.
  • FIG. 1-a is a schematic structural diagram of Solution 1 of the present invention.
  • FIG. 1-b is a schematic structural diagram of a solution two of the present invention.
  • FIG. 2-a is an exploded view of FIG. 1-a
  • FIG. 2-b is an exploded view of FIG. 1-b;
  • FIG. 3-a is a schematic and sectional waterway diagram of FIG. 1-a;
  • FIG. 3-al is a partially enlarged view of FIG. 3-a
  • FIG. 3-b is a schematic and sectional waterway diagram of FIG. 1-b;
  • FIG. 3-bl is a partial enlarged view of the end of the heat absorption device of FIG. 3-b;
  • FIG. 3-b2 is a partial enlarged view of the pumping device end of FIG. 3-b;
  • FIG. 4-a is a schematic diagram of a welding manner a of a water tank and a heat sink of the present invention
  • FIG. 4-b is a schematic view of a welding manner b of a water tank and a heat sink of the present invention.
  • FIG. 4-c is a schematic diagram of a welding manner c of a water tank and a heat sink of the present invention.
  • FIG. 5 is a schematic view of a locking manner of a water tank and a heat sink of the present invention.
  • FIG. 6-a is a schematic view of a combination mode a of a heat absorption device and a water tank of the present invention
  • FIG. 6-b is a schematic diagram of the combination mode b of the heat absorption device and the water tank of the present invention.
  • FIG. 6-c is a schematic diagram of a combination manner c of a heat absorption device and a water tank according to the present invention.
  • FIG. 6-d is a schematic diagram d of the combined manner of the heat absorption device and the water tank of the present invention.
  • FIG. 7-a is a schematic structural diagram of solution three of the integrated liquid cooling heat dissipation system of the present invention.
  • FIG. 7-b is a schematic cross-sectional waterway diagram of FIG. 7-a;
  • FIG. 8-a is a schematic diagram of the fourth structure of the integrated liquid cooling system of the present invention.
  • FIG. 8-b is a schematic cross-sectional waterway diagram of FIG. 8-a;
  • FIG. 9-a is a schematic perspective view of the fifth structure of the integrated liquid cooling system of the present invention.
  • FIG. 9-b is a schematic plan view of FIG. 9-a;
  • FIG. 9-c is a schematic view of the waterway along A-A section in FIG. 9-b;
  • FIG. 10-a is a schematic perspective view of the sixth structure of the solution of the integrated liquid cooling system of the present invention.
  • FIG. 10-b is a schematic plan view of FIG. 9-a;
  • FIG. 10-c is a schematic view of the waterway along A-A section in FIG. 9-b;
  • FIG. 10-cl is a partially enlarged view of one end of FIG. 10-c;
  • FIG. 10-c2 is a partially enlarged view of the other end of FIG. 10-c;
  • FIG. 11-a is a schematic perspective view of the seventh structure of the solution of the integrated liquid cooling system of the present invention.
  • FIG. 11-b is a schematic perspective view of the reverse surface of FIG. 11-a;
  • FIG. 11-c is a schematic view of the waterway along A-A section in FIG. 11-a;
  • FIG. 11-d is a schematic view of the waterway along the B-B section in FIG. 11-a.
  • FIG. 1-a is a schematic structural diagram of the first solution of the present invention
  • FIG. 1-b is a schematic structural diagram of the second solution of the present invention
  • the liquid-cooled heat dissipation system includes a water tank 1, a pumping device 2, a heat dissipation device 3, and a heat absorption device 4, which are integrated and penetrated.
  • the heat dissipation device 3 is provided with the pumping device 2 and the water tank 1 in one body
  • the heat sink 3 is connected to one end of the heat sink 3, and a heat sink 4 is provided on the water tank 1.
  • the difference between the two solutions in FIG. 1-a and FIG. 1-b is that the pumping device 2 is disposed at a different position from the heat dissipating device 3.
  • the pumping device 2 in the solution 1 is one of the cooling pipes connected in a body
  • the water tank 1 is welded to one end of the heat dissipating device; specifically, as shown in Fig. 2-a, the pumping device 2 includes a pump casing 21, an impeller 22, a motor 23, and a pump cover member 24, and the pumping device 2 passes through a sealing device. 5 and the heat sink 3 are locked and sealed by screws.
  • the heat absorption device 4 is fixed and sealed by a sealing device 5 and then screwed together.
  • the inner wall of the perforated structure can also be used as the pump casing of the pumping device, thereby saving the cost of the pumping device.
  • the entire pumping device is installed in the perforated structure and penetrates.
  • FIG. 2-b is an exploded view of FIG. 1-b.
  • the pumping device 2 is disposed at one end of the heat dissipation device 3, the water tank 1 is disposed at the other end of the heat dissipation device 3, and the pumping device 2 is the same. It includes a pump casing 21, an impeller 22, a motor 23, and a pump cover member 24. The pumping device 2 is locked and sealed by a sealing device 5 and the heat sink 3 by screws.
  • FIG. 3-a is a partial enlarged view of FIG. 3-a.
  • the cooling liquid flowing out of the upper part of the heat sink 3 enters the area A from the water outlet (1), and then flows to the water inlet (2) of the pumping device 2, and enters the water outlet (3) through the pressure of the pumping device 2.
  • Zone B enters the upper half of the heat sink 3 through the water inlet (4), passes through the heat sink 3 and enters the water tank C through the water outlet (5), and then enters the water inlet (6) of the heat sink 4
  • the water outlet (7) flows out to the D area, and then returns to the upper half of the heat sink through the water inlet (8) to enter the next cycle.
  • FIG. 3-bl and FIG. 3-b2 are partial enlarged views of the end of the heat absorption device and the pumping device of FIG. 3-b; see FIG. 3-b, FIG. 3-bl, and FIG. 3-b2
  • the cooling liquid flowing from the left side of the upper part of the heat sink 3 enters the area A from the water outlet (1), and then flows to the water inlet (2) of the pumping device 2, and the pressure flows out of the water outlet (3) through the pumping device 2.
  • the integrated welding and manufacturing method of the water tank 1 and the heat sink 3 includes direct welding by two kinds of raw material interfaces through special equipment or welding through a third-party solder medium.
  • Fig. 4-a is a schematic diagram of the welding method a of the water tank and the heat sink of the present invention.
  • the water tank 1 has a recessed structure 101, and a corresponding portion of the heat sink 3 has a protruding portion 301 and the The cavity structure 101 coincides with each other, and the water tank and the heat dissipation device can be made integrally by welding on the contact surface;
  • FIG. 4-b is a schematic view of the welding method b of the water tank and the heat sink according to the present invention; the body and the heat sink are radiated by the outer peripheral surface 102 at the edge of the water tank 1 and the inner peripheral surface 302 corresponding to the edge of the heat sink 3
  • the device is made in one piece;
  • FIG. 4-c is a schematic diagram of the welding method c of the water tank and the heat sink according to the present invention.
  • a water collecting tank is provided at the edge, and an inner peripheral surface 303 is provided at the outer edge of the water collecting tank.
  • the water tank 1 has a corresponding outer peripheral surface 103, which is made by plugging together and welding the two.
  • FIG. 5 is a schematic diagram of a locking manner of a water tank and a heat sink of the present invention.
  • the water tank 1 is fixedly sealed by a seal ring and a screw lock;
  • FIG. 6-a is a schematic view of the combination mode a of the heat absorption device and the water tank of the present invention, and the heat absorption device 4 can be fixed to the water tank 1 by screwing; Schematic diagram of mode b, the outer periphery of the heat absorption device 4 is coated with a solder medium, and a corresponding circle of solder medium is also coated on the water tank 1, and the heat absorption device 4 and the water tank 1 can be integrally welded by the solder medium; refer to FIG. 6- c.
  • the water tank 1 is provided with a metal member having high thermal conductivity inside, and is fixed on the inner bottom surface of the water tank 1 by locking, or is integrally welded to the inner bottom surface of the water tank to form a heat dissipation device; see FIG. 6-d, which is the present invention
  • FIG. 6-d which is the present invention
  • FIG. 6-d A schematic diagram d of the combined manner of the heat absorption device and the water tank.
  • the heat absorption device 4 is a native structure inside the water tank 1, that is, the heat absorption structure with the water tank 1 is integrated in the water tank 1 through mechanical processing, growth, or CNC machine tools.
  • FIG. 7-a is a schematic structural diagram of solution three of the integrated liquid cooling heat dissipation system of the present invention.
  • the pumping device is integrally disposed between the cooling pipes of the heat dissipation device, the water tank is L-shaped, and the heat absorption device is disposed in the water tank.
  • the L-shaped inner side is provided with two perpendicular to each other; of course, it is also feasible that the heat absorption device is provided outside the L-shaped water tank according to the actual situation.
  • FIG. 7-b is a schematic cross-sectional water path diagram of FIG. 7-a.
  • the cooling liquid flowing out of the left side of the upper half of the heat sink 3 enters the area A from the water outlet (1), and then flows to the pumping device.
  • the water inlet (2) of 2 flows out of the water outlet (3) through the pressure of the pumping device 2 into zone B, enters the right side of the upper half of the heat sink through the cooling pipe (4), and enters through the water outlet (5) after cooling.
  • the water tank obtains the space in area C, and then enters the heat absorption device 4-1 and the heat absorption device 4-2 into the water inlet (6-1) (6-2), and then absorbs the heat from the water outlet (7-1) (7-2) ) Flow out to Zone D, enter the water inlet (8) in the lower half of the heat sink, and then return to the upper half of the heat sink 3 in the U-shaped waterway, and enter the next cycle.
  • FIG. 8-a is a schematic structural diagram of the fourth solution of the integrated liquid-cooled heat dissipation system of the present invention.
  • three heat absorption devices are provided, and the water tank is also made into a U shape, which is provided on three inner sides of the water tank U.
  • Figure 8-b is a schematic cross-sectional water path diagram of Figure 8-a. The cooling liquid flowing from the left side of the upper part of the heat sink 3 enters the area A from the water outlet (1), and then flows to the water inlet of the pumping device.
  • FIG. 9-a is a perspective view of the fifth structure of the integrated liquid cooling heat dissipation system of the present invention.
  • the pumping device 2 and the water tank 1 are both disposed between the cooling pipes of the heat dissipation device 3, and are superimposed on Together, note:
  • the pumping unit is not directly connected to the water tank, as two separate parts. They are separately connected to the heat sink cooling pipes.
  • Fig. 9-b is a schematic plan view of Fig. 9-a
  • Fig. 9-c is a schematic view of the water path along AA section in Fig. 9-b.
  • the cooling liquid flowing out of the upper part of the heat sink 1 enters area A from (1), and then flows again.
  • FIG. 10-a is a schematic perspective view of the sixth structure of the integrated liquid-cooled heat dissipation system solution of the present invention.
  • the water tank 1 has two heat dissipating devices disposed on both sides of the heat dissipating device.
  • the water tank 1 is also provided with a heat absorbing device 4 respectively; a pumping device is provided between the cooling pipes of the heat radiating device.
  • FIG. 10-c is a schematic view of the waterway along the AA section in FIG. 10-b
  • FIG. 10-cl and FIG. 10-c2 are schematic enlarged views of the partial waterway at both ends of FIG. 10-c, and the upper half of the heat dissipation device 3 in the figure
  • the cooling liquid flowing out of the left side of the part enters the A area from the water outlet (1), and then flows to the water inlet (2) of the pumping device, and then flows out of the water outlet (3) through the pressure of the pumping device, enters the B area, and passes through the water inlet (4).
  • FIG. 11-a is a schematic perspective view of the seventh structure of the integrated liquid cooling heat dissipation system solution of the present invention.
  • the heat dissipation device 3 has an arc shape, and the two ends are respectively connected to the pumping device and the water tank to form a circular ring shape.
  • This structure constitutes that the pumping device and the water tank are respectively disposed between the cooling pipes of the heat dissipation device, and the heat absorption device 4 is disposed on one side of the water tank 1;
  • FIG. 11-b is a schematic perspective view of the reverse side of FIG. 11-a Figure 11-c is along Figure 11-a A-A section water channel schematic diagram, Fig.
  • 11-d is a schematic view of the water channel along section BB in Fig. 11-a;
  • AA section section shows the cooling liquid flowing out of the left side of the heat sink 3 from the water outlet (1) into area A, and then Enter the water inlet (2) of the pumping device, and exit the water outlet (3) through the pumping device by applying 2 pressure.
  • Enter area B (4) then enter the right side of the heat sink, and enter the left side of the heat sink (5 in the BB section).
  • the power for cooling liquid circulation is provided by the pumping device 2, the integrated through-connection of the water tank 1 and the power system, and the structure of the integrated water tank, power system, and heat dissipation device Design
  • the processing methods include but are not limited to welding, casting, CNC milling machine processing or 3D printing molding
  • the pumping device can be a centrifugal pump, an axial flow pump and a mixed flow pump
  • the heat dissipation device is the same as the design of the water tank, or it can be For large-area heat dissipation, that is, multiple small heat sinks are combined into a large heat sink to accelerate the heat dissipation speed.
  • the connection method of the heat sink and the water tank may be welding, adhesive connection, etc., and the heat sink fins of the heat sink may be waves. Band or sheet shape.
  • An integrated liquid-cooled heat dissipation system of the present invention is integrally provided on the heat dissipation device through the water tank, and a heat absorption device scheme design is also provided on the water tank, as opposed to a split design. It saves the space occupied by the equipment, and is more convenient to install and use. After the water tank is partitioned, the cooling water flow circulation process has a good sealing effect, long service life, and no leakage of product liquid.
  • the pumping device is integrated.
  • the installation on the heat dissipation device also improves the efficiency of the heat dissipation and pumping device itself.
  • the application of high-heat electronic equipment is more effective, and it can also dissipate heat from multiple heat source devices. At the same time, according to different equipment requirements, customized heat dissipation requirements for different electronic equipment can be better applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Geometry (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本申请公开了一种整合式的液冷散热系统,包括散热装置,泵送装置,水箱和吸热装置,散热装置本体上一体式设置有泵送装置,水箱一体式设置在散热装置上,使得冷却液的循环流程密封效果好,不会发生冷却液的泄露,同时也提高了散热装置和泵送装置的效率,节省了设备的占地空间。此外,本申请针对不同设备对吸热装置进行设计,能满足不同电子设备的定制散热需求,具有较好的实用性。

Description

说明书 发明名称:一种整合式的液冷散热系统 技术领域
[0001] 本发明涉及一种液冷散热系统, 尤其涉及一种应用到电子设备的整合式的液冷 散热系统。
[0002]
背景技术
[0003] 目前, 随着高端电子产品的热通量不断提高, 传统的铝挤散热器, 热管散热器 已无法满足高效的散热需求, 液冷散热技术逐渐成为电子散热领域的新宠儿。 现有常用的液冷产品主要包括吸热装置、 泵、 鳍片散热器和连接上述组件的管 道。 吸热装置紧贴热源(即电子芯片, 如 CPU), 在泵驱动下的液体流经冷板时吸 收电子器件的热量, 而后进入鳍片散热器中将热量释放到外部环境中去, 被冷 却后的液体再次流经吸热装置, 循环往复、 连续不断地把热量从发热芯片传递 到环境中。 鳍片散热器可采用自然风冷或风扇强制冷却, 冷却液体可采用去离 子水、 掺加防冻液的纯净水、 或者其它液体及混合物(如四氟乙烷 R134a)。
发明概述
技术问题
[0004] 对于现有的液冷散热器, 由于采用管道连接各个组件, 连接口位置发生液体泄 漏的风险较高, 且各组件布置分散, 结构不够紧凑, 不能最大程度的利用有限 的散热空间。 因此, 对于热源散热量较大、 安全系数要求较高且布置空间有限 的电子设备的散热, 传统的分散式或半集成式整合式的液冷散热系统都存在不 适用性, 开发出散热效率高、 结构紧凑且装配简便的整合式的整合式的液冷散 热系统成为一种必然的技术趋势。
[0005]
问题的解决方案
技术解决方案
[0006] 本发明要解决的技术问题在于, 针对现有技术的液冷系统的缺陷, 提供一种整 合式的液冷散热系统。
[0007] 本发明解决其技术问题所采用的技术方案是: 一种整合式的液冷散热系统, 包 括散热装置, 泵送装置, 水箱, 吸热装置, 其通过一体整合并贯通, 所述散热 装置本体上设置有所述泵送装置, 其特征在于: 所述水箱一体式设置于所述散 热装置上, 且在所述水箱上还设置有吸热装置。
[0008] 所述水箱一体式设置于所述散热装置冷却管的中间或者一端或者两端。
[0009] 所述水箱具备一定的容积用于液体存储或周转, 其内部分隔至少两个区间。
[0010] 其一体式设置制成工艺由所述水箱原材和所述散热装置原材通过专用设备直接 焊接, 或通过第三方焊料介质焊接, 或者所述水箱和所述散热装置通过密封装 置锁固并密封。
[0011] 所述泵送装置包括泵壳、 叶轮、 马达及泵盖部件, 所述泵送装置通过密封装置 与所述水箱锁固并密封。
[0012] 所述吸热装置为具备高导热性能的金属件: 通过密封装置锁合密封在所述水箱 上, 或一体焊接于所述水箱上并密封, 或在水箱内部设置有吸热装置, 或者水 箱内部原生结构构成吸热装置。
[0013] 所述密封装置为弹性胶类密封圈、 弹性胶类密封垫、 胶状填充密封材料等。
[0014] 所述水箱上可设置连接并贯通 N22个所述吸热装置, 所述水箱可串接、 并接 N2
2个所述散热装置,及散热装置本体上设置有所述泵送装置。
[0015] 所述水箱的整体结构包括 L型, U型或者圆弧形状。
发明的有益效果
有益效果
[0016] 本发明的一种整合式的液冷散热系统通过所述水箱一体式设置于所述散热装置 上, 且在所述水箱上还设置有吸热装置方案设计, 相对于分体式的设计, 节省 了设备的占地空间, 安装使用更加方便, 通过将水箱进行分区空间设置后, 使 得冷却液的水路循环流程密封效果好, 使用寿命长, 不会产生液体泄露的现象 , 泵送装置一体式设置在散热装置上, 也使散热与泵送装置本身的效率提高, 应用高热的电子设备效果更好, 也可以对多个热源装置进行散热。 同时根据不 同的设备要求, 可以更好的适用不同电子设备的定制散热要求。 对附图的简要说明
附图说明
[0017] 为了更清楚地说明本发明实施例的技术方案, 下面将对实施例描述中所需要使 用的附图作简单的介绍, 显而易见, 下面描述中的附图仅仅是本发明的一些实 施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以 根据这些附图获得其他的附图, 附图中:
[0018] 图 1-a是本发明的方案一的结构示意图;
[0019] 图 1-b是本发明的方案二的结构示意图;
[0020] 图 2-a是图 1-a的爆炸图;
[0021] 图 2-b是图 1-b的爆炸图;
[0022] 图 3-a是图 1-a的示意图及剖面水路图;
[0023] 图 3-al是图 3-a的局部放大图;
[0024] 图 3-b是图 1-b的示意图及剖面水路图;
[0025] 图 3-bl是图 3-b的吸热装置端局部放大图;
[0026] 图 3-b2是图 3-b的泵送装置端局部放大图;
[0027] 图 4-a是本发明的水箱与散热装置焊接方式 a的示意图;
[0028] 图 4-b是本发明的水箱与散热装置焊接方式 b的示意图;
[0029] 图 4-c是本发明的水箱与散热装置焊接方式 c的示意图;
[0030] 图 5是本发明的水箱与散热装置的锁合方式示意图;
[0031] 图 6-a是本发明的吸热装置与水箱结合方式 a示意图;
[0032] 图 6-b是本发明的吸热装置与水箱结合方式 b示意图;
[0033] 图 6-c是本发明的吸热装置与水箱结合方式 c示意图;
[0034] 图 6-d是本发明的吸热装置与水箱结合方式 d示意图;
[0035] 图 7-a是本发明的整合式的液冷散热系统方案三结构示意图;
[0036] 图 7-b是图 7-a的剖面水路示意图;
[0037] 图 8-a是本发明的整合式的液冷散热系统方案四结构示意图;
[0038] 图 8-b是图 8-a的剖面水路示意图;
[0039] 图 9-a是本发明的整合式的液冷散热系统方案五结构立体示意图; [0040] 图 9-b是图 9-a的平面示意图;
[0041] 图 9-c是图 9-b中沿着 A-A剖面水路示意图;
[0042] 图 10-a是本发明的整合式的液冷散热系统方案六结构立体示意图;
[0043] 图 10-b是图 9-a的平面示意图;
[0044] 图 10-c是图 9-b中沿着 A- A剖面水路示意图;
[0045] 图 10-cl是图图 10-c的一端局部放大图;
[0046] 图 10-c2是图图 10-c的另一端局部放大图;
[0047] 图 11-a是本发明的整合式的液冷散热系统方案七结构立体示意图;
[0048] 图 11-b是图 11-a的反面立体示意图;
[0049] 图 11-c是图图 11-a中沿着 A- A剖面水路示意图;
[0050] 图 11-d是图图 11-a中沿着 B-B剖面水路示意图。
发明实施例
本发明的实施方式
[0051] 为了使本发明的目的、 技术方案及优点更加清楚明白, 下文将要描述的各种实 施例将要参考相应的附图, 这些附图构成了实施例的一部分, 其中描述了实现 本发明可能采用的各种实施例。 应明白, 还可使用其他的实施例, 或者对本文 列举的实施例进行结构和功能上的修改, 而不会脱离本发明的范围和实质。
[0052] 参照图 1-a和图 1-b所示, 图 1-a是本发明的方案一的结构示意图; 图 1-b是本发明 的方案二的结构示意图; 本发明的整合式的液冷散热系统, 包括水箱 1、 泵送装 置 2、 散热装置 3、 吸热装置 4, 其通过一体整合并贯通, 散热装置 3本体上设置 有所述泵送装置 2, 所述水箱 1一体式连接设置于所述散热装置 3的一端, 且在所 述水箱 1上设置有吸热装置 4。
[0053] 图 1-a与图 1-b中两个方案的区别是泵送装置 2设置在散热装置 3的位置不同, 方 案一中的泵送装置 2—体式连接在散热装置的冷却管之间, 水箱 1焊接在散热装 置的一端; 具体的见图 2-a, 所述泵送装置 2包括泵壳 21、 叶轮 22、 马达 23及泵盖 部件 24, 所述泵送装置 2通过密封装置 5与所述散热装置 3通过螺丝锁固并密封。 吸热装置 4通过密封装置 5再有螺丝锁合固定密封。 需要说明的是: 孔槽结构的 内壁也可以作为泵送装置的泵壳, 从而节省泵送装置的成本, 当然也可以为完 整的泵送装置安装到孔槽结构内并贯通。
[0054] 具体的见图 2-b是图 1-b爆炸图, 此方案中, 泵送装置 2设置在散热装置 3的一端 , 水箱 1设置在散热装置 3的另一端, 泵送装置 2同样的包括泵壳 21、 叶轮 22、 马 达 23及泵盖部件 24, 所述泵送装置 2通过密封装置 5与所述散热装置 3通过螺丝锁 固并密封。
[0055] 进一步地, 方案一中, 冷却液的水路见图 3-a, 上方为结构草图, 下方为草图 中沿着 A-A剖面的水路图, 图 3-al是图 3-a的局部放大图; 具体为散热装置 3上半 部流出的冷却液体从出水口 (1) 进入 A区, 再流至泵送装置 2进水口 (2) , 经 由泵送装置 2施压流出出水口 (3) 进入 B区,经入水口 (4) 进入散热装置 3上半部 , 通过散热装置 3后由出水口 (5) 进入水箱 C区, 再进入吸热装置 4的进水口 (6 ) , 吸热后从出水口 (7) 流出至 D区, 经入水口(8)再回到散热装置上半部, 从 而进入下一轮循环。
[0056] 方案二中, 图 3-bl和图 3-b2是图 3-b的吸热装置端和泵送装置端的局部放大图; 见图 3-b、 图 3-bl和图 3-b2, 散热装置 3上半部左侧流出的冷却液体从出水口 (1 ) 进入 A区, 再流至泵送装置 2的进水口 (2) , 经由泵送装置 2施压流出出水口 (3) 进入 B区,经入水口 (4) 进入散热装置上半部右侧, 通过散热装置 3后进入 出口 (5) 水箱的 C区, 再进入吸热装置 4进水口 (6) , 吸热后从出水口 (7) 流 出至 D区, 进入散热装置下半部(8), 再 U型水路回到散热装置上半部, 从而进入 下一轮循环。
[0057] 所述水箱 1与所述散热装置 3的一体焊接制成方式包括由二种原材界面对接后通 过专用设备直接焊接或通过第三方焊料介质焊接。 见图 4-a是本发明的水箱与散 热装置焊接方式 a的示意图, 此时, 所述水箱 1上具有一凹洞结构 101, 在散热装 置 3的对应部分具有一凸出部 301与所述凹洞结构 101相吻合, 通过在接触面焊接 即可将水箱和散热装置一体制成;
[0058] 图 4-b是本发明的水箱与散热装置焊接方式 b的示意图; 通过在水箱 1边缘处的 外周面 102与散热装置 3对应的边缘内周面 302—体焊接, 将水箱和散热装置一体 制成;
[0059] 图 4-c是本发明的水箱与散热装置焊接方式 c的示意图, 在散热装置 3上冷却管外 缘设置有集水箱, 并在集水箱外缘设置有边缘内周面 303 , 在水箱 1上具有对应 的外周面 103 , 通过两者插接在一起并焊接制成。
[0060] 图 5是本发明的水箱与散热装置的锁合方式示意图, 水箱 1通过密封圈和螺丝锁 合固定密封;
[0061] 图 6-a是本发明的吸热装置与水箱结合方式 a示意图, 吸热装置 4可通过螺丝锁合 固定在水箱 1上; 图 6-b是本发明的吸热装置与水箱结合方式 b示意图, 吸热装置 4 的外缘周面涂有焊料介质, 对应的在水箱 1上也涂有一圈焊料介质, 通过焊料介 质可使吸热装置 4和水箱 1一体焊接; 参照图 6-c, 水箱 1内部设置有具备高导热性 能的金属件, 通过锁合固定在所述水箱 1内部底面, 或一体焊接于所述水箱内部 底面上形成散热装置; 见图 6-d, 是本发明的吸热装置与水箱结合方式 d示意图, 吸热装置 4为水箱 1内部的原生结构, 即在水箱 1内通过机械加工, 生长或者数控 机床加工的具有与水箱 1一体的吸热结构。
[0062] 图 7-a是本发明的整合式的液冷散热系统方案三结构示意图, 此时泵送装置一 体设置在散热装置的冷却管之间, 水箱成 L型, 吸热装置设置在水箱 L型内侧, 并且设置有相互垂直的两个; 当然吸热装置根据实际设置在 L型水箱的外侧也是 可行的。
[0063] 图 7-b是图 7-a的剖面水路示意图, 这种方案中, 散热装置 3上半部左侧流出的冷 却液体从出水口 (1) 进入 A区, 再流至泵送装置 2的进水口 (2) , 经由泵送装 置 2施压流出出水口 (3) 进入 B区,经冷却管 (4) 进入散热装置上半部右侧, 通 过散热后通过出水口 (5) 进入水箱得 C区空间, 再均匀进入吸热装置 4-1、 吸热 装置 4-2进水口 (6-1) (6-2) , 吸热后从出水口 (7-1) (7-2) 流出至 D区, 进 入散热装置下半部入水口(8), 再 U型水路回到散热装置 3上半部, 从而进入下一 轮循环。
[0064] 图 8-a是本发明的整合式的液冷散热系统方案四结构示意图, 这个方案中吸热 装置设置有三个, 在水箱也制成 U型, 在水箱 U的三个内侧面设置有三个吸热装 置, 图 8-b是图 8-a的剖面水路示意图, 散热装置 3上半部左侧流出的冷却液体从 出水口 (1) 进入 A区, 再流至泵送装置进水口 (2) , 经由泵送装置施压流出出 水口 (3) 进入 B区,经入水口 (4) 进入散热装置上半部右侧, 通过散热后进入 ( 5) 水箱 C区, 再均匀进入吸热装置 4-1、 吸热装置 4-2、 吸热装置 4-3进水口 (6-1 ) (6-2) (6-3) , 吸热后从出水口 (7-1) (7-2) (7-3) 流出至 D区, 进入散 热装置下半部(8), 再 U型水路回到散热装置上半部, 从而进入下一轮循环。
[0065] 图 9-a是本发明的整合式的液冷散热系统方案五结构立体示意图, 此时泵送装 置 2与水箱 1均设置在所述散热装置 3的冷却管之间, 并且叠加在一起, 注意: 泵 送装置与水箱不直接联接, 为分开二件。 他们分别与散热装置冷却管联接。 图 9- b是图 9-a的平面示意图, 图 9-c是图 9-b中沿着 A-A剖面水路示意图, 散热装置 1上 半部流出的冷却液体从 (1) 进入 A区, 再流至泵送装置进水口 (2) , 经由泵送 装置施压流出出水口 (3) 进入 B区,经 (4) 进入散热装置 2上半部, 通过散热 U 形水路通过散热装置 2下半部进入 (5) 水箱 C区, 再进入吸热装置进水口 (6)
, 吸热后从出水口 (7) 流出至 D区, 进入散热装置 1下半部入水口(8), 再 U型水 路回到散热装置 1上半部, 从而进入下一轮循环。
[0066] 图 10-a是本发明的整合式的液冷散热系统方案六结构立体示意图, 这个方案中 , 所述水箱 1有两个分别设置在散热装置的两侧, 同样的在两侧的水箱 1上也分 别设置有吸热装置 4; 泵送装置设置在散热装置的冷却管之间, 图 10-b是图 10-a 的平面示意图。
[0067] 图 10-c是图 10-b中沿着 A-A剖面水路示意图, 图图 10-cl和图 10-c2是图 10-c的两 端局部放大水路示意图, 图中散热装置 3上半部左侧流出的冷却液体从水出口 ( 1) 进入 A区, 再流至泵送装置进水口 (2) , 经由泵送装置施压流出出水口 (3 ) 进入 B区,经入水口 (4) 进入散热装置上半部右侧, 通过散热后进入水箱 1经过 (5) 进入 C区, 再进入吸热装置 1进水口 (6) , 吸热后从出水口 (7) 流出至 D 区, 进入散热装置下半部(8), 经散热后进水箱 2经过 (9) 进入 E区, 再进入吸热 装置 2进水口 (10) , 吸热后从出水口 (11) 流出至 F区, 通过入水口 (12) 回 到散热装置上半部从而进入下一轮循环。
[0068] 图 11-a是本发明的整合式的液冷散热系统方案七结构立体示意图, 在此方案中 散热装置 3为圆弧形状, 两端分别连接泵送装置和水箱, 形成圆环形; 这种结构 构成所述泵送装置和所述水箱分别设置在散热装置的冷却管之间, 吸热装置 4设 置在水箱 1的一侧; 图 11-b是图 11-a的反面立体示意图; 图 11-c是图图 11-a中沿着 A- A剖面水路示意图, 图 11-d是图图 11-a中沿着 B-B剖面水路示意图; A-A剖面 图所示散热装置 3左侧流出的冷却液体从出水口 (1) 进入 A区,再进入泵送装置 进水口 (2) ,经由泵送装置施 2压流出出水口 (3) 进入 B区 (4) ,再进入到散热 装置右侧, 进入 B-B剖面图所示散热装置左侧 (5) 至 C区, 进入吸热装置进水口 (6) , 吸热后再从出水口 (7) 流出至 D区 (8) , 回到 A-A剖面图所示散热装 置左侧, 从而进入下一轮循环。
[0069] 需要说明的是: 本发明方案中冷却液液体循环的动力均由泵送装置 2提供, 水 箱 1和动力系统的整合式贯通连接、 以及整合式的水箱和动力系统与散热装置的 结构设计, 其加工方式包括但不限于焊接、 铸造、 数控铣床加工或 3D打印成型 ; 所述泵送装置可以为离心泵、 轴流泵和混流泵; 所述散热装置同水箱的设计 一样, 也可以进行大面积的散热, 即由多个小型散热装置组合为大型散热装置 以加快散热速度, 散热装置与水箱的连接方式可以为焊接、 胶黏连接等, 所述 散热装置的散热鳍片可以是波带状或片状等形状。
[0070] 本发明的一种整合式的液冷散热系统通过所述水箱一体式设置于所述散热装置 上, 且在所述水箱上还设置有吸热装置方案设计, 相对于分体式的设计, 节省 了设备的占地空间, 安装使用更加方便, 通过将水箱进行分区空间设置后, 使 得冷却液的水路循环流程密封效果好, 使用寿命长, 不会产品液体泄露的现象 , 泵送装置一体式设置在散热装置上, 也使散热与泵送装置本身的效率提高, 应用高热的电子设备效果更好, 也可以对多个热源装置进行散热。 同时根据不 同的设备要求, 可以更好的适用不同电子设备的定制散热要求。
[0071] 以上所述仅为本发明的较佳实施例而已, 本领域技术人员知悉, 在不脱离本发 明的精神和范围的情况下, 可以对这些特征和实施例进行各种改变或等同替换 。 另外, 在本发明的教导下, 可以对这些特征和实施例进行修改以适应具体的 情况及材料而不会脱离本发明的精神和范围。 因此, 本发明不受此处所公开的 具体实施例的限制, 所有落入本申请的权利要求范围内的实施例都属于本发明 的保护范围。
[0072]

Claims

权利要求书
[权利要求 1] 1、 一种整合式的液冷散热系统, 包括散热装置, 泵送装置, 水箱, 吸热装置, 其通过一体整合并贯通, 所述散热装置本体上设置有所述 泵送装置, 其特征在于: 所述水箱一体式设置并连接所述散热装置, 且所述吸热装置设置在水箱上。
[权利要求 2] 2、 根据权利要求 1所述的一种整合式的液冷散热系统, 其特征是: 所 述水箱一体式设置于所述散热装置冷却管的中间或者所述散热装置一 端或者两端。
[权利要求 3] 3、 根据权利要求 2所述的一种整合式的液冷散热系统, 其特征是: 所 述水箱具备一定的容积用于液体存储或周转, 其内部分隔至少两个区 间。
[权利要求 4] 4、 根据权利要求 1所述的一种整合式的液冷散热系统, 其特征是: 其 一体式设置制成工艺由所述水箱原材和所述散热装置原材通过专用设 备直接焊接, 或通过第三方焊料介质焊接, 或者所述水箱和所述散热 装置通过密封装置锁固并密封。
[权利要求 5] 5、 根据权利要求 1所述的一种整合式的液冷散热系统, 其特征是: 所 述泵送装置包括泵壳、 叶轮、 马达及泵盖部件, 所述泵送装置通过密 封装置与所述水箱锁固并密封。
[权利要求 6] 6、 根据权利要求 1所述的一种无管整合式的液冷散热系统, 其特征是
: 所述吸热装置为具备高导热性能的金属件: 通过密封装置锁合密封 在所述水箱上, 或一体焊接于所述水箱上并密封, 或在水箱内部设置 有吸热装置, 或者水箱内部原生结构构成吸热装置。
[权利要求 7] 7、 根据权利要求 4至 6之一所述的一种整合式的液冷散热系统, 其特 征是: 所述密封装置为弹性胶类密封圈、 弹性胶类密封垫、 胶状填充 密封材料等。
[权利要求 8] 8、 根据权利要求 7之一所述的一种整合式的液冷散热系统, 其特征是
: 所述水箱上可设置连接并贯通 N22个所述吸热装置, 所述水箱可串 接、 并接 N22个所述散热装置, 及散热装置本体上设置有所述泵送装 置。
[权利要求 9] 9、 根据权利要求 8之一所述的一种整合式的液冷散热系统, 其特征是
: 所述水箱的整体结构包括 L型, U型或者圆弧形状。
PCT/CN2018/091105 2018-06-03 2018-06-13 一种整合式的液冷散热系统 WO2019232813A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810560218.0 2018-06-03
CN201810560218.0A CN108495539B (zh) 2018-06-03 2018-06-03 一种整合式的液冷散热系统

Publications (1)

Publication Number Publication Date
WO2019232813A1 true WO2019232813A1 (zh) 2019-12-12

Family

ID=63341897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091105 WO2019232813A1 (zh) 2018-06-03 2018-06-13 一种整合式的液冷散热系统

Country Status (4)

Country Link
US (1) US10750638B2 (zh)
CN (1) CN108495539B (zh)
TW (2) TW201839345A (zh)
WO (1) WO2019232813A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220214112A1 (en) * 2015-11-12 2022-07-07 Shenzhen APALTEK Co., Ltd. Internal circulation water cooling heat dissipation device
JP2020109781A (ja) * 2018-12-28 2020-07-16 日本電産株式会社 冷却装置
US10834850B2 (en) * 2019-01-23 2020-11-10 Dongguan Jianxin Electronic Technology Co., Ltd. Integrated radiator provided with water chamber, control panel and water pump
US11363740B2 (en) * 2019-01-23 2022-06-14 Dongguan Jianxin Eleotronic Technology Co., Ltd. Modularized water-cooling heat sink
CN110248524A (zh) * 2019-06-13 2019-09-17 南方科技大学 一种散热装置及电子设备
CN110337227B (zh) * 2019-08-13 2020-10-13 深圳市研派科技有限公司 液冷散热装置
TWI705194B (zh) * 2019-11-19 2020-09-21 建準電機工業股份有限公司 液冷式散熱系統及其泵浦
TWD207148S (zh) * 2020-03-27 2020-09-11 雙鴻科技股份有限公司 水冷散熱模組
CN112930098A (zh) * 2021-01-27 2021-06-08 东莞汉旭五金塑胶科技有限公司 一体式液冷散热器
CN113242680A (zh) * 2021-05-28 2021-08-10 惠州汉旭五金塑胶科技有限公司 一种提高散热效果的液冷散热器
CN115332203A (zh) * 2022-08-08 2022-11-11 苏州鲁卡斯金属科技有限公司 一种均温式铜管液冷板及其加工方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1921743A (zh) * 2005-08-25 2007-02-28 富准精密工业(深圳)有限公司 整合式液冷散热装置
US20080169086A1 (en) * 2007-01-11 2008-07-17 Man Zai Industrial Co., Ltd. Heat dissipating device
US20090044929A1 (en) * 2007-08-15 2009-02-19 Xigmatek Co., Ltd Liquid cooling module
JP5800429B2 (ja) * 2012-01-16 2015-10-28 日軽熱交株式会社 電子機器用液冷システムにおけるラジエータ
CN207264297U (zh) * 2017-08-17 2018-04-20 东莞昂湃实业有限公司 一体化的液冷散热器

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4211207A (en) * 1974-04-02 1980-07-08 Stephen Molivadas Heating and cooling systems
GB9610233D0 (en) * 1996-05-16 1996-07-24 Kci Medical Ltd Mattress cooling system
JP3730903B2 (ja) * 2001-11-21 2006-01-05 本田技研工業株式会社 熱交換器
CN100584166C (zh) * 2005-05-07 2010-01-20 富准精密工业(深圳)有限公司 液冷散热装置
CN101001514A (zh) * 2006-01-12 2007-07-18 鸿富锦精密工业(深圳)有限公司 液冷式散热装置及散热单元
CN200983740Y (zh) * 2006-12-13 2007-11-28 王晓栋 一体式发热电子元件水冷散热器
CN201038140Y (zh) * 2007-04-24 2008-03-19 王晓栋 一体式cpu水冷散热器
JP3148185U (ja) * 2008-11-19 2009-02-05 奇▲こう▼科技股▲ふん▼有限公司 液体冷却式放熱モジュール
CN102883590A (zh) * 2012-10-19 2013-01-16 郑宏杰 换热器与水泵一体式水冷散热器
US9671130B2 (en) * 2013-10-09 2017-06-06 Haier Us Appliance Solutions, Inc. Sorption heat pump water heater
CN204994184U (zh) * 2015-07-07 2016-01-20 许继电气股份有限公司 一种电器机箱
CN106249827B (zh) * 2016-07-25 2023-04-28 东莞市真品科技有限公司 Cpu水泵散热器
CN107084376A (zh) * 2017-06-29 2017-08-22 湖南明和光电设备有限公司 一种液冷风冷组合散热系统
CN208905263U (zh) * 2018-06-03 2019-05-24 东莞昂湃实业有限公司 一种整合式的液冷散热系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1921743A (zh) * 2005-08-25 2007-02-28 富准精密工业(深圳)有限公司 整合式液冷散热装置
US20080169086A1 (en) * 2007-01-11 2008-07-17 Man Zai Industrial Co., Ltd. Heat dissipating device
US20090044929A1 (en) * 2007-08-15 2009-02-19 Xigmatek Co., Ltd Liquid cooling module
JP5800429B2 (ja) * 2012-01-16 2015-10-28 日軽熱交株式会社 電子機器用液冷システムにおけるラジエータ
CN207264297U (zh) * 2017-08-17 2018-04-20 东莞昂湃实业有限公司 一体化的液冷散热器

Also Published As

Publication number Publication date
US20190075681A1 (en) 2019-03-07
CN108495539B (zh) 2024-06-11
TWM595785U (zh) 2020-05-21
CN108495539A (zh) 2018-09-04
TW201839345A (zh) 2018-11-01
US10750638B2 (en) 2020-08-18

Similar Documents

Publication Publication Date Title
WO2019232813A1 (zh) 一种整合式的液冷散热系统
WO2017088840A1 (zh) 一种液冷散热系统及其液体散热排
CN108566768B (zh) 一种无管液冷散热系统
US20080314559A1 (en) Heat exchange structure and heat dissipating apparatus having the same
TW201839346A (zh) 液冷散熱系統及其水箱
CN110225690B (zh) 散热好的紧凑型电机控制器
JP2006237597A (ja) 液冷式散熱モジュール
TWI802996B (zh) 提高換熱效率的液冷散熱器及液冷散熱器系統
TW201213760A (en) Heat dissipation device with multiple heat pipes
WO2018176535A1 (zh) 一种新型机械泵液冷散热系统
TWI726806B (zh) 水冷散熱裝置及其製造方法
TWM540463U (zh) 具塑膠框體之輕量化液冷板組及散熱系統
TWM609012U (zh) 液冷散熱系統
CN208905263U (zh) 一种整合式的液冷散热系统
CN206713229U (zh) 一种散热器以及具有该散热器的电动汽车控制器
CN112003414A (zh) 一种用于新能源汽车的液冷式电机
CN100401507C (zh) 一种散热装置及其散热方法
CN111262392B (zh) 一种便于装配的水冷电机
WO2017036292A1 (zh) 一种用于循环冷却系统的换热装置及其制造方法
TWM586040U (zh) 具有逆止閥的水冷泵浦結構及其水冷模組
WO2004063643A1 (fr) Dispositif de refroidissement thermoelectrique
TWM245500U (en) Water cooling apparatus
TW201907263A (zh) 高效型水冷式散熱器
CN212566466U (zh) 一种节水型化工水冷却器
TW201631289A (zh) 液體冷卻式散熱結構及其製作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921402

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18921402

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 08/07/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18921402

Country of ref document: EP

Kind code of ref document: A1