WO2019232775A1 - 一种无线充电装置以及使用所述装置的终端 - Google Patents

一种无线充电装置以及使用所述装置的终端 Download PDF

Info

Publication number
WO2019232775A1
WO2019232775A1 PCT/CN2018/090374 CN2018090374W WO2019232775A1 WO 2019232775 A1 WO2019232775 A1 WO 2019232775A1 CN 2018090374 W CN2018090374 W CN 2018090374W WO 2019232775 A1 WO2019232775 A1 WO 2019232775A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
battery
receiving
wireless charging
rectifier
Prior art date
Application number
PCT/CN2018/090374
Other languages
English (en)
French (fr)
Inventor
刘其堂
刘策
舒为亮
刘彦丁
王平华
曹勇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201880094401.4A priority Critical patent/CN112236923B/zh
Priority to EP18921931.4A priority patent/EP3796520A4/en
Priority to CN202311291139.1A priority patent/CN117293983A/zh
Priority to PCT/CN2018/090374 priority patent/WO2019232775A1/zh
Publication of WO2019232775A1 publication Critical patent/WO2019232775A1/zh
Priority to US17/113,328 priority patent/US20210091599A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/05Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage

Definitions

  • Embodiments of the present invention relate to the field of circuits, and more particularly, to a wireless charging device and a terminal using the device.
  • the power of wireless charging that is, the charging time or speed affects the wireless charging experience.
  • various wireless charging manufacturers can increase the power of wireless charging by increasing the input power or increasing the output voltage of the converter.
  • the wireless charging power of the prior art is basically below 10W, the charging time is longer, and the user experience is poor.
  • Iphone X uses a 2716mAh battery with a maximum of 7.5W wireless charging power, and the battery is fully charged for more than 200min. Because if you simply increase the wireless charging power, it will bring various safety issues, such as overheating, shortened battery life, battery damage and even explosion. Therefore, many manufacturers are still studying how to safely and effectively increase wireless charging power, but no significant research results have been found.
  • Embodiments of the present invention provide a wireless charging device and a terminal using the device, so as to improve the wireless charging speed while ensuring charging efficiency and safety.
  • an embodiment of the present invention provides a wireless charging device, which is located in an electronic device such as a terminal or an electric vehicle and is used to receive energy sent by a transmitting coil of a wireless charging transmitting end for charging a battery or a load such as a power-consuming component.
  • the wireless charging device includes a receiving coil, a switch selection circuit, M charging circuits, and a receiving end controller. An input end of the switch selection circuit is connected to an output end of the receiving coil.
  • the output terminal is connected to the input terminal of each of the M charging circuits; the charging power of the M charging circuits is different, and the output terminal of each of the M charging circuits is used For connecting a load of the electronic device; the receiving-end controller may obtain a coupling coefficient of the receiving coil and the transmitting coil, and control the switch selection circuit to select the M charging circuits according to the coupling coefficient N charging circuits are in conduction with the receiving coil, the M is an integer greater than or equal to 2, and the N is an integer greater than or equal to 1 and less than or equal to M .
  • the wireless charging device can accurately determine whether fast charging can be performed in real time according to the current coupling conditions of the transmitting and receiving coils, and can accurately and effectively configure the wireless charging device by selecting charging circuits with different powers.
  • the charging current or the load supply current so as to obtain higher wireless charging efficiency and support greater charging power; when the state of the wireless charging system changes, such as when the charging device moves during the charging process, the wireless charging system can be switched in time
  • the charging path ensures charging wireless transmission efficiency and uninterrupted transmission, thereby improving charging speed and ensuring charging efficiency and safety.
  • the load includes a battery
  • the receiver controller is specifically configured to control the switch selection circuit to select the M charging circuits according to the coupling coefficient and the obtained battery parameter.
  • N of the charging circuits are connected to the receiving coil
  • the battery parameter includes a battery level or a battery voltage.
  • different coupling coefficients used to reflect a coupling condition between the receiving coil and the transmitting coil may include a mutual inductance between the transmitting coil and the receiving coil or the wireless charging device.
  • the receiving end controller is specifically configured to determine the magnitude of the mutual inductance or the equivalent resistance and the Different battery parameters control the switch selection circuit to select N charging circuits among the M charging circuits to be conductive with the receiving coil.
  • the above-mentioned different coupling parameters require different charging parameters of the wireless charging system where the wireless charging device is located, and different coupling parameters may be selected to determine the coupling situation according to different situations, for example, the difficulty of obtaining each charging parameter.
  • the receiving controller is configured to, when the battery parameter is within a preset range, the receiving controller is specifically configured to be based on the mutual inductance or the equivalent
  • the real part of the impedance controls the switch selection circuit to select N charging circuits of different powers among the M charging circuits to conduct with the receiving coil, wherein the real part of the mutual inductance or the equivalent impedance is larger
  • the preset range of the battery parameter refers to the maximum capacity of the battery ([X% ⁇ Y%], X is greater than 2 and less than 5, so The Y is greater than 80 and less than 95
  • the battery parameter preset range refers to the [a% ⁇ b%] range of the rated voltage of the battery, where a is greater than 60 and less than 70, and b is greater than 90 and less than 98.
  • the electric quantity refers to the quantity of electricity when the battery is fully charged, and the rated voltage of the battery means
  • an embodiment of the present invention provides a terminal.
  • the terminal includes a wireless charging device and a load connected to the wireless charging device.
  • the load includes a battery and a power-consuming component.
  • the wireless charging device is configured to receive wireless signals. Charging the energy transmitted by the transmitting end for charging the battery or powering the power-consuming component, the wireless charging device includes a receiving coil, a switch selection circuit, M charging circuits, and a receiving end controller; the switch The input terminal of the selection circuit is connected to the output terminal of the receiving coil, and the output terminal of the switch selection circuit is connected to the input terminal of each of the M charging circuits; the charging power of the M charging circuits Different, the output end of each of the M charging circuits is used to connect the battery or other power-consuming components of the terminal;
  • the receiving-end controller is configured to obtain a coupling coefficient of the receiving coil and the transmitting coil, and according to the coupling coefficient, control the switch selection circuit to select the N charging circuits and the charging circuits among the M charging circuits.
  • the receiving coil is turned on, the M is an integer of 2 or more, and the N is an integer of 1 or more and M or less.
  • the terminalless can accurately and effectively configure the charging current of the wireless charging device or the power supply current of the load by selecting the charging circuit with different power according to the current coupling condition of the transmitting and receiving coils, thereby obtaining higher wireless charging.
  • Efficiency and when the state of the wireless charging system changes, such as when the terminal or the transmitting terminal moves during the charging process, the terminal can switch the charging path in time to ensure charging wireless transmission efficiency and uninterrupted transmission.
  • FIG. 1 is a diagram of a wireless charging system according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a wireless charging system in an embodiment of the present invention.
  • FIG. 3A is a schematic diagram of input voltage and current of a transmitting-end coil in an embodiment of the present invention.
  • 3B is a schematic diagram of a phase difference between an input voltage and a current of a transmitting-end coil in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an output voltage of a receiving coil and an input current of a transmitting coil in an embodiment of the present invention.
  • FIG. 5 is a charging control flowchart of the wireless charging device in the embodiment of the present invention.
  • FIG. 6 is another charging control flowchart of the wireless charging device in the embodiment of the present invention.
  • FIG. 7 is a schematic circuit diagram of a wireless charging device according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • the wireless charging device in the embodiment of the present invention is mainly applicable to various electronic devices with wireless charging function, especially suitable for some portable devices, such as mobile phones, tablet computers, notebook computers, various wearable devices and other terminal products. Electric vehicles such as cars. For such terminal consumer products, there is a high requirement for mobility. Using wireless charging can completely break away from the constraints of cables, which will bring greater mobility and convenience, and significantly improve the user experience. and so
  • the wireless charging system involved in the embodiment of the present invention includes a transmitting end and a receiving end, wherein the transmitting end is a power adapter or a wireless charger or a wireless charging base, and the receiving end is integrated on an electronic device for receiving The energy from the transmitting end is used to charge the battery on the electronic device or directly power the electronic device.
  • the wireless charging device in the embodiment of the present invention It refers to the receiving end. It can be understood that the wireless charging device is not limited to charging. It can be understood as a device with a wireless power receiving function. The received electrical energy can be used for charging or directly used for power-consuming components. Loads other than batteries.
  • the wireless charging system in the embodiment of the present invention includes a transmitting end 2 and a terminal 1.
  • the terminal 1 serves as a receiving end, and a wireless charging device is integrated therein.
  • the wireless charging device is composed of a receiving end power circuit 10.
  • the transmitting end 2 includes a transmitting end power circuit 20 and a transmitting end controller 22.
  • the transmitting end 2 mainly includes a transmitting end power circuit 20 and a transmitting end controller 22.
  • the transmitting-end power circuit 20 includes a transmitting power conversion circuit 202 and a transmitting coil and a compensation circuit 201 for connecting to a power source 30.
  • the power source is generally a DC power source, such as an adapter.
  • the transmission power conversion circuit 202 is connected to the power source 30, and an output terminal thereof is connected to the transmission coil and the compensation circuit 201.
  • the power conversion circuit 202 is a one-stage conversion or a multi-stage conversion circuit for converting a DC voltage into a high-frequency AC voltage input to the transmitting coil and the compensation circuit 201.
  • the transmitting coil and compensation circuit 201 includes a compensation circuit section for adjusting the equivalent impedance of the latter stage of the power conversion circuit 202 and a transmitting coil for generating a high-frequency magnetic field and supplying energy to the receiving end.
  • the transmitting-end power circuit 20 further includes a coupling detection circuit connected in series between the power conversion circuit 202 and the transmitting coil and the compensation circuit 201.
  • the coupling detection is used to detect a coupling condition between a transmitting coil and a receiving coil to detect a coupling coefficient or mutual inductance or an impedance value or a coupling coefficient refracted by the receiving end to the transmitting end, and send a detection output signal to the Transmitter controller 22.
  • the transmitting-end controller 22 includes a detection part, a control part, and a communication part:
  • the detecting section is used for detecting a signal, for example, for detecting a current of a transmitting coil, an input voltage, an output voltage, and an output current of the power conversion circuit;
  • the control section is used to control the power conversion circuit to adjust the current or voltage such as the current of the transmitting coil, the output voltage of the rectifier at the receiving end, the receiving power at the receiving end, or the charging current at the receiving end;
  • the communication part is used to perform information interaction with the receiving end on related parameters such as control signals, detection signals, and mutual inductance of the coupling coefficient.
  • the wireless charging device is generally installed on the bottom of an electric vehicle or the terminal 1 near the rear cover, and receives the electromagnetic waves sent by the transmitting terminal 2 through the rear cover and generates induction on the receiving coil through the electromagnetic mutual inductance effect.
  • Current thereby charging the battery of the terminal 1 or supplying power to a power-consuming load in the terminal 1, which is an electronic component on the terminal 1, such as including a display screen, a processor, a sensor, and the like.
  • the wireless charging device includes a receiving-end power circuit 10 and a receiving-end controller 12 for connecting with a load 40.
  • the load 40 includes a power-consuming component of an electronic device or the load 40 includes a battery and a power-consuming component.
  • the power-consuming components include a battery, a display screen, a communication module, a circuit board, a processor, and the like.
  • the receiving-end power circuit 10 includes a receiving coil and a compensation circuit 101, a rectifier 102, a switch selection circuit 103, and M charging circuits 111 ... 11M, where M is an integer greater than or equal to two.
  • the receiving coil and the compensation circuit 101 include a receiving coil and a compensation circuit connected in series, wherein the receiving coil is used for electromagnetic induction in a high-frequency magnetic field to generate induced voltage and current, and plays a role of receiving energy;
  • the compensation circuit is used to adjust the impedance of the receiving coil so that the battery or other load of the terminal 1 can obtain the maximum received power.
  • the rectifier 102 includes an input terminal connected to the receiving coil and the compensation circuit 101 and an output terminal connected to the switch selection unit 103.
  • the rectifier is used to convert a high-frequency AC voltage generated by the receiving coil into a DC voltage.
  • the rectifier 102 may be a full-bridge rectifier or a class E rectifier.
  • An input terminal of the switch selection circuit 103 is connected to an output terminal of the rectifier 102, and an output terminal is respectively connected to the M charging circuits 111 ... 11M, and is used to select one of the charging circuits to charge the battery of the terminal 1.
  • the charging circuit includes only the first charging circuit 111 and the second charging circuit 112 with different charging powers, so as to meet the needs of more refined charging control to improve charging efficiency and safety while satisfying Some terminals have limited space requirements.
  • there are M charging circuits and the receiving-end controller 12 may control the switch selection circuit to select N charging circuits and M charging circuits among the M charging circuits according to the coupling coefficient.
  • the receiving coil is turned on, and N is an integer greater than or equal to 01 and less than or equal to M.
  • An input terminal of each of the M charging circuits is connected to an output terminal of the rectifier 102 through the switch circuit 103, and an output terminal of each charging circuit is connected to the load 40.
  • the receiving-end power circuit 10 further includes a coupling detection module 104.
  • the coupling detection module 104 is connected to the output of the receiving coil and the compensation circuit 101 and the input of the rectifier 102, and is configured to detect a charging parameter and send a detection output signal to the receiving controller 12 to Used to calculate a coupling parameter between the transmitting coil and the receiving coil.
  • the charging parameters refer to all voltage and current parameters related to charging efficiency or energy transmission.
  • the charging parameters include parameters such as the output current and voltage of the receiving coil and the compensation circuit 101. It can be understood that, when the transmitting terminal 2 is involved, the charging parameters also include parameters such as the input current and voltage of the transmitting coil and the compensation circuit 201.
  • the receiving end controller 12 is configured to receive charging parameters such as current or voltage of the transmitting end 2 or detect charging parameters such as current and voltage of the receiving coil.
  • the charging parameters include voltage and current parameters such as the receiving coil charging current, the input and output voltages of the rectifier 102, and the charging circuit output voltage and output current. It can be understood that, in some embodiments, the coupling detection module 104 is not on the receiving-end power circuit 10, but is integrated in the receiving-end controller 12, so that the receiving-end controller 12 has a detection The function of the charging parameter.
  • the receiving-end controller 12 calculates a coupling coefficient between the receiving coil and the transmitting coil according to the detected charging parameters, and selects different coupling parameters and battery parameters according to the coupling coefficient and battery parameters according to a mapping table and the like.
  • the receiving-end controller 12 includes a detection module, a policy selection module, a charging circuit selection module, a charging control module, a communication module, and other modules related to wireless charging control.
  • the battery parameter includes a battery level or a battery voltage.
  • the detection module detects the charging parameters of the wireless charging device, and determines a coupling parameter between a transmitting coil and a receiving coil;
  • the strategy selection module selects a charging strategy and a charging control parameter according to the coupling parameter
  • the charging circuit selection module selects a corresponding charging circuit according to the charging strategy, that is, selects a charging point corresponding to the charging power to charge the battery or power a load according to the charging power of each stage defined by the charging strategy;
  • the charging control module sends a current or voltage adjustment instruction to the transmitting terminal 2 through the communication module, so that the transmitting terminal can make corresponding adjustments according to the charging strategy, and can also pass the charging control.
  • the module is configured with a chip related to battery management, so that the wireless charging device can obtain the required charging power at different times and under different conditions.
  • the wireless charging device, method and terminal using the device according to the embodiments of the present invention detect the coupling between the receiving end and the transmitting end, adjust the corresponding charging mode or strategy according to the coupling status, and switch the corresponding charging mode according to the charging mode.
  • the charging circuit can not only guarantee the effect of fast charging, but also achieve the safety of ordinary charging.
  • the coupling between the transmitting coil and the receiving coil is determined by the coupling coefficient between the transmitting coil and the receiving coil.
  • the coupling coefficient is characterized by the mutual inductance of the transmitting coil and the receiving coil or the equivalent impedance reflected from the receiving end to the transmitting end, that is, the value of the coupling coefficient is obtained by calculating the magnitude of the mutual inductance or equivalent resistance. , And then determine the coupling situation.
  • the mutual inductance of the transmitting coil and the receiving coil, and the equivalent impedance reflected from the receiving end to the transmitting end cannot be directly measured and obtained, and can be obtained by calculating after collecting the voltage and current of the receiving or transmitting end.
  • the receiving end controller 12 needs to obtain the input voltage V in and the input current I in of the transmitting coil and the compensation circuit 201.
  • Related information such as phase difference and amplitude.
  • the receiving-end controller 12 may obtain the amplitudes of the input voltage V in and the input current I in of the transmitting coil and the compensation circuit 201 of the receiving end 2 through communication and interaction with the transmitting end 2. The phase difference between them and other related charging parameters.
  • the equivalent impedance reflected from the receiving end to the transmitting end Acos ( ⁇ ) / B, where ⁇ is the phase difference between the input voltage V in and the input current I in , and A is the amplitude of the input voltage V in , B is the magnitude of the input current I in .
  • the receiving-end controller 12 measures the peak or effective value of the output voltage of the receiving coil of the receiving end 10 and the compensation circuit 201, and obtains the output current of the transmitting coil of the transmitting end 2 and the compensation circuit 101. Peak or rms.
  • V 2 is the peak or effective value of the output voltage of the receiving coil of the receiving end 10 and the compensation circuit 101
  • I 1 is the peak or effective value of the output current of the transmitting coil of the transmitting end 10
  • V 2 is The positive sine wave, so the V 2 effective value is equal to the V 2 peak divided by the root 2 digits.
  • the charging strategy in the embodiment of the present invention refers to using different charging circuits and charging power to charge the battery in different situations.
  • the selection of different charging circuits and charging power in the charging strategy is mainly determined based on factors such as the coupling coefficient of the transmitting coil and the receiving coil, the amount of power of the battery, the charging circuit, and the temperature of the battery. For example, at a certain temperature threshold, the charging power and speed of the charging circuit are directly proportional to the coupling coefficient, and inversely proportional to the battery's charge, that is, the higher the coupling coefficient, the greater the power and the more it can support.
  • the receiving-end controller 12 controls the network based on the mutual inductance or the real part of the equivalent impedance.
  • the switch selection circuit selects N charging circuits of different powers among the M charging circuits to be conductive with the receiving coil, wherein the greater the real part of the mutual inductance or the equivalent impedance, the larger the real part of the mutual inductance or the receiving coil is selected.
  • the preset range of the battery parameter refers to the maximum capacity of the battery ([X% ⁇ Y%], where X is greater than 2 and less than 5, and Y is greater than 80 and less than 95.
  • the preset range of the battery parameter refers to the range of [a% ⁇ b%] of the rated voltage of the battery, where a is greater than 60 and less than 70 and b is greater than 90 and less than 98, and the maximum battery capacity is when the battery is fully charged.
  • Power the battery rated voltage refers to the corresponding voltage when the battery is fully charged.
  • the receiving-end controller 12 controls the control according to a positive correlation between the magnitude of the mutual inductance and the charging power of the M charging circuits.
  • the switch selection circuit selects N charging circuits among the M charging circuits to be conductive with the receiving coil; or
  • the preset range of the battery parameter refers to the range of the battery's maximum power [X% to Y%], or the preset range of the battery parameter refers to the [a% to b%] range of the rated voltage of the battery.
  • the positive correlation refers to a proportional relationship, that is, an independent variable increases, and a dependent variable also increases. The two variables change in the same direction. When one variable changes from large to small or small to large, the other variable also changes from large to small or small to large.
  • the independent variable can be understood as the coupling coefficient.
  • the variable can be understood as the charging power.
  • the positive correlation also includes a piecewise function relationship, that is, when the coupling coefficient continuously changes, the charging power is a discrete step change.
  • the coupling coefficient is determined by a1-a2-a3-
  • the corresponding charging power is b1 when the coupling coefficient is a1 to a2
  • the corresponding charging power is b2 when the coupling coefficient is a2 to a3
  • the corresponding charging power is when the coupling coefficient is a3 to a4.
  • the charging power is b3, the corresponding charging power is b4 when the coupling coefficient is a4 ⁇ a5, and so on, where a1 ⁇ a2 ⁇ a3 ⁇ a4 ⁇ a5, b1 ⁇ b2 ⁇ b3 ⁇ b4.
  • three charging modes are taken as an example. It can be understood that the embodiments of the present invention are not limited to the three charging modes, and more charging modes may be selected according to different situations.
  • the wireless charging step when controlling based on the mutual inductance between the transmitting coil and the receiving coil and the condition of the battery SOC, the wireless charging step is as follows:
  • the wireless charging system After the wireless charging system is connected to the charging or the receiving end is in the charging range and allowed to charge, the wireless charging system generally enters the normal charging mode first, that is, uses standard or lower power for ordinary wireless charging;
  • the coupling coefficient may be a mutual inductance ⁇ M between the transmitting coil and the receiving coil or an equivalent impedance reflected by the receiving end to the transmitting end, and the battery parameter.
  • the battery SOC mainly refers to battery capacity
  • the preset area is usually an area that has been pre-charged and is about to be fully charged. Different batteries and different environments may be slightly different.
  • the battery parameter is preset.
  • the range means that the battery power or the battery voltage is within the maximum ([X% ⁇ Y%] range, X is greater than 2 and less than 5, and Y is greater than 80 and less than 95.
  • the The preset area is 5% to 80%, that is, determining whether the battery SOC satisfies 5% ⁇ SOC ⁇ 80%;
  • the coupling coefficient is greater than a preset threshold.
  • the preset threshold is generally the minimum limit for achieving good coupling, for example, When the coupling coefficient is the mutual inductance ⁇ M between the transmitting coil and the receiving coil, determine whether the mutual inductance ⁇ M is greater than 30 ohm, that is, determine whether ⁇ M> 20 ohm is satisfied; if the result of S103 determination is that the battery SOC does not satisfy 5% ⁇ If the SOC is less than 80%, the normal charging mode is directly adopted;
  • the charging power of the first fast charging mode corresponding to the fast charging mode 1 is higher than the charging power of the second fast charging mode corresponding to the fast charging mode 2.
  • the wireless charging steps are as follows:
  • the wireless charging steps are as follows:
  • the wireless charging system After the wireless charging system is connected to the charging or the receiving end is in the charging range and is allowed to charge, it generally enters the normal charging mode first, that is, uses standard or lower power for ordinary wireless charging;
  • the preset area is usually an area that is pre-charged and is about to be fully charged. Different batteries and different environments may be slightly different.
  • the battery parameters The preset range refers to the range [a% ⁇ b%] of the battery rated voltage Vbat, where a is greater than 60 and less than 70, and b is greater than 90 and less than 98.
  • the preset area is 3.3 to 4.3, that is, determining whether the voltage Vbat of the battery satisfies 3.3 ⁇ Vbat ⁇ 4.3 volts;
  • the coupling coefficient is greater than a preset threshold, which is generally a minimum limit for achieving an excellent coupling degree. For example, when the coupling coefficient is the equivalent impedance R reflected by the receiving end to the transmitting end, determine whether R> 30ohm; if the result of the determination in S203 is that the voltage Vbat of the battery does not satisfy 3.3 ⁇ Vbat ⁇ 4.3V, Then directly use the ordinary charging mode;
  • a certain fast charging mode is selected. For example, if the voltage Vbat of the battery satisfies 3.3 ⁇ Vbat ⁇ 4.3 volts and R> 30ohm, the battery is charged using the fast charge mode 1, corresponding to the first fast charge mode;
  • the normal charging mode is selected for charging.
  • the wireless charging device may set the fast charging current range to 2.9-3.1A.
  • the receiving-end controller 12 detects the actual charging current of the battery and compares it with the actual charging current range:
  • the wireless controller is used to make the transmitting controller 22 reduce the output voltage of the DC / DC circuit by a step of 100mV, thereby reducing the transmitting current and finally reducing the actual charging after receiving the receiving terminal 1.
  • the wireless controller is used to make the transmitting-end controller 22 increase the output voltage of the DC / DC circuit by a step of 100mV, thereby increasing the transmitting current and finally increasing the actual charging current of the receiving terminal 1. ;
  • the wireless charging device continuously detects the real part of the impedance reflected by the receiving end to the transmitting end and the battery voltage to determine whether the charging mode needs to be changed.
  • the receiving end moves relative to the transmitting end during charging, at this time it is detected that the load on the receiving end reflects to the real part of the transmitting end impedance ⁇ 10ohm, then stop charging and alarm.
  • the moving position is not large, it meets the condition of 10ohm ⁇ the real end of the reflection from the receiving end to the transmitting end ⁇ 20ohm or the battery voltage is charged to 4.3V, then it will switch to the normal charging mode.
  • the controller S2 of the receiving end turns on, S1 turns off, and the ordinary charging circuit works.
  • the control target of the wireless charging device is changed to that the output voltage range of the rectifier 102 is 5-12V.
  • the receiving controller detects the output voltage of the rectifier and compares it with the target voltage range:
  • the wireless controller is used to make the transmitting-end controller 22 reduce the output voltage of the DC ⁇ DC circuit by a step of 100mV, thereby reducing the transmitting current and ultimately reducing the receiving
  • the terminal rectifier 102 actually outputs a voltage.
  • the transmitting power conversion circuit 202 of the transmitting terminal 2 includes a DC / AC circuit and the DC / DC circuit.
  • the wireless controller is used to make the transmitting controller increase the output voltage of the DC / DC circuit by a step of 100mV, thereby increasing the transmitting current and ultimately increasing the actual output of the receiving rectifier 102. Voltage.
  • the wireless charging control method used by the wireless charging device provided in this embodiment determines the coupling between the transmitting and receiving coils according to the current charging parameters of the wireless charging system, and can accurately determine whether fast charging can be performed in real time and is accurate and effective.
  • the wireless charging system configures the charging current; the fast charging circuit at the receiving end 1 in the wireless charging system uses a fixed ratio DC / DC converter, which has higher wireless charging efficiency and supports greater charging power; when the wireless charging system When the status changes, such as when the charging device moves during the charging process, the wireless charging system can switch the charging path in time to ensure that the charging is not interrupted.
  • the receiving-end power circuit 10 shown in FIG. 7 corresponds to several parts of the receiving end 1 in the wireless charging device shown in FIG. 2 described above, including the receiving-end controller 12 and the receiving-end power circuit 110.
  • FIG. 7 corresponds to the receiving end 1 in FIG. 2, but for convenience of description and clear display, FIG. 7 only shows two charging circuits of different powers including the charging circuit 111 and the charging circuit 11M, and there is no display portion. .
  • the switch selection unit 103 also displays only two switch diodes S1 and S2, but not all the switch diodes.
  • the switch diode may be any semiconductor tube or other component that implements a switch selection function, or any Circuit or component combination. It can be understood that the number of the switching diodes and the charging circuits shown in FIG. 7 cannot be used as a limitation of the embodiment of the present invention, and the embodiments of the present invention are not limited to the case where the number of the switching diodes and the charging circuit is only two, and can be applied reasonably In the case where the number is greater than two.
  • the receiving coil and compensation circuit 101 includes a receiving coil Lrx and a compensation capacitor Crx connected in series, wherein one end of the receiving coil Lrx and one end of the compensation capacitor Crx are connected to each other, and the other end of the receiving coil Lrx and The other ends of the compensation capacitor Crx are respectively connected to the compensation circuit Crx and two output ends of the receiving coil and the compensation circuit 101.
  • the rectifier 102 includes two diode bridge arms and a rectifier capacitor C1 connected in parallel. Each diode bridge arm and two ends of C1 of the rectifier capacitor are respectively connected to two output ends of the rectifier 102 respectively. Each diode bridge arm includes two diodes D connected in series. The two output ends of the receiving coil and the compensation circuit 101 are respectively connected to the intermediate points of the two bridge arms. The intermediate points refer to the points where two diodes D in each diode bridge arm are connected.
  • the switch selection circuit 103 includes two switches S1 and S2. One end of S1 and one end of S2 are connected to one output end of the rectifier 102, and the other end of S1 is connected to the charging circuit 11M. The other end of S2 is connected to the charging circuit 111.
  • the number of the charging circuits is M and the number of the switching tubes is also M, and the connection method of each charging circuit is similar to that of the S1 or S2, correspondingly controlling each switching tube and the receiving The coil is turned on and off.
  • the charging power of the charging circuit 111 is different from the charging circuit 11M.
  • the charging power of the charging circuit 111 is smaller than the charging power of the charging circuit 11M.
  • the charging circuit 111 is a normal charging circuit corresponding to a normal charging power
  • the charging point circuit 11M corresponds to a comparative charging circuit. Fast charging circuit with large charging power.
  • the first electrical circuit 111 includes two switching diodes Q5 and Q6, an inductor L, and two charging capacitors C2 and C3 connected in series.
  • One end of the two series-connected Q5 and Q6 is connected to one output end of the rectifier 102 through the S2, that is, one end of the two series-connected Q5 and Q6 is connected to the other end of the S2.
  • the other ends of two Q5 and Q6 connected in series with each other are connected to the other output end of the rectifier 102.
  • One end of the C2 is connected to the other end of the S2, and the other end of the C2 is connected to the other output end of the rectifier 102.
  • One end of the C3 is connected to the other output end of the rectifier 102, and the other end of the C3 is connected to the battery and a load.
  • One end of the inductor L is connected to a connection point between Q5 and Q6, and the connection point between Q5 and Q6 refers to a connection located between the Q5 and Q6 and connecting the Q5 and Q6 at the same time. The meanings of the connection points that appear later are similar, and are not repeated here for the sake of brevity.
  • the other end of the inductor L is connected to the other end of C3, and is also connected to the battery and the load.
  • the topology of the charging circuit 111 is a buck circuit and operates in a closed loop state. The input voltage can be converted into a voltage / current required by the battery for charging the battery according to a preset charging strategy.
  • the charging circuit 11M includes three charging capacitors C4, C5, and C6 and four switching diodes Q1, Q2, Q3, and Q4 connected in series.
  • the Q1-Q4 are connected in series in the order of Q1, Q2, Q3 to Q4.
  • One end of the bridge arm formed by the four Q1-Q4 connected in series is connected to an output end of the rectifier 102 through the S1, that is, one end of the bridge arm of the four Q1-Q4 connected in series is connected to the S1.
  • the other ends of the four Q1-Q4 bridge arms connected in series are connected to the other output end of the rectifier 102, and simultaneously connect the battery and the load.
  • One end of the C4 is connected to the other end of the S2, and the other end of the C4 is connected to the other output end of the rectifier 102.
  • One end of the C5 is connected to a connection point between Q1 and Q2, and the other end of the C5 is connected to a connection point between Q3 and Q4.
  • One end of C6 is connected to the connection between Q2 and Q3, one end of C6 is connected to the battery and one end of the load at the same time, one end of C6 is also connected to the other end of the inductor L and the The other end of C3 is connected at the same time.
  • the other end of the C6 is connected to the other end of the battery and the load, and the other end of the C6 is simultaneously connected to the other end of the C2 and the other output end of the rectifier 102.
  • the charging circuit is a switched capacitor circuit, in which the Q1 and Q3 and the Q2 and Q4 are turned on alternately to achieve a voltage conversion ratio of 2: 1.
  • the receiving-end controller 12 is configured to detect charging parameters such as an output voltage of the receiving coil and the compensation circuit 101, an output voltage of the rectifier 102, and input voltages of the battery and a load.
  • the receiving-end controller 12 is further configured to perform wireless communication with the transmitting terminal 2 to obtain control signals and charging parameters such as input voltage and current of the transmitting coil and the compensation circuit 201 from the transmitting terminal 2.
  • the coupling detection module 104 is integrated in the receiving-end controller 12 to detect the charging parameter of the receiving-end power circuit 10.
  • the wireless charging device of the present invention is used in a terminal 1, which includes a terminal back cover 5, the receiving-end power circuit 10, an electromagnetic shielding sheet 8, and a battery 9.
  • the receiving-end power circuit 10 is installed near the rear cover 5 of the terminal 1, and the receiving coil clamp of the receiving-end power circuit 10 is fixed between the rear cover 5 and the electromagnetic shielding sheet 8 through a mounting film 6,
  • the electromagnetic radiation on the receiving coil is also prevented by the electromagnetic shielding sheet 8 from affecting other power-consuming components of the terminal 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种无线充电装置,位于电子设备如终端或电动车内并用于接收无线充电发射端的发射线圈发送的能量,以用于给电池充电或给耗电组件等负载供电,所述无线充电装置包括接收线圈、开关选择电路、多个充电电路以及接收端控制器,其中所述开关选择电路的输入端与所述接收线圈的输出端连接,所述开关选择电路的输出端与所述充电电路中的每一充电电路的输入端连接;所述充电电路的充电功率各不同,所述充电电路的每一所述充电电路的输出端均用于连接所述电子设备的负载;所述接收端控制器可获取所述接收线圈与所述发射线圈的耦合系数,并根据所述耦合系数控制所述开关选择电路选择所述充电电路中的一个多多个充电电路与所述接收线圈导通。

Description

一种无线充电装置以及使用所述装置的终端 技术领域
本发明实施例涉及电路领域,并且更具体地,涉及一种无线充电装置以及使用所述装置的终端。
背景技术
在无线充电领域,尤其是手机无线充电领域,无线充电的功率,也就是充电时长或速度影响着无线充电的体验。理论上,各个无线充电厂商可以通过加大输入电源或者提高变换器输出电压等方式增大无线充电的功率,然而现有技术的无线充电功率基本在10W以下,充电时间较长,用户体验较差。比如Iphone X使用2716mAh的电池,最大7.5W无线充电功率,电池充满的时间要200min以上。因为,如果简单提高无线充电功率会带来各种安全问题,比如过热、电池寿命缩短、电池损坏甚至爆炸等等问题。因此,很多厂家尚在研究如何安全有效地提高无线充电功率,但是尚未发现显著的研究成果出现。
提高无线充电的功率一个瓶颈是手机内部充电电路的效率,过低的效率会导致发热严重。在实际应用中,无线充电功率较大时,还需要有相应的机制,保障其安全性,例如在大功率充电时,如果手机和充电发射端没有对齐或发生移动产生偏移,手机和充电板之间的耦合系数发生变化了,就容易发生充电效率低下或过热等情况。
发明内容
本发明实施例提供一种无线充电装置以及使用所述装置的终端,以提高无线充电速度的同时保证充电的效率以及安全性。
第一方面,本发明实施例提供一种无线充电装置,位于电子设备如终端或电动车内并用于接收无线充电发射端的发射线圈发送的能量,以用于给电池充电或给耗电组件等负载供电,所述无线充电装置包括接收线圈、开关选择电路、M个充电电路以及接收端控制器,其中所述开关选择电路的输入端与所述接收线圈的输出端连接,所述开关选择电路的输出端与所述M个充电电路中的每一充电电路的输入端连接;所述M个充电电路的充电功率各不同,所述M个充电电路的每一所述充电电路的输出端均用于连接所述电子设备的负载;所述接收端控制器可获取所述接收线圈与所述发射线圈的耦合系数,并根据所述耦合系数控制所述开关选择电路选择所述M个充电电路中的N个充电电路与所述接收线圈导通,所述M为大于等于2的整数,所述N为大于等于1且小于等于M的整数。
如上所述,所述无线充电装置根据当前发射端和接收端线圈的耦合情况,可实时准确判断是否可进行快速充电,并可通过选择导通不同功率的充电电路来精准有效地配置无线充电装置充电电流或负载供电电流的大小,从而获得更高的无线充电效率,且支持更大的充电功率;当无线充电系统状态发生变化时,例如充电过程中充电设备移动时,无线充电系统可及时切换充电路径,保证充电无线传输效率和不中断传输,从而在提高无线充电速度的同时也保证充电的效率以及安全性。
在第一方面的一种可能实现方式中,所述负载包括电池,所述接收端控制器具体用于根据所述耦合系数以及获取的电池参数控制所述开关选择电路选择所述M个充电电路中 的N个充电电路与所述接收线圈导通,所述电池参数包括电池电量或电池电压。所述无线充电装置在用于对显示屏、通信模块、电路主板或处理器等单纯的耗电组件等进行供电时候,不需要考虑电池参数,但是如果所述无线充电装置涉及给电池充电时,需要根据所述耦合情况并结合所述电池的电量以及电压等情况来选择合适的充电功率以及路径,以避免电池的充电效率下降导致电池损坏或过热过充等现象。
在第一方面的一种可能实现方式中,用于反映所述接收端线圈以及发射端线圈耦合情况好坏的不同耦合系数可以包括所述发射线圈和接收线圈的互感或者及所述无线充电装置作为无线充电系统中的接收端反射到所述无线充电系统中的发射端的等效阻抗的实部;所述接收端控制器具体用于根据所述互感或所述等效电阻的大小以及所述电池参数的不同,控制所述开关选择电路选择所述M个充电电路中的N个充电电路与所述接收线圈导通。上述不同的耦合参数需要获取的所述无线充电装置所在的无线充电系统的充电参数不同,可以根据不同的情况,例如各个充电参数获取难度的不同来选取判断不同的耦合参数来确定耦合情况。
在第一方面的一种可能实现方式中,所述接收端控制器用于在所述电池参数在预设的范围内时,所述接收端控制器具体用于根据所述互感或所述等效阻抗的实部,控制所述开关选择电路选择所述M个充电电路中的N个不同功率的充电电路与所述接收线圈导通,其中所述互感或所述等效阻抗的实部越大则选择与所述接收线圈导通的充电电路的功率越大,所述电池参数预设的范围是指所述电池最大电量([X%~Y%]范围内,X大于2小于5,所述Y大于80小于95,或者所述所述电池参数预设的范围是指电池额定电压的[a%~b%]范围内,a大于60小于70,b大于90小于98,所述电池最大电量是指电池完全充满的时候的电量,所述电池额定电压是指电池完全充满的时候对应的电压。
由于不同的电池适合进行快速充电的状态有所不同,所以可以根据不同的电池所具有的不同特性,选取适合进行快速充电的区域来结合耦合参数进行充电策略以及路径的选择,以保证无线充电的高效率。
第二方面,本发明实施例提供一种终端,所述终端包括无线充电装置以及与所述无线充电装置连接的负载,所述负载包括电池以及耗电组件,所述无线充电装置用于接收无线充电发射端发送的能量,以用于给所述电池充电或给所述耗电组件供电,所述无线充电装置包括接收线圈、开关选择电路、M个充电电路以及接收端控制器;所述开关选择电路的输入端与所述接收线圈的输出端连接,所述开关选择电路的输出端与所述M个充电电路中的每一充电电路的输入端连接;所述M个充电电路的充电功率各不同,所述M个充电电路的每一所述充电电路的输出端均用于连接所终端的电池或其它耗电组件;
所述接收端控制器,用于获取所述接收线圈与所述发射线圈的耦合系数,根据所述耦合系数,控制所述开关选择电路选择所述M个充电电路中的N个充电电路与所述接收线圈导通,所述M为大于等于2的整数,所述N为大于等于1且小于等于M的整数。
所述无终端可根据当前发射端和接收端线圈的耦合情况,可通过选择开通不同功率的充电电路来精准有效地配置无线充电装置充电电流或负载供电电流的大小,从而获得更高的无线充电效率,而且当无线充电系统状态发生变化时,例如充电过程中所述终端或发射端移动时,所述终端可及时切换充电路径,保证充电无线传输效率和不中断传输。
附图说明
图1是本发明实施例的无线充电系统图。
图2是本发明实施例中的无线充电系统的结构示意图。
图3A是本发明实施例中发射端线圈的输入电压和电流示意图。
图3B是本发明实施例中发射端线圈的输入电压和电流的相位差示意图。
图4是本发明实施例中接收端线圈的输出电压和发射端线圈的输入电流的示意图。
图5是本发明实施例中无线充电装置的一充电控制流程图。
图6是本发明实施例中无线充电装置的另一充电控制流程图。
图7是本发明实施例中无线充电装置的电路示意图。
图8是本发明实施例的终端的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
本发明实施例中的无线充电装置主要适用于各种具有无线充电功能的电子设备,尤其适用于一些便携设备,如手机、平板电脑、笔记本电脑、各种穿戴设备等终端产品,同时也适用电动汽车等电动交通工具。对于此类终端消费类产品对移动性要求较高,采用无线充电功可以彻底脱离线缆的束缚,会带来更大的移动性便捷,而显著提高用户体验。所以
本发明实施例中涉及的无线充电系统包括发射端以及接收端,其中所述发射端为电源适配器或者说无线充电器或无线充电底座等,而所述接收端集成在电子设备上,用于接收来自发射端的能量以对该电子设备上的电池进行充电或者直接为电子设备供电。
为了便于描述,以下将所有具有充电电池的电子产品或者电动车等电动设备称为终端,本发明实施例的主要创新在于所述无线充电系统的接收端,所以本发明实施例中的无线充电装置是指接收端,可以理解,所述无线充电装置并不限定于充电,可以理解为具有无线电能接收功能的装置,接收到的电能可以用于充电,也可以直接用于给耗电组件等除电池以外的负载供电。
如图1所示,本发明实施例中无线充电系统包括发射端2以及终端1。所述终端1作为接收端,其内集成有无线充电装置,所述无线充电装置由接收端功率电路10组成。所述发射端2包括发射端功率电路20以及发射端控制器22。
一、发射端
如图2所示,所述发射端2主要包括发射端功率电路20以及发射端控制器22。所述发射端功率电路20包括用于与电源30连接、发射功率变换电路202以及发射线圈与补偿电路201。所述电源一般为直流电源,如适配器等。
所述发射功率变换电路202的输入端与所述电源30连接,其输出端与所述发射线圈与补偿电路201连接。所述功率变换电路202为一级变换或者多级变换电路,用于将直流电压变换为输入到所述发射线圈以及补偿电路201的高频交流电压。所述发射线圈与补偿电路201包括用于调整所述功率变换电路202后级等效阻抗的补偿电路部分以及用于产生高频磁场并提供能量给所述接收端的发射线圈。在本发明的一些实施例中,所述发射端功率电路20还包括串联在所述功率变换电路202和所述发射线圈与补偿电路201之间的耦合检测电路。所述耦合检测用于检测发射线圈与接收线圈之间的耦合情况,以检测耦合系 数或互感或所述接收端折射到所述发射端的阻抗值或耦合系数,并将检测输出信号发送给所述发射端控制器22。
所述发射端控制器22包括检测部分、控制部分以及通讯部分:
所述检测部分用于检测信号,例如用于检测发射线圈的电流、所述功率变换电路的输入电压、输出电压以及输出电流等参数;
所述控制部分用于控制所述功率变换电路,以调整发射线圈电流、接收端整流器输出电压、接收端接收功率或接收端充电电流等电流或电压的大小;
所述通讯部分用于与接收端进行控制信号、检测信号以及耦合系数互感等相关参数的信息交互。
二、接收端
如图1所示,所述无线充电装置一般安装在电动车车底或者终端1靠近后盖的位置,透过后盖接收所述发射端2发送的电磁波并通过电磁互感效应在接收线圈上产生感应电流,从而给所述终端1的电池充电或者对所述终端1中的耗电负载供电,所述耗电负载为终端1上的电子元件,例如包括显示屏、处理器以及传感器等等。
如图2所示,所述无线充电装置包括用于与负载40连接的接收端功率电路10和接收端控制器12。所述负载40包括电子设备的耗电组件或者所述负载40包括电池以及耗电组件。如在终端中,所述耗电组件包括电池、显示屏、通信模块、电路主板以及处理器等。
所述接收端功率电路10包括接收线圈与补偿电路101、整流器102、开关选择电路103以及M个充电电路111…11M,所述M为大于等于2的整数。
所述收线圈与补偿电路101包括串联在一起的接收线圈以及补偿电路,其中所述接收线圈用于在高频磁场中发生电磁感应而产生感应电压和电流,而起到接收能量的作用;所述补偿电路用于调整接收线圈的阻抗,以使所述终端1的电池或其它负载能够获得最大接收功率。
所述整流器102包括与所述接收线圈与补偿电路101连接的输入端以及与所述开关选择单元103连接的输出端。所述整流器用于将接收线圈产生的高频交流电压变换为直流电压。所述整流器102可以为全桥整流器或E类整流器等。
所述开关选择电路103的输入端连接所述整流器102的输出端,输出端分别连接所述M个充电电路111…11M,用于选择其中一充电电路来对所述终端1的电池进行充电。可以理解,在一些实施例中所述充电电路仅包括充电功率互不相同的第一充电电路111和第二充电电路112,以满足更精细的充电控制需求来提高充电效率以及安全性的同时满足一些终端的有限空间要求。在一些实施例中,所述充电电路为M个,所述接收端控制器12可根据所述耦合系数,控制所述开关选择电路选择所述M个充电电路中的N个充电电路与所述接收线圈导通,所述N为大于等于01且小于等于M的整数。所述M个充电电路中的每个充电电路的输入端均通过所述开关电路103与所述整流器102的输出端连接,所述每个充电电路的输出端均与所述负载40连接。
在一些实施例中,所述接收端功率电路10还包括一耦合检测模块104。所述耦合检测模块104与所述接收线圈与补偿电路101的输出端以及所述整流器102的输入端连接,用于检测充电参数,并将检测输出信号发送给所述接收端控制器12,以用于计算所述发射线圈与接收线圈之间的耦合参数。所述充电参数是指所有与充电效率或者能量传输有关 的电压和电流等参数,例如,所述充电参数包括所述接收线圈与补偿电路101输出电流以及电压等参数。可以理解,涉及到所述发射端2时,所述充电参数还包括所述发射线圈与补偿电路201的输入电流以及电压等参数。
所述接收端控制器12,用于接收发射端2的电流或电压等充电参数或检测接收线圈电流和电压等充电参数,所述整流器102的输入和输出电压、充电电路104/105输出电压和输出电流等充电参数,根据充电参数确定发射线圈以及接收线圈之间的耦合系数,再根据耦合系数选择不同功率的充电电路,其中耦合系数越高,则选择的充电电路功率越高,其中所述充电参数包括所述接收线圈充电电流、所述整流器102的输入和输出电压、所述充电电路输出电压和输出电流等电压电流参数。可以理解,在一些实施例中,所述耦合检测模块104不在所述接收端功率电路10上,而是集成在所述接收端控制器12中的,以使所述接收端控制器12具有检测所述充电参数的功能。
所述接收端控制器12根据检测到到相关充电参数计算所述接收线圈与所述发射线圈的耦合系数,根据所述耦合系数以及电池参数,根据映射表等选择和不同耦合参数以及电池参数的充电策略,再根据所述充电策略控制所述开关选择电路选择所述至少两M个充电电路中的N个充电电路与所述接收线圈导通,所述N为大于等于1且小于等于M的整数。所述接收端控制器12包括检测模块、策略选择模块、充电电路选择模块、充电控制模块以及通讯模块等和无线充电控制相关的模块。所述电池参数包括电池电量或电池电压。
所述检测模块检测所述无线充电装置的所述充电参数,确定发射线圈与接收线圈之间的耦合参数;
所述策略选择模块根据所述耦合参数选择充电策略以及充电控制参数;
所述充电电路选择模块根据所述充电策略选择相应的充电电路,即根据充电策略限定的各个阶段的充电功率选择与所述充电功率对应的充电点路给所述电池充电或给负载供电;
所述充电控制模块根据所述充电策略,通过所述通讯模块向所述发射端2发送电流或电压调节指令,使所述发射端根据充电策略做相应的调整,同时还可以通过所述充电控制模块配置电池管理相关的芯片,使得所述无线充电装置能够在不同时刻和不同情况下都能获取所需要的充电功率。
三、确定耦合参数以及充电策略
本发明实施例的无线充电装置、方法以及使用所述装置的终端,是通过检测接收端与发射端之间的耦合情况,根据耦合情况调整相应的充电模式或策略,根据充电模式来切换相应的充电电路进行充电,既能保证快速充电的效果,又能达到普通充电的安全性。
所述发射线圈和接收线圈的耦合情况由所述发射线圈和接收线圈的耦合系数的大小来决定。所述耦合系数则以所述发射线圈和接收线圈的互感或者所述接收端反射到发射端的等效阻抗来表征,也就是通过计算所述互感或等效电阻大小来获得所述耦合系数的数值,进而判断所述耦合情况。
所述发射线圈和接收线圈的互感以及接收端反射到发射端的等效阻抗都不能直接测量获得,需要通过采集所述接收端或发射端的电压以及电流后进行计算才能获得。
(1)所述接收端反射到发射端的等效阻抗的计算方法:
如图3A和3B所示,要计算所述接收端反射到发射端的等效阻抗,则所述接收端控制器12需要获取所述发射线圈和补偿电路201的输入电压V in和输入电流I in的相关信息,如相位差以及幅值等。所述接收端控制器12可通过与所述发射端2进行通信交互的方式获取所述接收端2的发射线圈和补偿电路201的输入电压V in和输入电流I in的幅值以及两者之间的相位差以及等相关充电参数。
所述接收端反射到发射端的等效阻抗=Acos(θ)/B,其中θ为所述输入电压V in和输入电流I in之间的相位差,A为所述输入电压V in的幅值,B为所述输入电流I in的幅值。
(2)所述发射线圈和接收线圈间的互感ωM的计算方法:
如图4所示,所述接收端控制器12测量所述接收端10的接收线圈以及补偿电路201的输出电压峰值或者有效值,并获取所述发射端2的发射线圈以及补偿电路101输出电流的峰值或者有效值。
在所述接收端的10的接收线圈以及补偿电路101中的接收线圈和补偿电容完全谐振时,所述发射线圈和接收线圈间的互感
Figure PCTCN2018090374-appb-000001
其中,V 2为所述接收端10的接收线圈以及补偿电路101的输出电压峰值或者有效值,I 1为所述发射端10的发射线圈的输出电流的峰值或者有效值,所述V 2为正玄波,所以所述V 2有效值等于V 2峰值除以根号2位。
本发明实施例中的充电策略是指在不同的情况下,使用不同的充电电路以及充电功率对电池进行充电。所述充电策略中不同的充电电路以及充电功率的选择主要是基于所述发射线圈和接收线圈的耦合系数、电池的电量、充电回路以及电池的温度等因素来确定的。例如,在一定的温度阈值,充电电路的充电功率以及速度与所述耦合系数成正比,而与所述电池的电量成反比,也就是所述耦合系数越高就越能支撑越大功率和越快的速度进行充电,而在大于电池完成预充电之后的一定电量,且不超过接近充电充满的某个限制的情况下,越低的电池电量则能够支撑越长时间的大功率快速充电。例如,所述接收端控制器12在所述电池SOC以及电压等参数在某一预设的范围内时,所述接收端控制器根据所述互感或所述等效阻抗的实部,控制所述开关选择电路选择所述M个充电电路中的N个不同功率的充电电路与所述接收线圈导通,其中所述互感或所述等效阻抗的实部越大则选择与所述接收线圈导通的充电电路的功率越大,所述电池参数预设的范围是指所述电池最大电量([X%~Y%]范围内,X大于2小于5,所述Y大于80小于95,或者所述电池参数预设的范围是指电池额定电压的[a%~b%]范围内,a大于60小于70,b大于90小于98,所述电池最大电量是指电池完全充满的时候的电量,所述电池额定电压是指电池完全充满的时候对应的电压。
例如,在所述电池参数在预设的范围内的情况下,所接收端控制器12根据所述互感的大小与所述M个充电电路的充电功率大小之间的正相关关系,控制所述开关选择电路选择所述M个充电电路中的N个充电电路与所述接收线圈导通;或者,
根据所述等效电阻的大小与所述M个充电电路的充电功率大小之间的正相关关系,控制所述开关选择电路选择所述M个充电电路中的N个充电电路与所述接收线圈导通;
其中,所述电池参数预设的范围是指所述电池最大电量[X%~Y%]范围内,或者所述 电池参数预设的范围是指电池额定电压的[a%~b%]范围内,所述正相关关系是指正比关系,也就是指自变量增长,因变量也跟着增长。两个变量变动方向相同,一个变量由大到小或由小到大变化时,另一个变量亦由大到小或由小到大变化,其中所述自变量可以理解为耦合系数,所述因变量可以理解为充电功率。可以,理解所述正相关关系,还包括分段函数关系,也就是所述耦合系数连续变化时,所述充电功率是离散式的阶梯变化,例如,所述耦合系数由a1-a2-a3-a4-a5逐渐加大时,所述耦合系数为a1~a2时对应的充电功率为b1,所述耦合系数为a2~a3时对应的充电功率为b2,所述耦合系数为a3~a4时对应的充电功率为b3,所述耦合系数为a4~a5时对应的充电功率为b4,如此类推,其中a1<a2<a3<a4<a5,b1<b2<b3<b4。
本发明一些实施例中,为了便于描述以三种充电模式为例,可以理解本发明实施例并不限于三种充电模式,可以根据情况的不同选择更多的充电模式。
具体可以如图5的流程图以及下面表1所示,基于所述发射线圈和接收线圈间的互感以及所述电池SOC的情况进行控制时,所述无线充电步骤如下:
S101、所述无线充电系统在充电连接后或者感应到接收端在充电范围内并允许充电后,一般先进入普通充电模式,也就是采用标准或较低的功率进行普通无线充电;
S102、获取当前发射线圈和接收线圈的耦合系数以及电池参数,所述耦合系数可以是所述发射线圈和接收线圈间的互感ωM或者所述接收端反射到发射端的等效阻抗,所述电池参数包括电池SOC或电池电压,所述电池SOC主要是指电池容量;
S103、判断所述电池参数是否落在预设区域,所述预设区域通常是完成预充电并快要充满的区域,不同的电池和不同的环境可能会稍有不同,其中所述电池参数预设的范围是指所述电池电量或电池电压在最大值的([X%~Y%]范围内,X大于2小于5,所述Y大于80小于95。在本发明一些实施例中,所述预设区域为5%~80%,也就是判断所述电池SOC是否满足5%<SOC<80%;
S104、如果S103判断的结果是所述电池SOC满足5%<SOC<80%,则进一步判断所述耦合系数是否大于预设阈值,所述预设阈值一般为达到优良耦合度的最低限制,例如,耦合系数为所述发射线圈和接收线圈间的互感ωM时,判断所述互感ωM是否大于30ohm,也就是判断是否满足ωM>20ohm;如果S103判断的结果是所述电池SOC不满足5%<SOC<80%,则直接采用普通充电模式;
S105、如果满足5%<SOC<80%且所述耦合系数是否大于预设阈值,例如,如果满足5%<SOC<80%且ωM>20ohm,则采用快充模式1对电池进行充电,对应第一种快速充电模式;如果满足5%<SOC<80%但是不满足ωM>20ohm,则进一步判断是否满足5%<SOC<80%且15ohm<ωM<20ohm,如果满足5%<SOC<80%且15ohm<ωM<20ohm则选择快电模式2,对应第二种快速充电模式对电池进行充电,如果满足5%<SOC<80%,但是不满足15ohm<ωM<20ohm则选择普通充电模式进行充电。所述快充模式1对应的第一中快速充电模式的充电功率比快充模式2对应的第二种快速充电模式的充电功率要高。
Figure PCTCN2018090374-appb-000002
Figure PCTCN2018090374-appb-000003
表1
如图6的流程图以及下面表1所示,基于所述接收端反射到发射端阻抗实部来判断耦合,并基于所述电池电压的情况进行控制时,所述无线充电步骤如下:
所述无线充电步骤如下:
S201、所述无线充电系统在充电连接后或者感应到接收端在充电范围内并允许充电后,一般先进入普通充电模式,也就是采用标准或较低的功率进行普通无线充电;
S202、获取当前发射线圈和接收线圈的耦合系数以及电池参数,所述耦合系数是所述接收端反射到发射端的等效阻抗R,所述电池参数为电池电压;
S203、判断所述电池参数是否落在预设区域,所述预设区域通常是完成预充电并快要充满的区域,不同的电池和不同的环境可能会稍有不同,其中所述所述电池参数预设的范围是指电池额定电压Vbat的[a%~b%]范围内,a大于60小于70,b大于90小于98。在本发明一些实施例中,所述预设区域为3.3~4.3,也就是判断所述电池的电压Vbat是否满足3.3<Vbat<4.3伏;
S204、如果S203判断的结果是所述电池的电压Vbat满足3.3<Vbat<4.3伏,则进一步判断所述耦合系数是否大于预设阈值,所述预设阈值一般为达到优良耦合度的最低限制,例如,所述耦合系数为所述接收端反射到发射端的等效阻抗R时,判断所述是否R>30ohm;如果S203判断的结果是所述电池的电压Vbat不满足3.3<Vbat<4.3伏,则直接采用普通充电模式;
S205、如果所述电池的电压Vbat满足3.3<Vbat<4.3伏且所述耦合系数大于预设阈值,则选择某一快速充电模式。例如,如果满足所述电池的电压Vbat满足3.3<Vbat<4.3伏且R>30ohm,则采用快充模式1对电池进行充电,对应第一种快速充电模式;
如果所述电池的电压Vbat满足3.3<Vbat<4.3伏但是不满足R>30ohm,则进一步判断是否满足3.3<Vbat<4.3伏且20ohm≤R≤30ohm,如果满足3.3<Vbat<4.3伏且20ohm≤R≤30ohm则选择快充模式2,对应第二种快速充电模式对电池进行充电,其中所述快充模式1对应的第一中快速充电模式的充电功率比快充模式2对应的第二种快速充电模式的充电功率要高;
如果满足3.3<Vbat<4.3伏,但是不满足20ohm≤R≤30ohm则选择普通充电模式进行充电。
可以理解,在一些实施例中,对于不同的所述耦合系数和所述电池参数的组合,有不同的实施方式,但是均与前面所述的S101-S105以及S201-S205的判断原则以及控制策略类似,处于简洁的目的,再次不再一一列举。
例如,所述无线充电装置可以将快速充电电流范围设定为2.9-3.1A,此时所述接收端控制器12检测实际所述电池的充电电流,与实际充电电流范围比较:
假如实际充电电流大于上限3.1A,则通过无线通讯,令所述发射端控制器22以步长100mV降低DC/DC电路的输出电压,从而降低发射电流,最终降低接所述收端1实际充电电流;
假如实际充电电流小于下限2.9A,则通过无线通讯,令所述发射端控制器22以步长100mV提高DC/DC电路的输出电压,从而提高发射电流,最终提高所述接收端1实际充电电流;
当实际充电电流在目标范围内,则不进行调节。
此外,在充充电过程中所述无线充电装置还会不停检测接收端反射到发射端阻抗的实部和所述电池电压,判断是否需要变更充电模式。
假如在充电过程中接收端相对发射端进行了移动,此时检测到接收端负载反射到发射端阻抗实部<10ohm,则停止充电并报警。
如果移动的位置不大,满足10ohm<接收端反射到发射端阻抗实部<20ohm条件或者电池电压充到了4.3V,则转成普通充电模式。此时接收端控制器控制开关S2导通,S1关断,普通充电电路工作。
此时,所述无线充电装置的控制目标变更为所述整流器102输出电压范围为5-12V,此时接收端控制器检测整流器输出电压,与目标电压范围比较:
假如所述接收端整流器102实际输出电压大于上限12V,则通过无线通讯,令所述发射端控制器22以步长100mV降低DC\DC电路的输出电压,从而降低发射电流,最终降低所述接收端整流器102实际输出电压,其中所述发射端2的发射功率变换电路202包括DC/AC电路和所述DC/DC电路。
假如所述整流器102实际输出电压小于下限5V,则通过无线通讯,令发射端控制器以步长100mV提高DC/DC电路的输出电压,从而提高发射电流,最终提高所述接收端整流器102实际输出电压。
当所述接收端整流器102实际输出电压在目标范围内,则不进行调节。
本实施例所提供的无线充电装置所使用的无线充电控制方法,根据无线充电系统当前充电参数判断所述发射端和接收端线圈的耦合情况,可实时准确判断是否可进行快速充电,并精准有效地配置无线充电系统充电电流大小;无线充电系统中所述接收端1快速充电电路采用了固定变比DC/DC变换器,无线充电效率更高,且支持更大的充电功率;当无线充电系统状态发生变化时,例如充电过程中充电设备移动时,无线充电系统可及时切换充电路径,保证充电不中断。
四、电路实现方式
如图7所示中的所述接收端功率电路10对应上述图2所示无线充电装置中接收端1的几大部分,其中包括所述接收端控制器12以及所述接收端功率电路110中的所述接收线圈与补偿电路101、所述整流器102、所述开关选择电路103、所述充电电路111以及所述充电电路11M。图7与图2中的接收端1对应相同,但是为了便于描述以及清楚显示,图7中仅仅显示两个不同功率的充电电路包括所述充电电路111以及所述充电电路11M,而没有显示部分。所述开关选择单元103也只显示两个开关二极管S1和S2,而没有显示所有开关二极管,可以理解,所述开关二极管可以是任何实现开关选择功能的半导体管或其它元器件,也可以是任何电路或元件组合。可以理解,图7中所示的开关二极管以及充电电路的数量并不能作为本发明实施例的限制,本发明实施例并不限于开关二极管以及充电电路只能是数量为2的情况,可以合理应用到数量大于2的情况。
所述接收线圈与补偿电路101包括串联在一起的接收线圈Lrx以及补偿电容Crx,其 中所述接收线圈Lrx一端以及所述补偿电容Crx的一端相互连接在一起,所述接收线圈Lrx的另一端以及所述补偿电容Crx的另一端分别与所述补偿电路Crx以及接收线圈与补偿电路101的两输出端连接。
所述整流器102包括两相互并联的二极管桥臂以及整流电容C1,其中所述每一二极管桥臂以及整流电容的C1的两端都分别对应连接所述整流器102的两输出端。所述每一二极管桥臂包括两相互串联的二极管D。所述接收线圈与补偿电路101的两输出端分别与所述两桥臂的中间点连接,所述中间点是指每一二极管桥臂中两二极管D连接的点。
所述开关选择电路103包括开关二开关管S1和S2,其中所述S1一端和S2的一端均与所述整流器102的一输出端连接,所述S1的另一端连接所述充电电路11M,所述S2的另一端连接所述充电电路111。在一些实施例中,所述充电电路为M个,所述开关管数量也为M个,且每个充电电路的连接方式和所述S1或S2相似,对应控制每个开关管与所述接收线圈的导通和关断。
所述充电电路111的充电功率与所充电电路11M的不同。在本实施例中,所述充电电路111的充电功率小于所述充电电路11M的充电功率,例如,所述充电电路111为对应普通充电功率的普通充电电路,所述充电点路11M则对应较大充电功率的快速充电电路。
所述第电电路111包括二相互串联的开关二极管Q5和Q6、电感L以及两个充电电容C2和C3。所述二相互串联的Q5和Q6的一端通过所述S2与所述整流器102的一输出端连接,也就是所述二相互串联的Q5和Q6的一端与所述S2的另一端连接,所述二相互串联的Q5和Q6的另一端与所述整流器102的另一输出端连接。所述C2一端与所述S2的另一端连接,所述C2的另一端与所述整流器102的另一输出端连接。所述C3的一端与所述整流器102的另一输出端连接,所述C3的另一端与所述电池以及负载连接。所述电感L的一端与所述Q5和Q6之间的连接点连接,所述Q5和Q6之间的连接点是指位于所述Q5和Q6之间并同时连接所述Q5和Q6的连接处,后面出现的连接点含义也类似,处于简洁的目的不再赘述。所述电感L的另一端与所述C3的另一端连接,同时也与所述电池以及负载连接。所述充电电路111的拓扑为buck电路,工作于闭环状态,可以根据预设的充电策略将输入电压转换为所述电池所需的电压/电流给所述电池进行充电。
所述充电电路11M包括三个充电电容C4、C5和C6以及四个相互串联的开关二极管Q1、Q2、Q3以及Q4,所述Q1-Q4按照Q1、Q2、Q3到Q4的顺序串联在一起。所述四个相互串联的Q1-Q4形成的桥臂一端通过所述S1与所述整流器102的一输出端连接,也就是所述四个相互串联的Q1-Q4的桥臂一端与所述S1的另一端连接。所述四个相互串联的Q1-Q4的桥臂另一端与所述整流器102的另一输出端连接,同时连接所述电池与负载。所述C4一端与所述S2的另一端连接,所述C4的另一端与所述整流器102的另一输出端连接。所述C5的一端与所述Q1和Q2之间的连接点连接,所述C5的另一端与所述Q3和Q4之间的连接点连接。所述C6的一端与所述Q2和Q3之间的连接处连接,所述C6的一端同时所述电池以及负载的一端连接,所述C6的一端还与所述电感L的另一端以及所述C3的另一端同时连接。所述C6的另一端与所述电池与负载的另一端连接,所述C6的另一端同时与所述C2的另一端以及所述整流器102的另一输出端连接。
所述充电电路为开关电容电路,其中所述Q1和Q3与Q2和Q4两两交替导通,从而实现2:1的电压变比。
所述接收端控制器12用于检测所述接收线圈与补偿电路101的输出端电压、所述整流器102的输出电压以及所述电池以及负载的输入电压等充电参数。所述接收端控制器12还用于与所述发射端2进行无线通讯,以获取控制信号以及所述发射线圈与补偿电路201输入电压以及电流等来自所述发射端2的充电参数。在一些实施例中,所述耦合检测模块104集成在所述接收端控制器12内,用于检测所述接收端功率电路10的所述充电参数。
如图8所示,在一些实施例中,本发明无线充电装置用在终端1中,所述终端1包括终端后盖5、所述接收端功率电路10、电磁屏蔽片8以及电池9。所述接收端功率电路10安装在终端1靠近后盖5的位置,而且所述接收端功率电路的10的接收线圈夹通过安装胶片6固定在所述后盖5以及电磁屏蔽片8之间,以便于通过后盖接收接收端2发送的电磁能量,同时也通过所述电磁屏蔽片8阻止接收线圈上的电磁辐射影响终端1的其它耗电组件。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (10)

  1. 一种无线充电装置,位于电子设备内并用于接收无线充电发射端的发射线圈发送的能量,其特征在于,所述无线充电装置包括接收线圈、整流器、开关选择电路、M个充电电路以及接收端控制器;
    所述开关选择电路的输入端通过所述整流器与所述接收线圈的输出端连接,所述开关选择电路的输出端与所述M个充电电路中的每一充电电路的输入端连接;
    所述M个充电电路的充电功率各不同,所述M个充电电路的每一所述充电电路的输出端均用于连接所述电子设备的负载;
    所述接收端控制器,用于获取所述接收线圈与所述发射线圈的耦合系数,根据所述耦合系数,控制所述开关选择电路选择所述M个充电电路中的N个充电电路通过所述整流器与所述接收线圈导通,所述M为大于或等于2的整数,所述N为大于或等于1且小于或等于M的整数。
  2. 根据权利要求1所述的无线充电装置,其特征在于,所述负载包括电池,所述接收端控制器具体用于根据所述耦合系数以及获取的电池参数控制所述开关选择电路选择所述M个充电电路中的N个充电电路通过所述整流器与所述接收线圈导通,所述电池参数包括电池电量或电池电压。
  3. 根据权利要求2所述的无线充电装置,其特征在于,所述耦合系数包括所述发射线圈和所述接收线圈的互感或所述无线充电装置反射到所述无线充电发射端的等效阻抗的实部;
    所述接收端控制器具体用于在所述电池参数在预设的范围内的情况下,
    根据所述互感的大小与所述M个充电电路的充电功率大小之间的正相关关系,控制所述开关选择电路选择所述M个充电电路中的N个充电电路通过所述整流器与所述接收线圈导通;或者,
    根据所述等效电阻的大小与所述M个充电电路的充电功率大小之间的正相关关系,控制所述开关选择电路选择所述M个充电电路中的N个充电电路通过所述整流器与所述接收线圈导通;
    其中,所述电池参数预设的范围是指所述电池电量在最大值的[X%~Y%]范围内,X大于2且小于5,所述Y大于80且小于95,或者所述电池参数预设的范围是指电池额定电压的[a%~b%]范围内,a大于60且小于70,b大于90且小于98。
  4. 根据权利要求2或3所述的无线充电装置,其特征在于,所述接收端控制器具体用于在所述电池参数在预设的范围内的情况下,根据所述互感或所述等效阻抗的实部,控制所述开关选择电路选择所述M个充电电路中的N个不同功率的充电电路与所述接收线圈导通,其中所述互感越大或所述等效阻抗的实部越大,则选择充电功率越大的充电电路与所述接收线圈导通,所述电池参数预设的范围是指所述电池最大电量的[X%~Y%]范围内,X大于2且小于5,所述Y大于80且小于95,或者所述电池参数预设的范围是指电 池额定电压的[a%~b%]范围内,a大于60且小于70,b大于90且小于98。
  5. 根据权利要求3或4所述的无线充电装置,其特征在于,所述接收端控制器具体用于获取所述发射线圈的输入电压Vin的幅值、所述发射线圈的输入电流Iin幅值以及所述输入电压V in和输入电流I in之间的相位差,并计算所述等效阻抗的实部为Acos(θ)/B,其中θ为所述输入电压V in和输入电流I in之间的相位差,A为所述输入电压V in的幅值,B为所述输入电流I in的幅值。
  6. 根据权利要求3或4所述的无线充电装置,其特征在于,所述接收端控制器具体用于获取所述接收线圈的输出电压的峰值或者有效值,以及所述发射线圈的输出电流的峰值或者有效值,计算所述发射线圈和接收线圈间的互感等于所述接收线圈的输出电压的峰值除以所述接收线圈的输出电流的峰值,或者所述发射线圈和接收线圈间的互感等于所述接收线圈的输出电压的有效值除以所述接收线圈的输出电流的有效值。
  7. 根据权利要求1至6任一项所述的无线充电装置,其特征在于,所述开关选择电路包括M个开关管,其中每一开关管的一端均与所述整流器的一输出端连接,所述每一开关管的另一端连接所述M个充电电路中的一个充电电路,且所述M个开关管与所述M个充电电路一一对应连接。
  8. 根据权利要求1至7任一项所述的无线充电装置,其特征在于,所述M个充电电路中的一充电电路包括两相互串联的开关二极管Q5和Q6、电感L以及两个充电电容C2和C3,所述两相互串联的Q5和Q6的一端通过所述开关选择电路与所述整流器的一输出端连接,所述两相互串联的Q5和Q6的另一端与所述整流器102的另一输出端连接,所述C2一端与所述开关选择电路连接,所述C2的另一端与所述整流器的另一输出端连接,所述C3的一端与所述整流器的另一输出端连接,所述C3的另一端用于与所述负载连接,所述电感L的一端与所述Q5和Q6之间的连接点连接,所述Q5和Q6之间的连接点是指位于所述Q5和Q6之间并与所述Q5和Q6的共同连接处相连接,所述电感L的另一端与所述C3的另一端连接。
  9. 根据权利要求1至7任一项所述的无线充电装置,其特征在于,所述M个充电电路中的一充电电路包括三个充电电容C4、C5和C5以及四个相互串联的开关二极管Q1、Q2、Q3以及Q4,所述Q1-Q4按照Q1、Q2、Q3到Q4的顺序串联在一起,所述四个相互串联的Q1-Q4形成的桥臂一端通过所述开关选择电路与所述整流器的一输出端连接,所述桥臂的另一端与所述整流器的另一输出端连接,用于连接所述负载,所述C4一端与所述开关选择电路连接,所述C4的另一端与所述整流器的另一输出端连接,所述C5的一端与所述Q1和Q2之间的连接点连接,所述C5的另一端与所述Q3和Q4之间的连接点连接,所述C6的一端与所述Q2和Q3之间的连接处连接,所述C6的一端与所述电池以及负载的一端的共同连接点相连接,所述C6的一端还与所述电感L的另一端以及所述C3的另一端相连接,所述C6的另一端用于与所述负载的另一端连接,所述C6的另一端与所述C2的另一端以及所述整流器的另一输出端的共同连接点相连接。
  10. 一种终端,其特征在于,所述终端包括如权利要求1至9任一项所述的无线充电装置以及与所述无线充电装置连接的负载,所述负载包括电池或耗电组件,所述无线充电装置用于接收无线充电发射端发送的能量,以用于给所述电池充电或给所述耗电组件供电。
PCT/CN2018/090374 2018-06-08 2018-06-08 一种无线充电装置以及使用所述装置的终端 WO2019232775A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880094401.4A CN112236923B (zh) 2018-06-08 2018-06-08 一种无线充电装置以及使用所述装置的终端
EP18921931.4A EP3796520A4 (en) 2018-06-08 2018-06-08 WIRELESS CHARGING DEVICE AND TERMINAL USING IT
CN202311291139.1A CN117293983A (zh) 2018-06-08 2018-06-08 一种无线充电装置以及使用所述装置的终端
PCT/CN2018/090374 WO2019232775A1 (zh) 2018-06-08 2018-06-08 一种无线充电装置以及使用所述装置的终端
US17/113,328 US20210091599A1 (en) 2018-06-08 2020-12-07 Wireless Charging Apparatus and Terminal Using Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/090374 WO2019232775A1 (zh) 2018-06-08 2018-06-08 一种无线充电装置以及使用所述装置的终端

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/113,328 Continuation US20210091599A1 (en) 2018-06-08 2020-12-07 Wireless Charging Apparatus and Terminal Using Same

Publications (1)

Publication Number Publication Date
WO2019232775A1 true WO2019232775A1 (zh) 2019-12-12

Family

ID=68769651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090374 WO2019232775A1 (zh) 2018-06-08 2018-06-08 一种无线充电装置以及使用所述装置的终端

Country Status (4)

Country Link
US (1) US20210091599A1 (zh)
EP (1) EP3796520A4 (zh)
CN (2) CN112236923B (zh)
WO (1) WO2019232775A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7059290B2 (ja) 2017-04-07 2022-04-25 オッポ広東移動通信有限公司 無線充電装置、無線充電方法及び被充電機器
EP3462564A4 (en) * 2017-04-07 2019-05-08 Guangdong Oppo Mobile Telecommunications Corp., Ltd. WIRELESS LOADING SYSTEM, DEVICE AND METHOD AND DEVICE TO BE LOADED
CN111030318B (zh) * 2019-12-31 2022-04-12 华为数字能源技术有限公司 无线电能传输系统
CN113067395B (zh) * 2019-12-31 2024-06-11 华为技术有限公司 电子设备、无线充电接收装置及控制方法、无线充电系统
CN114930701A (zh) * 2020-01-02 2022-08-19 德州仪器公司 切换转换器的可调整省电模式阈值
CN113612318B (zh) * 2021-08-05 2022-11-22 歌尔科技有限公司 一种无线充电装置及其无线充电底座和一种无线充电方法
CN113346599B (zh) * 2021-08-05 2021-11-02 江铃汽车股份有限公司 无线充电控制方法、装置、可读存储介质及充电设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860206A (zh) * 2010-05-12 2010-10-13 杭州矽力杰半导体技术有限公司 三电平降压型变换器
JP2014197935A (ja) * 2013-03-29 2014-10-16 株式会社エクォス・リサーチ 電力伝送システム
CN104919672A (zh) * 2013-01-16 2015-09-16 索尼公司 电力接收器、非接触式电力传输系统以及控制接收的电力电压的方法
CN206742932U (zh) * 2017-04-12 2017-12-12 深圳市金欣辉电子科技有限公司 充电宝多档位可调节充电电路

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9231412B2 (en) * 2010-12-29 2016-01-05 National Semiconductor Corporation Resonant system for wireless power transmission to multiple receivers
WO2014045571A1 (en) * 2012-09-18 2014-03-27 Panasonic Corporation Contactless electric power feeding system
KR102381085B1 (ko) * 2015-02-27 2022-04-01 삼성전자주식회사 전압 컨버터, 그것을 갖는 충전 집적회로 및 전자 장치, 및 그것의 배터리 충전 방법
CN110289668B (zh) * 2016-04-08 2022-03-08 华为技术有限公司 一种快速充电的方法、终端、充电器和系统
US10873218B2 (en) * 2016-04-22 2020-12-22 Agency For Science, Technology And Research Synchronized time-division wireless power transfer for multiple voltage applications
CN206117963U (zh) * 2016-10-17 2017-04-19 广州斐诺电子科技有限公司 一种具有无线充电功能的耳机
CN106374578B (zh) * 2016-10-28 2019-02-22 北京航空航天大学 无线充电系统及其功率传输控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101860206A (zh) * 2010-05-12 2010-10-13 杭州矽力杰半导体技术有限公司 三电平降压型变换器
CN104919672A (zh) * 2013-01-16 2015-09-16 索尼公司 电力接收器、非接触式电力传输系统以及控制接收的电力电压的方法
JP2014197935A (ja) * 2013-03-29 2014-10-16 株式会社エクォス・リサーチ 電力伝送システム
CN206742932U (zh) * 2017-04-12 2017-12-12 深圳市金欣辉电子科技有限公司 充电宝多档位可调节充电电路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3796520A4 *

Also Published As

Publication number Publication date
CN112236923A (zh) 2021-01-15
EP3796520A1 (en) 2021-03-24
US20210091599A1 (en) 2021-03-25
EP3796520A4 (en) 2021-05-05
CN117293983A (zh) 2023-12-26
CN112236923B (zh) 2024-03-26

Similar Documents

Publication Publication Date Title
WO2019232775A1 (zh) 一种无线充电装置以及使用所述装置的终端
US10672557B2 (en) Wireless power transmitter and method of controlling power thereof
US11962163B2 (en) Power transmission device and wireless power transmission system
CN108736577B (zh) 用于无线电力传输的方法和设备以及感测和控制电路
CN108923509B (zh) 一种无线充电发射电路、无线充电接收电路及方法
KR102179796B1 (ko) 정전류(cc)/정전압(cv) 충전을 위한 초고주파 무선 충전기 및 이의 제어방법
CN110071562B (zh) 一种发送侧切换混合拓扑恒流恒压感应式无线充电方法及系统
JP2010288431A5 (ja) 電池内蔵機器と充電台、電池内蔵機器、回路、及び、制御回路
JP2014506111A (ja) ワイヤレス電力送信のためのシステム
KR20170045046A (ko) 무전전력전송 시스템 및 이의 구동 방법.
TWI445290B (zh) 交流轉直流適配裝置及自適應電壓輸出方法
CN104682583A (zh) 谐振型非接触供电装置、电能发射端和控制方法
TW201644151A (zh) 諧振型非接觸供電裝置、電能發射端和控制方法
JP2016063726A (ja) 受電機器及び非接触電力伝送装置
CN115173584B (zh) 一种电力接收装置、电力发送装置及电力传输方法
US20150255991A1 (en) Power receiving device, power supply device, and wireless power transfer apparatus
CN110048514A (zh) 基于原边反馈控制器的无线功率传输系统
US20240106274A1 (en) Charging control method, electronic device, and wireless charging system
WO2014045873A1 (ja) 受電機器及び非接触電力伝送装置
JP2010284066A (ja) 通信装置、通信端末および通信システム
KR101996966B1 (ko) 무전전력전송 시스템 및 이의 구동 방법.
JP6310846B2 (ja) 非接触電力伝送システム及び二次電池パック
EP2905874A1 (en) Power receiving apparatus and non-contact power transmission apparatus
US11962175B2 (en) Electronic device to wirelessly receive power and operating method thereof
JP2014090633A (ja) 非接触電力伝送装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18921931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018921931

Country of ref document: EP

Effective date: 20201216