WO2019230781A1 - エチレン-酢酸ビニル共重合体の製造方法 - Google Patents

エチレン-酢酸ビニル共重合体の製造方法 Download PDF

Info

Publication number
WO2019230781A1
WO2019230781A1 PCT/JP2019/021253 JP2019021253W WO2019230781A1 WO 2019230781 A1 WO2019230781 A1 WO 2019230781A1 JP 2019021253 W JP2019021253 W JP 2019021253W WO 2019230781 A1 WO2019230781 A1 WO 2019230781A1
Authority
WO
WIPO (PCT)
Prior art keywords
vinyl acetate
ethylene
heat exchanger
polymerization
polymerization tank
Prior art date
Application number
PCT/JP2019/021253
Other languages
English (en)
French (fr)
Inventor
直人 西田
利孝 染宮
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to CN201980002312.7A priority Critical patent/CN110709434B/zh
Priority to EP19811661.8A priority patent/EP3805280A4/en
Priority to US17/059,566 priority patent/US11535685B2/en
Priority to JP2019548496A priority patent/JP6608573B1/ja
Priority to SG11202011826UA priority patent/SG11202011826UA/en
Publication of WO2019230781A1 publication Critical patent/WO2019230781A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/06Organic solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F218/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F218/02Esters of monocarboxylic acids
    • C08F218/04Vinyl esters
    • C08F218/08Vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to a method for producing an ethylene-vinyl acetate copolymer.
  • EVOH ethylene-vinyl alcohol copolymer
  • EVA ethylene-vinyl acetate copolymer
  • EVA is produced by copolymerizing ethylene and vinyl acetate, but since this polymerization reaction is an exothermic reaction, it is necessary to remove the heat of polymerization from the reaction solution.
  • various methods have been proposed in order to efficiently remove the heat of polymerization from the reaction solution.
  • Patent Document 1 discloses a method in which EVA is continuously polymerized using a polymerization tank having a jacket and / or coil cooling means and under conditions where the heat transfer area of the jacket and / or coil satisfies a specific relationship.
  • the cooling jacket it is difficult to increase the contact area between the inner wall of the cooled polymerization tank and the reaction solution, and the heat removal efficiency decreases as the capacity of the polymerization tank increases. It was.
  • a cooling coil it is easy to increase the heat removal efficiency by increasing the contact area with the reaction solution, but it is easy to form a retention part in the reaction solution, and the polymer deteriorates in the retention part. There was a risk of generating things.
  • a part of the reaction liquid becomes low temperature, and thus the viscosity of the part is inevitably increased, and the retention of the reaction liquid is promoted.
  • Patent Document 2 when EVA is polymerized in a reaction solution containing ethylene, vinyl acetate, methanol and a polymerization initiator, the vapor evaporated from the reaction solution is condensed in a heat exchanger to remove heat from the reaction solution.
  • a method is described. In this case, since the cooling is performed not in the liquid phase part but in the gas phase part, there is no problem of retention of the reaction liquid, but scale adhesion in the heat exchanger is a problem. Moreover, since it is a method in which the vapor of vinyl acetate or methanol is directly cooled and condensed, the heat removal efficiency is not always good.
  • Patent Document 3 describes a method in which a cooling coil is installed outside the top plate of the polymerization tank and EVA is continuously polymerized while cooling the top plate.
  • a cooling coil is installed outside the top plate of the polymerization tank and EVA is continuously polymerized while cooling the top plate.
  • Patent Document 4 when EVA is continuously polymerized in a polymerization solution containing ethylene, vinyl acetate, methanol and a polymerization initiator, vinyl acetate is introduced into a heat exchanger, and the ethylene derived from the polymerization tank is exchanged with the heat.
  • a method is described in which after vinyl acetate is absorbed in the vessel, vinyl acetate in which ethylene is dissolved is introduced into the polymerization tank. At this time, the flow of vinyl acetate and the flow of ethylene in the heat exchanger are in countercurrent contact.
  • the latent heat of dissolution of ethylene can be removed, and heat can be efficiently removed.
  • the heat removal efficiency may still be insufficient.
  • ethylene-containing gas rises in the heat exchanger, it pushes up the flowing vinyl acetate and the vinyl acetate blows up to the upper part of the heat exchanger, so-called flooding occurs, which is stable Production could be hindered.
  • Patent Document 5 describes a method for introducing ethylene derived from a polymerization tank into vinyl acetate in a heat exchanger and then introducing vinyl acetate in which ethylene is dissolved into the polymerization tank, as in Patent Document 4.
  • the flow of vinyl acetate and the flow of ethylene in the heat exchanger are in co-current contact. As a result, flooding in the heat exchanger can be prevented.
  • the heat removal efficiency was still insufficient in some cases.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for efficiently removing heat when polymerizing EVA.
  • the above problem is that an ethylene-vinyl acetate copolymer is placed in a polymerization tank in which a heat exchanger in which a refrigerant circulates is connected via a pipe and contains a reaction liquid containing ethylene, vinyl acetate, a polymerization initiator, and methanol.
  • a process for continuous production Supplying ethylene, a polymerization initiator and methanol to the polymerization tank; A step of introducing a pressurized gas containing ethylene, which is present in the gas phase part of the polymerization tank, into the heat exchanger; Supplying vinyl acetate cooled to ⁇ 50 to 23 ° C.
  • a preferred embodiment is a method in which a pressurized gas containing ethylene is supplied to the upper portion of the heat exchanger, and the pressurized gas containing ethylene and vinyl acetate are contacted in parallel in the heat exchanger. is there.
  • a method in which a pressurized gas containing ethylene is supplied to the lower part of the heat exchanger and the pressurized gas containing ethylene and vinyl acetate are counter-contacted in the heat exchanger is also a preferred embodiment. .
  • the heat exchanger is a wet wall heat exchanger.
  • the present invention is a method for continuously producing an ethylene-vinyl acetate copolymer in a polymerization tank containing a reaction liquid containing ethylene, vinyl acetate, a polymerization initiator and methanol; Supplying ethylene, a polymerization initiator and methanol to the polymerization tank; A step of introducing a pressurized gas containing ethylene, which is present in the gas phase part of the polymerization tank, into the heat exchanger; Supplying vinyl acetate cooled to ⁇ 50 to 23 ° C.
  • the present invention relates to a method for continuously producing an ethylene-vinyl acetate copolymer (EVA) in a polymerization tank containing a reaction liquid containing ethylene, vinyl acetate, a polymerization initiator and methanol.
  • EVA ethylene-vinyl acetate copolymer
  • methanol is a solvent
  • EVA is produced by copolymerizing ethylene and vinyl acetate in a methanol solution in the presence of a polymerization initiator.
  • the above steps proceed simultaneously.
  • methanol works as a chain transfer agent, the degree of polymerization of EVA obtained can be controlled by adjusting the amount of addition.
  • the reaction liquid in the polymerization tank contains ethylene, vinyl acetate, a polymerization initiator and methanol, and an ethylene-vinyl acetate copolymer is obtained by copolymerizing ethylene and vinyl acetate.
  • EVA polymerizing EVA
  • other copolymerizable monomers other than vinyl acetate and ethylene may be simultaneously supplied for copolymerization.
  • Examples of such monomers include ⁇ -olefins such as propylene, n-butene, i-butene, 4-methyl-1-pentene, 1-hexene, 1-octene; itaconic acid, methacrylic acid, acrylic acid, Unsaturated carboxylic acids such as maleic acid, salts thereof, partially or fully esterified products thereof, amides thereof, anhydrides thereof; vinylsilane compounds such as vinyltrimethoxysilane; unsaturated sulfonic acids or salts thereof; alkylthiols; vinylpyrrolidone, etc. Can be mentioned.
  • ⁇ -olefins such as propylene, n-butene, i-butene, 4-methyl-1-pentene, 1-hexene, 1-octene
  • itaconic acid methacrylic acid, acrylic acid
  • Unsaturated carboxylic acids such as maleic acid, salts thereof, partially or fully esterified products thereof, amides thereof
  • the polymerization initiator is not particularly limited, but it is preferable to use at least one selected from diacyl peroxide initiators, valeronitrile initiators, and peroxydicarbonate initiators.
  • diacyl peroxide polymerization initiators include acetyl peroxide, dipropyl peroxide, isobutyryl peroxide, benzoyl peroxide, and dilauroyl peroxide.
  • valeronitrile polymerization initiators examples include 2 2,2′-azobis (2,4,4′-trimethylvaleronitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (4-methoxy-2,4-dimethyl) Valeronitrile), 2,2′-azobis (4-ethoxy-2,4-diethylvaleronitrile), 2,2′-azobis (4,4′-diethoxy-2-methylvaleronitrile), and peroxy
  • dicarbonate polymerization initiators include dicyclohexyl peroxydicarbonate, bis- (4- - butylcyclohexyl) peroxydicarbonate, di -n- propyl peroxydicarbonate and the like.
  • acetyl peroxide 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), di-n-propyl peroxydicarbonate, and dicyclohexyl peroxydicarbonate are preferable, and 2,2 ′.
  • -Azobis (4-methoxy-2,4-dimethylvaleronitrile) is more preferred.
  • the temperature of the reaction solution in the polymerization tank is preferably 40 to 80 ° C. If the reaction temperature is too low, the production efficiency decreases. The reaction temperature is more preferably 50 ° C. or higher. On the other hand, if the reaction temperature is too high, heat removal becomes difficult and the polymerization reaction runs away, or the resulting EVA resin is colored. The reaction temperature is more preferably 70 ° C. or lower.
  • the pressure in the polymerization tank is preferably 1.5 to 8 MPa. EVA with higher ethylene content can be obtained, so that the pressure in a polymerization tank is high. In order to obtain EVOH having a good gas barrier property, it is preferable to produce EVA having a small ethylene content. From this viewpoint, the pressure in the polymerization tank is more preferably 6 MPa or less, and further preferably 5 MPa or less. Moreover, since the heat removal efficiency decreases as the pressure in the polymerization tank decreases, it is significant to provide vinyl acetate cooled by adopting the present invention to the heat exchanger. On the other hand, in order to obtain EVOH excellent in flexibility, it is preferable to produce EVA having a large ethylene content.
  • the pressure in the polymerization tank is more preferably 2 MPa or more, further preferably 2.5 MPa or more, and particularly preferably 3 MPa or more.
  • the higher the pressure in the polymerization tank the easier the ethylene is absorbed by vinyl acetate in the heat exchanger, and the greater the heat removal effect.
  • the EVA production method of the present invention includes a step of supplying ethylene, a polymerization initiator, and methanol to a polymerization tank. These raw materials are preferably supplied into the polymerization tank from a conduit directly connected to the polymerization tank.
  • the ratio of the raw material introduced into the polymerization tank per unit time is 8 to 60 parts by mass of ethylene, 0.5 to 25 parts by mass of methanol, and 0.001 to 0.001 of the polymerization initiator with respect to 100 parts by mass of vinyl acetate. It is preferable that it is 0.05 mass part.
  • the method for producing EVA according to the present invention includes a step of introducing a pressurized gas containing ethylene present in a gas phase portion of a polymerization tank into a heat exchanger.
  • a step of supplying vinyl acetate cooled to ⁇ 50 to 23 ° C. to the upper portion of the heat exchanger is provided.
  • the temperature of vinyl acetate fed to the top of the heat exchanger is -50 to 23 ° C.
  • the temperature of vinyl acetate is preferably 10 ° C. or less, more preferably 5 ° C.
  • the temperature of vinyl acetate is preferably ⁇ 40 ° C. or higher, more preferably ⁇ 30 ° C. or higher.
  • the method for cooling vinyl acetate is not particularly limited, and a heat exchanger that circulates refrigerant can be used.
  • the amount of vinyl acetate supplied directly to the polymerization tank is preferably less than half of the total amount of vinyl acetate, and more preferably less than 1 ⁇ 4. It is a particularly preferred embodiment that substantially all of the vinyl acetate is fed to the heat exchanger.
  • vinyl acetate When vinyl acetate is supplied to the heat exchanger, it may contain other components such as methanol, but the content (mass) of the other components is preferably less than vinyl acetate, more than half of vinyl acetate It is more preferable that the amount be less. It is a particularly preferable embodiment to supply the heat exchanger with substantially no components other than vinyl acetate.
  • the EVA manufacturing method of the present invention includes a step of flowing down vinyl acetate while absorbing ethylene in a heat exchanger.
  • a refrigerant is preferably circulated in the heat exchanger, and heat is removed from vinyl acetate that has absorbed ethylene.
  • heat can be taken from the reaction system by cooling vinyl acetate in the heat exchanger and taking sensible heat.
  • heat can be taken from the reaction system when vinyl acetate absorbs ethylene and latent heat is generated by condensation of ethylene. That is, in the heat exchanger, it is possible to remove both latent heat due to condensation of ethylene and sensible heat due to cooling of vinyl acetate.
  • the structure of the heat exchanger is not particularly limited, but it is a wet wall heat exchanger because the contact area between the heat exchanger and vinyl acetate is large and the contact area between vinyl acetate and ethylene gas is preferably large. It is preferable. Thus, it is possible to effectively remove the heat of vinyl acetate flowing down the wall surface with a small thickness, and ethylene gas is efficiently condensed and dissolved on the surface of vinyl acetate.
  • the shape of the wall is not particularly limited, but a form in which vinyl acetate flows down through a large number of pipes is preferable. The number, diameter, length, etc. of the pipes can be set in consideration of the required heat removal amount.
  • Both the cocurrent contact method and the countercurrent contact method can be considered as the method of contacting vinyl acetate and ethylene in the heat exchanger.
  • the co-current contact system is a system in which a pressurized gas containing ethylene is supplied to the upper portion of the heat exchanger, and the pressurized gas containing ethylene and vinyl acetate are brought into co-current contact in the heat exchanger.
  • the countercurrent contact system is a system in which a pressurized gas containing ethylene is supplied to the lower part of the heat exchanger, and the pressurized gas containing ethylene and vinyl acetate are brought into countercurrent contact in the heat exchanger. .
  • both a pressurized gas containing ethylene and vinyl acetate are introduced into the upper part of the heat exchanger. Then, ethylene is absorbed by vinyl acetate while both proceed downward. Since the traveling direction is the same, it is easy to maintain stable operation without causing a so-called flooding phenomenon in which the gas pushes vinyl acetate upward and flows backward. And the improvement of the heat removal efficiency by cooling vinyl acetate is remarkable compared with a countercurrent contact system, and the merit which employ
  • the EVA production method of the present invention includes a step of deriving vinyl acetate in which ethylene is dissolved from the bottom of the heat exchanger and adding it to the reaction solution in the polymerization tank.
  • the reaction solution is cooled and ethylene is dissolved in the reaction solution.
  • dissolved in the reaction liquid evaporates, it can take away latent heat of vaporization from a reaction liquid and can remove heat from a reaction liquid.
  • the reaction temperature can be kept constant.
  • the temperature of the ethylene-containing vinyl acetate is preferably ⁇ 10 to 40 ° C.
  • the temperature is more preferably ⁇ 5 ° C. or higher and 30 ° C. or lower.
  • the EVA production method of the present invention includes a step of taking out the reaction solution from the polymerization tank.
  • ethylene, vinyl acetate, a polymerization initiator, and methanol are continuously supplied to the reaction liquid in the polymerization tank, and ethylene and vinyl acetate are consumed to produce EVA.
  • a reaction solution having a predetermined polymerization rate is continuously taken out from the polymerization tank.
  • the polymerization rate of vinyl acetate is set in consideration of production efficiency and degree of polymerization, but is preferably 25 to 60%, more preferably 30 to 50%.
  • the ethylene content of the obtained EVA is preferably 15 to 55 mol%. If the ethylene pressure in the polymerization tank is high, EVA having a high ethylene content is obtained, and if the ethylene pressure in the polymerization tank is low, EVA having a low ethylene content is obtained.
  • EVOH obtained by saponifying EVA when the ethylene content is low, the gas barrier property is improved, but the moldability is lowered. On the other hand, when the ethylene content is high, the gas barrier property is lowered, but the moldability is improved. Therefore, it is necessary to adjust to a preferable ethylene content in consideration of the use of EVOH and the like.
  • the ethylene content is more preferably 45 mol% or less, further preferably 40 mol% or less, and particularly preferably 35 mol% or less.
  • the ethylene content is more preferably 20 mol% or more, and further preferably 25 mol% or more.
  • the degree of polymerization of the obtained EVA is preferably 500 to 2,000. It is set appropriately in consideration of the moldability and strength required for EVOH.
  • the degree of polymerization of EVA is preferably 600 or more, and more preferably 700 or more.
  • the degree of polymerization of EVA is preferably 1600 or less, more preferably 1200 or less.
  • the EVA thus obtained may be used for various purposes as it is, but it is preferable to produce EVOH by saponifying this.
  • the saponification method is not particularly limited, and a known method of hydrolysis in the presence of an alkali catalyst can be employed.
  • FIG. 1 is a schematic view of an apparatus used in Example 1, and is an apparatus in which vinyl acetate and ethylene can come into parallel flow contact in a heat exchanger.
  • a plurality of conduits 5, 6, and 7 are connected to the polymerization tank 1.
  • the number and arrangement of the conduits are not limited to the illustrated form.
  • ethylene, a polymerization initiator, and methanol are supplied to the polymerization tank 1.
  • a portion of vinyl acetate and other monomers can be fed through these conduits.
  • the reaction liquid in the polymerization tank 1 is continuously discharged from the reaction liquid outlet pipe 9 connected to the bottom of the polymerization tank 1.
  • the periphery of the polymerization tank 1 is covered with a jacket (not shown) through which cooling water circulates.
  • the vinyl acetate introduction pipe 10 is connected to the heat exchanger 2, and vinyl acetate is supplied to the upper part of the heat exchanger 2 through this. From the viewpoint of heat removal efficiency, it is preferable to supply the entire amount of vinyl acetate supplied to the polymerization tank 1 from the vinyl acetate introduction pipe 10 via the heat exchanger 2, but within a range that does not impair the effects of the present invention. If so, a part of vinyl acetate may be directly supplied into the polymerization tank 1 from the conduits 5, 6, 7 directly connected to the polymerization tank 1.
  • the refrigerant pipes 11 and 12 are connected to the heat exchanger 2. Although the position of the pipe is not limited to the illustrated form, the refrigerant is supplied from the refrigerant pipe 12 connected to the lower part of the heat exchanger 2 and discharged from the refrigerant pipe 11 connected to the upper part of the heat exchanger 2. preferable. By connecting in this way, vinyl acetate can be cooled efficiently and the heat removal efficiency from the reaction solution is good.
  • the cooling medium is not particularly limited, and an aqueous alcohol solution such as methanol, ethanol, ethylene glycol, or glycerin, an aqueous solution of sodium chloride or calcium chloride, or Freon can be used. For reasons such as ease of handling and cost, an aqueous alcohol solution, particularly an aqueous methanol solution is preferably used.
  • a gas discharge pipe 13 for discharging gas from the heat exchanger 2 is connected to the lower part of the heat exchanger 2.
  • a mist separator (not shown) may be connected to the gas exhaust pipe 13. Droplets in the discharged gas are removed by a mist separator, and ethylene without mist can be recovered or released.
  • a mist separator is a device that separates liquid droplets floating in a gas by using an external force such as gravity, centrifugal force, electrostatic force, or a shielding or sieving effect. Examples of the mist separator include a gravity settler, a cyclone, an electrostatic precipitator, a scrubber, a bag filter, and a packed bed. Among these, a cyclone is preferable.
  • the two conduits 3 and 4 connect the polymerization tank 1 and the heat exchanger 2.
  • the ethylene-containing gas is introduced from the polymerization tank 1 through the conduit 3 into the upper part of the heat exchanger 2, and the vinyl acetate that has absorbed ethylene is introduced from the lower part of the heat exchanger 2 into the polymerization tank 1 through the conduit 4.
  • Raw material vinyl acetate is supplied to the heat exchanger 2 through the vinyl acetate introduction pipe 10.
  • the vinyl acetate supplied to the upper part of the heat exchanger 2 absorbs ethylene while passing through the heat exchanger 2.
  • the heat of polymerization is effectively removed.
  • the ethylene-containing gas is introduced into the heat exchanger 2 through a conduit 3 connected to the upper part of the heat exchanger 2.
  • the conduit 3 on the heat exchanger side and the vinyl acetate introduction tube 10 are connected to the top of the heat exchanger 2.
  • the vinyl acetate-containing liquid that has absorbed ethylene is introduced into the polymerization tank 1 through the conduit 4. And ethylene evaporates from a reaction liquid, A polymerization heat can be removed.
  • ethylene circulates in the polymerization tank 1, the heat exchanger 2 and the conduits 3 and 4. Since a part of ethylene is contained in EVA and discharged from the reaction solution outlet tube 9, it is replenished from the ethylene supply source connected to the polymerization tank 1 through at least one of the conduits 5, 6, and 7.
  • FIG. 2 is a schematic view of the apparatus used in Example 2, which is an apparatus that can make countercurrent contact between vinyl acetate and ethylene in a heat exchanger. Since many parts are common to the apparatus of the cocurrent contact system shown in FIG. 1, only the differences will be described below.
  • the two conduits 3 and 4 connect the polymerization tank 1 and the heat exchanger 2, but the position where the conduit 3 is connected to the heat exchanger 2 is different from the apparatus of FIG. 1.
  • the ethylene-containing gas is introduced from the polymerization tank 1 through the conduit 3 into the lower part of the heat exchanger 2, and the vinyl acetate-containing liquid that has absorbed ethylene is passed through the conduit 4 from the lower part of the heat exchanger 2. 1 is introduced.
  • the ethylene-containing gas rises in the heat exchanger and comes into countercurrent contact with the flowing vinyl acetate-containing liquid, and the ethylene in the gas dissolves in the vinyl acetate-containing liquid.
  • a gas discharge pipe 13 for discharging gas from the heat exchanger 2 is connected to the upper part of the heat exchanger 2.
  • Example 1 EVA was continuously produced using a cocurrent contact polymerization apparatus shown in FIG.
  • a polymerization tank 1 having an internal volume of 750 L and a vertical wet wall multitubular heat exchanger 2 having a heat transfer area of 4 m 2 and 10 tubes were prepared.
  • the following is an example when EVA having a polymerization degree of 1080 with ethylene content of 24.0 mol% was produced by supplying vinyl acetate at ⁇ 20 ° C.
  • the pressurized ethylene was supplied from the conduit 5 to the polymerization tank 1 so that the pressure in the polymerization tank 1 was maintained at 2.9 MPa. By adjusting the pressure in the polymerization tank 1, the ethylene content of the EVA obtained can be controlled.
  • the polymerization initiator 2,2'-azobis- (4-methoxy-2,4-dimethylvaleronitrile) was introduced into the polymerization tank 1 as a methanol solution at a rate of 3 g / hr. Further, methanol was introduced into the polymerization tank 1 from the conduit 7.
  • the total introduction rate of methanol from the conduit 6 and the conduit 7 is 6.2 kg / hr.
  • the degree of polymerization can be controlled by adjusting the content of methanol in the reaction solution.
  • Vinyl acetate (VAc) cooled to ⁇ 20 ° C. was supplied to the polymerization tank 1 through the vinyl acetate introduction tube 10 and the heat exchanger 2 at a rate of 70.6 kg / hr.
  • the ethylene-containing gas in the polymerization tank 1 was introduced into the heat exchanger 2 via the conduit 3.
  • the temperature of the vinyl acetate that absorbed ethylene after flowing down was 8 ° C., and ethylene-containing vinyl acetate was introduced into the polymerization tank 1 through the conduit 4 and mixed with the reaction solution.
  • ethylene and vinyl acetate were continuously polymerized, and a polymerization solution containing EVA was continuously obtained from the conduit 9.
  • the temperature of the reaction liquid in the polymerization tank 1 was maintained at 60 ° C.
  • a 30 wt% aqueous methanol solution at ⁇ 5 ° C. was supplied from the conduit 12 as a cooling medium, and discharged from the conduit 11.
  • the cooling medium was supplied so as to flow in the direction opposite to that of vinyl acetate.
  • the amount of heat removed by the heat exchanger 2 was 6803 kcal / hr.
  • cooling water was circulated through the jacket covering the polymerization tank 1 to cool the polymerization tank 1 from the outside. The circulation rate of this cooling water is always constant.
  • the polymerization rate of vinyl acetate in the resulting polymerization solution was 40%.
  • the obtained ethylene-vinyl acetate copolymer (EVA) had an ethylene content of 24.0 mol% and a degree of polymerization of 1080.
  • Example 1 of Table 1 the same test as above was performed by changing the temperature of vinyl acetate supplied from the conduit 10 to 0 ° C, 5 ° C, 10 ° C, 20 ° C, and 25 ° C. At that time, the temperature of the reaction liquid in the polymerization tank 1 was maintained at 60 ° C., and the temperature of the ethylene-containing vinyl acetate poured into the polymerization tank 1 from the conduit 4 was maintained at 8 ° C. In addition, various conditions were adjusted so that an EVA having a polymerization rate of vinyl acetate of 40%, an ethylene content of 24.0 mol%, and a polymerization degree of 1080 was obtained.
  • the introduction amount of the polymerization initiator was changed in proportion to the square of the supply amount of vinyl acetate.
  • the temperature of the ethylene-containing vinyl acetate introduced into the polymerization vessel 1 is maintained at 8 ° C.
  • the temperature was kept at 60 ° C.
  • the amount of vinyl acetate shown in Table 1 was supplied from the conduit 10, and the amount of heat shown in Table 1 was removed in the heat exchanger 2.
  • Example 1 As can be seen from the results of Example 1, by decreasing the temperature of vinyl acetate supplied from the conduit 10, it is possible to increase the supply amount of vinyl acetate and to greatly increase the heat removal amount in the heat exchanger 2. did it. By reducing the temperature of the supplied vinyl acetate from 25 ° C. to ⁇ 20 ° C., the heat removal amount increased significantly from 3453 kcal / hr to 6803 kcal / hr. The difference in heat removal amount (A) between when 25 ° C. vinyl acetate was supplied and when ⁇ 20 ° C. vinyl acetate was supplied was 3351 kcal / hr.
  • Examples 2-8 In the same manner as in Example 1, EVA having an ethylene content and a polymerization degree shown in Tables 1 and 2 was polymerized. The refrigerant temperature was fixed at -5 ° C and the polymerization temperature was fixed at 60 ° C. The polymerization rate of vinyl acetate and the temperature of ethylene-containing vinyl acetate were set to the values shown in Tables 1 and 2, and the temperature of vinyl acetate supplied from the conduit 10 was set to ⁇ 20 ° C., 0 ° C., 5 ° C., 10 ° C., 20 The temperature was changed to ° C and 25 ° C. Table 1 and Table 2 collectively show the pressure in the polymerization tank 1, the supply amount of vinyl acetate, and the heat removal amount under each condition. Even when EVAs having different ethylene contents and polymerization degrees were polymerized, it was found that by reducing the temperature of the supplied vinyl acetate, the amount of heat removal was significantly increased and the productivity was also significantly improved. .
  • Example 9 EVA was continuously produced using the countercurrent contact polymerization apparatus shown in FIG.
  • the experimental apparatus is an apparatus having the same specifications, except that the position where the conduit 3 and the gas exhaust pipe 13 are connected to the heat exchanger 2 is different in the co-current contact type manufacturing apparatus used in Example 1.
  • the following is an example of producing EVA having a degree of polymerization of 1080 with an ethylene content of 24.0 mol% by introducing vinyl acetate at ⁇ 20 ° C.
  • the pressurized ethylene was supplied from the conduit 5 to the polymerization tank 1 so that the pressure in the polymerization tank 1 was maintained at 2.9 MPa. By adjusting the pressure in the polymerization tank 1, the ethylene content of the EVA obtained can be controlled.
  • the polymerization initiator 2,2'-azobis- (4-methoxy-2,4-dimethylvaleronitrile) was introduced into the polymerization tank 1 as a methanol solution at a rate of 3 g / hr. Further, methanol was introduced into the polymerization tank 1 from the conduit 7.
  • the total introduction rate of methanol from the conduit 6 and the conduit 7 is 4.4 kg / hr.
  • the degree of polymerization can be controlled by adjusting the content of methanol in the reaction solution.
  • Vinyl acetate (VAc) cooled to ⁇ 20 ° C. was supplied to the polymerization tank 1 through the vinyl acetate introduction tube 10 and the heat exchanger 2 at a rate of 75.0 kg / hr.
  • the ethylene-containing gas in the polymerization tank 1 was introduced into the heat exchanger 2 via the conduit 3.
  • the vinyl acetate flowed down along the surface of the tube in the heat exchanger 2 in the direction opposite to the flow of the ethylene-containing gas.
  • the temperature of vinyl acetate which absorbed ethylene after flowing down was 2 ° C., and vinyl acetate containing ethylene was introduced into the polymerization tank 1 through the conduit 4 and mixed with the reaction solution.
  • ethylene and vinyl acetate were continuously polymerized, and a polymerization solution containing EVA was continuously obtained from the conduit 9.
  • the temperature of the reaction liquid in the polymerization tank 1 was maintained at 60 ° C.
  • a 30 wt% aqueous methanol solution at ⁇ 5 ° C. was supplied from the conduit 12 as a cooling medium, and discharged from the conduit 11.
  • the cooling medium was supplied so as to flow in the direction opposite to that of vinyl acetate.
  • the amount of heat removed by the heat exchanger 2 was 5647 kcal / hr.
  • cooling water was circulated through the jacket covering the polymerization tank 1 to cool the polymerization tank 1 from the outside. The circulation rate of this cooling water is always constant.
  • the polymerization rate of vinyl acetate in the resulting polymerization solution was 40%.
  • the obtained ethylene-vinyl acetate copolymer (EVA) had an ethylene content of 24.0 mol% and a degree of polymerization of 1080.
  • Example 9 in Table 3 the same test as above was performed by changing the temperature of vinyl acetate supplied from the conduit 10 to 0 ° C, 5 ° C, 10 ° C, 20 ° C, and 25 ° C. At that time, the temperature of the reaction liquid in the polymerization tank 1 was maintained at 60 ° C., and the temperature of the ethylene-containing vinyl acetate poured into the polymerization tank 1 from the conduit 4 was maintained at 2 ° C. In addition, various conditions were adjusted so that an EVA having a polymerization rate of vinyl acetate of 40%, an ethylene content of 24.0 mol%, and a polymerization degree of 1080 was obtained. The introduction amount of the polymerization initiator was changed in proportion to the supply amount of vinyl acetate.
  • the temperature of the ethylene-containing vinyl acetate supplied to the polymerization tank 1 is kept at 2 ° C.
  • the temperature was kept at 60 ° C.
  • the amount of vinyl acetate shown in Table 3 was supplied from the conduit 10, and the amount of heat shown in Table 3 was removed in the heat exchanger 2.
  • Example 9 by reducing the temperature of vinyl acetate supplied from the conduit 10, the supply amount of vinyl acetate can be increased, and the heat removal amount in the heat exchanger 2 can also be increased. It was. By reducing the temperature of the supplied vinyl acetate from 25 ° C. to ⁇ 20 ° C., the heat removal amount increased from 3847 kcal / hr to 5647 kcal / hr. The difference in heat removal amount (A) between when vinyl acetate at 25 ° C. was supplied and when vinyl acetate at ⁇ 20 ° C. was supplied was 1800 kcal / hr.
  • Examples 10 to 16 In the same manner as in Example 9, EVA having the ethylene content and the polymerization degree shown in Tables 3 and 4 was polymerized. The refrigerant temperature was fixed at -5 ° C and the polymerization temperature was fixed at 60 ° C. The polymerization rate of vinyl acetate and the temperature of ethylene-containing vinyl acetate were set to the values shown in Tables 3 and 4, and the temperatures of vinyl acetate supplied from the conduit 10 were -20 ° C, 0 ° C, 5 ° C, 10 ° C, 20 ° C. The temperature was changed to ° C and 25 ° C. Tables 3 and 4 collectively show the pressure in the polymerization tank 1, the supply amount of vinyl acetate, and the heat removal amount under each condition. Even when EVAs having different ethylene contents and polymerization degrees were polymerized, it was found that by reducing the temperature of the supplied vinyl acetate, the amount of heat removal was increased and the productivity was also improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

冷媒が循環する熱交換器が配管を介して接続され、エチレン、酢酸ビニル、重合開始剤及びメタノールを含む反応液が収容された重合槽の中でエチレン-酢酸ビニル共重合体を連続的に製造する方法であって;前記重合槽に、エチレン、重合開始剤及びメタノールを供給する工程;前記重合槽の気相部に存在する、エチレンを含む加圧気体を前記熱交換器に導入する工程;前記熱交換器の上部に-50~23℃に冷却された酢酸ビニルを供給する工程;前記熱交換器の中で、酢酸ビニルがエチレンを吸収しながら流下する工程;前記熱交換器の底部からエチレンが溶解した酢酸ビニルを導出し、前記重合槽内の反応液に加える工程、及び前記重合槽から反応液を取り出す工程;を含むことを特徴とするエチレン-酢酸ビニル共重合体の製造方法。これにより、エチレン-酢酸ビニル共重合体を重合するに際し効率よく除熱する方法が提供される。

Description

エチレン-酢酸ビニル共重合体の製造方法
 本発明は、エチレン-酢酸ビニル共重合体の製造方法に関する。
 エチレン-ビニルアルコール共重合体(以下、EVOHと称すことがある)はガスバリア性、燃料バリア性、耐薬品性、耐汚染性、非帯電性、機械強度等に優れた熱可塑性樹脂である。そしてそのような特徴を生かして、フィルム、シート、ボトル、カップ、チューブ、パイプなどの形態に成形され、包装容器をはじめ、様々な用途に用いられている。EVOHは、通常、エチレン-酢酸ビニル共重合体(以下、EVAと称すことがある)をけん化することによって製造されており、高品質のEVAを効率的に製造する方法が求められている。
 EVAは、エチレンと酢酸ビニルを共重合することによって製造されるが、この重合反応は発熱反応であるため反応液から重合熱を除去することが必要である。これまで、反応液から重合熱を効率的に除去するために、様々な方法が提案されている。
 特許文献1には、ジャケット及び/又はコイルによる冷却手段を有する重合槽を用い、当該ジャケット及び/又はコイルの伝熱面積と重合発熱量が特定の関係を満たす条件でEVAを連続重合する方法が記載されている。しかしながら、冷却ジャケットを用いた場合には、冷却された重合槽の内壁と反応液との接触面積を大きくすることが困難であり、重合槽の容量が大きくなるほど除熱効率が低下するという問題があった。一方、冷却コイルを用いる場合には、反応液との接触面積を増加させて除熱効率を向上させることは容易であるが、反応液中に滞留部を形成しやすく、当該滞留部でポリマーの劣化物を発生させるおそれがあった。また、ジャケット及びコイルのいずれを用いた場合においても、反応液の一部が低温になるために、その部分が粘度上昇することが避けられず、反応液の滞留が助長されていた。
 特許文献2には、エチレン、酢酸ビニル、メタノール及び重合開始剤を含む反応液中でEVAを重合するに際し、当該反応液から気化した蒸気を熱交換器で凝縮させることにより反応液から除熱する方法が記載されている。この場合には、液相部ではなく気相部で冷却するので、反応液の滞留の問題は生じないが、熱交換器内におけるスケールの付着が問題であった。また、酢酸ビニルやメタノールの蒸気を直接冷却して凝縮させる方法であるために、その除熱効率は必ずしも良好ではなかった。
 一方、特許文献3には、重合槽の天板の外側に冷却コイルを設置して、当該天板を冷却しながらEVAを連続重合する方法が記載されている。この場合には、スケール付着の問題は生じにくくなるものの天板の面積を大きくすることは容易ではなく、重合槽の容量が大きくなるほど除熱効率が低下することが避けられなかった。
 特許文献4には、エチレン、酢酸ビニル、メタノール及び重合開始剤を含む重合溶液中でEVAを連続重合するに際し、熱交換器に酢酸ビニルを導入し、重合槽から導出されるエチレンを当該熱交換器内で酢酸ビニルに吸収させてから、エチレンが溶解した酢酸ビニルを重合槽に導入する方法が記載されている。このとき、熱交換器内における酢酸ビニルの流れとエチレンの流れが向流接触するようにしている。これによって、熱交換器において酢酸ビニルを冷却するだけでなく、エチレンの溶解潜熱を除去することもでき、効率よく除熱することができるとされている。しかしながらその除熱効率は未だ不十分な場合があった。また、エチレンを含むガスが熱交換器内を上昇する際に、流下する酢酸ビニルを押し上げて、酢酸ビニルが熱交換器内の上部に吹き上がる、いわゆるフラッディング(flooding)という現象が生じて、安定生産を妨げることがあった。
 特許文献5には、特許文献4と同様に、重合槽から導出されるエチレンを熱交換器内で酢酸ビニルに吸収させてから、エチレンが溶解した酢酸ビニルを重合槽に導入する方法が記載されているが、熱交換器内における酢酸ビニルの流れとエチレンの流れが並流接触するようにしている。これによって、熱交換器内におけるフラッディングを防止することができるとされている。しかしながらやはり、その除熱効率は未だ不十分な場合があった。
特開2002-128807号公報 特開2002-356517号公報 特開平11-116637号公報 特開昭60-53513号公報 特開2002-338607号公報
 本発明は、上記課題を解決するためになされたものであり、EVAを重合するに際し効率よく除熱する方法を提供することを目的とするものである。
 上記課題は、冷媒が循環する熱交換器が配管を介して接続され、エチレン、酢酸ビニル、重合開始剤及びメタノールを含む反応液が収容された重合槽の中でエチレン-酢酸ビニル共重合体を連続的に製造する方法であって;
 前記重合槽に、エチレン、重合開始剤及びメタノールを供給する工程、
 前記重合槽の気相部に存在する、エチレンを含む加圧気体を前記熱交換器に導入する工程、
 前記熱交換器の上部に-50~23℃に冷却された酢酸ビニルを供給する工程、
 前記熱交換器の中で、酢酸ビニルがエチレンを吸収しながら流下する工程、
 前記熱交換器の底部からエチレンが溶解した酢酸ビニルを導出し、前記重合槽内の反応液に加える工程、及び
 前記重合槽から反応液を取り出す工程、を含むことを特徴とするエチレン-酢酸ビニル共重合体の製造方法を提供することによって解決される。
 このとき、前記熱交換器の上部にエチレンを含む加圧気体を供給し、該熱交換器の中で、エチレンを含む加圧気体と酢酸ビニルとを並流接触させる方法が好適な実施態様である。また、前記熱交換器の下部にエチレンを含む加圧気体を供給し、該熱交換器の中で、エチレンを含む加圧気体と酢酸ビニルとを向流接触させる方法も好適な実施態様である。
 上記製造方法において、前記熱交換器の上部に-50~10℃に冷却された酢酸ビニルを供給することが好適である。得られるエチレン-酢酸ビニル共重合体のエチレン含有量が15~55モル%であることも好ましい。また、前記熱交換器が濡壁式熱交換器であることも好ましい。
 本発明の製造方法によれば、EVAを重合するに際し効率よく除熱することができ、装置を大きく改造することなく生産能力を向上させることができる。
実施例1~8で用いたEVAの重合装置である。 実施例9~16で用いたEVAの重合装置である。
 本発明は、エチレン、酢酸ビニル、重合開始剤及びメタノールを含む反応液が収容された重合槽の中でエチレン-酢酸ビニル共重合体を連続的に製造する方法であって;
 前記重合槽に、エチレン、重合開始剤及びメタノールを供給する工程、
 前記重合槽の気相部に存在する、エチレンを含む加圧気体を前記熱交換器に導入する工程、
 前記熱交換器の上部に-50~23℃に冷却された酢酸ビニルを供給する工程、
 前記熱交換器の中で、酢酸ビニルがエチレンを吸収しながら流下する工程、
 前記熱交換器の底部からエチレンが溶解した酢酸ビニルを導出し、前記重合槽内の反応液に加える工程、及び
 前記重合槽から反応液を取り出す工程、を含むことを特徴とするエチレン-酢酸ビニル共重合体の製造方法である。
 本発明は、エチレン、酢酸ビニル、重合開始剤及びメタノールを含む反応液が収容された重合槽の中でエチレン-酢酸ビニル共重合体(EVA)を連続的に製造する方法に関する。ここで、メタノールは溶媒であり、メタノール溶液中でエチレンと酢酸ビニルを重合開始剤の存在下に共重合させることによって、EVAが製造される。EVAを連続的に製造するために、上記各工程は、同時並行的に進行する。また、メタノールは連鎖移動剤として働くので、その添加量を調整することによって、得られるEVAの重合度を制御することができる。
 重合槽内の反応液は、エチレン、酢酸ビニル、重合開始剤及びメタノールを含んでおり、エチレンと酢酸ビニルを共重合させることによって、エチレン-酢酸ビニル共重合体が得られる。EVAを重合する際に、酢酸ビニル及びエチレン以外の他の共重合可能な単量体を同時に供給して共重合してもよい。当該単量体の例としては、プロピレン、n-ブテン、i-ブテン、4-メチル-1-ペンテン、1-へキセン、1-オクテンなどのα-オレフィン;イタコン酸、メタクリル酸、アクリル酸、マレイン酸などの不飽和カルボン酸、その塩、その部分または完全エステル化物、そのアミド、その無水物;ビニルトリメトキシシランなどのビニルシラン系化合物;不飽和スルホン酸またはその塩;アルキルチオール;ビニルピロリドンなどを挙げることができる。
 重合開始剤としては、特に制限されないが、ジアシルパーオキサイド系開始剤、バレロニトリル系開始剤およびパーオキシジカーボネート系開始剤から選ばれる少なくとも1種の使用が好適である。ジアシルパーオキサイド系重合開始剤の例としては、アセチルパーオキサイド、ジプロピルパーオキサイド、イソブチリルパーオキサイド、ベンゾイルパーオキサイド、ジラウロイルパーオキサイドが挙げられ、バレロニトリル系重合開始剤の例としては、2,2’-アゾビス(2,4,4’-トリメチルバレロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(4-エトキシ-2,4-ジエチルバレロニトリル)、2,2’-アゾビス(4,4’-ジエトキシ-2-メチルバレロニトリル)が挙げられ、パーオキシジカーボネート系重合開始剤の例としては、ジシクロヘキシルパーオキシジカーボネート、ビス-(4-t-ブチルシクロヘキシル)パーオキシジカーボネート、ジ-n-プロピルパーオキシジカーボネートが挙げられる。これらの中でも、アセチルパーオキサイド、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、ジ-n-プロピルパーオキシジカーボネート、ジシクロヘキシルパーオキシジカーボネートが好ましく、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)がより好ましい。
 重合槽内の反応液の温度は40~80℃であることが好ましい。反応温度が低すぎると、生産効率が低下する。反応温度は、より好適には50℃以上である。一方、反応温度が高すぎると、除熱が困難になって重合反応が暴走したり、得られるEVA樹脂が着色したりする。反応温度は、より好適には70℃以下である。
 重合槽内の圧力は1.5~8MPaであることが好ましい。重合槽内の圧力が高いほどエチレン含有量の高いEVAを得ることができる。ガスバリア性の良好なEVOHを得るためには、エチレン含有量が小さいEVAを製造することが好ましい。この観点からは、重合槽内の圧力は6MPa以下であることがより好ましく、5MPa以下であることがさらに好ましい。また、重合槽内の圧力が低いほど除熱効率が低下するので、本発明を採用して冷却した酢酸ビニルを熱交換器に提供する意義が大きい。一方、柔軟性に優れたEVOHを得るためには、エチレン含有量が大きいEVAを製造することが好ましい。この観点からは、重合槽内の圧力は2MPa以上であることがより好ましく、2.5MPa以上であることがさらに好ましく、3MPa以上であることが特に好ましい。また、重合槽内の圧力が高いほど、熱交換器内でエチレンが酢酸ビニルに吸収され易く除熱効果が大きい。
 本発明のEVAの製造方法は、重合槽に、エチレン、重合開始剤及びメタノールを供給する工程を有する。これらの原料は、当該重合槽に直結した導管から重合槽内に供給されることが好ましい。単位時間当たり重合槽内に導入される原料の割合は、酢酸ビニル100質量部に対して、エチレンが8~60質量部、メタノールが0.5~25質量部、重合開始剤が0.001~0.05質量部であることが好ましい。
 本発明のEVAの製造方法は、重合槽の気相部に存在するエチレンを含む加圧気体を熱交換器に導入する工程を有する。また、当該熱交換器の上部に-50~23℃に冷却された酢酸ビニルを供給する工程を有する。これによって、冷却された酢酸ビニルとエチレンを含む加圧気体とが熱交換器に供給されて、その内部で相互に接触する。熱交換器の上部に供給される酢酸ビニルの温度は-50~23℃である。除熱効率の観点からは、酢酸ビニルの温度が10℃以下であることが好ましく、5℃以下であることがより好ましく、0℃以下であることがさらに好ましく、-5℃以下であることが特に好ましい。一方、-50℃未満に冷却することは設備コストなどを上昇させる。この観点からは酢酸ビニルの温度が-40℃以上であることが好ましく、-30℃以上であることがより好ましい。酢酸ビニルの冷却方法は特に限定されず、冷媒を循環させる熱交換器などを用いることができる。
 酢酸ビニルの一部を、熱交換器を経由させずに直接重合槽に供給することもできるが、除熱効率が低下する場合がある。直接重合槽に供給される酢酸ビニルの量は、酢酸ビニルの全体量の半分未満であることが好ましく、1/4未満であることがより好ましい。実質的に全ての酢酸ビニルが熱交換器に供給されることが特に好適な態様である。酢酸ビニルを熱交換器に供給する際に、メタノールなど他の成分を含んでいても構わないが、他の成分の含有量(質量)は酢酸ビニルよりも少ないことが好ましく、酢酸ビニルの半分よりも少ないことがより好ましい。酢酸ビニル以外の成分を実質的に含まないものを熱交換器に供給することが特に好適な態様である。
 本発明のEVAの製造方法は、熱交換器の中で、酢酸ビニルがエチレンを吸収しながら流下する工程を有する。熱交換器には冷媒が循環していることが好ましく、エチレンを吸収した酢酸ビニルから熱が除かれる。このとき、熱交換器において酢酸ビニルを冷却して顕熱を奪うことによって反応系から熱を奪うことができる。また、酢酸ビニルがエチレンを吸収してエチレンの凝縮による潜熱が発生することによっても反応系から熱を奪うことができる。すなわち、熱交換器の中ではエチレンの凝縮による潜熱と酢酸ビニルの冷却による顕熱の両方の熱を奪うことが可能である。なおここで、理論的には、エチレンの凝縮による潜熱と、エチレンが酢酸ビニルに溶解することによる潜熱の両方が発生するが、後者は前者に比べてはるかに小さいことから、本発明では両方の潜熱の合計を、エチレンの凝縮による潜熱という。
 本発明の製造方法では、-50~23℃に冷却した酢酸ビニルを熱交換器に供給するので、熱交換器に供給される冷媒と酢酸ビニルとの温度差が小さくなり、常温の酢酸ビニルを供給する時と比べて、酢酸ビニルの冷却による顕熱は小さくなる。しかしながら、酢酸ビニルが低温であることによってエチレンが溶解しやすくなるので、エチレンの凝縮による潜熱は増加する。発明者らが検討したところ、潜熱の増加分が顕熱の減少分を大きく超えており、熱交換器に供給する前の酢酸ビニルを冷却する際の顕熱の減少分を差し引いても、潜熱の方が大きいことがわかった。すなわち、熱交換器に供給する酢酸ビニルを冷却することによって、系全体としての除熱効率を向上させることができた。熱交換器を変更することなく、冷却した酢酸ビニルを供給するだけで除熱効率を向上させられることが明らかとなった。
 熱交換器の構造は特に限定されないが、熱交換器と酢酸ビニルとの接触面積が大きく、しかも酢酸ビニルとエチレンガスとの接触面積も大きいことが好ましいことから、濡壁式熱交換器であることが好ましい。これによって、壁の表面を薄い厚みで流下する酢酸ビニルの熱を効果的に奪うことが可能であるとともに、酢酸ビニルの表面においてエチレンガスが効率的に凝縮し溶解する。壁の形状は特に限定されないが、多数のパイプの中を酢酸ビニルが流下する形態が好ましい。パイプの本数、径、長さなどは求められる除熱量などを考慮して設定することができる。
 熱交換器の中での酢酸ビニルとエチレンの接触方法には、並流接触方式と向流接触方式の両方の方式が考えられる。並流接触方式は、熱交換器の上部にエチレンを含む加圧気体を供給し、該熱交換器の中でエチレンを含む加圧気体と酢酸ビニルとを並流接触させる方式である。また、向流接触方式は、熱交換器の下部にエチレンを含む加圧気体を供給し、該熱交換器の中で、エチレンを含む加圧気体と酢酸ビニルとを向流接触させる方式である。以下、それぞれにつき説明する。
 並流接触方式では、熱交換器の上部に、エチレンを含む加圧気体と酢酸ビニルの両方を導入する。そして、両者がともに下方に向けて進行しながらエチレンが酢酸ビニルに吸収される。進行方向が同じなので、ガスが酢酸ビニルを上方に押し上げて逆流する、いわゆるフラッディング現象を生じることなく、安定的な運転を維持することが容易である。しかも、向流接触方式に比べて酢酸ビニルを冷却することによる除熱効率の向上が顕著であり、本発明の方法を採用するメリットが大きい。
 一方、向流接触方式では、熱交換器の上部に酢酸ビニルを供給し、熱交換器の下部にエチレンを含む加圧気体を導入する。そして、酢酸ビニルが下方に向けて流下しているときに、上方に進行するエチレンガスが酢酸ビニルに吸収される。それぞれが逆方向に進行するので、フラッディング現象を生じるおそれがある。また、重合槽内の圧力が高いときは、熱交換器に流入するガス量が多くなって反応液の飛沫を同伴し、熱交換器内にスケールが付着するおそれがあるが、向流接触方式は並流接触方式より、そのようなスケールが付着しにくくなり好ましい。
 本発明のEVAの製造方法は、熱交換器の底部からエチレンが溶解した酢酸ビニルを導出し、前記重合槽内の反応液に加える工程を有する。エチレンが溶解した低温の酢酸ビニルを反応液に加えることで、反応液を冷却するとともに、反応液にエチレンを溶解させる。そして反応液に溶解したエチレンが蒸発する際に反応液から蒸発潜熱を奪い、反応液から熱を除くことができる。こうして反応温度を一定に維持することができる。エチレン含有酢酸ビニルの温度は、好適には-10~40℃である。当該温度は、より好適には-5℃以上であり、30℃以下である。
 本発明のEVAの製造方法は、重合槽から反応液を取り出す工程を有する。上記のように、重合槽内の反応液には、エチレン、酢酸ビニル、重合開始剤及びメタノールが連続的に供給され、エチレンと酢酸ビニルが消費されてEVAが製造される。所定の重合率を有する反応液は重合槽から連続的に取り出される。酢酸ビニルの重合率は、生産効率と重合度などを考慮して設定されるが、25~60%であることが好ましく、30~50%であることがより好ましい。
 得られるEVAのエチレン含有量は15~55モル%であることが好ましい。重合槽内のエチレン圧力が高いと高エチレン含有量のEVAが得られ、重合槽内のエチレン圧力が低いと低エチレン含有量のEVAが得られる。EVAをけん化して得られるEVOHにおいて、エチレン含有量が低い場合には、ガスバリア性は良好になるが成形性は低下する。逆に、エチレン含有量が高い場合には、ガスバリア性は低下するが成形性は良好になる。したがってEVOHの用途などを考慮して好ましいエチレン含有量に調整する必要がある。エチレン含有量が45モル%以下であることがより好ましく、40モル%以下であることがさらに好ましく、35モル%以下であることが特に好ましい。一方、除熱効率を考慮すれば、エチレン含有量が高い方が有利であり、エチレン含有量が20モル%以上であることがより好ましく、25モル%以上であることがさらに好ましい。
 得られるEVAの重合度は500~2000であることが好ましい。EVOHに要求される成形性や強度などを考慮して適当に設定される。EVAの重合度は好適には600以上であり、より好適には700以上である。また、EVAの重合度は好適には1600以下であり、より好適には1200以下である。反応液中のメタノール含有量が多いと重合度が低くなり、逆にメタノール含有量が少ないと重合度が高くなるので、反応液中のメタノールの含有量を調整することによって、得られるEVAの重合度を調整することができる。
 こうして得られたEVAは、そのまま各種の用途に用いても構わないが、これをけん化してEVOHを製造することが好ましい。けん化の方法は特に限定されず、アルカリ触媒の存在のもとで加水分解させる公知の方法が採用できる。
 以下、具体的な重合装置とそれを用いた重合方法について、図を参照しながら説明する。図1は、実施例1で用いた装置の概略図であり、酢酸ビニルとエチレンとが熱交換器内で並流接触することができる装置である。
 重合槽1に、複数の導管5、6、7が接続されている。導管の本数や配置は図示した形態に限らない。これらの導管を通して、エチレン、重合開始剤及びメタノールが重合槽1に供給される。場合によっては、酢酸ビニルの一部や他の単量体を、これらの導管を通して供給することもできる。反応溶液の均一性を確保するために、撹拌機8を重合槽1内に設置して反応液を撹拌することが好ましい。重合槽1内の反応液は、重合槽1の底部に接続された反応液導出管9から連続的に排出される。重合槽1の周囲は冷却水が循環するジャケット(図示せず)で覆われている。
 熱交換器2には、酢酸ビニル導入管10が接続されており、これを通して酢酸ビニルが熱交換器2の上部に供給される。除熱効率の観点からは、重合槽1に供給される酢酸ビニルの全量を、酢酸ビニル導入管10から熱交換器2を経由させて供給することが好ましいが、本発明の効果を阻害しない範囲内であれば、重合槽1に直結した導管5、6、7から一部の酢酸ビニルを直接重合槽1内に供給しても構わない。
 熱交換器2には、冷媒管11、12が接続されている。管の位置は図示した形態に限らないが、冷媒は、熱交換器2の下部に接続された冷媒管12から供給し、熱交換器2の上部に接続された冷媒管11から排出するのが好ましい。このように接続することによって、酢酸ビニルを効率的に冷却することができ、反応液からの除熱効率がよい。冷却媒体は特に限定されず、メタノール、エタノール、エチレングリコール、グリセリンなどのアルコール水溶液、食塩や塩化カルシウムの水溶液、フロンなどを用いることができる。取扱いの容易さやコストなどの理由から、アルコール水溶液、特にメタノール水溶液が好適に用いられる。
 熱交換器2から気体を排出するための気体排出管13が熱交換器2の下部に接続されている。この気体排出管13には、ミスト分離器(図示せず)が接続されていてもよい。排出された気体中の液滴は、ミスト分離器により除去され、ミストがないエチレンを回収または放出できる。ミスト分離器は、重力・遠心力・静電気力といった外力、または、遮りもしくは篩効果を利用して気体中に浮遊している液滴を分離する装置である。ミスト分離器としては、重力沈降器、サイクロン、電気集塵機、スクラバー、バグフィルター、充填層が挙げられる。これらの中でも、サイクロンが好ましい。
 2本の導管3、4が重合槽1と熱交換器2とを接続している。エチレン含有ガスは重合槽1から導管3を通って熱交換器2の上部へと導入され、エチレンを吸収した酢酸ビニルは熱交換器2の下部から導管4を通って重合槽1へと導入される。
 原料の酢酸ビニルは、酢酸ビニル導入管10を通して熱交換器2へ供給される。熱交換器2の上部に供給された酢酸ビニルは、熱交換器2を通過しながらエチレンを吸収する。酢酸ビニルがエチレンを吸収することによって、重合熱が効果的に除去される。このとき、温度が-50~23℃に冷却された酢酸ビニルを供給することが重要である。予め冷却された酢酸ビニルを供給することによって、熱交換器2において効率よく除熱することが可能である。
 エチレン含有ガスは、熱交換器2の上部に接続された導管3を通して熱交換器2へと導入される。熱交換器側の導管3及び酢酸ビニル導入管10は、熱交換器2の上部に接続される。導管3を熱交換器の上部に接続することにより、エチレン含有ガスの供給量が増加した場合であっても、酢酸ビニルのフラッディングを抑制することができる。こうして、エチレン含有ガスは、酢酸ビニルと接触しながら、この含有液と並行して熱交換器2内を下降していく。その結果、ガス中のエチレンが酢酸ビニルに溶解する。
 エチレンを吸収した酢酸ビニル含有液は、導管4を通して重合槽1へ導入される。そして、反応液からエチレンが蒸発し、重合熱を除去することができる。連続製造の場合は、エチレンは、重合槽1、熱交換器2および導管3、4を循環する。エチレンの一部はEVAに含まれて反応液導出管9から排出されるので、重合槽1に接続されたエチレン供給源から、導管5、6、7の少なくとも1つを介して補充される。
 図2は、実施例2で用いた装置の概略図であり、酢酸ビニルとエチレンとが熱交換器内で向流接触することができる装置である。多くの部分は、図1で示される並流接触方式の装置と共通するので、以下では、相違点のみを説明する。
 2本の導管3、4が重合槽1と熱交換器2とを接続しているが、導管3が熱交換器2に接続される位置が図1の装置と相違する。これにより、エチレン含有ガスは重合槽1から導管3を通って熱交換器2の下部へと導入され、エチレンを吸収した酢酸ビニル含有液は熱交換器2の下部から導管4を通って重合槽1へと導入される。導管3を熱交換器の下部に接続することにより、エチレン含有ガスは熱交換器内を上昇しながら、流下する酢酸ビニル含有液と向流接触し、ガス中のエチレンが酢酸ビニル含有液に溶解する。また、熱交換器2から気体を排出するための気体排出管13が熱交換器2の上部に接続されている。
実施例1
 図1に示す並流接触式の重合装置を用いて、EVAを連続的に製造した。内容積が750Lの重合槽1と、伝熱面積が4m、管数が10本の縦型濡壁多管式熱交換器2とを準備した。以下は、-20℃の酢酸ビニルを供給し、エチレン含有量24.0モル%で重合度1080のEVAを製造した時の例である。
 重合槽1内の圧力が2.9MPaに維持されるように、加圧したエチレンを導管5から重合槽1に供給した。重合槽1内の圧力を調整することによって、得られるEVAのエチレン含有量を制御することができる。導管6から、重合開始剤の2,2’-アゾビス-(4-メトキシ-2,4-ジメチルバレロニトリル)を、3g/hrの速度でメタノール溶液として重合槽1に導入した。また、導管7からは、メタノールを重合槽1に導入した。メタノールの導入速度は、導管6及び導管7からの導入速度の合計で6.2kg/hrである。反応液中のメタノールの含有量を調整することによって、重合度を制御することができる。
 -20℃に冷却した酢酸ビニル(VAc)を、酢酸ビニル導入管10と熱交換器2とを介して、70.6kg/hrの速度で重合槽1に供給した。重合槽1内のエチレン含有ガスを、導管3を介して熱交換器2へと導入した。酢酸ビニルは、熱交換器2内において、エチレン含有ガスと同一方向に管の表面に沿って流下した。流下後にエチレンを吸収した酢酸ビニルの温度は8℃であり、エチレン含有酢酸ビニルが導管4を介して重合槽1に導入されて反応液と混合された。反応液中では、エチレンと酢酸ビニルが連続的に重合され、導管9よりEVAを含む重合溶液を連続して得た。重合槽1内の反応液の温度は60℃に維持された。
 反応中、冷却媒体として-5℃の30重量%メタノール水溶液を導管12から供給し、導管11から排出した。熱交換器2において、冷却媒体は酢酸ビニルと逆方向に流れるように供給した。熱交換器2により除去した熱量は、6803kcal/hrであった。また、重合槽1を覆うジャケットに冷却水を循環させて、重合槽1の外側からも冷却した。この冷却水の循環速度は常に一定である。得られた重合溶液中の酢酸ビニルの重合率は40%であった。また、得られたエチレン-酢酸ビニル共重合体(EVA)のエチレン含有量は24.0モル%であり、重合度は1080であった。これらの結果をまとめて表1に示す。
 表1の実施例1に示すように、導管10から供給する酢酸ビニルの温度を、0℃、5℃、10℃、20℃及び25℃に変化させて、上記と同様の試験を行った。その際、重合槽1内の反応液の温度は60℃に維持するとともに、導管4から重合槽1に注ぎ込まれるエチレン含有酢酸ビニルの温度は8℃に維持した。その上で、酢酸ビニルの重合率が40%となり、エチレン含有量が24.0モル%で重合度が1080のEVAが得られるように、各種の条件を調整した。重合開始剤の導入量は、酢酸ビニルの供給量の2乗に比例して変更した。導管12から供給される冷媒の循環速度と、導管10から導入される酢酸ビニルの量を制御することによって、重合槽1に導入されるエチレン含有酢酸ビニルの温度を8℃に保ち、重合槽の温度を60℃に保った。その結果、表1に示される量の酢酸ビニルが導管10から供給され、熱交換器2において、表1に示される熱量が除去された。
 実施例1の結果からわかるように、導管10から供給する酢酸ビニルの温度を下げることによって、酢酸ビニルの供給量を増加させることができるとともに、熱交換器2における除熱量を大きく増加させることができた。供給する酢酸ビニルの温度を25℃から-20℃に低下させることによって、除熱量が3453kcal/hrから6803kcal/hrへと顕著に増加した。25℃の酢酸ビニルを供給した時と-20℃の酢酸ビニルを供給した時との除熱量差(A)は3351kcal/hrであった。ここで、導管10から供給する酢酸ビニルの温度を下げることによって、予め除熱されている熱量差(B)は1359kcal/hrであるから、これらの差((A)-(B))の1992kcal/hrが、供給する酢酸ビニルの温度を下げることによる、実質的な除熱量の増加である。このように、供給する酢酸ビニルの温度を下げることによって、除熱量を顕著に増加させられることが明らかになった。しかも、酢酸ビニルの供給量は36.1kg/hrから70.6kg/hrに大きく増加しており、生産性を顕著に向上させることもできた。
実施例2~8
 実施例1と同様にして、表1及び表2に示すエチレン含有量及び重合度を有するEVAを重合した。冷媒温度は-5℃に、重合温度は60℃に、それぞれ固定した。酢酸ビニルの重合率、及びエチレン含有酢酸ビニルの温度を表1及び表2に示す値にして、導管10から供給する酢酸ビニルの温度を、-20℃、0℃、5℃、10℃、20℃及び25℃に変化させた。それぞれの条件における、重合槽1内の圧力、酢酸ビニル供給量、及び除熱量を表1及び表2にまとめて示す。異なるエチレン含有量及び重合度を有するEVAを重合した場合であっても、供給する酢酸ビニルの温度を下げることによって、除熱量が顕著に増加するとともに、生産性も顕著に向上することがわかった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
実施例9
 図2に示す向流接触式の重合装置を用いて、EVAを連続的に製造した。当該実験装置は、実施例1で用いた並流接触式の製造装置において、導管3及び気体排出管13が熱交換器2に接続される位置が異なる以外は同じ仕様の装置である。以下は、-20℃の酢酸ビニルを導入し、エチレン含有量24.0モル%で重合度1080のEVAを製造した時の例である。
 重合槽1内の圧力が2.9MPaに維持されるように、加圧したエチレンを導管5から重合槽1に供給した。重合槽1内の圧力を調整することによって、得られるEVAのエチレン含有量を制御することができる。導管6から、重合開始剤の2,2’-アゾビス-(4-メトキシ-2,4-ジメチルバレロニトリル)を、3g/hrの速度でメタノール溶液として重合槽1に導入した。また、導管7からは、メタノールを重合槽1に導入した。メタノールの導入速度は、導管6及び導管7からの導入速度の合計で4.4kg/hrである。反応液中のメタノールの含有量を調整することによって、重合度を制御することができる。
 -20℃に冷却した酢酸ビニル(VAc)を、酢酸ビニル導入管10と熱交換器2とを介して、75.0kg/hrの速度で重合槽1に供給した。重合槽1内のエチレン含有ガスを、導管3を介して熱交換器2へと導入した。酢酸ビニルは、熱交換器2内において、エチレン含有ガスの流れと逆の方向に管の表面に沿って流下した。流下後にエチレンを吸収した酢酸ビニルの温度は2℃であり、エチレン含有酢酸ビニルが導管4を介して重合槽1に導入されて反応液と混合された。反応液中では、エチレンと酢酸ビニルが連続的に重合され、導管9よりEVAを含む重合溶液を連続して得た。重合槽1内の反応液の温度は60℃に維持された。
 反応中、冷却媒体として-5℃の30重量%メタノール水溶液を導管12から供給し、導管11から排出した。熱交換器2において、冷却媒体は酢酸ビニルと逆方向に流れるように供給した。熱交換器2により除去した熱量は、5647kcal/hrであった。また、重合槽1を覆うジャケットに冷却水を循環させて、重合槽1の外側からも冷却した。この冷却水の循環速度は常に一定である。得られた重合溶液中の酢酸ビニルの重合率は40%であった。また、得られたエチレン-酢酸ビニル共重合体(EVA)のエチレン含有量は24.0モル%であり、重合度は1080であった。
 表3の実施例9に示すように、導管10から供給する酢酸ビニルの温度を、0℃、5℃、10℃、20℃及び25℃に変化させて、上記と同様の試験を行った。その際、重合槽1内の反応液の温度は60℃に維持するとともに、導管4から重合槽1に注ぎ込まれるエチレン含有酢酸ビニルの温度は2℃に維持した。その上で、酢酸ビニルの重合率が40%となり、エチレン含有量が24.0モル%で重合度が1080のEVAが得られるように、各種の条件を調整した。重合開始剤の導入量は、酢酸ビニルの供給量に比例して変更した。導管12から供給される冷媒の循環速度と、導管10から供給される酢酸ビニルの量を制御することによって、重合槽1に供給されるエチレン含有酢酸ビニルの温度を2℃に保ち、重合槽の温度を60℃に保った。その結果、表3に示される量の酢酸ビニルが導管10から供給され、熱交換器2において、表3に示される熱量が除去された。
 実施例9の結果からわかるように、導管10から供給する酢酸ビニルの温度を下げることによって、酢酸ビニルの供給量を増加させることができるとともに、熱交換器2における除熱量も増加させることができた。供給する酢酸ビニルの温度を25℃から-20℃に低下させることによって、除熱量が3847kcal/hrから5647kcal/hrへと増加した。25℃の酢酸ビニルを供給した時と-20℃の酢酸ビニルを供給した時との除熱量差(A)は1800kcal/hrであった。ここで、導管10から供給する酢酸ビニルの温度を下げることによって、予め除熱されている熱量差(B)は1445kcal/hrであるから、これらの差((A)-(B))の355kcal/hrが、供給する酢酸ビニルの温度を下げることによる、実質的な除熱量の増加である。このように、供給する酢酸ビニルの温度を下げることによって、除熱量を増加させられることが明らかになった。しかも、酢酸ビニルの供給量は51.4kg/hrから75.0kg/hrに増加しており、生産性を向上させることもできた。
実施例10~16
 実施例9と同様にして、表3及び表4に示すエチレン含有量及び重合度を有するEVAを重合した。冷媒温度は-5℃に、重合温度は60℃に、それぞれ固定した。酢酸ビニルの重合率、及びエチレン含有酢酸ビニルの温度を表3及び表4に示す値にして、導管10から供給する酢酸ビニルの温度を、-20℃、0℃、5℃、10℃、20℃及び25℃に変化させた。それぞれの条件における、重合槽1内の圧力、酢酸ビニル供給量、及び除熱量を表3及び表4にまとめて示す。異なるエチレン含有量及び重合度を有するEVAを重合した場合であっても、供給する酢酸ビニルの温度を下げることによって、除熱量が増加するとともに、生産性も向上することがわかった。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1~4を対比すれば分かるように、酢酸ビニルの温度が25℃の場合と比べた実質的な除熱量の差((A)-(B))は、並流接触式の重合装置の方が向流接触式の重合装置よりも大きい。したがって、並流式の重合装置の方が、向流式の重合装置よりも、酢酸ビニルを低温にして供給する利益が大きいことがわかる。
 1 重合槽
 2 熱交換器
 3~7 導管
 8 撹拌機
 9 反応液導出管
 10 酢酸ビニル導入管
 11、12 冷媒管
 13 気体排出管
 
 

Claims (6)

  1.  冷媒が循環する熱交換器が配管を介して接続され、エチレン、酢酸ビニル、重合開始剤及びメタノールを含む反応液が収容された重合槽の中でエチレン-酢酸ビニル共重合体を連続的に製造する方法であって;
     前記重合槽に、エチレン、重合開始剤及びメタノールを供給する工程、
     前記重合槽の気相部に存在する、エチレンを含む加圧気体を前記熱交換器に導入する工程、
     前記熱交換器の上部に-50~23℃に冷却された酢酸ビニルを供給する工程、
     前記熱交換器の中で、酢酸ビニルがエチレンを吸収しながら流下する工程、
     前記熱交換器の底部からエチレンが溶解した酢酸ビニルを導出し、前記重合槽内の反応液に加える工程、及び
     前記重合槽から反応液を取り出す工程、を含むことを特徴とするエチレン-酢酸ビニル共重合体の製造方法。
  2.  前記熱交換器の上部に-50~10℃に冷却された酢酸ビニルを供給する請求項1に記載の製造方法。
  3.  前記熱交換器の上部にエチレンを含む加圧気体を供給し、該熱交換器の中で、エチレンを含む加圧気体と酢酸ビニルとを並流接触させる請求項1又は2に記載の製造方法。
  4.  前記熱交換器の下部にエチレンを含む加圧気体を供給し、該熱交換器の中で、エチレンを含む加圧気体と酢酸ビニルとを向流接触させる請求項1又は2に記載の製造方法。
  5.  得られるエチレン-酢酸ビニル共重合体のエチレン含有量が15~55モル%である請求項1~4のいずれかに記載の製造方法。
  6.  前記熱交換器が濡壁式熱交換器である請求項1~5のいずれかに記載の製造方法。
     
     
PCT/JP2019/021253 2018-05-30 2019-05-29 エチレン-酢酸ビニル共重合体の製造方法 WO2019230781A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201980002312.7A CN110709434B (zh) 2018-05-30 2019-05-29 乙烯-乙酸乙烯酯共聚物的制备方法
EP19811661.8A EP3805280A4 (en) 2018-05-30 2019-05-29 PROCESS FOR PRODUCTION OF ETHYLENE VINYL ACETATE COPOLYMER
US17/059,566 US11535685B2 (en) 2018-05-30 2019-05-29 Method for producing ethylene-vinyl acetate copolymer
JP2019548496A JP6608573B1 (ja) 2018-05-30 2019-05-29 エチレン−酢酸ビニル共重合体の製造方法
SG11202011826UA SG11202011826UA (en) 2018-05-30 2019-05-29 Method for producing ethylene-vinyl acetate copolymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-104045 2018-05-30
JP2018104045 2018-05-30

Publications (1)

Publication Number Publication Date
WO2019230781A1 true WO2019230781A1 (ja) 2019-12-05

Family

ID=68698209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021253 WO2019230781A1 (ja) 2018-05-30 2019-05-29 エチレン-酢酸ビニル共重合体の製造方法

Country Status (5)

Country Link
US (1) US11535685B2 (ja)
CN (1) CN110709434B (ja)
SG (1) SG11202011826UA (ja)
TW (1) TWI810303B (ja)
WO (1) WO2019230781A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114181333B (zh) * 2020-09-15 2024-01-26 中国石油化工股份有限公司 一种制备乙烯-醋酸乙烯醇共聚物的方法和装置
CN113105574A (zh) * 2021-04-12 2021-07-13 江苏斯尔邦石化有限公司 一种乙烯-醋酸乙烯酯共聚物及其制备方法和应用
CN113980158A (zh) * 2021-10-19 2022-01-28 中国石油化工股份有限公司 一种低压条件下epva聚合以及撤热设备
CN114230700B (zh) * 2022-01-07 2022-10-04 云南正邦科技有限公司 一种中低压溶液聚合制备高乙烯含量eva共聚物的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6053513A (ja) 1983-09-01 1985-03-27 Kuraray Co Ltd エチレン−酢酸ビニル共重合体の連続製造法
JPH08231643A (ja) * 1994-12-26 1996-09-10 Mitsui Toatsu Chem Inc アクリロニトリル系(共)重合体の製造方法
JPH11116637A (ja) 1997-10-09 1999-04-27 Nippon Synthetic Chem Ind Co Ltd:The エチレン−酢酸ビニル共重合体の重合法
JP2000198803A (ja) * 1999-01-08 2000-07-18 Nippon Synthetic Chem Ind Co Ltd:The エチレン―酢酸ビニル共重合体の製造法
JP2002128807A (ja) 2000-10-27 2002-05-09 Nippon Synthetic Chem Ind Co Ltd:The エチレン−酢酸ビニル共重合体の製造方法
JP2002338607A (ja) 2001-03-16 2002-11-27 Kuraray Co Ltd エチレン−酢酸ビニル共重合体の製造方法および製造装置
JP2002356517A (ja) 2001-03-30 2002-12-13 Kuraray Co Ltd エチレン−酢酸ビニル共重合体の製造方法および製造装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2300111C3 (de) * 1973-01-03 1984-10-25 Basf Ag, 6700 Ludwigshafen Verfahren zur Abführung der Reaktionswärme bei der Copolymerisation des Äthylens in wäßriger Dispersion
FR2698368B1 (fr) * 1992-11-26 1995-01-06 Atochem Elf Sa Procédé de préparation de copolymères éthylène-acétate de vinyle de faible masse molaire.
TW366351B (en) 1994-12-26 1999-08-11 Mitsui Chemicals Inc Production process of acrylonitrile (co)polymers
EP1241192B1 (en) * 2001-03-16 2005-10-26 Kuraray Co., Ltd. Method for manufacturing ethylene-vinyl acetate copolymer
ATE403683T1 (de) 2001-03-30 2008-08-15 Kuraray Co Verfahren zur herstellung eines ethylen- vinylacetat copolymeren und vorrichtung zu seiner herstellung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6053513A (ja) 1983-09-01 1985-03-27 Kuraray Co Ltd エチレン−酢酸ビニル共重合体の連続製造法
JPH08231643A (ja) * 1994-12-26 1996-09-10 Mitsui Toatsu Chem Inc アクリロニトリル系(共)重合体の製造方法
JPH11116637A (ja) 1997-10-09 1999-04-27 Nippon Synthetic Chem Ind Co Ltd:The エチレン−酢酸ビニル共重合体の重合法
JP2000198803A (ja) * 1999-01-08 2000-07-18 Nippon Synthetic Chem Ind Co Ltd:The エチレン―酢酸ビニル共重合体の製造法
JP2002128807A (ja) 2000-10-27 2002-05-09 Nippon Synthetic Chem Ind Co Ltd:The エチレン−酢酸ビニル共重合体の製造方法
JP2002338607A (ja) 2001-03-16 2002-11-27 Kuraray Co Ltd エチレン−酢酸ビニル共重合体の製造方法および製造装置
JP2002356517A (ja) 2001-03-30 2002-12-13 Kuraray Co Ltd エチレン−酢酸ビニル共重合体の製造方法および製造装置

Also Published As

Publication number Publication date
CN110709434B (zh) 2021-04-06
SG11202011826UA (en) 2020-12-30
US11535685B2 (en) 2022-12-27
TWI810303B (zh) 2023-08-01
TW202003589A (zh) 2020-01-16
CN110709434A (zh) 2020-01-17
US20210230314A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
WO2019230781A1 (ja) エチレン-酢酸ビニル共重合体の製造方法
JPS6411642B2 (ja)
JPH0252922B2 (ja)
RU2701923C2 (ru) Устройство для полимеризации олефинов и способ полимеризации олефинов
BR112016011149B1 (pt) processo para separação de componentes poliméricos e gasosos de uma mistura de reação e processo para preparação de homopolímeros ou copolímeros de etileno
JP6608573B1 (ja) エチレン−酢酸ビニル共重合体の製造方法
BR112018000630B1 (pt) Processo para homopolimerizar ou copolimerizar etileno com um ou mais outros monômeros na presença de iniciadores de polimerização por radical livre
US4528337A (en) Process and apparatus for manufacturing vinyl chloride polymers
EP1241192B1 (en) Method for manufacturing ethylene-vinyl acetate copolymer
US3793259A (en) Continuous bulk polymerization of vinyl chloride
JP2002194009A (ja) エチレン−酢酸ビニル共重合体の製造方法と、この方法により得た共重合体のけん化物およびこれを含む成形物
JP4213394B2 (ja) エチレン−酢酸ビニル共重合体の製造方法および製造装置
JP4559400B2 (ja) エチレン−酢酸ビニル共重合体の製造方法および製造装置
US20160017116A1 (en) Bulk pvc composition, bulk pvc polymerization method and apparatus
EP1245595B1 (en) Method for manufacturing ethylene-vinyl acetate copolymer and apparatus for manufacturing the same
JP3759467B2 (ja) エチレン−酢酸ビニル共重合体の製造方法および製造装置
JP5019778B2 (ja) 塩化ビニル系重合体の製造方法
US20090118444A1 (en) Process for the polymerisation of vinyl-containing monomers
US20080281057A1 (en) Process For the Polymerisation of Vinyl-Containing Monomers
KR20130025515A (ko) 현탁 중합에 의한 염화비닐 중합체의 제조방법 및 이에 사용되는 장치
CN109312016A (zh) 烯烃单体回收装置
JP2006002165A (ja) エチレン−酢酸ビニル共重合体の製造方法および製造装置
JP2000017007A (ja) 塩化ビニル系樹脂の製造方法
KR20140046632A (ko) 현탁 중합에 의한 염화비닐 중합체의 반응 중 비상 정지 방법 및 이에 사용되는 장치
JPH10120707A (ja) 塩化ビニル系樹脂の重合方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019548496

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019811661

Country of ref document: EP

Effective date: 20210111