WO2019230101A1 - 正極活物質およびそれを備えた電池 - Google Patents

正極活物質およびそれを備えた電池 Download PDF

Info

Publication number
WO2019230101A1
WO2019230101A1 PCT/JP2019/008784 JP2019008784W WO2019230101A1 WO 2019230101 A1 WO2019230101 A1 WO 2019230101A1 JP 2019008784 W JP2019008784 W JP 2019008784W WO 2019230101 A1 WO2019230101 A1 WO 2019230101A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
positive electrode
electrode active
composite oxide
battery
Prior art date
Application number
PCT/JP2019/008784
Other languages
English (en)
French (fr)
Inventor
竜一 夏井
名倉 健祐
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020521714A priority Critical patent/JP7162274B2/ja
Publication of WO2019230101A1 publication Critical patent/WO2019230101A1/ja
Priority to US17/089,670 priority patent/US11955622B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/006Compounds containing, besides manganese, two or more other elements, with the exception of oxygen or hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/74Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by peak-intensities or a ratio thereof only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a positive electrode active material and a battery including the same.
  • Patent Document 1 discloses a lithium composite transition metal oxide having a chemical composition represented by a general formula Li a MO x (where M is an element including at least one element selected from Ni element, Co element, and Mn element). It is disclosed.
  • the crystal structure of the space group C2 / m with respect to the integrated intensity (I 003 ) of the (003) plane peak attributed to the crystal structure of the space group R-3m in the X-ray diffraction pattern The ratio (I 020 / I 003 ) of the integrated intensity (I 020 ) of the peak on the (020) plane belonging to is 0.02 to 0.3.
  • An object of the present disclosure is to provide a positive electrode active material used for a battery having a high capacity.
  • the positive electrode active material according to the present disclosure is Including lithium composite oxide, here,
  • the lithium composite oxide is a multiphase mixture including a first phase having a crystal structure belonging to the space group C2 / m and a second phase having a crystal structure belonging to the space group R-3m,
  • the lithium composite oxide contains at least one selected from the group consisting of F, Cl, N, and S, and the following formula (I) 0.05 ⁇ Integral intensity ratio I (20 ° -23 °) / I (18 ° -20 °) ⁇ 0.26 (I) Positive electrode active material that satisfies here,
  • the integrated intensity ratio I (20 ° -23 °) / I (18 ° -20 °) is equal to the ratio of the integrated intensity I (20 ° -23 °) to the integrated intensity I (18 ° -20 °)
  • the integrated intensity I (18 ° -20 °) is the integrated intensity of the first maximum peak existing in the diffraction angle 2 ⁇ range of 18 ° to 20 ° in
  • This disclosure provides a positive electrode active material for realizing a high-capacity battery.
  • the present disclosure also provides a battery including a positive electrode, a negative electrode, and an electrolyte containing the positive electrode active material.
  • the battery has a high capacity.
  • FIG. 1 shows a cross-sectional view of a battery 10 in the second embodiment.
  • FIG. 2 is a graph showing the X-ray diffraction patterns of the positive electrode active materials of Example 1, Example 8, Comparative Example 1, and Comparative Example 2.
  • the positive electrode active material in Embodiment 1 is Including lithium composite oxide, here,
  • the lithium composite oxide is a multiphase mixture including a first phase having a crystal structure belonging to the space group C2 / m and a second phase having a crystal structure belonging to the space group R-3m,
  • the lithium composite oxide contains at least one selected from the group consisting of F, Cl, N, and S, and the following formula (I) 0.05 ⁇ Integral intensity ratio I (20 ° -23 °) / I (18 ° -20 °) ⁇ 0.26 (I) Positive electrode active material that satisfies here,
  • the integrated intensity ratio I (20 ° -23 °) / I (18 ° -20 °) is equal to the ratio of the integrated intensity I (20 ° -23 °) to the integrated intensity I (18 ° -20 °)
  • the integrated intensity I (18 ° -20 °) is the integrated intensity of the first maximum peak existing in the diffraction angle 2 ⁇ range of 18 ° to 20 °
  • the positive electrode active material according to Embodiment 1 is used to improve battery capacity.
  • the lithium ion battery including the positive electrode active material in Embodiment 1 has a redox potential (Li / Li + standard) of about 3.4 V.
  • the lithium ion battery generally has a capacity of 260 mAh / g or more.
  • the lithium composite oxide in Embodiment 1 includes a first phase having a crystal structure belonging to space group C2 / m and a second phase having a crystal structure belonging to space group R-3m.
  • the crystal structure belonging to the space group C2 / m has a structure in which Li layers and transition metal layers are alternately stacked.
  • the transition metal layer may contain not only the transition metal but also Li. Therefore, a larger amount of Li is occluded in the crystal structure belonging to the space group C2 / m than in LiCoO 2 which is a commonly used conventional material.
  • the transition metal layer is formed only from a crystal structure belonging to the space group C2 / m, the Li migration barrier in the transition metal layer is high (that is, the diffusibility of Li is low), so that the capacity decreases during rapid charging. It is thought that it will end.
  • the crystal structure belonging to the space group R-3m has a two-dimensional Li diffusion path. Therefore, the crystal structure belonging to the space group R-3m has high Li diffusibility.
  • the lithium composite oxide in Embodiment 1 includes both a crystal structure belonging to the space group C2 / m and a crystal structure belonging to the space group R-3m, a high-capacity battery can be realized.
  • the battery is considered suitable for rapid charging.
  • a plurality of regions composed of the first phase and a plurality of regions composed of the second phase may be randomly arranged three-dimensionally.
  • the three-dimensional random array expands the three-dimensional diffusion path of Li, a larger amount of lithium can be inserted and desorbed. As a result, the capacity of the battery is improved.
  • the lithium composite oxide in the first embodiment is a multiphase mixture.
  • a layer structure including a bulk layer and a coat layer covering the bulk layer does not correspond to the multiphase mixture in the present disclosure.
  • a multiphase mixture means a substance containing a plurality of phases. A plurality of materials corresponding to these phases may be mixed during the production of the lithium composite oxide.
  • the lithium composite oxide is a multiphase mixture can be determined by an X-ray diffraction measurement method and an electron beam diffraction measurement method, as will be described later. Specifically, if the spectrum of the lithium composite oxide obtained by the X-ray diffraction measurement method and the electron beam diffraction measurement method includes peaks indicating characteristics of a plurality of phases, the lithium composite oxide is a multiphase mixture. It is determined that
  • the integrated intensity ratio I (20 ° -23 °) / I (18 ° -20 °) is equal to the ratio of the integrated intensity I (20 ° -23 °) to the integrated intensity I (18 ° -20 °)
  • the integrated intensity I (18 ° -20 °) is the integrated intensity of the first maximum peak existing in the diffraction angle 2 ⁇ range of 18 ° to 20 ° in the X-ray diffraction pattern of the lithium composite oxide.
  • the integrated intensity I (20 ° -23 °) is the integrated intensity of the second maximum peak existing in the range of the diffraction angle 2 ⁇ of 20 ° to 23 ° in the X-ray diffraction pattern of the lithium composite oxide. .
  • the integrated intensity ratio I (20 ° -23 °) / I (18 ° -20 °) is an index of the abundance ratio between the first phase and the second phase in the lithium composite oxide of the first embodiment. Is a parameter that can be used as As the abundance ratio of the first phase increases, the integrated intensity ratio I (20 ° -23 °) / I (18 ° -20 °) is considered to increase. On the other hand, when the abundance ratio of the second phase increases, the integrated intensity ratio I (20 ° -23 °) / I (18 ° -20 °) is considered to decrease.
  • the lithium composite oxide in Embodiment 1 has the first phase and the second phase, and has an integrated intensity ratio I (20 ° -23 °) / less than 0.05 and less than 0.26. Since it has I (18 ° -20 °) , it is possible to insert and desorb much Li. Therefore, the lithium composite oxide in Embodiment 1 is considered to have high Li diffusibility. The battery having the lithium composite oxide in Embodiment 1 is considered to have a high capacity.
  • the integrated intensity ratio I (20 ° -23 °) / I (18 ° -20 °) may be 0.09 or more and 0.14 or less.
  • a positive electrode active material having an integrated intensity ratio of 0.09 or more and 0.14 or less further improves the capacity.
  • the lithium composite oxide in Embodiment 1 includes at least one selected from the group consisting of F, Cl, N, and S.
  • the crystal structure of the lithium composite oxide is stabilized by the at least one element.
  • a part of the oxygen atom of the lithium composite oxide may be replaced by an electrochemically inactive anion.
  • part of the oxygen atom may be substituted with at least one anion selected from the group consisting of F, Cl, N, and S.
  • This substitution is considered to further stabilize the crystal structure of the lithium composite oxide in Embodiment 1.
  • An example of an anion having an ionic radius larger than that of the oxygen anion is at least one anion selected from the group consisting of F, Cl, N, and S.
  • an anion having an ionic radius larger than that of the oxygen anion is at least one anion selected from the group consisting of F, Cl, N, and S.
  • the lithium composite oxide in Embodiment 1 does not contain any element of F, Cl, N, or S
  • the amount of oxygen redox increases.
  • the crystal structure tends to become unstable due to oxygen desorption. Thereby, it is considered that the capacity or the cycle characteristics deteriorates.
  • the lithium composite oxide in Embodiment 1 may contain F.
  • Fluorine atoms have high electronegativity, and by substituting a part of oxygen with fluorine atoms, the interaction between cations and anions increases, and the discharge capacity or operating voltage is improved. For the same reason, as compared with the case where F is not included, electrons are localized by the solid solution of F. For this reason, oxygen desorption during charging is suppressed, and the crystal structure is stabilized. As described above, in the crystal structure having the first phase and the second phase, the crystal structure is further stabilized. For this reason, it becomes possible to insert and detach more Li. The overall capacity of these effects further improves the battery capacity.
  • Patent Document 1 discloses a lithium composite transition metal oxide.
  • the lithium composite transition metal oxide disclosed in Patent Document 1 is Having space groups R-3m and C2 / m, Crystal structure of space group R-3m in a chemical composition represented by the general formula Li a MO x (where M is an element including at least one element selected from Ni element, Co element and Mn element) and in an X-ray diffraction pattern Ratio (I 020 / I 003 ) of the integrated intensity (I 020 ) of the (020) plane attributed to the crystal structure of the space group C2 / m to the integrated intensity (I 003 ) of the (003) plane attribute belonging to ) Is 0.02 to 0.3.
  • Patent Document 1 A first phase having a crystal structure belonging to space group C2 / m, and a second phase having a crystal structure belonging to space group R-3m,
  • the diffraction angle 2 ⁇ is in the range of 20 ° to 23 ° with respect to the integrated intensity I (18 ° -20 °) of the first maximum peak in the range of the diffraction angle 2 ⁇ of 18 ° to 20 °.
  • the integrated intensity ratio I (20 ° -23 °) / I (18 ° -20 °) of the integrated intensity I (20 ° -23 °) of the second maximum peak is 0.05 or more and 0.26 or less
  • an anionic element having an ionic radius larger than that of oxygen for example, at least one element of F, Cl, N, and S. That is, the lithium composite oxide in the first embodiment cannot be easily conceived from the prior art.
  • the lithium composite oxide in the first embodiment further improves the capacity of the battery.
  • the integrated intensity of the X-ray diffraction peak is calculated using, for example, software attached to the XRD apparatus (for example, software manufactured by Rigaku Corporation and having the product name PDXL attached to the powder X-ray diffraction apparatus). Can do.
  • the integrated intensity of the X-ray diffraction peak can be obtained, for example, by calculating the area from the height and half-value width of the X-ray diffraction peak.
  • the maximum peak existing in the range where the diffraction angle 2 ⁇ is 18 ° to 20 ° reflects the (001) plane. doing.
  • the maximum peak existing in the range of 20 ° to 23 ° reflects the (020) plane.
  • the maximum peak existing in the range where the diffraction angle 2 ⁇ is 18 ° or more and 20 ° or less is the (003) plane. Reflects. There is no diffraction peak in the range of 20 ° to 23 °.
  • the lithium composite oxide in Embodiment 1 includes the first phase having a crystal structure belonging to the space group C2 / m and the second phase having a crystal structure belonging to the space group R3-m. It is not always easy to completely specify the space group reflecting the maximum peak existing in the range where the folding angle 2 ⁇ is 18 ° or more and 20 ° or less.
  • the lithium composite oxide in Embodiment 1 has the first phase having a crystal structure belonging to space group C2 / m and the second phase having a crystal structure belonging to space group R-3m. I can confirm that.
  • the lithium composite oxide in the first embodiment may be a two-phase mixture of the first phase and the second phase.
  • the two-phase mixture improves the capacity of the battery.
  • the lithium composite oxide in Embodiment 1 includes not only lithium atoms but also atoms other than lithium atoms.
  • atoms other than lithium atoms are Mn, Co, Ni, Fe, Cu, V, Nb, Mo, Ti, Cr, Zr, Zn, Na, K, Ca, Mg, Pt, Au, Ag, Ru, W , B, Si, P, or Al.
  • the lithium composite oxide in Embodiment 1 may contain atoms other than one type of lithium atom. Instead of this, the lithium composite oxide in Embodiment 1 may contain atoms other than two or more types of lithium atoms.
  • Me is not only Mn but also Co, Ni, Fe, Cu, V, Nb, Mo, Ti, Cr, Zr, Zn, Na, K, Ca, Mg, Pt, Au, Ag, Ru, W, B, It may also contain at least one element selected from the group consisting of Si, P, and Al.
  • the lithium composite oxide in Embodiment 1 may include at least one 3d transition metal element selected from the group consisting of Mn, Co, Ni, Fe, Cu, V, Ti, Cr, and Zn.
  • 3d transition metal element improves battery capacity.
  • the lithium composite oxide in Embodiment 1 may contain at least one element selected from the group consisting of Mn, Co, Ni, and Al.
  • At least one element selected from the group consisting of Mn, Co, Ni, and Al improves the capacity of the battery.
  • the lithium composite oxide in Embodiment 1 may contain Mn.
  • the crystal structure is further stabilized in the crystal structure having the first phase and the second phase. For this reason, it is considered that more Li can be inserted and removed. For this reason, the capacity
  • the lithium composite oxide in Embodiment 1 may have an average composition represented by the following composition formula (I).
  • Me is Mn, Co, Ni, Fe, Cu, V, Nb, Mo, Ti, Cr, Zr, Zn, Na, K, Ca, Mg, Pt, Au, Ag, Ru, W, B, It may be at least one selected from the group consisting of Si, P, and Al.
  • Q may be at least one selected from the group consisting of F, Cl, N, and S.
  • composition formula (I) the following four formulas: 1.05 ⁇ x ⁇ 1.5, 0.6 ⁇ y ⁇ 1.0, 1.2 ⁇ ⁇ ⁇ 2.0 and 0 ⁇ ⁇ 0.8, May be satisfied.
  • Said lithium complex oxide improves the capacity
  • the “average composition” of the lithium composite oxide in Embodiment 1 is a composition obtained by analyzing the elements of the lithium composite oxide without considering the difference in the composition of each phase of the lithium composite oxide. Typically, it means a composition obtained by conducting an elemental analysis using a sample having the same size as or larger than the primary particle size of the lithium composite oxide.
  • the first phase and the second phase may have the same chemical composition. Alternatively, the first phase and the second phase may have different compositions.
  • the above-mentioned average composition can be determined by inductively coupled plasma emission spectroscopy, inert gas melting-infrared absorption method, ion chromatography, or a combination of these analysis methods.
  • the crystal structure is further stabilized in the crystal structure having the first phase and the second phase. For this reason, the capacity
  • the molar ratio of Mn to Me may be 60% or more. That is, the molar ratio of Mn to the entire Me including Mn (Mn / Me molar ratio) may be 0.6 or more and 1.0 or less.
  • Me may contain at least one element selected from the group consisting of B, Si, P, and Al so that the molar ratio of the at least one element to Me is 20% or less.
  • Q may include F.
  • Q may be F.
  • Q may include not only F but also at least one element selected from the group consisting of Cl, N, and S.
  • Fluorine atoms have high electronegativity, and by substituting a part of oxygen with fluorine atoms, the interaction between cations and anions increases, and the discharge capacity or operating voltage is improved. For the same reason, as compared with the case where F is not included, electrons are localized by the solid solution of F. For this reason, oxygen desorption during charging is suppressed, and the crystal structure is stabilized. As described above, in the crystal structure having the first phase and the second phase, the crystal structure is further stabilized. For this reason, it becomes possible to insert and detach more Li. The overall capacity of these effects further improves the battery capacity.
  • the molar ratio of Li to Me is shown by the formula (x / y).
  • the molar ratio (x / y) may be 1.4 or more and 2.0 or less.
  • a molar ratio (x / y) of 1.4 or more and 2.0 or less further improves battery capacity.
  • the Li atom in the lithium composite oxide according to Embodiment 1 is more than the ratio of the number of Li atoms in the conventional positive electrode active material represented by the composition formula LiMnO 2.
  • the ratio of numbers is high. For this reason, it becomes possible to insert and detach more Li.
  • the molar ratio (x / y) is 1.4 or more, the amount of available Li is large, so that a Li diffusion path is appropriately formed. For this reason, when the molar ratio (x / y) is 1.4 or more, the capacity of the battery is further improved.
  • the molar ratio (x / y) may be 1.5 or more and 2.0 or less.
  • the molar ratio of O to Q is shown by the formula ( ⁇ / ⁇ ).
  • the molar ratio ( ⁇ / ⁇ ) may be 2 or more and 19 or less.
  • the lithium composite oxide in Embodiment 1 may have an average composition represented by the composition formula Li x Me y O ⁇ Q ⁇ . Therefore, the lithium composite oxide in Embodiment 1 is composed of a cation portion and an anion portion.
  • the cationic moiety is composed of Li and Me.
  • the anion moiety is composed of O and Q.
  • the molar ratio of the cation moiety composed of Li and Me to the anion moiety composed of O and Q is represented by the formula ((x + y) / ( ⁇ + ⁇ )).
  • the molar ratio ((x + y) / ( ⁇ + ⁇ )) may be 0.75 or more and 1.2 or less.
  • the molar ratio ((x + y) / ( ⁇ + ⁇ )) of 0.75 or more and 1.2 or less further improves the battery capacity.
  • the molar ratio ((x + y) / ( ⁇ + ⁇ )) is 0.75 or more, it is possible to prevent generation of a large amount of impurities during the synthesis of the lithium composite oxide, and the battery capacity is further improved.
  • the molar ratio ((x + y) / ( ⁇ + ⁇ )) is 1.2 or less, the amount of deficiency of the anion portion of the lithium composite oxide decreases, so that the crystal structure can be obtained even after lithium is released from the lithium composite oxide by charging. Is kept stable.
  • the molar ratio ((x + y) / ( ⁇ + ⁇ )) may be 1.0 or more and 1.2 or less.
  • a molar ratio ((x + y) / ( ⁇ + ⁇ )) of 1.0 or more and 1.2 or less further improves the battery capacity.
  • a part of Li may be substituted with an alkali metal such as Na or K.
  • the positive electrode active material in Embodiment 1 may contain the above-described lithium composite oxide as a main component.
  • the positive electrode active material in Embodiment 1 may include the above lithium composite oxide so that the mass ratio of the above lithium composite oxide to the whole positive electrode active material is 50% or more. Such a positive electrode active material further improves the capacity of the battery.
  • the mass ratio may be 70% or more.
  • the mass ratio may be 90% or more.
  • the positive electrode active material in Embodiment 1 may contain not only the above lithium composite oxide but also unavoidable impurities.
  • the positive electrode active material in Embodiment 1 may contain the starting material as an unreacted material.
  • the positive electrode active material in Embodiment 1 may include a by-product generated during the synthesis of the lithium composite oxide.
  • the positive electrode active material in Embodiment 1 may include a decomposition product generated by decomposition of the lithium composite oxide.
  • the positive electrode active material in Embodiment 1 may include only the above-described lithium composite oxide except for inevitable impurities.
  • the positive electrode active material containing only the lithium composite oxide further improves the battery capacity.
  • the lithium composite oxide in Embodiment 1 is produced by the following method, for example.
  • a raw material containing Li, a raw material containing Me, and a raw material containing Q are prepared.
  • Examples of the raw material containing Li include a lithium oxide such as Li 2 O or Li 2 O 2 , a lithium salt such as LiF, Li 2 CO 3 , or LiOH, or a LiMeO 2 or LiMe 2 O 4 .
  • Examples include lithium composite oxide.
  • Examples of the raw material containing Me include a metal oxide such as Me 2 O 3 , a metal salt such as MeCO 3 or MeNO 3 , a metal hydroxide such as Me (OH) 2 or MeOOH, or LiMeO 2 or A lithium composite oxide such as LiMe 2 O 4 may be mentioned.
  • a metal oxide such as Me 2 O 3
  • a metal salt such as MeCO 3 or MeNO 3
  • a metal hydroxide such as Me (OH) 2 or MeOOH
  • LiMeO 2 or A lithium composite oxide such as LiMe 2 O 4 may be mentioned.
  • examples of the raw material containing Mn include manganese oxide such as MnO 2 or Mn 2 O 3 , salt such as MnCO 3 or MnNO 3 , Mn (OH) 2 or MnOOH. Or a lithium composite oxide such as LiMnO 2 or LiMn 2 O 4 .
  • Examples of the raw material containing Q include lithium halide, transition metal halide, transition metal sulfide, and transition metal nitride.
  • examples of the raw material containing F include LiF and transition metal fluorides.
  • the method for producing a lithium composite oxide includes a first mechanochemical reaction step and a second mechanochemical reaction step.
  • the weight of the raw material is measured so that the Li molar ratio is equal to 0.8 times the molar ratio shown in the above composition formula (I).
  • the first precursor is obtained by mixing the raw materials by, for example, a dry method or a wet method and then reacting them with mechanochemicals for 10 hours or more in a mixing apparatus such as a planetary ball mill.
  • the weight of the Li compound (for example, LiF) is measured so that the Li molar ratio becomes equal to the molar ratio shown in the above composition formula (I).
  • the first precursor and the Li compound are mixed and then reacted again with mechanochemical, for example, for 3 hours. In this way, a second precursor is obtained.
  • the obtained second precursor is heat-treated.
  • the conditions for the heat treatment are appropriately set so that the lithium composite oxide in Embodiment 1 is obtained.
  • the optimum conditions for the heat treatment depend on other manufacturing conditions and the target composition.
  • the temperature of the heat treatment can be appropriately changed, for example, in the range of 200 degrees Celsius to 900 degrees Celsius.
  • the time required for the heat treatment can be appropriately changed, for example, in the range of 1 minute to 20 hours.
  • Examples of the heat treatment atmosphere are an air atmosphere, an oxygen atmosphere, or an inert atmosphere (for example, a nitrogen atmosphere or an argon atmosphere).
  • the inventors of the present invention reduced the value of the integrated intensity ratio I (20 ° -23 °) / I (18 ° -20 °) as the amount of Li raw material used for the first mechanochemical reaction step decreased. To find out. Based on this finding, production conditions can be determined.
  • the lithium composite oxide in Embodiment 1 can be obtained by adjusting the raw materials, the mixing conditions (for example, the mixing ratio or the reaction time of the mechanochemical reaction), and the heat treatment conditions.
  • the space group of the crystal structure of the obtained lithium composite oxide can be specified by, for example, the X-ray diffraction measurement method or the electron beam diffraction measurement method.
  • the obtained lithium composite oxide has a first phase having a crystal structure belonging to space group C2 / m and a second phase having a crystal structure belonging to space group R-3m. I can confirm.
  • the average composition of the obtained lithium composite oxide is determined by, for example, ICP emission spectroscopy, inert gas melting-infrared absorption, ion chromatography, or a combination of these analysis methods.
  • the energy of element mixing can be reduced. Thereby, the purity of the lithium composite oxide in the first embodiment can be increased.
  • the method for producing the lithium composite oxide according to the first embodiment includes the step (a) of preparing a raw material and the step of obtaining a precursor of the lithium composite oxide by reacting the raw material with mechanochemical (b And a step (c) of obtaining a lithium composite oxide by heating the precursor.
  • the raw material may be a mixed raw material, and in the mixed raw material, the ratio of Li to Me may be 1.4 or more and 2.0 or less.
  • raw materials may be mixed to prepare a mixed raw material so that the molar ratio of Li to Me is 1.5 or more and 2.0 or less.
  • Step (b) can comprise a first mechanochemical reaction step and a second mechanochemical reaction step as described above. That is, in the first mechanochemical reaction step, raw materials (for example, LiF, Li 2 O, transition metal oxide, or lithium composite transition metal) are mixed to obtain a first precursor, and then the second mechanochemical reaction step. In, a Li compound is added to a 1st precursor, and a 2nd precursor is obtained. The second precursor is heated as a precursor in step (c).
  • raw materials for example, LiF, Li 2 O, transition metal oxide, or lithium composite transition metal
  • the battery in the second embodiment includes a positive electrode including the positive electrode active material in the first embodiment, a negative electrode, and an electrolyte.
  • the battery in Embodiment 2 has a high capacity.
  • the negative electrode may include a negative electrode active material capable of inserting and extracting lithium ions.
  • the negative electrode may be, for example, a material, and may include a material in which lithium metal is dissolved from the material into an electrolyte during discharge and the lithium metal is deposited on the material during charging.
  • the electrolyte may be a non-aqueous electrolyte (for example, a non-aqueous electrolyte).
  • the electrolyte may be a solid electrolyte.
  • FIG. 1 shows a cross-sectional view of the battery 10 in the second embodiment.
  • the battery 10 includes a positive electrode 21, a negative electrode 22, a separator 14, a case 11, a sealing plate 15, and a gasket 18.
  • the separator 14 is disposed between the positive electrode 21 and the negative electrode 22.
  • the positive electrode 21, the negative electrode 22, and the separator 14 are impregnated with a non-aqueous electrolyte (for example, a non-aqueous electrolyte).
  • a non-aqueous electrolyte for example, a non-aqueous electrolyte
  • An electrode group is formed by the positive electrode 21, the negative electrode 22, and the separator 14.
  • the electrode group is housed in the case 11.
  • the case 11 is closed by the gasket 18 and the sealing plate 15.
  • the positive electrode 21 includes a positive electrode current collector 12 and a positive electrode active material layer 13 disposed on the positive electrode current collector 12.
  • the positive electrode current collector 12 is made of, for example, a metal material (for example, aluminum, stainless steel, nickel, iron, titanium, copper, palladium, gold, or platinum) or an alloy thereof.
  • a metal material for example, aluminum, stainless steel, nickel, iron, titanium, copper, palladium, gold, or platinum
  • the positive electrode current collector 12 may not be provided.
  • the case 11 is used as a positive electrode current collector.
  • the positive electrode active material layer 13 includes the positive electrode active material in the first embodiment.
  • the positive electrode active material layer 13 may contain an additive (a conductive agent, an ion conduction auxiliary agent, or a binder) as necessary.
  • the negative electrode 22 includes a negative electrode current collector 16 and a negative electrode active material layer 17 disposed on the negative electrode current collector 16.
  • the negative electrode current collector 16 is made of, for example, a metal material (for example, aluminum, stainless steel, nickel, iron, titanium, copper, palladium, gold, or platinum) or an alloy thereof.
  • a metal material for example, aluminum, stainless steel, nickel, iron, titanium, copper, palladium, gold, or platinum
  • the negative electrode current collector 16 may not be provided.
  • the sealing plate 15 is used as a negative electrode current collector.
  • the negative electrode active material layer 17 contains a negative electrode active material.
  • the negative electrode active material layer 17 may contain, for example, an additive (a conductive agent, an ion conduction auxiliary agent, or a binder) as necessary.
  • an additive a conductive agent, an ion conduction auxiliary agent, or a binder
  • Examples of the negative electrode active material are metal materials, carbon materials, oxides, nitrides, tin compounds, or silicon compounds.
  • the metal material may be a single metal.
  • the metal material may be an alloy.
  • Examples of the metal material include lithium metal or lithium alloy.
  • Examples of carbon materials include natural graphite, coke, graphitized carbon, carbon fiber, spherical carbon, artificial graphite, or amorphous carbon.
  • silicon (Si), tin (Sn), a silicon compound, or a tin compound can be used as the negative electrode active material.
  • the silicon compound and the tin compound may be an alloy or a solid solution.
  • Examples of the silicon compound include SiO x (where 0.05 ⁇ x ⁇ 1.95).
  • a compound obtained by substituting some silicon atoms of SiO x with other elements can also be used.
  • the compound is an alloy or a solid solution.
  • the other element is selected from the group consisting of boron, magnesium, nickel, titanium, molybdenum, cobalt, calcium, chromium, copper, iron, manganese, niobium, tantalum, vanadium, tungsten, zinc, carbon, nitrogen and tin. At least one element.
  • tin compounds include Ni 2 Sn 4 , Mg 2 Sn, SnO x (where 0 ⁇ x ⁇ 2), SnO 2 , or SnSiO 3 .
  • One kind of tin compound selected from these may be used alone. Or the combination of 2 or more types of tin compounds selected from these may be used.
  • the shape of the negative electrode active material is not limited.
  • a negative electrode active material having a known shape for example, particulate or fibrous can be used.
  • the method for filling (that is, occluding) lithium in the negative electrode active material layer 17 is not limited. Specifically, examples of this method include (a) a method of depositing lithium on the negative electrode active material layer 17 by a vapor phase method such as a vacuum evaporation method, or (b) a lithium metal foil and a negative electrode active material layer 17. Is a method in which both are heated by contacting them. In any method, lithium diffuses into the negative electrode active material layer 17 by heat. A method of electrochemically occluding lithium in the negative electrode active material layer 17 can also be used. Specifically, the battery is assembled using the negative electrode 22 and lithium metal foil (negative electrode) that do not have lithium. Thereafter, the battery is charged such that lithium is occluded in the negative electrode 22.
  • binder for the positive electrode 21 and the negative electrode 22 are polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polyacrylic acid methyl ester, Polyacrylic acid ethyl ester, polyacrylic acid hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyvinyl acetate, polyvinylpyrrolidone, polyether, polyethersulfone, hexa Fluoropolypropylene, styrene butadiene rubber, or carboxymethylcellulose.
  • binders include tetrafluoroethylene, hexafluoroethane, hexafluoropropylene, perfluoroalkyl vinyl ether, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid, And a copolymer of two or more materials selected from the group consisting of hexadiene. A mixture of two or more binders selected from the above materials may be used.
  • Examples of the conductive agent for the positive electrode 21 and the negative electrode 22 are graphite, carbon black, conductive fiber, graphite fluoride, metal powder, conductive whisker, conductive metal oxide, or organic conductive material.
  • Examples of graphite include natural graphite or artificial graphite.
  • Examples of carbon black include acetylene black, ketjen black, channel black, furnace black, lamp black, or thermal black.
  • An example of the metal powder is aluminum powder.
  • Examples of conductive whiskers include zinc oxide whiskers or potassium titanate whiskers.
  • An example of the conductive metal oxide is titanium oxide.
  • Examples of the organic conductive material include phenylene derivatives.
  • a conductive agent may be used to cover at least a part of the surface of the binder.
  • the surface of the binder may be coated with carbon black. Thereby, the capacity
  • the material of the separator 14 is a material having a large ion permeability and sufficient mechanical strength.
  • Examples of the material of the separator 14 include a microporous thin film, a woven fabric, or a non-woven fabric.
  • the separator 14 is desirably made of polyolefin such as polypropylene or polyethylene.
  • the separator 14 made of polyolefin not only has excellent durability, but can also exhibit a shutdown function when heated excessively.
  • the thickness of the separator 14 is, for example, in the range of 10 to 300 ⁇ m (or 10 to 40 ⁇ m).
  • the separator 14 may be a single layer film composed of one kind of material.
  • the separator 14 may be a composite film (or multilayer film) composed of two or more materials.
  • the porosity of the separator 14 is, for example, in the range of 30 to 70% (or 35 to 60%).
  • porosity means the ratio of the volume of the voids to the total volume of the separator 14. The porosity is measured by, for example, a mercury intrusion method.
  • the non-aqueous electrolyte contains a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent.
  • non-aqueous solvent examples include a cyclic carbonate solvent, a chain carbonate solvent, a cyclic ether solvent, a chain ether solvent, a cyclic ester solvent, a chain ester solvent, or a fluorine solvent.
  • cyclic carbonate solvent examples include ethylene carbonate, propylene carbonate, or butylene carbonate.
  • chain carbonate solvent examples include dimethyl carbonate, ethyl methyl carbonate, or diethyl carbonate.
  • cyclic ether solvents examples include tetrahydrofuran, 1,4-dioxane, or 1,3-dioxolane.
  • chain ether solvents are 1,2-dimethoxyethane or 1,2-diethoxyethane.
  • An example of a cyclic ester solvent is ⁇ -butyrolactone.
  • chain ester solvent is methyl acetate.
  • fluorine solvent examples include fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethyl methyl carbonate, or fluorodimethylene carbonate.
  • non-aqueous solvent one type of non-aqueous solvent selected from these solvents can be used alone. Alternatively, a combination of two or more non-aqueous solvents selected from these solvents can be used as the non-aqueous solvent.
  • the nonaqueous electrolytic solution may contain at least one fluorine solvent selected from the group consisting of fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethyl methyl carbonate, and fluorodimethylene carbonate.
  • fluorine solvent selected from the group consisting of fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethyl methyl carbonate, and fluorodimethylene carbonate.
  • the oxidation resistance of the nonaqueous electrolytic solution is improved.
  • the battery 10 can be stably operated.
  • the electrolyte may be a solid electrolyte.
  • solid electrolytes examples include organic polymer solid electrolytes, oxide solid electrolytes, or sulfide solid electrolytes.
  • organic polymer solid electrolyte is a compound of a polymer compound and a lithium salt.
  • An example of such a compound is lithium polystyrene sulfonate.
  • the polymer compound may have an ethylene oxide structure. Since the polymer compound has an ethylene oxide structure, a large amount of lithium salt can be contained. As a result, the ionic conductivity can be further increased.
  • oxide solid electrolytes are: (I) a NASICON solid electrolyte such as LiTi 2 (PO 4 ) 3 or a substitution product thereof, (Ii) a perovskite solid electrolyte such as (LaLi) TiO 3 ; (Iii) a LISICON solid electrolyte such as Li 14 ZnGe 4 O 16 , Li 4 SiO 4 , LiGeO 4 , or a substitute thereof, (Iv) a garnet solid electrolyte such as Li 7 La 3 Zr 2 O 12 or a substitute thereof, (V) Li 3 N or an H-substituted product thereof, or (vi) Li 3 PO 4 or an N-substituted product thereof.
  • NASICON solid electrolyte such as LiTi 2 (PO 4 ) 3 or a substitution product thereof
  • a perovskite solid electrolyte such as (LaLi) TiO 3
  • LISICON solid electrolyte such as Li 14 ZnG
  • Examples of sulfide solid electrolytes are Li 2 S—P 2 S 5 , Li 2 S—SiS 2 , Li 2 S—B 2 S 3 , Li 2 S—GeS 2 , Li 3.25 Ge 0.25 P 0. .75 S 4 , or Li 10 GeP 2 S 12 .
  • LiX is F, Cl, Br, or I
  • MO y or Li x MO y (M is any of P, Si, Ge, B, Al, Ga, or In) And x and y are each independently a natural number).
  • the sulfide solid electrolyte is rich in moldability and has high ionic conductivity. For this reason, the energy density of a battery can further be improved by using a sulfide solid electrolyte as a solid electrolyte.
  • Li 2 SP—S 2 S 5 has high electrochemical stability and high ionic conductivity. For this reason, when Li 2 S—P 2 S 5 is used as the solid electrolyte, the energy density of the battery can be further improved.
  • the solid electrolyte layer containing the solid electrolyte may further contain the non-aqueous electrolyte described above.
  • the solid electrolyte layer contains a non-aqueous electrolyte, lithium ions can be easily transferred between the active material and the solid electrolyte. As a result, the energy density of the battery can be further improved.
  • the solid electrolyte layer may contain a gel electrolyte or an ionic liquid.
  • gel electrolyte is a polymer material impregnated with a non-aqueous electrolyte.
  • polymeric materials are polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, or polymethyl methacrylate.
  • Another example of a polymeric material is a polymer having an ethylene oxide bond.
  • Examples of cations contained in ionic liquids are: (I) a cation of an aliphatic chain quaternary ammonium salt such as tetraalkylammonium, (Ii) a cation of an aliphatic chain quaternary phosphonium salt such as tetraalkylphosphonium, (Iii) an aliphatic cyclic ammonium such as pyrrolidinium, morpholinium, imidazolinium, tetrahydropyrimidinium, piperazinium, or piperidinium, or (iv) a nitrogen-containing heteroaromatic cation such as pyridinium or imidazolium.
  • Examples of anions contained in the ionic liquid are PF 6 ⁇ , BF 4 ⁇ , SbF 6 ⁇ , AsF 6 ⁇ , SO 3 CF 3 ⁇ , N (SO 2 CF 3 ) 2 ⁇ , N (SO 2 C 2 F 5 ) 2 ⁇ , N (SO 2 CF 3 ) (SO 2 C 4 F 9 ) ⁇ , or C (SO 2 CF 3 ) 3 — .
  • the ionic liquid may contain a lithium salt.
  • lithium salt LiPF 6, LiBF 4, LiSbF 6, LiAsF 6, LiSO 3 CF 3, LiN (SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiN (SO 2 CF 3) (SO 2 C 4 F 9 ) or LiC (SO 2 CF 3 ) 3 .
  • One lithium salt can be used alone. Alternatively, a mixture of two or more lithium salts can be used.
  • the concentration of the lithium salt is, for example, in the range of 0.5 to 2 mol / liter.
  • the battery is a coin battery, a cylindrical battery, a prismatic battery, a sheet battery, a button battery (ie, a button cell), a flat battery, or a stacked battery. .
  • Example 1 [Preparation of positive electrode active material] LiF, MnO 2 , LiMnO 2 , so as to have a Li / Mn / Co / Ni / O / F molar ratio of 1.0 / 0.54 / 0.13 / 0.13 / 1.8 / 0.1 LiCoO 2 and a mixture with LiNiO 2 were obtained.
  • the mixture was placed in a container having a volume of 45 ml together with an appropriate amount of zirconia balls having a diameter of 3 mm and sealed in an argon glove box.
  • the container was made of zirconia.
  • the first mechanochemical reaction was performed. Specifically, in the first mechanochemical reaction, the container was taken out from the argon glove box. The first precursor was prepared by treating the mixture contained in the container under an argon atmosphere with a planetary ball mill at a rotational speed of 600 rpm for 30 hours.
  • Li / Mn / Co / Ni / O / F 1.2 / 0.54 / 0.13 / 0.13 / 1.9 / 0.1
  • the first precursor and LiF so as to have a molar ratio of A second precursor was obtained by mixing.
  • the second precursor was placed in a container having a volume of 45 ml together with an appropriate amount of zirconia balls having a diameter of 3 mm, and sealed in an argon glove box.
  • the container was made of zirconia.
  • the second mechanochemical reaction was performed. Specifically, in the second mechanochemical reaction, the container was taken out from the argon glove box. The second precursor was prepared by treating the mixture contained in the container under an argon atmosphere for 5 hours at a rotational speed of 600 rpm with a planetary ball mill.
  • Powder X-ray diffraction measurement was performed on the second precursor.
  • the space group of the second precursor was identified as Fm-3m.
  • Example 1 a positive electrode active material according to Example 1 was obtained.
  • Powder X-ray diffraction measurement was performed on the active material according to Example 1.
  • FIG. 2 shows the results of powder X-ray diffraction measurement.
  • Electron diffraction measurement was also performed on the positive electrode active material according to Example 1. Based on the results of powder X-ray diffraction measurement and electron diffraction measurement, the crystal structure of the positive electrode active material according to Example 1 was analyzed.
  • the positive electrode active material according to Example 1 was determined to be a two-phase mixture of a phase belonging to the space group C2 / m and a phase belonging to R-3m.
  • a positive electrode mixture slurry was applied to one surface of a positive electrode current collector formed of an aluminum foil having a thickness of 20 micrometers.
  • the positive electrode mixture slurry was dried and rolled to obtain a positive electrode plate having a thickness of 60 micrometers equipped with a positive electrode active material layer.
  • the obtained positive electrode plate was punched out to obtain a circular positive electrode having a diameter of 12.5 mm.
  • a lithium metal foil having a thickness of 300 micrometers was punched out to obtain a circular negative electrode having a diameter of 14 mm.
  • FEC fluoroethylene carbonate
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • LiPF 6 was dissolved in this non-aqueous solvent at a concentration of 1.0 mol / liter to obtain a non-aqueous electrolyte.
  • the obtained nonaqueous electrolytic solution was soaked into the separator.
  • the separator was a product of Celgard (product number 2320, thickness 25 micrometers).
  • the separator was a three-layer separator formed of a polypropylene layer, a polyethylene layer, and a polypropylene layer.
  • a coin-type battery having a diameter of 20 mm and a thickness of 3.2 mm was manufactured in a dry box in which the dew point was maintained at minus 50 degrees Celsius. .
  • Example 2 to 9 positive electrode active materials were obtained in the same manner as in Example 1 except for the following items (i) and (ii).
  • the mixing ratio of materials used in at least one of the first mechanochemical reaction and the second mechanochemical reaction was changed.
  • the heating conditions were changed within the range of 500 to 900 ° C. and 10 minutes to 10 hours.
  • Table 1 shows the average compositions of the positive electrode active materials of Examples 2 to 9.
  • the positive electrode active materials of Examples 2 to 9 were two-phase mixtures of a phase belonging to the space group C2 / m and a phase belonging to R-3m.
  • Comparative Example 1 a positive electrode active material having a composition represented by the chemical formula LiCoO 2 (that is, lithium cobaltate) was obtained using a known method.
  • Powder X-ray diffraction measurement was performed on the obtained positive electrode active material.
  • the space group of the positive electrode active material according to Comparative Example 1 was identified as the space group R-3m.
  • the integrated intensity ratio I (20 ° -23 °) / I (18 ° -20 °) of the positive electrode active material according to Comparative Example 1 was 0.
  • the mixture was placed in a container having a volume of 45 ml together with an appropriate amount of zirconia balls having a diameter of 3 mm and sealed in an argon glove box.
  • the container was made of zirconia.
  • the precursor was prepared by treating the mixture contained in the container under an argon atmosphere with a planetary ball mill at a rotation speed of 600 rpm for 30 hours.
  • Powder X-ray diffraction measurement was performed on the precursor.
  • the precursor space group was identified as the space group Fm-3m.
  • Powder X-ray diffraction measurement was performed on the positive electrode active material according to Comparative Example 2.
  • Electron diffraction measurement was performed on the positive electrode active material according to Comparative Example 2, and the crystal structure was analyzed.
  • the positive electrode active material according to Comparative Example 2 was a two-phase mixture of a phase belonging to the space group C2 / m and a phase belonging to R-3m.
  • the integrated intensity ratio I (20 ° -23 °) / I (18 ° -20 °) of the positive electrode active material according to Comparative Example 2 was 0.27.
  • the mixture was placed in a container having a volume of 45 ml together with an appropriate amount of zirconia balls having a diameter of 3 mm and sealed in an argon glove box.
  • the container was made of zirconia.
  • the container was taken out from the argon glove box.
  • the first precursor was prepared by treating the mixture contained in the container for 30 hours at a rotation speed of 600 rpm in a planetary ball mill under an argon atmosphere.
  • the second precursor was placed in a container having a volume of 45 ml together with an appropriate amount of zirconia balls having a diameter of 3 mm, and sealed in an argon glove box.
  • the container was made of zirconia.
  • the second mechanochemical reaction was performed. Specifically, in the second mechanochemical reaction, the container was taken out from the argon glove box. The second precursor was prepared by treating the mixture contained in the container under an argon atmosphere for 5 hours at a rotational speed of 600 rpm with a planetary ball mill.
  • Powder X-ray diffraction measurement was performed on the second precursor.
  • the space group of the second precursor was Fm-3m.
  • Powder X-ray diffraction measurement was performed on the positive electrode active material according to Comparative Example 3.
  • the positive electrode active material according to Comparative Example 3 was identified as a two-phase mixture of a phase belonging to the space group C2 / m and a phase belonging to R-3m.
  • the integrated intensity ratio I (20 ° -23 °) / I (18 ° -20 °) of the positive electrode active material according to Comparative Example 3 was 0.27.
  • Example 1 Thereafter, the battery of Example 1 was discharged at a current density of 0.5 mA / cm 2 until a voltage of 2.5 V was reached.
  • the initial discharge capacity of the battery of Example 1 was 285 mAh / g.
  • the battery of Comparative Example 1 was charged until a voltage of 4.3 V was reached at a current density of 0.5 mA / cm 2 .
  • the initial discharge capacity of the battery of Comparative Example 1 was 150 mAh / g.
  • the batteries of Examples 1 to 9 have an initial discharge capacity of 263 to 285 mAh / g.
  • the initial discharge capacities of the batteries of Examples 1 to 9 are larger than the initial discharge capacities of the batteries of Comparative Examples 1 to 3.
  • the lithium composite oxide contained in the positive electrode active material has a first phase having a crystal structure belonging to the space group C2 / m and a crystal structure belonging to the space group R3-m. Having a second phase.
  • the lithium composite oxide contains at least one selected from the group consisting of F, Cl, N, and S.
  • the integrated intensity ratio I (20 ° -23 °) / I (18 ° -20 °) is 0.05 or more and 0.26 or less.
  • the integrated intensity ratio I (20 ° -23 °) / I (18 ° -20 °) is smaller than 0.05 (that is, the integrated intensity ratio II (20 ° -23 °) / I (18 ° -20 °) is equal to 0).
  • the crystal structure is a single phase of the space group R-3m.
  • the value of (x / y) is equal to 1. For these reasons, it is considered that the amount of Li insertion and desorption during charge / discharge decreased, and the initial discharge capacity significantly decreased.
  • the integrated intensity ratio I (20 ° -23 °) / I (18 ° -20 °) is larger than 0.26 (that is, the integrated intensity ratio II (20 ° -23 °) / I (18 (° ⁇ 20 °) is equal to 0.27), so the abundance ratio of the second phase is small. Therefore, the diffusibility of Li at the time of charging / discharging fell, and it is thought that the first time discharge capacity fell.
  • the initial discharge capacity of the battery of Example 2 is smaller than the initial discharge capacity of the battery of Example 1.
  • the reason for this is considered that the integrated intensity ratio I (20 ° -23 °) / I (18 ° -20 °) is larger in the second embodiment than in the first embodiment. For this reason, the abundance ratio of the second phase is reduced, and it is considered that the diffusibility of Li during charge / discharge is reduced. For this reason, it is considered that the initial discharge capacity has decreased.
  • the initial discharge capacity of the battery of Example 3 is smaller than the initial discharge capacity of the battery of Example 1.
  • Example 3 the integrated intensity ratio I (20 ° -23 °) / I (18 ° -20 °) is smaller in Example 3 than in Example 1. For this reason, it is considered that the abundance ratio of the first phase is reduced, and the amount of Li insertion and desorption during charge / discharge is reduced. For this reason, it is considered that the initial discharge capacity has decreased.
  • the initial discharge capacity of the battery of Example 4 is smaller than the initial discharge capacity of the battery of Example 1.
  • Example 4 the integrated intensity ratio I (20 ° -23 °) / I (18 ° -20 °) is smaller in Example 4 than in Example 1. For this reason, it is considered that the abundance ratio of the first phase is reduced, and the amount of Li insertion and desorption during charge / discharge is reduced. In Example 4, compared with Example 1, since x / y is small, it is thought that the insertion amount and desorption amount of Li at the time of charging / discharging decreased. For this reason, it is considered that the initial discharge capacity has decreased.
  • the initial discharge capacity of the battery of Example 5 is smaller than the initial discharge capacity of the battery of Example 4.
  • Example 5 the integrated intensity ratio I (20 ° -23 °) / I (18 ° -20 °) is smaller in Example 5 than in Example 4. For this reason, it is considered that the abundance ratio of the first phase is reduced, and the amount of Li insertion and desorption during charge / discharge is reduced. For this reason, it is considered that the initial discharge capacity has decreased.
  • the initial discharge capacity of the battery of Example 6 is smaller than the initial discharge capacity of the battery of Example 1.
  • the initial discharge capacity of the battery of Example 7 is smaller than the initial discharge capacity of the battery of Example 2.
  • Example 7 compared with Example 2, since the molar ratio ( ⁇ / ⁇ ) is small, the amount of F having a high electronegativity is increased, and the electron conductivity is considered to be decreased. For this reason, it is considered that the initial discharge capacity has decreased.
  • the initial discharge capacity of the battery of Example 8 is smaller than the initial discharge capacity of the battery of Example 2.
  • Example 8 the integrated intensity ratio I (20 ° -23 °) / I (18 ° -20 °) is larger in Example 8 than in Example 2. For this reason, the abundance ratio of the second phase is reduced, and it is considered that the diffusibility of Li during charge / discharge is reduced. For this reason, it is considered that the initial discharge capacity has decreased.
  • the initial discharge capacity of the battery of Example 9 is smaller than the initial discharge capacity of the batteries of Examples 4 to 5.
  • Example 9 the value of ((x + y) / ( ⁇ + ⁇ )) is greater in Example 9 than in Examples 4-5. For this reason, it is considered that the amount of anion deficiency is large and the crystal structure is destabilized when Li is desorbed. As a result, it is considered that the initial discharge capacity has decreased.
  • the positive electrode active material of the present disclosure can be used for a battery such as a secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本開示による正極活物質は、リチウム複合酸化物を含み、リチウム複合酸化物は、空間群C2/mに属する結晶構造を有する第1の相と、空間群R-3mに属する結晶構造を有する第2の相と、を含む多相混合物であり、F、Cl、N、及びSからなる群より選択される少なくとも一種を含有し、リチウム複合酸化物のXRDパターンにおいて、回折角2θが18°以上20°以下の範囲に存在する第1最大ピークに対する、回折角2θが20°以上23°以下の範囲に存在する第2の最大ピークの積分強度比I(20°-23°)/I(18°-20°)が、0.05≦I(20°-23°)/I(18°-20°)≦0.26、を満たす。

Description

正極活物質およびそれを備えた電池
 本開示は、正極活物質およびそれを備えた電池に関する。
 特許文献1には、一般式LiMO(ここで、MはNi元素、Co元素およびMn元素から選ばれる少なくとも一種を含む元素)で表される化学組成を有するリチウム複合遷移金属酸化物が開示されている。当該リチウム複合遷移金属酸化物においては、X線回折パターンにおける、空間群R-3mの結晶構造に帰属する(003)面のピークの積分強度(I003)に対する、空間群C2/mの結晶構造に帰属する(020)面のピークの積分強度(I020)の比(I020/I003)が0.02~0.3である。
国際公開第2014/192759号
 本開示の目的は、高い容量を有する電池のために用いられる正極活物質を提供することにある。
 本開示による正極活物質は、
 リチウム複合酸化物
 を含み、
 ここで、
 前記リチウム複合酸化物は、空間群C2/mに属する結晶構造を有する第1の相および空間群R-3mに属する結晶構造を有する第2の相を含む多相混合物であり、
 前記リチウム複合酸化物は、F、Cl、N、及びSからなる群より選択される少なくとも一つを含有し、かつ
 以下の数式(I)
 0.05≦積分強度比I(20°-23°)/I(18°-20°)≦0.26 (I)
 が充足される、正極活物質。
 ここで、
 前記積分強度比I(20°-23°)/I(18°-20°)は、積分強度I(18°-20°)に対する積分強度I(20°-23°)の比に等しく、
 積分強度I(18°-20°)は、前記リチウム複合酸化物のX線回析パターンにおいて、18°以上20°以下の回折角2θの範囲に存在する第1最大ピークの積分強度であり、かつ、
 積分強度I(20°-23°)は、前記リチウム複合酸化物のX線回析パターンにおいて、20°以上23°以下の回折角2θの範囲に存在する第2の最大ピークの積分強度である。
 本開示は、高容量の電池を実現するための正極活物質を提供する。本開示はまた、当該正極活物質を含む正極、負極、および電解質を具備する電池を提供する。当該電池は、高い容量を有する。
図1は、実施の形態2における電池10の断面図を示す。 図2は、実施例1、実施例8、比較例1、および比較例2の正極活物質のX線回析パターンを示すグラフである。
 以下、本開示の実施の形態が、説明される。
 (実施の形態1)
 実施の形態1における正極活物質は、
 リチウム複合酸化物
 を含み、
 ここで、
 前記リチウム複合酸化物は、空間群C2/mに属する結晶構造を有する第1の相および空間群R-3mに属する結晶構造を有する第2の相を含む多相混合物であり、
 前記リチウム複合酸化物は、F、Cl、N、及びSからなる群より選択される少なくとも一つを含有し、かつ
 以下の数式(I)
 0.05≦積分強度比I(20°-23°)/I(18°-20°)≦0.26 (I)
 が充足される、正極活物質。
 ここで、
 前記積分強度比I(20°-23°)/I(18°-20°)は、積分強度I(18°-20°)に対する積分強度I(20°-23°)の比に等しく、
 積分強度I(18°-20°)は、前記リチウム複合酸化物のX線回析パターンにおいて、18°以上20°以下の回折角2θの範囲に存在する第1最大ピークの積分強度であり、かつ、
 積分強度I(20°-23°)は、前記リチウム複合酸化物のX線回析パターンにおいて、20°以上23°以下の回折角2θの範囲に存在する第2の最大ピークの積分強度である。
 実施の形態1による正極活物質は、電池の容量を向上させるために用いられる。
 実施の形態1における正極活物質を具備するリチウムイオン電池は、3.4V程度の酸化還元電位(Li/Li基準)を有する。当該リチウムイオン電池は、概ね、260mAh/g以上の容量を有する。
 実施の形態1におけるリチウム複合酸化物は、空間群C2/mに属する結晶構造を有する第1の相と、空間群R-3mに属する結晶構造を有する第2の相と、を含む。
 空間群C2/mに属する結晶構造は、Li層と遷移金属層とが交互に積層した構造を有する。遷移金属層には、遷移金属だけでなく、Liが含有されてもよい。そのため、空間群C2/mに属する結晶構造には、一般的に用いられる従来材料であるLiCoOよりも、より多くの量のLiが当該結晶構造の内部に吸蔵される。
 しかし、遷移金属層が空間群C2/mに属する結晶構造のみから形成される場合、遷移金属層におけるLiの移動障壁が高い(すなわち、Liの拡散性が低い)ため、急速充電時には容量が低下してしまうと考えられる。
 一方で、空間群R-3mに属する結晶構造は、二次元的にLiの拡散経路を有する。そのため、空間群R-3mに属する結晶構造は、Liの高い拡散性を有する。
 実施の形態1におけるリチウム複合酸化物は、空間群C2/mに属する結晶構造および空間群R-3mに属する結晶構造の両者を含むため、高容量の電池を実現できる。当該電池は、急速充電に適していると考えられる。
 実施の形態1におけるリチウム複合酸化物において、第1の相からなる複数の領域と、第2の相からなる複数の領域とが、3次元的にランダムに配列していてもよい。
 3次元的なランダム配列は、Liの3次元的な拡散経路を拡大させるため、より多くの量のリチウムを挿入および脱離させることが可能となる。その結果、電池の容量が向上する。
 実施の形態1におけるリチウム複合酸化物は、多相混合物である。例えば、バルク層と、それを被覆するコート層とからなる層構造は、本開示における多相混合物に該当しない。多相混合物は、複数の相を含んだ物質を意味する。リチウム複合酸化物の製造時にそれらの相に対応する複数の材料が混合されてもよい。
 リチウム複合酸化物が多相混合物であるかどうかは、後述するように、X線回折測定法および電子線回折測定法によって判定されうる。具体的には、X線回折測定法および電子線回折測定法によって取得されたリチウム複合酸化物のスペクトルに複数の相の特徴を示すピークが含まれるならば、そのリチウム複合酸化物は多相混合物であると判定される。
 実施の形態1におけるリチウム複合酸化物では、以下の数式(I)
 0.05≦積分強度比I(20°-23°)/I(18°-20°)≦0.26 (I)
 が充足される。
 ここで、
 前記積分強度比I(20°-23°)/I(18°-20°)は、積分強度I(18°-20°)に対する積分強度I(20°-23°)の比に等しく、
 積分強度I(18°-20°)は、前記リチウム複合酸化物のX線回析パターンにおいて、18°以上20°以下の回折角2θの範囲に存在する第1最大ピークの積分強度であり、かつ
 積分強度I(20°-23°)は、前記リチウム複合酸化物のX線回析パターンにおいて、20°以上23°以下の回折角2θの範囲に存在する第2最大ピークの積分強度である。
 積分強度比I(20°-23°)/I(18°-20°)は、実施の形態1のリチウム複合酸化物において、第1の相と第2の相との間の存在比の指標として用いられ得るパラメータである。第1の相の存在比が大きくなると、積分強度比I(20°-23°)/I(18°-20°)は大きくなると考えられる。一方、第2の相の存在比が大きくなると、積分強度比I(20°-23°)/I(18°-20°)は小さくなると考えられる。
 積分強度比I(20°-23°)/I(18°-20°)が0.05よりも小さい場合、第1の相の存在比が小さくなるため、充放電時のLiの挿入量および脱離量が低下すると考えられる。この低下は、電池の容量を不十分なものとする。
 積分強度比I(20°-23°)/I(18°-20°)が0.26よりも大きい場合、第2の相の存在比が小さくなるため、Liの拡散性が低下すると考えられる。この低下もまた、電池の容量を不十分なものとする。
 このように、実施の形態1におけるリチウム複合酸化物は、第1の相および第2の相を有し、かつ0.05以上0.26未満の積分強度比I(20°-23°)/I(18°-20°)を有するため、多くのLiを挿入および脱離させることが可能である。したがって、実施の形態1におけるリチウム複合酸化物は、Liの高い拡散性を有すると考えられる。実施の形態1におけるリチウム複合酸化物を有する電池は、高い容量を有すると考えられる。
 実施の形態1におけるリチウム複合酸化物では、積分強度比I(20°-23°)/I(18°-20°)は0.09以上0.14以下であってもよい。
 0.09以上0.14以下の積分強度比を有する正極活物質は、容量をさらに向上させる。
 実施の形態1におけるリチウム複合酸化物は、F、Cl、N、及びSからなる群より選択される少なくとも一つを含む。当該少なくとも1種の元素により、リチウム複合酸化物の結晶構造が安定化する。
 電気化学的に不活性なアニオンによって、リチウム複合酸化物の酸素原子の一部を置換してもよい。言い換えれば、F、Cl、N、及びSからなる群より選択される少なくとも一種のアニオンによって酸素原子の一部を置換してもよい。この置換により、実施の形態1におけるリチウム複合酸化物の結晶構造はさらに安定化すると考えられる。酸素アニオンの半径よりも大きなイオン半径を有するアニオンによって酸素の一部を置換することで、結晶格子が広がり、Liの拡散性が向上すると考えられる。酸素アニオンの半径よりも大きなイオン半径を有するアニオンの例は、F、Cl、N、及びSからなる群より選択される少なくとも一種のアニオンである。上述のように、第1の相と第2の相とを有する結晶構造内において、さらに結晶構造が安定化すると考えられる。このため、より多くのLiを挿入および脱離させることが可能になると考えられる。このようにして、電池の容量が向上する。
 例えば、実施の形態1におけるリチウム複合酸化物が、F、Cl、N、またはSのいずれの元素も含まない場合、酸素のレドックス量が多くなる。このため、酸素脱離により、結晶構造が不安定化し易くなる。これにより、容量またはサイクル特性が劣化すると考えられる。
 実施の形態1におけるリチウム複合酸化物は、Fを含んでもよい。
 フッ素原子は電気陰性度が高いため、酸素の一部をフッ素原子で置換することにより、カチオンとアニオンとの相互作用が大きくなり、放電容量または動作電圧が向上する。同様の理由により、Fが含まれない場合と比較して、Fの固溶により電子が局在化する。このため、充電時の酸素脱離が抑制され、結晶構造が安定する。以上のように、第1の相と第2の相とを有する結晶構造では、結晶構造がさらに安定化する。このため、より多くのLiを挿入および脱離することが可能となる。これらの効果が総合的に作用することで、電池の容量がさらに向上する。
 特許文献1は、リチウム複合遷移金属酸化物を開示している。
 特許文献1に開示されたリチウム複合遷移金属酸化物は、
  空間群R-3mとC2/mとを有し、
  化学組成が一般式LiMO(ただし、MはNi元素、Co元素およびMn元素から選ばれる少なくとも一種を含む元素)で表され、かつ
  X線回折パターンにおける、空間群R-3mの結晶構造に帰属する(003)面のピークの積分強度(I003)に対する、空間群C2/mの結晶構造に帰属する(020)面のピークの積分強度(I020)の比(I020/I003)が0.02~0.3である。
 特許文献1のような従来技術は、
   空間群C2/mに属する結晶構造を有する第1の相と、空間群R-3mに属する結晶構造を有する第2の相と、が含まれ、
   XRDパターンにおいて、回折角2θが18°以上20°以下の範囲に存在する第1最大ピークの積分強度I(18°-20°)に対する、回折角2θが20°以上23°以下の範囲に存在する第2最大ピークの積分強度I(20°-23°)の積分強度比I(20°-23°)/I(18°-20°)が、0.05以上0.26以下であり、かつ、
   酸素の一部を、酸素よりもイオン半径の大きなアニオン元素(例えば、F、Cl、N、及びSの少なくとも一種の元素)で置換した
  リチウム複合酸化物を開示も示唆もしていない。
 すなわち、実施の形態1におけるリチウム複合酸化物は、従来技術からは容易に想到できない。実施の形態1におけるリチウム複合酸化物は、電池の容量をさらに向上させる。
 X線回折ピークの積分強度は、例えば、XRD装置に付属のソフトウエア(例えば、株式会社リガク社製、粉末X線回折装置に付属の商品名PDXLを有するソフトウェr)を用いて算出することができる。その場合、X線回折ピークの積分強度は、例えば、X線回折ピークの高さと半値幅から面積を算出することで得られる。
 一般的には、CuKα線を使用したXRDパターンでは、空間群C2/mに属する結晶構造の場合、回折角2θが18°以上20°の範囲に存在する最大ピークは(001)面を、反映している。20°以上23°の範囲に存在する最大ピークは、(020)面を、反映している。
 一般的には、CuKα線を使用したXRDパターンでは、空間群R-3mに属する結晶構造の場合、回折角2θが18°以上20°以下の範囲に存在する最大ピークは(003)面を、反映している。20°以上23°以下の範囲には回折ピークは存在しない。
 実施の形態1におけるリチウム複合酸化物は、空間群C2/mに属する結晶構造を有する第1の相と、空間群R3-mに属する結晶構造を有する第2の相と、を有するため、回折角2θが18°以上20°以下の範囲に存在する最大ピークが反映している空間群を完全に特定することは、必ずしも容易ではない。
 そのため、上述のX線回折測定に加えて、透過型電子顕微鏡(以下、「TEM」という)を用いた電子線回折測定が行なわれてもよい。公知の手法により電子線回折パターンを観察することで、実施の形態1におけるリチウム複合酸化物が有する空間群を特定することが可能である。これにより、実施の形態1におけるリチウム複合酸化物が、空間群C2/mに属する結晶構造を有する第1の相と、空間群R-3mに属する結晶構造を有する第2の相と、を有することを確認できる。
 実施の形態1におけるリチウム複合酸化物は、上述の第1の相と上述の第2の相との二相混合物であってもよい。
 二相混合物は、電池の容量を向上させる。
 実施の形態1におけるリチウム複合酸化物は、リチウム原子だけでなく、リチウム原子以外の原子をも含む。リチウム原子以外の原子の例は、Mn、Co、Ni、Fe、Cu、V、Nb、Mo、Ti、Cr、Zr、Zn、Na、K、Ca、Mg、Pt、Au、Ag、Ru、W、B、Si、P、またはAlである。実施の形態1におけるリチウム複合酸化物は、1種類のリチウム原子以外の原子を含んでいてもよい。これに代えて、実施の形態1におけるリチウム複合酸化物は、2種類以上のリチウム原子以外の原子を含んでいてもよい。
 Meは、Mnだけでなく、Co、Ni、Fe、Cu、V、Nb、Mo、Ti、Cr、Zr、Zn、Na、K、Ca、Mg、Pt、Au、Ag、Ru、W、B、Si、P、Alからなる群より選択される少なくとも一種の元素をも含んでもよい。
 実施の形態1におけるリチウム複合酸化物は、Mn、Co、Ni、Fe、Cu、V、Ti、Cr、及びZnからなる群より選択される少なくとも一種の3d遷移金属元素を含んでもよい。
 3d遷移金属元素は、電池の容量を向上させる。
 実施の形態1におけるリチウム複合酸化物は、Mn、Co、Ni、及びAlからなる群より選択される少なくとも一種の元素を含んでもよい。
 Mn、Co、Ni、及びAlからなる群より選択される少なくとも一種の元素は、電池の容量を向上させる。
 実施の形態1におけるリチウム複合酸化物は、Mnを含んでもよい。
 Mnおよび酸素の軌道混成は容易に形成されるので、充電時における酸素脱離が抑制される。上述のように第1の相と第2の相とを有する結晶構造内において、さらに結晶構造が安定化する。このため、より多くのLiを挿入および脱離させることが可能になると考えられる。このため、電池の容量を向上できる。
 次に、実施の形態1におけるリチウム複合酸化物の化学組成の一例を説明する。
 実施の形態1におけるリチウム複合酸化物は、下記の組成式(I)で表される平均組成を有していてもよい。
 LiMeαβ ・・・式(I)
 ここで、Meは、Mn、Co、Ni、Fe、Cu、V、Nb、Mo、Ti、Cr、Zr、Zn、Na、K、Ca、Mg、Pt、Au、Ag、Ru、W、B、Si、P、及びAlからなる群より選択される少なくとも一つであってもよい。
 Qは、F、Cl、N、及びSからなる群より選択される少なくとも1つであってもよい。
 さらに、組成式(I)において、下記の4つの数式、
1.05≦x≦1.5、
0.6≦y≦1.0、
1.2≦α≦2.0、かつ
0<β≦0.8、
を満たしてもよい。
 上記のリチウム複合酸化物は、電池の容量を向上させる。
 Meが化学式Me’y1Me’’y2(ここで、Me’およびMe’’は、それぞれ独立して、Meのために選択される当該少なくとも1つである)によって表される場合、「y=y1+y2」が充足される。例えば、MeがMn0.6Co0.2であれば、「y=0.6+0.2=0.8」が充足される。Qが2以上の元素からなる場合であっても、Meの場合と同様に計算できる。
 xの値が1.05以上の場合、正極活物質に挿入および脱離可能なLi量が多くなる。このため、容量が向上する。
 xの値が1.5以下である場合、Meの酸化還元反応により正極活物質に挿入および脱離するLiの量が多くなる。この結果、酸素の酸化還元反応を多く利用する必要がなくなる。これにより、結晶構造が安定化する。このため、容量が向上する。
 yの値が0.6以上である場合、Meの酸化還元反応により正極活物質に挿入および脱離するLiの量が多くなる。この結果、酸素の酸化還元反応を多く利用する必要がなくなる。これにより、結晶構造が安定化する。このため、容量が向上する。
 yの値が1.0以下である場合、正極活物質に挿入および脱離可能なLi量が多くなる。このため、容量が向上する。
 αの値が1.2以上である場合、酸素の酸化還元による電荷補償量が低下することを防ぐことができる。このため、容量が向上する。
 αの値が2.0以下である場合、酸素の酸化還元による容量が過剰となることを防ぐことができ、Liが脱離した際に結晶構造が安定化する。このため、容量が向上する。
 βの値が0よりも大きい場合、Qが電気化学的に不活性なので、Liが脱離した際に結晶構造が安定化する。このため、容量が向上する。
 βの値が0.8以下である場合、Qの電気化学的に不活性な影響が大きくなることを防ぐことができるため、電子伝導性が向上する。このため、容量が向上する。
 実施の形態1におけるリチウム複合酸化物の「平均組成」とは、リチウム複合酸化物の各相の組成の違いを考慮せずにリチウム複合酸化物の元素を分析することによって得られる組成である。典型的には、リチウム複合酸化物の一次粒子のサイズと同程度、または、それよりも大きな試料を用いて元素分析を行なうことによって得られる組成を意味する。第1の相および第2の相は、互いに同一の化学組成を有してもよい。もしくは、第1の相および第2の相は、互いに異なる組成を有していてもよい。
 上述の平均組成は、誘導結合プラズマ発光分光分析法、不活性ガス溶融-赤外線吸収法、イオンクロマトグラフィー、またはそれら分析方法の組み合わせにより決定することができる。
 Mnおよび酸素の軌道混成は容易に形成されるので、充電時における酸素脱離が抑制される。上述のように第1の相と第2の相とを有する結晶構造内において、さらに結晶構造が安定化する。このため、電池の容量を向上できる。
 Meに対するMnのモル比が、60%以上であってもよい。すなわち、Mnを含むMe全体に対するMnのモル比(Mn/Meのモル比)が、0.6以上1.0以下であってもよい。
 Mnおよび酸素の軌道混成は容易に形成されるので、充電時における酸素脱離がさらに抑制される。上述のように第1の相と第2の相とを有する結晶内において、さらに結晶構造が安定化する。このため、より高容量の電池を実現できる。
 Meは、B、Si、P、及びAlからなる群より選択される少なくとも一種の元素を、Meに対する当該少なくとも一種の元素のモル比が20%以下となるように、含んでもよい。
 B、Si、P、及びAlは、高い共有結合性を有するので、実施の形態1におけるリチウム複合酸化物の結晶構造が安定化する。その結果、サイクル特性が向上し、電池の寿命をさらに伸ばすことができる。
 Qは、Fを含んでもよい。
 すなわち、Qは、Fであってもよい。
 もしくは、Qは、Fだけでなく、Cl、N、及びSからなる群より選択される少なくとも一種の元素をも含んでもよい。
 フッ素原子は電気陰性度が高いため、酸素の一部をフッ素原子で置換することにより、カチオンとアニオンとの相互作用が大きくなり、放電容量または動作電圧が向上する。同様の理由により、Fが含まれない場合と比較して、Fの固溶により電子が局在化する。このため、充電時の酸素脱離が抑制され、結晶構造が安定する。以上のように、第1の相と第2の相とを有する結晶構造では、結晶構造がさらに安定化する。このため、より多くのLiを挿入および脱離することが可能となる。これらの効果が総合的に作用することで、電池の容量がさらに向上する。
 下記の2つの数式
 1.166≦x≦1.4、かつ
 0.67≦y≦1.0、
が満たされてもよい。
 上記の2つの数式が満たされると、電池の容量がさらに向上する。
 以下の2つの数式、
 1.33≦α≦1.9、かつ
 0.1≦β≦0.67、
が満たされてもよい。
 上記2つの数式が充足されると、酸素の酸化還元によって容量が過剰となることを防ぐことができる。その結果、電気化学的に不活性なQの影響が十分に発揮されることにより、Liが脱離した際に結晶構造が安定化する。このようにして、電池の容量をさらに向上できる。
 LiのMeに対するモル比は、数式(x/y)で示される。
 モル比(x/y)は、1.4以上2.0以下であってもよい。
 1.4以上2.0以下のモル比(x/y)は、電池の容量をさらに向上させる。
 モル比(x/y)が1よりも大きい場合では、例えば、組成式LiMnOで示される従来の正極活物質におけるLi原子数の比よりも、実施の形態1によるリチウム複合酸化物におけるLi原子数の比が高い。このため、より多くのLiを挿入および脱離させることが可能となる。
 モル比(x/y)が1.4以上の場合、利用できるLi量が多いので、Liの拡散パスが適切に形成される。このため、モル比(x/y)が1.4以上の場合、電池の容量がさらに向上する。
 モル比(x/y)が2.0以下の場合、利用できるMeの酸化還元反応が少なくなることを防ぐことができる。この結果、酸素の酸化還元反応を多く利用する必要がなくなる。充電時のLi脱離時の結晶構造の不安定化を原因とする放電時のLi挿入効率の低下が抑制される。このため、電池の容量がさらに向上する。
 電池の容量をさらに向上させるために、モル比(x/y)は、1.5以上2.0以下であってもよい。
 OのQに対するモル比は、数式(α/β)で示される。
 電池の容量をさらに向上させるために、モル比(α/β)は、2以上19以下でもよい。
 モル比(α/β)が2以上である場合、酸素の酸化還元による電荷補償量が低下することを防ぐことができる。さらに、電気化学的に不活性なQの影響を小さくできるため、電子伝導性が向上する。このため、電池の容量がさらに向上する。
 モル比(α/β)が19以下の場合、酸素の酸化還元による容量が過剰となることを防ぐことができる。これにより、Liが脱離した際に結晶構造が安定化する。さらに、電気化学的に不活性なQの影響が発揮されることにより、Liが脱離した際に結晶構造が安定化する。このため、より高容量の電池を実現できる。
 上述されたように、実施の形態1におけるリチウム複合酸化物は、組成式LiMeαβで表される平均組成を有していてもよい。したがって、実施の形態1におけるリチウム複合酸化物は、カチオン部分およびアニオン部分から構成される。カチオン部分は、LiおよびMeから構成される。アニオン部分は、OおよびQから構成される。LiおよびMeから構成されるカチオン部分の、OおよびQから構成されるアニオン部分に対するモル比は、数式((x+y)/(α+β))で示される。
 モル比((x+y)/(α+β))は、0.75以上1.2以下であってもよい。
 0.75以上1.2以下であるモル比((x+y)/(α+β))は、電池の容量をさらに向上させる。
 モル比((x+y)/(α+β))が0.75以上である場合、リチウム複合酸化物の合成時に不純物が多く生成することを防ぐことができ、電池の容量がさらに向上する。
 モル比((x+y)/(α+β))が1.2以下の場合、リチウム複合酸化物のアニオン部分の欠損量が少なくなるので、充電によってリチウムがリチウム複合酸化物から離脱した後でも、結晶構造は安定に維持される。
 モル比((x+y)/(α+β))は、1.0以上1.2以下であってもよい。
 1.0以上1.2以下のモル比((x+y)/(α+β))は、電池の容量をさらに向上させる。
 実施の形態1におけるリチウム複合酸化物において、Liの一部は、NaあるいはKのようなアルカリ金属で置換されていてもよい。
 実施の形態1における正極活物質は、上述のリチウム複合酸化物を主成分として含んでもよい。言い換えれば、実施の形態1における正極活物質は、上述のリチウム複合酸化物を、正極活物質の全体に対する上述のリチウム複合酸化物の質量比が50%以上となるように、含んでもよい。このような正極活物質は、電池の容量をさらに向上させる。
 電池の容量をさらに向上させるために、当該質量比は70%以上であってもよい。
 電池の容量をさらに向上させるために、当該質量比は90%以上であってもよい。
 実施の形態1における正極活物質は、上述のリチウム複合酸化物だけでなく不可避的な不純物をも含んでもよい。
 実施の形態1における正極活物質は、未反応物質として、その出発物質を含んでいてもよい。実施の形態1における正極活物質は、リチウム複合酸化物の合成時に発生する副生成物を含んでいてもよい。実施の形態1における正極活物質は、リチウム複合酸化物の分解により発生する分解生成物を含んでいてもよい。
 実施の形態1における正極活物質は、不可避的な不純物を除いて、上述のリチウム複合酸化物のみを含んでもよい。
 リチウム複合酸化物のみを含む正極活物質は、電池の容量をさらに向上させる。
 <リチウム複合酸化物の作製方法>
 以下に、実施の形態1の正極活物質に含まれるリチウム複合酸化物の製造方法の一例が、説明される。
 実施の形態1におけるリチウム複合酸化物は、例えば、次の方法により、作製される。
 Liを含む原料、Meを含む原料、および、Qを含む原料を用意する。
 Liを含む原料としては、例えば、LiOまたはLiのようなリチウム酸化物、LiF、LiCO、またはLiOHのようなリチウム塩、あるいはLiMeOまたはLiMeのようなリチウム複合酸化物が挙げられる。
 Meを含む原料としては、例えば、Meのような金属酸化物、MeCOまたはMeNOのような金属塩、Me(OH)またはMeOOHのような金属水酸化物、あるいはLiMeOまたはLiMeのようなリチウム複合酸化物が挙げられる。
 MeがMnである場合には、Mnを含む原料としては、例えば、MnOまたはMnのような酸化マンガン、MnCOまたはMnNOのような塩、Mn(OH)またはMnOOHのような水酸化物、あるいはLiMnOまたはLiMnのようなリチウム複合酸化物が挙げられる。
 Qを含む原料としては、例えば、ハロゲン化リチウム、遷移金属ハロゲン化物、遷移金属硫化物、または遷移金属窒化物が挙げられる。
 QがFの場合には、Fを含む原料としては、例えば、LiFまたは遷移金属フッ化物が挙げられる。
 リチウム複合酸化物の製造方法は、第1メカノケミカル反応工程および第2メカノケミカル反応工程を具備する。第1メカノケミカル反応工程では、例えば、Liモル比が、上述の組成式(I)において示されたモル比の0.8倍に等しくなるように、原料の重さが測定される。原料を、例えば、乾式法または湿式法で混合し、次いで遊星型ボールミルのような混合装置内で10時間以上メカノケミカルに互いに反応させることで、第1前駆体が得られる。
 第2メカノケミカル反応工程では、Liモル比が、上述の組成式(I)において示されたモル比と等しくなるように、Li化合物(例えば、LiF)の重さが測定される。第1前駆体およびLi化合物は混合され、次いで、例えば3時間、再度メカノケミカルに反応させる。このようにして、第2前駆体が得られる。
 このようにして、x、y、α、およびβの値を、組成式(I)において示された範囲内で変化させることができる。
 その後、得られた第2前駆体を熱処理する。熱処理の条件は、実施の形態1におけるリチウム複合酸化物が得られるように適宜設定される。熱処理の最適な条件は、他の製造条件および目標とする組成に依存する。
 熱処理の温度は、例えば、摂氏200度~摂氏900度の範囲で、適宜変更することができる。熱処理に要する時間は、例えば、1分から20時間の範囲で、適宜変更することができる。熱処理の雰囲気の例は、大気雰囲気、酸素雰囲気、または不活性雰囲気(例えば、窒素雰囲気もしくはアルゴン雰囲気)である。
 本発明者らは、第1メカノケミカル反応工程のために用いられるLiの原料の量の低下と共に、積分強度比I(20°-23°)/I(18°-20°)の値が低下することを見出している。この所見に基づき、作製条件が定められ得る。
 以上のように、原料、混合条件(例えば、混合比またはメカノケミカル反応の反応時間)、および熱処理条件を調整することにより、実施の形態1におけるリチウム複合酸化物を得ることができる。
 得られたリチウム複合酸化物の結晶構造の空間群は、例えば、X線回折測定法または電子線回折測定法により、特定することができる。これにより、得られたリチウム複合酸化物が、空間群C2/mに属する結晶構造を有する第1の相と、空間群R-3mに属する結晶構造を有する第2の相と、を有することを確認できる。
 得られたリチウム複合酸化物の平均組成は、例えば、ICP発光分光分析法、不活性ガス溶融-赤外線吸収法、イオンクロマトグラフィー、またはそれら分析方法の組み合わせにより、決定される。
 原料としてリチウム遷移金属複合酸化物を用いることで、元素のミキシングのエネルギーを低下させることができる。これにより、実施の形態1におけるリチウム複合酸化物の純度を高められる。
 以上のように、実施の形態1のリチウム複合酸化物の製造方法は、原料を用意する工程(a)と、原料をメカノケミカルに反応させることによりリチウム複合酸化物の前駆体を得る工程(b)と、前駆体を加熱することによりリチウム複合酸化物を得る工程(c)と、を包含する。
 原料は、混合原料であってもよく、当該混合原料では、LiのMeに対する比は1.4以上2.0以下であってもよい。
 工程(a)では、Meに対するLiのモル比が1.5以上2.0以下となるように原料を混合し、混合原料を調製してもよい。
 工程(b)は、上記のように、第1メカノケミカル反応工程および第2メカノケミカル反応工程を具備し得る。すなわち、第1メカノケミカル反応工程においては、原料(例えば、LiF、LiO、遷移金属酸化物、またはリチウム複合遷移金属)を混合して第1前駆体を得、次いで第2メカノケミカル反応工程においては、第1前駆体にLi化合物が添加され、第2前駆体を得る。第2前駆体が工程(c)において前駆体として加熱される。
 (実施の形態2)
 以下、実施の形態2が説明される。上述の実施の形態1と重複する説明は、省略され得る。
 実施の形態2における電池は、実施の形態1における正極活物質を含む正極と、負極と、電解質と、を備える。
 実施の形態2における電池は、高い容量を有する。
 実施の形態2における電池において、負極は、リチウムイオンを吸蔵および放出しうる負極活物質を含んでもよい。あるいは、負極は、例えば、材料であって、放電時にリチウム金属が当該材料から電解質に溶解し、かつ充電時に前記リチウム金属が当該材料に析出する材料を含んでいてもよい。
 実施の形態2における電池において、電解質は、非水電解質(例えば、非水電解液)であってもよい。
 実施の形態2における電池において、電解質は、固体電解質であってもよい。
 図1は、実施の形態2における電池10の断面図を示す。
 図1に示されるように、電池10は、正極21と、負極22と、セパレータ14と、ケース11と、封口板15と、ガスケット18と、を備えている。
 セパレータ14は、正極21と負極22との間に、配置されている。
 正極21と負極22とセパレータ14とには、非水電解質(例えば、非水電解液)が含浸されている。
 正極21と負極22とセパレータ14とによって、電極群が形成されている。
 電極群は、ケース11の中に収められている。
 ガスケット18と封口板15とにより、ケース11が閉じられている。
 正極21は、正極集電体12と、正極集電体12の上に配置された正極活物質層13と、を備えている。
 正極集電体12は、例えば、金属材料(例えば、アルミニウム、ステンレス、ニッケル、鉄、チタン、銅、パラジウム、金、または白金)又はそれらの合金で作られている。
 正極集電体12は設けられないことがある。この場合、ケース11を正極集電体として使用する。
 正極活物質層13は、実施の形態1における正極活物質を含む。
 正極活物質層13は、必要に応じて、添加剤(導電剤、イオン伝導補助剤、または結着剤)を含んでいてもよい。
 負極22は、負極集電体16と、負極集電体16の上に配置された負極活物質層17と、を備えている。
 負極集電体16は、例えば、金属材料(例えば、アルミニウム、ステンレス、ニッケル、鉄、チタン、銅、パラジウム、金、または白金)又はそれらの合金)で作られている。
 負極集電体16は設けられないことがある。この場合、封口板15を負極集電体として使用する。
 負極活物質層17は、負極活物質を含んでいる。
 負極活物質層17は、必要に応じて、例えば、添加剤(導電剤、イオン伝導補助剤、または結着剤)を含んでいてもよい。
 負極活物質の材料の例は、金属材料、炭素材料、酸化物、窒化物、錫化合物、または珪素化合物である。
 金属材料は、単体の金属であってもよい。もしくは、金属材料は、合金であってもよい。金属材料の例として、リチウム金属またはリチウム合金が挙げられる。
 炭素材料の例として、天然黒鉛、コークス、黒鉛化途上炭素、炭素繊維、球状炭素、人造黒鉛、または非晶質炭素が挙げられる。
 容量密度の観点から、負極活物質として、珪素(Si)、錫(Sn)、珪素化合物、または錫化合物を使用できる。珪素化合物および錫化合物は、合金または固溶体であってもよい。
 珪素化合物の例として、SiO(ここで、0.05<x<1.95)が挙げられる。SiOの一部の珪素原子を他の元素で置換することによって得られた化合物も使用できる。当該化合物は、合金又は固溶体である。他の元素とは、ホウ素、マグネシウム、ニッケル、チタン、モリブデン、コバルト、カルシウム、クロム、銅、鉄、マンガン、ニオブ、タンタル、バナジウム、タングステン、亜鉛、炭素、窒素及び錫からなる群より選択される少なくとも1種の元素である。
 錫化合物の例として、NiSn、MgSn、SnO(ここで、0<x<2)、SnO、またはSnSiOが挙げられる。これらから選択される1種の錫化合物が、単独で使用されてもよい。もしくは、これらから選択される2種以上の錫化合物の組み合わせが、使用されてもよい。
 負極活物質の形状は限定されない。負極活物質としては、公知の形状(例えば、粒子状または繊維状)を有する負極活物質が使用されうる。
 リチウムを負極活物質層17に補填する(すなわち、吸蔵させる)ための方法は、限定されない。この方法の例は、具体的には、(a)真空蒸着法のような気相法によってリチウムを負極活物質層17に堆積させる方法、または(b)リチウム金属箔と負極活物質層17とを接触させて両者を加熱する方法である。いずれの方法においても、熱によってリチウムは負極活物質層17に拡散する。リチウムを電気化学的に負極活物質層17に吸蔵させる方法も用いられ得る。具体的には、リチウムを有さない負極22およびリチウム金属箔(負極)を用いて電池を組み立てる。その後、負極22にリチウムが吸蔵されるように、その電池を充電する。
 正極21および負極22の結着剤の例は、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、またはカルボキシメチルセルロースである。
 結着剤の他の例は、テトラフルオロエチレン、ヘキサフルオロエタン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸、およびヘキサジエンからなる群より選択される2種以上の材料の共重合体である。
 上述の材料から選択される2種以上の結着剤の混合物が用いられてもよい。
 正極21および負極22の導電剤の例は、グラファイト、カーボンブラック、導電性繊維、フッ化黒鉛、金属粉末、導電性ウィスカー、導電性金属酸化物、または有機導電性材料である。
 グラファイトの例としては、天然黒鉛または人造黒鉛が挙げられる。
 カーボンブラックの例としては、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、またはサーマルブラックが挙げられる。
 金属粉末の例としては、アルミニウム粉末が挙げられる。
 導電性ウィスカーの例としては、酸化亜鉛ウィスカーまたはチタン酸カリウムウィスカーが挙げられる。
 導電性金属酸化物の例としては、酸化チタンが挙げられる。
 有機導電性材料の例としては、フェニレン誘導体が挙げられる。
 導電剤を用いて、結着剤の表面の少なくとも一部を被覆してもよい。例えば、結着剤の表面は、カーボンブラックにより被覆されてもよい。これにより、電池の容量を向上させることができる。
 セパレータ14の材料は、大きいイオン透過度および十分な機械的強度を有する材料である。セパレータ14の材料の例は、微多孔性薄膜、織布、または不織布が挙げられる。具体的には、セパレータ14は、ポリプロピレンまたはポリエチレンのようなポリオレフィンで作られていることが望ましい。ポリオレフィンで作られたセパレータ14は、優れた耐久性を有するだけでなく、過度に加熱されたときにシャットダウン機能を発揮できる。セパレータ14の厚さは、例えば、10~300μm(又は10~40μm)の範囲にある。セパレータ14は、1種の材料で構成された単層膜であってもよい。もしくは、セパレータ14は、2種以上の材料で構成された複合膜(または、多層膜)であってもよい。セパレータ14の空孔率は、例えば、30~70%(又は35~60%)の範囲にある。用語「空孔率」とは、セパレータ14の全体の体積に占める空孔の体積の割合を意味する。空孔率は、例えば、水銀圧入法によって測定される。
 非水電解液は、非水溶媒と、非水溶媒に溶けたリチウム塩と、を含む。
 非水溶媒の例は、環状炭酸エステル溶媒、鎖状炭酸エステル溶媒、環状エーテル溶媒、鎖状エーテル溶媒、環状エステル溶媒、鎖状エステル溶媒、またはフッ素溶媒である。
 環状炭酸エステル溶媒の例は、エチレンカーボネート、プロピレンカーボネート、またはブチレンカーボネートである。
 鎖状炭酸エステル溶媒の例は、ジメチルカーボネート、エチルメチルカーボネート、またはジエチルカーボネートである。
 環状エーテル溶媒の例は、テトラヒドロフラン、1、4-ジオキサン、または1、3-ジオキソランである。
 鎖状エーテル溶媒の例は、1、2-ジメトキシエタンまたは1、2-ジエトキシエタンである。
 環状エステル溶媒の例は、γ-ブチロラクトンである。
 鎖状エステル溶媒の例は、酢酸メチルである。
 フッ素溶媒の例は、フルオロエチレンカーボネート、フルオロプロピオン酸メチル、フルオロベンゼン、フルオロエチルメチルカーボネート、またはフルオロジメチレンカーボネートである。
 非水溶媒として、これらの溶媒から選択される1種の非水溶媒が、単独で、使用されうる。もしくは、非水溶媒として、これらの溶媒から選択される2種以上の非水溶媒の組み合わせが、使用されうる。
 非水電解液は、フルオロエチレンカーボネート、フルオロプロピオン酸メチル、フルオロベンゼン、フルオロエチルメチルカーボネート、およびフルオロジメチレンカーボネートからなる群より選択される少なくとも1種のフッ素溶媒を含んでいてもよい。
 当該少なくとも1種のフッ素溶媒が非水電解液に含まれていると、非水電解液の耐酸化性が向上する。
 その結果、高い電圧で電池10を充電する場合にも、電池10を安定して動作させることが可能となる。
 実施の形態2における電池において、電解質は、固体電解質であってもよい。
 固体電解質の例は、有機ポリマー固体電解質、酸化物固体電解質、または硫化物固体電解質である。
 有機ポリマー固体電解質の例は、高分子化合物と、リチウム塩との化合物である。このような化合物の例は、ポリスチレンスルホン酸リチウムである。
 高分子化合物はエチレンオキシド構造を有していてもよい。高分子化合物がエチレンオキシド構造を有するので、リチウム塩を多く含有することができる。その結果、イオン導電率をより高めることができる。
 酸化物固体電解質の例は、
 (i) LiTi(POまたはその置換体のようなNASICON固体電解質、
 (ii) (LaLi)TiOのようなペロブスカイト固体電解質、
 (iii) Li14ZnGe16、LiSiO、LiGeO、またはその置換体のようなLISICON固体電解質、
 (iv) LiLaZr12またはその置換体のようなガーネット固体電解質、
 (v) LiNまたはそのH置換体、もしくは
 (vi) LiPOまたはそのN置換体
である。
 硫化物固体電解質の例は、LiS-P、LiS-SiS、LiS-B、LiS-GeS、Li3.25Ge0.250.75、またはLi10GeP12である。硫化物固体電解質に、LiX(XはF、Cl、Br、またはIである)、MO、またはLiMO(Mは、P、Si、Ge、B、Al、Ga、またはInのいずれかであり、かつxおよびyはそれぞれ独立して自然数である)が添加されてもよい。
 これらの中でも、硫化物固体電解質は、成形性に富み、かつ高いイオン伝導性を有する。このため、固体電解質として硫化物固体電解質を用いることで、電池のエネルギー密度をさらに向上できる。
 硫化物固体電解質の中でも、LiS-Pは、高い電気化学的安定性および高いイオン伝導性を有する。このため、固体電解質として、LiS-Pを用いると、電池のエネルギー密度をさらに向上できる。
 固体電解質が含まれる固体電解質層には、さらに上述の非水電解液が含まれてもよい。
 固体電解質層が非水電解液を含むので、活物質と固体電解質との間でのリチウムイオンの移動が容易になる。その結果、電池のエネルギー密度をさらに向上できる。
 固体電解質層は、ゲル電解質またはイオン液体を含んでもよい。
 ゲル電解質の例は、非水電解液が含浸したポリマー材料である。ポリマー材料の例は、ポリエチレンオキシド、ポリアクリルニトリル、ポリフッ化ビニリデン、またはポリメチルメタクリレートである。ポリマー材料の他の例は、エチレンオキシド結合を有するポリマーである。
 イオン液体に含まれるカチオンの例は、
 (i) テトラアルキルアンモニウムのような脂肪族鎖状第4級アンモニウム塩のカチオン、
 (ii) テトラアルキルホスホニウムのような脂肪族鎖状第4級ホスホニウム塩のカチオン、
 (iii) ピロリジニウム、モルホリニウム、イミダゾリニウム、テトラヒドロピリミジニウム、ピペラジニウム、またはピペリジニウムのような脂肪族環状アンモニウム、または
 (iv) ピリジニウムまたはイミダゾリウムのような窒素含有ヘテロ環芳香族カチオン
である。
 イオン液体に含まれるアニオンの例は、PF 、BF 、SbF 、AsF 、SOCF 、N(SOCF 、N(SO 、N(SOCF)(SO、またはC(SOCF である。イオン液体はリチウム塩を含有してもよい。
 リチウム塩の例は、LiPF、LiBF、LiSbF、LiAsF、LiSOCF、LiN(SOCF、LiN(SO、LiN(SOCF)(SO)、またはLiC(SOCFである。1種のリチウム塩が、単独で使用されうる。もしくは、2種以上のリチウム塩の混合物が使用されうる。リチウム塩の濃度は、例えば、0.5~2モル/リットルの範囲にある。
 実施の形態2における電池の形状について、電池は、コイン型電池、円筒型電池、角型電池、シート型電池、ボタン型電池(すなわち、ボタン型セル)、扁平型電池、または積層型電池である。 
 (実施例)
 <実施例1>
 [正極活物質の作製]
 1.0/0.54/0.13/0.13/1.8/0.1のLi/Mn/Co/Ni/O/Fモル比を有するように、LiF、MnO、LiMnO、LiCoO、およびLiNiOとの混合物を得た。
 混合物を、3mmの直径を有する適量のジルコニア製ボールと共に、45ミリリットルの容積を有する容器に入れ、アルゴングローブボックス内で密閉した。容器はジルコニア製であった。
 次に、第1メカノケミカル反応を実施した。具体的には、第1メカノケミカル反応では、容器をアルゴングローブボックスから取り出した。遊星型ボールミルで、600rpmの回転速度で30時間、容器の内部に含有される混合物をアルゴン雰囲気下で処理することで、第1前駆体を調製した。
 Li/Mn/Co/Ni/O/F=1.2/0.54/0.13/0.13/1.9/0.1のモル比を有するように、第1前駆体をLiFと混合し、第2前駆体を得た。
 第2前駆体を、3mmの直径を有する適量のジルコニア製ボールと共に、45ミリリットルの容積を有する容器に入れ、アルゴングローブボックス内で密閉した。容器はジルコニア製であった。
 次に、第2メカノケミカル反応を実施した。具体的には、第2メカノケミカル反応では、容器をアルゴングローブボックスから取り出した。遊星型ボールミルで、600rpmの回転速度で5時間、容器の内部に含有される混合物をアルゴン雰囲気下で処理することで、第2前駆体を調製した。
 第2の前駆体に対して、粉末X線回折測定を実施した。
 粉末X線回折測定の結果、第2の前駆体の空間群はFm-3mとして特定された。
 次に、第2の前駆体を、700℃で1時間、大気雰囲気において加熱した。このようにして、実施例1による正極活物質を得た。
 実施例1による活物質に対して、粉末X線回折測定を実施した。
 図2は粉末X線回折測定の結果を示す。
 実施例1による正極活物質に対して、電子回折測定も行った。粉末X線回折測定および電子回折測定の結果に基づいて、実施例1による正極活物質の結晶構造を解析した。
 その結果、実施例1による正極活物質は、空間群C2/mに属する相とR-3mに属する相との二相混合物であると判定された。
 X線回析装置(株式会社リガク社製)を用いて得られた粉末X線回折測定の結果から、X線回析ピークの積分強度を、当該X線回析装置に付属のソフトウエア(商品名:PDXL)を用いて算出した。
 実施例1による正極活物質における積分強度比I(20°-23°)/I(18°-20°)は、0.12であった。
 [電池の作製]
 次に、70質量部の実施例1による正極活物質、20質量部のアセチレンブラック、10質量部のポリフッ化ビニリデン(以下、「PVDF」という)、および適量のN-メチル-2-ピロリドンを混合した。これにより、正極合剤スラリーを得た。アセチレンブラックは導電剤として機能した。ポリフッ化ビニリデンは結着剤として機能した。
 20マイクロメートルの厚さのアルミニウム箔で形成された正極集電体の片面に、正極合剤スラリーを塗布した。
 正極合剤スラリーを乾燥および圧延することによって、正極活物質層を備えた厚さ60マイクロメートルの正極板を得た。
 得られた正極板を打ち抜いて、直径12.5mmの円形状の正極を得た。
 300マイクロメートルの厚みを有するリチウム金属箔を打ち抜いて、直径14mmの円形状の負極を得た。
 これとは別に、フルオロエチレンカーボネート(以下、「FEC」という)とエチレンカーボネート(以下、「EC」という)とエチルメチルカーボネート(以下、「EMC」という)とを、1:1:6の体積比で混合して、非水溶媒を得た。
 この非水溶媒に、LiPFを、1.0mol/リットルの濃度で、溶解させることによって、非水電解液を得た。
 得られた非水電解液を、セパレータに、染み込ませた。セパレータは、セルガード社の製品(品番2320、厚さ25マイクロメートル)であった。当該セパレータは、ポリプロピレン層とポリエチレン層とポリプロピレン層とで形成された、3層セパレータであった。
 上述の正極と負極とセパレータとを用いて、露点がマイナス摂氏50度に維持されたドライボックスの中で、直径が20ミリであり、かつ厚みが3.2ミリのコイン型電池を、作製した。
 <実施例2~9>
 実施例2~実施例9では、以下の事項(i)および(ii)を除き、実施例1の場合と同様に正極活物質を得た。
 (i) 第1メカノケミカル反応および第2メカノケミカル反応の少なくとも一方において用いられる材料の混合比率を変えたこと。
 (ii) 加熱条件を、500~900℃かつ10分~10時間の範囲内で変えたこと。
 表1に、実施例2~9の正極活物質の平均組成が示される。
 実施例2~9の正極活物質は、空間群C2/mに属する相とR-3mに属する相との二相混合物であった。
 実施例2~9の正極活物質を用いて、実施例1と同様にして、実施例2~9のコイン型電池を作製した。
 <比較例1>
 比較例1では、公知の手法を用いて、化学式LiCoO(すなわち、コバルト酸リチウム)で表される組成を有する正極活物質を得た。
 得られた正極活物質に対して、粉末X線回折測定を実施した。
 粉末X線回折測定の結果が、図2に示される。
 粉末X線回折測定の結果から、比較例1による正極活物質の空間群は、空間群R-3mとして特定された。
 比較例1による正極活物質における積分強度比I(20°-23°)/I(18°-20°)は、0であった。
 比較例1による正極活物質を用いて、実施例1と同様にして、比較例1のコイン型電池を作製した。
 <比較例2>
 1.33/0.67/1.33/0.67のLi/Mn/O/Fモル比を有するように、LiF、MnO、およびMnの混合物を得た。
 混合物を、3mmの直径を有する適量のジルコニア製ボールと共に、45ミリリットルの容積を有する容器に入れ、アルゴングローブボックス内で密閉した。容器はジルコニア製であった。
 次に、容器をアルゴングローブボックスから取り出した。遊星型ボールミルで、600rpmの回転速度で30時間、容器の内部に含有される混合物をアルゴン雰囲気下で処理することで、前駆体を調製した。
 前駆体に対して、粉末X線回折測定を実施した。
 粉末X線回折測定の結果に基づき、前駆体の空間群は、空間群Fm-3mとして特定された。
 次に、前駆体を、700℃で1時間、大気雰囲気において熱処理した。このようにして、比較例2による正極活物質が得られた。
 比較例2による正極活物質に対して、粉末X線回折測定を実施した。
 測定の結果が、図2に示される。
 比較例2による正極活物質に対して、電子線回折測定を行い、結晶構造を解析した。
 比較例2による正極活物質は、空間群C2/mに属する相とR-3mに属する相との二相混合物であった。
 比較例2による正極活物質における積分強度比I(20°-23°)/I(18°-20°)は、0.27であった。
 比較例2による正極活物質を用いて、実施例1と同様にして、比較例2のコイン型電池を作製した。
 <比較例3>
 1.0/0.54/0.13/0.13/2.0のLi/Mn/Co/Ni/Oのモル比を有するように、MnO、LiMnO、LiCoO、およびLiNiOの混合物を得た。
 混合物を、3mmの直径を有する適量のジルコニア製ボールと共に、45ミリリットルの容積を有する容器に入れ、アルゴングローブボックス内で密閉した。容器はジルコニア製であった。
 次に、容器をアルゴングローブボックスから取り出した。遊星型ボールミルで、600rpmの回転速度で30時間、容器の内部に含有される混合物をアルゴン雰囲気下で処理することで、第1前駆体を調製した。
 Li/Mn/Co/Ni/O=1.2/0.54/0.13/0.13/2.0のモル比を有するように、第1前駆体をLiFと混合し、第2前駆体を得た。
 第2前駆体を、3mmの直径を有する適量のジルコニア製ボールと共に、45ミリリットルの容積を有する容器に入れ、アルゴングローブボックス内で密閉した。容器はジルコニア製であった。
 次に、第2メカノケミカル反応を実施した。具体的には、第2メカノケミカル反応では、容器をアルゴングローブボックスから取り出した。遊星型ボールミルで、600rpmの回転速度で5時間、容器の内部に含有される混合物をアルゴン雰囲気下で処理することで、第2前駆体を調製した。
 第2の前駆体に対して、粉末X線回折測定を実施した。
 第2の前駆体の空間群は、Fm-3mであった。
 次に、第2の前駆体を、700℃で1時間、大気雰囲気において熱処理した。このようにして、比較例3による正極活物質が得られた。
 比較例3による正極活物質に対して、粉末X線回折測定を実施した。
 また、比較例3による正極活物質に対して、電子回折測定も行った。粉末X線回折測定および電子回折測定の結果に基づいて、比較例3による正極活物質の結晶構造を解析した。
 その結果、比較例3による正極活物質は、空間群C2/mに属する相とR-3mに属する相との二相混合物であると特定された。
 比較例3による正極活物質における積分強度比I(20°-23°)/I(18°-20°)は、0.27であった。
 比較例3による正極活物質を用いて、実施例1の場合と同様にして、比較例3のコイン型電池を作製した。
 <電池の評価>
 0.5mA/cmの電流密度で、4.9Vの電圧に達するまで、実施例1の電池を充電した。
 その後、0.5mA/cmの電流密度で、2.5Vの電圧に達するまで、実施例1の電池を放電させた。
 実施例1の電池の初回放電容量は、285mAh/gであった。
 0.5mA/cmの電流密度で、4.3Vの電圧に達するまで、比較例1の電池を充電した。
 その後、0.5mA/cmの電流密度で、2.5Vの電圧に達するまで、比較例1の電池を放電させた。
 比較例1の電池の初回放電容量は、150mAh/gであった。
 実施例2~9および比較例2~3のコイン型電池の初回放電容量を同様に測定した。
 以下の表1および表2は、実施例1~実施例9および比較例1~比較例3の結果を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

 
 表1に示されるように、実施例1~9の電池は、263~285mAh/gの初回放電容量を有する。
 すなわち、実施例1~9の電池の初回放電容量は、比較例1~3の電池の初回放電容量よりも、大きい。
 この理由は、以下の3つの事項(i)~(iii)であると考えられる。
 (i)実施例1~9の電池では、正極活物質に含まれるリチウム複合酸化物が、空間群C2/mに属する結晶構造を有する第1の相と、空間群R3-mに属する結晶構造を有する第2の相と、を有する。
 (ii) 実施例1~9の電池では、リチウム複合酸化物が、F、Cl、N、及びSからなる群より選択される少なくとも一つを含有する。
 (iii) 実施例1~9の電池では、積分強度比I(20°-23°)/I(18°-20°)が0.05以上0.26以下である。
 上記の3つの理由により、多くのLiを挿入および脱離させることが可能で、かつ、Liの拡散性および結晶構造の安定性が高いと考えられる。このため、初回放電容量が大きく向上したと考えられる。
 比較例1では、積分強度比I(20°-23°)/I(18°-20°)が0.05よりも小さい(すなわち、積分強度比II(20°-23°)/I(18°-20°)は0に等しい)。結晶構造は空間群R-3mの単相である。(x/y)の値は1に等しい。これらの理由のため、充放電時のLiの挿入量および脱離量が低下し、初回放電容量が大きく低下したと考えられる。
 比較例2では、積分強度比I(20°-23°)/I(18°-20°)が0.26よりも大きい(すなわち、積分強度比II(20°-23°)/I(18°-20°)は0.27に等しい)ので、第2の相の存在比が小さい。そのため、充放電時のLiの拡散性が低下し、初回放電容量が低下したと考えられる。
 比較例3では、正極活物質に含まれるリチウム複合酸化物が、Fを含有しないため、結晶構造が不安定となる。その結果、充電時のLi脱離に伴い結晶構造が崩壊し、初回放電容量が低下したと考えられる。
 表1に示されるように、実施例2の電池の初回放電容量は、実施例1の電池の初回放電容量よりも、小さい。
 この理由としては、実施例2では、実施例1と比較して、積分強度比I(20°-23°)/I(18°-20°)が大きいことが考えられる。このため、第2の相の存在比が小さくなり、充放電時のLiの拡散性が低下したと考えられる。このため、初回放電容量が低下したと考えられる。
 表1に示されるように、実施例3の電池の初回放電容量は、実施例1の電池の初回放電容量よりも、小さい。
 この理由としては、実施例3では、実施例1と比較して、積分強度比I(20°-23°)/I(18°-20°)が小さいことが考えられる。このため、第1の相の存在比が小さくなり、充放電時のLiの挿入量および脱離量が低下したと考えられる。このため、初回放電容量が低下したと考えられる。
 表1に示されるように、実施例4の電池の初回放電容量は、実施例1の電池の初回放電容量よりも、小さい。
 この理由としては、実施例4では、実施例1と比較して、積分強度比I(20°-23°)/I(18°-20°)が小さいことが考えられる。このため、第1の相の存在比が小さくなり、充放電時のLiの挿入量および脱離量が低下したと考えられる。実施例4では、実施例1と比較して、x/yが小さいため、充放電時のLiの挿入量および脱離量が低下したと考えられる。このため、初回放電容量が低下したと考えられる。
 表1に示されるように、実施例5の電池の初回放電容量は、実施例4の電池の初回放電容量よりも、小さい。
 この理由としては、実施例5では、実施例4と比較して、積分強度比I(20°-23°)/I(18°-20°)が小さいことが考えられる。このため、第1の相の存在比が小さくなり、充放電時のLiの挿入量および脱離量が低下したと考えられる。このため、初回放電容量が低下したと考えられる。
 表1に示されるように、実施例6の電池の初回放電容量は、実施例1の電池の初回放電容量よりも、小さい。
 この理由としては、実施例6による電池の正極活物質に含まれるAlは、酸化還元反応に寄与しないことが考えられる。このため、充放電時のLiの挿入量および脱離量が低下したと考えられる。このため、初回放電容量が低下したと考えられる。
 表1に示されるように、実施例7の電池の初回放電容量は、実施例2の電池の初回放電容量よりも、小さい。
 この理由としては、実施例7では、実施例2と比較して、積分強度比I(20°-23°)/I(18°-20°)が大きいことが考えられる。このため、第2の相の存在割合が小さくなり、充放電時のLiの拡散性が低下したと考えられる。実施例7では、実施例2と比較して、モル比(α/β)が小さいため、電気陰性度の高いFの量が多くなり、電子伝導性が低下したと考えられる。このため、初回放電容量が低下したと考えられる。
 表1に示されるように、実施例8の電池の初回放電容量は、実施例2の電池の初回放電容量よりも、小さい。
 この理由としては、実施例8では、実施例2と比較して、積分強度比I(20°-23°)/I(18°-20°)が大きいことが考えられる。このため、第2の相の存在比が小さくなり、充放電時のLiの拡散性が低下したと考えられる。このため、初回放電容量が低下したと考えられる。
 表1に示されるように、実施例9の電池の初回放電容量は、実施例4~5の電池の初回放電容量よりも、小さい。
 この理由としては、実施例9では、実施例4~5と比較して、((x+y)/(α+β))の値が大きいことが考えられる。このため、アニオンの欠損量が多く、Li脱離時に結晶構造が不安定化したと考えられる。その結果、初回放電容量が低下したと考えられる。
 本開示の正極活物質は、二次電池のような電池のために利用されうる。
 10  電池
 11  ケース
 12  正極集電体
 13  正極活物質層
 14  セパレータ
 15  封口板
 16  負極集電体
 17  負極活物質層
 18  ガスケット
 21  正極
 22  負極

Claims (21)

  1.  正極活物質であって、
     リチウム複合酸化物
     を含み、
     ここで、
     前記リチウム複合酸化物は、空間群C2/mに属する結晶構造を有する第1の相および空間群R-3mに属する結晶構造を有する第2の相を含む多相混合物であり、
     前記リチウム複合酸化物は、F、Cl、N、及びSからなる群より選択される少なくとも一つを含有し、かつ
     以下の数式(I)
     0.05≦積分強度比I(20°-23°)/I(18°-20°)≦0.26 (I)
     が充足される、正極活物質。
     ここで、
     前記積分強度比I(20°-23°)/I(18°-20°)は、積分強度I(18°-20°)に対する積分強度I(20°-23°)の比に等しく、
     積分強度I(18°-20°)は、前記リチウム複合酸化物のX線回析パターンにおいて、18°以上20°以下の回折角2θの範囲に存在する第1最大ピークの積分強度であり、かつ、
     積分強度I(20°-23°)は、前記リチウム複合酸化物のX線回析パターンにおいて、20°以上23°以下の回折角2θの範囲に存在する第2の最大ピークの積分強度である。
  2.  請求項1に記載の正極活物質であって、
     前記積分強度比I(20°-23°)/I(18°-20°)は、0.09以上0.14以下である、
     正極活物質。
  3.  請求項1または2に記載の正極活物質であって、
     前記リチウム複合酸化物は、Mnを含有する、
     正極活物質。
  4.  請求項1から3のいずれか一項に記載の正極活物質であって、
     前記リチウム複合酸化物は、Fを含有する、
     正極活物質。
  5.  請求項1または2に記載の正極活物質であって、
     前記リチウム複合酸化物は、下記の組成式(I)で表される平均組成を有する、
     LiMeαβ  (I)
     ここで、
     Meは、Mn、Co、Ni、Fe、Cu、V、Nb、Mo、Ti、Cr、Zr、Zn、Na、K、Ca、Mg、Pt、Au、Ag、Ru、W、B、Si、P、及びAlからなる群より選択される少なくとも1つであり、
     Qは、F、Cl、N、及びSからなる群より選択される少なくとも1つであり、
     以下の4つの数式が満たされる、
     1.05≦x≦1.5、
     0.6≦y≦1.0、
     1.2≦α≦2.0、および
     0<β≦0.8。
     正極活物質。
  6.  請求項5に記載の正極活物質であって、
     Meは、Mn、Co、Ni、Fe、Cu、V、Ti、Cr、及びZnからなる群より選択される少なくとも一つを含む、
     正極活物質。
  7.  請求項5または6に記載の正極活物質であって、
     Meは、Mn、Co、Ni、及びAlからなる群より選択される少なくとも1つを含む、
     正極活物質。
  8.  請求項6または7に記載の正極活物質であって、
     Meは、Mnを含む、
     正極活物質。
  9.  請求項8に記載の正極活物質であって、
     Meに対するMnのモル比が、0.6以上である、
     正極活物質。
  10.  請求項5から9のいずれか一項に記載の正極活物質であって、
     Qは、Fを含む。
     正極活物質。
  11.  請求項5から10のいずれか一項に記載の正極活物質であって、
     以下の2つの数式
     1.166≦x≦1.4、および
     0.67≦y≦1.0、
     が満たされる、
     正極活物質。
  12.  請求項5から11のいずれか一項に記載の正極活物質であって、
     以下の2つの数式
     1.33≦α≦1.9、および
     0.1≦β≦0.67、
     が満たされる、
     正極活物質。
  13.  請求項5から12のいずれか一項に記載の正極活物質であって、
     以下の数式
     1.4≦x/y≦2.0、
     が満たされる、
     正極活物質。
  14.  請求項5から13のいずれか一項に記載の正極活物質であって、
     以下の数式
     2≦α/β≦19、
     が満たされる、
     正極活物質。
  15.  請求項5から14のいずれか一項に記載の正極活物質であって、
     以下の数式
     0.75≦((x+y)/(α+β))≦1.2、
     が満たされる、
     正極活物質。
  16.  請求項15に記載の正極活物質であって、
     以下の数式
     1.0≦((x+y)/(α+β))≦1.2、
     が満たされる、
     正極活物質。
  17.  請求項1から16のいずれか一項に記載の正極活物質であって、
     前記リチウム複合酸化物が前記正極活物質において主成分として含まれる、
     正極活物質。
  18.  請求項1から17のいずれか一項に記載の正極活物質であって、
     前記多相混合物は、前記第1の相および前記第2の相から構成される二相混合物である、
     正極活物質。
  19.  電池であって、
      請求項1から18のいずれか一項に記載の正極活物質を含む正極、
      負極、および
      電解質、
     を備える、
     電池。
  20.  請求項19に記載の電池であって、
     前記負極は、
      (i)リチウムイオンを吸蔵および放出可能な負極活物質、および
      (ii)材料であって、放電時にリチウム金属が当該材料から電解質に溶解し、かつ充電時に前記リチウム金属が当該材料に析出する材料
     からなる群から選択される少なくとも1つを含み、かつ
     前記電解質は、非水電解液である、
     電池。
  21.  請求項19に記載の電池であって、
     前記負極は、
      (i)リチウムイオンを吸蔵および放出可能な負極活物質、および
      (ii)材料であって、放電時にリチウム金属が当該材料から電解質に溶解し、かつ充電時に前記リチウム金属が当該材料に析出する材料
     からなる群から選択される少なくとも1つを含み、かつ
     前記電解質は、固体電解質である、
     電池。
PCT/JP2019/008784 2018-05-31 2019-03-06 正極活物質およびそれを備えた電池 WO2019230101A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020521714A JP7162274B2 (ja) 2018-05-31 2019-03-06 正極活物質およびそれを備えた電池
US17/089,670 US11955622B2 (en) 2018-05-31 2020-11-04 Positive electrode active material and battery comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018104167 2018-05-31
JP2018-104167 2018-05-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/089,670 Continuation US11955622B2 (en) 2018-05-31 2020-11-04 Positive electrode active material and battery comprising the same

Publications (1)

Publication Number Publication Date
WO2019230101A1 true WO2019230101A1 (ja) 2019-12-05

Family

ID=68697955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/008784 WO2019230101A1 (ja) 2018-05-31 2019-03-06 正極活物質およびそれを備えた電池

Country Status (3)

Country Link
US (1) US11955622B2 (ja)
JP (1) JP7162274B2 (ja)
WO (1) WO2019230101A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022134541A1 (zh) * 2020-12-23 2022-06-30 宁德新能源科技有限公司 正极材料及其制备方法以及电化学装置
CN114883555A (zh) * 2022-06-09 2022-08-09 贵州高点科技有限公司 一种多相锰材料及其制备方法、正极片和二次电池
EP4112560A4 (en) * 2020-02-28 2023-08-30 Panasonic Intellectual Property Management Co., Ltd. POSITIVE ELECTRODE ACTIVE MATERIAL FOR ANHYDROUS ELECTROLYTE SECONDARY BATTERIES AND ANHYDROUS ELECTROLYTE SECONDARY BATTERY

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7281689B2 (ja) * 2018-09-05 2023-05-26 パナソニックIpマネジメント株式会社 正極活物質およびそれを備えた電池

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017204164A1 (ja) * 2016-05-24 2017-11-30 住友化学株式会社 正極活物質、その製造方法およびリチウムイオン二次電池用正極

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103050683B (zh) * 2012-12-28 2015-04-15 深圳市贝特瑞新能源材料股份有限公司 一种多相锰基固溶体复合正极材料及其制备方法
JP5594379B2 (ja) * 2013-01-25 2014-09-24 トヨタ自動車株式会社 二次電池用正極、二次電池用正極の製造方法、及び、全固体二次電池
KR101501823B1 (ko) * 2013-02-13 2015-03-12 한국생산기술연구원 리튬이차전지용 양극복합소재 제조방법 및 이를 이용한 전극 제조방법 및 상기 전극의 충방전 방법
WO2014192759A1 (ja) 2013-05-28 2014-12-04 旭硝子株式会社 正極活物質
JP6377983B2 (ja) * 2014-07-23 2018-08-22 住友化学株式会社 正極活物質、リチウムイオン二次電池用正極およびリチウムイオン二次電池
CN115966673A (zh) * 2016-11-24 2023-04-14 株式会社半导体能源研究所 正极活性物质粒子及正极活性物质粒子的制造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017204164A1 (ja) * 2016-05-24 2017-11-30 住友化学株式会社 正極活物質、その製造方法およびリチウムイオン二次電池用正極

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GUO, BING ET AL.: "Aluminum and fluorine co-doping for promotion of stability and safety of lithiumrich layered cathode material", ELECTROCHIMICA ACTA, vol. 236, 19 May 2017 (2017-05-19), pages 171 - 179, XP055661918 *
LI, L. ET AL.: "Retarded phase transition by fluorine doping in Li-rich layered Li1.2Mn0.54Ni0.13CO0.13O2 cathode material", JOURNAL OF POWER SOURCES, vol. 283, 19 February 2015 (2015-02-19), pages 162 - 170, XP029125064, DOI: 10.1016/j.jpowsour.2015.02.085 *
SONG, JAY HYOK ET AL.: "Suppression of irreversible capacity loss in Li-rich layered oxide by fluorine doping", JOURNAL OF POWER SOURCES, vol. 313, 1 May 2016 (2016-05-01), pages 65 - 72, XP029474025, DOI: 10.1016/j.jpowsour.2016.02.058 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4112560A4 (en) * 2020-02-28 2023-08-30 Panasonic Intellectual Property Management Co., Ltd. POSITIVE ELECTRODE ACTIVE MATERIAL FOR ANHYDROUS ELECTROLYTE SECONDARY BATTERIES AND ANHYDROUS ELECTROLYTE SECONDARY BATTERY
WO2022134541A1 (zh) * 2020-12-23 2022-06-30 宁德新能源科技有限公司 正极材料及其制备方法以及电化学装置
CN114883555A (zh) * 2022-06-09 2022-08-09 贵州高点科技有限公司 一种多相锰材料及其制备方法、正极片和二次电池
CN114883555B (zh) * 2022-06-09 2024-01-30 贵州高点科技有限公司 一种多相锰材料及其制备方法、正极片和二次电池

Also Published As

Publication number Publication date
US11955622B2 (en) 2024-04-09
JPWO2019230101A1 (ja) 2021-06-24
JP7162274B2 (ja) 2022-10-28
US20210057717A1 (en) 2021-02-25

Similar Documents

Publication Publication Date Title
US11271200B2 (en) Positive-electrode active material containing lithium composite oxide, and battery including the same
JP2018116930A (ja) 正極活物質、および、電池
US11605814B2 (en) Positive-electrode active material containing lithium composite oxide, and battery including the same
WO2018092359A1 (ja) 電池用正極活物質、および、電池
WO2018100792A1 (ja) 正極活物質、および、正極活物質を用いた電池
US11955622B2 (en) Positive electrode active material and battery comprising the same
WO2018163518A1 (ja) 正極活物質、および、電池
US11923529B2 (en) Positive electrode active material and battery including same
US11233237B2 (en) Positive electrode active material containing lithium composite oxide and battery including the same
CN112054169A (zh) 正极活性物质和电池
WO2020044652A1 (ja) 正極活物質およびそれを備えた電池
WO2020049794A1 (ja) 正極活物質およびそれを備えた電池
WO2020049792A1 (ja) 正極活物質およびそれを備えた電池
JP7142302B2 (ja) 正極活物質およびそれを備えた電池
WO2020012739A1 (ja) 正極活物質およびそれを備えた電池
WO2020044653A1 (ja) 正極活物質およびそれを備えた電池
US20210074997A1 (en) Positive electrode active material and battery comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19812344

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020521714

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19812344

Country of ref document: EP

Kind code of ref document: A1