WO2019227961A1 - 电子成像装置及其制备方法、柔性电子复眼及其制备方法 - Google Patents

电子成像装置及其制备方法、柔性电子复眼及其制备方法 Download PDF

Info

Publication number
WO2019227961A1
WO2019227961A1 PCT/CN2019/073704 CN2019073704W WO2019227961A1 WO 2019227961 A1 WO2019227961 A1 WO 2019227961A1 CN 2019073704 W CN2019073704 W CN 2019073704W WO 2019227961 A1 WO2019227961 A1 WO 2019227961A1
Authority
WO
WIPO (PCT)
Prior art keywords
doped region
type doped
imaging device
photodiode
electronic imaging
Prior art date
Application number
PCT/CN2019/073704
Other languages
English (en)
French (fr)
Inventor
李颖祎
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/475,781 priority Critical patent/US11791364B2/en
Publication of WO2019227961A1 publication Critical patent/WO2019227961A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14607Geometry of the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14632Wafer-level processed structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02325Optical elements or arrangements associated with the device the optical elements not being integrated nor being directly associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present disclosure relates to an electronic imaging device and a preparation method thereof, a flexible electronic compound eye and a preparation method thereof.
  • CMOS complementary metal-oxide semiconductors
  • CCD charge-coupled devices
  • Some embodiments of the present disclosure provide an electronic imaging device including a base substrate and a plurality of photosensitive units arrayed on a surface of the base substrate.
  • the photosensitive units include a photodiode and a rectifier diode connected in series.
  • the photodiode includes a first conductive type doped region and a second conductive type doped region
  • the rectifier diode includes a first conductive type doped region and a second conductive type doped region
  • the first A conductive type doped region and a first conductive type doped region of the rectifier diode are electrically connected to each other.
  • the photodiode and the rectifier diode share the same first conductivity type doped region.
  • the first conductivity type doped region is a P-doped region.
  • the photodiode includes a PN junction composed of the first conductivity type doped region and the second conductivity type doped region, the first conductivity type doped region and the second conductivity
  • the shape of the interface of the type doped region includes at least one of a straight shape, a polyline shape, and a curved shape.
  • the photodiode includes a PIN junction composed of the first conductivity type doped region, the second conductivity type doped region, and an undoped region located therebetween.
  • the shape of the doped region includes at least one of a straight shape, a polyline shape, and a curved shape.
  • the polyline shape includes a polyline wave shape or a square waveform
  • the curved shape includes a wave shape or a sine curve shape
  • the electronic imaging device further includes a first signal lead and a second signal lead staggered horizontally and vertically, and the first signal lead is connected to an end of the photodiode facing away from the rectifier diode, and the second A signal lead is connected to an end of the rectifier diode facing away from the photodiode.
  • the first signal lead is electrically connected to a second conductive type doped region of the photodiode, and the second lead is electrically connected to a second conductive type doped region of the rectifier diode.
  • the plurality of photosensitive units are arranged along an extending direction of the first signal lead and an extending direction of the second signal lead to form a plurality of photosensitive unit columns and a plurality of photosensitive unit rows, A signal lead is connected to all the photosensitive units in the corresponding photosensitive unit column, and each second signal line is connected to all the photosensitive units in the corresponding photosensitive unit row.
  • the substrate is a flexible substrate.
  • the first signal lead includes a flexible wire and the second signal lead includes a flexible wire.
  • the first signal lead includes a spring-like wire or a nano-silver paste wire
  • the second signal lead includes a spring-like wire or a nano-silver paste wire
  • Some embodiments of the present disclosure provide a flexible electronic compound eye, including the electronic imaging device according to any one of the above, and a lens structure that is attached to the electronic imaging device, and the lens structure is disposed at the entrance of the photosensitive unit. Glossy side.
  • the lens structure includes a plurality of lenses, and the plurality of photosensitive units and the plurality of lenses are disposed in a one-to-one correspondence.
  • the plurality of lenses include at least two lenses having different focal lengths.
  • the lens structure and the base substrate are respectively located on two sides of the photosensitive unit.
  • Some embodiments of the present disclosure provide a method for manufacturing an electronic imaging device, including: forming a semiconductor film layer on a surface of a substrate; and forming a first conductive type doped region on a first predetermined region of the semiconductor film layer, A second conductive type doped region and another second conductive type doped region are formed on the second preset region and the third preset region of the semiconductor film layer, respectively.
  • the second preset region and the first Three predetermined regions are respectively located on two sides of the first predetermined region; wherein the first conductive type doped region and the second conductive type doped region form a photodiode, and the first conductive type doped region
  • the impurity region and the another doped region of the second conductivity type form a rectifier diode.
  • Some embodiments of the present disclosure provide a method for preparing a flexible electronic compound eye, comprising: forming a plurality of photosensitive units arranged in an array on a preset substrate; the photosensitive units include a photodiode and a rectifier diode connected in series; and The first conductive type doped region of the photodiode and the first conductive type doped region of the rectifier diode are electrically connected to each other; a flexible substrate is formed on the preset substrate on which the photosensitive unit is formed, and After the flexible substrate, the preset substrate is peeled off.
  • the method for manufacturing a flexible electronic compound eye further includes: forming a lens structure on a light incident surface side of the photosensitive unit.
  • forming a lens structure on the light incident surface side of the photosensitive unit includes: forming a polymer prepolymer in a groove of a lens template, and attaching the photosensitive unit having the flexible substrate to the photosensitive unit. The surface of the lens template, and the position of the photosensitive unit corresponding to the groove; and controlling the polymer prepolymer to perform a polymerization reaction to obtain a polymer lens.
  • FIG. 1 schematically illustrates a light path of an optical camera lens
  • FIG. 2 schematically illustrates a circuit structure of an electronic imaging device in an exemplary embodiment of the present disclosure
  • FIG. 3 schematically illustrates a pixel structure of an electronic imaging device in an exemplary embodiment of the present disclosure
  • FIG. 4 schematically illustrates a circuit structure of a photosensitive unit in an exemplary embodiment of the present disclosure
  • FIG. 5 schematically illustrates a first schematic shape of a PN junction of a photodiode in an exemplary embodiment of the present disclosure
  • FIG. 6 schematically illustrates a second shape of a PN junction of a photodiode in an exemplary embodiment of the present disclosure
  • FIG. 7 schematically illustrates a shape diagram of a PN junction of a photodiode in an exemplary embodiment of the present disclosure
  • FIG. 8 schematically illustrates a fourth shape of a PN junction of a photodiode in an exemplary embodiment of the present disclosure
  • FIG. 9 schematically illustrates a first schematic diagram of a PIN junction shape of a photodiode in an exemplary embodiment of the present disclosure
  • FIG. 10 schematically illustrates a second schematic diagram of a PIN junction shape of a photodiode in an exemplary embodiment of the present disclosure
  • FIG. 11 schematically illustrates a third shape of a PIN junction of a photodiode in an exemplary embodiment of the present disclosure
  • FIG. 12 schematically illustrates a fourth schematic shape of a PIN junction of a photodiode in an exemplary embodiment of the present disclosure
  • FIG. 13 schematically illustrates a first shape of a photosensitive unit in an exemplary embodiment of the present disclosure
  • FIG. 14 schematically illustrates a second shape of a photosensitive unit in an exemplary embodiment of the present disclosure
  • FIG. 15 schematically illustrates a third shape of a photosensitive unit in an exemplary embodiment of the present disclosure
  • FIG. 16 schematically illustrates a shape diagram 4 of a photosensitive unit in an exemplary embodiment of the present disclosure
  • FIG. 17 schematically illustrates a structure diagram of a flexible electronic compound eye in an exemplary embodiment of the present disclosure
  • FIG. 21 schematically illustrates a preparation flowchart of a flexible electronic compound eye in an exemplary embodiment of the present disclosure
  • FIG. 22 schematically illustrates a manufacturing process of a flexible photosensitive unit in an exemplary embodiment of the present disclosure
  • FIG. 23 schematically illustrates a manufacturing process of a flexible electronic compound eye in an exemplary embodiment of the present disclosure.
  • FIG. 1 exemplarily illustrates a schematic diagram of an optical path of an optical camera lens. It can be seen that, to achieve the focusing of light, the structure of the multi-layer lens 100 is required, which not only has a complicated structure, but also results in a larger thickness and weight of the camera.
  • the electronic imaging device may include a base substrate 20 and a plurality of photosensitive units 200 arrayed on the surface of the base substrate 20.
  • the photosensitive unit 200 may include a photodiode 201 and a photodiode 201 connected in series. Rectifier diode 202.
  • the photodiode 201 may include a first conductivity type doped region 20a such as a P doped region and a second conductivity type doped region 20b such as an N doped region.
  • the rectifier diode 202 may also include a first conductivity type doped region 20a such as a P doped region.
  • the hetero region and the second conductivity type doped region 20b, such as an N-doped region, and the photodiode 201 and the rectifier diode 202 may share the same first conductivity type doped region 20a, such as a P-doped region. It can be known from this that the photodiode 201 and the rectifier diode 202 are connected in reverse in the circuit structure.
  • the photodiode 201 can sense different light intensities and generate a photocurrent of a corresponding magnitude, thereby realizing the conversion of the optical signal to the electrical signal. For example, a voltage is applied to both sides of the photosensitive unit, so that the photodiode 201 is reverse biased to detect the current generated by the photoelectric conversion.
  • the P-doped region shared by the photodiode 201 and the rectifier diode 202 in the above-mentioned photosensitive unit is an example, and a P-doped region may be provided for the photodiode 201 and the rectifier diode 202, as long as the P-doped region and rectifier of the photodiode 201
  • the P-doped regions of the diode 202 are electrically connected to each other, so that the photodiode and the rectifier diode 202 can be connected in reverse.
  • the first conductive type doped region 20a of the photodiode and the first conductive type doped region 20a of the rectifier diode are electrically connected to each other at least in the following two cases: 1) The first conductive type of the photodiode and the rectifier diode respectively. Type doped region, but the two are electrically connected through contact or through other conductive parts; 2) the photodiode and the rectifier diode are in common with the first conductivity type doped region.
  • the electronic imaging device provided by the exemplary embodiment of the present disclosure adopts an arrayed photosensitive structure.
  • the structure is simple and the device is thin.
  • the electronic imaging device can adopt Multiple lower pixel wafer-level cameras are built, and the overall thickness can be reduced by 30-50%, and the camera thickness can be reduced from 6mm to 3mm.
  • each photoreceptor unit 200 can simultaneously collect image data in a certain depth of field range, and then perform focus adjustment. Moreover, during the imaging process, panoramic deep image data is obtained, so stereo imaging within a certain range can also be achieved.
  • lens structures may be provided for multiple photosensitive units, and lenses with different angles may be used to enable different photosensitive units to capture images of different depths of field, thereby obtaining image data in different depths of field.
  • independent signal leads can be designed for each photosensitive unit 200.
  • the wiring of the independent signal leads becomes difficult. Will increase significantly, thereby affecting the overall circuit structure of the electronic imaging device.
  • the electronic imaging device may further include a first signal lead 203 and a second signal lead 204 that are staggered vertically and horizontally.
  • the first signal lead 203 may be connected to an end of the photodiode 201 facing away from the rectifier diode 202.
  • the second signal lead 204 may be connected to an end of the rectifier diode 202 facing away from the photodiode 201, such as the N-doped region of the rectifier diode 202.
  • the electronic imaging device can control multiple photosensitive units 200 in the same row through the same second signal lead 204, and control multiple photosensitive units 200 in different columns in the same row through the multiple first signal leads 203.
  • This achieves separate control of the photosensitive unit 200 and multiplexing of signal leads, and also significantly reduces the number of lead-out electrodes connected to the signal leads, thereby achieving the effect of simplifying the circuit structure.
  • the first signal lead 203 is electrically connected to the second conductivity type doped region of the photodiode 201
  • the second lead 204 is electrically connected to the second conductivity type doped region of the rectifier diode 202.
  • a plurality of photosensitive units are arranged along the extending direction of the first signal lead 203 and the extending direction of the second signal lead 204 to form a plurality of photosensitive cell columns and a plurality of photosensitive cell rows.
  • the signal leads 203 are connected to all the photosensitive units in the corresponding photosensitive unit column, and each second signal line 204 is connected to all the photosensitive units in the corresponding photosensitive unit row.
  • the base substrate 20 may be configured as a flexible substrate, and the material of the flexible substrate may be, for example, PDMS (Polydimethylsiloxane, polydimethylsiloxane). Siloxane). Since the tensile-resistant material does not necessarily have good high-temperature resistance, and its performance in a high-temperature process may be poor, this exemplary embodiment may use such a tensile-resistant material such as PDMS as a substrate substrate, and combine The transfer process is used to solve the defect of poor high temperature resistance. Details about the transfer process will be described in detail in the subsequent preparation method.
  • the first signal lead 203 and the second signal lead 204 can be set as a spring-like wire wiring method or a flexible wire wiring method such as nano-silver paste, thereby facilitating the stretching and bending of the signal leads.
  • FIG. 4 schematically illustrates a circuit structure of a photosensitive unit 200 using a flexible substrate as a base material.
  • an insulating layer 205 is required between the first signal lead 203 such as a vertical lead and the second signal lead 204 such as a lateral lead, and the semiconductor pattern layer (that is, the pattern layer where the photodiode 201 and the rectifier diode 202 are located) and the adjacent signal lead such as A transparent insulating layer 208 may be provided between the first signal leads 203.
  • the insulating layer 205 may use passivation materials such as silicon dioxide and silicon nitride; and for structures that need to be bent, the insulating layer 205 may use polyimide or the like material.
  • first signal lead 203 and the second signal lead 204 are located on different layers from the photodiode 201 and the rectifier diode 202, it is necessary to design the first via 206 and the second via 207 to implement the first signal lead, respectively.
  • 203 and the second signal lead 204 are electrically connected to the PN junction.
  • the photodiode 201 may include a first conductivity type doped region 20 a such as a P doped region and a second conductivity type doped region 20 b such as A PN junction formed by an N-doped region.
  • the shape of the interface between the first conductive type doped region 20a and the second conductive type doped region 20b can be set, for example, as a straight line shape as shown in FIG. 5, a polygonal line shape as shown in FIGS. 6 and 7, or as shown in FIG. Curve shape.
  • the PN junction interface shape of the linear structure can be adopted in this embodiment, and the process control is relatively simple, but the light receiving area is limited. Therefore, the PN junction interface shape of the non-linear structure can also be adopted in this embodiment, such as a polygonal line shape. PN junction interface shape or curved PN junction interface shape.
  • the polyline shape may include, for example, a polyline wave shape in FIG. 6 or a square waveform in FIG. 7, and the curve shape may include, for example, a wave shape or a sine curve shape in FIG. 8, as long as it can increase light reception.
  • the area is sufficient, and the others are not specifically limited.
  • the shape of the interface here is seen in a view parallel to the substrate, so the shape at the interface is shown as the shape of the various lines described above.
  • the effective area of the PN junction can be increased, and the photoelectric conversion efficiency can be improved.
  • the photodiode 201 may further include a first conductivity type doped region 20 a such as a P doped region and a second conductivity type doped region.
  • 20b is a PIN junction formed by, for example, an N-doped region and an undoped region 20c, such as an I-region. Because the PIN junction can obtain a larger response at a certain photosensitive wavelength than the PN junction, the response frequency of the PIN junction is larger than that of the PN junction.
  • the shape of the non-doped region 20c may be set, for example, as a straight line shape as shown in FIG. 9, a broken line shape as shown in FIGS. 10 and 11, or a curved shape as shown in FIG. 12.
  • the shape of the non-doped region 20c with a linear structure can be adopted in this embodiment, and the process control is relatively simple, but the light receiving area is limited. Therefore, this embodiment can also use the shape of the non-doped region 20c with a non-linear structure
  • the shape of the polygonal undoped region 20c or the shape of the curved undoped region 20c may include, for example, a polyline wave shape in FIG. 10 or a square waveform in FIG. 11, and the curve shape may include, for example, a wavy shape or a sine curve shape in FIG. 12, as long as it can increase light reception.
  • the area is sufficient, and the others are not specifically limited.
  • the rectifier diode 202 when the rectifier diode 202 is provided, it is only necessary to face away from the other side of the first conductivity type doped region 20a of the photodiode 201, such as the P-doped region.
  • One side of the second conductivity type doped region 20b such as an N-doped region, may form a second conductivity type doped region 20b, such as an N-doped region.
  • the rectifier diode 202 and the photodiode 201 obtained at this time share the first conductivity type dopant. Miscellaneous area 20a.
  • this exemplary embodiment also provides a flexible electronic compound eye, which includes the above electronic imaging device and is attached to the electronic imaging device.
  • the polymer lens 30, the substrate substrate 20 of the electronic imaging device is a flexible substrate, and the polymer lens 30 and the flexible substrate are located on both sides of the photosensitive unit 200 in the electronic imaging device.
  • the lens structure 30 may be disposed on the light incident surface side of the photosensitive unit. It can be seen that the surface of each photosensitive unit 200 is covered with a polymer lens 30.
  • the design of the lens structure helps to widen the angle of view of the compound eye, and can increase the photosensitive range when forming a curved interface.
  • the lens structure 30 includes a plurality of lenses, and a plurality of photosensitive units and a plurality of lenses are provided in a one-to-one correspondence.
  • the lens structure is disposed on the light incident surface side of the photosensitive unit, so that each lens can guide image light to a corresponding photosensitive unit to acquire image data through photoelectric conversion.
  • the multiple lenses include at least two lenses with different focal lengths, for example, multiple lenses with different focal lengths, so that multiple photosensitive units can capture multiple images with different depth of field ranges.
  • FIG. 18 shows an application diagram of the flexible electronic compound eye.
  • the flexible electronic compound eye uses a flexible substrate and a stretchable wire, it has good tensile resistance and deformation ability, so that it can achieve adaptive bonding according to different curvature surfaces.
  • the flexible electronic compound eye can also be bent to adapt to different surface shapes of the supporting object, so that different photosensitive units in the flexible electronic compound eye can capture image light from different angles.
  • the flexible electronic compound eye structure provided by the exemplary embodiment of the present disclosure can obtain a bionic compound eye structure with an adaptive function by forming a photosensitive array on the surface of a flexible substrate and overlaying a polymer lens 30 over the photosensitive array.
  • the flexible electronic compound eye can collect all image data within a certain depth of field, thereby ensuring the function of focusing after image acquisition. Because the flexible electronic compound eye collects panoramic deep image data during the imaging process, it can realize stereo imaging within a certain range, and the photos obtained can be directly restored to 3D effects, and it can also perform ranging directly, thus providing users with Provide great convenience.
  • each photosensitive unit 200 can record imaging information and directly output information.
  • This exemplary embodiment also provides a method for manufacturing an electronic imaging device, which can be used to prepare the electronic imaging device described above. As shown in FIG. 19, the method for manufacturing the electronic imaging device may include:
  • a first conductive type doped region 20a such as a P-doped region, is formed in the first predetermined region 021 of the semiconductor film layer 02;
  • a second conductivity type doped region 20b such as an N-doped region and another second conductivity type doped region 20b are respectively formed in the second preset region 022 and the third preset region 023 of the semiconductor film layer 02, such as Another N-doped region.
  • the second preset area 022 and the third preset area 023 are located on both sides of the first preset area 021, respectively.
  • the first conductive type doped region 20a of the first preset region 021 and a second conductive type doped region 20b of the second preset region 022 may constitute the photodiode 201.
  • the first conductive type doped region of the first preset region 021 is doped.
  • the impurity region 20 a and another second conductive type doped region 20 b of the third predetermined region 023 may constitute a rectifier diode 202.
  • the method for manufacturing an electronic imaging device provided by the exemplary embodiments of the present disclosure can be prepared by using a TFT (Thin Film Transistor) thin film array substrate process that is currently very mature, so the equipment has strong reusability.
  • the multiplexing of signal leads can be realized by setting the rectifier diode 202, which can reduce the complexity of the circuit, and the photodiode 201 and the rectifier diode 202 share the same first conductivity type doped region 20a, which can further simplify the structure;
  • there is no need to provide a multilayer lens so the structure is simple and the device is thin.
  • a semiconductor film layer 02 such as a silicon film having a thickness of 200 to 600 nm, is deposited on the surface of the substrate 20; then, a photoresist 40 is coated on the surface of the semiconductor film layer 02, and the semiconductor film layer 02 is correspondingly exposed and developed.
  • the position of the first preset region 021 is exposed; then P-type doping is performed on the first preset region 021 to obtain a first conductive type doped region 20a, that is, a P-doped region, and then the remaining photoresist 40 is peeled off; Then, a photoresist 40 is coated on the surface of the semiconductor film layer 02, and the positions corresponding to the second preset region 022 and the third preset region 023 in the semiconductor film layer 02 are exposed through exposure and development;
  • the region 022 and the third predetermined region 023 are N-type doped to form a second conductivity type doped region 20b such as an N-doped region and another second conductivity type doped region 20b such as another N-doped region.
  • the remaining photoresist 40 is peeled off. Then, the photoresist 40 is continuously coated on the surface of the semiconductor film layer 02, and the portion of the semiconductor film layer 02 that does not need to form a PN junction or a PIN junction is exposed through exposure and development, that is, Follow the required matrix shape for the dual diodes The developing light; Finally, the etching process of the semiconductor layer exposed portion 02 is removed, to obtain by the photodiode 201 and the photosensitive unit composed of rectifier diodes 202,200.
  • This exemplary embodiment also provides a method for preparing a flexible electronic compound eye, which can be used to prepare the aforementioned flexible electronic compound eye.
  • the method for preparing the flexible electronic compound eye may include:
  • the photosensitive units 200 may include a photodiode 201 and a rectifier diode 202 connected in series, and the photodiode 201 and the rectifier diode. 202 shares the same first conductivity type doped region 20a, such as a P doped region;
  • a flexible substrate that is, a flexible substrate substrate 20 is formed on a preset substrate on which the photosensitive unit 200 is formed, and the preset substrate is peeled off after the flexible substrate is formed;
  • a polymer prepolymer 600 is formed in the groove 500 of the lens template 50, a photosensitive unit 200 having a flexible substrate is attached to the surface of the lens template 50, and the photosensitive unit 200 and the concave The positions of the slots 500 correspond to each other;
  • the polymer prepolymer 600 is controlled to perform a polymerization reaction to obtain a polymer lens 60, and a demolding process is performed after the polymer lens 60 is formed.
  • the flexible substrate and the polymer lens 60 are respectively located on the photosensitive Both sides of unit 200.
  • the preset substrate refers to a carrier substrate used in preparing a flexible device, which needs to be removed by a stripping process after the preparation of the flexible device
  • the lens template 50 refers to a lens used in preparing a polymer lens 60 After the preparation of the polymer lens 60 is completed, the shape template usually needs to be removed through a demolding process.
  • the manufacturing method described in the embodiment of FIG. 19 and FIG. 20 may be utilized, and then the photosensitive unit array is transferred to the flexible substrate.
  • embodiments according to the present disclosure are not limited thereto.
  • the method for preparing the lens structure in FIG. 23 is also exemplary. Embodiments of the present disclosure may also use other methods to prepare the lens structure, and then attach the lens structure to the light incident surface side of the photosensitive unit.
  • the method for preparing a flexible electronic compound eye provided by an exemplary embodiment of the present disclosure can be prepared by means of a currently mature TFT array substrate process.
  • a photosensitive array is formed on the surface of a flexible substrate, and the photosensitive array is affixed above the photosensitive array.
  • a bionic compound eye structure with an adaptive function can be obtained.
  • the design of the lens structure is helpful to widen the angle of view of the compound eye, and can increase the photosensitive range when forming a curved interface.
  • the process of the photosensitive unit 200 in the flexible electronic compound eye is exemplarily described below with reference to FIG. 22.
  • PI polyimide
  • a photoresist 40 is coated on the transparent insulating layer 208, and the first via holes 206 and the second vias are obtained through exposure and development.
  • a desired via structure can be formed by etching a part of the transparent insulating layer 208 corresponding to the first via 206 and the second via 207; and then stripping the remaining photoresist 40 Then, an electrode layer 70 is deposited, and by structurally designing the electrode layer 70, for example, by sequentially coating, exposing, developing, and etching processes of the photoresist 40, signal leads connected to different doped regions can be obtained.
  • the flexible substrate is formed by coating dimethylsiloxane on the signal lead and polymerizing it, thereby obtaining an array structure of the photosensitive units 200 on the flexible substrate.
  • modules or units of the device for action execution are mentioned in the detailed description above, this division is not mandatory.
  • the features and functions of the two or more modules or units described above may be embodied in one module or unit.
  • the features and functions of a module or unit described above can be further divided into multiple modules or units to be embodied.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

本公开提供一种电子成像装置及其制备方法、柔性电子复眼及其制备方法。该电子成像装置包括衬底基板(20)以及阵列排布在所述衬底基板(20)表面的多个感光单元(200),所述感光单元(200)包括串联相接的光电二极管(201)和整流二极管(202)。所述光电二极管(201)包括第一导电类型掺杂区(20a)和第二导电类型掺杂区(20b),所述整流二极管包括第一导电类型掺杂区(20a)和第二导电类型掺杂区(20b),且所述光电二极管的第一导电类型掺杂区(20a)和所述整流二极管的第一导电类型掺杂区(20a)彼此电连接。本公开可简化电子成像装置的结构,还能实现立体成像。

Description

电子成像装置及其制备方法、柔性电子复眼及其制备方法
本申请要求于2018年6月1日递交的中国专利申请第201810558990.9号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开涉及一种电子成像装置及其制备方法、柔性电子复眼及其制备方法。
背景技术
在传统的电子成像设备中,感光器件大多采用互补型金属氧化物半导体(Complementary Metal-Oxide Semiconductor,CMOS)或者电荷耦合器件(Charge Coupled Device,CCD)来实现,但其具有平面结构,因此需要设置多层复杂的镜头以将光线汇聚于平面,方可形成平面图像。
发明内容
本公开的一些实施例提供一种电子成像装置,包括衬底基板以及阵列排布在所述衬底基板表面的多个感光单元,所述感光单元包括串联相接的光电二极管和整流二极管,其中,所述光电二极管包括第一导电类型掺杂区和第二导电类型掺杂区,所述整流二极管包括第一导电类型掺杂区和第二导电类型掺杂区,且所述光电二极管的第一导电类型掺杂区和所述整流二极管的第一导电类型掺杂区彼此电连接。
在一些示例中,所述光电二极管和所述整流二极管共用同一第一导电类型掺杂区。
在一些示例中,所述第一导电类型掺杂区为P掺杂区。
在一些示例中,所述光电二极管包括由所述第一导电类型掺杂区和所述第二导电类型掺杂区构成的PN结,所述第一导电类型掺杂区和所述第二导电类型掺杂区的交界面的形状包括直线形、折线形和曲线形至少之一。
在一些示例中,所述光电二极管包括由所述第一导电类型掺杂区、所述第二导电类型掺杂区、以及位于二者之间的非掺杂区构成的PIN结,所述非掺杂区的形状包括直线形、折线形和曲线形至少之一。
在一些示例中,所述折线形包括折线波浪形或者方波形,所述曲线形包括波浪形或者正弦曲线形。
在一些示例中,所述电子成像装置还包括横纵交错的第一信号引线和第二信号引线,所述第一信号引线连接至所述光电二极管背离所述整流二极管的一端,所述第二信号引线连接至所述整流二极管背离所述光电二极管的一端。
在一些示例中,所述第一信号引线与所述光电二极管的第二导电类型掺杂区电连接,所述第二引线与所述整流二极管的第二导电类型掺杂区电连接。
在一些示例中,所述多个感光单元沿所述第一信号引线的延伸方向和所述第二信号引线的延伸方向排列,以形成多个感光单元列和多个感光单元行,每条第一信号引线与对应的感光单元列中的所有感光单元连接,每条第二信号线与对应的感光单元行中的所有感光单元连接。
在一些示例中,所述衬底基板为柔性衬底。
在一些示例中,所述第一信号引线包括柔性导线,所述第二信号引线包括柔性导线。
在一些示例中,所述第一信号引线包括弹簧状导线或纳米银浆导线,所述第二信号引线包括弹簧状导线或纳米银浆导线。
本公开的一些实施例提供一种柔性电子复眼,包括上述任一项所述的电子成像装置以及与所述电子成像装置相贴合的透镜结构,所述透镜结构设置于所述感光单元的入光面侧。
在一些示例中,所述透镜结构包括多个透镜,所述多个感光单元和所述多个透镜一一对应设置。
在一些示例中,所述多个透镜至少包括两种焦距不同的透镜。
在一些示例中,所述透镜结构与所述衬底基板分别位于所述感光单元的两侧。
本公开的一些实施例提供一种电子成像装置的制备方法,包括:在衬底基板的表面形成半导体膜层;在所述半导体膜层的第一预设区域形成第一导 电类型掺杂区,在所述半导体膜层的第二预设区域和第三预设区域分别形成一第二导电类型掺杂区和另一第二导电类型掺杂区,所述第二预设区域和所述第三预设区域分别位于所述第一预设区域的两侧;其中,所述第一导电类型掺杂区和所述一第二导电类型掺杂区形成光电二极管,所述第一导电类型掺杂区和所述另一第二导电类型掺杂区形成整流二极管。
本公开的一些实施例提供一种柔性电子复眼的制备方法,包括:在预设基板上形成阵列排布的多个感光单元,所述感光单元包括串联相接的光电二极管和整流二极管,且所述光电二极管的第一导电类型掺杂区和所述整流二极管的第一导电类型掺杂区彼此电连接;在形成有所述感光单元的所述预设基板上形成柔性衬底,并在形成所述柔性衬底之后剥离所述预设基板。
在一些示例中,柔性电子复眼的制备方法还包括:在所述感光单元的入光面侧形成透镜结构。
在一些示例中,在所述感光单元的入光面侧形成透镜结构包括:在透镜模板的凹槽中形成聚合物预聚体,将具有所述柔性衬底的所述感光单元贴附在所述透镜模板的表面,并使所述感光单元与所述凹槽的位置相对应;控制所述聚合物预聚体进行聚合反应以得到聚合物透镜。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1示意性示出一种光学相机透镜的光路示意图;
图2示意性示出本公开示例性实施例中电子成像装置的电路结构示意图;
图3示意性示出本公开示例性实施例中电子成像装置的像素结构示意图;
图4示意性示出本公开示例性实施例中感光单元的电路结构示意图;
图5示意性示出本公开示例性实施例中光电二极管的PN结形状示意图一;
图6示意性示出本公开示例性实施例中光电二极管的PN结形状示意图二;
图7示意性示出本公开示例性实施例中光电二极管的PN结形状示意图 三;
图8示意性示出本公开示例性实施例中光电二极管的PN结形状示意图四;
图9示意性示出本公开示例性实施例中光电二极管的PIN结形状示意图一;
图10示意性示出本公开示例性实施例中光电二极管的PIN结形状示意图二;
图11示意性示出本公开示例性实施例中光电二极管的PIN结形状示意图三;
图12示意性示出本公开示例性实施例中光电二极管的PIN结形状示意图四;
图13示意性示出本公开示例性实施例中感光单元的形状示意图一;
图14示意性示出本公开示例性实施例中感光单元的形状示意图二;
图15示意性示出本公开示例性实施例中感光单元的形状示意图三;
图16示意性示出本公开示例性实施例中感光单元的形状示意图四;
图17示意性示出本公开示例性实施例中柔性电子复眼的结构示意图;
图18示意性示出本公开示例性实施例中柔性电子复眼的应用示意图;
图19示意性示出本公开示例性实施例中电子成像装置的制备流程图;
图20示意性示出本公开示例性实施例中电子成像装置的制备过程示意图;
图21示意性示出本公开示例性实施例中柔性电子复眼的制备流程图;
图22示意性示出本公开示例性实施例中柔性感光单元的制备过程示意图;
图23示意性示出本公开示例性实施例中柔性电子复眼的制备过程示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描 述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。附图中所示的一些方框图是功能实体,不一定必须与物理或逻辑上独立的实体相对应。可以采用软件形式来实现这些功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器装置和/或微控制器装置中实现这些功能实体。
图1示例性示出了一种光学相机透镜的光路示意图。由此可知,若要实现光线的聚焦,便要设置多层透镜100的结构,这样不仅构造复杂,而且还会导致相机的厚度和重量较大。
本示例实施方式提供了一种电子成像装置,可应用于电子仿生复眼等领域。根据图2和图3所示,该电子成像装置可以包括衬底基板20以及阵列排布在衬底基板20表面的多个感光单元200,该感光单元200可以包括串联相接的光电二极管201和整流二极管202。
光电二极管201可以包括第一导电类型掺杂区20a例如P掺杂区和第二导电类型掺杂区20b例如N掺杂区,整流二极管202也可以包括第一导电类型掺杂区20a例如P掺杂区和第二导电类型掺杂区20b例如N掺杂区,且光电二极管201和整流二极管202可以共用同一第一导电类型掺杂区20a例如P掺杂区。由此可知,光电二极管201和整流二极管202在电路结构中是反向相接的。
需要说明的是:在该电子成像装置处于工作状态时,光电二极管201即可感应不同的光照强度而产生相应大小的光电流,以此实现光信号到电信号的转换。例如,感光单元的两侧施加电压,从而将光电二极管201反向偏置,以检测光电转换产生的电流。此外,上述感光单元中光电二极管201和整流二极管202共用P掺杂区是一个示例,也可以为光电二极管201和整流二极管202分别设置P掺杂区,只要光电二极管201的P掺杂区和整流二极管202的P掺杂区彼此电连接,就可以使得光电二极管和整流二极管202反向相接。因此,这里的光电二极管的第一导电类型掺杂区20a和整流二极管的第一导电类型掺杂区20a彼此电连接至少包括以下两种情况:1)光电二极管和整流 二极管分别各自的第一导电类型掺杂区,但二者通过接触或通过其他导电部件电连接;2)光电二极管和整流二极管共同同一第一导电类型掺杂区。
本公开示例性实施方式所提供的电子成像装置,采用阵列排布的感光结构,一方面无需设置多层透镜,因此结构简单且器件轻薄,相比于传统摄像头而言,该电子成像装置可以采用多个较低像素晶圆级摄像头打造,整体厚度可减少30~50%,摄像头厚度可以从6mm降低到3mm。另一方面通过设置整流二极管202,可以实现信号引线的复用,从而能够降低电路的复杂性,而且光电二极管201与整流二极管202共用同一第一导电类型掺杂区20a还能进一步简化结构;此外,各个感光单元200可以同时采集一定景深范围内的图像数据,之后再进行调焦,而且在成像过程中获得的是全景深图象数据,因此还可实现一定范围内的立体成像。例如,可以为多个感光单元分别设置透镜结构,可以通过设置不同角度的透镜来使得不同感光单元摄取不同景深的图像,从而能够获得不同景深范围内的图像数据。
由于本示例实施方式中的电子成像装置采用阵列排布的感光结构,因此针对各个感光单元200可以设计独立的信号引线,但当该电子成像装置的像素进一步提高时,独立信号引线的布线难度就会明显升高,从而影响电子成像装置的整体电路结构。
基于此,参考图2所示,所述电子成像装置还可以包括横纵交错的第一信号引线203和第二信号引线204,第一信号引线203可以连接至光电二极管201背离整流二极管202的一端例如光电二极管201的N掺杂区,第二信号引线204可以连接至整流二极管202背离光电二极管201的一端例如整流二极管202的N掺杂区。
这样一来,该电子成像装置便可以通过同一条第二信号引线204控制同一行的多个感光单元200,并通过多条第一信号引线203控制同行不同列的多个感光单元200,以此来实现感光单元200的单独控制以及信号引线的多路复用,并且还能显著的减少连接信号引线的引出电极的数量,从而达到简化电路结构的效果。
例如,第一信号引线203与光电二极管201的第二导电类型掺杂区电连接,第二引线204与整流二极管202的第二导电类型掺杂区电连接。
例如,如图2所示,多个感光单元沿第一信号引线203的延伸方向和第 二信号引线204的延伸方向排列,以形成多个感光单元列和多个感光单元行,每条第一信号引线203与对应的感光单元列中的所有感光单元连接,每条第二信号线204与对应的感光单元行中的所有感光单元连接。
考虑到所述电子成像装置可能应用到曲面形状的场合例如柔性电子仿生复眼结构,因此衬底基板20可以设置为柔性衬底,且该柔性衬底的材料例如可以采用PDMS(Polydimethylsiloxane,聚二甲基硅氧烷)。由于耐拉伸材料未必具有良好的耐高温性能,其在高温工艺制程中表现出的性能可能较差,因此本示例实施方式可以采用这类耐拉伸材料例如PDMS作为衬底基材,并结合转印工艺来解决其耐高温性能差的缺陷,关于转印工艺的细节将在后续的制备方法中进行详细的描述。在此基础上,第一信号引线203和第二信号引线204可以设置为弹簧状的导线布线方式或者纳米银浆等柔性导线布线方式,从而有利于实现信号引线的拉伸和弯曲。
图4示意性示出了以柔性衬底为基材的感光单元200的电路结构示意图。其中,第一信号引线203例如纵向导线和第二信号引线204例如横向导线之间需要设置绝缘层205,半导体图案层(即光电二极管201和整流二极管202所在的图案层)与邻近的信号引线例如第一信号引线203之间也可以设置透明绝缘层208。针对于不需要弯折的结构而言,该绝缘层205可以采用二氧化硅、氮化硅等钝化材料;而对于需要弯折的结构而言,该绝缘层205可以采用聚酰亚胺等材料。此外,由于第一信号引线203和第二信号引线204均与光电二极管201和整流二级管202位于不同层,因此需要设计第一过孔206和第二过孔207来分别实现第一信号引线203和第二信号引线204与PN结的导通。
在本示例的一种实施方式中,如图5至图8所示,所述光电二极管201可以包括由第一导电类型掺杂区20a例如P掺杂区和第二导电类型掺杂区20b例如N掺杂区所构成的PN结。第一导电类型掺杂区20a和第二导电类型掺杂区20b的交界面的形状例如可以设置为图5所示的直线形、图6和图7所示的折线形、或者图8所示的曲线形。
需要说明的是:本实施例可以采用直线形结构的PN结交界面形状,其工艺控制相对简单,但受光面积有限,因此本实施例还可以采用非直线形结构的PN结交界面形状,例如折线形的PN结交界面形状或者曲线形的PN结 交界面形状。例如,所述折线形例如可以包括图6中的折线波浪形或者图7中的方波形等,所述曲线形例如可以包括图8中的波浪形或者正弦曲线形等,只要是能够增大受光面积即可,其它不作具体限定。例如,这里交界面的形状均是在平行于衬底基板的视图中看的,因此,交界面处的形状显示为上述各种线的形状。例如,通过将PN结的P掺杂区和N掺杂区彼此相对的表面形成为互补的凹凸形状,可以增大PN结的有效面积,提高光电转换效率。
在本示例的另一种实施方式中,如图9至图12所示,所述光电二极管201还可以包括由第一导电类型掺杂区20a例如P掺杂区、第二导电类型掺杂区20b例如N掺杂区、以及位于二者之间的非掺杂区20c例如I区构成的PIN结。由于PIN结相比于PN结可在一定感光波长下获得较大的响应,因此PIN结的响应频率要比PN结大。所述非掺杂区20c的形状例如可以设置为图9所示的直线形、图10和图11所示的折线形、或者图12所示的曲线形。
需要说明的是:本实施例可以采用直线形结构的非掺杂区20c形状,其工艺控制相对简单,但受光面积有限,因此本实施例还可以采用非直线形结构的非掺杂区20c形状,例如折线形的非掺杂区20c形状或者曲线形的非掺杂区20c形状。例如,所述折线形例如可以包括图10中的折线波浪形或者图11中的方波形等,所述曲线形例如可以包括图12中的波浪形或者正弦曲线形等,只要是能够增大受光面积即可,其它不作具体限定。
基于上述光电二极管201的形状,如图13至图16所示,在设置整流二极管202时,仅需在光电二极管201的第一导电类型掺杂区20a例如P掺杂区的另一侧即背离第二导电类型掺杂区20b例如N掺杂区的一侧形成第二导电类型掺杂区20b例如N掺杂区即可,此时得到的整流二极管202与光电二极管201共用第一导电类型掺杂区20a。
基于上述的电子成像装置,为了更好的模仿生物复眼结构,如图17所示,本示例实施方式还提供了一种柔性电子复眼,包括上述的电子成像装置以及与该电子成像装置相贴合的聚合物透镜30,所述电子成像装置的衬底基板20为柔性衬底,所述聚合物透镜30与所述柔性衬底分别位于该电子成像装置中的感光单元200的两面。例如,透镜结构30可以设置在感光单元的入光面侧。由此可知,在每个感光单元200的表面均覆盖有聚合物透镜30,该透镜结构的设计有助于扩大复眼视角,并在形成弯曲界面时能够增大感光范围。例如, 透镜结构30包括多个透镜,多个感光单元与多个透镜一一对应设置。此外,透镜结构设置于感光单元的入光面侧,从而每个透镜能够将图像光引导至对应的感光单元以通过光电转换获取图像数据。例如,多个透镜至少包括两种焦距不同的透镜,例如,包括多种焦距不同的透镜,从而能够使得多个感光单元可以摄取多个不同景深范围的图像。
图18示出了该柔性电子复眼的应用示意图。由于该柔性电子复眼采用的是柔性衬底和可拉伸导线,因此具有良好的耐拉伸性能和变形能力,从而能够根据不同曲率的表面实现自适应贴合。例如,该柔性电子复眼还可以弯曲以适应支撑物体的不同表面形状,从而可以使得柔性电子复眼中的不同感光单元可以从不同的角度摄取图像光。
本公开示例性实施方式所提供的柔性电子复眼结构,通过在柔性衬底的表面形成感光阵列,并在感光阵列上方贴覆聚合物透镜30,即可得到具有自适应功能的仿生复眼结构。该柔性电子复眼可对一定景深范围内的图像数据进行全部采集,从而保证图像采集之后再进行调焦的功能。由于该柔性电子复眼在成像过程中采集的是全景深图像数据,因此可在一定范围内实现立体成像,而且由此获得的照片能够直接还原成3D效果,还能直接进行测距,从而为用户提供极大的方便。此外,所述柔性电子复眼中集成的感光阵列结构,各个感光单元200可以分别记录成像信息并直接进行信息输出。
本示例实施方式还提供了一种电子成像装置的制备方法,可用于制备上述的电子成像装置。如图19所示,该电子成像装置的制备方法可以包括:
S1、在衬底基板20的表面形成半导体膜层02;
S2、在半导体膜层02的第一预设区域021形成第一导电类型掺杂区20a例如P掺杂区;
S3、在半导体膜层02的第二预设区域022和第三预设区域023分别形成一第二导电类型掺杂区20b例如一N掺杂区和另一第二导电类型掺杂区20b例如另一N掺杂区。
第二预设区域022和第三预设区域023分别位于第一预设区域021的两侧。第一预设区域021的第一导电类型掺杂区20a和第二预设区域022的一第二导电类型掺杂区20b可构成光电二极管201,第一预设区域021的第一导电类型掺杂区20a和第三预设区域023的另一第二导电类型掺杂区20b可 构成整流二极管202。
本公开示例性实施方式所提供的电子成像装置的制备方法,一方面可以借助目前已经十分成熟的TFT(Thin Film Transistor,薄膜晶体管)阵列基板工艺制程来进行制备,因此设备的复用性较强;另一方面通过设置整流二极管202即可实现信号引线的复用,从而能够降低电路的复杂性,而且光电二极管201与整流二极管202共用同一第一导电类型掺杂区20a还能进一步简化结构;再一方面还无需设置多层透镜,因此结构简单且器件轻薄。
下面结合图20对感光单元200的工艺过程进行示例性的说明。首先在衬底基板20表面沉积一层半导体膜层02例如厚度为200~600nm的硅膜;然后在半导体膜层02表面涂覆光刻胶40,并通过曝光和显影使得半导体膜层02中对应第一预设区域021的位置露出;接着对该第一预设区域021进行P型掺杂,以得到第一导电类型掺杂区20a即P掺杂区,之后剥离剩余的光刻胶40;然后再在半导体膜层02表面涂覆光刻胶40,并通过曝光和显影使得半导体膜层02中对应第二预设区域022和第三预设区域023的位置露出;接着对该第二预设区域022和该第三预设区域023进行N型掺杂,以形成一第二导电类型掺杂区20b例如一N掺杂区和另一第二导电类型掺杂区20b例如另一N掺杂区,之后剥离剩余的光刻胶40;随后继续在半导体膜层02表面涂覆光刻胶40,并通过曝光和显影使得半导体膜层02中无需形成PN结或PIN结的部分露出,即按照双二极管所需的矩阵形状进行曝光和显影;最后采用刻蚀工艺将露出部分的半导体膜层02去除,以得到由光电二极管201和整流二极管202构成的感光单元200。
本示例实施方式还提供了一种柔性电子复眼的制备方法,可用于制备上述的柔性电子复眼。如图21所示,该柔性电子复眼的制备方法可以包括:
S10、如图22所示,在预设基板上形成阵列排布的多个感光单元200,所述感光单元200可以包括串联相接的光电二极管201和整流二极管202,且光电二极管201和整流二极管202共用同一第一导电类型掺杂区20a例如P掺杂区;
S20、如图22所示,在形成有感光单元200的预设基板上形成柔性衬底即柔性材料的衬底基板20,并在形成柔性衬底之后剥离预设基板;
S30、如图23所示,在透镜模板50的凹槽500中形成聚合物预聚体600, 将具有柔性衬底的感光单元200贴附在透镜模板50的表面,并使感光单元200与凹槽500的位置相对应;
S40、如图23所示,控制聚合物预聚体600进行聚合反应以得到聚合物透镜60,并在形成聚合物透镜60之后进行脱模工艺,其中柔性衬底和聚合物透镜60分别位于感光单元200的两面。
需要说明的是:所述预设基板是指在制备柔性器件时采用的承载基板,其在柔性器件制备完成之后需要通过剥离工艺去除;所述透镜模板50是指在制备聚合物透镜60时采用的形状模板,其在聚合物透镜60制备完成之后通常需要通过脱模工艺去除。
例如,对于制作感光单元的步骤,可以利用图19和图20的实施例中描述的制备方法,然后再将感光单元阵列转到柔性衬底上。然而,根据本公开的实施例不限制于此。此外,图23中制备透镜结构的方法也是示例性的,本公开的实施例也可以采用其他方法制备透镜结构,然后再将透镜结构贴附与感光单元的入光面侧。
本公开示例性实施方式所提供的柔性电子复眼的制备方法,可借助于目前已经十分成熟的TFT阵列基板工艺制程来进行制备,通过在柔性衬底的表面形成感光阵列,并在感光阵列上方贴覆聚合物透镜30,即可得到具有自适应功能的仿生复眼结构。其中,该透镜结构的设计有助于扩大复眼视角,并在形成弯曲界面时能够增大感光范围。
下面结合图22对柔性电子复眼中感光单元200部分的工艺过程进行示例性的说明。首先在感光单元200表面涂覆PI(聚酰亚胺)作为透明绝缘层208,再在透明绝缘层208上方涂覆光刻胶40,并通过曝光和显影得到第一过孔206和第二过孔207的位置,通过对第一过孔206和第二过孔207所对应的透明绝缘层208的部分区域进行刻蚀,即可形成所需的过孔结构;然后剥离剩余的光刻胶40并沉积电极层70,通过对电极层70进行结构化设计,例如依次经过光刻胶40的涂覆、曝光和显影、以及刻蚀工艺,即可得到分别连接不同掺杂区域的信号引线;最后在信号引线上方涂覆二甲基硅氧烷并进行聚合,即可形成柔性基板,从而得到位于柔性基板上的感光单元200的阵列结构。
应当注意,尽管在上文详细描述中提及了用于动作执行的设备的若干模块或者单元,但是这种划分并非强制性的。实际上,根据本公开的实施方式, 上文描述的两个或更多模块或者单元的特征和功能可以在一个模块或者单元中具体化。反之,上文描述的一个模块或者单元的特征和功能可以进一步划分为由多个模块或者单元来具体化。
此外,尽管在附图中以特定顺序描述了本公开中方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。

Claims (20)

  1. 一种电子成像装置,包括衬底基板以及阵列排布在所述衬底基板表面的多个感光单元,所述感光单元包括串联相接的光电二极管和整流二极管,
    其中,所述光电二极管包括第一导电类型掺杂区和第二导电类型掺杂区,所述整流二极管包括第一导电类型掺杂区和第二导电类型掺杂区,且所述光电二极管的第一导电类型掺杂区和所述整流二极管的第一导电类型掺杂区彼此电连接。
  2. 根据权利要求1所述的电子成像装置,其中,所述光电二极管和所述整流二极管共用同一第一导电类型掺杂区。
  3. 根据权利要求1或2所述的电子成像装置,其中,所述第一导电类型掺杂区为P掺杂区。
  4. 根据权利要求1-3任一项所述的电子成像装置,其中,所述光电二极管包括由所述第一导电类型掺杂区和所述第二导电类型掺杂区构成的PN结,所述第一导电类型掺杂区和所述第二导电类型掺杂区的交界面的形状包括直线形、折线形和曲线形至少之一。
  5. 根据权利要求1-3任一项所述的电子成像装置,其中,所述光电二极管包括由所述第一导电类型掺杂区、所述第二导电类型掺杂区、以及位于二者之间的非掺杂区构成的PIN结,所述非掺杂区的形状包括直线形、折线形和曲线形至少之一。
  6. 根据权利要求4或5所述的电子成像装置,其中,所述折线形包括折线波浪形或者方波形,所述曲线形包括波浪形或者正弦曲线形。
  7. 根据权利要求1-6任一项所述的电子成像装置,其中,所述电子成像装置还包括横纵交错的第一信号引线和第二信号引线,所述第一信号引线连接至所述光电二极管背离所述整流二极管的一端,所述第二信号引线连接至所述整流二极管背离所述光电二极管的一端。
  8. 根据权利要求7所述的任一项所述的电子成像装置,其中,所述第一信号引线与所述光电二极管的第二导电类型掺杂区电连接,所述第二引线与所述整流二极管的第二导电类型掺杂区电连接。
  9. 根据权利要求7或8所述的电子成像装置,其中,所述多个感光单元 沿所述第一信号引线的延伸方向和所述第二信号引线的延伸方向排列,以形成多个感光单元列和多个感光单元行,每条第一信号引线与对应的感光单元列中的所有感光单元连接,每条第二信号线与对应的感光单元行中的所有感光单元连接。
  10. 根据权利要求1-9任一项所述的电子成像装置,其中,所述衬底基板为柔性衬底。
  11. 根据权利要求7-9任一项所述的电子成像装置,其中,所述第一信号引线包括柔性导线,所述第二信号引线包括柔性导线。
  12. 根据权利要求11所述的电子成像装置,其中,所述第一信号引线包括弹簧状导线或纳米银浆导线,所述第二信号引线包括弹簧状导线或纳米银浆导线。
  13. 一种柔性电子复眼,包括权利要求1-12任一项所述的电子成像装置以及与所述电子成像装置相贴合的透镜结构,所述透镜结构设置于所述感光单元的入光面侧。
  14. 根据权利要求13所述的柔性电子复眼,其中,所述透镜结构包括多个透镜,所述多个感光单元和所述多个透镜一一对应设置。
  15. 根据权利要求14所述的柔性电子复眼,其中,所述多个透镜至少包括两种焦距不同的透镜。
  16. 根据权利要求13-15任一项所述的柔性电子复眼,其中,所述透镜结构与所述衬底基板分别位于所述感光单元的两侧。
  17. 一种电子成像装置的制备方法,包括:
    在衬底基板的表面形成半导体膜层;
    在所述半导体膜层的第一预设区域形成第一导电类型掺杂区,在所述半导体膜层的第二预设区域和第三预设区域分别形成一第二导电类型掺杂区和另一第二导电类型掺杂区,所述第二预设区域和所述第三预设区域分别位于所述第一预设区域的两侧;
    其中,所述第一导电类型掺杂区和所述一第二导电类型掺杂区形成光电二极管,所述第一导电类型掺杂区和所述另一第二导电类型掺杂区形成整流二极管。
  18. 一种柔性电子复眼的制备方法,包括:
    在预设基板上形成阵列排布的多个感光单元,所述感光单元包括串联相接的光电二极管和整流二极管,且所述光电二极管的第一导电类型掺杂区和所述整流二极管的第一导电类型掺杂区彼此电连接;
    在形成有所述感光单元的所述预设基板上形成柔性衬底,并在形成所述柔性衬底之后剥离所述预设基板。
  19. 根据权利要求18所述的柔性电子复眼的制备方法,还包括:
    在所述感光单元的入光面侧形成透镜结构。
  20. 根据权利要求19所述的柔性电子复眼的制备方法,其中,在所述感光单元的入光面侧形成透镜结构包括:
    在透镜模板的凹槽中形成聚合物预聚体,将具有所述柔性衬底的所述感光单元贴附在所述透镜模板的表面,并使所述感光单元与所述凹槽的位置相对应;
    控制所述聚合物预聚体进行聚合反应以得到聚合物透镜。
PCT/CN2019/073704 2018-06-01 2019-01-29 电子成像装置及其制备方法、柔性电子复眼及其制备方法 WO2019227961A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/475,781 US11791364B2 (en) 2018-06-01 2019-01-29 Electronic compound eye imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810558990.9A CN108550598B (zh) 2018-06-01 2018-06-01 电子成像装置及其制备方法、柔性电子复眼及其制备方法
CN201810558990.9 2018-06-01

Publications (1)

Publication Number Publication Date
WO2019227961A1 true WO2019227961A1 (zh) 2019-12-05

Family

ID=63511693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/073704 WO2019227961A1 (zh) 2018-06-01 2019-01-29 电子成像装置及其制备方法、柔性电子复眼及其制备方法

Country Status (3)

Country Link
US (1) US11791364B2 (zh)
CN (1) CN108550598B (zh)
WO (1) WO2019227961A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108550598B (zh) 2018-06-01 2019-08-30 京东方科技集团股份有限公司 电子成像装置及其制备方法、柔性电子复眼及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090267230A1 (en) * 2008-04-24 2009-10-29 Mutual-Pak Technology Co., Ltd. Package structure for integrated circuit device and method of the same
CN102222665A (zh) * 2011-06-14 2011-10-19 符建 带薄型复眼透镜的集成led模块
CN103887316A (zh) * 2012-12-21 2014-06-25 上海天马微电子有限公司 一种图像传感器
CN104124256A (zh) * 2014-07-01 2014-10-29 上海奕瑞光电子科技有限公司 一种像素aec平板探测器
CN107113079A (zh) * 2014-11-10 2017-08-29 华为技术有限公司 用于集成光子开关的监测光电二极管多路复用器
CN108550598A (zh) * 2018-06-01 2018-09-18 京东方科技集团股份有限公司 电子成像装置及其制备方法、柔性电子复眼及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106415A (ja) * 1993-09-30 1995-04-21 Ricoh Co Ltd 半導体装置の製造方法
US7297926B2 (en) * 2005-08-18 2007-11-20 Em4, Inc. Compound eye image sensor design
JP5518381B2 (ja) * 2008-07-10 2014-06-11 株式会社半導体エネルギー研究所 カラーセンサ及び当該カラーセンサを具備する電子機器
WO2011059038A1 (ja) * 2009-11-13 2011-05-19 シャープ株式会社 半導体装置およびその製造方法
US7986022B2 (en) * 2009-11-19 2011-07-26 International Business Machines Corporation Semispherical integrated circuit structures
KR20130005878A (ko) * 2011-07-07 2013-01-16 삼성전자주식회사 저저항 반도체 소자
JP6934654B2 (ja) * 2014-12-26 2021-09-15 国立研究開発法人産業技術総合研究所 フレキシブル導電性膜及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090267230A1 (en) * 2008-04-24 2009-10-29 Mutual-Pak Technology Co., Ltd. Package structure for integrated circuit device and method of the same
CN102222665A (zh) * 2011-06-14 2011-10-19 符建 带薄型复眼透镜的集成led模块
CN103887316A (zh) * 2012-12-21 2014-06-25 上海天马微电子有限公司 一种图像传感器
CN104124256A (zh) * 2014-07-01 2014-10-29 上海奕瑞光电子科技有限公司 一种像素aec平板探测器
CN107113079A (zh) * 2014-11-10 2017-08-29 华为技术有限公司 用于集成光子开关的监测光电二极管多路复用器
CN108550598A (zh) * 2018-06-01 2018-09-18 京东方科技集团股份有限公司 电子成像装置及其制备方法、柔性电子复眼及其制备方法

Also Published As

Publication number Publication date
CN108550598B (zh) 2019-08-30
CN108550598A (zh) 2018-09-18
US11791364B2 (en) 2023-10-17
US20210358991A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
KR102350605B1 (ko) 이미지 센서
KR101899596B1 (ko) 고체 촬상 장치와 그 제조 방법, 및 전자 기기
US9525000B2 (en) Solid-state imaging device, solid-state imaging device manufacturing method, electronic device, and lens array
US20180150668A1 (en) Fingerprint Identification Device and Manufacturing Method Thereof, Array Substrate and Display Apparatus
KR20200024092A (ko) 개선된 풀 웰 용량을 갖는 이미지 센서 및 관련 형성 방법
US20100006909A1 (en) Color filter array alignment mark formation in backside illuminated image sensors
TW201715713A (zh) 互補式金氧半影像感測器及其形成方法
MXPA06014220A (es) Metodo para manufacturar un sensor de imagen, y un sensor de imagen.
TW201725715A (zh) 積體晶片與其形成方法
TW200425488A (en) Solid-state imaging apparatus and its manufacturing method
JP2015177155A (ja) 光電変換装置および電子機器
JP2008052004A (ja) レンズアレイ及び固体撮像素子の製造方法
CN105609513A (zh) 双面cmos图像传感器芯片及其制造方法
KR20160099434A (ko) 비평면 광학 인터페이스를 구비한 이면 조사형 이미지 센서
TWI343122B (en) Image sensors and methods for fabricating the same
WO2019227961A1 (zh) 电子成像装置及其制备方法、柔性电子复眼及其制备方法
TWI404201B (zh) 具有電子透鏡之光偵測器陣列
KR20210012437A (ko) 자동 초점 이미지 센서의 픽셀 어레이 및 이를 포함하는 자동 초점 이미지 센서
TWI808414B (zh) 影像感測器
US20090001493A1 (en) Electronic imaging device
WO2022149362A1 (ja) 固体撮像装置及び電子機器
KR20180085521A (ko) 이미지 센서 및 그 제조방법
US20050205898A1 (en) Electronic imaging device
US20240120357A1 (en) Image sensor
JP4622526B2 (ja) 固体撮像素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19811826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 03-05-2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19811826

Country of ref document: EP

Kind code of ref document: A1