WO2019225673A1 - 角部成形用ダイ及びその製造方法並びに角部成形方法 - Google Patents
角部成形用ダイ及びその製造方法並びに角部成形方法 Download PDFInfo
- Publication number
- WO2019225673A1 WO2019225673A1 PCT/JP2019/020367 JP2019020367W WO2019225673A1 WO 2019225673 A1 WO2019225673 A1 WO 2019225673A1 JP 2019020367 W JP2019020367 W JP 2019020367W WO 2019225673 A1 WO2019225673 A1 WO 2019225673A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- corner
- concave surface
- outer cylinder
- core member
- cylinder member
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D5/00—Bending sheet metal along straight lines, e.g. to form simple curves
- B21D5/01—Bending sheet metal along straight lines, e.g. to form simple curves between rams and anvils or abutments
Definitions
- the present invention relates to a corner forming die used for forming a corner of a box-bending product, a manufacturing method thereof, and a corner forming method.
- a corner of a box-shaped body is formed into an R shape by bending a workpiece such as a metal plate material.
- a mold including a punch P having an R-shaped convex surface and a die D having an R-shaped concave surface is known as a mold used for this forming process (for example, Patent Documents). 1).
- the present invention has been made in view of the above circumstances, and can be used to form a corner portion of a box-like body that is beautifully shaped into an R shape while reducing the work cost of the forming process and reducing the processing cost.
- An object of the present invention is to provide a die, a manufacturing method thereof, and a corner portion forming method.
- the corner portion forming die includes a core member for forming a top region including a top portion of a corner portion of a workpiece into an R shape, and an outer cylinder member arranged so as to surround the periphery of the core member.
- the core member and the outer cylinder member include a retracted position in which the core member is immersed in the outer cylinder member, and an advanced position in which the core member is advanced relative to the outer cylinder member from the retracted position. It is configured to be relatively movable between the two.
- the core member has an R-shaped concave surface that abuts the top region at the R surface, and the outer cylinder member accommodates a corner edge that extends linearly from the top region.
- the core member and the outer cylinder member have a holding concave surface to be held, and the R-shaped concave surface and the pressing concave surface are discontinuous at the retracted position, and the R-shaped concave surface and the pressing concave surface at the advanced position. Are configured to be continuous.
- a biasing mechanism that biases the outer cylinder member toward the workpiece is further provided, and an external force is applied to the core member and the outer cylinder member with respect to the outer cylinder member.
- the outer cylinder member is urged to the workpiece side with respect to the core member by the urging mechanism so that the R-shaped concave surface and the retaining concave surface are discontinuous in a non-pressed state,
- the outer cylinder member is pushed down toward the core member against the urging force of the urging mechanism in the pressed state in which the corner edge portion is pressed against the concave surface, and the R-shaped concave surface and the retaining concave surface are continuous.
- the top region is configured to be pressed against the R-shaped concave surface.
- the manufacturing method of the corner molding die according to the present invention is the manufacturing method of the corner molding die described above, and the concave surface forming step of integrally forming the R-shaped concave surface and the pressing concave surface on the upper surface of the block body. And a separate step of cutting the block body into the core member and the outer cylinder member.
- a corner portion forming method is a corner portion forming method for forming a corner portion of a workpiece into an R shape using the corner portion forming die described above, and extends linearly from the top region of the workpiece.
- a primary press step of pressing the corner edge against the outer cylinder member, and at least one of the core member and the outer cylinder member is relatively moved while the corner edge is accommodated and held by the outer cylinder member;
- the corners of the box-shaped body can be beautifully formed into an R shape while reducing the work cost of the forming process and reducing the processing cost.
- FIG. 1 is a front view schematically showing an overall configuration of a press brake equipped with a molding die including a corner portion forming die according to an embodiment of the present invention.
- FIG. 3 is a side view schematically showing a part of the plate material with a part of the press brake omitted. It is a perspective view which shows the same shaping
- FIG 3 is a partially enlarged side sectional view schematically showing a molding die attached to the press brake. It is a figure which shows the corner
- X-axis direction means the left-right direction in FIG. 1
- Z-axis direction means the up-down direction in FIG. 1
- Y-axis direction is perpendicular to the paper surface in FIG. Means direction.
- the press brake 1 includes a press brake main body 2 that performs bending of a workpiece plate (work) W, and a control device 3 that performs overall control of the press brake main body 2.
- the press brake main body 2 includes an upper table 4 and an upper table 4 arranged in the vertical direction (Z-axis direction) so that the plate surfaces 4a and 5a intersecting the front-rear direction (Y-axis direction) face the front surface in the center of the front surface.
- a lower table 5 is provided.
- the press brake body 2 supports the upper table 4 and the lower table 5 and includes support portions 6 arranged on the left and right sides. Further, the press brake body 2 includes a drive mechanism 7 configured to reciprocate the upper table 4 with respect to the lower table 5 along the vertical direction, for example.
- the upper table 4 has a plurality of upper mold holders 8 for holding a corner molding punch P of the molding die and other upper molds at the lower part thereof.
- the lower table 5 has a lower mold holder 9 that holds a lower mold such as the corner portion forming die D according to the present embodiment at the upper portion thereof.
- Each support part 6 is comprised by the plate-shaped side frame formed in the substantially U shape by the side view, for example.
- the drive mechanism 7 is, for example, a hydraulic cylinder serving as a drive source for the upper table 4, and is attached to the upper portion of each support portion 6. Each drive mechanism 7 is configured to reciprocate (up and down) the upper table 4 relative to the lower table 5 in the vertical direction.
- the control device 3 is configured to execute operation control of each drive mechanism 7.
- the control device 3 includes an operation panel that is movably attached to the press brake main body 2 via a movable arm portion 3a.
- the operation panel displays, for example, various information such as the bending order and pressing procedure of the work plate material calculated by the operator of the press brake 1 and a die made of various punches and dies used for these.
- the molding die mounted on the press brake 1 has a corner portion forming punch P and a corner portion forming die D.
- Each of the corner portion forming punch P and the corner portion forming die D is constituted by a block body made of a columnar metal or the like.
- the corner-forming punch P is an R-shaped convex surface formed in an R shape corresponding to the design bending R of the inner surface of the corner K (see FIG. 2) of the workpiece W at the end on the corner-forming die D side. 31.
- the corner forming die D forms a top region including the top of the outer surface of the corner K (see FIG. 2) of the workpiece W into an R shape. And a core member 10 disposed so as to surround the periphery of the core member 10.
- the corner portion forming die D includes an urging mechanism F that urges the outer cylinder member 20 toward the workpiece W in the present embodiment.
- the core member 10 and the outer cylinder member 20 are moved from the retracted position (see FIG. 3) where the core member 10 is immersed in the outer cylinder member 20, and the core member 10 is removed from the retracted position. It is configured to be able to move relative to the forward movement position (see FIG. 5) advanced with respect to the cylindrical member 20.
- the core member 10 of the corner portion forming die D has an R-shaped concave surface that abuts on the end portion on the corner portion forming punch P side with a top surface area of the outer surface of the corner portion K and an R surface that matches the dimension of the design bend R. 11. As shown in FIG. 4, the core member 10 is fixedly attached to the die base portion 13 (see FIG. 2) by a center bolt 12.
- the outer cylinder member 20 of the corner portion forming die D has a corner edge portion KE (see FIG. 13) extending linearly from the top region of the corner portion K at the end portion on the corner portion forming punch P side. It has a pressing concave surface 21 with a predetermined curvature that can be pressed during pressing and can be stored and held during final pressing. Further, the outer cylinder member 20 of the corner portion forming die D has an abutting surface 21a that is continuous from the retaining concave surface 21 and abuts against the side surfaces W1, W2, and W3 that are non-molded portions of the workpiece W.
- the core member 10 and the outer cylinder member 20 of the corner portion forming die D are configured as follows. That is, as shown in FIG. 3, the R-shaped concave surface 11 of the core member 10 and the pressing concave surface 21 of the outer cylinder member 20 are discontinuous at the above-described retracted position. On the other hand, as shown in FIG. 5, the R-shaped concave surface 11 of the core member 10 and the pressing concave surface 21 of the outer cylinder member 20 are continuous at the above-described forward position.
- the urging mechanism F is drilled at predetermined locations (four locations in this example) between the outer cylinder member 20 and the die base portion 13, for example, at the lower portion of the outer cylinder member 20.
- the plurality of coil springs 22 housed in the housing hole 22 a and disposed so as to surround the core member 10, for example, and a plurality of stopper bolts 23 movably supporting the outer cylinder member 20 are configured.
- the core member 10 and the outer cylinder member 20 of the corner portion forming die D are in the non-pressed state in which no external force is applied to the outer cylinder member 20, and the R-shaped concave surface 11 of the core member 10.
- the outer cylinder member 20 is always urged
- the outer cylinder member 20 of the corner portion forming die D is in a pressed state in which the corner edge portion KE of the work W is pressed against the holding concave surface 21 of the outer cylinder member 20 (at the time of initial pressing).
- the workpiece W is pressed with a predetermined pressing force (design pressure) so that the gap KES (see FIG. 14) between the corner edges KE does not open to the side surfaces W1 and W2, respectively.
- the core member 10 and the outer cylinder member 20 of the corner portion forming die D resist the urging force of the urging mechanism F (elastic force of the coil spring 22) at the time of final pressing.
- the outer cylinder member 20 is pushed down toward the core member 10 side.
- the core member 10 and the outer cylindrical member 20 are in a state in which the R-shaped concave surface 11 of the core member 10 and the retaining concave surface 21 of the outer cylindrical member 20 are continuous, and the top region of the corner K of the workpiece W is R. While the shape concave surface 11 is pressed, the holding concave surface 21 is configured to accommodate and hold the corner edge KE continuing from the top region.
- the first step by the retaining concave surface 21 of the outer cylinder member 20 is performed. Since the pressing and the second-stage pressing by the R-shaped concave surface 11 of the core member 10 with the corner edge KE being accommodated and held by the holding concave surface 21 are continuously performed in a series of pressing operations, the workpiece W The gap KES is less likely to occur between the corner edges KE of the top region.
- molding die D of a shaping die is manufactured as follows, for example.
- a concave surface to be the holding concave surface 21 (including the contact surface 21a) of the member 20 is integrally formed (step S10).
- the center part of the block body in which the concave surface is formed is cut into a rounded triangular shape along the axial direction and separated into the core member 10 and the outer cylinder member 20 by a separate process (step S11).
- This separation process is performed, for example, by performing a wire cutting process or the like along a cut line 29 from a wire processing hole 28 (see FIG. 4) formed by an electric discharge machine or the like.
- the wire processing hole 28 is formed in the contact surface 21 a that is a portion that does not affect the press processing, but is not limited thereto, and may be formed in an arbitrary position. Is possible.
- the corner portion forming die D By manufacturing the corner portion forming die D in this way, the concave surface of the R-shaped concave surface 11 of the core member 10 and the retaining concave surface 21 of the outer cylinder member 20 can be made uniform, and the flushing accuracy can be improved. . Moreover, since the core member 10 and the outer cylinder member 20 can be obtained from one block body, the engagement accuracy (fitting accuracy) between the core member 10 and the outer cylinder member 20 can be remarkably improved, It becomes possible to suppress the manufacturing cost overwhelmingly than manufacturing these from separate block bodies.
- FIG. 8 (a) or FIG. 9 (a) a three-dimensional box-shaped product having an R-shaped corner portion K corresponding to the design bending R is required to be developed in a planar shape.
- the workpiece W such as a metal plate material is cut and processed in a state where a simple slit is formed (step S100).
- FIG. 8 shows a case where one slit S is provided in a portion to be the corner K of the workpiece W
- FIG. 9 shows a plurality of slits S1, S2, S3 in the portion to be the corner K of the workpiece W.
- the corner portion K can be formed into a beautiful R shape in any of the workpieces W shown in FIGS.
- the edges of the side surfaces W1, W2 of the workpiece W are bent into an R shape along the folding lines m1, m2, and FIG.
- the boundary portions of the side surfaces W1, W2 and the boundary portions of the side surfaces W2, W3 of the workpiece W are bent along the bending lines m3, m4 (steps). S101), assembling the workpiece W into a box-like body having a three-dimensional R-shaped corner K.
- the workpiece W assembled into the box-like body is placed (set) on the corner forming die D of the molding die attached to the press brake 1 as shown in FIGS. 10 and 11A.
- the workpiece W has side surfaces W1, W2 that are in contact with the contact surface 21a of the outer cylindrical member 20, and a corner K is located on the R-shaped concave surface 11 of the core member 10, and the side surface W1, A corner edge KE of W2 is in contact with the holding concave surface 21 of the outer cylinder member 20.
- the gap KES between the corner edge portions KE of the workpiece W continuously exists from the corner portion K to the end portions of the side surfaces W1, W2.
- the R shape of the corner forming punch P is shown in FIG. 11B.
- the side surfaces W1 and W2 of the workpiece W are sandwiched between the convex surface 31 and the contact surface 21a of the outer cylinder member 20. If the corner portion forming punch P is further lowered, the pressing force of the corner portion forming punch P is changed by the urging force (elastic force of the coil spring 22) by the urging mechanism F as shown in FIG. Therefore, the outer cylinder member 20 urged toward the workpiece W is in a state of being pressed while being lowered together with the corner portion forming punch P as indicated by an arrow in the figure (primary pressing step).
- the lowering of the outer cylinder member 20 means that the core member 10 is displaced (moved forward) relative to the outer cylinder member 20.
- the workpiece W is pressed against the concave concave surface 21 by the R-shaped convex surface 31 of the corner molding punch P and the concave concave surface 21 of the outer cylinder member 20, and the corner molding punch.
- the top region of the corner K starts to contact the R-shaped concave surface 11.
- the workpiece W is pressed by the holding concave surface 21 of the outer cylinder member 20 so as to eliminate the gap KES between the corner edges KE of the workpiece W (step S102).
- the corner portion forming punch P is further lowered, as shown in FIGS. 11D, 12, and 13, the R shape convex surface 31 of the corner portion forming punch P and the R shape concave surface 11 of the core member 10.
- the top region including the top of the corner K of the workpiece W is pressed into an R shape (secondary pressing step).
- the workpiece W is held and held at the corner edge KE by the holding concave surface 21 of the outer cylindrical member 20, and the top region of the corner K is formed on the R-shaped concave surface 11 of the core member 10. It is pressed with a predetermined pressure.
- the gap KES between the corner edges KE of the workpiece W is held by the holding concave surface 21 of the outer cylinder member 20 so as not to expand again, and from the top of the corner K to the top region end.
- the workpiece W is pressed by the R-shaped concave surface 11 of the core member 10 so as to eliminate the gap KES between the corner edge portions KE to the portion (step S103).
- the corner forming punch P is raised and separated from the corner forming die D, and the workpiece W is taken out from the press brake 1.
- the workpiece W taken out through the pressing process as described above is in a state in which almost no gap KES is generated between the corner edges KE of the top region including the corner K.
- a gap KES is generated between the corner edges KE from the end of the top region to the ends of the side surfaces W1 and W2 due to the spring back accompanying the pressing by the core member 10.
- this gap KES can be easily eliminated in a later process, which will be described later, compared to the conventional secondary processing or additional processing, there is no problem with corner forming.
- a post-process including a welding process and a polishing process is performed on the workpiece W taken out (step S104), and a box-shaped product is manufactured.
- the corner portion is formed by a series of pressing operations, and the shape is clearly formed without generating a gap in the top region including the corner portion K of the workpiece W. Therefore, secondary processing for filling the gap in the top region, which has been a problem in the past, is not necessary.
- additional processing is not necessary. Accordingly, it is possible to suppress the work load for neatly forming the corner portion K of the workpiece W, and to suppress an increase in processing cost.
- a configuration is adopted in which the workpiece plate material is pressed and processed with the corner portion forming die D by lowering the corner portion forming punch P attached to the upper table 4.
- the corner forming punch P and the corner forming die D may be mounted upside down on the upper table 4 and the lower table 5, and when the lower table 5 is raised, the workpiece is processed. You may make it apply to the raising type press brake.
- the molding die having the corner portion forming punch P and the corner portion forming die D can be widely used in machine tools that use the drive mechanism 7 such as a hydraulic cylinder.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Bending Of Plates, Rods, And Pipes (AREA)
Abstract
角部成形方法に用いられる角部成形用ダイ(D)は、ワーク(W)の角部(K)の頂部を含む頂部領域をR形状に成形するためのコア部材(10)と、コア部材(10)の周囲を取り囲むように配置された外筒部材(20)とを備え、コア部材(10)及び外筒部材(20)は、コア部材(10)が外筒部材(20)に対して没入した後退位置と、該後退位置からコア部材(10)が外筒部材(20)に対して前進した前進位置との間で相対移動可能に構成される。
Description
本発明は、箱曲げ製品の角部の成形加工に用いる角部成形用ダイ及びその製造方法並びに角部成形方法に関する。
従来、金属板材等のワークを折り曲げ加工することで、箱状体の角部をR形状に成形することが行われている。この成形加工に用いられる金型としては、図15に示すように、R形状の凸面を有するパンチPと、R形状の凹面を有するダイDとを備えるものが知られている(例えば、特許文献1参照)。
実際に箱状体100の角部101を上記のようなパンチP及びダイDを有する金型によりR形状に加工する場合、その押圧力によって、箱状体100の側面103間の境界部分に隙間102が生じ易くなる。そして、この隙間102を埋めるためには、側面103間の境界部分を接近させ、図16に示す溶接部104のように、溶接させる二次加工が必要となる。
また、この二次加工によって境界部分を接近させると、図16に示すように、スプリングバックに起因して角部101とその近傍に隙間102が生じてしまうため、ハンマー等で叩いて形を整える等の追加加工も必要となる。従って、箱状体100の角部101をR形状に綺麗に成形加工するための作業負担が大きく、加工コストも増加してしまうという問題がある。
本発明は、上記事情に鑑みてなされたものであり、成形加工の作業負担を小さくして加工コストを抑えつつ箱状体の角部をR形状に綺麗に成形することができる角部成形用ダイ及びその製造方法並びに角部成形方法を提供することを目的とする。
本発明に係る角部成形用ダイは、ワークの角部の頂部を含む頂部領域をR形状に成形するためのコア部材と、前記コア部材の周囲を取り囲むように配置された外筒部材とを備え、前記コア部材及び前記外筒部材は、前記コア部材が前記外筒部材に対して没入した後退位置と、該後退位置から前記コア部材が前記外筒部材に対して前進した前進位置との間で相対移動可能に構成されていることを特徴とする。
本発明の一実施形態において、前記コア部材は、前記頂部領域とR面で当接するR形状凹面を有し、前記外筒部材は、前記頂部領域から直線状に延在する角縁部を収容保持する押止凹面を有し、前記コア部材及び前記外筒部材は、前記後退位置において前記R形状凹面及び前記押止凹面が不連続となり、前記前進位置において前記R形状凹面及び前記押止凹面が連続するよう構成されている。
本発明の他の実施形態において、前記外筒部材を前記ワークに向けて付勢する付勢機構を更に備え、前記コア部材及び前記外筒部材は、前記外筒部材に対して外力が加えられていない非押圧状態において前記R形状凹面及び前記押止凹面が不連続となるように、前記付勢機構によって前記外筒部材が前記コア部材よりも前記ワーク側に付勢されており、前記押止凹面に前記角縁部が押し付けられた押圧状態において前記付勢機構の付勢力に抗して前記外筒部材が前記コア部材側に押し下げられ、前記R形状凹面及び前記押止凹面が連続し前記頂部領域が前記R形状凹面に押圧されるよう構成されている。
本発明に係る角部成形用ダイの製造方法は、上記の角部成形用ダイの製造方法であって、ブロック体の上面に前記R形状凹面と前記押止凹面とを一体形成する凹面形成工程と、該ブロック体を切断して前記コア部材と前記外筒部材とに分断する別体化工程とを備えることを特徴とする。
本発明に係る角部成形方法は、上記の角部成形用ダイを用いてワークの角部をR形状に成形する角部成形方法であって、ワークの前記頂部領域から直線状に延在する角縁部を前記外筒部材に押圧させる一次プレス工程と、前記外筒部材により前記角縁部を収容保持した状態のまま、前記コア部材及び前記外筒部材の少なくとも一方を相対移動させ、前記コア部材を前記後退位置から前記前進位置に変位させることにより、前記頂部領域を前記コア部材に押圧させる二次プレス工程とを備えることを特徴とする。
本発明によれば、成形加工の作業負担を小さくして加工コストを抑えつつ箱状体の角部をR形状に綺麗に成形することができる。
以下、添付の図面を参照して、本発明の実施形態に係る角部成形用ダイ及びその製造方法並びに角部成形方法を詳細に説明する。ただし、以下の実施形態は、各請求項に係る発明を限定するものではなく、また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
まず、本実施形態に係る角部成形用ダイを有する成形金型が装着されたプレスブレーキ1の全体構成について、図1及び図2を用いて説明する。なお、プレスブレーキ1の基本的な構造については既知であるので、概略のみを説明する。また、以下の説明において、「X軸方向」は図1における左右方向を意味し、「Z軸方向」は同図における上下方向を意味し、「Y軸方向」は同図における紙面に対し垂直方向を意味する。
プレスブレーキ1は、図1及び図2に示すように、被加工板材(ワーク)Wの曲げ加工等を行うプレスブレーキ本体2と、このプレスブレーキ本体2の全体的な制御を実行する制御装置3とを備える。プレスブレーキ本体2は、前面中央に、前後方向(Y軸方向)と交差する板面4a,5aがそれぞれ前面を向くように上下方向(Z軸方向)に整列して配置された上部テーブル4及び下部テーブル5を備える。
また、プレスブレーキ本体2は、これら上部テーブル4及び下部テーブル5を支持し、左右それぞれに配置された支持部6を備える。更に、プレスブレーキ本体2は、例えば上部テーブル4を下部テーブル5に対して上下方向に沿って往復動させるよう構成された駆動機構7を備える。
上部テーブル4は、その下部において、成形金型の角部成形用パンチPやその他の上型を保持する複数の上型ホルダ8を有する。下部テーブル5は、その上部において、本実施形態に係る角部成形用ダイD等の下型を保持する下型ホルダ9を有する。各支持部6は、例えば側方視で略コの字状に形成された板状のサイドフレームにより構成される。
駆動機構7は、例えば上部テーブル4の駆動源となる油圧シリンダであり、各支持部6の上部にそれぞれ取り付けられている。各駆動機構7は、上部テーブル4を下部テーブル5に対して上下方向に沿って相対的に往復動(上下動)させるよう構成されている。
制御装置3は、各駆動機構7の動作制御を実行するよう構成されている。制御装置3は、プレスブレーキ本体2に可動アーム部3aを介して、移動自在に取り付けられた操作パネルを備えている。操作パネルには、例えばプレスブレーキ1の作業者が演算した被加工板材の曲げ順や押圧手順、これらに使用される各種パンチやダイからなる金型等の各種情報が表示される。
図3に示すように、プレスブレーキ1に装着された成形金型は、角部成形用パンチP及び角部成形用ダイDを有する。これら角部成形用パンチP及び角部成形用ダイDは、それぞれ円柱状の金属等からなるブロック体により構成されている。角部成形用パンチPは、角部成形用ダイD側の端部に、ワークWの角部K(図2参照)の内側面の設計曲げRに対応するR形状に形成されたR形状凸面31を有する。
一方、図3~図5に示すように、本実施形態に係る角部成形用ダイDは、ワークWの角部K(図2参照)の外側面の頂部を含む頂部領域をR形状に成形するためのコア部材10と、このコア部材10の周囲を取り囲むように配置された外筒部材20とを備える。また、角部成形用ダイDは、本実施形態においては外筒部材20をワークWに向けて付勢する付勢機構Fを備える。
この角部成形用ダイDは、コア部材10及び外筒部材20が、コア部材10が外筒部材20に対して没入した後退位置(図3参照)と、この後退位置からコア部材10が外筒部材20に対して前進した前進位置(図5参照)との間で相対移動可能となるように構成されている。
角部成形用ダイDのコア部材10は、角部成形用パンチP側の端部に、角部Kの外側面の頂部領域と設計曲げRの寸法に合わせたR面で当接するR形状凹面11を有する。このコア部材10は、図4に示すように、センターボルト12によってダイ基台部13(図2参照)に取付固定されている。
角部成形用ダイDの外筒部材20は、角部成形用パンチP側の端部に、角部Kの頂部領域から直線状に延在する角縁部KE(図13参照)を、初期押圧時には押圧しつつ最終押圧時には収容保持することが可能な所定の曲率の押止凹面21を有する。また、角部成形用ダイDの外筒部材20は、押止凹面21から連続し、ワークWの非成形加工部分である側面W1,W2,W3と当接する当接面21aを有する。
そして、角部成形用ダイDのコア部材10及び外筒部材20は、次のように構成されている。すなわち、図3に示すように、上述した後退位置においては、コア部材10のR形状凹面11及び外筒部材20の押止凹面21が不連続となる。一方、図5に示すように、上述した前進位置においては、コア部材10のR形状凹面11及び外筒部材20の押止凹面21が連続する。
なお、付勢機構Fは、図4に示すように、外筒部材20とダイ基台部13との間の所定箇所(本例では4箇所)に、例えば外筒部材20の下部に穿設された収容孔22a内に収容され、例えばコア部材10を囲むように配置された複数のコイルばね22と、外筒部材20を可動支持する複数のストッパボルト23とを含んで構成されている。
この付勢機構Fによって、角部成形用ダイDのコア部材10及び外筒部材20は、外筒部材20に対して外力が加えられていない非押圧状態において、コア部材10のR形状凹面11及び外筒部材20の押止凹面21が不連続となるように、外筒部材20がコア部材10よりもワークW側に常時付勢されている。
また、この付勢機構Fによって、角部成形用ダイDの外筒部材20は、外筒部材20の押止凹面21にワークWの角縁部KEが押し付けられた押圧状態(初期押圧時)においては、角縁部KE間の隙間KES(図14参照)が、それぞれ側面W1,W2側に開かないように所定の押圧力(設計圧)でワークWを押さえる。
そして、角部成形用ダイDのコア部材10及び外筒部材20は、図5に示すように、最終押圧時においては、付勢機構Fの付勢力(コイルばね22の弾性力)に抗して外筒部材20がコア部材10側に押し下げられる。これにより、コア部材10及び外筒部材20は、コア部材10のR形状凹面11及び外筒部材20の押止凹面21が連続した状態となって、ワークWの角部Kの頂部領域をR形状凹面11が押圧すると共に、頂部領域から続く角縁部KEを押止凹面21が収容保持するように構成されている。
従って、ワークWの角部Kを角部成形用パンチP及び角部成形用ダイDを有する成形金型によりR形状に加工する際に、外筒部材20の押止凹面21による第1段階の押圧と、押止凹面21により角縁部KEを収容保持したままでのコア部材10のR形状凹面11による第2段階の押圧とが一連の押圧動作において連続的に行われるので、ワークWの頂部領域の角縁部KE間に隙間KESが生じにくくなる。
このため、従来のような頂部領域における隙間を埋めるための二次加工が不要となり、これに伴いスプリングバックに起因する隙間も角部Kに生じにくくなるため、追加加工も不要とすることができる。従って、ワークWの角部Kを綺麗に成形加工するための作業負担を小さくして、加工コストを抑えることが可能となる。
なお、成形金型の角部成形用ダイDは、例えば次のように製造される。
図6に示すように、まず、凹面形成工程により、上述したような円柱状のブロック体の上面に、マシニングセンタ等による機械加工等によりコア部材10のR形状凹面11となるべき凹面と、外筒部材20の押止凹面21(当接面21aも含む)となるべき凹面とを一体形成する(ステップS10)。次に、別体化工程により、凹面が形成されたブロック体の中心部を軸方向に沿って角丸三角形状に切断し、コア部材10と外筒部材20とに分断する(ステップS11)。この別体化工程は、例えば、放電加工機等により形成されたワイヤ加工用穴28(図4参照)からカットライン29に沿ってワイヤカット加工等を施すことにより行われる。なお、図4に示す例において、ワイヤ加工用穴28は、プレス加工時に影響のない箇所である当接面21aに形成されているが、これに限定されず、任意の位置に形成することが可能である。
図6に示すように、まず、凹面形成工程により、上述したような円柱状のブロック体の上面に、マシニングセンタ等による機械加工等によりコア部材10のR形状凹面11となるべき凹面と、外筒部材20の押止凹面21(当接面21aも含む)となるべき凹面とを一体形成する(ステップS10)。次に、別体化工程により、凹面が形成されたブロック体の中心部を軸方向に沿って角丸三角形状に切断し、コア部材10と外筒部材20とに分断する(ステップS11)。この別体化工程は、例えば、放電加工機等により形成されたワイヤ加工用穴28(図4参照)からカットライン29に沿ってワイヤカット加工等を施すことにより行われる。なお、図4に示す例において、ワイヤ加工用穴28は、プレス加工時に影響のない箇所である当接面21aに形成されているが、これに限定されず、任意の位置に形成することが可能である。
角部成形用ダイDは、このように製造されることによって、コア部材10のR形状凹面11と外筒部材20の押止凹面21の凹面を均一にし、面一精度を向上させることができる。また、一つのブロック体からコア部材10と外筒部材20とを得ることができるので、コア部材10と外筒部材20との係合精度(嵌合精度)を著しく向上させることができると共に、これらを別々のブロック体から製造するよりも圧倒的に製造コストを抑えることが可能となる。
次に、上記の角部成形用ダイDを用いた角部成形方法について、図7のフローチャートを参照しながら説明する。
まず、図8(a)又は図9(a)に示すように、設計曲げRに応じたR形状の角部Kを有する立体的な箱状体の製品を、平面状に展開した上で必要なスリットを形成した状態に、金属板材等のワークWを切断加工する(ステップS100)。
まず、図8(a)又は図9(a)に示すように、設計曲げRに応じたR形状の角部Kを有する立体的な箱状体の製品を、平面状に展開した上で必要なスリットを形成した状態に、金属板材等のワークWを切断加工する(ステップS100)。
なお、図8はワークWの角部Kとなるべき部分に一つのスリットSが設けられた場合を、また図9はワークWの角部Kとなるべき部分に複数のスリットS1,S2,S3が設けられた場合を、それぞれ示している。本実施形態の角部成形用ダイDによれば、図8及び図9に示すいずれのワークWにおいても、角部Kを綺麗なR形状に成形加工することができる。
次に、図8(b)又は図9(b)に示すように、折曲げ線m1,m2に沿って、ワークWの側面W1,W2の縁部をR形状に折り曲げ加工すると共に、図8(c)又は図9(c)に示すように、折曲げ線m3,m4に沿って、ワークWの側面W1,W2の境界部分、及び側面W2,W3の境界部分をそれぞれ折り曲げ加工し(ステップS101)、ワークWを立体的なR形状の角部Kを有する箱状体に組み立てる。
こうして箱状体に組み立てられたワークWは、図10及び図11(a)に示すように、プレスブレーキ1に装着された成形金型の角部成形用ダイD上に載置(セット)される。セットされた状態においては、ワークWは、側面W1,W2が外筒部材20の当接面21aに接し、且つ角部Kがコア部材10のR形状凹面11上に位置すると共に、側面W1,W2の角縁部KEが外筒部材20の押止凹面21に接している。このとき、ワークWの角縁部KE間の隙間KESは、角部Kから側面W1,W2の端部に至るまで、連続して存在している。
そして、図11(a)に示す状態から図中矢印で示すように角部成形用パンチPを下降させていくと、図11(b)に示すように、角部成形用パンチPのR形状凸面31と外筒部材20の当接面21aとで、ワークWの側面W1,W2を挟持した状態となる。このまま、更に角部成形用パンチPを下降させると、図11(c)に示すように、付勢機構Fによる付勢力(コイルばね22の弾性力)を角部成形用パンチPの押圧力が上回るので、ワークWに向けて付勢されていた外筒部材20が、角部成形用パンチPと共に図中矢印で示すように下降しながら押圧する状態となる(一次プレス工程)。外筒部材20が下降するということは、換言すると、コア部材10が、外筒部材20に対して相対的に上昇(前進)変位するということである。
このとき、ワークWは、角部成形用パンチPのR形状凸面31と外筒部材20の押止凹面21とによって、押止凹面21に角縁部KEが押し付けられると共に、角部成形用パンチPのR形状凸面31とコア部材10のR形状凹面11とによって、R形状凹面11に角部Kの頂部領域が当接を開始する。このように、この段階においては、まず、ワークWの角縁部KE間の隙間KESをなくすように、外筒部材20の押止凹面21でワークWを押圧する(ステップS102)。
その後、角部成形用パンチPを更に下降させると、図11(d)、図12及び図13に示すように、角部成形用パンチPのR形状凸面31とコア部材10のR形状凹面11とで、ワークWの角部Kの頂部を含む頂部領域をR形状に押圧した状態となる(二次プレス工程)。この二次プレス工程のとき、ワークWは、外筒部材20の押止凹面21によって、角縁部KEが収容保持されると共に、コア部材10のR形状凹面11に角部Kの頂部領域が所定圧で押圧されている。このように、この段階においては、ワークWの角縁部KE間の隙間KESが再び拡がらないように外筒部材20の押止凹面21で保持すると共に、角部Kの頂部から頂部領域端部までの角縁部KE間の隙間KESをなくすように、コア部材10のR形状凹面11でワークWを押圧する(ステップS103)。
そして、角部成形用パンチPを上昇させて角部成形用ダイDから離間させ、ワークWをプレスブレーキ1から取り出す。上記のような押圧工程を経て取り出されたワークWは、図14に示すように、角部Kを含む頂部領域の角縁部KE間には隙間KESがほぼ生じていない状態となっている。
一方、頂部領域端部から側面W1,W2の端部に至るまでの角縁部KE間には、コア部材10による押圧に伴うスプリングバックにより、隙間KESが生じている。しかし、この隙間KESは、後述する後工程で容易に消失させることができるため、従来の二次加工や追加加工に比べると、角部成形に関しては問題とはならない。
最後に、取り出したワークWに対し、溶接工程や磨き工程等を含む後工程を行って(ステップS104)、箱状体の製品を製造する。このように、本実施形態に係る角部成形方法によれば、一連の押圧動作による角部成形によって、ワークWの角部Kを含む頂部領域に隙間を生じさせずに綺麗に成形加工を行うことができるので、従来問題となっていた頂部領域における隙間を埋めるための二次加工が不要となる。また、二次加工に伴い生じるスプリングバックに起因する隙間も角部Kに生じ得ないので、追加加工も不要となる。従って、ワークWの角部Kを綺麗に成形加工するための作業負担を抑えて、加工コストの上昇を抑えることができる。
以上、本発明の実施形態を説明したが、この実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
例えば、上記の実施形態では、上部テーブル4に取り付けられた角部成形用パンチPが下降することで、角部成形用ダイDとの間で被加工板材を押圧して加工する構成を採用したが、角部成形用パンチPと角部成形用ダイDとを上下反対にして上部テーブル4及び下部テーブル5に装着してもよく、また、下部テーブル5が上昇することで被加工部材が加工される上昇式プレスブレーキに適用するようにしてもよい。角部成形用パンチP及び角部成形用ダイDを有する成形金型は、油圧シリンダ等の駆動機構7を利用する工作機械に広く用いることができる。
1 プレスブレーキ
2 プレスブレーキ本体
3 制御装置
4 上部テーブル
5 下部テーブル
6 支持部
7 駆動機構
10 コア部材
11 R形状凹面
20 外筒部材
21 押止凹面
21a 当接面
22 コイルばね
23 ストッパボルト
P 角部成形用パンチ
D 角部成形用ダイ
F 付勢機構
W ワーク
K 角部
KE 角縁部
KES 隙間
2 プレスブレーキ本体
3 制御装置
4 上部テーブル
5 下部テーブル
6 支持部
7 駆動機構
10 コア部材
11 R形状凹面
20 外筒部材
21 押止凹面
21a 当接面
22 コイルばね
23 ストッパボルト
P 角部成形用パンチ
D 角部成形用ダイ
F 付勢機構
W ワーク
K 角部
KE 角縁部
KES 隙間
Claims (5)
- ワークの角部の頂部を含む頂部領域をR形状に成形するためのコア部材と、
前記コア部材の周囲を取り囲むように配置された外筒部材とを備え、
前記コア部材及び前記外筒部材は、
前記コア部材が前記外筒部材に対して没入した後退位置と、該後退位置から前記コア部材が前記外筒部材に対して前進した前進位置との間で相対移動可能に構成されている
ことを特徴とする角部成形用ダイ。 - 前記コア部材は、前記頂部領域とR面で当接するR形状凹面を有し、
前記外筒部材は、前記頂部領域から直線状に延在する角縁部を収容保持する押止凹面を有し、
前記コア部材及び前記外筒部材は、
前記後退位置において前記R形状凹面及び前記押止凹面が不連続となり、前記前進位置において前記R形状凹面及び前記押止凹面が連続するよう構成されている
ことを特徴とする請求項1に記載の角部成形用ダイ。 - 前記外筒部材を前記ワークに向けて付勢する付勢機構を更に備え、
前記コア部材及び前記外筒部材は、
前記外筒部材に対して外力が加えられていない非押圧状態において前記R形状凹面及び前記押止凹面が不連続となるように、前記付勢機構によって前記外筒部材が前記コア部材よりも前記ワーク側に付勢されており、
前記押止凹面に前記角縁部が押し付けられた押圧状態において前記付勢機構の付勢力に抗して前記外筒部材が前記コア部材側に押し下げられ、前記R形状凹面及び前記押止凹面が連続し前記頂部領域が前記R形状凹面に押圧されるよう構成されている
ことを特徴とする請求項2に記載の角部成形用ダイ。 - 請求項2又は3記載の角部成形用ダイの製造方法であって、
ブロック体の上面に前記R形状凹面と前記押止凹面とを一体形成する凹面形成工程と、
該ブロック体を切断して前記コア部材と前記外筒部材とに分断する別体化工程とを備える
ことを特徴とする角部成形用ダイの製造方法。 - 請求項1~3のいずれか1項記載の角部成形用ダイを用いてワークの角部をR形状に成形する角部成形方法であって、
ワークの前記頂部領域から直線状に延在する角縁部を前記外筒部材に押圧させる一時プレス工程と、
前記外筒部材により前記角縁部を収容保持した状態のまま、前記コア部材及び前記外筒部材の少なくとも一方を相対移動させ、前記コア部材を前記後退位置から前記前進位置に変位させることにより、前記頂部領域を前記コア部材に押圧させる二次プレス工程と
を備えることを特徴とする角部成形方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-099363 | 2018-05-24 | ||
JP2018099363A JP6594483B1 (ja) | 2018-05-24 | 2018-05-24 | 角部成形用ダイ及びその製造方法並びに角部成形方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019225673A1 true WO2019225673A1 (ja) | 2019-11-28 |
Family
ID=68314119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/020367 WO2019225673A1 (ja) | 2018-05-24 | 2019-05-23 | 角部成形用ダイ及びその製造方法並びに角部成形方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6594483B1 (ja) |
WO (1) | WO2019225673A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08155552A (ja) * | 1994-12-01 | 1996-06-18 | Maru Kikai Kogyo Kk | パネル成形用ブランクシート及びパネルの隅部加工方法並びに隅部加工装置 |
JP2002210524A (ja) * | 2001-01-15 | 2002-07-30 | Tokimec Inc | 角部形成方法 |
JP2005052844A (ja) * | 2003-08-05 | 2005-03-03 | Amada Co Ltd | 成形金型及び成形加工方法 |
CN103639257A (zh) * | 2013-12-29 | 2014-03-19 | 哈尔滨工业大学 | 利用电子万能试验机进行双曲率板材弯曲成形的装置 |
JP2015167962A (ja) * | 2014-03-06 | 2015-09-28 | 株式会社アマダホールディングス | 板状ワークの折曲げ加工方法及び金型並びに折曲げ加工品 |
-
2018
- 2018-05-24 JP JP2018099363A patent/JP6594483B1/ja active Active
-
2019
- 2019-05-23 WO PCT/JP2019/020367 patent/WO2019225673A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08155552A (ja) * | 1994-12-01 | 1996-06-18 | Maru Kikai Kogyo Kk | パネル成形用ブランクシート及びパネルの隅部加工方法並びに隅部加工装置 |
JP2002210524A (ja) * | 2001-01-15 | 2002-07-30 | Tokimec Inc | 角部形成方法 |
JP2005052844A (ja) * | 2003-08-05 | 2005-03-03 | Amada Co Ltd | 成形金型及び成形加工方法 |
CN103639257A (zh) * | 2013-12-29 | 2014-03-19 | 哈尔滨工业大学 | 利用电子万能试验机进行双曲率板材弯曲成形的装置 |
JP2015167962A (ja) * | 2014-03-06 | 2015-09-28 | 株式会社アマダホールディングス | 板状ワークの折曲げ加工方法及び金型並びに折曲げ加工品 |
Also Published As
Publication number | Publication date |
---|---|
JP2019202339A (ja) | 2019-11-28 |
JP6594483B1 (ja) | 2019-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5934272B2 (ja) | 熱間プレス深絞り成形方法および装置 | |
JP6211755B2 (ja) | 板材の加工装置、押圧金型および金型設置体 | |
EP1568421B1 (en) | Method of processing of a formed product and metal upper mold used for the method | |
JP5852590B2 (ja) | 金属型押し処理における廃材の低減およびそのためのシステム | |
JP6043230B2 (ja) | ナックルブラケットの製造装置及び製造方法 | |
JP2019141965A (ja) | 切削加工方法、曲げ加工品の製造方法、被加工板材、加工処理用プログラム及び加工処理用プログラムの作成プログラム | |
JP5515279B2 (ja) | プレス成形品、プレス成形品の製造方法および製造装置 | |
JP6594483B1 (ja) | 角部成形用ダイ及びその製造方法並びに角部成形方法 | |
JP2005021945A (ja) | プレス成形用金型、およびそれを用いたパネル製造方法 | |
JP5966849B2 (ja) | 車両用部品の製造方法 | |
JP6868440B2 (ja) | 加工品の切断分離加工方法 | |
JP6159108B2 (ja) | 折り曲げ金型 | |
JP2016132018A (ja) | 曲げ加工方法、バックゲージ装置、及びプレスブレーキ | |
JPH07323400A (ja) | プレス型及びその製造方法 | |
JP2007210029A (ja) | 車両用ボディパネルのサイドベンド加工装置及びその加工方法並びに車両用ボディパネル | |
JP2007118045A (ja) | 薄板金属の絞り及び打ち抜きの同一工程加工方法及びその装置 | |
KR20160145934A (ko) | 차량의 프레임 구성용 체결 하우징의 제조방법 | |
JP5314383B2 (ja) | プレス曲げ機用金型 | |
JP2020044569A (ja) | 箱曲げ用パンチ金型及び箱曲げ用金型セット | |
JP2006247742A (ja) | 軸製造方法と、それにより製造された軸およびガイド軸 | |
JP6481362B2 (ja) | 歯車成型用金型装置 | |
JP7537395B2 (ja) | プレス装置及び差厚金属板の製造方法 | |
JP2002035839A (ja) | インバース曲げプレス型及びインバース曲げ加工方法 | |
JP5933299B2 (ja) | プレス成形装置 | |
JP2006305623A (ja) | 金型および金型のレーザ加工機を用いた製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19806928 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19806928 Country of ref document: EP Kind code of ref document: A1 |