WO2019225497A1 - 路上走行試験システム、路上走行試験システム用プログラム - Google Patents

路上走行試験システム、路上走行試験システム用プログラム Download PDF

Info

Publication number
WO2019225497A1
WO2019225497A1 PCT/JP2019/019668 JP2019019668W WO2019225497A1 WO 2019225497 A1 WO2019225497 A1 WO 2019225497A1 JP 2019019668 W JP2019019668 W JP 2019019668W WO 2019225497 A1 WO2019225497 A1 WO 2019225497A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle speed
predicted
vehicle
speed distribution
travel route
Prior art date
Application number
PCT/JP2019/019668
Other languages
English (en)
French (fr)
Inventor
信隆 木原
裕之 北村
俊行 道北
紗矢香 吉村
Original Assignee
株式会社堀場製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社堀場製作所 filed Critical 株式会社堀場製作所
Priority to JP2020521204A priority Critical patent/JP7308822B2/ja
Priority to EP19807997.2A priority patent/EP3798602A4/en
Priority to US17/057,477 priority patent/US20210199538A1/en
Publication of WO2019225497A1 publication Critical patent/WO2019225497A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M17/00Testing of vehicles
    • G01M17/007Wheeled or endless-tracked vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3407Route searching; Route guidance specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • G01C21/3469Fuel consumption; Energy use; Emission aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/3453Special cost functions, i.e. other than distance or default speed limit of road segments
    • G01C21/3492Special cost functions, i.e. other than distance or default speed limit of road segments employing speed data or traffic data, e.g. real-time or historical
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • G01C21/3667Display of a road map
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/10Testing internal-combustion engines by monitoring exhaust gases or combustion flame
    • G01M15/102Testing internal-combustion engines by monitoring exhaust gases or combustion flame by monitoring exhaust gases
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0129Traffic data processing for creating historical data or processing based on historical data
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/0969Systems involving transmission of navigation instructions to the vehicle having a display in the form of a map

Definitions

  • the present invention relates to a road running test system for analyzing exhaust gas discharged from a vehicle during road running, fuel consumption of the vehicle, and the like.
  • the chassis dynamo when conducting a vehicle test on exhaust gas emitted from a vehicle, the chassis dynamo travels in a driving mode corresponding to, for example, WLTP (Worldwide harmonized Light vehicles Test Procedure), and various component concentrations of exhaust gas emitted at that time are measured. Measuring.
  • WLTP Worldwide harmonized Light vehicles Test Procedure
  • test conditions include test conditions such as travel time and trip composition (travel distance ratio of Urban, rural, and Motorway), MAW (Moving / Averaging Window) method and Power Binning method (SPF (Standardized Power) Frequency Distribution method)). If these test conditions cannot be satisfied, it is determined that the test is invalid, and it is necessary to restart the road running test from the beginning.
  • travel time and trip composition travel distance ratio of Urban, rural, and Motorway
  • MAW Moving / Averaging Window
  • SPF Standardized Power Frequency Distribution method
  • the measurement result may not sufficiently reflect the actual vehicle performance.
  • the result of the running test and the performance of the vehicle actually experienced by the user may be different, and the purpose of introducing the road running test may not be achieved.
  • the present invention has been made in view of the above-described problems, and a road running test system capable of setting a running route in which a result of a road running test is effective and a measurement result that accurately reflects the performance of the vehicle can be obtained.
  • the purpose is to provide.
  • the road running test system is actually measured by a judgment condition storage unit that stores a judgment condition including at least a vehicle speed distribution condition that determines whether or not the road running test is valid, and one or a plurality of vehicles.
  • a vehicle speed storage unit that stores an estimated vehicle speed based on actual vehicle speed or traffic information, and a prediction that calculates a predicted vehicle speed distribution when the vehicle travels on a set travel route based on the actual vehicle speed or the estimated vehicle speed
  • a vehicle speed distribution calculation unit and a determination unit that determines whether or not the predicted vehicle speed distribution satisfies the vehicle speed distribution condition are provided.
  • the road running test method according to the present invention is based on an actual vehicle speed actually measured by one or a plurality of vehicles or an estimated vehicle speed based on an estimated vehicle speed based on traffic information.
  • a predicted vehicle speed distribution calculating step for calculating a distribution, and a determining step for determining whether or not the predicted vehicle speed distribution satisfies a vehicle speed distribution condition for determining whether or not the road running test is valid. is there.
  • the vehicle speed distribution can be obtained as the predicted vehicle speed distribution when the vehicle travels on the travel route set as the determination result of the determination unit, and the vehicle speed distribution condition is satisfied. It is possible to cause the determination unit to determine whether or not it can be performed before the road running test or during the road running test.
  • the road test can be validated by automatically setting a new route when the road test that has been set does not meet the criteria and is likely to be invalid.
  • the travel route creation unit creates a new travel route so as to satisfy the vehicle speed distribution condition based on the actual vehicle speed.
  • the vehicle speed distribution conditions should be set to allow vehicle speed distribution for each Urban, rural, and Motorway. That's fine.
  • the conditions that must be satisfied in the road running test are not only the vehicle speed distribution but also other conditions such as temperature, hardness, pressure, etc., but it is necessary in advance to check whether these various conditions can be satisfied by the set driving route.
  • the determination condition further includes at least one of an air temperature condition, an altitude condition, or an atmospheric pressure condition, so that the probability that the road running test is effective can be increased.
  • a prediction environment parameter calculation unit that calculates a prediction environment parameter including at least one of a predicted temperature, a predicted altitude, or a predicted atmospheric pressure when the vehicle travels on a set travel route, and the determination unit includes The prediction environment parameter may be configured to determine whether or not the determination condition is satisfied.
  • the exhaust gas specified by law An exhaust gas standard storage unit that stores an exhaust gas standard that is a standard to be satisfied, a predicted exhaust gas data calculation unit that calculates predicted exhaust gas data when the vehicle travels on a set travel route based on the predicted vehicle speed distribution, and , And the determination unit may be configured to determine whether the predicted exhaust gas data satisfies the exhaust gas standard.
  • the actual exhaust gas actually measured by one or more vehicles The actual exhaust gas data storage part which memorize
  • the road congestion situation changes due to seasonal factors and the time of commuting and returning home, but taking into account such a congestion situation, a road route on which road driving tests are likely to be effective is set.
  • the vehicle speed storage unit stores information related to the date and time when the actually measured speed is actually measured, and the predicted vehicle speed distribution calculating unit and the set travel route among the actually measured speeds are stored. What is necessary is just to calculate the predicted vehicle speed distribution based on the date corresponding to the date and time when the vehicle travels.
  • the determination unit is configured to determine whether the predicted vehicle speed distribution is during the road driving test. What is necessary is just to determine sequentially whether the said vehicle speed distribution conditions are satisfy
  • the travel route creation unit is Any new route can be used.
  • a vehicle-side device mounted on each of a plurality of vehicles, the determination condition storage unit, the vehicle speed storage unit, and the predicted vehicle speed distribution calculation unit
  • a server including the determination unit and the travel route creation unit, wherein the exhaust gas analyzer transmits travel data including at least vehicle position data and vehicle speed during a road travel test to the server.
  • a travel data transmission unit that acquires the travel route newly set from the travel route creation unit, and displays the travel route on a display provided on the vehicle.
  • a travel route display unit to be displayed, and the server receives travel data transmitted from the exhaust gas analyzer, and a data update unit that updates the actual vehicle speed stored in the vehicle speed storage unit. I just need it.
  • determination conditions include those set based on MAW (Moving Average Window) or SPF (Standardized Power Frequency Frequency).
  • a determination condition storage unit that stores a determination condition including at least a vehicle speed distribution condition, a vehicle speed storage unit that stores an actual vehicle speed measured by one or more vehicles or an estimated vehicle speed based on traffic information, and the actual vehicle speed or the estimation Based on the vehicle speed, a predicted vehicle speed distribution calculation unit that calculates a predicted vehicle speed distribution when the vehicle travels on the set travel route, and a determination unit that determines whether or not the predicted vehicle speed distribution satisfies the vehicle speed distribution condition
  • a road driving test system program for causing a computer to perform the functions described above.
  • the road running test system program may be distributed electronically or may be recorded on a program recording medium such as a CD, DVD, HDD, or flash memory.
  • a determination condition storage unit for transmitting and receiving data and constituting a road running test system, wherein the server stores a determination condition including at least a vehicle speed distribution condition for determining whether or not the road running test is valid
  • a vehicle speed storage unit that stores actual vehicle speeds actually measured by one or more vehicles, and a predicted vehicle speed distribution that calculates a predicted vehicle speed distribution when the vehicle travels on a set travel route based on the actual vehicle speeds
  • a server including a calculation unit and a determination unit that determines whether or not the predicted vehicle speed distribution satisfies the vehicle speed distribution condition may be used.
  • Vehicle equipment suitable for configuring the road running test system is a vehicle-side device that is mounted on a vehicle, transmits and receives data with a server, and constitutes a road running test system
  • the server stores a determination condition storage unit that stores a determination condition including at least a vehicle speed distribution condition that determines whether or not the road driving test is valid, and a vehicle speed storage that stores an actual vehicle speed measured by one or more vehicles.
  • a predicted vehicle speed distribution calculating unit that calculates a predicted vehicle speed distribution when the vehicle travels on a set travel route based on the actual vehicle speed, and whether or not the predicted vehicle speed distribution satisfies the vehicle speed distribution condition
  • the vehicle side device transmits to the server travel data including at least vehicle position data and vehicle speed during a road travel test. It includes exhaust gas analyzing apparatus having a signal portion.
  • the road running test is performed by satisfying the vehicle speed condition by the set running route. It can be determined in advance whether or not it becomes effective. Therefore, it is possible to prevent the use of a travel route that is unlikely to be effective at all on the road test, and it is possible to prevent the exhaust gas data and the like from being wasted due to re-execution of the road test. .
  • the schematic diagram shown about the road running test system which concerns on 1st Embodiment of this invention The schematic diagram which shows the vehicle-mounted type
  • the functional block diagram which shows the function of the exhaust gas analyzer of 1st Embodiment.
  • the functional block diagram which shows the function of the server of 1st Embodiment.
  • the flowchart which shows the operation
  • the flowchart which shows the operation
  • the schematic diagram which shows the outline
  • the road running test system 200 according to the first embodiment of the present invention will be described with reference to the drawings.
  • the road running test system 200 according to the first embodiment is used by a driver who is a tester to measure exhaust gas components, fuel consumption, and the like discharged from the vehicle V while driving the vehicle V on a public road. is there.
  • the road running test system 200 includes a server 101 configured to be able to exchange data via the network X as shown in FIG. 1, and a plurality of vehicles connected to the server 101 via a wireless network. V.
  • the vehicle V is configured to be able to transmit to the server 101 at least the vehicle speed achieved at each point in association with the position information.
  • the plurality of vehicles V include, for example, a connected car, a vehicle V equipped with a communicable drive recorder, and a vehicle V equipped with an in-vehicle exhaust gas analyzer 100.
  • the vehicle-mounted exhaust gas analyzer 100 includes a hose 12 that takes in a part of the exhaust gas from the tail pipe 11 of the vehicle V, an analyzer main body 13 that analyzes the exhaust gas taken in via the hose 12, Acquired by the camera 14 that captures the situation in front of the vehicle V and generates image data, the acceleration sensor 15 that detects the acceleration of the vehicle V, the GPS 16 that detects the position of the vehicle, the analyzer main body 13 and each sensor.
  • An information processing device 18 for displaying data on a display 17 and a route for a road driving test.
  • the analyzer main body 13 measures the exhaust gas flow rate, the amount (or concentration) of CO, CO 2 , H 2 O, NO X , THC, CH 4 , PN, PM, etc. contained in the exhaust gas, and further from this, the fuel consumption, etc. Is calculated.
  • the information processing apparatus 18 is a general-purpose computer that includes an apparatus main body incorporating a CPU, a memory, a communication port, and the like, an input means (not shown) such as a keyboard, and a display 17.
  • the information processing device 18 operates in accordance with the exhaust gas analyzer program stored in the memory, so that at least the travel data acquisition unit 31, the travel data transmission unit 32, the travel route storage unit 33, as shown in FIG. It functions as the travel route receiving unit 34 and the travel route display unit 35.
  • the travel data acquisition unit 31 acquires exhaust gas flow rate, exhaust gas component, fuel consumption, and the like as travel data via a communication port connected to the analyzer main body 13 and a communication port connected to a communication line such as the ECU 21 of the vehicle V.
  • the engine speed, vehicle speed, acceleration, throttle opening, brake ON / OFF, intake / exhaust temperature, cooling water temperature, engine torque, and the like obtained from sensors and the like provided in each part of the vehicle V are acquired via the control.
  • the travel data acquisition unit 31 acquires image data indicating a situation during travel from the camera 14 provided in the vehicle V.
  • the travel data acquisition unit 31 may calculate travel data that cannot be obtained directly from the values of other travel data. For example, when the engine torque cannot be obtained, the engine torque may be calculated from the engine speed and the throttle opening with reference to the torque-speed map stored in the memory. Further, a separate sensor may be provided to acquire other various traveling data.
  • the traveling data transmission unit 32 transmits the traveling data acquired by the traveling data acquisition unit 31 to the server 101 described above via the wireless network X, for example.
  • the travel data only needs to include at least the position data of the vehicle V and the vehicle speed, and it is not necessary to transmit all the data acquired by the travel data acquisition unit 31.
  • data that has a small data capacity or that needs to be constantly updated to new data in the server 101 is transmitted sequentially, and an accident or the like occurs for data that has a large capacity, such as image data captured by the camera 14. It may be transmitted only when a predetermined trigger condition occurs, such as when an abnormality in acceleration that is considered to have occurred or when there is a request from the server 101 side.
  • the traveling route storage unit 33 stores, for example, a traveling route for a road traveling test that is input by the tester using the input / output device of the information processing apparatus 18. As will be described later, when another travel route is created in the server 101 and received by the travel route receiving unit 34, the travel route is also stored in the travel route storage unit 33.
  • the traveling route display unit 35 displays the traveling route stored in the traveling route storage unit 33 on the display 17 so as to overlap the map. At this time, based on the position information of the vehicle V, it sequentially receives surrounding map data and road congestion data, etc., creates a map based on the data, and displays a travel route on the map To do.
  • the vehicle V in which the exhaust gas analyzer 100 is not provided includes a vehicle side device having a corresponding configuration other than the analyzer main body 13 and the like, and the travel data obtained by each vehicle V is the travel data transmission unit 32.
  • the server 101 is configured to acquire travel data of each vehicle V from the plurality of vehicles V via the network X. Data obtained from a plurality of vehicles V is accumulated on the server 101 and accumulated as big data.
  • the server 101 verifies whether the travel route is suitable for performing a road travel test based on the function of collecting and storing travel data acquired by each vehicle V and the accumulated travel data. The function of providing a traveling route for which the road traveling test is effective to each vehicle V is exhibited.
  • the server 101 executes a server program stored in a memory and cooperates with various devices, so that at least a vehicle speed storage unit 41, an actual exhaust gas data storage unit 42, as shown in FIG.
  • the route creation unit 54 is configured to exhibit its function.
  • the vehicle speed storage unit 41 stores the actual vehicle speed actually measured by the vehicle V at each point and transmitted to the server 101.
  • the actual vehicle speed may be limited only to a value actually measured during the road running test, or may be a value actually measured in the vehicle V that has not performed the road running test.
  • the actual vehicle speed is data in which position information such as longitude, latitude, and geoid measured by the GPS 16 provided in the vehicle V, the vehicle speed achieved at the point indicated by each position information, and the date and time at that time are linked. is there.
  • the vehicle speed storage unit 41 may store not only a value actually measured in the vehicle V but also an estimated vehicle speed that is achieved at each point estimated from the traffic information.
  • the actual exhaust gas data storage unit 42 stores actual exhaust gas data such as concentrations of various components of exhaust gas transmitted to the server 101 from the vehicle V provided with the exhaust gas analyzer 100.
  • the actual exhaust gas data includes position information such as longitude, latitude, and geoid measured by the GPS 16, concentration of various components actually measured at the point indicated by each position information, vehicle type of the vehicle V, and date and time at that time. It is linked data.
  • Actual vehicle speed and actual exhaust gas data such as these are accumulated in the server 101 in the data format shown in Table 1, for example, based on the data obtained from each vehicle V equipped with the exhaust gas analyzer 100.
  • the exhaust gas measurement value is not stored.
  • the estimated exhaust gas value may be calculated and stored instead of the exhaust gas measurement value based on the obtained vehicle specifications and the vehicle speed at each point.
  • the environmental information storage unit 43 acquires and stores environmental data such as atmospheric pressure, weather, temperature, and the like at each point from, for example, a weather information database provided by a public institution or the like.
  • the environmental data is also data in which position information including the altitude of each point is associated with information such as atmospheric pressure, weather, temperature, date and time.
  • environmental data for example, data obtained from a vehicle V running in an area where a road running test is performed may be accumulated, or data obtained from various sensors provided in other areas may be accumulated. Also good.
  • the traveling route receiving unit 44 receives data relating to an initial traveling route set in the vehicle V for a vehicle traveling test by a tester, for example.
  • a predicted vehicle speed distribution calculating unit 45 a predicted exhaust gas data calculating unit 46, and a predicted environment parameter calculating unit 47, which will be described later, corresponding data is stored in each storage unit 41, 42 based on positional information of each point passing on the accepted travel route. , 43, and a predicted value is calculated.
  • the predicted vehicle speed distribution calculation unit 45 calculates a predicted vehicle speed distribution when the vehicle V travels on a travel route set based on the actual vehicle speed or the estimated vehicle speed stored in the server 101. For example, the average value of the values stored as the actual vehicle speed at each point on the travel route is calculated as the predicted vehicle speed at each point.
  • the travel distance based on the predicted vehicle speed is calculated for each of Urban, rural, and Motorway, which are vehicle speed categories of road travel tests described later, in the set travel route. That is, for each portion set in each vehicle speed category in the travel route, the predicted travel distance is calculated by multiplying the predicted vehicle speed at each position and the predicted duration. Then, the predicted vehicle speed distribution calculation unit 45 calculates the ratio of the predicted travel distance for each of Urban, rural, and Motorway.
  • the predicted exhaust gas data calculation unit 46 is predicted to be discharged at each position when the vehicle V travels on a travel route set based on the predicted vehicle speed distribution calculated by the predicted vehicle speed distribution calculation unit 45, for example.
  • the concentration of various components of exhaust gas is calculated as predicted exhaust gas data. Specifically, the concentration value of CO 2 or the like discharged at each point on the travel route is estimated as predicted exhaust gas data from the performance specifications of the vehicle V and the predicted vehicle speed. Further, when actual exhaust gas data is stored in the server 101 for a certain point on the travel route, predicted exhaust gas data may be calculated based on the actual exhaust gas data.
  • a predicted average value of CO 2 concentration for each window is calculated according to the same calculation standard as MAW described later, and calculated as predicted window data.
  • the predicted exhaust gas data may be calculated using an estimated value calculated based on the vehicle specifications and the vehicle speed stored in the server 101.
  • the calculation method of the predicted vehicle speed and the predicted exhaust gas data for example, only data actually measured in the same vehicle type as the vehicle on which the road running test is performed may be used, or measured in the time zone in which the road running test is performed. You may make it use only the data. Further, it may be a predicted vehicle speed obtained by acquiring congestion information on roads from an external database or the like and taking into account the influence of traffic jams.
  • the predicted environment parameter calculation unit 47 calculates the altitude, predicted temperature, predicted altitude, and predicted atmospheric pressure at each point when the vehicle V travels on the set travel route based on the environmental data stored in the server 101. Calculate the predicted environmental parameters.
  • the predicted environment parameter calculation unit 47 includes the predicted temperature range in the travel route, the maximum altitude difference in the entire trip of the travel route, and the altitude difference between the start point and the goal point of the travel route. Predicted altitude difference and predicted cumulative climbing altitude are calculated.
  • the determination condition storage unit 51 is a vehicle speed distribution condition related to Trip Composition ⁇ that determines whether or not the road running test is valid and a test condition related to emissions, and is defined by RDE and a specific evaluation value conversion calculation method. Judgment conditions including criteria to be satisfied in a certain MAW (Moving Average Window) are stored. As will be described in detail below, the road test needs to satisfy a plurality of condition parameters at the same time, and the condition parameters may be affected by road congestion and various factors.
  • MAW Moving Average Window
  • Each mileage is required to be at least 16km in the vehicle speed category, and the mileage ratio for Urban, rural, and Motorway must be in the range of 29-44%: 33 ⁇ 10%: 33 ⁇ 10%. It is done.
  • the determination condition storage unit 51 of the first embodiment corresponds to a range in which the travel distance ratio is 29 to 44%: 33 ⁇ 10%: 33 ⁇ 10% for each of Urban, rural, and Motorway as vehicle speed conditions.
  • the vehicle speed distribution condition is stored.
  • the determination condition storage unit 51 further stores a vehicle speed limit value and a necessary duration as a determination condition regarding the vehicle speed for the Urban and Motorway vehicle speed classifications.
  • the travel time of the entire trip of the vehicle V travel test needs to be 90 to 120 minutes. For this reason, the determination condition storage unit 51 stores the above-mentioned limited itinerary time for the entire trip.
  • RDE requires that the altitude difference for the travel route is 700 m or less for the entire trip, and that the altitude difference between the starting point and the goal point is within 100 m. Furthermore, it is also required that the cumulative climbing altitude is 1200 m or less per 100 km travel distance. For this reason, the determination condition storage unit 51 stores these values as altitude limit values.
  • the determination condition storage unit 51 stores the temperature change allowable range of the outside air temperature in the set travel route as the outside air temperature condition.
  • Each of the determination criteria described above is an example, and is a value that can be changed according to changes in laws and regulations, internal regulations of each company, or the like. Further, the value of the judgment condition can be changed according to the law revision or the standard set for each country.
  • FIG. 6 shows a plot of window data consisting of a pair of the average value of CO 2 and the average vehicle speed calculated in each window thus obtained.
  • Tolerance 1 indicating the upper and lower 25% of the CO 2 characteristic curve calculated from the WLTC data (shown by the bold line at the center).
  • the exhaust gas standard storage unit 52 stores the exhaust gas standard as the exhaust gas standard.
  • the exhaust gas standard is not limited to the conditions for determining whether MAW is effective, and may be an emission standard value separately determined by laws and regulations as an environmental standard, for example.
  • the determination unit 53 determines various predicted values calculated by the predicted vehicle speed distribution calculation unit 45, the predicted environment parameter calculation unit 47, and the predicted exhaust gas data calculation unit 46.
  • the determination condition storage unit 51 and the determination condition stored in the exhaust gas reference storage unit 52 and the exhaust gas standard are satisfied, and it is determined whether the road running test can be effective.
  • the determination regarding the effectiveness of the road running test by the determination unit 53 is performed before the road running test by the vehicle V is performed.
  • the effectiveness determination is sequentially repeated during the road running test so that the influence of the state change such as traffic congestion can be taken into account in the road running test ground.
  • the travel route creation unit 54 determines that the road travel test is not valid for the travel route set in the determination unit 53, the road travel test is valid based on the actual values stored in the server 101. A new travel route is created so that
  • the travel route creation unit 54 outputs various travel information stored in the server 101 as input data and constraint conditions, and a new travel route as shown in FIG. 7 as output data.
  • each actual value stored in the vehicle speed storage unit 41, the environment information storage unit 43, the actual exhaust gas data storage unit 42, the position information of the start point and the goal point in the set travel route, the road travel A plurality of information such as the date and time when the test is scheduled to be performed is used as input data.
  • a plurality of determination conditions stored in the determination condition storage unit 51 and the exhaust gas reference storage unit 52 and the exhaust gas reference are used as constraint conditions.
  • the constraint condition may be set such that the larger the overlapping part with the currently set travel route, the better.
  • the travel route creation unit 54 may be configured as an AI that creates a new travel route so as to satisfy a plurality of constraint conditions based on input data accumulated as big data.
  • the travel route creation unit 54 may propose a plurality of travel routes and improve the creation accuracy by increasing the evaluation value of the travel route selected by the tester.
  • the new travel route created by the travel route creation unit 54 in this way is transmitted to the in-vehicle exhaust gas analyzer 100 mounted on the vehicle V, and displayed on the map by the display 17 for example.
  • the travel route is not only displayed on the display 17 but may be notified to the tester by, for example, symbols such as voice guidance and arrows. Further, information related to a road running test such as a vehicle speed to be achieved at a travel route or travel point may be displayed on the windshield of the vehicle V or the like.
  • Position information of the position where the vehicle V is traveling on each of the plurality of vehicles V, the vehicle speed at that time, and travel data including these are transmitted from the vehicle side device to the server 101 (step S1). .
  • the exhaust gas data that is further measured is sequentially measured, and such data is also transmitted to the server 101.
  • Time data such as position information measured at a plurality of vehicles V, vehicle speed at that time, and date / time are accumulated in the vehicle speed storage unit 41 in a state of being associated with each other (step S2).
  • the exhaust gas data measured by the vehicle V equipped with the exhaust gas analyzer 100 is accumulated in the actual exhaust gas data storage unit 42 in a state where each value is associated with the position information of the measured position (step S3). .
  • step S4 environmental data such as weather that cannot be obtained from each vehicle V is accumulated in the environmental information storage unit 43 in a form associated with position information from other public databases via the network X (step S4).
  • steps S2 to S4 the update and accumulation of data are sequentially repeated to form big data.
  • step ST1 When the travel route reception unit 44 of the server 101 receives a travel route scheduled via the exhaust gas analyzer 100 of the vehicle V performing the road test, determination of the validity of the travel route is started (step ST1). .
  • the predicted vehicle speed distribution calculation unit 45 of the server 101 calculates the predicted vehicle speed at each point on the accepted travel route based on the actual vehicle speed or the estimated vehicle speed. As a result, a predicted vehicle speed distribution indicating the predicted vehicle speed at each point on the travel route is obtained (step ST2).
  • the predicted exhaust gas data calculation unit 46 calculates predicted exhaust gas data at each point on the accepted travel route based on the predicted vehicle speed at each point calculated by the predicted vehicle speed distribution calculation unit 45 (step ST3).
  • the predicted environment parameter calculation unit 47 calculates a predicted temperature range, a predicted altitude difference, and a predicted cumulative uphill altitude on the accepted travel route (step ST4).
  • the predicted exhaust gas data is processed as Window ⁇ data in MAW.
  • the determination unit 53 determines that the predicted vehicle speed distribution, predicted temperature range, predicted altitude difference, and predicted cumulative uphill altitude are valid in RDE. It is determined whether or not Trip composition and other various conditions necessary for processing are satisfied (step ST5). Further, the determination unit 53 determines whether or not the test condition relating to emission can be satisfied by the set travel route. That is, the determination unit 53 determines whether or not a plurality of predicted Window data has a required number of data points within a predetermined data range, and determines whether the MAW can be effective. (Step ST6).
  • the travel route creation unit 54 determines whether the travel route creation unit 54 is based on the set travel route or the actual value accumulated in the server 101. A new travel route is created so as to satisfy each determination criterion such as composition, test conditions related to emissions, and exhaust gas standards (step ST7).
  • the created new travel route is transmitted from the server 101 to the target vehicle V, and the tester performs a road test on the new travel route (step ST8).
  • steps ST1 to ST8 may be sequentially repeated even during the road running test, and the travel route used in the vehicle V may be updated during the road running test.
  • the set travel route is determined according to the determination conditions such as the vehicle speed distribution condition, the vehicle speed limit value, the required duration, the limit journey time, the altitude limit value, and the temperature change allowable range. Whether or not the exhaust gas standard is satisfied and the road driving test is effective can be determined in advance before the road driving test is completed.
  • the determination unit 53 determines that the road travel test is not valid, the test created by the travel route creation unit 54 is performed. It is possible to change to a new travel route that is likely to be effective.
  • the prediction accuracy of each predicted value and the road by the determination unit 53 are collected.
  • the determination accuracy regarding the effectiveness of the running test can be increased.
  • the running route sequentially set in the server 101 is determined for effectiveness, and the set running route is used. It is determined whether there is no problem even if the road running test is continued as it is. For this reason, even if the traffic situation or the like changes due to, for example, a sudden accident during the road running test, it is possible to change the traveling route halfway and increase the possibility of becoming effective.
  • each component is substantially the same as that of the road running test system 200 of the first embodiment, but the exhaust gas is not generated by the MAF, but by SPF (also called Power Binning).
  • SPF also called Power Binning
  • the determination criteria used in the determination unit 53 are different so that the evaluation can be performed.
  • SPF the average of exhaust gas, tire driving force, and vehicle speed is calculated by moving average every 3 seconds for the test data when driving on the road.
  • Each moving average data is classified into nine power classes set from vehicle specifications as shown in FIG.
  • As a condition for the calculation result by SPF to be valid for example, the number of data points of a specific power class in the vehicle speed classification of Urban, rural, Motorway, for example, that at least five data points are obtained.
  • the predicted vehicle speed distribution calculation unit 45 of the second embodiment calculates the predicted vehicle speed of each position on the travel route based on the measured vehicle speed accumulated in the server 101, and then each of Urban, rural, and Motorway
  • the vehicle speed classification is configured to calculate predicted vehicle speed distributions classified into nine power classes.
  • the determination condition storage unit 51 of the second embodiment stores that the number of data points of nine power classes is five or more for each vehicle speed classification of Urban, rural, and Motorway as vehicle speed distribution conditions.
  • the determination unit 53 of the second embodiment not only the conditions regarding the vehicle speed to be satisfied as the RDE as described in the first embodiment, but also five or more predicted vehicle speed distributions calculated for SPF as described above are provided for each power class. It is determined whether or not the vehicle speed distribution condition of whether there are any data points is satisfied.
  • the road running test system is realized by a combination of an exhaust gas analyzer provided in each vehicle and a server. For example, when determining only whether RDE is effective on a predetermined running route
  • the road running test system may be configured only by a server or a single computer.
  • the function of prior determination of the validity of the travel route and the resetting of the travel route when there is no possibility that the on-road travel test is effective has been realized by the server.
  • the function may be realized by the computing ability of a computer constituting the exhaust gas analyzer or the like.
  • the place where each component is physically present is not limited to the place shown in each embodiment.
  • the travel route created by the travel route creation unit is created so as to satisfy each determination condition for determining whether or not the test specified in the test rules is valid, but other conditions may be increased. .
  • the travel route creation unit may be configured to create a travel route so that the vehicle is most loaded, while satisfying the determination condition for determining the effectiveness of the test in the road traveling test. . That is, even if it is an effective class as a road running test, the load on the vehicle is small, each exhaust gas component discharged is very small, and champion data may be obtained. Even if such data is obtained as a result, there is a possibility that the problem that the difference between the test result and the fuel consumption, environmental performance, and the like at the time of actual use that led to the introduction of the road running test cannot be overcome. For this reason, learning control by AI is performed so that a predicted cumulative climbing altitude is maximized as a condition for creating a travel route, and a travel route that is expected to have the largest exhaust gas emission amount is output based on actual exhaust gas data. May be performed.
  • the function of the determination unit for determining the effectiveness of the road driving test on the set driving route and the function of the driving route generating unit for generating the driving route that satisfies each determination condition is omitted, and the predicted exhaust gas data calculating unit is omitted.
  • You may comprise as a system which has only the function as. In this case, a computer simulation can be performed in advance without actually measuring the amount of exhaust gas discharged in the set travel route. For example, based on such simulations, it is conceivable to create basic data for environmental measures or to use it as an index when designing a new vehicle.
  • the determination unit determines whether or not all determination conditions are satisfied according to the set travel route, but is configured to determine whether or not at least the predicted vehicle speed distribution satisfies the vehicle speed distribution condition. May be. That is, the calculation load may be reduced so that the validity of the travel route can be determined using only a simple index, and the travel route can be easily updated in real time. In addition, by appropriately limiting the parameters of the determination conditions in this way, it is possible to prevent the occurrence of adverse effects such as over-learning in AI and to obtain a more appropriate travel route.
  • the present invention is not limited to determining in real time the effectiveness of a vehicle running test in real time, and can be used for setting a route on a desk.
  • the present invention based on the actual vehicle speed obtained from a plurality of vehicles or the vehicle speed based on traffic information, whether or not the road traveling test is valid by satisfying the vehicle speed condition by the set traveling route is determined.
  • a road running test system that can be determined in advance can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Testing Of Engines (AREA)

Abstract

路上走行試験の結果が有効なものとなり、車両の性能を正確に反映した測定結果が得られる走行ルートを設定できる路上走行試験システムを提供するために、路上走行試験が有効であるか否かを決定する車速分布条件を少なくとも含む判定条件を記憶する判定条件記憶部と、各地点において1又は複数の車両によって実測された実績車速を記憶する車速記憶部と、前記実績車速に基づいて、設定されている走行ルートを車両が走行した場合の予測車速分布を算出する予測車速分布算出部と、前記予測車速分布が前記車速分布条件を満たすか否かを判定する判定部と、を備えた。

Description

路上走行試験システム、路上走行試験システム用プログラム
 本発明は、路上走行中に車両から排出される排ガスや車両の燃費等について分析する路上走行試験システムに関するものである。
 従来、車両から排出される排ガスに関する車両試験を行う場合、シャーシダイナモ上で例えばWLTP(Worldwide harmonized Light vehicles Test Procedure)に対応した走行モードで走行し、その時に排出される排ガスの各種成分濃度等を測定している。
 ところで、シャーシダイナモ上で測定された車両の性能と、実際に路上走行しているときに実現されている車両の性能の違いがある場合がある。このような問題を解決するためにRDE(Real Driving Emissions)とよばれる路上走行試験方法によって試験が行われる(特許文献1参照)。
 RDEでは、路上において所定の試験条件に沿った走行態様で運転しなくてはならない。試験条件には、走行時間やTrip Composition(Urban・Rural・Motorwayの走行距離割合)といった試験条件や、エミッションに係る試験条件であるMAW(Moving/ Averaging Window)法やPower Binning法(SPF(Standardized Power Frequency Distribution法))等がある。これらの試験条件を満たせない場合にはその試験は無効であると判定され、路上走行試験を最初からやり直す必要がある。
 このため、上述したような試験条件をそれぞれ満たせるように試験実施者は走行ルートを予め設定しようと試みるものの、試験実施時における道路状況や混雑状況等は一定ではなく、実際には適切な走行ルートを設定することは難しい。
 また、適切な走行ルートが設定できたとしても、実際の車両の性能を十分に反映した測定結果になっていないこともあり得る。このような場合には、走行試験結果と実際にユーザが体感する車両の性能とが乖離しかねず、路上走行試験を導入した目的を達成できない恐れがある。
特開2016-1171号公報
 本発明は上述したような問題に鑑みてなされたものであり、路上走行試験の結果が有効なものとなり、車両の性能を正確に反映した測定結果が得られる走行ルートを設定できる路上走行試験システムを提供することを目的とする。
 すなわち、本発明に係る路上走行試験システムは、路上走行試験が有効であるか否かを決定する車速分布条件を少なくとも含む判定条件を記憶する判定条件記憶部と、1又は複数の車両によって実測された実績車速又は交通情報に基づいた推定車速を記憶する車速記憶部と、前記実績車速又は前記推定車速に基づいて、設定されている走行ルートを車両が走行した場合の予測車速分布を算出する予測車速分布算出部と、前記予測車速分布が前記車速分布条件を満たすか否かを判定する判定部と、を備えたことを特徴とする。
 また、本発明に係る路上走行試験方法は、1又は複数の車両によって実測された実績車速又は交通情報に基づいた推定車速に基づいて、設定されている走行ルートを車両が走行した場合の予測車速分布を算出する予測車速分布算出ステップと、前記予測車速分布が、路上走行試験が有効であるか否かを決定する車速分布条件を満たすか否かを判定する判定ステップと、を備えたものである。
 このようなものであれば、前記判定部の判定結果設定されている走行ルートを車両が走行した場合にどのような車速分布が得られるかを前記予測車速分布として得て、車速分布条件を満たす事ができるかどうかを前記判定部に路上走行試験前や路上走行試験中に判断させることが可能となる。
 したがって、設定されている走行ルートで路上走行試験を行っても試験が無効になる可能性があるという情報を得て、事前に別の走行ルートを設定することができる。このため、従来のように路上走行試験を終えてから速度分布条件を満たしていなかったことがわかり、路上走行試験をやり直さなくてはならない事態が発生するのを防ぐことができる。
 設定されている走行ルートでは路上走行試験が判定条件を満たせず、無効になる可能性が高い場合には自動的に新たな走行ルートが設定されるようにして、路上走行試験が有効となる可能性を高められるようにするには、前記予測車速分布が前記車速分布条件を満たさないと判定された場合に、新たな走行ルートを作成する走行ルート作成部をさらに備えたものであればよい。
 前記走行ルート作成部のより好ましい態様としては、前記走行ルート作成部が、前記実績車速に基づいて前記車速分布条件を満たすように新たな走行ルートを作成するものが挙げられる。
 少なくともTrip composition に関する試験条件を走行ルートが満たしているかについて精度よく判定できるようにするには、前記車速分布条件は、Urban、Rural、Motorway毎に許容される車速分布が設定されているものであればよい。
 路上走行試験において満たすべき条件は車速分布だけではなく、その他の気温、硬度、気圧等といった条件を満たす必要があるが、設定されている走行ルートでこれらのような各種条件を満たせるかどうかを事前に判定できるようにして、さらに路上走行試験が有効なものとなる確率を高められるようにするには、前記判定条件が、気温条件、高度条件、又は、気圧条件の少なくとも1つをさらに含み、設定されている走行ルートを車両が走行した場合の予測気温、予測高度、又は、予測気圧の少なくとも1つを含む予測環境パラメータを算出する予測環境パラメータ算出部と、をさらに備え、前記判定部が、前記予測環境パラメータが前記判定条件を満たすか否かを判定するように構成されていればよい。
 例えば設定されている走行ルートでは高度変化が繰り返されて車両に対して過剰に負荷が発生してしまい、本来の性能よりも劣る結果が出てしまうのを防ぐには、法規によって定められた排ガスが満たすべき基準である排ガス基準を記憶する排ガス基準記憶部と、前記予測車速分布に基づいて、設定されている走行ルートを車両が走行した場合の予測排ガスデータを算出する予測排ガスデータ算出部と、をさらに備え、前記判定部が、前記予測排ガスデータが前記排ガス基準を満たすか否かを判定するように構成されていればよい。
 前記予測排ガスデータの推定精度をさらに向上させて、設定されている走行ルートによる路上走行試験の有効性に関する判定がより正確となるようにするには、1又は複数の車両によって実測された実績排ガスデータを記憶する実績排ガスデータ記憶部をさらに備え、前記予測排ガスデータ算出部は、前記予測車速分布及び前記実績排ガスデータに基づいて、前記予測排ガスデータを算出するように構成されていればよい。
 例えば道路の混雑状況は季節性の要因や通勤や帰宅の時間帯の影響を受けて変化するが、このような混雑状況等を加味して路上走行試験が有効なものとなりやすい走行ルートが設定されやすくするには、前記車速記憶部が、前記実測速度が実測された日時に関する情報を関連付けて記憶するものであり、前記予測車速分布算出部と、前記実測速度のうち設定されている走行ルートを車両が走行する日時に対応するものに基づいて予測車速分布を算出するものであればよい。
 路上走行試験中においてリアルタイムで現在設定されている走行ルートで路上走行試験が有効となるかどうかを判定できるようにするには、前記判定部が、車両が路上走行試験中に前記予測車速分布が前記車速分布条件を満たすか否かを逐次判定するものであればよい。
 もし無効な路上走行試験になりそうな場合には、例えば路上走行試験中においてリアルタイムで速やかに新たな走行ルートに変更できるようにするには、前記走行ルート作成部が、車両が路上走行試験中に新たな走行ルートを作成するものであればよい。
 複数の車両から車速等を例えばビッグデータとして集積することを可能とし、そのビッグデータに基づいて路上走行試験が有効なものとなる走行ルートがより精度よく判定できたり、新たに設定される走行ルートについて路上走行試験が有効となる確率をさらに高くできるようにしたりするには、複数の車両にそれぞれ搭載される車両側装置と、前記判定条件記憶部、前記車速記憶部、前記予測車速分布算出部、前記判定部、及び、前記走行ルート作成部と、を備えたサーバと、を備え、前記排ガス分析装置が、路上走行試験中の車両の位置データ、車速を少なくとも含む走行データを前記サーバに送信する走行データ送信部と、前記走行ルート作成部から新たに設定された走行ルート取得し、その走行ルートを車両に設けられた表示器に表示する走行ルート表示部と、前記サーバが、前記排ガス分析装置から送信される走行データを受信し、前記車速記憶部に記憶されている実績車速を更新するデータ更新部と、を備えたものであればよい。
 前記判定条件の具体例としては、MAW(Moving Average Window)又はSPF(Standardized Power Frequency Distribution)に基づいて設定されているものが挙げられる。
 例えば既存の路上走行試験システムにプログラムをインストールすることによって本発明に係る路上走行試験システムと同等の機能や効果を実現できるようにするには、路上走行試験が有効であるか否かを決定する車速分布条件を少なくとも含む判定条件を記憶する判定条件記憶部と、1又は複数の車両によって実測された実績車速又は交通情報に基づいた推定車速を記憶する車速記憶部と、前記実績車速又は前記推定車速に基づいて、設定されている走行ルートを車両が走行した場合の予測車速分布を算出する予測車速分布算出部と、前記予測車速分布が前記車速分布条件を満たすか否かを判定する判定部と、としての機能をコンピュータに発揮させる路上走行試験システム用プログラムを用いればよい。なお、路上走行試験システム用プログラムは、電子的に配信されるものであってもよいし、CD、DVD、HDD、フラッシュメモリ等のプログラム記録媒体に記録されているものであってもよい。
 多数の車両から各種データを集積できるにしてビッグデータとして活用できるようにしたり、AIによる走行ルートの有効性の判定等を行いやすくしたりするには、車両に搭載された車両側装置との間でデータを送受信し、路上走行試験システムを構成するサーバであって、前記サーバが、路上走行試験が有効であるか否かを決定する車速分布条件を少なくとも含む判定条件を記憶する判定条件記憶部と、1又は複数の車両によって実測された実績車速を記憶する車速記憶部と、前記実績車速に基づいて、設定されている走行ルートを車両が走行した場合の予測車速分布を算出する予測車速分布算出部と、前記予測車速分布が前記車速分布条件を満たすか否かを判定する判定部と、を備えたサーバを用いれば良い。
 本発明に係る路上走行試験システムを構成するのに適した車両用の設備としては、車両に搭載されるとともに、サーバとデータを送受信し、路上走行試験システムを構成する車両側装置であって、前記サーバが、路上走行試験が有効であるか否かを決定する車速分布条件を少なくとも含む判定条件を記憶する判定条件記憶部と、1又は複数の車両によって実測された実績車速を記憶する車速記憶部と、前記実績車速に基づいて、設定されている走行ルートを車両が走行した場合の予測車速分布を算出する予測車速分布算出部と、前記予測車速分布が前記車速分布条件を満たすか否かを判定する判定部と、を備え、前記車両側装置が、路上走行試験中の車両の位置データ、車速を少なくとも含む走行データを前記サーバに送信する走行データ送信部を備えた排ガス分析装置が挙げられる。
 このように本発明に係る路上走行試験システムであれば、複数の車両から得られた実績車速又は交通情報に基づく車速に基づいて、設定されている走行ルートによって車速条件を満たして路上走行試験が有効になるかどうかを事前に判定することができる。したがって、全く路上走行試験が有効となる見込みがない走行ルートが採用されることを防ぎ、路上走行試験のやり直しが発生し、取得された排ガスデータ等が無駄になってしまうのを防ぐことができる。
本発明の第1実施形態に係る路上走行試験システムについて示す模式図。 第1実施形態の路上走行試験システムの一部を構成する車載型の排ガス分析装置を示す模式図。 第1実施形態の排ガス分析装置の機能を示す機能ブロック図。 第1実施形態のサーバの機能を示す機能ブロック図。 路上走行試験における各車速区分及び高度条件について示す模式図。 MAWの概要を示す模式図。 第1実施形態の走行ルート作成部によって作成される走行ルートの例。 第1実施形態の路上走行試験システムによるデータ集積時の動作を示すフローチャート。 第1実施形態の路上走行試験システムによる走行ルートの有効性判定に関する動作を示すフローチャート。 SPFの概要を示す模式図。
200・・・路上走行試験システム
100・・・排ガス分析装置
13 ・・・分析装置本体
14 ・・・カメラ
15 ・・・加速度センサ
16 ・・・GPS
17 ・・・ディスプレイ
18 ・・・情報処理装置
31 ・・・走行データ取得部
32 ・・・走行データ送信部
33 ・・・走行ルート記憶部
34 ・・・データ受信部
35 ・・・走行ルート表示部
101・・・サーバ
41 ・・・車速記憶部
42 ・・・実績排ガスデータ記憶部
43 ・・・環境情報記憶部
44 ・・・走行ルート受付部
45 ・・・予測車速分布算出部
46 ・・・予測排ガスデータ算出部
47 ・・・予測環境パラメータ算出部
51 ・・・判定条件記憶部
52 ・・・排ガス基準記憶部
53 ・・・判定部
54 ・・・走行ルート作成部
 本発明の第1実施形態にかかる路上走行試験システム200について各図を参照しながら説明する。第1実施形態にかかる路上走行試験システム200は、試験実施者であるドライバーが車両Vを公道上において走行させながら、車両Vから排出される排ガス成分や燃費などを測定するために用いられるものである。
 この路上走行試験システム200は、図1に示すようにネットワークXを介してデータの授受が可能に構成されたサーバ101と、当該サーバ101に対して無線ネットワークを介して接続可能された複数の車両Vとから構成されている。車両Vは、少なくとも各地点で達成した車速をその位置情報と関連付けてサーバ101に対して送信可能に構成されたものである。複数の車両Vは例えばコネクテッドカーや、通信可能なドライブレコーダを備えた車両Vや、車載型の排ガス分析装置100を備えた車両Vを含む。
 ここで、車両側装置の一種である車載型の排ガス分析装置100について図2及び図3を参照しながら説明する。
 車載型の排ガス分析装置100は、図2に示すように車両Vのテールパイプ11から排ガスの一部を取り入れるホース12と、ホース12を介して取り込んだ排ガスを分析する分析装置本体13と、例えば車両Vの前方の状況等を撮像し画像データを生成するカメラ14と、車両Vの加速度を検出する加速度センサ15と、車両の位置を検出するGPS16、分析装置本体13や各センサで取得されたデータの処理、サーバ101との間でデータの授受、路上走行試験の走行ルートをディスプレイ17に表示する情報処理装置18と、を備えている。
 分析装置本体13は、排ガス流量、排ガスに含まれるCO、CO、HO、NO、THC、CH、PN、PM等の量(または濃度)等を測定し、さらにそれらから燃費などを算出する。
 情報処理装置18は、CPUやメモリ、通信ポート等が内蔵された装置本体、キーボードなどの入力手段(図示しない)及びディスプレイ17を具備する汎用のコンピュータであり、車両Vの室内に搭載される。
 そして、この情報処理装置18が、メモリに記憶された排ガス分析装置用プログラムに従って動作することにより、図3に示すように少なくとも走行データ取得部31、走行データ送信部32、走行ルート記憶部33、走行ルート受信部34、走行ルート表示部35としての機能を発揮する。
 走行データ取得部31は、走行データとして分析装置本体13に接続された通信ポートを介して排ガス流量、排ガス成分、燃費などを取得するとともに、車両VのECU21などの通信ラインに接続された通信ポートを介して、車両Vの各部に設けてあるセンサ等から得られるエンジン回転数、車速、加速度、スロットル開度、ブレーキON/OFF、吸排気温度、冷却水温度、エンジントルクなどを取得する。また、走行データ取得部31は、車両V内に設けられたカメラ14から走行時の状況を示す画像データを取得する。
 なお、この走行データ取得部31は、直接得られない走行データを、その他の走行データの値から算出することもある。例えば、エンジントルクが得られない場合、メモリに記憶させたトルク-回転数マップを参照してエンジン回転数とスロットル開度とからエンジントルクを算出する場合がある。また、別途センサを設けてその他の種々の走行データを取得するようにしてもよい。
 走行データ送信部32は、走行データ取得部31で取得される走行データを例えば無線ネットワークXを介して前述したサーバ101へと送信する。走行データについては少なくとも車両Vの位置データと車速を含んでいればよく、走行データ取得部31で取得されているデータを全て送信しなくてもよい。例えば、データ容量が小さいものやサーバ101において常に新しいデータに更新する必要があるものについては逐次送信するようにし、カメラ14で撮像された撮像データ等の容量の大きいものについては、事故等が発生したと考えられる加速度の異常が発生した場合やサーバ101側からの要請があった場合等の所定のトリガー条件が発生した場合のみ送信するようにしてもよい。
 走行ルート記憶部33は、例えば試験実施者が情報処理装置18の入出力機器を用いて入力する路上走行試験のための走行ルートを記憶するものである。なお、後述するようにサーバ101において別の走行ルートが作成されて走行ルート受信部34が受信した場合には、その走行ルートも走行ルート記憶部33に記憶される。
 走行ルート表示部35は、走行ルート記憶部33に記憶されている走行ルートを地図上に重ねてディスプレイ17に表示するものである。このとき、車両Vの位置情報に基づいて、周辺の地図データや道路の混雑状況等を示すデータを逐次受信し、そのデータに基づいて地図を作成して、その地図の上に走行ルートを表示する。
 なお、排ガス分析装置100が設けられていない車両Vでは分析装置本体13等以外の対応する構成を有した車両側装置を備えており、各車両Vで得られた走行データは走行データ送信部32を介してサーバ101へと送信される。すなわち、サーバ101は、複数の車両VからネットワークXを介して各車両Vの走行データを取得するように構成されている。そして、複数の車両Vから得られたデータがサーバ101上に蓄積されて、ビッグデータとして集積されるようにしてある。
 次にサーバ101について図4を参照しながら説明する。
 サーバ101は、各車両Vで取得される走行データを収集して蓄積する機能と、蓄積された走行データに基づいて路上走行試験を実施するのに適した走行ルートであるかどうかを検証したり、路上走行試験が有効となる走行ルートを各車両Vに対して提供したりする機能を発揮するものである。
 具体的にこのサーバ101は、メモリに格納されているサーバ用のプログラムが実行されて、各種機器が協業することにより、図4に示すように少なくとも車速記憶部41、実績排ガスデータ記憶部42、環境情報記憶部43、走行ルート受付部44、予測車速分布算出部45、予測排ガスデータ算出部46、予測環境パラメータ算出部47、判定条件記憶部51、排ガス基準記憶部52、判定部53、走行ルート作成部54としての機能を発揮するように構成されている。
 各部について詳述する。
 車速記憶部41は、各地点において車両Vによって実測されて、サーバ101に対して送信された実績車速を記憶するものである。ここで、実績車速は路上走行試験中に実測された値にのみ限定してもよいし、路上走行試験を行っていない車両Vにおいて実測された値であってもよい。実績車速は、例えば車両Vに設けられているGPS16で測定される経度、緯度、ジオイド等といった位置情報と、各位置情報の示す地点で達成された車速、その時の日時が紐付けられたデータである。なお、車速記憶部41は車両Vにおいて実測された値だけでなく、交通情報から推定される各地点で達成されるである推定車速を記憶するものであってもよい。
 実績排ガスデータ記憶部42は、複数の車両Vのうち排ガス分析装置100が設けられたものからサーバ101に対して送信された排ガスの各種成分の濃度等である実績排ガスデータを記憶するものである。ここで、実績排ガスデータは、GPS16で測定される経度、緯度、ジオイド等といった位置情報と、各位置情報の示す地点で実測された各種成分の濃度、その車両Vの車種や、その時の日時が紐付けられたデータである。
 これらのような実績車速や実績排ガスデータは排ガス分析装置100を備えた各車両Vから得られたデータに基づいて、例えば表1のようなデータ形式でサーバ101内に集積されていく。ここで、排ガス分析装置100が設けられていない車両Vから送信された走行データの場合には、排ガス測定値については記憶されない。あるいは、得られた車両諸元と各地点における車速に基づいて排ガス測定値の代わりに排ガス推定値を算出して記憶するようにしてもよい。
Figure JPOXMLDOC01-appb-T000001
 環境情報記憶部43は、例えば公的機関等が提供する気象情報のデータベース等から各地点での気圧、天候、気温等といった環境データを取得し、記憶するものである。環境データも、各地点の高度を含む位置情報と、気圧、天候、気温、日時といった情報が紐付けられたデータである。環境データについては、例えば路上走行試験が行われる地域において走行中の車両Vから得られるデータを集積してもよいし、その他の地域内に設けられている各種センサから得られるデータを集積してもよい。
 走行ルート受付部44は、例えば試験実施者によって車両走行試験のために車両Vにおいて設定された初期の走行ルートに関するデータを受け付ける。後述する予測車速分布算出部45、予測排ガスデータ算出部46、予測環境パラメータ算出部47では、受け付けられた走行ルートにおいて通過する各地点の位置情報に基づき、対応するデータを各記憶部41、42、43から取得し、予測値を算出する。
 具体的には予測車速分布算出部45は、サーバ101に記憶されている実績車速又は推定車速に基づいて設定されている走行ルートを車両Vが走行した場合の予測車速分布を算出する。例えば走行ルート上の各地点において実績車速として記憶されている値の平均値が、各地点での予測車速として算出される。第1実施形態では設定されている走行ルート中において後述する路上走行試験の車速区分であるUrban、Rural、Motorwayごとに予測車速に基づいた走行距離を算出する。すなわち、走行ルートにおいて各車速区分に設定されている部分ごとに、各位置での予測車速とその予測継続時間をかけて予測走行距離が算出される。そして、予測車速分布算出部45は、Urban、Rural、Motorwayごとに予測走行距離の比を算出する。
 予測排ガスデータ算出部46は、予測車速分布算出部45で算出された予測車速分布に基づいて設定されている走行ルートを車両Vが走行した場合に、各位置において排出されると予測される例えば排ガスの各種成分の濃度を予測排ガスデータとして算出する。具体的には車両Vの性能諸元と予測車速から走行ルート上の各地点で排出されるCO等の濃度値が予測排ガスデータとして推定される。また、走行ルート上のある地点に関して実績排ガスデータがサーバ101に記憶されている場合には、この実績排ガスデータに基づいて予測排ガスデータを算出してもよい。設定されている走行ルート上での予測CO濃度に基づいて、後述するMAWと同様の算出基準でWindowごとのCO濃度の予測平均値を算出し、予測Window  dataとして算出する。なお、実績排ガスデータが存在しない場合には、サーバ101に記憶されている車両諸元と車速に基づいて算出される推定値を用いて予測排ガスデータを算出してもよい。
 なお、予測車速、予測排ガスデータの算出方法については、例えば路上走行試験を行う車種と同じ車種において実測されたデータのみを用いるようにしてもよいし、路上走行試験が行われる時間帯で実測されたデータのみを用いるようにしてもよい。また、道路の混雑情報等を外部のデータベース等から取得し、渋滞等による影響を加味した予測車速であっても構わない。
 予測環境パラメータ算出部47は、サーバ101に記憶されている環境データに基づいて、設定されている走行ルートを車両Vが走行した場合の各地点での高度、予測気温、予測高度、予測気圧を含む予測環境パラメータを算出する。第1実施形態では、予測環境パラメータ算出部47は、走行ルートにおける予測気温範囲と、走行ルートのトリップ全体での最大の高度差、及び、走行ルートのスタート地点とゴール地点との高度差を含む予測高度差と、予測累積登坂高度を算出している。
 判定条件記憶部51は、路上走行試験が有効であるか否かを決定するTrip Composition に関する車速分布条件と、エミッションに係る試験条件であり、RDEにおける規定や具体的な評価値の換算算出方法であるMAW(Moving Average Window)において満たすべき基準とを含む判定条件を記憶している。以下に詳述するように路上走行試験は複数の条件パラメータを同時に満たす必要があるとともに、条件パラメータは道路の混雑状況や様々な要因によって影響を受ける可能性がある。
 具体的にTrip Dynamicsに関する判定基準について説明する。図5に示すように車両走行試験において走行ルートはUrban(市街地)、Rural(郊外)、Motorway(高速道路)の3つの区間で路上走行を実施する必要がある。ここで、Urbanは60km/h以下の車速で走行する区間であり、Ruralは60km/以上90km/h以下の車速で走行する区間であり、Motorwayは90km/以上115km/h以下の車速で走行する区間である。
 車速区分においてそれぞれの走行距離は最低16km以上必要となるとともに、Urban、Rural、Motorwayのそれぞれについて走行距離比は29~44%:33±10%:33±10%の範囲内であることが求められる。
 これらのことから第1実施形態の判定条件記憶部51は、車速条件としてUrban、Rural、Motorwayのそれぞれについて走行距離比が29~44%:33±10%:33±10%の範囲に対応するよう車速分布条件を記憶している。
 また、Urban全体では平均車速は15~40km/hを満たすとともに、停止時間はUrbanでの走行時間の6~30%を満たす必要がある。Motorwayでは100km/hを超える速度で5分間以上走行するとともに、走行速度は145km/hを超えないことが求められる。このため、判定条件記憶部51は、UrbanとMotorwayの車速区分についてはさらに車速に関する判定条件として車速制限値と必要継続時間を記憶している。加えて、車両V走行試験のトリップ全体での走行時間は90~120分である必要がある。このため、判定条件記憶部51はトリップ全体については上記の制限旅程時間を記憶している。
 さらに、RDEでは図5に示すように走行ルートについては高度差がトリップ全体で700m以下であるとともに、スタート地点とゴール地点との高度差は100m以内であることが求められる。さらに、累積登坂高度が走行距離100km辺り1200m以下であることも求められる。このため、判定条件記憶部51は高度制限値としてこれらの値を記憶している。
 加えて、トリップ全体において外気温度についても3~30℃内の範囲である必要がある。このため、判定条件記憶部51は外気温条件として、設定されている走行ルート中での外気温の温度変化許容範囲を記憶している。なお、上述してきた各判定基準については一例であり、法規の変更や各社の社内規定等によって変更され得る値である。また、法改正や各国ごとに設定される基準に応じて判定条件の値は変更可能である。
 次に排ガスの評価値を算出するMAWにおいて満たすべき条件について説明する。MAWではUrban、Rural、Motorwayの各車速区分で得られた排ガスのCOの積算値がWLTCを走行した場合に排出されるCOの量の1/2となった時点を1Windowとして、Window中に含まれるデータについて1秒ごとに移動平均値を算出する。このようにして得られた各Windowにおいて算出されたCOの平均値と平均車速の対からなるWindow dataをプロットしたものが図6に示すようになる。ここで、MAWが有効であると判定されるには、Urban、Rural、Motorwayの各車速区分において全Window data数の15%以上がそれぞれ含まれている必要がある。また、各車速区分に含まれるWindow dataのうち50%以上がWLTCデータより算出されるCO特性曲線(中央部太線で図示)の上下25%を示すTolerance 1内に含まれている必要がある。
 これらのWindow dataのデータ点数に関する判定条件については、車速だけでなく排出される排ガスの評価値も判定基準となるので、排ガス基準記憶部52が排ガス基準として記憶している。なお、排ガス基準はMAWが有効かどうか判定するための条件に限られるものではなく、例えば環境基準として法令等で別途定められている排出基準値であっても構わない。
 判定部53は、設定されている走行ルートを車両Vが走行した場合に、予測車速分布算出部45、予測環境パラメータ算出部47、及び、予測排ガスデータ算出部46で算出される各種予測値が、判定条件記憶部51、及び、排ガス基準記憶部52に記憶されている判定条件、及び、排ガス基準を満たし、路上走行試験が有効なものになりえるかどうかを判定する。この判定部53による路上走行試験の有効性に関する判定は、車両Vによる路上走行試験が実施される前に行われる。また、路上走行試験地中において渋滞等の状態変化による影響を加味できるように路上走行試験中にも有効性の判定は逐次繰り返される。
 走行ルート作成部54は、判定部53において設定されている走行ルートでは路上走行試験が有効ではないと判定している場合にサーバ101に記憶されている各実績値に基づいて路上走行試験が有効となるように新たな走行ルートを作成する。
 すなわち、走行ルート作成部54はサーバ101に記憶されている各種情報を入力データ及び拘束条件として、図7に示すような新たな走行ルートを出力データとして出力する。具体的には車速記憶部41、環境情報記憶部43、実績排ガスデータ記憶部42に記憶されている各実績値、及び、設定されている走行ルートにおけるスタート地点及びゴール地点の位置情報、路上走行試験が行われる予定の日時といった複数の情報が入力データとして使用される。また、判定条件記憶部51、排ガス基準記憶部52に記憶されている複数の判定条件、及び、排ガス基準が拘束条件として使用される。また、拘束条件は現在設定されている走行ルートと重複している部分が大きいほどよいといった条件を設定してもよい。なお、走行ルート作成部54は、ビッグデータとして集積されている入力データに基づいて、複数の拘束条件を満たすように新たな走行ルートを作成するAIとして構成されてもよい。例えば走行ルート作成部54は複数の走行ルートを提案し、試験実施者によって選択される走行ルートの評価値を上げるようにして作成精度が向上するようにしてもよい。
 このようにして走行ルート作成部54により作成された新たな走行ルートは車両Vに搭載されている車載型の排ガス分析装置100に対して送信され、例えばディスレプ17によって地図上に重ねて表示される。走行ルートについてはディスプレイ17に表示される態様だけでなく、例えば音声案内や矢印等の記号によって試験実施者に通知されるようにしてもよい。また、車両Vのフロントガラス等に走行ルートや走行地点において達成するべき車速等の路上走行試験に関わる情報を表示するようにしてもよい。
 次に第1実施形態の路上走行試験システム200の動作について図8及び図9のフローチャートを参照しながら説明する。まず、複数の車両Vから得られる走行データを集積し、ビッグデータを形成するための動作について図8を参照しながら説明する。
 複数の車両Vに各種車両側装置によって、それぞれ車両Vが走行している位置の位置情報、その時の車速、これらを含む走行データは車両側装置からサーバ101に対して送信される(ステップS1)。なお、一部の排ガス分析装置100を備えた車両Vについては、さらに測定されている排ガスデータが逐次測定されて、このようなデータも併せてサーバ101に対して送信される。
 複数の車両Vで測定された位置情報、その時の車速、日時といった時間データはそれぞれが関連付けられた状態で車速記憶部41に集積される(ステップS2)。
 また、排ガス分析装置100を備えた車両Vで測定された排ガスデータについてはそれぞれの値が測定された位置の位置情報と関連付けられた状態で実績排ガスデータ記憶部42に集積される(ステップS3)。
 なお、各車両Vから得られない気象等の環境データについては、ネットワークXを介してその他の公的データベースから位置情報と関連付けられた形で環境情報記憶部43に集積される(ステップS4)。ステップS2~S4については逐次データの更新及び蓄積が繰り返され、ビッグデータが形成される。
 次に路上走行試験のために設定されている走行ルートが有効であるかどうかの判定動作について図9のフローチャートを参照しながら説明する。
 サーバ101の走行ルート受付部44が路上走行試験を行う車両Vの排ガス分析装置100を介して予定されている走行ルートを受け付けると、その走行ルートの有効性の判断が開始される(ステップST1)。
 まず、サーバ101の予測車速分布算出部45が、受け付けられた走行ルート上の各地点における予測車速を実績車速又は推定車速に基づいて算出する。この結果、走行ルート上の各地点における予測車速を示す予測車速分布が得られる(ステップST2)。
 また、予測排ガスデータ算出部46は、予測車速分布算出部45が算出した各地点での予測車速に基づき、受け付けられた走行ルートでの各地点で予測排ガスデータを算出する(ステップST3)。加えて、予測環境パラメータ算出部47は受け付けられた走行ルートでの予測気温範囲、予測高度差、予測累積登坂高度を算出する(ステップST4)。第1実施形態では予測排ガスデータはMAWにおけるWindow dataとしてデータ処理された形となっている。
 受け付けられた走行ルートでの各地点における各種予測値が算出されると、判定部53は予測車速分布、予測気温範囲、予測高度差、予測累積登坂高度がRDEにおいて試験が有効であると判定されるのに必要なTrip compositionやその他の各種条件を満たしているかどうかを判定する(ステップST5)。また、判定部53は、設定されている走行ルートによってエミッションに係る試験条件を満たす事ができるかどうかを判定する。すなわち、判定部53は予測された複数のWindow dataが、所定のデータ範囲内において必要とされるデータ点数が存在するかどうかを判定し、MAWが有効なものになりえるかどうかの判定をする(ステップST6)。
 ステップST5又はST6のいずれかにおいて判定部53が有効ではないと判定した場合には、設定されている走行ルートやサーバ101に集積されている実績値に基づいて、走行ルート作成部54は、Trip composition等の各判定基準、エミッションに係る試験条件や排ガス基準を満たすように新たな走行ルートを作成する(ステップST7)。
 作成された新たな走行ルートについては、サーバ101から対象の車両Vに対して送信され、試験実施者は新たな走行ルートで路上走行試験を実施する(ステップST8)。
 なお、ステップST1~ST8については路上走行試験中においても逐次動作が繰り返され、車両Vにおいて使用される走行ルートが路上走行試験中に更新されるようにしてもよい。
 このように構成された路上走行試験システム200によれば、設定されている走行ルートが車速分布条件、車速制限値、必要継続時間、制限旅程時間、高度制限値、温度変化許容範囲といった判定条件と排ガス基準を満たし、路上走行試験として有効なものとなるかどうかを路上走行試験が完了する前に予め判定することができる。
 例えば路上走行試験が実施される前にサーバ101に入力された走行ルートでは、路上走行試験が有効なものにならないと判定部53によって判定されれば、走行ルート作成部54により作成される試験が有効となる可能性が高い新たな走行ルートに変更することができる。
 このため、従来のように路上走行試験が完了してから、得られたデータが判定条件や排ガス基準を満たしているかどうかについてデータ解析して、結局条件を満たせておらず、路上走行試験を最初からやり直すことになるといった事態が発生するのを防ぐことができる。
 また、第1実施形態の路上走行試験システム200ではサーバ101に対して複数の車両Vから得られた実績値をビッグデータとして集積しているので、各予測値の予測精度や判定部53による路上走行試験の有効性に関する判定精度を高くすることができる。
 さらに、第1実施形態の路上走行試験システム200では、車両Vが路上走行試験を行っている最中でもサーバ101において逐次設定されている走行ルートを有効性について判定し、設定されている走行ルートでこのまま路上走行試験を継続しつづけても問題ないかどうかが判断される。このため、路上走行試験中において例えば突発的な事故等によって渋滞状況等が変化したとしても、走行ルートを途中で変更し、有効となる可能性を高める事が可能となる。
 次に第2実施形態の路上走行試験システム200について説明する。
 第2実施形態の路上走行試験システム200では、各構成要素については第1実施形態の路上走行試験システム200とほぼ同様であるが、MAWではなく、SPF(Power Binningとも呼称される)によって排ガスの評価を行えるように判定部53において使用される判定基準が異なっている。
 すなわち、SPFでは路上走行時の試験データについて3秒毎に移動平均によって、排出ガス、タイヤ駆動力、車速の平均が算出される。各移動平均データについては図10に示すように車両諸元から設定される9段階のパワークラスに分類される。SPFによる算出結果が有効なものとなる条件として、例えばUrban、Rural、Motorwayの車速区分における特定のパワークラスのデータ点数が例えば最低でも5つ以上のデータ点数が得られていることが挙げられる。
 このため、第2実施形態の予測車速分布算出部45は、走行ルート上の各位置の予測車速をサーバ101に集積されている実測車速に基づいて算出した後で、Urban、Rural、Motorwayの各車速区分について9つのパワークラスに分類した予測車速分布を算出するように構成されている。
 また、第2実施形態の判定条件記憶部51は、車速分布条件としてUrban、Rural、Motorwayの各車速区分について9つのパワークラスのデータ点数が5つ以上であることを記憶している。
 第2実施形態の判定部53では、第1実施形態で説明したようなRDEとして満たすべき車速に関する条件だけでなく、上述したようなSPF用に算出された予測車速分布が各パワークラスで5つ以上のデータ点数があるかどうかという車速分布条件を満たしているかどうか判定している。
 このように構成された第2実施形態の路上走行試験システム200であれば、RDEとして満たすべき条件だけでなく、排ガス等の評価値を算出する際の規定であるPower Binningにおいて満たすべき条件が設定されている走行ルートにおいて実現可能かどうかについて路上走行試験前に予め判定することができる。
 また、いずれかの条件を満たさない場合には、走行ルート作成部54において各条件が満たされる可能性が高い走行ルートを別途作成し、路上走行試験が一度の実施で有効なものにしやすくできる。
 その他の実施形態について説明する。
 各実施形態では、路上走行試験システムは各車両に設けられた排ガス分析装置と、サーバとの組み合わせで実現されていたが、例えば所定の走行ルートでRDEが有効であるかどうかについてのみ判定する場合には、サーバ又は単一のコンピュータのみで路上走行試験システムが構成されていても構わない。
 また、各実施形態においては走行ルートの有効性の事前判断や、路上走行試験が有効となる可能性がない場合における走行ルートの再設定の機能はサーバによって実現されていたが、全て車両に設けられる排ガス分析装置等を構成するコンピュータの演算能力によってその機能を実現するようにしてもよい。
 すなわち、各構成要件が物理的に存在している場所は各実施形態において示した場所に限られない。
 走行ルート作成部で作成される走行ルートは、試験規約等で定められている試験が有効かどうかを決定する各判定条件を満たすように作成されているが、さらに別の条件を増やしても良い。
 例えば、路上走行試験において試験の有効性を決定する判定条件は満たすようにしつつ、その中でも車両に対して最も負荷がかかるように走行ルートを作成するように走行ルート作成部を構成してもよい。すなわち、路上走行試験としては有効の部類であっても、車両への負荷が小さく、排出される各排ガス成分が非常に少なくなり、チャンピオンデータが得られる可能性がある。このようなデータが結果として得られても路上走行試験が導入されるきっかけとなった実際の使用時における燃費や環境性能等と試験結果との乖離が大きいといった問題を克服できない恐れがある。このため、走行ルートが作成される条件として予測累積登坂高度が最大となることや、実績排ガスデータに基づいて最も排ガスの排出量が大きくなると見込まれる走行ルートが出力されるようにAIによる学習制御を行ってもよい。
 また、設定されている走行ルートでの路上走行試験の有効性に関する判断を行う判断部や、各判定条件を満たす走行ルートを作成する走行ルート作成部としての機能を省略し、予測排ガスデータ算出部としての機能だけを有したシステムとして構成してもよい。この場合、設定されている走行ルートにおいてどの程度の排ガスが排出されるかという点について実測を行うことなく、予めコンピュータシミュレーションすることができる。例えばこれらのようなシミュレーションに基づいて、環境対策のための基礎データを作成したり、新規車両設計時等における指標として活用したりすることが考えられる。
 各実施形態では、設定されている走行ルートによって全ての判定条件を満たすかどうかについて判定部は判定していたが、少なくとも予測車速分布が車速分布条件を満たしているかどうかを判定するように構成してもよい。すなわち、簡易な指標のみで走行ルートの有効性が判定されるようにして演算負荷を減らし、リアルタイムでの走行ルートの更新を行いやすくしてもよい。また、このように判定条件のパラメータを適宜限定することにより、例えばAIにおける過学習等の弊害が発生するのを防ぎ、より適切な走行ルートが得られやすくなる可能性がある。
 本発明については、リアルタイムで車両走行試験の有効性をリアルタイムで判定するものに限られず、机上でルート設定をするために用いることができる。
 その他、本発明の趣旨に反しない限りにおいて様々な実施形態の組み合わせや変形を行っても構わない。
 このように本発明であれば、複数の車両から得られた実績車速又は交通情報に基づく車速に基づいて、設定されている走行ルートによって車速条件を満たして路上走行試験が有効になるかどうかを事前に判定できる路上走行試験システムを提供できる。また、本発明であれば、全く路上走行試験が有効となる見込みがない走行ルートが採用されることを防ぎ、路上走行試験のやり直しが発生し、取得された排ガスデータ等が無駄になってしまうのを防ぐことができる。
 

Claims (16)

  1.  路上走行試験が有効であるか否かを決定する車速分布条件を少なくとも含む判定条件を記憶する判定条件記憶部と、
     1又は複数の車両によって実測された実績車速又は交通情報に基づいた推定車速を記憶する車速記憶部と、
     前記実績車速又は前記推定車速に基づいて、設定されている走行ルートを車両が走行した場合の予測車速分布を算出する予測車速分布算出部と、
     前記予測車速分布が前記車速分布条件を満たすか否かを判定する判定部と、を備えた路上走行試験システム。
  2.  前記予測車速分布が前記車速分布条件を満たさないと判定された場合に、新たな走行ルートを作成する走行ルート作成部をさらに備えた請求項1記載の路上走行試験システム。
  3.  前記走行ルート作成部が、前記実績車速に基づいて前記車速分布条件を満たすように新たな走行ルートを作成する請求項2記載の路上走行試験システム。
  4.  前記車速分布条件は、Urban、Rural、Motorway毎に許容される車速分布が設定されている請求項1乃至3いずれかに記載の路上走行試験システム。
  5.  前記判定条件が、気温条件、高度条件、又は、気圧条件の少なくとも1つをさらに含み、
     設定されている走行ルートを車両が走行した場合の各地点での予測気温、予測高度、又は、予測気圧の少なくとも1つを含む予測環境パラメータを算出する予測環境パラメータ算出部と、をさらに備え、
     前記判定部が、前記予測環境パラメータが前記判定条件を満たすか否かを判定するように構成されている請求項1乃至4いずれかに記載の路上走行試験システム。
  6.  法規によって定められた排ガスが満たすべき基準である排ガス基準を記憶する排ガス基準記憶部と、
     前記予測車速分布に基づいて、設定されている走行ルートを車両が走行した場合の予測排ガスデータを算出する予測排ガスデータ算出部と、をさらに備え、
     前記判定部が、前記予測排ガスデータが前記排ガス基準を満たすか否かを判定するように構成されている請求項1乃至5いずれかに記載の路上走行試験システム。
  7.  1又は複数の車両によって実測された実績排ガスデータを記憶する実績排ガスデータ記憶部をさらに備え、
     前記予測排ガスデータ算出部は、前記予測車速分布及び前記実績排ガスデータに基づいて、前記予測排ガスデータを算出するように構成されている請求項6に記載の路上走行試験システム。
  8.  前記車速記憶部が、前記実測速度が実測された日時に関する情報を関連付けて記憶するものであり、
     前記予測車速分布算出部と、前記実測速度のうち設定されている走行ルートを車両が走行する日時に対応するものに基づいて予測車速分布を算出する請求項1乃至7いずれかに記載の路上走行試験システム。
  9.  前記判定部が、車両が路上走行試験中に前記予測車速分布が前記車速分布条件を満たすか否かを逐次判定する請求項1乃至8いずれかに記載の路上走行試験システム。
  10.  前記走行ルート作成部が、車両が路上走行試験中に新たな走行ルートを作成する請求項2又は3記載の路上走行試験システム。
  11.  複数の車両にそれぞれ搭載される車両側装置と、
     前記判定条件記憶部、前記車速記憶部、前記予測車速分布算出部、前記判定部、及び、前記走行ルート作成部と、を備えたサーバと、を備え
     前記車両側装置が、
      路上走行試験中の車両の位置データ、車速を少なくとも含む走行データを前記サーバに送信する走行データ送信部と、
      前記走行ルート作成部から新たに設定された走行ルート取得し、その走行ルートを車両に設けられた表示器に表示する走行ルート表示部と、を備え
     前記サーバが、前記車両側装置から送信される走行データを受信し、前記車速記憶部に記憶されている実績車速を更新するように構成された請求項2又は9記載の路上走行試験システム。
  12.  前記判定条件が、MAW(Moving Average Window)又はSPF(Standardized Power Frequency Distribution)に基づいて設定されている請求項1乃至11いずれかに記載の路上走行試験システム。
  13.  1又は複数の車両によって実測された実績車速又は交通情報に基づいた推定車速に基づいて、設定されている走行ルートを車両が走行した場合の予測車速分布を算出する予測車速分布算出ステップと、
     前記予測車速分布が、路上走行試験が有効であるか否かを決定する車速分布条件を満たすか否かを判定する判定ステップと、を備えた路上走行試験方法。
  14.  路上走行試験が有効であるか否かを決定する車速分布条件を少なくとも含む判定条件を記憶する判定条件記憶部と、
     1又は複数の車両によって実測された実績車速又は交通情報に基づいた推定車速を記憶する車速記憶部と、
     前記実績車速又は前記推定車速に基づいて、設定されている走行ルートを車両が走行した場合の予測車速分布を算出する予測車速分布算出部と、
     前記予測車速分布が前記車速分布条件を満たすか否かを判定する判定部と、としての機能をコンピュータに発揮させる路上走行試験システム用プログラム。
  15.  車両に搭載された車両側装置との間でデータを送受信し、路上走行試験システムを構成するサーバであって、
     前記サーバが、
      路上走行試験が有効であるか否かを決定する車速分布条件を少なくとも含む判定条件を記憶する判定条件記憶部と、
      1又は複数の車両によって実測された実績車速又は交通情報に基づく推定車速を記憶する車速記憶部と、
      前記実績車速又は前記推定車速に基づいて、設定されている走行ルートを車両が走行した場合の予測車速分布を算出する予測車速分布算出部と、
      前記予測車速分布が前記車速分布条件を満たすか否かを判定する判定部と、を備えたサーバ。
  16.  車両に搭載されるとともに、サーバとデータを送受信し、路上走行試験システムを構成する車両側装置であって、前記サーバが、路上走行試験が有効であるか否かを決定する車速分布条件を少なくとも含む判定条件を記憶する判定条件記憶部と、各地点において1又は複数の車両によって実測された実績車速を記憶する車速記憶部と、前記実績車速に基づいて、設定されている走行ルートを車両が走行した場合の予測車速分布を算出する予測車速分布算出部と、前記予測車速分布が前記車速分布条件を満たすか否かを判定する判定部と、を備え、
     前記車両側装置が、
      路上走行試験中の車両の位置データ、車速を少なくとも含む走行データを前記サーバに送信する走行データ送信部を備えた車両側装置。
PCT/JP2019/019668 2018-05-21 2019-05-17 路上走行試験システム、路上走行試験システム用プログラム WO2019225497A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020521204A JP7308822B2 (ja) 2018-05-21 2019-05-17 路上走行試験システム、路上走行試験システム用プログラム
EP19807997.2A EP3798602A4 (en) 2018-05-21 2019-05-17 ROAD DRIVE TEST SYSTEM AND ROAD DRIVE TEST SYSTEM PROGRAM
US17/057,477 US20210199538A1 (en) 2018-05-21 2019-05-17 On-road driving test system, and program for on-road driving test system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-097184 2018-05-21
JP2018097184 2018-05-21

Publications (1)

Publication Number Publication Date
WO2019225497A1 true WO2019225497A1 (ja) 2019-11-28

Family

ID=68615725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019668 WO2019225497A1 (ja) 2018-05-21 2019-05-17 路上走行試験システム、路上走行試験システム用プログラム

Country Status (4)

Country Link
US (1) US20210199538A1 (ja)
EP (1) EP3798602A4 (ja)
JP (1) JP7308822B2 (ja)
WO (1) WO2019225497A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117968720A (zh) * 2024-04-01 2024-05-03 中国汽车技术研究中心有限公司 一种车辆实际道路测试路线规划方法、装置、介质及设备
JP7537401B2 (ja) 2021-09-21 2024-08-21 トヨタ自動車株式会社 オイル診断装置、オイル診断方法、及びオイル診断プログラム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114943482B (zh) * 2022-06-28 2024-06-21 成都秦川物联网科技股份有限公司 一种基于物联网的智慧城市尾气排放管理方法和系统
CN115565378B (zh) * 2022-12-01 2023-03-07 四川振函创新智能科技有限公司 高速公路事件情报信息动态发布方法、系统、终端及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010029425A1 (en) * 2000-03-17 2001-10-11 David Myr Real time vehicle guidance and traffic forecasting system
JP2006337182A (ja) * 2005-06-02 2006-12-14 Xanavi Informatics Corp カーナビゲーションシステム、交通情報提供装置、カーナビゲーション装置、交通情報提供方法および交通情報提供プログラム
JP2015522748A (ja) * 2012-06-27 2015-08-06 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 車両診断を計画する方法
JP2016001171A (ja) 2014-05-19 2016-01-07 株式会社堀場製作所 路上走行試験装置
JP6003824B2 (ja) * 2013-06-25 2016-10-05 株式会社オートネットワーク技術研究所 信号機制御システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3206007A1 (en) * 2016-02-12 2017-08-16 Avl Powertrain Uk Ltd Method for performing a test drive of a vehicle
CN105938052B (zh) * 2016-05-30 2019-03-08 北京联合大学 一种用于智能车车辆测试的交互方法及系统
KR102568117B1 (ko) * 2016-05-31 2023-08-17 현대오토에버 주식회사 내비게이션의 경로 탐색 장치 및 그 방법
DE102016218815B4 (de) * 2016-09-29 2020-07-30 Audi Ag Verfahren zur Auswahl eines Streckenverlaufs für einen Emissionstest

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010029425A1 (en) * 2000-03-17 2001-10-11 David Myr Real time vehicle guidance and traffic forecasting system
JP2006337182A (ja) * 2005-06-02 2006-12-14 Xanavi Informatics Corp カーナビゲーションシステム、交通情報提供装置、カーナビゲーション装置、交通情報提供方法および交通情報提供プログラム
JP2015522748A (ja) * 2012-06-27 2015-08-06 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 車両診断を計画する方法
JP6003824B2 (ja) * 2013-06-25 2016-10-05 株式会社オートネットワーク技術研究所 信号機制御システム
JP2016001171A (ja) 2014-05-19 2016-01-07 株式会社堀場製作所 路上走行試験装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7537401B2 (ja) 2021-09-21 2024-08-21 トヨタ自動車株式会社 オイル診断装置、オイル診断方法、及びオイル診断プログラム
CN117968720A (zh) * 2024-04-01 2024-05-03 中国汽车技术研究中心有限公司 一种车辆实际道路测试路线规划方法、装置、介质及设备

Also Published As

Publication number Publication date
US20210199538A1 (en) 2021-07-01
EP3798602A4 (en) 2022-03-02
JPWO2019225497A1 (ja) 2021-06-17
EP3798602A1 (en) 2021-03-31
JP7308822B2 (ja) 2023-07-14

Similar Documents

Publication Publication Date Title
WO2019225497A1 (ja) 路上走行試験システム、路上走行試験システム用プログラム
CN107000751B (zh) 用于提供建议驾驶速度的设备及方法
US11348384B2 (en) Method for determining indicators regarding the polluting nature of mobility taking real usage into account
EP2387699B1 (en) Method for computing an energy efficient route
US9604648B2 (en) Driver performance determination based on geolocation
JP4840077B2 (ja) コスト算出装置、ナビゲーション装置、プログラム
RU2616487C2 (ru) Оценка стиля вождения автомобилей, ориентированного на экономию топлива
US8547211B2 (en) Route retrieval apparatus and navigation apparatus
JP5312574B2 (ja) 燃費推定装置、燃費推定方法、燃費推定プログラムおよび記録媒体
EP2012268A1 (en) Vehicle-mounted environment service system
JP7297520B2 (ja) 路上走行試験装置
US11117590B2 (en) Method and system for determining effective wind speeds for motor vehicles
US20100161391A1 (en) Variable rate transport fees based on vehicle exhaust emissions
JP2012500970A (ja) 燃料効率の高い経路誘導
JP5980170B2 (ja) シミュレーション装置、シミュレーション方法及びプログラム
WO2014196115A1 (ja) 車両停止判定結果提供方法、車両停止判定装置、および車両停止判定システム
US11295044B2 (en) System for the dynamic determination of the environmental footprint linked to the overall mobility of a user
JP5430190B2 (ja) 料金算出装置及び課金システム
CN116103987A (zh) 路面状况监测方法、装置和计算机设备
JP7196407B2 (ja) 推定装置
KR20160066335A (ko) 차량 연비 비교 시스템 및 서비스 방법
CN115752488A (zh) 一种基于众筹工况的卡车节能导航系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19807997

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2020521204

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019807997

Country of ref document: EP

Effective date: 20201221