WO2019223375A1 - 光学膜片及制作方法、挡风玻璃、驾驶设备 - Google Patents

光学膜片及制作方法、挡风玻璃、驾驶设备 Download PDF

Info

Publication number
WO2019223375A1
WO2019223375A1 PCT/CN2019/075789 CN2019075789W WO2019223375A1 WO 2019223375 A1 WO2019223375 A1 WO 2019223375A1 CN 2019075789 W CN2019075789 W CN 2019075789W WO 2019223375 A1 WO2019223375 A1 WO 2019223375A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical film
light
wall
layer
display
Prior art date
Application number
PCT/CN2019/075789
Other languages
English (en)
French (fr)
Inventor
魏伟
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/621,716 priority Critical patent/US11360254B2/en
Publication of WO2019223375A1 publication Critical patent/WO2019223375A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K35/00Arrangement of adaptations of instruments
    • B60K35/215
    • B60K35/23
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/008Mountings, adjusting means, or light-tight connections, for optical elements with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation
    • B60K2360/25
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B2027/0192Supplementary details
    • G02B2027/0194Supplementary details with combiner of laminated type, for optical or mechanical aspects
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays

Definitions

  • the present disclosure relates to the field of vehicle-mounted equipment, and in particular, to an optical film and a manufacturing method thereof, a windshield, and a driving device.
  • Head-up display is a device that was previously applied to aircraft.
  • the head-up display can display various instrument data on the aircraft's windshield, enabling the pilot to view the instrument panel data without shifting his eyes to the instrument panel, which greatly facilitates the pilot's operation of the aircraft.
  • head-up displays are also increasingly used in automobiles.
  • Embodiments of the present disclosure provide an optical film and a manufacturing method, a windshield, and a driving device.
  • an embodiment of the present disclosure provides an optical film including a birefringent layer; the birefringent layer separates light transmitted through the optical film into two beams of light, and the two The beams exit in different directions.
  • the optical film further includes a cured resin layer, the birefringent layer is located on the resin layer, and the ordinary light refractive index of the birefringent layer is the same as the refractive index of the resin layer.
  • the resin layer includes two surfaces that are substantially parallel to each other; and the birefringent layer also includes two surfaces that are substantially parallel to each other.
  • the resin layer has a first surface and a second surface opposite to each other; the first surface is a plane, and the second surface is provided with a plurality of V-shaped grooves parallel to each other; the birefringent layer Located on the second surface, the birefringent layer includes a surface parallel to the first surface.
  • the V-shaped groove has a first inner wall and a second inner wall, and an included angle between the second inner wall and the first surface is larger than an included angle between the first inner wall and the first surface, so An angle between the first inner wall and the first surface is 30 ° to 40 °, and an angle between the second inner wall and the second inner wall is 20 ° to 30 °.
  • the birefringent layer includes a cured liquid crystal layer, and short axes of all liquid crystal molecules in the liquid crystal layer are parallel to each other.
  • the liquid crystal layer is doped with a resin.
  • an embodiment of the present disclosure provides a method for manufacturing an optical film.
  • the manufacturing method includes: providing a planar carrier; forming an optical film on the planar carrier, the optical film including a birefringent layer The birefringent layer separates the light transmitted through the optical film into two beams of light with different exit directions; and separates the optical film from the plane carrier.
  • the forming an optical film on the planar carrier includes: forming a birefringent layer on the planar carrier; the birefringent layer is located on the resin layer, and ordinary light of the birefringent layer
  • the refractive index is the same as that of the resin layer.
  • the resin layer includes two surfaces that are substantially parallel to each other; and the birefringent layer also includes two surfaces that are substantially parallel to each other.
  • the forming a resin layer on the birefringent layer includes: providing a substrate, a resin layer is disposed on one side of the substrate, and the resin layer has a first surface and a second surface opposite to each other; The first surface is a plane, and the first surface is bonded to the substrate; a plurality of V-shaped grooves are provided on the second surface in parallel with each other; and the birefringent layer is disposed on the second surface.
  • the birefringent layer includes a surface parallel to the first surface.
  • the V-shaped groove has a first inner wall and a second inner wall, and an included angle between the second inner wall and the first surface is larger than an included angle between the first inner wall and the first surface, so An angle between the first inner wall and the first surface is 30 ° to 40 °, and an angle between the second inner wall and the second inner wall is 20 ° to 30 °.
  • an embodiment of the present disclosure further provides a windshield, the windshield including a glass body and any one of the foregoing optical films disposed on the glass body.
  • an embodiment of the present disclosure further provides a driving device.
  • the driving device includes a windshield and a windshield as described above, the head-up display is disposed below the windshield, and the optical The film is disposed on the windshield corresponding to the head-up display, so that one of the two beams of light separated by the optical film can be irradiated on the head-up display.
  • the head-up display includes a casing and a display component disposed inside the casing; the casing has a light outlet, and a polarizer is covered at the light outlet; the polarizer is capable of absorbing The light irradiated onto the polarizer after passing through the optical film can pass through the light emitted from the display element.
  • FIG. 1 is a schematic diagram of light transmitted by an optical film according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a partial structure of an optical film provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic partial structural diagram of another optical film provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic partial structural diagram of another optical film provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a partial structure of a resin layer of the optical film shown in FIG. 4;
  • FIG. 6 is a flowchart of a method for manufacturing an optical film according to an embodiment of the present disclosure
  • FIG. 7 is a flowchart of another method for manufacturing an optical film provided by an embodiment of the present disclosure.
  • FIGS. 8-9 are schematic diagrams of a manufacturing process of an optical film provided by an embodiment of the present disclosure.
  • FIG. 10 is a flowchart of another method for manufacturing an optical film according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of a manufacturing process of an optical film provided by an embodiment of the present disclosure.
  • FIG. 12 is a flowchart of another method for manufacturing an optical film according to an embodiment of the present disclosure.
  • FIG. 13 to 14 are schematic diagrams of a manufacturing process of an optical film provided by an embodiment of the present disclosure.
  • 15 is a schematic diagram of a partial structure of a metal roller according to an embodiment of the present disclosure.
  • 16-17 are schematic diagrams of an optical film manufacturing process provided by an embodiment of the present disclosure.
  • FIG. 18 is a schematic partial structural diagram of a driving device according to an embodiment of the present disclosure.
  • a heads-up display is usually provided on the dashboard of a car.
  • the head-up display has a projection port, and the display screen of the head-up display is projected to the windshield through the projection port, and can be observed by the driver after being reflected by the windshield.
  • ambient light such as sunlight
  • FIG. 1 is a schematic diagram of an optical film provided by an embodiment of the present disclosure to transmit light.
  • the optical film 10 is configured to be able to separate the light transmitted through the optical film into two beams of light (such as the two outgoing rays 101 and 102 in FIG. 1). .
  • the optical film 10 is disposed inside the windshield 1 (that is, the side of the windshield facing the cab), and the ambient light 100 (including sunlight outside the windshield) is shining on the windshield.
  • the windshield 1 On part 1, a part of the light passes through the windshield 1 and enters the optical diaphragm 10. Since the optical diaphragm 10 can separate the light transmitted through the optical diaphragm 10 into two beams of light, it passes through the same beam of the windshield 1 Light entering the optical film 10 from the same point at the same incident angle is separated into two beams, and the propagation directions of the two beams are at a certain angle.
  • the optical film 10 includes: a birefringent layer 10 ′; the birefringent layer 10 ′ separates light transmitted through the optical film into two beams of light, and the two beams of light exit Different directions.
  • the optical film can separate the transmitted light into two beams of light, and the exit directions of the two beams of light are different. Therefore, a head-up display is provided above the instrument panel, and the optical film is set on the windshield. Light entering the car through the windshield is split into two beams. By adjusting the relative positions of the head-up display and the optical film, only one of the beams of light can be incident on the head-up display. Since the total amount of light entering the head-up display is reduced, the temperature rise inside the head-up display can be slowed down.
  • the optical film 10 may include a birefringent layer 10 ′.
  • the light is birefringent after the birefringence occurs in the birefringent layer 10 ′, and is thus separated into two polarized light beams whose vibration directions are perpendicular to each other.
  • Directional propagation for example, a P beam and an S beam that travel in different directions are separated and formed.
  • the light reflected by the windshield 1 and the light transmitted through the windshield 1 are perpendicular to each other, and the light reflected by the windshield 1 is linearly polarized light (the line (Polarized light is S light).
  • the light transmitted through the windshield 1 includes two types of light (such as S light and P light) whose polarization directions are perpendicular to each other. Since the windshield 1 reflects a part of the linearly polarized light, the intensity of the S light is smaller than the intensity of the P light among the two types of light transmitted through the polarization directions perpendicular to each other. At this time, by adjusting the head-up display so that the S light passing through the windshield is irradiated into the head-up display, the total amount of light entering the head-up display can be further reduced.
  • the birefringent layer may include a cured liquid crystal layer.
  • FIG. 2 is a schematic diagram of a partial structure of an optical film provided by an embodiment of the present disclosure, wherein a double-headed arrow in the optical film 10 represents a long axis of the liquid crystal molecules, and all of the liquid crystal molecules in the liquid crystal layer 11 The short axes are parallel to each other, and the long axes of all liquid crystal molecules in the liquid crystal layer 11 are parallel to each other.
  • the birefringence of liquid crystal can be used to separate one beam into two beams, which is easy to realize.
  • the polarization directions of the two light beams separated by the liquid crystal are perpendicular to each other.
  • the short-axis refractive index of the liquid crystal molecules of the liquid crystal layer 11 is 95% to 105% of the refractive index of the windshield 1. Setting the refractive index closer to that of the windshield 1 can reduce the influence of the optical film 11 provided on the transparency of the windshield 1.
  • the optical film may further include a cured resin layer, and the birefringent layer is located on the resin layer.
  • the ordinary light refractive index of the birefringent layer is the same as that of the resin layer.
  • the birefringent layer includes a cured liquid crystal layer
  • the ordinary light refractive index of the birefringent layer is the short-axis refractive index of the liquid crystal layer.
  • the birefringent layer includes a cured liquid crystal layer 11 as an example for description.
  • FIG. 3 is a schematic partial structural diagram of another optical film provided by an embodiment of the present disclosure. As shown in FIG. 3, the optical film may further include a cured resin layer 12, and the liquid crystal layer 11 is located on the resin layer 12.
  • the short-axis refractive index of the liquid crystal molecules is the same as the refractive index of the resin layer 12.
  • the resin layer 12 can serve as a carrier for the liquid crystal layer 11.
  • the liquid crystal layer 11 is located between the windshield 1 and the resin layer 12.
  • the resin layer 12 can protect the liquid crystal layer 11.
  • the refractive index of the windshield and the refractive index of the liquid crystal molecules in the minor axis direction may be the same as the refractive index of the resin layer.
  • the resin layer 12 includes two surfaces that are substantially parallel to each other; the birefringent layer (ie, the liquid crystal layer) 11 also includes two surfaces that are substantially parallel to each other.
  • the two opposite surfaces of the resin layer 12 may be planes that are parallel to each other, so that the thickness of the resin layer 12 is uniform and convenient to manufacture.
  • the resin layer has a first surface and a second surface opposite to each other; the first surface is a plane, and the second surface is provided with a plurality of V-shaped grooves parallel to each other
  • the birefringent layer is located on the second surface, and the birefringent layer includes a surface parallel to the first surface.
  • FIG. 4 is a schematic partial structural diagram of another optical film provided by an embodiment of the present disclosure.
  • the optical film 20 also includes a cured resin layer 22.
  • FIG. 5 is a schematic diagram of a partial structure of a resin layer of the optical film shown in FIG. 4. Different from the optical film shown in FIG. 3, in the optical film shown in FIG. 4, the resin layer 22 has a first surface and a second surface opposite to each other.
  • the first surface is a plane
  • the second surface is provided with a plurality of V-shaped grooves 22 a parallel to each other, and the liquid crystal layer 21 is located on the second surface. Since a plurality of V-shaped grooves 22a are provided on the second surface, the cross-section of the second surface is sawtooth-shaped.
  • the cross section of the second surface is a cross section perpendicular to the extending direction of the V-shaped groove 22a.
  • the S light entering the liquid crystal layer 21 along the short axis direction of the liquid crystal molecules is refracted by the short axis of the liquid crystal molecules
  • the refractive index is the same as the refractive index of the resin layer 22, and the S light does not deflect when transmitted through the interface between the resin layer 22 and the liquid crystal layer 21.
  • the P light will be deflected when it passes through the interface between the resin layer 22 and the liquid crystal layer 21, so that the exit direction of the P light and the S light after passing through the optical film 20 is more different, so that the P light and the S light are separated. To be even more significant.
  • the thickness of the optical film 20 can be greatly reduced.
  • FIG. 4 also shows an optical path diagram of ambient light passing through the windshield and the optical film in this order. Both surfaces of the windshield 1 are parallel to each other, and both surfaces of the optical film 20 are parallel to each other.
  • the angle ⁇ between the normal line when the light is refracted at the interface between the liquid crystal layer 21 and the resin layer 22 and the normal line when the light is refracted at the interface between the liquid crystal layer 21 and the windshield 1 is an acute angle.
  • the ambient light 100 passes through the windshield 1 and the optical film 20 in order, it can be separated into two beams that are emitted in different directions (as shown by 102 and 101 in FIG. 4).
  • the polarization directions of the two beams of light are perpendicular to each other.
  • each V-shaped groove 22 a is V-shaped.
  • the V-shaped groove 22a includes a first inner wall 221 and a second inner wall 222.
  • the angle between the second inner wall 222 and the first surface is greater than the angle between the first inner wall 221 and the first surface.
  • the angle ⁇ between the first inner wall 221 and the second inner wall 222 is 20 ° to 30 °, and the angle ⁇ between the first inner wall 221 and the first surface of the resin layer 22 is 30 ° to 40 °.
  • the thickness of the optical film 20 may be 1 to 20 mm.
  • an excessive thickness setting reduces the transparency of the windshield 1.
  • a thickness in the range of 1 to 20 mm can ensure better transparency of the windshield 1, and at the same time, P light and S light can be separated sufficiently.
  • the liquid crystal layer includes liquid crystal molecules that can be cross-linked and cured.
  • the polymerizable liquid crystal contains a polymerizable unsaturated functional group, and a liquid crystal polymer network can be formed by means such as ultraviolet irradiation, thereby curing the liquid crystal.
  • the liquid crystal layer may further be doped with a resin.
  • a resin When forming a liquid crystal layer, a small amount of resin is doped into the liquid crystal first, which can reduce the viscosity of the liquid crystal. If the viscosity of the liquid crystal is large during fabrication, a small amount of resin can be added to facilitate the fabrication of the liquid crystal layer.
  • the resin can be uniformly doped into the liquid crystal, so that the viscosity of the liquid crystal can be reduced everywhere, which is convenient for forming a liquid crystal layer having a uniform thickness.
  • the resin doped in the liquid crystal layer may include a low-viscosity small-molecule polymer or monomer that can cross-link and cure double bonds, such as at least one of n-pentene, methacrylic acid, and single-chain olefins.
  • a low-viscosity small-molecule polymer or monomer that can cross-link and cure double bonds such as at least one of n-pentene, methacrylic acid, and single-chain olefins.
  • FIG. 6 is a flowchart of a method for manufacturing an optical film provided by an embodiment of the present disclosure. The method is suitable for manufacturing the optical film shown in FIG. 1. As shown in FIG. 6, the manufacturing method includes the following steps.
  • planar carrier may be a substrate.
  • the optical film includes a birefringent layer, and the birefringent layer separates light transmitted through the optical film into P light and S light, and the exit directions of the P light and S light are different.
  • the optical film can separate the transmitted light into two beams of light, and the exit directions of the two beams of light are different. Therefore, a head-up display is provided above the instrument panel, and the optical film is set on the windshield. Light entering the car through the windshield is split into two beams. By adjusting the relative positions of the head-up display and the optical film, only one of the beams of light can be incident on the head-up display. Since the total amount of light entering the head-up display is reduced, the temperature rise inside the head-up display can be slowed down.
  • the two beams of light separated in the optical film may be polarized light, and the polarization directions of the two beams are perpendicular to each other.
  • the two beams of light formed separately may be P light and S light.
  • the birefringent layer may include a cured liquid crystal layer.
  • the birefringent layer includes a cured liquid crystal layer as an example for description.
  • FIG. 7 is a flowchart of another method for manufacturing an optical film provided by an embodiment of the present disclosure. The method is suitable for manufacturing the optical film shown in FIG. 2. As shown in FIG. 7, the manufacturing method includes the following steps.
  • S21 Provide a first substrate. As shown in FIG. 8, an alignment film 82 is formed on one surface of the first substrate 81.
  • the alignment film 82 is usually made of PI (Polyimide Film).
  • S22 Orienting an alignment film. Specifically, rubbing orientation or photo orientation can be used. The specific operation process of the rubbing orientation and the photo-orientation can adopt the current conventional rubbing orientation and the photo-alignment operation.
  • liquid crystal may be coated on the alignment film 82 to form a liquid crystal layer 11. Since the alignment film has been subjected to rubbing alignment or photo alignment, after the liquid crystal is coated on the alignment film 82, the long axis or the short axis of the liquid crystal can be oriented in a fixed direction. During the process of coating the liquid crystal, the liquid crystal can be heated to reduce the viscosity of the liquid crystal, so that a liquid crystal layer having a uniform thickness can be formed on the alignment film.
  • the liquid crystal applied in step S23 is a polymerizable liquid crystal.
  • the polymerizable liquid crystal contains a polymerizable unsaturated functional group, and a liquid crystal polymer network may be formed by means such as ultraviolet irradiation, thereby curing the liquid crystal.
  • the viscosity of the liquid crystal can also be reduced, thereby reducing the heating time or no heating.
  • the resin can be uniformly doped into the liquid crystal layer, so that the viscosity of the liquid crystal everywhere can be reduced.
  • the liquid crystal layer may be doped with a low-viscosity small-molecule polymer or monomer containing a cross-linkable curing double bond, such as at least one of n-pentene, methacrylic acid, and single-chain olefin.
  • a low-viscosity small-molecule polymer or monomer containing a cross-linkable curing double bond such as at least one of n-pentene, methacrylic acid, and single-chain olefin.
  • the liquid crystal layer 11 can be cured by irradiating the liquid crystal layer 11 with ultraviolet rays.
  • S25 Separate the optical film from the alignment film.
  • the optical film separated from the alignment film 82 is the optical film shown in FIG. 2.
  • FIG. 10 is a flowchart of another method for manufacturing an optical film provided by an embodiment of the present disclosure.
  • the method is suitable for manufacturing the optical film shown in FIG. 3.
  • the manufacturing method includes the following steps.
  • Step S31 Provide a first substrate. Step S31 is the same as step S21 described above, and will not be described in detail here.
  • Step S32 Orienting an alignment film. Step S32 is the same as the foregoing step S22, and will not be described in detail here.
  • Step S33 Applying a liquid crystal layer on the alignment film.
  • Step S33 is the same as the foregoing step S23, and will not be described in detail here.
  • a resin layer is provided on the liquid crystal layer.
  • the short-axis refractive index of the liquid crystal molecules is the same as the refractive index of the resin layer.
  • a second substrate 83 may be specifically provided, and a resin is coated on the second substrate 83 to form a resin layer 12, and then the second substrate 83 is covered on the liquid crystal layer 11 so that the resin layers 12 and The liquid crystal layer 11 is interposed between the first substrate 81 and the second substrate 83.
  • the film layer on the alignment film is cured to form an optical film.
  • the liquid crystal layer 11 may be irradiated with ultraviolet rays to cure the liquid crystal layer 11.
  • the first substrate 81 and the second substrate 82 may be transparent substrates, which may facilitate irradiation of ultraviolet rays.
  • S36 Separate the optical film from the alignment film and the second substrate.
  • the optical film separated from the alignment film 82 and the second substrate 83 is the optical film shown in FIG. 3.
  • the resin layer 12 includes two surfaces that are substantially parallel to each other; the birefringent layer (ie, the liquid crystal layer) 11 also includes two surfaces that are substantially parallel to each other.
  • FIG. 12 is a flowchart of another method for manufacturing an optical film provided by an embodiment of the present disclosure.
  • the method is suitable for manufacturing the optical film shown in FIG. 4.
  • the manufacturing method includes the following steps.
  • Step S41 Provide a first substrate. Step S41 is the same as the foregoing step S21 and will not be described in detail here.
  • Step S42 Orienting an alignment film. Step S42 is the same as the foregoing step S22, and will not be described in detail here.
  • Step S43 Applying a liquid crystal layer on the alignment film.
  • Step S43 is the same as the foregoing step S23, and will not be described in detail here.
  • S44 Provide a second substrate. As shown in FIG. 13, a resin layer 22 is provided on one surface of the second substrate 93.
  • the resin layer 22 has opposite first and second surfaces 22 a and 22 b.
  • the first surface 22 a is a flat surface.
  • the two substrates 93 are bonded together.
  • the resin layer 22 may be formed on the second substrate by coating and curing.
  • a plurality of parallel V-shaped grooves are provided on the second surface.
  • the cross section of the second surface 22b is zigzag.
  • the cross-section of the second surface 22b is a cross-section perpendicular to the extending direction of the V-shaped groove.
  • each V-shaped groove 22 a is V-shaped.
  • the V-shaped groove 22a includes a first inner wall 221 and a second inner wall 222.
  • the angle ⁇ between the first inner wall 221 and the second inner wall 222 is 20 ° to 30 °, and the angle ⁇ between the first inner wall 221 and the first surface of the resin layer 22 is 30 ° to 40 °.
  • the V-shaped groove 22a may be formed by processing a metal roll (for example, a copper roll).
  • FIG. 15 is a schematic diagram of a partial structure of a metal roller according to an embodiment of the present disclosure.
  • a plurality of annular grooves 150 a may be processed on the surface of the metal roller 150.
  • the metal roller 150 is driven to rotate by a device (for example, a motor or the like), and the second substrate 93 provided with the resin layer 22 is passed through the metal roller 150 at a uniform speed.
  • the portion of the resin layer that is passing under the metal roll 150 is cured by light. Since the cured resin material has a certain elasticity, the resin material in contact with the metal roller 150 is cured.
  • the metal roller 150 can be separated from the cured resin without damage to the resin material.
  • the resin layer is completely cured, and a plurality of V-shaped grooves 22a can be formed.
  • the annular groove 150 a on the surface of the metal roller 150 may be formed by machining with a diamond cutter 151.
  • the shape of the annular groove 150 a may be set according to the cross-sectional shape of the V-shaped groove 22 a to be formed on the resin layer 22.
  • nickel may be plated on the surface of the metal roller 150.
  • the surface of the metal roller 150 can be made smoother, which is beneficial to improve the processing accuracy of the resin layer 22.
  • the resin layer 22 may be processed by a tool other than the metal roller 150.
  • a tool other than the metal roller 150 For example, using a plate with a sawtooth edge, the plate is placed vertically with the resin layer 22, and the plate is passed across the surface of the resin layer 22 in a direction perpendicular to the plate, and the portion of the resin layer 22 that has been crossed by the plate is illuminated. Curing. A plurality of V-shaped grooves 22a are scraped out of the resin layer 22 by sawtooth edges.
  • a prism-shaped tool is used to press one edge of the prism-shaped tool into the resin layer 22 and cure the resin material on the side of the prism-shaped tool. After the prism-shaped tool is removed, a V-shaped groove 22 a is formed in the resin layer 22. A plurality of V-shaped grooves 22a can be processed one by one by a prism-shaped tool.
  • multiple V-shaped grooves on the resin layer may also be formed by a photolithography process.
  • a mask 94 may be provided on the uncured resin layer 22.
  • the mask 94 has a plurality of inclined slits 941.
  • the resin layer 22 is irradiated with ultraviolet light through the slit 941, and the ultraviolet light will diffuse at a certain angle after passing through the slit 941. Regions on the resin layer 22 that are irradiated with ultraviolet light are cured, and regions that are not irradiated with ultraviolet light are not cured. After being irradiated with ultraviolet light for a period of time, the uncured resin is removed, so that a plurality of V-shaped grooves 22a are processed on the second surface.
  • the birefringent layer (ie, the liquid crystal layer) is disposed on the second surface, and the birefringent layer includes a surface parallel to the first surface. As shown in FIG. 17, the first substrate 91 and the second substrate 93 are opposed to each other, and the resin layer 22 and the liquid crystal layer 21 are sandwiched between the first substrate 91 and the second substrate 93. The second surface of the resin layer 22 and The liquid crystal layer 21 is bonded.
  • Step S47 The film layer on the alignment film is cured to form an optical film.
  • Step S47 is the same as the foregoing step S35, and will not be described in detail here.
  • S48 Separate the optical film from the alignment film and the second substrate.
  • the optical film separated from the alignment film 92 and the second substrate 93 is the optical film shown in FIG. 4.
  • the thickness of the optical film can be 1 to 20mm.
  • the transparency of the windshield is usually set to 1 to 20mm. It can ensure better transparency of the windshield, and at the same time, the P light and S light can be separated sufficiently.
  • steps S44 to S45 may also precede steps S41 to S43.
  • the optical film may be cut to remove the area of the edge of the optical film.
  • the liquid crystal Before the liquid crystal is cured, the liquid crystal has a certain fluidity, which may cause uneven thickness at the edges of the formed optical film. Cutting the edges can improve the thickness uniformity of the optical film.
  • An embodiment of the present disclosure also provides a windshield.
  • the windshield includes a glass body and an optical film provided on the glass body, and the optical film is any of the foregoing optical films.
  • the optical film can be affixed to the windshield.
  • an optical film can also be embedded in the windshield.
  • the optical film can separate the transmitted light into two beams of light, and the exit directions of the two beams of light are different. Therefore, a head-up display is provided above the instrument panel, and the optical film is set on the windshield. Light entering the car through the windshield is split into two beams. By adjusting the relative positions of the head-up display and the optical film, only one of the beams of light can be incident on the head-up display. Since the total amount of light entering the head-up display is reduced, the temperature rise inside the head-up display can be slowed down.
  • the optical film 181 When the optical film 181 is set on the windshield, it can be placed according to the position of the head-up display. Adjust the setting position of the optical film 181 so that one of the two lights separated after passing through the optical film 181 shines on the head-up display, and the other cannot shine on the head-up display, which can slow down the temperature inside the head-up display Rising situation. By irradiating the weaker one of the two beams to the head-up display, the temperature rise problem inside the head-up display can be further alleviated.
  • An embodiment of the present disclosure further provides a driving device, which includes a heads-up display and the aforementioned windshield.
  • the head-up display is placed under the windshield, and the optical film is disposed on the windshield corresponding to the head-up display, so that one of the two beams of light separated by the optical film can be irradiated on the head-up display.
  • FIG. 18 is a schematic partial structural diagram of a driving device according to an embodiment of the present disclosure.
  • the heads-up display 182 may include a housing 1821 and a display component disposed inside the housing.
  • the housing 1821 has a light outlet 1821a.
  • a polarizing plate 1824 is covered at the light outlet 1821a.
  • the polarizer 1824 is configured to be capable of absorbing light radiated onto the polarizer 1824 after passing through the optical film 181.
  • the polarizer 1824 is configured to be capable of absorbing S-light and transmitting light emitted from the display element.
  • the head-up display After the head-up display is set on the instrument table, by adjusting the position of the optical film 181, the P light separated by the optical film 181 cannot be irradiated to the light outlet 1821a, and only the S light is irradiated to the light outlet 1821a.
  • the S light is absorbed by the polarizer 1824, which can eliminate the ambient light entering the interior of the housing 1821, and reduce the reflection formed at the light exit 1821a to avoid glare. This can further reduce the temperature rise of the head-up display device caused by ambient light.
  • the polarizer 1824 can transmit light emitted from the display component, the head-up display 182 can normally project a picture on the windshield 1.
  • the polarizer 1824 may be configured to be capable of absorbing P light and transmitting light emitted from the display component. After the head-up display is set on the instrument table, by adjusting the position of the optical film 181, the S light separated by the optical film 181 cannot be irradiated to the light output port 1821a, and only P light is irradiated to the light output port 1821a. The P light is absorbed by the polarizer 1824, which can eliminate the ambient light entering the inside of the housing 1821, and reduce the reflected light formed at the light outlet 1821a to avoid glare. Since the polarizer 1824 can transmit light emitted from the display component, the head-up display 182 can normally project a picture on the windshield 1.
  • the display component in the head-up display is usually a liquid crystal display component, and the light emitted by the liquid crystal display component is usually polarized light. Therefore, as long as the polarization direction of the light emitted by the liquid crystal display device is different from the polarization direction of the light absorbed by the polarizer, the light emitted by the liquid crystal display device can pass through the polarizer without affecting the brightness of the display screen.
  • the light emitted by the display component in the head-up display is P light
  • a polarizer that absorbs S light is provided. Then, by adjusting the position of the optical film disposed on the windshield, the S light transmitted through the optical film is irradiated on the polarizer.
  • the light emitted by the display component in the head-up display is S light
  • a polarizer that absorbs P light is provided. Then, by adjusting the position of the optical film provided on the windshield, the P light transmitted through the optical film is irradiated on the polarizer.
  • the light emitted by some liquid crystal display components may also be unpolarized light. At this time, part of the light emitted by the liquid crystal display module can pass through the polarizer, so the user can still observe the displayed picture.
  • the optical film can be provided only in a part of the area on the windshield, so as to reduce the area of the used optical film and reduce the cost.
  • the structure of the display component inside the housing of the head-up display may adopt the structure of the display component inside the housing of the conventional head-up display, and may include, for example, a liquid crystal display 1822 and a reflective sheet 1823.
  • the driving equipment may be a car, a ship, or a spacecraft.

Abstract

一种光学膜片及制作方法、包含该光学膜片的挡风玻璃及驾驶设备,光学膜片包括:双折射层;双折射层将透过所述光学膜片的光分离为两束光,两束光的出射方向不同。在仪表台上方设置抬头显示器,将光学膜片设置到挡风玻璃上。通过挡风玻璃射入车内的光线被分离为两束光。通过调整抬头显示器和光学膜片的相对位置,可以只使其中一束光射入到抬头显示器中。由于进入抬头显示器的总光量减少了,可以减缓抬头显示器内部温度上升的情况。

Description

光学膜片及制作方法、挡风玻璃、驾驶设备
相关申请
本申请要求保护在2018年5月23日提交的申请号为201810502994.5的中国专利申请的优先权,该申请的全部内容以引用的方式结合到本文中。
技术领域
本公开涉及车载设备领域,特别涉及一种光学膜片及制作方法、挡风玻璃、驾驶设备。
背景技术
抬头显示器(Head Up Display,HUD)早先是应用在航空器上的一种设备。抬头显示器可以在航空器的挡风玻璃上显示出各种仪表的数据,使驾驶员不需要转移视线至仪表盘就可以查看仪表盘数据,大大方便了驾驶员操作航空器。目前,抬头显示器也被越来越多地使用于汽车上。
发明内容
本公开实施例提供了一种光学膜片及制作方法、挡风玻璃、驾驶设备。
第一方面,本公开实施例提供了一种光学膜片,所述光学膜片包括双折射层;所述双折射层将透过所述光学膜片的光分离为两束光,所述两束光的出射方向不同。
可选地,所述光学膜片还包括固化的树脂层,所述双折射层位于所述树脂层上,所述双折射层的寻常光折射率与所述树脂层的折射率相同。
可选地,所述树脂层包括基本上相互平行的两个表面;所述双折射层也包括基本上相互平行的两个表面。
可选地,所述树脂层具有相对的第一表面和第二表面;所述第一表面为平面,所述第二表面上设置有相互平行的多道V型凹槽;所述双折射层位于所述第二表面上,所述双折射层包括平行于所述第一表 面的表面。
可选地,所述V型凹槽具有第一内壁和第二内壁,所述第二内壁与所述第一表面的夹角大于所述第一内壁与所述第一表面的夹角,所述第一内壁与所述第一表面的夹角为30°~40°,所述第二内壁与所述第二内壁的夹角为20°~30°。
可选地,所述双折射层包括固化的液晶层,所述液晶层中的所有液晶分子的短轴相互平行。
可选地,所述液晶层中掺杂有树脂。
第二方面,本公开实施例提供了一种光学膜片的制作方法,所述制作方法包括:提供一平面载体;在所述平面载体上形成光学膜片,所述光学膜片包括双折射层,所述双折射层将透过所述光学膜片的光分离为两束光,所述两束光的出射方向不同;以及将所述光学膜片从所述平面载体上分离。
可选地,所述在所述平面载体上形成光学膜片,包括:在所述平面载体上形成双折射层;所述双折射层位于所述树脂层上,所述双折射层的寻常光折射率与所述树脂层的折射率相同。
可选地,所述树脂层包括基本上相互平行的两个表面;所述双折射层也包括基本上相互平行的两个表面。
可选地,所述在所述双折射层上形成树脂层,包括:提供一基板,所述基板的一面上设置有树脂层,所述树脂层具有相对的第一表面和第二表面,所述第一表面为平面,所述第一表面与所述基板贴合;在所述第二表面上设置相互平行的多道V型凹槽;以及将所述双折射层布置在所述第二表面上,所述双折射层包括平行于所述第一表面的表面。
可选地,所述V型凹槽具有第一内壁和第二内壁,所述第二内壁与所述第一表面的夹角大于所述第一内壁与所述第一表面的夹角,所述第一内壁与所述第一表面的夹角为30°~40°,所述第二内壁与所述第二内壁的夹角为20°~30°。
第三方面,本公开实施例还提供了一种挡风玻璃,所述挡风玻璃包括玻璃主体和设置在所述玻璃主体上的如前所述的任一种光学膜片。
第四方面,本公开实施例还提供了一种驾驶设备,所述驾驶设备包括挡风玻璃和如前所述的挡风玻璃,所述抬头显示器置于所述挡风 玻璃下方,所述光学膜片对应所述抬头显示器设置在所述挡风玻璃上,使所述光学膜片分离出的两束光中的一束能够照射在所述抬头显示器上。
可选地,所述抬头显示器包括壳体和设置在所述壳体内部的显示组件;所述壳体上具有一出光口,所述出光口处盖设有偏光片;所述偏光片能够吸收透过所述光学膜片后照射到所述偏光片上的光,且能够透过所述显示组件发出的光。
附图说明
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例提供的一种光学膜片透射光线的示意图;
图2是本公开实施例提供的一种光学膜片的局部结构示意图;
图3是本公开实施例提供的另一种光学膜片的局部结构示意图;
图4是本公开实施例提供的另一种光学膜片的局部结构示意图;
图5是图4所示光学膜片的树脂层的局部结构示意图;
图6是本公开实施例提供的一种光学膜片的制作方法流程图;
图7是本公开实施例提供的另一种光学膜片的制作方法流程图;
图8~图9是本公开实施例提供的一种光学膜片制作过程示意图;
图10是本公开实施例提供的另一种光学膜片的制作方法流程图;
图11是本公开实施例提供的一种光学膜片制作过程示意图;
图12是本公开实施例提供的另一种光学膜片的制作方法流程图;
图13~14是本公开实施例提供的一种光学膜片制作过程示意图;
图15是本公开实施例提供的一种金属辊的局部结构示意图;
图16~17是本公开实施例提供的一种光学膜片制作过程示意图;以及
图18是本公开实施例提供的一种驾驶设备的局部结构示意图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方 案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
抬头显示器通常设置在汽车的仪表盘上。抬头显示器具有一个投射口,抬头显示器的显示画面通过投射口投射至挡风玻璃,经挡风玻璃反射后,可以被驾驶员观察到。当汽车在室外行驶时,环境光(例如阳光)透过挡风玻璃后,可能会通过投射口射入抬头显示器内部,从而导致抬头显示器内部温度上升,影响抬头显示器的正常工作。
本公开实施例提供了一种光学膜片,该光学膜片应用于挡风玻璃上,图1是本公开实施例提供的一种光学膜片透射光线的示意图。如图1所示,该光学膜片10被配置为能够将透过光学膜片的光分离为两束光(如图1中的两条出射光线101和102),两束光的出射方向不同。
如图1所示,该光学膜片10设置在挡风玻璃1的内侧(即挡风玻璃朝向驾驶室的一侧),环境光100(包括挡风玻璃外侧的阳光)在照射到挡风玻璃1上,一部分光线透过挡风玻璃1后射入光学膜片10,由于光学膜片10可以将透过光学膜片10的光分离为两束光,因此透过挡风玻璃1的同一束光从同一点以相同的入射角射入光学膜片10后被分离成两束光,两束光的传播方向呈一定角度。
如图1所示,所述光学膜片10包括:双折射层10′;所述双折射层10′将透过所述光学膜片的光分离为两束光,所述两束光的出射方向不同。
该光学膜片可以将透过的光分离为两束光,且两束光的出射方向不同。因此,在仪表台上方设置抬头显示器,将该光学膜片设置到挡风玻璃上。通过挡风玻璃射入车内的光线被分离为两束光。通过调整抬头显示器和光学膜片的相对位置,可以只使其中一束光射入到抬头显示器中。由于进入抬头显示器的总光量减少了,可以减缓抬头显示器内部温度上升的情况。
光学膜片10可以包括双折射层10′,光线在双折射层10′中发生双折射后产生双折射现象,从而分离为振动方向相互垂直的两束偏振光,两束偏振光沿着不同的方向传播,例如分离形成沿不同方向传播的一束P光和一束S光。
当环境光以布儒斯特角入射挡风玻璃1时,挡风玻璃1反射的光和透过挡风玻璃1的光相互垂直,且挡风玻璃1反射的光为线偏振光(该线偏振光为S光)。透过挡风玻璃1的光则包括两种偏振方向相互垂直的光(例如S光和P光)。由于挡风玻璃1反射了一部分线偏振光,因此透过的两种偏振方向相互垂直的光中,S光的强度会小于P光的强度。此时通过调整抬头显示器,使透过挡风玻璃的S光照射到抬头显示器中,则可以使进入抬头显示器的总光量进一步降低。
在本公开的一种实现方式中,双折射层可以包括固化的液晶层。图2是本公开实施例提供的一种光学膜片的局部结构示意图,其中光学膜片10中的双向箭头(double-headed arrow)表示液晶分子的长轴,液晶层11中的所有液晶分子的短轴相互平行,液晶层11中的所有液晶分子的长轴相互平行。利用液晶的双折射可以将一束光分离为两束光,易于实现。液晶分离的两束光的偏振方向相互垂直。
在根据挡风玻璃1选择图2所示的光学膜片时,液晶层11的液晶分子的短轴折射率为挡风玻璃1的折射率的95%~105%,将液晶层11的短轴折射率设置的与挡风玻璃1的折射率较接近可以减小设置光学膜片11对挡风玻璃1的透明度的影响。
光学膜片还可以包括固化的树脂层,双折射层位于树脂层上。双折射层的寻常光折射率与树脂层的折射率相同。当双折射层包括固化的液晶层时,双折射层的寻常光折射率即为液晶层的短轴折射率。本实施例以双折射层包括固化的液晶层11为例进行说明。图3是本公开实施例提供的另一种光学膜片的局部结构示意图。如图3所示,该光学膜片还可以包括固化的树脂层12,液晶层11位于树脂层12上。液晶分子的短轴折射率与树脂层12的折射率相同。树脂层12可以作为液晶层11的载体。在将光学膜片10粘贴到挡风玻璃1时,液晶层11位于挡风玻璃1和树脂层12之间,树脂层12可以对液晶层11进行保护。挡风玻璃的折射率、液晶分子短轴方向的折射率均可以与树脂层的折射率相同。
可选地,如图3所示,所述树脂层12包括基本上相互平行的两个表面;所述双折射层(即,液晶层)11也包括基本上相互平行的两个表面。如图3所示,树脂层12的相对的两个表面可以为相互平行的平面,这样树脂层12厚度均匀,方便制作。
可选地,在一些实施例中,所述树脂层具有相对的第一表面和第二表面;所述第一表面为平面,所述第二表面上设置有相互平行的多道V型凹槽;所述双折射层位于所述第二表面上,所述双折射层包括平行于所述第一表面的表面。
图4是本公开实施例提供的另一种光学膜片的局部结构示意图。为了便于光路的展示,图4中去除了图示光路附近的用于指示液晶分子长轴的双向箭头。如图4所示,该光学膜片20同样也包括固化的树脂层22。图5是图4所示光学膜片的树脂层的局部结构示意图。与图3所示的光学膜片不同的是,图4所示的光学膜片中,树脂层22具有相对的第一表面和第二表面。第一表面为平面,而第二表面上设置有相互平行的多道V型凹槽22a,液晶层21位于第二表面上。由于第二表面上设置有多道V型凹槽22a,使得第二表面的横截面呈锯齿状。第二表面的横截面为垂直于V型凹槽22a的延伸方向的截面。以S光的振动方向与液晶分子的短轴方向相同为例,在设置V型凹槽22a后,对于沿着液晶分子的短轴方向入射液晶层21的S光,由于液晶分子的短轴折射率与树脂层22的折射率相同,在透过树脂层22和液晶层21的交界面时S光不会发生偏折。P光则会在透过树脂层22和液晶层21的交界面时偏折,从而使P光和S光在透过光学膜片20后的出射方向相差更大,使P光和S光分开得更加显著。相比于图2和图3所示的光学膜片,这样可以大大降低光学膜片20的厚度。
图4中还示出了环境光依次透过挡风玻璃和光学膜片的光路图。挡风玻璃1的两个表面相互平行,光学膜片20的两个表面相互平行。光线在液晶层21和树脂层22的界面处发生折射时的法线与光线在液晶层21和挡风玻璃1的界面处发生折射时的法线的夹角θ为锐角。根据图4所示的光路图可知,环境光100在依次经过挡风玻璃1和光学膜片20后可以被分离为以不同方向射出的两束光(如图4中的102和101所示),该两束光的偏振方向相互垂直。
如图5所示,每道V型凹槽22a的横截面均呈V型。以其中一道V型凹槽为例,V型凹槽22a包括第一内壁221和第二内壁222,第二内壁222与第一表面的夹角大于第一内壁221与第一表面的夹角,第一内壁221和第二内壁222之间的夹角α为20°~30°,第一内壁221与树脂层22的第一表面的夹角β为30°~40°。将夹角α和夹角β设 置在该范围内可以使环境光大部分都照射到第一内壁221上,这样可以使分离出来的两束光之间的夹角较大,如果夹角α和夹角β过小,会使得固化后锯齿的顶部223容易出现断裂。
可选地,光学膜片20的厚度可以为1~20mm,光学膜片20厚度越大则P光和S光分开得越显著。但是厚度设置的过大会降低挡风玻璃1的透明度。通常,厚度在1~20mm的范围内可以保证挡风玻璃1较好的透明度,同时也可以将P光和S光分开得足够开。
在图2~图4所示的光学膜片中,液晶层包括可交联固化的液晶分子。可聚合液晶含有可聚合的不饱和官能团,可以通过紫外线照射等方式形成液晶聚合物网络,从而使液晶固化。
在另一种实现方式中,液晶层中还可以掺杂有树脂。在形成液晶层时,先向液晶中掺杂进少量的树脂,可以降低液晶的粘度。如果在制作时液晶的粘度较大,则可以掺入少量树脂,以方便液晶层的制作。树脂可以均匀掺杂进入液晶中,使各处的液晶的粘度都能得到降低,便于形成厚度均匀的液晶层。
实现时,液晶层中掺杂的树脂可以包括可交联固化双键的低粘度小分子聚合物或单体,例如正戊烯、甲基丙烯酸、单链的烯烃中的至少一种。通过向液晶中掺入粘度较低的物质,以降低液晶的粘度。
图6是本公开实施例提供的一种光学膜片的制作方法流程图,该方法适用于制作图1所示的光学膜片。如图6所示,该制作方法包括以下步骤。
S11:提供一平面载体。平面载体可以为基板。
S12:在平面载体上形成光学膜片。所述光学膜片包括双折射层,所述双折射层将透过所述光学膜片的光分离为P光和S光,P光和S光的出射方向不同。
S13:将光学膜片从平面载体上分离。
该光学膜片可以将透过的光分离为两束光,且两束光的出射方向不同。因此,在仪表台上方设置抬头显示器,将该光学膜片设置到挡风玻璃上。通过挡风玻璃射入车内的光线被分离为两束光。通过调整抬头显示器和光学膜片的相对位置,可以只使其中一束光射入到抬头显示器中。由于进入抬头显示器的总光量减少了,可以减缓抬头显示器内部温度上升的情况。
实现时,在光学膜片中分离形成的两束光可以均为偏振光,且两束光的偏振方向相互垂直,例如分离形成的两束光可以一束为P光一束为S光。
双折射层可以包括固化的液晶层。本实施例以双折射层包括固化的液晶层为例进行说明。图7是本公开实施例提供的另一种光学膜片的制作方法流程图,该方法适用于制作图2所示的光学膜片,如图7所示,该制作方法包括以下步骤。
S21:提供一第一基板。如图8所示,第一基板81的一面形成有取向膜82。取向膜82通常采用PI(Polyimide Film,聚酰亚胺薄膜)制成。
S22:对取向膜进行取向。具体可以采用摩擦取向或是光取向。摩擦取向和光取向的具体操作过程可以采用目前常规的摩擦取向和光取向操作。
S23:在取向膜上涂布液晶层。如图9所示,在完成对取向膜82的取向后,可以在取向膜82上涂布液晶,从而形成液晶层11。由于取向膜已经进行了摩擦取向或是光取向,在将液晶涂布到取向膜82上后,可以使液晶的长轴或是短轴朝向固定的方向。在涂布液晶的过程中,可以对液晶进行加热,以降低液晶的粘性,使取向膜上可以形成厚度均匀的液晶层。
可选地,在步骤S23中所涂布的液晶为可聚合液晶,可聚合液晶含有可聚合的不饱和官能团,可以通过紫外线照射等方式形成液晶聚合物网络,从而使液晶固化。
在均匀涂布液晶前,还可以在液晶中掺杂树脂,通过向液晶中掺杂进少量的树脂,也可以降低液晶的粘度,从而减少加热时间或是不加热,便于制作厚度均匀的液晶层,树脂可以均匀掺杂进入液晶层中,使各处的液晶的粘度都能得到降低。
在其他实施例中,液晶层中也可以掺杂含有可交联固化双键的低粘度小分子聚合物或单体,例如正戊烯、甲基丙烯酸、单链的烯烃中的至少一种。通过向液晶中掺入粘度较低的物质,以降低液晶的粘度。
S24:对取向膜上的膜层进行固化,形成光学膜片。实现时,可以通过紫外线照射液晶层11,使液晶层11固化。
S25:将光学膜片从取向膜上分离。从取向膜82上分离后的光学 膜片即为图2所示的光学膜片。
图10是本公开实施例提供的另一种光学膜片的制作方法流程图,该方法适用于制作图3所示的光学膜片,如图10所示,该制作方法包括以下步骤。
S31:提供一第一基板。步骤S31与前述的步骤S21相同,此处不再详述。
S32:对取向膜进行取向。步骤S32与前述的步骤S22相同,此处不再详述。
S33:在取向膜上涂布液晶层。步骤S33与前述的步骤S23相同,此处不再详述。
S34:在液晶层上设置树脂层。其中,液晶分子的短轴折射率与树脂层的折射率相同。
如图11所示,具体可以设置一第二基板83,在第二基板83上涂覆树脂,以形成树脂层12,然后将第二基板83盖设在液晶层11上,使树脂层12和液晶层11夹设在第一基板81和第二基板83之间。
S35:对取向膜上的膜层进行固化,形成光学膜片。具体可以通过紫外线照射液晶层11,使液晶层11固化。第一基板81和第二基板82可以为透明基板,这样可以便于紫外线的照射。
S36:将光学膜片从取向膜和第二基板上分离。从取向膜82和第二基板83上分离后的光学膜片即为图3所示的光学膜片。
由此,所述树脂层12包括基本上相互平行的两个表面;所述双折射层(即,液晶层)11也包括基本上相互平行的两个表面。
图12是本公开实施例提供的另一种光学膜片的制作方法流程图,该方法适用于制作图4所示的光学膜片。如图12所示,该制作方法包括以下步骤。
S41:提供一第一基板。步骤S41与前述的步骤S21相同,此处不再详述。
S42:对取向膜进行取向。步骤S42与前述的步骤S22相同,此处不再详述。
S43:在取向膜上涂布液晶层。步骤S43与前述的步骤S23相同,此处不再详述。
S44:提供一第二基板。如图13所示,第二基板93的一面上设置 有树脂层22,树脂层22具有相反的第一表面22a和第二表面22b,第一表面22a为平面,其中,第一表面22a与第二基板93贴合。树脂层22可以通过涂覆和固化的方式形成在第二基板上。
S45:在第二表面上设置相互平行的多道V型凹槽。通过设置出多道V型凹槽,使第二表面22b的横截面呈锯齿状。其中,第二表面22b的横截面为垂直于V型凹槽的延伸方向的截面。
如图14所示,每道V型凹槽22a的横截面均呈V型。以其中一道V型凹槽为例,V型凹槽22a包括第一内壁221和第二内壁222,第二内壁222与第一表面的夹角大于第一内壁221与第一表面的夹角,第一内壁221和第二内壁222之间的夹角α为20°~30°,第一内壁221与树脂层22的第一表面的夹角β为30°~40°。
实现时,V型凹槽22a可以通过金属辊(例如铜辊)加工形成。
图15是本公开实施例提供的一种金属辊的局部结构示意图。如图15所示,在金属辊150的表面上可以加工出多道环形槽150a。通过设备(例如电动机等)带动金属辊150转动,将设置有树脂层22的第二基板93从金属辊150的下方匀速通过。使金属辊150在树脂层22上滚动,且在第二基板93从金属辊150的下方逐渐通过的过程中,对树脂层的正在从金属辊150下方通过的部分进行光照固化。由于固化后的树脂材料具有一定的弹性,因此与金属辊150接触的树脂材料固化后。金属辊150可以与固化的树脂分离而树脂材料不出现破损。当第二基板93从金属辊150下方完全通过时,树脂层被完全固化,则可以形成多道V型凹槽22a。
金属辊150表面上的环形槽150a可以通过金刚石刀具151加工形成。环形槽150a的形状可以根据在树脂层22上所要形成的V型凹槽22a的截面形状设置。
在金属辊150表面加工出环形槽150a后还可以在金属辊150的表面镀镍。这样可以使金属辊150的表面更加光滑,有利于提高树脂层22的加工精度。
此外,也可以通过金属辊150之外的其他工具加工树脂层22。例如采用一块具有一条锯齿边的板材,将板材垂直树脂层22放置,沿垂直于板材的方向将板材从树脂层22的表面划过,同时对树脂层22的已被板材划过的部分进行光照固化。通过锯齿边在树脂层22上刮出多 条V型凹槽22a。
或者,采用一棱柱形工具,将棱柱形工具的一条棱压入树脂层22并将棱柱形工具一侧的树脂材料固化。将棱柱形工具取下后即在树脂层22上形成了一条V型凹槽22a。通过棱柱形工具可以逐条加工出多条V型凹槽22a。
在另一种实现方式中,树脂层上的多道V型凹槽还可以通过光刻工艺形成。
如图16所示,可以在未固化的树脂层22上设置掩膜94。掩膜94上具有多道倾斜的狭缝941。通过狭缝941对树脂层22进行紫外光照射,紫外光在通过狭缝941后会以一定的夹角扩散。树脂层22上被紫外光照射到的区域会固化,未被紫外光照射到的区域则不会固化。在通过紫外光照射一段时间后,去除未固化的树脂,从而在第二表面上加工出多道V型凹槽22a。
实现时,在对光刻胶94进行光照时,光线倾斜照射在光刻胶94上,以形成可以刻蚀出V型凹槽22a的图形。
S46:将所述双折射层(即,液晶层)布置在所述第二表面上,所述双折射层包括平行于所述第一表面的表面。如图17所示,将第一基板91和第二基板93对合,使树脂层22和液晶层21夹设在第一基板91和第二基板93之间,树脂层22的第二表面与液晶层21贴合。
S47:对取向膜上的膜层进行固化,形成光学膜片。步骤S47与前述的步骤S35相同,此处不再详述。
S48:将光学膜片从取向膜和第二基板上分离。从取向膜92和第二基板93上分离后的光学膜片即为图4所示的光学膜片。
分离后,光学膜片的厚度可以为1~20mm,光学膜片厚度越大则P光和S光分开得越显著,但是厚度设置的过大会降低挡风玻璃的透明度,通常设置在1~20mm可以保证挡风玻璃较好的透明度,同时也可以将P光和S光分开得足够开。
在具体实现时,步骤S44~S45也可以在步骤S41~S43之前。
在采用图6~图17所示的方法制作光学膜片时,在分离出光学膜片后,可以对光学膜片进行裁剪,以去除光学膜片边缘的区域。在固化液晶前,液晶具有一定的流动性,这会使得形成的光学膜片的边缘处厚度不均匀。对边缘进行裁剪可以提高光学膜片的厚度的均匀性。
本公开实施例还提供了一种挡风玻璃。该挡风玻璃包括玻璃主体和设置在玻璃主体上的光学膜片,该光学膜片为前述的任一种光学膜片。
实现时,光学膜片可以粘贴在挡风玻璃上。此外,由于挡风玻璃通常都是夹层玻璃,因此也可以将光学膜片嵌入挡风玻璃中。
该光学膜片可以将透过的光分离为两束光,且两束光的出射方向不同。因此,在仪表台上方设置抬头显示器,将该光学膜片设置到挡风玻璃上。通过挡风玻璃射入车内的光线被分离为两束光。通过调整抬头显示器和光学膜片的相对位置,可以只使其中一束光射入到抬头显示器中。由于进入抬头显示器的总光量减少了,可以减缓抬头显示器内部温度上升的情况。
在将光学膜片181设置到挡风玻璃上时,可以根据抬头显示器放置的位置。调整光学膜片181的设置位置,使透过光学膜片181后分离出的两束光中的一束照射到抬头显示器上,而另一束无法照射到抬头显示器上,可以减缓抬头显示器内部温度上升的情况。通过使两束光中较弱的一束照射到抬头显示器上,可以进一步减缓抬头显示器内部的温升问题。
本公开实施例还提供了一种驾驶设备,该驾驶设备包括抬头显示器和前述的挡风玻璃。抬头显示器置于挡风玻璃下方,光学膜片对应抬头显示器设置在挡风玻璃上,使光学膜片分离出的两束光中的一束能够照射在所述抬头显示器上。
图18是本公开实施例提供的一种驾驶设备的局部结构示意图。如图18所示,抬头显示器182可以包括壳体1821和设置在壳体内部的显示组件。壳体1821上具有一出光口1821a。出光口1821a处盖设有偏光片1824。偏光片1824被配置为能够吸收透过光学膜片181后照射到偏光片1824上的光。在本实施例中,偏光片1824被配置为能够吸收S光,且能够透过显示组件发出的光。在将抬头显示器设置到仪表台上后,通过调整光学膜片181的位置,使光学膜片181分离出来的P光无法照射到出光口1821a,而只有S光照射到出光口1821a处。S光被偏光片1824吸收,可以消除进入到壳体1821内部的环境光,并减少出光口1821a处形成的反光,避免出现眩光。这样可以进一步减小环境光造成的抬头显示器设备升温。同时,由于偏光片1824可以透过 显示组件发出的光,使得抬头显示器182可以正常在挡风玻璃1上投影画面。
在本公开的另一种实现方式中,偏光片1824也可以被配置为能够吸收P光,且能够透过显示组件发出的光。在将抬头显示器设置到仪表台上后,通过调整光学膜片181的位置,使光学膜片181分离出来的S光无法照射到出光口1821a,而只有P光照射到出光口1821a处。P光被偏光片1824吸收,可以消除进入到壳体1821内部的环境光,并减少出光口1821a处形成的反光,避免出现眩光。由于偏光片1824可以透过显示组件发出的光,使得抬头显示器182可以正常在挡风玻璃1上投影画面。
本领域技术人员容易理解,抬头显示器中的显示组件通常为液晶显示组件,液晶显示组件发出的光通常为偏振光。因此,只需要液晶显示组件发出的光的偏振方向与偏光片所能吸收的光的偏振方向不同,液晶显示组件发出的光就可以透过偏光片,且不会影响显示画面的亮度。在实际设置时,如果抬头显示器中的显示组件发出的光为P光,则设置吸收S光的偏光片。然后通过调整设置在挡风玻璃上的光学膜片的位置,使透过光学膜片的S光照射在偏光片上。如果抬头显示器中的显示组件发出的光为S光,则设置吸收P光的偏光片。然后通过调整设置在挡风玻璃上的光学膜片的位置,使透过光学膜片的P光照射在偏光片上。
部分液晶显示组件发出的光也可能是非偏振光。这时液晶显示组件发出的光仍有部分可以通过偏振片,因此使用者仍可以观察到显示的画面。
在实际设置时,可以只在挡风玻璃上的部分区域设置光学膜片,以减小使用的光学膜片的面积,降低成本。
抬头显示器的壳体内部的显示组件的结构可以采用常规的抬头显示器的壳体内部的显示组件的结构,例如可以包括液晶显示屏1822和反光片1823。
可选地,该驾驶设备可以是车、船、航天器。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此。任何熟悉本技术领域的技术人员在本公开揭露的技术范 围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种光学膜片,包括:双折射层;所述双折射层将透过所述光学膜片的光分离为两束光,所述两束光的出射方向不同。
  2. 根据权利要求1所述的光学膜片,还包括固化的树脂层;其中,所述双折射层位于所述树脂层上,所述双折射层的寻常光折射率与所述树脂层的折射率相同。
  3. 根据权利要求2所述的光学膜片,其中,所述树脂层包括基本上相互平行的两个表面;所述双折射层也包括基本上相互平行的两个表面。
  4. 根据权利要求2所述的光学膜片,其中,所述树脂层具有相对的第一表面和第二表面;所述第一表面为平面,所述第二表面上设置有相互平行的多道V型凹槽;所述双折射层位于所述第二表面上,所述双折射层包括平行于所述第一表面的表面。
  5. 根据权利要求4所述的光学膜片,其中,所述V型凹槽具有第一内壁和第二内壁,所述第二内壁与所述第一表面的夹角大于所述第一内壁与所述第一表面的夹角,所述第一内壁与所述第一表面的夹角为30°~40°,所述第一内壁与所述第二内壁的夹角为20°~30°。
  6. 根据权利要求1~5任一项所述的光学膜片,其中,所述双折射层包括固化的液晶层,所述液晶层中的所有液晶分子的短轴相互平行。
  7. 根据权利要求6所述的光学膜片,其中,所述液晶层中掺杂有树脂。
  8. 一种光学膜片的制作方法,包括:
    提供一平面载体;
    在所述平面载体上形成光学膜片;所述光学膜片包括双折射层,所述双折射层将透过所述光学膜片的光分离为两束光,所述两束光的出射方向不同;以及
    将所述光学膜片从所述平面载体上分离。
  9. 根据权利要求8所述的制作方法,其中,所述在所述平面载体上形成光学膜片,包括:
    在所述双折射层上形成树脂层;所述双折射层位于所述树脂层上,所述双折射层的寻常光折射率与所述树脂层的折射率相同。
  10. 根据权利要求9所述的制作方法,其中,所述树脂层包括基本上相互平行的两个表面;所述双折射层也包括基本上相互平行的两个表面。
  11. 根据权利要求9所述的制作方法,其中,所述在所述双折射层上形成树脂层,包括:
    提供一基板,所述基板的一面上设置有树脂层,所述树脂层具有相对的第一表面和第二表面,所述第一表面为平面,所述第一表面与所述基板贴合;
    在所述第二表面上设置相互平行的多道V型凹槽;以及
    将所述双折射层布置在所述第二表面上,所述双折射层包括平行于所述第一表面的表面。
  12. 根据权利要求11所述的制作方法,其中,所述V型凹槽具有第一内壁和第二内壁,所述第二内壁与所述第一表面的夹角大于所述第一内壁与所述第一表面的夹角,所述第一内壁与所述第一表面的夹角为30°~40°,所述第二内壁与所述第二内壁的夹角为20°~30°。
  13. 一种挡风玻璃,包括玻璃主体和设置在所述玻璃主体上的如权利要求1~7任一项所述的光学膜片。
  14. 一种驾驶设备,包括抬头显示器和如权利要求13所述的挡风玻璃,所述抬头显示器置于所述挡风玻璃下方,所述光学膜片对应所述抬头显示器设置在所述挡风玻璃上,使所述光学膜片分离出的两束光中的一束能够照射在所述抬头显示器上。
  15. 根据权利要求14所述的驾驶设备,其中,所述抬头显示器包括壳体和设置在所述壳体内部的显示组件;所述壳体上具有一出光口,所述出光口处盖设有偏光片;所述偏光片能够吸收透过所述光学膜片后照射到所述偏光片上的光,且能够透过所述显示组件发出的光。
PCT/CN2019/075789 2018-05-23 2019-02-22 光学膜片及制作方法、挡风玻璃、驾驶设备 WO2019223375A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/621,716 US11360254B2 (en) 2018-05-23 2019-02-22 Optical film, fabrication method thereof, windshield and driving apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810502994.5A CN108761618B (zh) 2018-05-23 2018-05-23 光学膜片及制作方法、挡风玻璃、驾驶设备
CN201810502994.5 2018-05-23

Publications (1)

Publication Number Publication Date
WO2019223375A1 true WO2019223375A1 (zh) 2019-11-28

Family

ID=64005137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/075789 WO2019223375A1 (zh) 2018-05-23 2019-02-22 光学膜片及制作方法、挡风玻璃、驾驶设备

Country Status (3)

Country Link
US (1) US11360254B2 (zh)
CN (1) CN108761618B (zh)
WO (1) WO2019223375A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108761618B (zh) * 2018-05-23 2020-05-19 京东方科技集团股份有限公司 光学膜片及制作方法、挡风玻璃、驾驶设备
CN114594607A (zh) * 2022-03-23 2022-06-07 业成科技(成都)有限公司 光学膜片、其制备方法、抬头显示器及车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1904698A (zh) * 2005-07-30 2007-01-31 三星电子株式会社 偏振补偿膜和具有其的显示面板组件及其制造方法
CN103885173A (zh) * 2014-03-13 2014-06-25 明基材料有限公司 光切换模组
CN105372875A (zh) * 2015-11-20 2016-03-02 明基材料有限公司 量子棒膜
CN107054202A (zh) * 2017-05-04 2017-08-18 京东方科技集团股份有限公司 一种交通工具及其光线控制装置、光线控制方法
CN107735718A (zh) * 2015-06-26 2018-02-23 株式会社电装 平视显示装置
CN108761618A (zh) * 2018-05-23 2018-11-06 京东方科技集团股份有限公司 光学膜片及制作方法、挡风玻璃、驾驶设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02152102A (ja) * 1988-12-02 1990-06-12 Nissan Shatai Co Ltd 車両用灯具
US5486949A (en) * 1989-06-20 1996-01-23 The Dow Chemical Company Birefringent interference polarizer
DE19619460A1 (de) * 1996-05-14 1997-11-20 Consortium Elektrochem Ind Flüssigkristallmischungen, Verfahren zu ihrer Herstellung und ihre Verwendung
US5914811A (en) * 1996-08-30 1999-06-22 University Of Houston Birefringent grating polarizing beam splitter
FR2759765B1 (fr) * 1997-02-18 1999-06-04 Valeo Vision Projecteur du type elliptique, notamment pour vehicule automobile
JP3434701B2 (ja) * 1998-04-06 2003-08-11 大日本印刷株式会社 偏光分離シート、光学シート積層体、面光源装置、及び、透過型表示装置
JP2007041583A (ja) 2005-07-30 2007-02-15 Samsung Electronics Co Ltd 偏光補償フィルム、偏光プリズムフィルムの製造方法、表示パネルアセンブリ、及び表示装置
DE102011014145A1 (de) 2010-12-23 2012-06-28 Continental Automotive Gmbh Head-up-Display für ein Kraftfahrzeug
JP6221941B2 (ja) * 2014-05-26 2017-11-01 株式会社デンソー ヘッドアップディスプレイ装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1904698A (zh) * 2005-07-30 2007-01-31 三星电子株式会社 偏振补偿膜和具有其的显示面板组件及其制造方法
CN103885173A (zh) * 2014-03-13 2014-06-25 明基材料有限公司 光切换模组
CN107735718A (zh) * 2015-06-26 2018-02-23 株式会社电装 平视显示装置
CN105372875A (zh) * 2015-11-20 2016-03-02 明基材料有限公司 量子棒膜
CN107054202A (zh) * 2017-05-04 2017-08-18 京东方科技集团股份有限公司 一种交通工具及其光线控制装置、光线控制方法
CN108761618A (zh) * 2018-05-23 2018-11-06 京东方科技集团股份有限公司 光学膜片及制作方法、挡风玻璃、驾驶设备

Also Published As

Publication number Publication date
CN108761618A (zh) 2018-11-06
US11360254B2 (en) 2022-06-14
CN108761618B (zh) 2020-05-19
US20210141136A1 (en) 2021-05-13

Similar Documents

Publication Publication Date Title
JP5095749B2 (ja) 表面レリーフ複屈折液晶素子の製造方法およびそれを用いたディスプレイの製造方法
US10852632B2 (en) Transparent screen sheet, transparent screen, and image display system
US9933619B2 (en) Member for projection image display and projection image display system
JP4446307B2 (ja) 積層フィルムの製造方法、積層フィルム、および表示装置の製造方法
US11571952B2 (en) Head up display device and image display apparatus therefor
US20190064422A1 (en) Backlight module and display device
KR20070090662A (ko) 개선된 광 제어 필름 복합체 및 이를 포함하는 lcd 장치
WO2017086002A1 (ja) ヘッドアップディスプレイ装置
KR100210187B1 (ko) 결함을 감소시킨 액정판넬 및 액정판넬을 광공간 변조기로서 사용한 이미지 프로젝터
JP5536506B2 (ja) 液晶表示装置
WO2019223375A1 (zh) 光学膜片及制作方法、挡风玻璃、驾驶设备
KR20120029469A (ko) 정밀하게 제어되는 출력을 가진 평면 광학 디스플레이 시스템
KR20160129220A (ko) 액정표시장치
KR102315475B1 (ko) 광학 부재
JPWO2020095612A1 (ja) ヘッドアップディスプレイ装置
JP6150974B2 (ja) 表示装置
JP2002341138A (ja) 偏光板の製造方法及び液晶表示装置
JP2012053170A (ja) フィルム材料の製造方法、下偏光板の製造方法、下偏光板、液晶表示パネルおよび表示装置
JP2022097161A (ja) ヘッドアップディスプレイ装置を含む光学系
JP3329473B2 (ja) 偏光光源、該光源を用いた表示装置
JP2021128235A (ja) 光学シート、液晶表示装置、及び光学シートの製造方法
CN220752505U (zh) 一种投影装置及车辆
JP7441397B2 (ja) 光学シート及び液晶表示装置
JP6488870B2 (ja) 光学レンズの製造方法
KR101760952B1 (ko) 위상지연 물질을 이용한 반사형 프리즘 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19808371

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01/04/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19808371

Country of ref document: EP

Kind code of ref document: A1