WO2019223325A1 - 一种玻璃制品的横向火焰池窑生产系统以及生产方法 - Google Patents

一种玻璃制品的横向火焰池窑生产系统以及生产方法 Download PDF

Info

Publication number
WO2019223325A1
WO2019223325A1 PCT/CN2019/000098 CN2019000098W WO2019223325A1 WO 2019223325 A1 WO2019223325 A1 WO 2019223325A1 CN 2019000098 W CN2019000098 W CN 2019000098W WO 2019223325 A1 WO2019223325 A1 WO 2019223325A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
liquid
glass liquid
temperature
kiln
Prior art date
Application number
PCT/CN2019/000098
Other languages
English (en)
French (fr)
Inventor
杨德宁
Original Assignee
Yang Dening
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yang Dening filed Critical Yang Dening
Publication of WO2019223325A1 publication Critical patent/WO2019223325A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/04Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in tank furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B15/00Drawing glass upwardly from the melt
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01265Manufacture of preforms for drawing fibres or filaments starting entirely or partially from molten glass, e.g. by dipping a preform in a melt
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/182Stirring devices; Homogenisation by moving the molten glass along fixed elements, e.g. deflectors, weirs, baffle plates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/183Stirring devices; Homogenisation using thermal means, e.g. for creating convection currents
    • C03B5/185Electric means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B9/00Blowing glass; Production of hollow glass articles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the invention belongs to the field of glass product production devices, and relates to an innovative production device system for making structural changes of the prior art glass product production devices in terms of structure changes, position changes, and function relationships in large glass product production systems.
  • Its prior art cooling section or a device called a working section contains a large volume of liquid glass, which can reach 3-5 times the amount of glass drawn each day (that is, if the cooling section or a working section of a production line with a daily output of 600 tons is used) Device, containing glass liquid will reach 2000-3000 tons).
  • One of its process principles is to slowly cool the glass liquid in the cooling section or a device called the working section; the other of its process principles is to slowly exhaust the glass liquid in the cooling section or a device called the working section
  • the process of foaming and clarification process that is, the process of evacuating bubbles and clarification process is slowly completed in the glass liquid after 3-5 days).
  • such a cooling section or a device called a working section has formed a device structure that has not changed for decades, and has formed a so-called unshakable authoritative structure.
  • the viscosity temperature of the soda-lime float glass at 10 2 Pa ⁇ s is 1430 ° C; the viscosity temperature of the soda-lime float glass at 10 3 Pa ⁇ s is 1080 ° C;
  • the prior art soda-lime float glass production line with a large tonnage of hundreds to thousands of tons has been melted from After the glass liquid above 1400 °C, it enters a traditional cooling unit or a device called a working part through the neck, and enters a cooling process stage.
  • the glass liquid is cooled to 1080 °C to meet the so-called 10 3 Pa ⁇ s.
  • the molding process requires standards.
  • the working unit In order to effectively reduce the temperature, there are several ventilation cooling systems on the upper part of the conventional cooling unit or the device called the working unit.
  • a lot of heating devices were added to the top of the tin kiln.
  • the second drawback is that the glass liquid after the temperature reduction process enters the kilns of the tin kiln because it is only 5-7cm thick and has a large area. In order to maintain the temperature, many heating devices are added to the top of the forming tin kiln. Therefore, energy waste is caused.
  • the third drawback is that the depth of the glass liquid is about 1 meter in such a cooling unit or a device called a working portion.
  • the glass liquid generally moves horizontally toward the molding device.
  • the upper surface of the glass liquid, the left and right portions, There is no complete, accurate, uniform heating and temperature control system in the lower bottom part, so the temperature difference between the upper and lower layers of the liquid glass in the cooling section close to the molding zone or the back section of the working section is 70-90. °C;
  • This will cause the process of air bubble removal and clarification in the production of soda lime float glass. It is impossible to accurately exhaust the gas according to the viscosity and temperature of 10 2 (Pa ⁇ s), which is unique to the soda lime glass composition.
  • the foaming and clarification process will cause defects in the quality of defoaming.
  • the drawback is that because the ultra-high-strength glass fiber containing alumina reaches 20-25%, the crystallization temperature is very high.
  • the existing comparative technology--a systemic combined device involving a large tonnage glass fiber production line with a daily output of 100-600 tons can never produce ultra-high-strength glass fibers containing alumina up to 20-25%; it is even more impossible to produce oxidation containing Ultra-high-strength glass fiber with aluminum up to 20-49%.
  • the investment-output ratio is low and the production efficiency is low.
  • the second drawback is that the energy consumption ratio of the same output is high.
  • the third defect is: high human resource consumption for the same output; the fourth defect is :. Because the high melting point high-aluminum alkali-free glass material does not contain thorium-conducting alkali material components, there is no glass product production device of the process device (1) of the lateral flame pool kiln crusting device (10) where flame thermal energy dominates glass melting. System, (ie, pure electric melting furnace)-the high alumina alkali-free glass material cannot be fully dissolved, and there is a defect that a high alumina alkali-free glass material with a high melting point cannot be produced.
  • a horseshoe kiln device dominated by flame thermal energy and has electric fluxing, because the knotting is simpler than that of a horizontal flame pool kiln, so the cost is low and the floor space is small; it is mainly used to manufacture glass quality requirements Not high glassware products, and the daily production tonnage is not more than 50 tons, the use of limited by the tonnage, can not be used for daily production of 100 tons to thousands of tons of high-capacity glass production lines.
  • the second defect is: a horseshoe kiln device which is dominated by flame heat energy and has electric flux.
  • the melted glass liquid all moves horizontally.
  • the defect is that the glass liquid moving horizontally has reflux.
  • the phenomenon cannot be controlled; and the glass liquid moves a long distance in the horizontal direction, so the upper layer of the glass liquid will have a heat dissipation problem, and the temperature of the glass liquid that moves horizontally will be uneven; that is, the glass liquid that moves horizontally over a longer distance.
  • the upper part adopts flame or electric heating external heating process. Because of the flame or electric heating external heating process, the current heating with the electrode in the glass liquid is two kinds of devices. It cannot effectively control the temperature between the upper layer of the liquid glass and the middle and lower layers.
  • the third defect is that the molten glass melted by a horseshoe kiln device dominated by flame thermal energy and electrically fluxed all moves horizontally.
  • the defect is that it is on both sides of the opening in the upper layer and below There will be dead angles that are unfavorable for the flow of liquid glass, especially when producing products with high crystallization temperature and high crystallization speed, such as high alumina glass, it will be easy to produce glass liquid crystals at dead angles where glass liquid does not easily flow.
  • the external heating device is a device that controls the temperature without the top layer of the liquid glass (the cooling part is generally 8-15 meters wide and 10-20 meters long, and the heat dissipation problem at the top center layer is serious).
  • an anti-crystallization device used in the cooling part region of the glass process cannot effectively control the temperature of the upper and lower layers of the molten glass that moves horizontally, forming consistency and stability of control. This results in uneven glass temperature.
  • an anti-crystallization device used in the cooling part area of the glass process cannot effectively control the glass liquid within the error of 1-5 ° C of the predetermined temperature required for clarification and defoaming, which cannot effectively guarantee Bubble level and clarification process level of glass liquid; especially when producing products with high crystallization temperature and fast crystallization speed, such as high alumina glass, it cannot effectively ensure that the glass liquid is always higher than the crystallization temperature before entering the forming process stage .
  • the second drawback is that a glass liquid that moves horizontally in an anti-crystallization device in the cooling section area of a glass process or in all existing cooling sections or devices called working sections is designed to make The glass liquid enters the molding area from the glass liquid gate opening in the upper area of the tail of the cooling section.
  • the cooling section is generally 8-15 meters wide, and the glass sluice opening is less than 2M wide, so there will be dead angles on the sides and the lower part of the cooling section of the horizontally moving glass sluice opening.
  • the volume of the glass containing liquid which is called the cooling part or the industrial part, is very large, and it can reach 3-5 times the amount of glass drawn every day. (That is, if the daily output of 200 tons of high-aluminum and ultra-high-aluminum float flat glass and electronic glass production lines, the cooling section or the device called the working section, the glass liquid will reach 600-1000 tons.)
  • One of its process principles is to slowly cool the glass liquid in the cooling section or a device called the working section; the other of its process principles is to slowly exhaust the glass liquid in the cooling section or a device called the working section
  • the process of foaming and clarification process that is, the process of evacuating bubbles and clarification process is completed slowly in the glass liquid after 3-5 days).
  • the high-aluminum and ultra-high-aluminum float plate glass and electronic glass have a viscosity temperature of 10 2.0 Pa ⁇ s in the bubble-removal and clarification process of 1540-1580 ° C; a viscosity temperature of 10 3 Pa ⁇ s in the molding process is 1480- 1520 ° C; therefore, after the glass liquid above 1450 ° C in the melting section is entered into the traditional cooling section or a device called a working section, the traditional cooling section or a device called a working section must be placed there. The front upper part is heated by the flame system.
  • the difference is up to 70-90 ° C; and the phenomenon that the glass liquid moving in the horizontal direction has a reflux phenomenon cannot be controlled; so this will cause the process of glass production to eliminate air bubbles and clarify the process. It is impossible to accurately follow the high aluminum and ultra high aluminum float.
  • the specific clarification and defoaming viscosity of 10 2 (Pa ⁇ s) of the special flat glass and electronic glass components are used to complete the process of degassing and clarification; it will cause the existing high aluminum and ultra high aluminum float glass And electricity
  • the quality defects of the glass bubbles are serious, or the quality of the glass ribs or delamination caused by the poor clarification of the glass liquid.
  • the second drawback is that the existing comparative technology-the system combination of the horizontal flame pool kiln production line of the high-aluminum and ultra-high-aluminum float flat glass and electronic glass, and the phenomenon that the glass liquid moving in the horizontal direction has a reflux phenomenon.
  • Uncontrollable there are no special system devices that use electrodes and electric heating to perform complete, accurate, uniform heating and temperature control of the glass liquid flowing from the top to the bottom, left and right, and the bottom layer
  • the existing comparative technology-high-aluminum and ultra-high-aluminum float flat glass and electronic glass horizontal flame cell kiln production line system combination device can never produce ultra-high-strength glass containing alumina up to 20-49%.
  • the main considerations were the melting of the glass, the removal of air bubbles, and the homogenization of the glass liquid. It was hoped that the formation of the electric field [temperature field] between the electrodes was uniform.
  • the requirements for the design of 3-20 electrode devices in a specific area of the glass liquid in a region 5-30CM away from the bottom refractory in a plurality of regions and without the requirements of the present invention
  • the working process temperature of the glass liquid in a region with a distance of 5-30CM from the bottom of the refractory in a plurality of areas with a volume of at least 100 cubic CM must be maintained at 1320 ° C-1450 ° C, which is higher than the distance from the bottom Process method for working glass temperature of refractory within 30-60CM distance from 20-80 °C.
  • a transverse flame pool kiln production system for glass products comprising: a glass raw material transport device (19), a flame flame kiln crusting device (10) which is dominated by flame heat energy, and a glass neck flow channel device (60) ); The use of electrodes for temperature control of glass liquid flowing from top to bottom, clarification, bubble removal and anti-crystallization device (30); using electrodes, temperature control of glass liquid flowing from bottom to top Structure (40); glass forming device (50):
  • the depth of the glass liquid channel device (60) between the surface of the liquid glass and the bottom of the device is the lateral flame pool kiln crusting device (10) where the flame heat dominates the glass melting and the electrode pair is used from top to bottom. 10% -40% of the depth between the surface of the glass liquid and the bottom of the device for temperature-controlled clarification, bubble removal and anti-crystallization of the flowing glass liquid;
  • 4-50 electrodes for controlling the temperature of the glass liquid are designed around the device for temperature control of the clarification, bubble removal and anti-crystallization of the glass liquid flowing from the top to the bottom;
  • the lower part of the glass liquid flowing from the top to the bottom for temperature control using electrodes for clarification, degassing, and anti-crystallizing device (30) is designed with a hole (6) where the glass liquid flows out, and a hole (6) where the glass liquid flows out ) Is connected with a glass liquid ascending channel structure (40) using electrodes to control the temperature of the glass liquid flowing from bottom to top; in the ascending channel structure, an electrode for controlling the temperature of the glass liquid is designed;
  • the top exit of the glass liquid ascending channel structure (40) for temperature control of glass liquid flowing from bottom to top by electrodes is connected with a device (17) for loading glass liquid, and an electrode for controlling the temperature of the glass liquid is designed.
  • transverse flame cell kiln production system for glass products characterized in that:
  • the depth of the glass liquid flow channel device (60) between the surface of the liquid glass and the bottom of the device is the horizontal flame pool kiln crusting device (10) that uses flame thermal energy to dominate glass melting and uses electrode pairs from top to bottom. 10% -40% of the depth between the surface of the glass liquid and the bottom of the device in the device (30) for clarifying, de-airing and anti-crystallization of the glass liquid flowing downward; (60) 3-20 electrode devices are designed in the glass liquid in the area 5-30CM from the bottom refractory;
  • the glass liquid in the lower flowing glass liquid for temperature control clarification, degassing and anti-crystallizing device (30) is located at a distance of 5-30CM from the bottom refractory, and 3-20 electrode devices are designed;
  • the glass liquid ascending channel structure adopting electrodes to control the temperature of the glass liquid flowing from bottom to top-(40) is designed with 4-50 electrodes for controlling the temperature of the liquid glass; In the glass liquid in the area of 5-30CM, 3-20 electrode devices are designed;
  • the transverse flame cell kiln production system for glass products characterized in that the electrodes are used for temperature control of the glass liquid flowing from top to bottom for clarification, bubble elimination, and anti-crystallization of glass. Liquid, the depth is within 90-150CM; the electrode is used for the temperature control of the glass liquid flowing from the top to the bottom of the clarification, bubble removal and anti-crystallization equipment (30) is designed with a heating device on the top.
  • the horizontal flame pool kiln production system for glass products characterized in that the daily output of the horizontal flame pool kiln crusting device (10) whose flame thermal energy dominates glass melting reaches 100 to 1500 tons;
  • the flame nozzle is installed on two measuring surfaces of the transverse flame pool kiln, and the flame spraying direction and the direction of the length of the transverse flame pool kiln are in the ⁇ direction;
  • the glass liquid of the transverse flame pool kiln crusting device is designed with electric flux control Electrode for glass temperature.
  • the transverse flame cell kiln production system for glass products characterized in that it uses electrodes to control the temperature of the glass liquid flowing from bottom to top, and the top outlet of the glass liquid ascending channel structure (40),
  • a heating device is designed on the top of the connected liquid glass-loading device (17); a bottom of the connected glass liquid-loading device (17) is also designed with electrodes for controlling the temperature of the liquid glass; the area design leading to the molding device There are glass liquid gates;
  • the glass product forming device (50) is a tin kiln structure of float flat glass process, which includes: tin metal at the bottom of the tin kiln; 10-40 pairs of edge drawing machines on both sides of the tin kiln; and an electric heating device at the top of the tin kiln ;
  • the transverse flame cell kiln production system for glass products uses electrodes to control the temperature of the glass liquid flowing from bottom to top, and the top outlet of the glass liquid ascending channel structure (40),
  • the top of the connected liquid glass-loading device (17) is designed with a heating device; the bottom of the connected liquid glass-loading device (17) is also designed with an electrode that controls the temperature of the liquid glass, and the main channel of the liquid glass is connected It is connected with 2-30 glass liquid distribution channels, and each of the glass liquid distribution channels, and the connected glass product forming device (50) is a glass fiber production molding device; its glass fiber production molding device includes: a bearing Glass liquid 2-30 dry pots, 2-30 drawing boards, drawing machines.
  • the transverse flame cell kiln production system for glass products characterized in that it uses electrodes to control the temperature of the glass liquid flowing from bottom to top, and the top outlet of the glass liquid ascending channel structure (40),
  • the top of the connected liquid glass-loading device (17) is designed with a heating device; the bottom of the connected liquid glass-loading device (17) is also designed with an electrode that controls the temperature of the liquid glass, and the main channel of the liquid glass is connected , It is connected with 2-30 glass liquid distribution channels, and each glass liquid distribution channel is connected with a glass product molding device (50);
  • the glass product molding device (50) is a blowing of industrial and daily glassware Forming device; after 2-30 blow molding devices (50) for industrial and daily glass products, there are also annealing devices for glass products.
  • the transverse flame cell kiln production system for glass products characterized in that it uses electrodes to control the temperature of the glass liquid flowing from bottom to top, and the top outlet of the glass liquid ascending channel structure (40),
  • the top of the connected liquid glass-loading device (17) is designed with a heating device; the bottom of the connected liquid glass-loading device (17) is also designed with an electrode that controls the temperature of the liquid glass, and the main channel of the liquid glass is connected It is connected with 2-30 glass liquid distribution channels, and each glass liquid distribution channel is connected with a glass product molding device (50); the glass product molding device (50) is a press molding of industrial and daily glassware. Device; after 2-30 press forming devices (50) for industrial and daily glassware, there is also an annealing device for glass products.
  • the transverse flame cell kiln production system for glass products characterized in that it uses electrodes to control the temperature of the glass liquid flowing from bottom to top, and the top outlet of the glass liquid ascending channel structure (40),
  • the top of the connected liquid glass-loading device (17) is designed with a heating device; the bottom of the connected liquid glass-loading device (17) is also designed with an electrode that controls the temperature of the liquid glass, and the main channel of the liquid glass is connected , It is connected with 2-30 glass liquid distribution channels, and each glass liquid distribution channel is connected with a glass product molding device (50);
  • the glass product molding device (50) is a drawing of industrial and daily glassware Forming device; after 2-30 drawn forming devices (50) for industrial and daily glassware, there is also an annealing device for glass products.
  • the transverse flame cell kiln production system for glass products characterized in that it uses electrodes to control the temperature of the glass liquid flowing from the bottom to the top of the glass liquid ascending channel structure (50).
  • the top of the connected liquid glass-loading device (17) is designed with a heating device; the bottom of the connected glass liquid-loading device (17) is also designed with electrodes that control the temperature of the liquid glass, and 2-30 are connected
  • the glass liquid flow path is connected with the molding device (50) of the glass product; the molding device (50) of the glass product is a blow molding device of the bathroom glass product; 2-30 blow molding of the bathroom glass product After the installation, there is an annealing device for bathroom glass products.
  • the magnesium content is 5% -20%
  • the silicon oxide content is 2.51-5.8 times the calcium oxide content
  • the calcium oxide content is 0.7-2.3 times the magnesium oxide content.
  • the flame heating kiln crusting device (10) for the glass melting the glass liquid chuck channel device (60), the temperature of the glass liquid flowing from top to bottom is controlled by electrodes Device (30) for clarification, degassing, and anti-crystallization, using electrodes for glass liquid ascending channel structure (40) for temperature control of glass liquid flowing from bottom to top, forming device (50) of glass products;
  • the energy of the electrodes in the device can keep the glass liquid in the respective devices above 1300 ° C when the molding device (50) of the glass product stops working, and keep it above the glass crystallization temperature;
  • Step 1 The predetermined glass raw material is passed through a glass raw material transport device into a lateral flame pool kiln crusting device (10) where flame thermal energy predominates glass melting, and is melted to form a glass liquid, and the glass liquid passes through the neck of the glass liquid.
  • a lateral flame pool kiln crusting device 10 where flame thermal energy predominates glass melting, and is melted to form a glass liquid, and the glass liquid passes through the neck of the glass liquid.
  • the process is characterized by passing 3 to 20 electrode devices in the glass liquid in the region of the glass liquid in the area of 5-30CM from the bottom refractory through the glass liquid channel device (60), so that the liquid channel device (60) In the region of the glass liquid at a distance of 10-30CM from the bottom of the refractory, the working process temperature of the zone with a volume of at least 100 cubic CM must be maintained at 1320 °C -1450 °C, which is higher than 30-60CM from the bottom refractory The working process temperature of the liquid glass in the distance area is 20-80 °C;
  • the process features: temperature controlled clarification, bubble removal and anti-crystallization equipment (30) designed by glass liquid flowing from top to bottom.
  • the working process temperature in the area with a minimum volume of 100 cubic CM should be maintained at 1320 ° C-1450 ° C, which is higher than the working process temperature of the glass liquid in the area 30-60CM away from the bottom refractory material 20-80 ° C;
  • Step 2 Make the glass liquid from the bottom of the liquid flow channel (20) entering the bottom liquid flow channel (20) by using the electrode to lower the temperature of the glass liquid flowing from the top to the bottom, and remove the bubbles.
  • the process is characterized by the design of 3-20 electrode devices in the glass liquid in the bottom liquid flow channel (20), 5-30CM away from the bottom refractory, and the bottom liquid flow channel (20) area.
  • the working process temperature in the section with a volume of at least 100 cubic CM must be maintained at 1320 °C -1450 °C, which is higher than the distance of 30-60CM from the bottom refractory material.
  • the process is characterized by: designed in the glass liquid ascending channel structure (40) for temperature control of glass liquid flowing from bottom to top by using electrodes, in the glass liquid in the area 5-30CM from the bottom refractory, the designed 3- 20 electrode devices, so that the working process temperature of the glass liquid in the area of the bottom flow channel (20), at a distance of 5-30CM away from the bottom of the refractory material, has a volume of at least 100 cubic CM, which must be maintained at 1320 ° C- 1450 ° C, which is 20-80 ° C higher than the working process temperature of the glass liquid in the area 30-60CM away from the bottom refractory;
  • the process is characterized by the design of 3-20 electrode devices in the glass liquid in the area 5-30CM away from the bottom refractory, so that the bottom liquid flow channel (20) area is 5-30CM away from the bottom of the refractory.
  • the working process temperature of the zone with a volume of at least 100 cubic CM must be maintained at 1320 ° C to 1450 ° C, which is higher than the working process temperature of the liquid glass in the area at a distance of 30-60CM from the bottom refractory material. °C
  • Step 3 The glass liquid flows from the bottom liquid flow channel (20) and enters the glass liquid rising channel structure (40) for controlling the temperature of the glass liquid flowing from bottom to top with an electrode;
  • the process is characterized by a glass liquid ascending channel structure (3-20 electrode devices designed by the glass liquid in the area 5-30CM away from the bottom refractory, using electrodes to temperature control the glass liquid flowing from the bottom up) 40)
  • a glass liquid ascending channel structure (3-20 electrode devices designed by the glass liquid in the area 5-30CM away from the bottom refractory, using electrodes to temperature control the glass liquid flowing from the bottom up) 40)
  • the working process temperature of the zone with a volume of at least 100 cubic CM must be maintained at 1320 ° C-1450 ° C, which is higher than 30 from the bottom refractory
  • the working process temperature of the glass liquid in the region of -60CM distance is 20-80 °C;
  • the first glass product molding process the aforementioned glass liquid passing through the top outlet of the ascending channel structure (40), enters the connected glass liquid loading device (17), and then passes through the glass liquid gate (8) to enter Glass product forming device (50);
  • the glass product forming device (50) is a tin kiln structure of the float flat glass process; the molten glass enters the tin kiln structure and is smooth on the plane of molten tin metal, and the glass liquid is processed. Thinning and polishing in one pass; then the glass ribbon formed by 10-40 pairs of edge-drawing machine pairs on both sides is drawn to the required thickness; and then subjected to annealing and cutting processes to form float plate glass products; or
  • the main flow path of the liquid is that the glass liquid enters 2-30 glass liquid distribution channels; the glass liquid enters the molding device for glass fiber production of glass products connected to each distribution channel; and flows into the corresponding 2-30 glass bearing liquids.
  • the glass liquid passes through the corresponding 2-30 drawing boards and forms glass fibers under the action of the corresponding drawing machine; or
  • the third glass product molding process the aforementioned glass liquid passing through the top outlet of the ascending channel structure (40) enters the connected glass liquid loading device (17);
  • the glass liquid loading device (17) is glass
  • the main stream of liquid, glass liquid enters 2-30 glass liquid distribution channels; glass liquid enters 2-30 industrial and daily glassware blow molding devices connected to glass products connected to each flow channel; respectively Products made from blown industrial and daily glass; processed by an annealing device for glass products to make blown molded products from industrial and daily glass; or
  • the fourth glass product molding process the aforementioned glass liquid passing through the top outlet of the ascending channel structure (40) enters the connected glass liquid loading device (17);
  • the glass liquid loading device (17) is glass
  • the main stream of liquid, glass liquid enters 2-30 glass liquid distribution channels; glass liquid enters 2-30 industrial and daily glassware pressing and forming devices connected to the glass products connected to each flow channel; Products of industrial and daily glass; processed by the annealing device of glass products to make pressed products of industrial and daily glass; or
  • the fifth glass product molding process the aforementioned glass liquid passing through the top outlet of the ascending channel structure (40) enters the connected glass liquid loading device (17);
  • the glass liquid loading device (17) is glass
  • the main stream of the liquid, the glass liquid enters 2-30 glass liquid distribution channels; the glass liquid enters 2-30 industrial and daily-use glass forming devices connected to the glass products connected to each flow channel, respectively.
  • the sixth glass product molding process the aforementioned glass liquid passing through the top outlet of the ascending channel structure (40) enters the connected glass liquid loading device (17); the glass liquid loading device (17) is glass
  • the main flow of liquid, glass liquid enters 2-30 glass liquid distribution channels; glass liquid enters 2-30 bathroom glass products blow molding devices connected to the glass products connected to each of the distribution channels, which are respectively made into bathrooms. Glass products; then processed by the annealing device of glass products to make bathroom glass products.
  • FIG. 1 and the abstract drawing are schematic side sectional views of the equipment composition of a lateral flame pool kiln production system and production method of a glass product according to the present invention.
  • FIG. 2 is a schematic flow chart of a float glass manufacturing process for a lateral flame pool kiln production system and production method of a glass product according to the present invention.
  • FIG. 3 is a schematic flow chart of a glass fiber preparation process for a lateral flame pool kiln production system and production method of a glass product according to the present invention.
  • FIG. 1 and the accompanying drawings are schematic side sectional views of the equipment composition of a lateral flame pool kiln production system and production method of a glass product according to the present invention:
  • Symbol 10 represents a lateral flame pool kiln crusting device in which flame heat dominates glass melting
  • Symbol 19 represents a glass raw material transportation device
  • the symbol 50 represents a lateral flame pool kiln crusting device where the flame heat energy dominates the glass melting
  • the symbol 60 represents a device for clamping the channel of the liquid glass
  • Symbol 30 denotes a device for controlling the temperature of the glass liquid flowing from the top to the bottom by using an electrode
  • Symbol 40 represents a glass liquid ascending channel structure that uses electrodes to control the temperature of the glass liquid flowing from bottom to top;
  • Symbol 20 represents the bottom flow channel
  • Reference numeral 17 denotes a device for loading glass liquid
  • Reference numeral 50 denotes a molding device for a glass product
  • the symbol 8 represents the electrode (8) in the glass liquid
  • the symbol 9 represents the electric heating device (9) of the upper space of the glass liquid
  • FIG. 2 is a schematic flow chart of a float glass manufacturing process for a lateral flame pool kiln production system and production method of a glass product according to the present invention:
  • the symbol 10 represents a lateral flame pool kiln crusting device in which flame heat dominates glass melting
  • the symbol 60 represents a device for clamping the channel of the liquid glass
  • Symbol 30 denotes a device for controlling the temperature of the glass liquid flowing from the top to the bottom by using an electrode
  • Symbol 40 represents a glass liquid ascending channel structure that uses electrodes to control the temperature of the glass liquid flowing from bottom to top;
  • the symbol 20 indicates a bottom flow channel; the symbol 50 indicates a molding device for glass products.
  • FIG. 3 is a schematic flowchart of a glass fiber preparation process for a transverse flame pool kiln production system and production method of a glass product according to the present invention:
  • the symbol 10 represents a lateral flame pool kiln crusting device in which flame heat dominates glass melting
  • the symbol 60 represents a device for clamping the channel of the liquid glass
  • Symbol 30 denotes a device for controlling the temperature of the glass liquid flowing from the top to the bottom by using an electrode
  • Symbol 40 represents a glass liquid with a glass liquid ascending channel structure that uses an electrode to control the temperature of the glass liquid flowing from bottom to top;
  • the symbol 20 indicates the bottom flow channel
  • Reference numeral 50 denotes a molding apparatus for a glass fiber product.
  • the glass raw material transportation device (19) First prepare the glass raw material transportation device (19); the flame heat energy dominates the lateral flame pool kiln crusting device (10) of the glass melting; the glass liquid chuck channel device (60) uses electrodes to Device (30) for temperature control of glass liquid; glass liquid ascending channel structure (40) for temperature control of glass liquid flowing from bottom to top using electrodes; forming device (50) required for float soda-lime flat glass;
  • the flame heating kiln crusting device (10) for the glass melting the glass liquid chuck channel device (60), the temperature of the glass liquid flowing from top to bottom is controlled by electrodes Device (30) for clarification, degassing, and anti-crystallization, using electrodes for glass liquid ascending channel structure (40) for temperature control of glass liquid flowing from bottom to top, forming device (50) of glass products;
  • the energy of the electrodes in the device can keep the glass liquid in the respective devices above 1300 ° C when the molding device (50) of the glass product stops working, and keep it above the glass crystallization temperature;
  • Step 1 The predetermined glass raw material is passed through a glass raw material transport device into a lateral flame pool kiln crusting device (10) where flame thermal energy predominates glass melting, and is melted to form a glass liquid, and the glass liquid passes through the neck of the glass liquid.
  • a lateral flame pool kiln crusting device 10 where flame thermal energy predominates glass melting, and is melted to form a glass liquid, and the glass liquid passes through the neck of the glass liquid.
  • the glass liquid Since the glass liquid is above 1300 ° C and 1450 ° C, it is also thermally radiated to conduct thermal energy, and because of the use of electrodes, the top, periphery and bottom of the device (3) for temperature control of the glass liquid flowing from top to bottom, the design control
  • the temperature of the glass liquid heating device is controlled, so in the glass liquid moving from top to bottom, the device (3) that uses electrodes to control the temperature of the glass liquid flowing from top to bottom can accurately control the clarification.
  • the defoaming is within the range of 1-5 °C of the predetermined temperature, so it only takes 3-6 hours to ensure that the soda-lime glass liquid is degassed and the process of clarification can reach a high level to complete the degassing. Bubbles, clarified process goals.
  • the invention breaks the technical prejudice of the traditional process and device in the stage of soda-lime glass liquid discharging bubbles and clarification process-that is, breaking the traditional process glass liquid must pass through the cooling section or the device named working section, -5 days, slowly complete the process of bubble removal and clarification process.
  • the invention can overcome the disadvantages of low production efficiency and wasted production time.
  • the invention can overcome the problem that it is impossible to accurately complete the viscosity and temperature of 10 2 (Pa ⁇ s), which is unique to the soda lime glass composition.
  • the process of removing bubbles and clarifying the process will cause quality defects. Because of the advanced technology, when the glass liquid is stable above the viscosity temperature of 10 2 (Pa ⁇ s) for clarification and defoaming, the high-quality clarification and degassing can be achieved after only 3-6 hours. purpose.
  • Step 2 Make the glass liquid from the bottom of the liquid flow channel (20) entering the bottom liquid flow channel (20) by using the electrode to lower the temperature of the glass liquid flowing from the top to the bottom, and remove the bubbles.
  • Step 3 The glass liquid flows from the bottom liquid flow channel (20) and enters the glass liquid rising channel structure (40) for controlling the temperature of the glass liquid flowing from bottom to top with an electrode;
  • Step 4 Forming process of float soda lime flat glass:
  • the soda-lime glass liquid passing through the top outlet of the ascending channel structure (40) enters the connected glass liquid loading device (17), and then passes through the glass liquid gate (8),
  • the temperature of the glass liquid is 1230-1300 ° C, which is higher than the traditional technological prejudice of the so-called soda-lime glass at 1080 ° C and 103 Pa ⁇ s.
  • the process temperature is required to enter the flat surface of the tin kiln structure with molten tin metal. Glass strip thinning and polishing process; the thickness of the traditional soda-lime glass liquid when it enters the phase thinning process stage is 6-7mm; but the process of the device of the present invention, when it enters the phase of the thin stripping process: A.
  • the thickness of soda-lime glass liquid will be thinner than that of traditional 6-7mm, reaching 3-4mm.
  • the temperature decreases from °C to very fast; B. It can also turn off part of the originally designed tin kiln upper glass ribbon and a large number of heating and insulation devices in the polishing process, which greatly reduces the electrical heating energy on the top of the tin kiln structure. Therefore, the temperature of the glass liquid can be greatly increased from 1230 to 1,300 ° C. C.
  • the process equipment and equipment system of the present invention can integrate the traditional cooling section or the cooling process function called the working section, The thinning and polishing processes arranged to the molding process are completed quickly, so that the cooled glass ribbon can reach the required viscosity and temperature requirements when entering the edger.
  • the technical effect of the device crusting system of the present invention in the forming stage is the second: because a part of the original design of the upper glass ribbon of the tin kiln is turned off and a large number of heating and heat preservation devices are used in the polishing process, the present invention is based on tin In the kiln process stage, breaking the technical prejudice of traditional processes and devices can produce the technical effect of saving energy consumption.
  • the third technical effect of the process of the device crusting system of the present invention in the forming stage the molten smooth tin metal is distributed under the molten glass of the tin kiln structure. Because of its strong thermal conductivity, it can quickly turn the 1230 -1300 °C glass liquid heat energy is transmitted to the entire tin kiln space, so it is not only conducive to the polishing quality of the polishing process, but the industrial glass ribbon enters the process stage of the edge thickness of the formed glass ribbon by the edger, and has a relatively high space.
  • the temperature is more conducive to the original design of the thinning of the upper glass ribbon of the tin kiln and the large number of heating and heat preservation devices in the polishing process to properly cooperate with it, so that the glass ribbon is more conducive to achieving the appropriate viscosity temperature required by the process, Conducive to improving the efficiency of the thinning process and the quality of the thinning process of the 10-40 pair of edger to pull the glass ribbon into the required thickness.
  • Both the bottom and the bottom are designed to control the temperature of the glass liquid. Therefore, the glass liquid that moves from top to bottom and the glass liquid that flows from bottom to top can be controlled above 1300 ° C.
  • the soda lime glass liquid is completely higher than the temperature of 10 2 Pa ⁇ s-1430 ° C which is higher than the 10 2 Pa ⁇ s required for the soda lime glass to clear and defoam. Steady state, [error within 1-5 ° C]. In this high-level advanced liquid glass bubble clarification and clarification advanced manufacturing process, the glass liquid can reach the goal of high-quality clarification and bubble discharge within 3-6 hours.
  • the volume of the glass liquid contained is very large, and the conventional cooling unit or a device called a working unit that reaches 3-5 times the amount of glass drawn every day, that is, the glass liquid passes through it. Slowly complete the process of exhausting bubbles and clarifying the low production efficiency in 3-5 days;
  • the float sodium plate Glass products will not be subject to the problems of melting points due to the dissolution process stage, and the product quality of stones is not qualified (indicating the production process of the melting process, with the same energy consumption and the same equipment, increasing the production capacity by 30-40%.
  • the problem is that the product quality of the stone is unqualified); but the production of float soda-lime flat glass with the same energy consumption and the same equipment, increasing the production capacity by 30-40%, will cause serious air bubble problems and product quality unqualified problems. It shows that in the state of the same energy consumption of the same equipment, increasing the pulling capacity by 30-40% is not a problem, and the bubble quality is the problem.
  • Step 5 The float soda-lime flat glass ribbon after the forming process is subjected to an annealing process and a cutting process to form a float-soda-lime flat glass product of a predetermined size.
  • the glass raw material transportation device (19) First prepare the glass raw material transportation device (19); the flame heat energy dominates the lateral flame pool kiln crusting device (10) of the glass melting; the glass liquid chuck channel device (60) uses electrodes to Device (30) for temperature control of glass liquid; glass liquid ascending channel structure (40) for temperature control of glass liquid flowing from bottom to top using electrodes; forming device (50) required for float soda-lime flat glass;
  • the flame heating kiln crusting device (10) for the glass melting the glass liquid chuck channel device (60), the temperature of the glass liquid flowing from top to bottom is controlled by electrodes Device (30) for clarification, degassing, and anti-crystallization, using electrodes for glass liquid ascending channel structure (40) for temperature control of glass liquid flowing from bottom to top, forming device (50) of glass products;
  • the energy of the electrodes in the device can keep the glass liquid in the respective devices above 1300 ° C when the molding device (50) of the glass product stops working, and keep it above the glass crystallization temperature;
  • Step 1 The predetermined glass raw material is passed through a glass raw material transport device into a lateral flame pool kiln crusting device (10) where flame thermal energy predominates glass melting, and is melted to form a glass liquid, and the glass liquid passes through the neck of the glass liquid.
  • a lateral flame pool kiln crusting device 10 where flame thermal energy predominates glass melting, and is melted to form a glass liquid, and the glass liquid passes through the neck of the glass liquid.
  • the process is characterized by passing 3 to 20 electrode devices in the glass liquid in the region of the glass liquid in the area of 5-30CM from the bottom refractory through the glass liquid channel device (60), so that the liquid channel device (60) In the region of the glass liquid at a distance of 10-30CM from the bottom of the refractory, the working process temperature of the zone with a volume of at least 100 cubic CM must be maintained at 1320 ° C-1450 ° C, which is higher than 30-60CM from the bottom refractory.
  • the working process temperature of the liquid glass in the distance area is 20-80 °C;
  • the process features: temperature controlled clarification, bubble removal and anti-crystallization equipment (30) designed by glass liquid flowing from top to bottom.
  • the working process temperature in the area with a minimum volume of 100 cubic CM should be maintained at 1320 ° C-1450 ° C, which is higher than the working process temperature of the glass liquid in the area 30-60CM away from the bottom refractory material 20-80 ° C;
  • the glass liquid Since the glass liquid is above 1300 ° C and 1450 ° C, it is also thermally radiated to conduct thermal energy, and because of the use of electrodes, the top, periphery and bottom of the device (3) for temperature control of the glass liquid flowing from top to bottom, the design control
  • the control of the temperature of the glass liquid heating device, so in the glass liquid moving from top to bottom, the device (3) that uses electrodes to control the temperature of the glass liquid flowing from top to bottom can accurately control the clarification ⁇
  • the defoaming is within the range of 1-5 °C of the predetermined temperature, so it only takes 3-6 hours to ensure that the soda-lime glass liquid is degassed and the process of clarification can reach a high level to complete the degassing. Bubbles, clarified process goals.
  • the invention breaks the technical prejudice of traditional processes and devices in the stage of glass liquid bubble removal and clarification process-that is, it breaks the traditional process.
  • Glass liquid must pass through 3-5 in the cooling section or the device named working section. Time to complete the process of exhausting bubbles and clarifying the process slowly.
  • the invention can overcome the disadvantages of low production efficiency and wasted production time.
  • the invention can overcome the problem that it is impossible to accurately complete the viscosity and temperature of 10 2 (Pa ⁇ s), which is unique to the soda lime glass composition.
  • the process of removing bubbles and clarifying the process will cause quality defects. Because of the advanced technology, when the glass liquid is stable above the viscosity temperature of 10 2 (Pa ⁇ s) for clarification and defoaming, the high-quality clarification and degassing can be achieved after only 3-6 hours. purpose.
  • Step 2 Make the glass liquid from the bottom of the liquid flow channel (20) entering the bottom liquid flow channel (20) by using the electrode to lower the temperature of the glass liquid flowing from the top to the bottom, and remove the bubbles.
  • the process is characterized by the design of 3-20 electrode devices in the glass liquid in the bottom liquid flow channel (20), 5-30CM away from the bottom refractory, and the bottom liquid flow channel (20) area.
  • the working process temperature in the section with a volume of at least 100 cubic CM must be maintained at 1320 °C -1450 °C, which is higher than the distance of 30-60CM from the bottom refractory material.
  • the process is characterized by: designed in the glass liquid ascending channel structure (40) for temperature control of glass liquid flowing from bottom to top by using electrodes, in the glass liquid in the area 5-30CM from the bottom refractory, the designed 3- 20 electrode devices, so that the working process temperature of the glass liquid in the area of the bottom flow channel (20), at a distance of 5-30CM away from the bottom of the refractory material, has a volume of at least 100 cubic CM, which must be maintained at 1320 ° C- 1450 ° C, which is 20-80 ° C higher than the working process temperature of the glass liquid in the area 30-60CM away from the bottom refractory;
  • the process is characterized by the design of 3-20 electrode devices in the glass liquid in the area 5-30CM away from the bottom refractory, so that the bottom liquid flow channel (20) area is 5-30CM away from the bottom of the refractory.
  • the working process temperature of the zone with a volume of at least 100 cubic CM must be maintained at 1320 ° C to 1450 ° C, which is higher than the working process temperature of the liquid glass in the area at a distance of 30-60CM from the bottom refractory material. °C
  • Step 3 The glass liquid flows from the bottom liquid flow channel (20) and enters the glass liquid rising channel structure (40) for controlling the temperature of the glass liquid flowing from bottom to top with an electrode;
  • the process is characterized by a glass liquid ascending channel structure (3-20 electrode devices designed by the glass liquid in the area 5-30CM away from the bottom refractory, using electrodes to temperature control the glass liquid flowing from the bottom up) 40)
  • a glass liquid ascending channel structure (3-20 electrode devices designed by the glass liquid in the area 5-30CM away from the bottom refractory, using electrodes to temperature control the glass liquid flowing from the bottom up) 40)
  • the working process temperature of the zone with a volume of at least 100 cubic CM must be maintained at 1320 ° C-1450 ° C, which is higher than 30 from the bottom refractory
  • the working process temperature of the glass liquid in the region of -60CM distance is 20-80 °C;
  • the present invention adopts the above-mentioned brand-new process: 3-20 electrode devices are all designed in the glass liquid in the area of the bottom refractory material with a distance of 5-30CM in a plurality of areas to dissolve the kiln crusting device.
  • the working process temperature of the glass liquid in the area of refractory 30-60CM distance is 20-80 °C.
  • the upper and lower flows of the glass liquid with a distance of 5-30-60CM from the bottom refractory can be formed in these areas, so that the "aluminum-rich sedimentation phenomenon-that is, the glass liquid part with high alumina content, "The phenomenon of sedimentation and accumulation at the bottom due to the large specific gravity" was homogenized and resolved. It can fundamentally solve the problem of severely uneven components in the forming stage of the glass finished product, which causes glass bars, stripes, white opaque oxygen-rich blocks and strips to be completely unqualified, making high-qualified production of 15-35% Glass products with alumina content are possible.
  • the present invention can also overcome the difficulties caused by the "aluminum-rich sedimentation phenomenon" at the bottom of the glass liquid by using the traditional stirring process to achieve the purpose through the prior art.
  • electrodes are used to control the temperature of the ultra-high alumina alkali-free glass fiber glass liquid above the crystallization temperature of the ultra-high alumina alkali-free glass fiber raw material containing 15 to 35% of alumina.
  • the invention also aims at:
  • the horizontal flame pool kiln crusting device (10) is used for melting the glass; the device is used to control the temperature of the glass liquid flowing from top to bottom (3) ; Using glass electrodes to control the temperature of the glass liquid flowing from the bottom to the glass liquid ascending channel structure (40); both when the glass product molding device (50) stops working (if there is a failure in the molding process, the safety gate is closed So that the entire production system's glass liquid before the molding is in its own device, when it does not flow according to the process procedure), the reasonable position and electrode energy of the electrodes designed in the three element devices of the present invention can The inner glass liquid is maintained above the crystallization temperature of the ultra-high alumina glass above 1290 ° C and reaches 1300-1400 ° C, so that the glass is in a state of thermal radiation conduction heat energy, thereby ensuring the glass liquid temperature in the three element devices It is controlled within a predetermined required range of + -1
  • the prior art glass production system device cannot produce in the glass production system device with a daily production capacity of hundreds to thousands of tons because of the absence of these three element devices and the reasonable position and electrode energy of the electrodes designed therein.
  • Step 4 Ultra-high aluminum alkali-free glass fiber forming process:
  • the glass passing through the top exit of the ascending channel structure (40) The liquid enters the connected glass liquid loading device (17); the glass liquid loading device (17) is the main channel of the glass liquid, and the glass liquid enters the connection with 2-30 glass liquid splitting channels; the glass liquid enters each split
  • the forming device for the production of glass fibers of connected glass products flows into the corresponding 2-30 dry pots carrying glass liquid, and the glass liquid passes through the corresponding 2-30 drawing boards.
  • the upper part of the main stream of glass liquid and the glass liquid have heating and temperature control devices, and at this stage, the glass liquid is only controlled to analyze the ultra-high aluminum alkali-free glass fiber material containing 30% alumina. 1330 ° C above the crystal temperature of 1310 ° C; it is also thermal radiation conduction thermal energy; the thermal radiation conduction energy is used to make the temperature of the glass liquid within the error of 1-5 ° C.
  • the glass liquid enters the upper part which is connected with 2-30 glass liquid distribution channels and the glass liquid has a device for heating and controlling the temperature, and at this stage, the glass liquid is controlled only at an ultra-high level higher than 30% containing alumina.
  • the crystallization temperature of the aluminum alkali-free glass fiber raw material is in the range of 1330 ° C above 1310 ° C; it is also thermal radiation conduction thermal energy; the thermal radiation conduction energy is used to make the temperature of the glass liquid within the error of 1-5 ° C.
  • Both the upper part of the corresponding 2-30 dry pots carrying glass liquid and the glass liquid have heating and temperature control devices, and at this stage, the glass liquid is only controlled at an ultra-high level higher than 30% containing alumina.
  • the crystallization temperature of the aluminum alkali-free glass fiber raw material is in the range of 1330 ° C above 1310 ° C; it is also thermal radiation conduction thermal energy; the thermal radiation conduction energy is used to make the temperature of the glass liquid within the error of 1-5 ° C.
  • This glass liquid is also designed with a device for heating and controlling temperature through corresponding 2-30 drawing boards; it is important that 10% of the ultra-high aluminum alkali-free glass fiber raw material containing 30% alumina in this embodiment
  • the molding viscosity temperature of 2.5 (Pa ⁇ s) is 1330 ° C; therefore, the drawing plate temperature is controlled at 1330 ° C, which is higher than the crystallization temperature of 1310 ° C, and is formed under the action of the corresponding drawing machine--this embodiment 30% ultra-high alumina alkali-free glass fiber products containing alumina.
  • the device crusting system of the present invention produces a very important technical effect: the prior art produces high-aluminum non-alkali S-grade glass fibers containing 20-25% alumina, all of which are in glass fiber production lines with a daily output of tens to hundreds of kilograms In your device.
  • the production efficiency of high-aluminium and alkali-free S-grade glass fiber has been greatly improved to meet the requirements of the wind power leaf, new energy automobile, and aerospace markets. This is a technical problem in the field of high-aluminum alkali-free S-grade glass fibers that people have been eager to solve but have never been successful.
  • the present invention solves this technical problem.
  • the existing comparative technology which is a systematic combination device of the related art in the glassware production line, can never produce ultra-high-strength glassware containing 20-49% alumina.
  • the traditional clinker system of the electric melting furnace production device for glass products although it also includes: a device that uses electrodes to control the temperature of the glass liquid flowing from top to bottom (3); Glass liquid ascending channel structure for temperature control of glass liquid flowing downward (40);
  • a device that uses electrodes to control the temperature of the glass liquid flowing from top to bottom (3) Glass liquid ascending channel structure for temperature control of glass liquid flowing downward (40);
  • the device crusting system can only have a production line with a daily output of tens of tons due to the tonnage limitation, and cannot be used for a large-capacity glass product production line with a daily output of several hundred tons.
  • one of the drawbacks is that the investment-output ratio is low and the production efficiency is low.
  • the second drawback is that the energy consumption ratio of the same output is high.
  • the third drawback is that high human resources are consumed for the same output.
  • An embodiment of a structural system of a flat glass production device for a float glass kiln production system for glass products (originally designed with a pull capacity of 800 tons) of float ultra-high aluminum [alumina 15-35%];
  • the glass raw material transportation device (19) First prepare the glass raw material transportation device (19); the flame heat energy dominates the lateral flame pool kiln crusting device (10) of the glass melting; the glass liquid chuck channel device (60) uses electrodes to Device (30) for temperature control of glass liquid; glass liquid ascending channel structure (40) for temperature control of glass liquid flowing from bottom to top using electrodes; forming device (50) required for float soda-lime flat glass;
  • the flame heating kiln crusting device (10) for the glass melting the glass liquid chuck channel device (60), the temperature of the glass liquid flowing from top to bottom is controlled by electrodes Device (30) for clarification, degassing, and anti-crystallization, using electrodes for glass liquid ascending channel structure (40) for temperature control of glass liquid flowing from bottom to top, forming device (50) of glass products;
  • the energy of the electrodes in the device can keep the glass liquid in the respective devices above 1300 ° C when the molding device (50) of the glass product stops working, and keep it above the glass crystallization temperature;
  • Step 1 The predetermined glass raw material is passed through a glass raw material transport device into a lateral flame pool kiln crusting device (10) where flame thermal energy predominates glass melting, and is melted to form a glass liquid, and the glass liquid passes through the neck of the glass liquid.
  • a lateral flame pool kiln crusting device 10 where flame thermal energy predominates glass melting, and is melted to form a glass liquid, and the glass liquid passes through the neck of the glass liquid.
  • the process is characterized by passing 3 to 20 electrode devices in the glass liquid in the region of the glass liquid in the area of 5-30CM from the bottom refractory through the glass liquid channel device (60), so that the liquid channel device (60) In the region of the glass liquid at a distance of 10-30CM from the bottom of the refractory, the working process temperature of the zone with a volume of at least 100 cubic CM must be maintained at 1320 ° C-1450 ° C, which is higher than 30-60CM from the bottom refractory.
  • the working process temperature of the liquid glass in the distance area is 20-80 °C;
  • the process features: temperature controlled clarification, bubble removal and anti-crystallization equipment (30) designed by glass liquid flowing from top to bottom.
  • the working process temperature in the area with a minimum volume of 100 cubic CM should be maintained at 1320 ° C-1450 ° C, which is higher than the working process temperature of the glass liquid in the area 30-60CM away from the bottom refractory material 20-80 ° C;
  • the glass liquid Since the glass liquid is above 1300 ° C and 1450 ° C, it is also thermally radiated to conduct thermal energy, and because of the use of electrodes, the top, periphery and bottom of the device (3) for temperature control of the glass liquid flowing from top to bottom, the design control
  • the control of the temperature of the glass liquid heating device, so in the glass liquid moving from top to bottom, the device (3) that uses electrodes to control the temperature of the glass liquid flowing from top to bottom can accurately control the clarification ⁇
  • the defoaming is within the range of 1-5 °C of the predetermined temperature, so it only takes 3-6 hours to ensure that the soda-lime glass liquid is degassed and the process of clarification can reach a high level to complete the degassing. Bubbles, clarified process goals.
  • the invention breaks the technical prejudice of the traditional process and device in the stage of soda-lime glass liquid discharging bubbles and clarification process-that is, breaking the traditional process glass liquid must pass through the cooling section or the device named working section, -5 days, slowly complete the process of bubble removal and clarification process.
  • the invention can overcome the defects of low production efficiency and wasted production time.
  • the invention can overcome the problem that it is impossible to complete the exhaust in accordance with the viscosity and temperature of 10 2 (Pa ⁇ s), which is unique to glass components.
  • the process of foaming and clarification will cause defects in quality. Because of the advanced technology, when the glass liquid is stable above the viscosity temperature of 10 2 (Pa ⁇ s) for clarification and defoaming, the high-quality clarification and degassing can be achieved after only 3-6 hours. purpose.
  • Step 2 Make the glass liquid from the bottom of the liquid flow channel (20) entering the bottom liquid flow channel (20) by using the electrode to lower the temperature of the glass liquid flowing from the top to the bottom, and remove the bubbles.
  • the process is characterized by the design of 3-20 electrode devices in the glass liquid in the bottom liquid flow channel (20), 5-30CM away from the bottom refractory, and the bottom liquid flow channel (20) area.
  • the working process temperature in the section with a volume of at least 100 cubic CM must be maintained at 1320 °C -1450 °C, which is higher than the distance of 30-60CM from the bottom refractory material.
  • the process is characterized by: designed in the glass liquid ascending channel structure (40) for temperature control of glass liquid flowing from bottom to top by using electrodes, in the glass liquid in the area 5-30CM from the bottom refractory, the designed 3- 20 electrode devices, so that the working process temperature of the glass liquid in the area of the bottom flow channel (20), at a distance of 5-30CM away from the bottom of the refractory material, has a volume of at least 100 cubic CM, which must be maintained at 1320 ° C- 1450 ° C, which is 20-80 ° C higher than the working process temperature of the glass liquid in the area 30-60CM away from the bottom refractory;
  • the process is characterized by the design of 3-20 electrode devices in the glass liquid in the area 5-30CM away from the bottom refractory, so that the bottom liquid flow channel (20) area is 5-30CM away from the bottom of the refractory.
  • the working process temperature of the zone with a volume of at least 100 cubic CM must be maintained at 1320 ° C to 1450 ° C, which is higher than the working process temperature of the liquid glass in the area at a distance of 30-60CM from the bottom refractory material. °C
  • Step 3 The glass liquid flows from the bottom liquid flow channel (20) and enters the glass liquid rising channel structure (40) for controlling the temperature of the glass liquid flowing from bottom to top with an electrode;
  • the process is characterized by a glass liquid ascending channel structure (3-20 electrode devices designed by the glass liquid in the area 5-30CM away from the bottom refractory, using electrodes to temperature control the glass liquid flowing from the bottom up) 40)
  • a glass liquid ascending channel structure (3-20 electrode devices designed by the glass liquid in the area 5-30CM away from the bottom refractory, using electrodes to temperature control the glass liquid flowing from the bottom up) 40)
  • the working process temperature of the zone with a volume of at least 100 cubic CM must be maintained at 1320 ° C-1450 ° C, which is higher than 30 from the bottom refractory material.
  • the working process temperature of the glass liquid in the region of -60CM distance is 20-80 °C;
  • the present invention adopts the above-mentioned brand-new process: 3-20 electrode devices are all designed in the glass liquid in the area of the bottom refractory material with a distance of 5-30CM in a plurality of areas to dissolve the kiln crusting device.
  • the working process temperature of the glass liquid in the area of refractory 30-60CM distance is 20-80 °C.
  • the upper and lower flows of the glass liquid with a distance of 5-30-60CM from the bottom refractory can be formed in these areas, so that the "aluminum-rich sedimentation phenomenon-that is, the glass liquid part with high alumina content, "The phenomenon of sedimentation and accumulation at the bottom due to the large specific gravity" was homogenized and resolved. It can fundamentally solve the problem of severely uneven components in the forming stage of the glass finished product, which causes glass bars, stripes, white opaque oxygen-rich blocks and strips to be completely unqualified, making high-qualified production of 15-35% Glass products with alumina content are possible.
  • the present invention can also overcome the difficulties caused by the "aluminum-rich sedimentation phenomenon" at the bottom of the glass liquid by using the traditional stirring process to achieve the purpose through the prior art.
  • electrodes are used to control the temperature of the ultra-high alumina glass liquid above the crystallization temperature of 1310 ° C higher than the ultra-high aluminum alkali-free glass fiber raw material containing 15-30% alumina. Since the glass liquid is above 1300 ° C and 1430 ° C, it is also thermally radiated to conduct thermal energy; and because the electrode is used to control the temperature of the glass liquid, the top, periphery and bottom of the device are designed with heating devices that control the temperature of the liquid It can accurately control within the error of 1-5 °C of the required predetermined temperature, so it can effectively control the large volume and high flow glass of ultra high strength glass products (containing 15-30% of alumina) The liquid, before reaching the glass forming process, is completely controlled above the crystallization temperature target.
  • the invention also aims at:
  • the horizontal flame pool kiln crusting device (10) is used for melting the glass; the device is used to control the temperature of the glass liquid flowing from top to bottom (3) ; Using glass electrodes to control the temperature of the glass liquid flowing from the bottom to the glass liquid ascending channel structure (40); both when the glass product molding device (50) stops working (if there is a failure in the molding process, the safety gate is closed So that the entire production system's glass liquid before the molding is in its own device, when it does not flow according to the process procedure), the reasonable position and electrode energy of the electrodes designed in the three element devices of the present invention can The inner glass liquid is maintained above the crystallization temperature of the ultra-high alumina glass above 1290 ° C and reaches 1300-1400 ° C, so that the glass is in a state of thermal radiation conduction heat energy, thereby ensuring the glass liquid temperature in the three element devices It is controlled within a predetermined required range of + -1
  • the prior art glass production system device cannot produce in the glass production system device with a daily production capacity of hundreds to thousands of tons because of the absence of these three element devices and the reasonable position and electrode energy of the electrodes designed therein.
  • Ultra high alumina glass products containing 20-30% alumina.
  • Step 4 Float ultra high aluminum glass forming process:
  • the ultra-high aluminous glass liquid passing through the top exit of the ascending channel structure (40) enters the connected glass liquid-loading device (17), and then passes through the glass liquid gate (8).
  • the surface of the tin kiln structure is smooth and covered with melted tin metal, and the glass strip is thinned and polished.
  • the thickness of the traditional soda-lime glass liquid when it enters the thinned thinning process is 6-7mm.
  • the thickness of the glass liquid will be thinner than the traditional 6-7mm thickness, reaching 4-5mm. Therefore, the temperature of the glass liquid decreases rapidly from 1300 °C to B. Because it can shut down some of the original designed tin kiln The upper glass strip is thinned and a large number of heating and insulation devices in the polishing process greatly reduce the electrical heating energy at the top of the tin kiln structure, so the temperature of the glass liquid from 1300 ° C to the temperature can be greatly increased; C. Because of the tin kiln Structure of glass In the lower part, there is melted and smooth tin metal. Because of its strong thermal conductivity, it can quickly transfer the thermal energy of 1300 °C glass liquid to the entire tin kiln space.
  • the process equipment and equipment system of the present invention can integrate the traditional cooling section or the cooling process function called the working section, The thinning and polishing processes arranged to the molding process are completed quickly, so that the cooled glass ribbon can reach the required viscosity and temperature requirements when entering the edger.
  • the technical effect of the device crusting system of the present invention in the forming stage is the second: because a part of the original design of the upper glass ribbon of the tin kiln is turned off and a large number of heating and heat preservation devices are used in the polishing process, the present invention is based on tin In the kiln process stage, breaking the technical prejudice of traditional processes and devices can produce the technical effect of saving energy consumption.
  • the third technical effect of the process of the device crusting system of the present invention in the forming stage the molten glass is tinned with molten tin under the tin kiln structure. Because of its extremely strong thermal conductivity, it can quickly transfer 1300 °C glass liquid heat energy is transmitted to the entire tin kiln space, so it is not only conducive to the polishing quality of the polishing process, but also when the glass ribbon enters the process stage of the thickness required by the edger to pull the formed glass ribbon, the higher the space temperature, the more It is beneficial for the original design of the upper glass strip of the tin kiln to be thinned and polished, and a large number of heating and thermal insulation devices in the polishing process are properly matched with it, so that the glass ribbon is more conducive to achieving the appropriate viscosity temperature required by the process, and it is also conducive to the improvement of 10
  • the invention relates to a transverse flame cell kiln production system and production method for glass products according to the present invention.
  • a device (3) for controlling the temperature of glass liquid flowing from top to bottom by using electrodes is designed, and the ultra-high aluminum is completely solved.
  • the clarification and degassing quality of the glass at the process stage of 10 2 (Pa ⁇ s); so on the basis of the existing 800-ton float ultra-high aluminum flat glass equipment, on the basis of qualified product quality, by improving the flat glass It can increase the production capacity and improve the efficiency of the equipment.
  • the original design of the equipment with a capacity of 1,000 tons of float ultra-high aluminum flat glass can increase the capacity of pulling by more than 30% to reach more than 1,000 tons.
  • French ultra-high aluminum flat glass will not cause serious air bubble problems and product quality problems. Because of the advanced technology, when the glass liquid is stable above the viscosity temperature of 10 2 (Pa ⁇ s) for clearing and defoaming, the high-quality clarifying and degassing process can be achieved after only 3-4 hours. purpose)
  • Step 5 The float ultra-high alumina flat glass ribbon after the forming process is subjected to an annealing process and a cutting process to form a float ultra-high alumina flat glass product of a predetermined size.
  • the present invention is an invention that changes the relationship between elements.
  • the patent claim 1 of [A horizontal flame pool kiln production system for glass products] it mainly has 6 technical device knotting elements and 4 subdivisions. Elements of technical installations:
  • the device scouring elements includes glass raw material transport device (19), flame heat energy leading glass melting lateral flame pool kiln scouring device (10); glass liquid chuck flow channel device (60) ; Use the electrode to control the temperature of the glass liquid flowing from top to bottom to clarify, remove bubbles and prevent crystallization (30); use the electrode to temperature control the glass liquid flowing from bottom to top (40); A molding device (50) for glass products. Moreover, claim 1 further expresses the essential characteristics of these six technical device knotting elements.
  • the depth of the glass liquid flow channel device (60) between the surface of the liquid glass and the bottom of the device is the horizontal flame pool kiln crusting device (10) that uses flame thermal energy to dominate glass melting and uses electrode pairs from top to bottom. 10% -40% of the depth between the surface of the glass liquid and the bottom of the device in the device (30) for clarifying, de-airing and anti-crystallization of the glass liquid flowing downward; (60) 3-20 electrode devices are designed in the glass liquid in the area 5-30CM from the bottom refractory;
  • the glass liquid in the lower flowing glass liquid for temperature control clarification, degassing and anti-crystallizing device (30) is located at a distance of 5-30CM from the bottom refractory, and 3-20 electrode devices are designed;
  • the glass liquid ascending channel structure adopting electrodes to control the temperature of the glass liquid flowing from bottom to top-(40) is designed with 4-50 electrodes for controlling the temperature of the liquid glass; In the glass liquid in the area of 5-30CM, 3-20 electrode devices are designed;
  • All horizontal flame tank kiln system combined devices of all prior art soda lime float glass production lines with a daily output of several hundred tons to thousands of tons.
  • the key elements of the device are: a clarification, bubble elimination and anti-crystallization device (30) for temperature control of glass liquid flowing from top to bottom by electrodes;
  • a prior art-pool kiln system combined device involving high aluminum and ultra high aluminum float glass and electronic glass production lines.
  • the key elements of the device are: a clarification, bubble elimination and anti-crystallization device (30) for temperature control of glass liquid flowing from top to bottom by electrodes;
  • the key elements of the device are: a clarification, bubble elimination and anti-crystallization device (30) for temperature control of glass liquid flowing from top to bottom by electrodes;
  • the main technical device crusting elements without the present invention are: a lateral flame cell kiln crusting device (10) whose flame heat dominates the glass melting; a glass neck flow channel device (60).
  • the invention a lateral flame pool kiln production system and production method for glass products; an invention patent applied by a person in 2014 is an anti-crystallization device for the cooling part area of a glass process.
  • the key elements of the device are: a clarification, bubble elimination and anti-crystallization device (30) for temperature control of glass liquid flowing from top to bottom by electrodes;
  • the present invention expresses that there are changes in the comparison of the prior art in terms of the content and position of the elements of the technical device;
  • the present invention a horizontal flame pool kiln production system and production method for glass products; it also states that, in the function relationship of the knotting elements of technical devices, there are changes in the prior art;
  • the horizontal flame pool kiln system combination device of all the prior art soda lime float glass production lines with a daily production capacity of several hundred tons to thousands of tons is connected by a card neck device. It is a cooling part or a device called a working part; in the neck device, the cooling part or the device called a working part, the depth of the glass liquid is about 1 meter, and the glass liquid generally moves horizontally toward the molding device. .
  • the lateral flame pool kiln crusting device (10) which is dominated by flame heat energy and the glass flows from top to bottom using electrode pairs
  • the position of the glass liquid depth of the liquid for temperature control clarification, bubble removal, and anti-crystallization device (30) has changed.
  • the glass liquid depth in the above three technical device elements in the existing cell kiln technology device is consistent.
  • the depth of the glass liquid changed to the glass liquid card-neck flow channel device (60) is only the lateral flame pool kiln crusting device (10) where flame heat dominates the glass melting and the glass with electrode pairs flowing from top to bottom
  • the temperature of the liquid is clarified by the temperature control, the bubble is discharged, and the glass liquid depth of the anti-crystallization device (30) is 10% -40%. (See attached drawing 3)
  • the change in the position of the glass liquid depth of the glass liquid jam channel device (60) can cause the glass liquid jam liquid channel device (60) glass liquid to level from the glass liquid in the prior art pool kiln.
  • the liquid flows into a card-neck flow path device (60) for making the liquid glass, and the glass liquid flowing from the top to the bottom of the glass liquid is clarified by using an electrode to control the temperature of the glass liquid.
  • Side inflow see Figure 3 of the description
  • the present invention also changes the elements of a prior art technical device [a cooling section or a device called a working section] to [clarification and exhaust of temperature control of glass liquid flowing from top to bottom using electrodes] Bubble and anti-crystallization device] (3); [Glass liquid ascending channel structure for temperature control of glass liquid flowing from bottom to top using electrodes] (4).
  • the device (3) for controlling the temperature of the glass liquid flowing from top to bottom due to the use of electrodes and the glass liquid ascending channel structure (40) for temperature control of the glass liquid flowing from bottom to top using electrodes The top, the periphery, and the bottom are all designed to control the temperature of the glass liquid, so the glass liquid moving from top to bottom and the glass liquid flowing from bottom to top can be controlled above 1300 ° C;
  • the above glass liquid uses thermal radiation to conduct thermal energy, so it can be accurately controlled [the device that uses the electrode to control the temperature of the glass liquid flowing from top to bottom] (3) and [use the electrode to Glass liquid temperature rising glass channel structure for temperature control] (4)
  • the soda-lime glass liquid within (4) is completely above the temperature of -1430 ° C which is higher than the 10 2 Pa ⁇ s required for clarification and defoaming of the soda-lime glass. 20 ° C steady state, [error within 1-5 ° C].
  • the glass liquid can reach the goal of high-quality clarification
  • the volume of the glass liquid contained is very large, and the conventional cooling unit or a device called a working unit that reaches 3-5 times the amount of glass drawn every day, that is, the glass liquid passes through it. It takes 3-5 days to complete the process of exhausting bubbles and clarifying the defects of low production efficiency.
  • Consequence 1 is that there will not be any problems such as puddles and stone product quality problems caused by the dissolution process stage in the float soda-lime flat glass products (explaining the production process of the dissolution process, with the same energy consumption and the same equipment, add 30-40% of large production capacity, no problems with unqualified products and stone quality);
  • Consequence 2 is that the production of float soda-lime flat glass with the same energy consumption and the same equipment, increasing the production capacity by 30-40%, will cause serious air bubble problems and product quality problems.
  • the invention of the change of the element of the technical device solves this technical problem that people have been eager to solve but has not been successful. Therefore, the invention of the change of the element of the device of the technical device has outstanding substantive characteristics and significant progress. Sexual and creative.
  • the present invention has substantial changes in the content and position of the technical device knotting elements compared with the prior art in terms of the functional relationship of the technical device knotting elements; moreover, due to the technical device knotting element content and position, In terms of the relationship between the elements, the essential changes in the existing technology are compared, resulting in unexpected technical effects. Therefore, claim 1 of the present invention has outstanding substantive features, remarkable progressability, and inventiveness.
  • the horizontal flame pool kiln crusting device (10) using flame thermal energy to dominate glass melting is directly connected;
  • Device (17) for loading liquid glass-that is, the main channel, and 10-30 glass liquid flow channels are designed, and each of the flow channels is connected to the glass fiber production molding device for glass products, and flows into the corresponding 2 -30 dry pots carrying glass liquid, the glass liquid passes through the corresponding 2-30 drawing boards, and forms glass fibers under the action of the corresponding drawing machine.
  • the temperature of the large-volume and large-flow glass liquid in the horizontal flame pool kiln crusting device (10) is completely higher than the crystallization temperature before entering the glass liquid main channel and 10-30 glass liquid branching channels. And because of high alumina and ultra high alumina glass fiber, containing alumina up to 20-25-35%, the crystallization temperature is very high, and many of them reach above 1300 ° C. If crystallized glass liquid enters the main flow channel and each split channel, the main flow channel and each split channel cannot remelt the crystallized crystals. This will cause the crystallized crystals to enter the glass-dimensional forming dry pot and the drawing board, causing the drawing holes to be blocked and produced.
  • the existing comparative technology-a systemic combined device involving a large-tonnage tank-kiln glass fiber production line with a daily output of 100-600 tons currently can only produce glass fibers containing alumina up to 15%; it can never produce alumina Ultra-high-strength glass fibers up to 20-25%; it is even more impossible to produce ultra-high-strength glass fibers containing alumina up to 20-49%.
  • the lateral flame pool kiln crusting device (10) which is dominated by flame heat energy and the glass flows from top to bottom using electrode pairs
  • the position of the glass liquid depth of the liquid for temperature control clarification, bubble removal, and anti-crystallization device (30) has changed.
  • the glass liquid depth in the above three technical device elements in the existing cell kiln technology device is consistent.
  • the depth of the glass liquid changed to the glass liquid card-neck flow channel device (60) is only the lateral flame pool kiln crusting device (10) where flame heat dominates the glass melting and the glass with electrode pairs flowing from top to bottom
  • the temperature of the liquid is clarified by the temperature control, the bubble is discharged, and the glass liquid depth of the anti-crystallization device (30) is 10% -40%. (See attached drawing 3)
  • the change in the position of the glass liquid depth of the glass liquid jam channel device (60) can cause the glass liquid jam liquid channel device (60) glass liquid to level from the glass liquid in the prior art pool kiln.
  • the liquid flows into a card-neck flow path device (60) for making the liquid glass, and the glass liquid flowing from the top to the bottom of the glass liquid is clarified by using an electrode to control the temperature of the glass liquid.
  • Side inflow can change the position of the glass liquid flow, and form a clarification, bubble removal and anti-crystallization device for the glass liquid using electrodes to control the temperature of the glass liquid flowing from top to bottom ( 30) Changes flowing from top to bottom.
  • the device (3) for controlling the temperature of the glass liquid flowing from the top to the bottom using an electrode, and the top of the glass liquid rising channel structure (40) using the electrode to control the temperature of the glass liquid flowing from the bottom to the top The heating device for controlling the temperature of the molten glass is designed around and at the bottom. Therefore, the molten glass moving from top to bottom and the molten glass flowing from bottom to top can be controlled above 1300 ° C.
  • the liquid uses thermal radiation to conduct thermal energy, so it can be accurately controlled [the device that controls the temperature of the glass liquid flowing from top to bottom using electrodes] (3) and [the glass liquid flowing from bottom to top using electrodes Glass liquid ascending channel structure for temperature control] (4)
  • the glass liquid containing ultra-high-strength glass fibers containing alumina up to 20-49% is completely in a stable state above 20 ° C above the glass crystallization temperature, [ The error is within 1-5 ° C].
  • the present invention a lateral flame pool kiln production system and production method for glass products; the relationship between these elements is changed, and the defects of the prior art can be overcome on the basis of ordinary costs, so that the alumina content can reach 20-49%
  • the glass liquid of ultra-high-strength glass fiber can stably maintain the technical purpose above the crystallization temperature before entering the molding process.
  • the high-efficiency tank-kiln glass fiber production line with a daily output of 100 to 600 tons can produce high aluminum and ultra high aluminum (containing 20-49% of alumina)
  • Ultra-high-strength glass fiber produces unexpected technical effects.
  • the invention also aims at:
  • the flame heat energy in the production system dominates the horizontal flame pool kiln crusting device (10) for glass melting; the electrode (3) is used to control the temperature of the glass liquid flowing from top to bottom; The glass liquid ascending channel structure (40) for temperature control of the glass liquid flowing downward and upward; in these three element devices of the present invention, the reasonable positions of the electrodes and the electrode energy can design the glass liquid in the respective devices. Keeping the temperature above 1300-1480 °C above the crystallization temperature of ultra-high aluminous glass, so that the glass liquid is in a state of thermal radiation conduction heat energy, so that the temperature of the glass liquid in these three element devices can be controlled to predetermined requirements The range of + -1-5 ° C difference.
  • An invention that changes the elements of the device of this technology solves the technical problem that people have been eager to solve but has not been successful. Therefore, the invention of the change of the elements of the technical device has outstanding substantive characteristics, remarkable progress, and creativity.
  • the present invention has a change in the content and position of the technical device knotting elements, compared with the prior art in terms of the functional relationship of the technical device knotting elements, and because of the technical device knotting element content and position, the technical device knots In terms of the role of the elements, the changes in the existing technology are compared, resulting in unexpected technical effects. Therefore, claim 1 of the present invention has outstanding substantive features, remarkable progressability, and inventiveness.
  • the glass liquid loading device (17) which is directly connected, is the main channel and is also connected There are 2-30 glass liquid distribution channels, each of which is connected to a glassware forming device.
  • One of the drawbacks is that the investment-output ratio is low and the production efficiency is low.
  • the second drawback is that the energy consumption ratio of the same output is high.
  • the third defect is that high human resources are consumed for the same output.
  • the fourth defect is that because the high-melting-point high-aluminum alkali-free glass material does not contain the alkali material component of thorium conductivity, there is no flame thermal energy to dominate glass melting.
  • the glass product production device system ie, pure electric melting furnace
  • the fourth drawback is that, because there is no lateral flame pool kiln crusting device that flame heat dominates glass melting, it cannot reach a daily output of 100-1000 tons.
  • the king of defects is: Therefore, compared with the large-scale glass product pool kiln production line with a daily output of several hundred tons to thousands of tons, the systematic combination of electric furnaces has a low investment-output ratio; and a low production efficiency. 3.
  • the energy consumption ratio of the same output is high; 4.
  • the human resource consumption of the same output is high; there are defects that high-aluminum alkali-free glass materials with high melting point cannot be produced.
  • the device scouring system of the invention can overcome the defects existing in the systematic combined device of the electric melting furnace.
  • Horseshoe kiln device dominated by flame thermal energy and having electric flux
  • the small daily production tonnage is not more than 50 tons. It is limited by the tonnage and cannot be used in large-capacity glass production lines with a daily output of 100 tons to thousands of tons. It is mainly used to manufacture glassware products with low glass quality requirements.
  • One of its defects is that it is connected with a horseshoe kiln device which is dominated by flame thermal energy and has electric flux.
  • the melted glass liquid is all moved horizontally.
  • the defect is that the glass liquid moved horizontally has a reflux.
  • the phenomenon that the glass liquid moves horizontally is longer, so the upper layer of the glass liquid will have heat dissipation problems, and the temperature of the glass liquid that moves horizontally will be uneven; that is, the glass liquid that moves horizontally over a long distance
  • the upper part adopts flame or electric heating external heating process. Because of the flame or electric heating external heating process, the current heating with the electrode in the glass liquid is two kinds of devices. It cannot effectively control the temperature between the upper layer of the liquid glass and the middle and lower layers. Temperature, forming consistency and stability of control.
  • the second defect is that the molten glass melted by the horseshoe kiln device is all moved horizontally.
  • the defect is that there will be dead angles on the two sides and the lower part of the opening in the upper area, which are not conducive to the flow of the liquid, especially in production.
  • High alumina glass such as a product with a high crystallization temperature and a fast crystallization rate, will easily cause crystallization of liquid glass at the dead end where the liquid glass does not easily flow.
  • a stirring device In 0.8-1.2M deep glass liquid, it can also be overcome with a stirring device.
  • the clarification zone device with a glass liquid depth of 2-3M one is that it is very difficult to install a stirring device; the other is that the alumina specific gravity reaches 3.8, which is easier to sink to a clarification zone device with a depth of 3M than glass 2.5
  • the bottom layer of the clarification zone device with a glass liquid depth of 2-3M will definitely cause a large amount of this settling aluminum glass liquid [alumina-rich layering phenomenon], and the dense alumina content area
  • the glass component which is no longer the designed glass component, will produce a crystallization phenomenon higher than the predetermined crystallization temperature, and the area where this separation and settling of the aluminum glass liquid [alumina-rich layering phenomenon] occurs will produce a large Range of crystallization.
  • the position of the depth of the glass liquid of the glass liquid channel device (60) of the glass liquid is changed with elements which are completely different from the prior art.
  • the depth of the glass liquid of the liquid channel device (60) of the glass liquid is a flame pool kiln crusting device (2) where flame heat dominates glass melting and the temperature of the glass liquid flowing from top to bottom is controlled by electrodes 10% to 40% of the glass liquid depth of the glass liquid depth of the clarification, degassing and anti-crystallization device (30). (See attached drawing 3)
  • the present invention is a "trial", a clarification zone device with a glass liquid depth of 3M-that is, the temperature control of glass liquid flowing from top to bottom using electrodes
  • the position of the depth of the glass liquid of the clarification, bubble elimination, and anti-crystallizing device (30) has been changed from a fundamentally different element from the prior art. Change from the depth of 3M to the depth of the claims of the present invention within 90-150CM; (see the attached drawing 3)
  • the exit position of the card-shaped flow channel device (60) passing through the glass liquid has risen greatly, forming a clarification zone device--that is, using electrode pairs from top to bottom
  • the temperature of the flowing glass liquid for clarification of temperature control, degassing, and the entrance of the glass liquid inlet of the anti-crystallization device (30) rises greatly, so that the glass liquid flows from the upper side (see FIG. 3 of the specification), and changes the current situation.
  • the state of technical crust the state of horizontal flow of molten glass. (See attached drawing 3)
  • the present invention compares the prior art horseshoe kiln devices due to changes in the relationship, position, and function of the multiple technical device elements described above, including "trial" horseshoe kiln devices with clarification zone devices with a glass liquid depth of 3M,
  • the unexpected technical effects are:
  • the systematic combined device of the large tonnage glass horizontal flame pool kiln production line with a daily output of 100-1000 tons can overcome the prior art devices, including a "trial"-clarification zone device with a horseshoe kiln glass liquid depth of 3M
  • the limitation is that the production capacity is limited to 50 tons;
  • the systematic combined device of the large tonnage glass horizontal flame pool kiln production line with a daily output of 100-1000 tons of the present invention can overcome the existing technology-"trial"-the meeting of the clarification zone device of the horseshoe kiln glass liquid depth of 3M
  • the bottom layer of the clarification zone device with a glass liquid depth of 3M makes a large amount of this settling aluminum glass liquid [alumina-rich layering phenomenon], and the glass components in the dense alumina content zone have been It is not a designed glass component, which will generate a higher crystallization temperature than a predetermined crystallization temperature, and the area where this separation and settling of the aluminized aluminum glass liquid [alumina-rich layering phenomenon] occurs will produce a wide range of crystallization defects. .
  • the invention patent applied by the present inventor in 2014 is an anti-crystallization device for the cooling part area of a glass process, which is characterized in that in the space above the liquid surface of the glass in the cooling part, the refractory bricks against the wall of the pool Within the distance range of 10-80mm, there are 2 to 80 electric heating devices and 2 to 80 temperature measuring devices. It is also proposed to place an electrode system in the glass liquid in the cooling section area to control the glass liquid temperature.
  • the external heating process of the electric heat on the refractory brick on the edge above the glass liquid and the current heating of the electrodes in the glass liquid are two types of devices, plus the temperature of the upper top layer of the middle region of the glass liquid is not controlled.
  • the device (the cooling section is generally 8-15 meters wide and 10-20 meters long), so the heat dissipation problem at the top layer is serious.
  • an anti-crystallization device used in the cooling part region of the glass process cannot effectively control the temperature of the upper and lower layers of the liquid glass moving horizontally to form a consistency and stability of control. Therefore, uneven temperature of the molten glass is formed.
  • an anti-crystallization device used in the cooling part area of the glass process cannot effectively control the glass liquid within the error of 1-5 ° C of the predetermined temperature required for clarification and defoaming, which cannot effectively guarantee Bubble level and clarification process level of glass liquid; especially when producing products with high crystallization temperature and fast crystallization speed, such as high alumina glass, it cannot effectively ensure that the glass liquid is always higher than the crystallization temperature before entering the forming process stage . (In the technical element device of the present invention, a vertically flowing glass liquid and electrodes on four sides can overcome this defect)
  • the glass liquid that moves horizontally is designed to make the glass liquid from the tail of the cooling part
  • the glass sluice opening of the upper area of the glass enters the molding area.
  • the cooling section is generally 8-15 meters wide, and the glass sluice opening is less than 2M wide, so there will be dead angles on the sides and the lower part of the cooling section of the horizontally moving glass sluice opening.
  • a vertically flowing glass liquid and electrodes on four sides can overcome this defect
  • the neck device the change of the anti-crystallization device used in the cooling part region of the glass process in the prior art is compared with the method of In the channel device (60), the depth between the surface of the glass liquid and the bottom of the device is changed to a lateral flame pool kiln crusting device (10) where the flame heat dominates the melting of the glass and the glass liquid flows from the top to the bottom using electrode pairs. 10% -40% of the depth between the surface of the glass liquid and the bottom of the device (30) for temperature-controlled clarification, bubble removal and anti-crystallization
  • the present invention a horizontal flame pool kiln production system and production method for glass products; combining the prior art technical device with the elements [a kind of anti-crystallization device used in the cooling part area of the glass process] into [Equipment for temperature control of glass frit flowing from top to bottom using electrodes, degassing and anti-crystallization equipment] (3) and [Glass liquid for temperature control of glass frit flowing from bottom to top using electrodes to rise Channel structure] (4). (See Figure 3 of the manual)
  • the lateral flame pool kiln crusting device (10) which is dominated by flame heat energy and the glass flows from top to bottom using electrode pairs
  • the position of the glass liquid depth of the liquid for temperature control clarification, bubble removal, and anti-crystallization device (30) has changed.
  • the glass liquid depth in the above three technical device elements in the existing cell kiln technology device is consistent.
  • the depth of the glass liquid changed to the glass liquid card-neck flow channel device (60) is only the lateral flame pool kiln crusting device (10) where flame heat dominates the glass melting and the glass with electrode pairs flowing from top to bottom
  • the temperature of the liquid is clarified by the temperature control, the bubble is discharged, and the glass liquid depth of the anti-crystallization device (30) is 10% -40%.
  • the change in the position of the glass liquid depth of the glass liquid jam channel device (60) can cause the glass liquid jam liquid channel device (60) glass liquid to level from the glass liquid in the prior art pool kiln.
  • the liquid flows into a card-neck flow path device (60) for making the liquid glass, and the glass liquid flowing from the top to the bottom of the glass liquid is clarified by using an electrode to control the temperature of the glass liquid.
  • Side inflow [see Figure 3 of the specification] can change the position of the glass liquid flow, forming a glass liquid using the electrode to control the temperature of the glass liquid flowing from top to bottom, clarification, degassing and anti-crystallization device ( 30) Changes flowing from top to bottom. (See Figure 3 of the manual)
  • the heating device is designed to control the temperature of the molten glass. Therefore, the molten glass that moves from top to bottom and the molten glass that flows from the bottom to the bottom can be controlled above 1300 ° C.
  • Heat radiation is used to conduct thermal energy, so it can accurately control the temperature of the device [using the electrode to control the temperature of the glass liquid flowing from top to bottom] (3) and [using the electrode to control the temperature of the glass liquid flowing from bottom to top Controlled glass liquid ascending channel structure] (4)
  • the glass liquids of high-aluminum and ultra-high-aluminum float plate glass and electronic glass are completely higher than 1300 which is 10 2 Pa ⁇ s required for glass clarification and defoaming. 20 ° C steady state above -1480 ° C, [error is within 1-5 ° C].
  • the glass liquid can reach the goal of high-quality clarification and bubble discharge within 3-6 hours.
  • the present invention a lateral flame pool kiln production system and production method for glass products; the relationship between these factors can be changed, and the production of high-aluminum and ultra-high-aluminum float plate glass and electronic glass can be made on the basis of ordinary costs.
  • This cooling section or a device called a working section has defect 1: Because the depth of the glass liquid in this cooling section or a device called a working section is about 1 meter, the glass liquid generally moves horizontally toward the molding device. There is no complete, accurate, uniform heating and temperature control system on the upper face, left and right, and lower bottom parts of the liquid glass, so especially in the cooling section or the back section called the working section, which is close to the molding area, the liquid glass The temperature difference between the upper and lower layers is 70-90 °C.
  • This cooling section or a device called a working section has defect 2: Because the depth of the glass liquid in this cooling section or a device called a working section is about 1 meter, the glass liquid generally moves horizontally toward the molding device. There is no complete, accurate, uniform heating and temperature control system on the upper face, left and right, and lower bottom parts of the liquid glass, so especially in the cooling section or the back section called the working section, which is close to the molding area, the liquid glass The temperature difference between the upper and lower layers is 70-90 °C.
  • High-aluminum and ultra-high-aluminum float plate glass and electronic glass have a high crystallization temperature due to the alumina content of 20-25-35%, and many of them reach above 1300-1480 ° C. Therefore, in production, such a cooling unit or a device called a working unit cannot solve the glass liquids of high-aluminum and ultra-high-aluminum float plate glass and electronic glass. Before entering the molding process, it can be stably maintained above the analysis temperature. Technical difficulties above the crystal temperature.
  • the present invention compares the changes in the prior art with regard to the content and position of the key elements of the technical device [card neck device].
  • the surface of the glass liquid and the bottom of the device in the card liquid flow device (60) of the glass liquid are compared.
  • the depth is between the horizontal flame pool kiln crusting device (10) where flame thermal energy dominates the glass melting and the clarification, bubble elimination and anti-crystallization device (30) for temperature control of glass liquid flowing from top to bottom using electrodes.
  • the depth between the surface of the glass liquid and the bottom of the device is 10% -40%. (See attached drawing 3)
  • the present invention a horizontal flame pool kiln production system and production method for glass products; the elements of a prior art technical device [a cooling unit or a device called a working unit] are changed to [using electrode pairs Device for temperature control of clarification, bubble generation and anti-crystallization of glass liquid flowing from top to bottom] (3) and [Glass liquid rising channel structure for temperature control of glass liquid flowing from bottom to top using electrodes] ( 4). (See attached drawing 3)
  • the change in the position of the glass liquid depth of the glass liquid jam channel device (60) can cause the glass liquid jam liquid channel device (60) glass liquid to level from the glass liquid in the prior art pool kiln.
  • the liquid flows into a card-neck flow path device (60) for making the liquid glass, and the glass liquid flowing from the top to the bottom of the glass liquid is clarified by using an electrode to control the temperature of the glass liquid.
  • Side inflow [see Figure 3 of the specification] can change the position of the glass liquid flow, forming a glass liquid using the electrode to control the temperature of the glass liquid flowing from top to bottom, clarification, degassing and anti-crystallization device ( 30) Changes flowing from top to bottom.
  • the heating device is designed to control the temperature of the molten glass. Therefore, the molten glass that moves from top to bottom and the molten glass that flows from the bottom to the bottom can be controlled above 1300 ° C.
  • Heat radiation is used to conduct thermal energy, so it can accurately control the temperature of the device [using the electrode to control the temperature of the glass liquid flowing from top to bottom] (3) and [using the electrode to control the temperature of the glass liquid flowing from bottom to top Controlled glass liquid ascending channel structure] (4)
  • the glass liquids of high-aluminum and ultra-high-aluminum float plate glass and electronic glass are completely higher than 1300 which is 10 2 Pa ⁇ s required for glass clarification and defoaming. 20 ° C steady state above -1480 ° C, [error is within 1-5 ° C].
  • the glass liquid can reach the goal of high-quality clarification and bubble discharge within 3-6 hours.
  • the present invention a lateral flame pool kiln production system and production method for glass products; the relationship between these factors can be changed, and the production of high-aluminum and ultra-high-aluminum float plate glass and electronic glass can be made on the basis of ordinary costs.
  • glass products Prior to the electrolysis kiln technology and flame kiln technology, glass products mainly produced low aluminum products with alumina content of 1-4%, medium aluminum products with alumina content of 5-9%, and alumina content of 10-16 % High aluminum products.
  • the preparation method of the process characteristics according to the present invention is also different from the technical solutions of the prior inventions (1) to (6) and any of the prior technical solutions.
  • the characteristics of the preparation method described in the present invention can produce completely different from the previous similar products, [the glass has no milky white aluminum-rich stripes or aluminum-rich blocks at all, and the characteristics of glass delamination have no alumina content of 15- -35% glass products].
  • glass products with alumina content of 15-35% will be prone to major defects such as opaque aluminum-rich stripes or opaque aluminum-rich blocks, or Major defects in glass delamination occurred.
  • the upper and lower flows of the glass liquid with a distance of 5-30-60CM from the bottom refractory can be formed in these areas, so that the "aluminum-rich sedimentation phenomenon-that is, the glass liquid part with high alumina content, "The phenomenon of sedimentation and accumulation at the bottom due to the large specific gravity" was homogenized and resolved. It can fundamentally solve the problem of severely uneven components in the forming stage of the glass finished product, which causes glass bars, stripes, white opaque oxygen-rich blocks and strips to be completely unqualified, making high-qualified production of 15-35% Glass products with alumina content are possible.
  • the present invention can also overcome the difficulties caused by the "aluminum-rich sedimentation phenomenon" at the bottom of the glass liquid by using the traditional stirring process to achieve the purpose through the prior art.
  • the molding device (5) stops working that is, the glass liquid when the temperature glass liquid is not flowing from the melting furnace crusting device, can also form these areas, the distance from the bottom refractory 5-30-60CM
  • the working process temperature of at least one section of the glass liquid is maintained at 1320 ° C to 1450 ° C, and the working process temperature of at least one section is maintained at 1320 ° C to 1450 ° C, which is higher than the area at a distance of 30-60CM from the bottom refractory.
  • the working process temperature of the glass liquid is 20-80 ° C; and the upper and lower flows are homogenized in a small range, so that the "aluminum-rich sedimentation phenomenon-that is, the phenomenon that the glass liquid portion with a high alumina content content settles and accumulates at the bottom due to its specific gravity ", It was homogenized and resolved.
  • the brand-new process invention concept is an invention of glass products produced in a specific environment for a specific region's process technology solution, which has produced unexpected technical effects.
  • the invention also aims at:
  • the flame heat energy in the production system dominates the horizontal flame pool kiln crusting device (10) for glass melting; the electrode (3) is used to control the temperature of the glass liquid flowing from top to bottom; The glass liquid ascending channel structure (40) for temperature control of the glass liquid flowing downward and upward; in these three element devices of the present invention, the reasonable positions of the electrodes and the electrode energy can design the glass liquid in the respective devices. Keeping the temperature above 1300-1480 °C above the crystallization temperature of ultra-high aluminous glass, so that the glass liquid is in a state of thermal radiation conduction heat energy, so that the temperature of the glass liquid in these three element devices can be controlled to predetermined requirements The range of + -1-5 ° C difference.
  • the present invention relates to a production system and method for a horizontal flame pool kiln for glass products, which solves the above-mentioned (1). (2). (3). (4) in the field of glass production that people have been eager to solve but have not been successful. ). (5). (6) technical problems. Therefore, the horizontal flame pool kiln production system and production method of the glass product of the present invention have outstanding substantive characteristics, remarkable progress, and creativity.
  • the present invention provides a lateral flame pool kiln production system and production method for glass products, it can solve the above-mentioned (1). (2). (3) in the glass field that people have been eager to solve but have not been successful in production. ). (4). (5). (6) One of the technical problems, then the horizontal flame pool kiln production system and production method of the glass product of the present invention can also have outstanding substantive characteristics and significant Progressive and creative.
  • claim 1 Because of the production system and method for the transverse flame pool kiln of glass products of the present invention, claim 1 has outstanding substantive features, remarkable progress, and creativity, so claims 2-13 also have outstanding substantive features. And significantly progressive, creative.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Furnace Details (AREA)

Abstract

一种玻璃制品的横向火焰池窑生产系统以及生产方法;该系统包括玻璃原料运输装置,火焰热能主导玻璃熔化的横向火焰池窑结抅装置;玻璃液的卡脖流道装置;采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置;采用电极,对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构;玻璃制品的成型装置;其特征在于:玻璃液的卡脖流道装置中,玻璃液的表面与装置底部之间的深度,是火焰热能主导玻璃熔化的横向火焰池窑结抅装置和采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置中,玻璃液的表面与装置底部之间的深度的10%-40%。

Description

一种玻璃制品的横向火焰池窑生产系统以及生产方法 技术领域
本发明属于玻璃制品的生产装置领域,涉及在玻璃制品的大生产系统中,对现有技术的玻璃制品生产装置的结构要素,作出结抅变化、位置变化、作用关系变化的创新生产装置系统。
背景技术
现有对比技术1:
在涉及所有的日产几百吨上千吨的大吨位的现有技术的钠钙浮法玻璃生产线的横向火焰池窑系统组合装置中,在火焰热能主导玻璃熔化的横向火焰池窑结抅装置之后,由一个卡脖装置联结的是一种冷却部或名为工作部的装置;其卡脖装置、横向火焰池窑结抅装置、冷却部或名为工作部的装置中,玻璃液的深度都是一致的,约1米左右,所以玻璃液总体都是水平方向朝成型装置移动。其现有技术冷却部或名为工作部的装置容纳玻璃液的体积很大,都达到每天拉引玻璃量的3-5倍(也就是如果日产600吨的生产线的冷却部或名为工作部的装置,容纳玻璃液会达到2000-3000吨)。其工艺原则之一:是使玻璃液在冷却部或名为工作部的装置中慢慢冷却;其工艺原则之二:使玻璃液在冷却部或名为工作部的装置中慢慢完成排气泡、澄清工艺的过程(即玻璃液要在其中经过3-5天的时间慢慢完成排气泡、澄清工艺的过程)。在现有技术的钠钙浮法玻璃生产线的系统性组合装置中,这种冷却部或名为工作部的装置已经形成几十年来不变的装置结构,已经形成所谓不可动摇的权威性结构。
实质上是因为有一种技术偏见,是导致这种冷却部或名为工作部的装置已经形成几十年来不变的原因:
如:1、在中国化学工业出版社2005年出版的浮法玻璃生产技术与设备一书中的浮法玻璃成型工艺章节之第92页1至2行指出:玻璃浮法工艺……玻璃液流入锡窑……相应的粘度为10 3帕·秒。(所有日产几百吨上千吨的大吨位的 现有技术的钠钙浮法玻璃生产线的企业,都是这么操作的)。
而钠钙浮法玻璃的10 2帕·秒的排气泡、澄清工艺的粘度温度为1430℃;钠钙浮法玻璃的10 3帕·秒的成型工艺的粘度温度为1080℃;所以日产几百吨上千吨的大吨位的现有技术的钠钙浮法玻璃生产线,为了达到进入成型锡窑时的10 3帕·秒的成型工艺的粘度温度为1080℃的工艺目的,都使从熔化部的1400℃以上的玻璃液,经过卡脖进入传统的这种冷却部或名为工作部的装置后,进入了一个冷却工艺阶段,使玻璃液冷却到1080℃来合乎所谓10 3帕·秒的成型工艺要求的标准。为了有效降温,传统的这种冷却部或名为工作部的装置的上部都有若干抽风降温系统。而在成型锡窑中,为了使玻璃液和玻璃带不会因降温太快而不能完成趟平、摊薄及拉边机拉薄工艺,又在锡窑顶上加了很多加热装置。
其存在缺陷之一:这种冷却部或名为工作部的装置中,由于达不到钠钙浮法玻璃的10 2帕·秒的排气泡、澄清工艺的粘度温度为1430℃的要求,所以采用了一种使玻璃液在冷却部或名为工作部的装置中慢慢完成排气泡、澄清工艺的过程的工艺-(即玻璃液要在其中经过3-5天的时间慢慢完成排气泡、澄清工艺的过程)。其缺陷之一是生产效率低,浪费了生产时间。
其存在缺陷之二:也由于降温工艺后的玻璃液,进入锡窑的摊簿工序时,因为只有5-7CM厚面积又很大,为了保持温度又在成型锡窑顶上加了很多加热装置,所以造成的能源浪费。
其存在缺陷之三:由于这种冷却部或名为工作部的装置中,玻璃液的深度都是1米左右,玻璃液总体都是水平方向朝成型装置移动,玻璃液上面部、左右部、下底层部都沒有完整、准确、统一的加温及控制温度的系统装置,所以尤其是与成型区接近的冷却部或名为工作部后段中玻璃液上、下层温度差别,达70-90℃;这会造成钠钙浮法玻璃生产排气泡、澄清工艺的过程,不可能准确的按照钠钙玻璃成分特有的澄清、排泡10 2(帕·秒)的粘度温度,来完成排气泡、澄清工艺的过程,会造成排泡品质缺缺陷。
(2)现有对比技术2:在涉及日产100-600吨的大吨位的玻璃纤维横向火焰池窑生产线的现有技术的系统性组合装置中,都采用火焰热能主导玻璃熔化的 横向火焰池窑结抅装置(10);直接联结着的装载玻璃液的装置(17)-即主通道,又设计有10-30个玻璃液流道,其每个流道,联结着玻璃制品的玻璃纤维生产的成型装置,分别流入对应的2-30个承载玻璃液的干埚,玻璃液经过对应的2-30个拉丝板,在对应的拉丝机的作用下形成玻璃纤维。
现有对比技术--在涉及日产100-600吨的大吨位的玻璃纤维横向火焰池窑生产线的系统性组合装置中,都没有专门的采用电极,对从上向下流动的玻璃液进行温度控制的装置;都沒有能精确控制大体积的大流量的玻璃液的温度的装置,不能保障大体积的大流量的玻璃液在成型工艺之前完全高于析晶温度。
其存在缺陷在于:因为含氧化铝达20-25%的超高强玻璃纤维,的析晶温度很高,在涉及日产100-600吨的大吨位的玻璃纤维生产线的系统性组合装置在成型工艺之前的装置中,沒有能精确控制大体积的大流量的玻璃液的温度,不能保障大体积的大流量的玻璃液在成型工艺之前完全高于析晶温度,完全不产生析晶。所以现有对比技术--在涉及日产100-600吨的大吨位的玻璃纤维生产线的系统性组合装置从来都不可生产含氧化铝达20-25%的超高强玻璃纤维;更不可能生产含氧化铝达20-49%的超高强玻璃纤维。
(3)现有对比技术3:没有火焰热能主导玻璃熔化的现有技术的纯电熔窑系统性组合装置,虽然其也包括了:采用电极,对从上向下流动的玻璃液进行温度控制的装置(2);采用电极,对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(3);但由于沒有火焰热能主导玻璃熔化的横向火焰池窑结抅装置,其存在缺陷是:因为传统的玻璃制品电熔窑生产装置结抅系统,受电熔技术吨位局限,不能用于日产量达100吨到上千吨的大产能玻璃制品生产线。
所以,与日产量达几百吨到上千吨的大产能玻璃制品池窑生产线比较,缺陷之一是:投资产出比率低,生产效率低。缺陷之二是:相同的产量的能耗比高。缺陷之三是:相同的产量的人力资源耗用高;缺陷之四是:。因为高溶点的高铝无碱玻璃材料中不含髙导电的碱材料成分,所以没有火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10)的工艺装置(1)的玻璃制品生产装置系统,(即纯电熔窑)-不能充分溶化高铝无碱玻璃材料,存在不能生产高溶点的高铝无碱玻璃材料的缺陷。
(4)现有对比技术4:一种火焰热能主导的又有电助熔的马蹄窑炉装置:
其存在缺陷之一是:一种火焰热能主导的又有电助熔的马蹄窑炉装置,由于结抅比横向火焰池窑简单,所以成本低,占地少;主要用于制造对玻璃质量要求不高的玻璃器皿产品,而且日生产吨位不大于50吨,采用的是受吨位局限,不能用于日产量达100吨到上千吨的大产能玻璃制品生产线。
其存在缺陷之二是:一种火焰热能主导的又有电助熔的马蹄窑炉装置,溶化后的玻璃液,全都是水平方向移动的;其存在缺陷是水平方向移动的玻璃液有回流的现象也无法控制;而且玻璃液水平方向移动的距离较长,所以其玻璃液上层就会有散热问题,就会形成水平移动的玻璃液温度不均;就是在距离较长的水平移动的玻璃液上部采用火焰或电热的外加热工艺,由于火焰或电热的外加热工艺,与玻璃液中的电极的电流加热是二种装置,不能有效的控制水平移动的玻璃液上层温度和中下层之间的温度,形成控制的一致性和稳定性。就会形成水平移动的玻璃液温度不均。所以一种火焰热能主导的又有电助熔的马蹄窑炉装置,不能有效达到使玻璃液能精确的控制在澄清、排泡所需预定温度的1-5℃的误差之内,不能有效保障玻璃液的排气泡、澄清工艺水平;尤其在生产高铝玻璃这种析晶温度高又析晶速度较快的产品时,不能有效保障玻璃液在进入成工艺阶段之前,玻璃液温度始终高于析晶温度。
其存在缺陷之三是:一种火焰热能主导的又有电助熔的马蹄窑炉装置溶化后的玻璃液,全都是水平方向移动的;其存在缺陷是:在上层区域的洞口的两边和下部会有不利玻璃液流动的死角,尤其在生产高铝玻璃这种析晶温度高又析晶速度较快的产品时,会很易于在玻璃液不易流动的死角产生玻璃液析晶。
(5)现有对比技术5:本发明人在2014年申请的发明专利一种用于玻璃工艺的冷却部区域的防析晶装置,其特征在于:在冷却部的玻璃液面之上的空间中,在靠池壁耐火砖的内侧10-80mm的距离范围内,有2个至80个电加热装置和2个至80个测定温度装置。也提出在冷却部区域的玻璃液中安置电极系统来控制玻璃液温度。
其存在缺陷之一是:[1]在一种用于玻璃工艺的冷却部区域的防析晶装置装置或现有的一切冷却部或名为工作部的装置中,在火焰热能主导玻璃熔化的横 向火焰池窑结抅装置之后,由一个卡脖装置联结的是一种冷却部区域的防析晶装置装置;其卡脖装置、横向火焰池窑结抅装置、冷却部区域的防析晶装置装置中,玻璃液的深度都是一致的,约1米左右。所以玻璃液总体都是水平方向朝成型装置移动。虽然也安装了电极,希望解决玻璃液的温度控制,但水平方向移动的玻璃液有回流的现象,也无法有效控制玻璃液的温度;[2]而玻璃液侧面的耐火砖上加了电热的外加热装置,,其玻璃液顶部层面沒就控制温度的装置(冷却部一般都有8-15米宽,10-20米长,顶部中心层面散热问题严重)。
所以,一种用于玻璃工艺的冷却部区域的防析晶装置并不能有效的控制水平移动的玻璃液上层温度和中下层之间的温度,形成控制的一致性和稳定性。就会形成水平移动的玻璃液温度不均。
所以,一种用于玻璃工艺的冷却部区域的防析晶装置,不能有效达到使玻璃液能精确的控制在澄清、排泡所需预定温度的1-5℃的误差之内,不能有效保障玻璃液的排气泡、澄清工艺水平;尤其在生产高铝玻璃这种析晶温度高又析晶速度较快的产品时,不能有效保障玻璃液在进入成工艺阶段前始终高于析晶温度。
其存在缺陷之二是:一种用于玻璃工艺的冷却部区域的防析晶装置装置或现有的一切冷却部或名为工作部的装置中,水平移动的玻璃液,都是设计为使玻璃液从冷却部的尾部的上层区域的玻璃液闸板洞口进入成型区的。冷却部一般都有8-15米宽,而玻璃液闸板洞口只有不到2M宽,所以在水平移动的玻璃液闸板洞口的冷却部域的两边和下部,会有不利玻璃液流动的死角,尤其在生产高铝玻璃这种析晶温度高又析晶速度较快的产品时,会很易于在玻璃液不易流动的死角产生玻璃液析晶。
(6)现有对比技术6:
在涉及高铝和超高铝浮法平板玻璃和电子玻璃的横向火焰池窑生产线的现有技术的系统性组合装置中,在火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10)之后联结的是一种冷却部或名为工部的装置,在火焰热能主导玻璃熔化的横向火焰池窑结抅装置之后,由一个卡脖装置联结的是一种冷却部或名为工作部的装置;其卡脖装置、横向火焰池窑结抅装置、冷却部或名为工作部的 装置中,玻璃液的深度都是一致的,约1米左右,所以玻璃液总体都是水平方向朝成型装置移动。其冷却部或名为工部的容纳玻璃液的体积很大,都达到每天拉引玻璃量的3-5倍。(也就是如果日产200吨的高铝和超高铝浮法平板玻璃和电子玻璃生产线的冷却部或名为工作部的装置,容纳玻璃液会达到600-1000吨)。其工艺原则之一:是使玻璃液在冷却部或名为工作部的装置中慢慢冷却;其工艺原则之二:使玻璃液在冷却部或名为工作部的装置中慢慢完成排气泡、澄清工艺的过程-(即玻璃液要在其中经过3-5天的时间慢慢完成排气泡、澄清工艺的过程)。在现有技术的高铝和超高铝浮法平板玻璃和电子玻璃生产线的现有技术的系统性组合装置中,这种冷却部或名为工作部的装置已经形成几十年来不变的装置结构,已经形成所谓不可动摇的权威性结构。其工艺原则是使玻璃液在其中慢慢冷却;使玻璃液在其中慢慢完成排气泡、澄清工艺的过程。这是几十年来不变的装置结构,已经形成所谓不可动摇的权威结构,实质上是一种技术偏见。
实质上是因为有一种技术偏见,是导致这种冷却部或名为工作部的装置已经形成几十年来不变的原因:
如:1、在中国化学工业出版社2005年出版的浮法玻璃生产技术与设备一书中的浮法玻璃成型工艺章节之第92页1至2行指出:玻璃浮法工艺……玻璃液流入锡窑……相应的粘度为10 3帕·秒。(所有涉及高铝和超高铝浮法平板玻璃和电子玻璃生产线的企业,都是这么作的)。
而高铝和超高铝浮法平板玻璃和电子玻璃的10 2.0帕·秒的排气泡、澄清工艺的粘度温度为1540-1580℃;10 3帕·秒的成型工艺的粘度温度为1480-1520℃;所以都把,从熔化部的1450℃以上的玻璃液,进入传统的这种冷却部或名为工作部的装置后,还要在传统的这种冷却部或名为工作部的装置的前上部,加火焰系统加热。
其存在缺陷之一:这种高铝和超高铝浮法平板玻璃和电子玻璃的冷却部或名为工作部的装置中,由于达不到的10 2帕·秒的排气泡、澄清工艺的粘度温度为1480-1520℃的要求;又由于这种冷却部或名为工作部的装置中,玻璃液的深度都是1米左右,玻璃液总体都是水平方向朝成型装置移动,玻璃液上面部、 左右部、下底层部都沒有完整、准确、统一的加温及控制温度的系统装置,所以尤其是与成型区接近的冷却部或名为工作部后段中玻璃液上、下层温度差别,达70-90℃;而且水平方向移动的玻璃液有回流的现象也无法控制;所以这会造成玻璃生产排气泡、澄清工艺的过程,不可能准确的按照高铝和超高铝浮法平板玻璃和电子玻璃成分特有的澄清、排泡10 2(帕·秒)的粘度温度,来完成排气泡、澄清工艺的过程;会造成了现有高铝和超高铝浮法平板玻璃和电子玻璃的严重的气泡的品质缺陷,或因为玻璃液澄清不好产生的玻筋或分层的品质缺陷。尤其还要在传统的这种冷却部或名为工作部的装置的前上部,加火焰系统加热,会导至严重的2次气泡。
其存在缺陷之二:现有对比技术--高铝和超高铝浮法平板玻璃和电子玻璃的横向火焰池窑生产线的系统性组合装置中,而且水平方向移动的玻璃液有回流的现象也无法控制;也都没有专门的采用电极与电加热,对从上向下流动的玻璃液,从上面部、左右部、下底层部,进行完整、准确、统一的加温及控制温度的系统装置,都沒有能精确控制大体积的大流量的玻璃液的温度的装置,不能保障大体积的大流量的玻璃液在成型工艺之前完全高于析晶温度。
所以现有对比技术--高铝和超高铝浮法平板玻璃和电子玻璃的横向火焰池窑生产线的系统性组合装置中,从来都不可生产含氧化铝达20-49%的超高强玻璃。
(7)现有对比技术7:先有电溶窑工艺技术及火焰窑工艺技术,主要生产氧化铝含量为1-4%的低铝制品、氧化铝含量为5-9%的中铝制品、氧化铝含量为10-16%的高铝制品。
先有电溶窑工艺技术及火焰窑工艺技术,不具有本发明工艺方法的几个技术要素结抅特征,所以,先有技术,不具有克服其技术难点的工艺条件。
先有电溶窑工艺技术及火焰窑工艺技术,主要考虑了溶化玻璃及排气泡和均化玻璃液,希望形成电极之间的电场[温度场]是均匀的为根本目标。不具有本发明耍求的,在多个区域中的距离底部耐火材5-30CM的区域中的玻璃液的特定 区域位置,设计有3-20个电极装置的要求,和不具有本发明耍求的在多个区域中的,距耐火材料底部5-30CM距离的区域的玻璃液中,最少有100立方CM体积的区间的工作工艺温度,要保持在1320℃-1450℃,要高于距离底部耐火材料30-60CM距离的区域玻璃液的工作工艺温度20-80℃的工艺方法。
发明内容
一种玻璃制品的横向火焰池窑生产系统,其包括:玻璃原料运输装置(19),火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10);玻璃液的卡脖流道装置(60);采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30);采用电极,对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40);玻璃制品的成型装置(50):
其特征在于:
玻璃液的卡脖流道装置(60)中,玻璃液的表面与装置底部之间的深度,是火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10)和采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)中,玻璃液的表面与装置底部之间的深度的10%-40%;
采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)的四周设计有4-50个控制玻璃液温度的电极;
采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)的下部设计有玻璃液流出的洞口(6),设计的玻璃液流出的洞口(6)联结着一个采用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40),上升通道结构中,设计有控制玻璃液温度的电极;
采用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40)的顶部出口,联结着一个装载玻璃液的装置(17),其中设计有控制玻璃液温度的电极。
根据权利要求1所述的一种玻璃制品的横向火焰池窑生产系统,其特征在 于:
其玻璃液的卡脖流道装置(60)中,玻璃液的表面与装置底部之间的深度,是火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10)和采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)中,玻璃液的表面与装置底部之间的深度的10%-40%;玻璃液的卡脖流道装置(60)的距离底部耐火材5-30CM的区域中的玻璃液中,设计有3-20个电极装置;
其采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)的四周设计有4-50个控制玻璃液温度的电极,采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)的距离底部耐火材5-30CM的区域中的玻璃液中,设计有3-20个电极装置;
其还设有底部流液通道(20),其距离底部耐火材5-30CM的区域中的玻璃液中,设计有3-20个电极装置;
其采用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构--(40)的四周设计有4-50个控制玻璃液温度的电极;上升通道结构(40)的距离底部耐火材5-30CM的区域中的玻璃液中,设计有3-20个电极装置;
根据权利要求1所述的一种玻璃制品的横向火焰池窑生产系统,其特征在于,采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置的玻璃液,深度在90-150CM之内;采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)的顶部设计有加热装置。
根据权利要求1所述的一种玻璃制品的横向火焰池窑生产系统,其特征在于,采用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40)的顶部出口,联结着的装载玻璃液的装置(17)的顶部,设计有加热装置;联结着的装载玻璃液的装置(17)的底部,也设计有控制玻璃液温度的电极设计有加热装置。
根据权利要求1所述的一种玻璃制品的横向火焰池窑生产系统,其特征在于,其火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10)的日产量达到100吨-1500吨;其火焰喷嘴是安装在横向火焰池窑的两测面,火焰喷射方向与横向火焰池窑长度的方向是处于撗方向;其横向火焰池窑结抅装置的玻璃液中,设计有电助熔控制玻璃液温度的电极。
根据权利要求1所述的一种玻璃制品的横向火焰池窑生产系统,其特征在于,其采用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40)的顶部出口,联结着的装载玻璃液的装置(17)的顶部,设计有加热装置;联结着的装载玻璃液的装置(17)的底部,也设计有控制玻璃液温度的电极;通向成型装置的区域设计有玻璃液闸门;
其玻璃制品的成型装置(50),是浮法平板玻璃工艺的锡窑结构,其包括:锡窑底层有锡金属;锡窑两边有10-40对拉边机;锡窑顶部有电加热装置;
在浮法平板玻璃工艺的锡窑结构之后,还有玻璃退火装置和玻璃板切材装置。
根据权利要求1所述的一种玻璃制品的横向火焰池窑生产系统,其特征在于,其采用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40)的顶部出口,联结着的装载玻璃液的装置(17)的顶部,设计有加热装置;联结着的装载玻璃液的装置(17)的底部,也设计有控制玻璃液温度的电极,联结着玻璃液的主流道,其联结着有2-30个玻璃液分流道,其各个玻璃液分流道,联结着的玻璃制品的成型装置(50)是玻璃纤维生产的成型装置;其玻璃纤维生产的成型装置包括:承载玻璃液的2-30个干埚、2-30个拉丝板、拉丝机。
根据权利要求1所述的一种玻璃制品的横向火焰池窑生产系统,其特征在于,其采用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40)的顶部出口,联结着的装载玻璃液的装置(17)的顶部,设计有加热装置;联结着的装载玻璃液的装置(17)的底部,也设计有控制玻璃液温度的电极,联结着玻璃液的主流道,其联结着有2-30个玻璃液分流道,其各个玻璃液分流道,联结着玻璃制品的成型装置(50);玻璃制品的成型装置(50)是工业 与日用玻璃器皿的吹制成型装置;在工业与日用玻璃制品的2-30个吹制成型装置(50)之后,还有玻璃制品的退火装置。
根据权利要求1所述的一种玻璃制品的横向火焰池窑生产系统,其特征在于,其采用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40)的顶部出口,联结着的装载玻璃液的装置(17)的顶部,设计有加热装置;联结着的装载玻璃液的装置(17)的底部,也设计有控制玻璃液温度的电极,联结着玻璃液的主流道,其联结着有2-30个玻璃液分流道,其各个玻璃液分流道,联结着玻璃制品的成型装置(50);玻璃制品的成型装置(50)是工业与日用玻璃器皿的压制成型装置;在工业与日用玻璃器皿的2-30个压制成型装置(50)之后,还有玻璃制品的退火装置。
根据权利要求1所述的一种玻璃制品的横向火焰池窑生产系统,其特征在于,其采用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40)的顶部出口,联结着的装载玻璃液的装置(17)的顶部,设计有加热装置;联结着的装载玻璃液的装置(17)的底部,也设计有控制玻璃液温度的电极,联结着玻璃液的主流道,其联结着有2-30个玻璃液分流道,其各个玻璃液分流道,联结着玻璃制品的成型装置(50);玻璃制品的成型装置(50)是工业与日用玻璃器皿的拉制成型装置;在工业与日用玻璃器皿的2-30个拉制的成型装置(50)之后,还有玻璃制品的退火装置。
根据权利要求1所述的一种玻璃制品的横向火焰池窑生产系统,其特征在于,其采用电极,对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(50)的顶部出口,联结着的装载玻璃液的装置(17)的顶部,设计有加热装置;联结着的装载玻璃液的装置(17)的底部,也设计有控制玻璃液温度的电极,联结着2-30个玻璃液流道,流道联结着玻璃制品的成型装置(50);玻璃制品的成型装置(50)是卫浴玻璃制品的吹制成型装置;在卫浴玻璃制品的2-30个吹制成型装置之后,还有卫浴玻璃制品的退火装置。
根据权利要求1所述的一种玻璃制品的横向火焰池窑生产系统,其特征在于,其使用的玻璃材料的组成是:按重量百分比计,其氧化铝含量为0.01%--39%,氧化镁含量为5%--20%,氧化硅含量是氧化钙含量的2.51-5.8倍,氧化钙含量是 氧化镁含量的0.7倍-2.3倍。
一种玻璃制品的生产方法:
备好所需的装置:火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10),玻璃液的卡脖流道装置(60),采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30),采用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40),玻璃制品的成型装置(50);这几个装置中的电极能量,都能在玻璃制品的成型装置(50)停止工作时,使各自装置内的玻璃液保持在1300℃以上,並保持在髙于玻璃析晶温度之上;
步骤1.把预定的玻璃原料,通过玻璃原料运输装置,进入火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10)中,进行溶化形成玻璃液,玻璃液再通过玻璃液的卡脖流道装置(60),从侧上部进入采用电极,对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)中;并使卡脖流道装置(60)和采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)中的玻璃液的温度,控制在高于澄清、排泡10 2帕·秒的粘度温度之上的区间和高于玻璃析晶温度之上的区间;
工艺特点在于:通过玻璃液的卡脖流道装置(60)的距离底部耐火材5-30CM的区域中的玻璃液中,设计的3-20个电极装置,使卡脖流道装置(60)区域的,距耐火材料底部10-30CM距离的区域的玻璃液中,最少有100立方CM体积的区间的工作工艺温度,要保持在1320℃-1450℃,要高于距离底部耐火材料30-60CM距离的区域玻璃液的工作工艺温度20-80℃;
工艺特点在于:通过从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)设计的距离底部耐火材5-30CM的区域中的玻璃液中,各自的3-20个电极装置,使从上向下流动的玻璃液进行温度控制的澄清、排气泡和 防析晶装置(30)区域的,距耐火材料底部5-30CM距离的区域的玻璃液中,最少有100立方CM体积的区间的工作工艺温度,要保持在1320℃-1450℃,要高于距离底部耐火材料30-60CM距离的区域玻璃液的工作工艺温度20-80℃;
步骤2.使玻璃液从采用电极,对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)下部,进入的底部流液通道(20),再进入联结着的一个采用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40);
工艺特点在于:通过底部流液通道(20)中设计的,距离底部耐火材5-30CM的区域中的玻璃液中,设计的3-20个电极装置,使底部流液通道(20)区域的,距耐火材料底部5-30CM距离的区域的玻璃液中,最少有100立方CM体积的区间的工作工艺温度,要保持在1320℃-1450℃,要高于距离底部耐火材料30-60CM距离的区域玻璃液的工作工艺温度20-80℃;
工艺特点在于:通过采用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40)中设计的,距离底部耐火材5-30CM的区域中的玻璃液中,设计的3-20个电极装置,使底部流液通道(20)区域的,距耐火材料底部5-30CM距离的区域的玻璃液中,最少有100立方CM体积的区间的工作工艺温度,要保持在1320℃-1450℃,要高于距离底部耐火材料30-60CM距离的区域玻璃液的工作工艺温度20-80℃;
工艺特点在于:通过其距离底部耐火材5-30CM的区域中的玻璃液中,设计的3-20个电极装置,使底部流液通道(20)区域的,距耐火材料底部5-30CM距离的区域的玻璃液中,最少有100立方CM体积的区间的工作工艺温度,要保持在1320℃-1450℃,要高于距离底部耐火材料30-60CM距离的区域玻璃液的工作工 艺温度20-80℃;
步骤3.玻璃液再由底部流液通道(20),进入用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40);
工艺特点在于:通过其距离底部耐火材5-30CM的区域中的玻璃液中,设计的3-20个电极装置,使用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40)区域的,距耐火材料底部5-30CM距离的区域的玻璃液中,最少有100立方CM体积的区间的工作工艺温度,要保持在1320℃-1450℃,要高于距离底部耐火材料30-60CM距离的区域玻璃液的工作工艺温度20-80℃;
步骤4.成型工艺:
选择1,第一种玻璃制品成型工艺,前述的经过上升通道结构(40)的顶部出口的玻璃液,进入联结着的装载玻璃液的装置(17),再经过玻璃液闸门(8),进入玻璃制品的成型装置(50);其玻璃制品的成型装置(50)是浮法平板玻璃工艺的锡窑结构;玻璃液进入锡窑结构的平滑的布有溶化的锡金属的平面,进行玻璃液趟平摊薄及抛光;再由两边的10-40对拉边机对形成的玻璃带拉成所需厚度;再经过退火,切材工序,形成浮法平板玻璃制品;或
选择2,第二种玻璃制品成型工艺,前述的经过上升通道结构(40)的顶部出口的玻璃液,进入联结着的装载玻璃液的装置(17);装载玻璃液的装置(17)就是玻璃液的主流道,玻璃液进入联结着有2-30个玻璃液分流道;玻璃液进入各个分流道联结着的玻璃制品的玻璃纤维生产的成型装置;分别流入对应的2-30个承载玻璃液的干埚,玻璃液经过对应的2-30个拉丝板,在对应的拉丝机的作用下形成玻璃纤维;或
选择3,第三种玻璃制品成型工艺,前述的经过上升通道结构(40)的顶部出口的玻璃液,进入联结着的装载玻璃液的装置(17);装载玻璃液的装置(17)就是玻璃液的主流道,玻璃液进入联结着有2-30个玻璃液分流道;玻璃液进入各个分流道联结着的玻璃制品的2-30个工业与日用玻璃器皿的吹制成型装置; 分别吹制成工业与日用玻璃的制品;再经过玻璃制品的退火装置的处理,制成工业与日用玻璃的吹制成型制品;或
选择4,第四种玻璃制品成型工艺,前述的经过上升通道结构(40)的顶部出口的玻璃液,进入联结着的装载玻璃液的装置(17);装载玻璃液的装置(17)就是玻璃液的主流道,玻璃液进入联结着有2-30个玻璃液分流道;玻璃液进入各个分流道联结着的玻璃制品的2-30个工业与日用玻璃器皿的压制成型装置;分别压制成工业与日用玻璃的制品;再经过玻璃制品的退火装置的处理,制成工业与日用玻璃的压制成型制品;或
选择5,第五种玻璃制品成型工艺,前述的经过上升通道结构(40)的顶部出口的玻璃液,进入联结着的装载玻璃液的装置(17);装载玻璃液的装置(17)就是玻璃液的主流道,玻璃液进入联结着有2-30个玻璃液分流道;玻璃液进入各个分流道联结着的玻璃制品的2-30个工业与日用玻璃的拉制成型装置,分别拉制成工业与日用玻璃的制品;再经过玻璃制品的退火装置的处理,制成工业与日用玻璃的拉制成型制品;或
选择6,第六种玻璃制品成型工艺,前述的经过上升通道结构(40)的顶部出口的玻璃液,进入联结着的装载玻璃液的装置(17);装载玻璃液的装置(17)就是玻璃液的主流道,玻璃液进入联结着有2-30个玻璃液分流道;玻璃液进入各个分流道联结着的玻璃制品的2-30个卫浴玻璃制品的吹制成型装置,分别制成卫浴玻璃制品;再经过玻璃制品的退火装置的处理,制成卫浴玻璃制品。
附图说明
图1和摘要附图,是本发明一种玻璃制品的横向火焰池窑生产系统以及生产方法,的设备组成的侧剖面示意图。
图2是本发明一种玻璃制品的横向火焰池窑生产系统以及生产方法,的浮法玻璃制备工艺的流程示意图。
图3是本发明一种玻璃制品的横向火焰池窑生产系统以及生产方法的玻璃纤维制备工艺的流程示意图。
符号说明
图1和摘要附图,是本发明一种玻璃制品的横向火焰池窑生产系统以及生产方法,的设备组成的侧剖面示意图中:
符号10,表示火焰热能主导玻璃熔化的横向火焰池窑结抅装置;
符号19,表示玻璃原料运输装置;
符号50表示火焰热能主导玻璃熔化的横向火焰池窑结抅装置;
符号60表示,玻璃液的卡脖流道装置;
符号30表示采用电极对从上向下流动的玻璃液进行温度控制的装置;
符号40表示采用电极,对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构;
符号20表示底部流液通道;
符号17表示装载玻璃液的装置;
符号50表示玻璃制品的成型装置;
符号8表示玻璃液中的电极(8);
符号9表示玻璃液上层面空间的电加热装置(9);
图2是本发明本发明一种玻璃制品的横向火焰池窑生产系统以及生产方法的浮法玻璃制备工艺的流程示意图:
符号10表示火焰热能主导玻璃熔化的横向火焰池窑结抅装置;
符号60表示,玻璃液的卡脖流道装置;
符号30表示采用电极对从上向下流动的玻璃液进行温度控制的装置;
符号40表示采用电极,对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构;
符号20符号表示底部流液通道;符号50表示,玻璃制品的成型装置。
图3是本发明本发明一种玻璃制品的横向火焰池窑生产系统以及生产方法的玻璃纤维制备工艺的流程示意图:
符号10表示火焰热能主导玻璃熔化的横向火焰池窑结抅装置;
符号60表示,玻璃液的卡脖流道装置;
符号30表示采用电极对从上向下流动的玻璃液进行温度控制的装置;
符号40表示采用电极,对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构的玻璃液;
符号20符号表示底部流液通道;
符号50表示,玻璃纤维制品的成型装置。
具体实施方式
以下参照图式说明本发明之实施例,应注意的是,以下图式系为简化之示意图式,而仅以示意方式说明本发明之基本构想,遂图式中仅例示与本发明有关之结构而非按照实际实施时之组件数目、形状及尺寸绘制,其实际实施时各组件之型态、数量及比例并非以图示为限,可依实际设计需要作变化,合先叙明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。
以下参照图式说明本发明之实施例,应注意的是,以下图式系为简化之示意图式,而仅以示意方式说明本发明之基本构想,遂图式中仅例示与本发明有关之结构而非按照实际实施时之组件数目、形状及尺寸绘制,其实际实施时各组件之型态、数量及比例并非以图示为限,可依实际设计需要作变化,合先叙明。
实施例1:
一种玻璃制品的横向火焰池窑生产系统的(原设计拉引量600吨)浮法钠钙平板玻璃生产装置结构系统实施例:
备好一种玻璃制品的横向火焰池窑生产系统的(原设计拉引量600吨)浮法钠钙平板玻璃所需的生产结构系统装置:
首先备好玻璃原料运输装置(19);火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10);玻璃液的卡脖流道装置(60),采用电极,对从上向下流动的玻璃液进行温度控制的装置(30);采用电极,对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40);浮法钠钙平板玻璃所需的成型装置(50);
备好所需的装置:火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10),玻璃液的卡脖流道装置(60),采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30),采用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40),玻璃制品的成型装置(50);这几个装置中的电极能量,都能在玻璃制品的成型装置(50)停止工作时,使各自装置内的玻璃液保持在1300℃以上,並保持在髙于玻璃析晶温度之上;
步骤1.把预定的玻璃原料,通过玻璃原料运输装置,进入火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10)中,进行溶化形成玻璃液,玻璃液再通过玻璃液的卡脖流道装置(60),从侧上部进入采用电极,对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)中;并使卡脖流道装置(60)和采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)中的玻璃液的温度,控制在高于澄清、排泡10 2帕·秒的粘度温度之上的区间和高于玻璃析晶温度之上的区间;
由于玻璃液在1300℃以上的1450℃,也是热幅射传导热能,又由于采用电极,对从上向下流动的玻璃液进行温度控制的装置(3)的顶部、四周、底部,设计的控制玻璃液温度的加热装置的控制,所以在从上而下的移动的玻璃液, 在采用电极,对从上向下流动的玻璃液进行温度控制的装置(3)中,能精确的控制在澄清、排泡所需预定温度的1-5℃的误差之内,所以只需要3-6小时的时间,就可以保障--钠钙玻璃液排气泡、澄清工艺阶段,能达到高水平完成排气泡、澄清的工艺目标。
本发明在钠钙玻璃液排气泡、澄清工艺阶段中,打破了传统工艺及装置的技术偏见-即打破了传统工艺玻璃液要在冷却部或名为工作部的装置中,必须要经过3-5天的时间,慢慢完成排气泡、澄清工艺的过程。本发明能克服其生产效率低,浪费了生产时间的缺陷;本发明能克服其,不可能准确的按照钠钙玻璃成分特有的澄清、排泡10 2(帕·秒)的粘度温度,来完成排气泡、澄清工艺的过程,会造成品质缺缺陷。因为先进工艺,可以使玻璃液在稳定的高于的澄清、排泡10 2(帕·秒)的粘度温度之上时,只经过3-6小时,就能达到高品质澄清、排泡的工艺目的。
步骤2.使玻璃液从采用电极,对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)下部,进入的底部流液通道(20),再进入联结着的一个采用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40);
步骤3.玻璃液再由底部流液通道(20),进入用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40);
步骤4.浮法钠钙平板玻璃成型工艺:
前述的经过上升通道结构(40)的顶部出口的钠钙玻璃液,进入联结着的装载玻璃液的装置(17),再经过玻璃液闸门(8),
玻璃液以1230-1300℃,高于传统的技术偏见的所谓钠钙玻璃1080℃103帕·秒的成型的工艺温度的要求,进入锡窑结构的平滑的布有溶化的锡金属的平面,进行玻璃带的趟平摊薄及抛光工艺;传统钠钙玻璃液进入趟平摊薄工艺阶段时的厚度是6-7mm;但本发明的装置结抅系统的工艺,进入趟平摊薄工艺阶段时:A.由于钠钙玻璃液1230-1300℃比1080℃粘度低得多,钠钙玻璃液进入 趟平摊薄工艺阶段其厚度会比传统6-7mm厚度薄,达到3-4mm,所以玻璃液从1230-1300℃向下降温速度很快;B.又由于可以关掉部分原设计的锡窑上部玻璃带的趟平摊薄及抛光工艺中的大量加热保温装置,大大减少了锡窑结构顶部的电加热能量,所以更能大大提升玻璃液从1230-1300℃向下降温速度;C.又由于锡窑结构的玻璃液之下部,布有溶化的平滑的锡金属,因为其极强的导热性,能迅速把1230-1300℃玻璃液热能传向整个锡窑空间。
本发明的装置结抅系统在成型阶段的工艺的技术效果之一:因为上述A.B.C.的工艺作用,所以本发明的工艺设备装备系统,能把传统的冷却部或名为工作部的降温工艺功能,安排到成型工艺的趟平摊薄及抛光工艺阶段快速完成,使降温后的玻璃带,在进入拉边机时能达到所需的粘度温度要求。
本发明的装置结抅系统在成型阶段的工艺的技术效果之二:因为关掉部分原设计的锡窑上部玻璃带的趟平摊薄及抛光工艺中的大量加热保温装置,本发明据有在锡窑工艺阶段中,打破传统工艺及装置的技术偏见,能产生节约能耗的技术效果。
本发明的装置结抅系统在成型阶段的工艺的技术效果之三:又由于锡窑结构的玻璃液之下部,布有溶化的平滑的锡金属,因为其极强的导热性,能迅速把1230-1300℃玻璃液热能传向整个锡窑空间,所以不但有利于抛光工艺的抛光品质,而业玻璃带在进入拉边机对形成的玻璃带拉边所需厚度的工艺阶段,较高的空间温度,更有利于原设计的锡窑上部玻璃带的趟平摊薄及抛光工艺中的大量加热保温装置与其适当的配合,使玻璃带更有利于达到工艺所需的合适的粘度温度,更能有利于提升10-40对拉边机把玻璃带拉成所需厚度的拉薄工艺的效率和拉薄工艺的品质。
由于采用电极,对从上向下流动的玻璃液进行温度控制的装置(3)和采用电极,对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40),的顶部、四周、底部,都设计的控制玻璃液温度的加热装置,所以在从上而下的移动的玻璃液和从下向上流动的玻璃液,都能控制在1300℃以上;又因在1300℃以上玻璃液是用热幅射传导热能,所以能精确的控制处于[采用电极,对从上向下流动的玻璃液进行温度控制的装置](3)和[采用电极,对从下向上流动的玻 璃液进行温度控制的玻璃液上升通道结构](4)之内的钠钙玻璃液,完全处于高于钠钙玻璃澄清、排泡所需的10 2帕·秒的--1430℃温度之上的20℃的稳定状态,[误差在1-5℃的之内]。在这种高水平的玻璃液排气泡、澄清先进制造工艺中,能在3-6个小时内完成玻璃液达到高品质的澄清、排泡水平的目标。
所以能克服现有技术1中,容纳玻璃液的体积很大,都达到每天拉引玻璃量的3-5倍的现有技术冷却部或名为工作部的装置,即玻璃液要在其中经过3-5天的时间慢慢完成排气泡、澄清工艺的过程的生产效率低的缺陷;
在传统浮法钠钙平板玻璃的生产中,大家都希望在现有设备的基础上,在产品品质合格的基础上,通过提高平板玻璃的拉引量来提升产能,提高设备效率。这是传统浮法钠钙平板玻璃领域中,人们一直渴望解决但始终未能获得成功的技术难题。
而在众多大型浮法钠钙平板玻璃企业,渴望在现有设备的基础上,在产品品质合格的基础上,通过提高平板玻璃的拉引量来提升产能,来提高设备效率的努力中,碰到的难题就是:如果玻璃液不经过传统的冷却部或名为工作部的装置中,3-5天的时间慢慢完成排气泡、澄清工艺的过程,而是在成型工艺阶段加大了拉引量30-40%(也就是玻璃液经过传统的冷却部或名为工作部的装置中,只用了2天的时间完成排气泡、澄清工艺的过程)后,浮法钠钙平板玻璃产品中不会出现因溶化工艺阶段原因而出现的碴点、结石的产品质量不合格问题(说明溶化过程生产工艺,在同等能耗同样装备下,加大产能30-40%沒有碴点、结石的产品质量不合格问题);但是浮法钠钙平板玻璃生产在同等能耗同样装备下,加大产能30-40%,会出玌严重的气泡问题,产品质量不合格问题。说明在同等设备同等能耗的状态下,加大拉引产能30-40%熔化不是问题,而气泡品质才是难题。
本发明的装置结抅系统在技术装置结抅要素的的改变和作用关系的改变产生的予料不到的技术效果在于:因为能解决在更短的几个小时的时间[而不是几天时间],就完成玻璃液达到高品质的澄清、排泡水平的目标,所以能在同等设备同等能耗的状态下,加大钠钙浮法玻璃拉引-即能在同等设备同等能耗的状态下,高品质钠钙浮法玻璃的产能可以上升30-40%。
步骤5.经过成型工艺的浮法钠钙平板玻璃带,再经过退火工序,切材工序, 形成预定尺寸的浮法钠钙平板玻璃制品。
实施例2:
一种玻璃制品的横向火焰池窑生产系统的500吨超高铝【氧化铝16-25%】的无碱玻璃纤维生产装置结构系统实施例:
备好一种玻璃制品的横向火焰池窑生产系统的生产结构系统装置:
首先备好玻璃原料运输装置(19);火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10);玻璃液的卡脖流道装置(60),采用电极,对从上向下流动的玻璃液进行温度控制的装置(30);采用电极,对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40);浮法钠钙平板玻璃所需的成型装置(50);
备好所需的装置:火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10),玻璃液的卡脖流道装置(60),采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30),采用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40),玻璃制品的成型装置(50);这几个装置中的电极能量,都能在玻璃制品的成型装置(50)停止工作时,使各自装置内的玻璃液保持在1300℃以上,並保持在髙于玻璃析晶温度之上;
步骤1.把预定的玻璃原料,通过玻璃原料运输装置,进入火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10)中,进行溶化形成玻璃液,玻璃液再通过玻璃液的卡脖流道装置(60),从侧上部进入采用电极,对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)中;并使卡脖流道装置(60)和采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)中的玻璃液的温度,控制在高于澄清、排泡10 2帕·秒的粘度温度之上的区间和高于玻璃析晶温度之上的区间;
工艺特点在于:通过玻璃液的卡脖流道装置(60)的距离底部耐火材5-30CM的区域中的玻璃液中,设计的3-20个电极装置,使卡脖流道装置(60)区域的,距 耐火材料底部10-30CM距离的区域的玻璃液中,最少有100立方CM体积的区间的工作工艺温度,要保持在1320℃-1450℃,要高于距离底部耐火材料30-60CM距离的区域玻璃液的工作工艺温度20-80℃;
工艺特点在于:通过从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)设计的距离底部耐火材5-30CM的区域中的玻璃液中,各自的3-20个电极装置,使从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)区域的,距耐火材料底部5-30CM距离的区域的玻璃液中,最少有100立方CM体积的区间的工作工艺温度,要保持在1320℃-1450℃,要高于距离底部耐火材料30-60CM距离的区域玻璃液的工作工艺温度20-80℃;
由于玻璃液在1300℃以上的1450℃,也是热幅射传导热能,又由于采用电极,对从上向下流动的玻璃液进行温度控制的装置(3)的顶部、四周、底部,设计的控制玻璃液温度的加热装置的控制,所以在从上而下的移动的玻璃液,在采用电极,对从上向下流动的玻璃液进行温度控制的装置(3)中,能精确的控制在澄清、排泡所需预定温度的1-5℃的误差之内,所以只需要3-6小时的时间,就可以保障--钠钙玻璃液排气泡、澄清工艺阶段,能达到高水平完成排气泡、澄清的工艺目标。
本发明在玻璃液排气泡、澄清工艺阶段中,打破了传统工艺及装置的技术偏见-即打破了传统工艺玻璃液要在冷却部或名为工作部的装置中,必须要经过3-5天的时间,慢慢完成排气泡、澄清工艺的过程。本发明能克服其生产效率低,浪费了生产时间的缺陷;本发明能克服其,不可能准确的按照钠钙玻璃成分特有的澄清、排泡10 2(帕·秒)的粘度温度,来完成排气泡、澄清工艺的过程,会造成品质缺缺陷。因为先进工艺,可以使玻璃液在稳定的高于的澄清、排泡10 2(帕·秒)的粘度温度之上时,只经过3-6小时,就能达到高品质澄清、排泡的工艺目的。
步骤2.使玻璃液从采用电极,对从上向下流动的玻璃液进行温度控制的澄 清、排气泡和防析晶装置(30)下部,进入的底部流液通道(20),再进入联结着的一个采用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40);
工艺特点在于:通过底部流液通道(20)中设计的,距离底部耐火材5-30CM的区域中的玻璃液中,设计的3-20个电极装置,使底部流液通道(20)区域的,距耐火材料底部5-30CM距离的区域的玻璃液中,最少有100立方CM体积的区间的工作工艺温度,要保持在1320℃-1450℃,要高于距离底部耐火材料30-60CM距离的区域玻璃液的工作工艺温度20-80℃;
工艺特点在于:通过采用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40)中设计的,距离底部耐火材5-30CM的区域中的玻璃液中,设计的3-20个电极装置,使底部流液通道(20)区域的,距耐火材料底部5-30CM距离的区域的玻璃液中,最少有100立方CM体积的区间的工作工艺温度,要保持在1320℃-1450℃,要高于距离底部耐火材料30-60CM距离的区域玻璃液的工作工艺温度20-80℃;
工艺特点在于:通过其距离底部耐火材5-30CM的区域中的玻璃液中,设计的3-20个电极装置,使底部流液通道(20)区域的,距耐火材料底部5-30CM距离的区域的玻璃液中,最少有100立方CM体积的区间的工作工艺温度,要保持在1320℃-1450℃,要高于距离底部耐火材料30-60CM距离的区域玻璃液的工作工艺温度20-80℃;
步骤3.玻璃液再由底部流液通道(20),进入用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40);
本发明的上述技术要素及工艺的发明目的在于:
工艺特点在于:通过其距离底部耐火材5-30CM的区域中的玻璃液中,设计的3-20个电极装置,使用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40)区域的,距耐火材料底部5-30CM距离的区域的玻璃液中,最少有100立方CM体积的区间的工作工艺温度,要保持在1320℃-1450℃,要高于距离底部耐火材料30-60CM距离的区域玻璃液的工作工艺温度20-80℃;
而本发明因为采用了上述全新的工艺:在多个区域溶窑结抅装置,的底部耐火材5-30CM距离的区域中的玻璃液中,全部设计了3-20个电极装置,采用了全新的工艺:使多个区域溶窑结抅装置区域的底部耐火材料10-30CM距离的区域的玻璃液中,最少各自有1个区间的工作工艺温度保持在1320℃-1450℃,高于距离底部耐火材料30-60CM距离的区域玻璃液的工作工艺温度20-80℃。所以能形成这几个区域的,距离底部耐火材料5-30-60CM距离的玻璃液小范围的上下流动均化,使“富铝沉降堆积现象--即高氧化铝成份含量的玻璃液部分,因比重大而沉降堆积在底部的现象”,得到均化,得到解决。能从根本上解决进而造成玻璃成品成型阶段因成份严重不均,出现玻筋,条纹,白色不透明富氧块与条等产品根本不合格的难点,使高合格率的生产15--35%的氧化铝含量的玻璃制品成为可能。
而且本发明还能克服先有技术中,通过先有技术试图采用传统的搅拌工艺来达到目的采用传统的搅拌工艺,克服在玻璃液底部出现“富铝沉降堆积现象”产生的难点。
克服其传统的搅拌工艺难点之一:采用传统的搅拌工艺是在靠近玻璃成型区的电熔窑底部或上升通道顶部位置,搅拌工艺易于产生二次气泡,使大量气泡直接出现在产品中;
克服其传统的搅拌工艺难点之二:采用传统的搅拌工艺,在超过如果1300℃的环境中,使用加冷却水循环降温的不锈钢搅拌器,会造成严重的搅拌器边壁附近玻璃液,因长期水冷降温传导,而产生玻璃液大量析晶,在靠近玻璃成型区的电熔窑底部或上升通道顶部位置,析晶会直接大量出现在产品中;
克服其传统的搅拌工艺难点之三:采用白金搅拌器,会存在成本太高和白金在高温下与玻璃反应出现新的气泡,在靠近玻璃成型区的电熔窑底部或上升通道顶部位置,产生的二次气泡,也会使大量气泡直接出现在产品中。这是现有的技术都无法合格的生产含20%以上的超高铝含量的玻璃制品的重要原因。
又因为这几个要素置,都采用了电极,把超高铝无碱玻璃纤维玻璃液的温度,控制在高于含氧化铝15-35%的超高铝无碱玻璃纤维原料的析晶温度1310℃度之上的区间;由于玻璃液在1300℃以上的1430℃,也是热幅射传导热能;又由于采用电极,对玻璃液进行温度控制的装置的顶部、四周、底部,设计有控制玻璃液温度的加热装置的控制;所以能精确的控制在所需预定温度的1-5℃的误差之内,所以能有效控制(含氧化铝达15-35%)的超高强玻璃产品的大体积的大流量的玻璃液,在到达玻璃纤维成型工艺之前,完全控制在高于析晶温度的目标。
本发明的发明目的还在于:
在生产超高铝玻璃时,由于生产系统中的火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10);采用电极,对从上向下流动的玻璃液进行温度控制的装置(3);采用电极,对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40);都能在玻璃制品的成型装置(50)停止工作时(如成型工艺中有故障,安全闸门关闭,使整个成型之前的生产系统玻璃液处于各自的装置之内,不按工艺程序流动时),本发明的这3个要素装置中设计的电极的合理位置和电极能量,能把各自的装置之内玻璃液,保持在高于超高铝玻璃的析晶温度1290℃以上,达到1300-1400℃,使玻璃处于热幅射传导热能的状态,从而能保障这三个要素装置中的玻璃液温度控制在预定的要求的+-1-5℃差别的范围。所以能克服 在沒有火焰热能主导的玻璃熔化工艺产生的流动玻璃液热能的状态下,保障玻璃液不析晶。
而现有技术的玻璃生产系统装置,由于没有这3个要素装置和沒有其中设计的电极的合理位置和电极能量,所以根本不能在日产能几百到上千吨的玻璃生产系统装置中,生产含氧化铝达15--35%的超高铝玻璃制品。
这也是本发明权一所述的3个要素装置的位置关系变化和互相作用的关系变化,及3个要素装置中的具体的电极要素变化和互相作用的关系变化所产生的预料不到的技术效果。
而现有技术的玻璃生产系统装置中:A.不只沒有上述的3个要素装置的位置关系变化创新和互相作用的关系变化创新;B.也沒有3个要素装置中的具体的电极要素变化和互相作用的关系变化创新;C.也沒有这些要素互相作用的关系变化创新所产生的预料不到的技术效果。
步骤4.超高铝无碱玻璃纤维成型工艺:
前述的经过上升通道结构(40)的顶部出口的超高铝无碱玻璃纤维,玻璃液,进入联结着的装载玻璃液的装置(17)前述的经过上升通道结构(40)的顶部出口的玻璃液,进入联结着的装载玻璃液的装置(17);装载玻璃液的装置(17)就是玻璃液的主流道,玻璃液进入联结着有2-30个玻璃液分流道;玻璃液进入各个分流道联结着的玻璃制品的玻璃纤维生产的成型装置;分别流入对应的2-30个承载玻璃液的干埚,玻璃液经过对应的2-30个拉丝板。在(1)玻璃液的主流道的上部和玻璃液中都有加热与控制温度的装置,而且此阶段玻璃液只控制在高于含氧化铝30%的超高铝无碱玻璃纤维原料的析晶温度1310℃之上的1330℃区间;也是热幅射传导热能;采用热幅射传导能使玻璃液温度达到1-5℃的误差之内。(2)玻璃液进入联结着有2-30个玻璃液分流道的上部和玻璃液中都有加热与控制温度的装置,而且此阶段玻璃液只控制在高于含氧化铝30%的超高铝无碱玻璃纤维原料的析晶温度1310℃之上的1330℃区间;也是热幅射传导热能;采用热幅射传导能使玻璃液温度达到1-5℃的误差之内。(3)分别流入对应的2-30个承载玻璃液的干埚的上部和玻璃液中都有加热与控制温度的装置,而且此阶段玻璃液只控制在高于含氧化铝30%的超高铝无碱玻璃纤维原料 的析晶温度1310℃之上的1330℃区间;也是热幅射传导热能;采用热幅射传导能使玻璃液温度达到1-5℃的误差之内。(4)这玻璃液经过对应的2-30个拉丝板上也设计有加热与控制温度的装置;重要的是,本实施例的含氧化铝30%的超高铝无碱玻璃纤维原料的10 2.5(帕·秒)的成型粘度温度是1330℃;所以把拉丝板温度控制在髙于析晶温度1310℃之上的1330℃进行拉丝,在对应的拉丝机的作用下形成--本实施例的含氧化铝30%的超高铝无碱玻璃纤维制品。
本发明的装置结抅系统产生的很重要的技术效果:现有技术生产含氧化铝20-25%的高铝无碱S级玻璃纤维,都是在日产几十到几百公斤的玻璃纤维生产线的装置中完成。大家都希望采用日产100-600吨的大吨位(即年产7-20万吨)的玻璃纤维生产线的装置,来生产含氧化铝15-25-35%的高铝无碱S级玻璃纤维,来达到产品品质合格的基础上,大幅提髙高铝无碱S级玻璃纤维生产效率,以适应髙水平的风电叶、新能源汽车、航空航天市场的要求。这是高铝无碱S级玻璃纤维领域中,人们一直渴望解决但始终未能获得成功的技术难题。但本发明解决了这一技术难题。
现有对比技术的系统性组合装置,沒有能精确控制大体积的大流量的玻璃液的温度,不能保障大体积的大流量的玻璃液在成型工艺之前完全高于析晶温度,完全不产生析晶。所以现有对比技术--在涉及玻璃器皿类生产线的现有技术的系统性组合装置,从来都不可生产含氧化铝达20-49%的超高强玻璃器皿。
现有对比技术:传统的玻璃制品电熔窑生产装置结抅系统,虽然其也包括了:采用电极,对从上向下流动的玻璃液进行温度控制的装置(3);采用电极,对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40);但由于沒有火焰热能主导玻璃熔化的横向火焰池窑结抅装置,其存在缺陷是:因为传统的玻璃制品电熔窑生产装置结抅系统,受吨位局限只能有日产几十吨的生产线,不能用于日产量达几百吨的大产能玻璃制品生产线。
所以,与日产量达几百吨的大产能玻璃制品生产线比较,缺陷之一是:投资产出比率低,生产效率低。缺陷之二是:相同的产量的能耗比高。缺陷之三是:相同的产量的人力资源耗用高。
实施例3:
一种玻璃制品的横向火焰池窑生产系统的(原设计拉引量800吨)浮法超高铝【氧化铝15-35%】平板玻璃生产装置结构系统实施例;
备好一种玻璃制品的横向火焰池窑生产系统的生产结构系统装置:
首先备好玻璃原料运输装置(19);火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10);玻璃液的卡脖流道装置(60),采用电极,对从上向下流动的玻璃液进行温度控制的装置(30);采用电极,对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40);浮法钠钙平板玻璃所需的成型装置(50);
备好所需的装置:火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10),玻璃液的卡脖流道装置(60),采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30),采用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40),玻璃制品的成型装置(50);这几个装置中的电极能量,都能在玻璃制品的成型装置(50)停止工作时,使各自装置内的玻璃液保持在1300℃以上,並保持在髙于玻璃析晶温度之上;
步骤1.把预定的玻璃原料,通过玻璃原料运输装置,进入火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10)中,进行溶化形成玻璃液,玻璃液再通过玻璃液的卡脖流道装置(60),从侧上部进入采用电极,对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)中;并使卡脖流道装置(60)和采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)中的玻璃液的温度,控制在高于澄清、排泡10 2帕·秒的粘度温度之上的区间和高于玻璃析晶温度之上的区间;
工艺特点在于:通过玻璃液的卡脖流道装置(60)的距离底部耐火材5-30CM的区域中的玻璃液中,设计的3-20个电极装置,使卡脖流道装置(60)区域的,距耐火材料底部10-30CM距离的区域的玻璃液中,最少有100立方CM体积的区间的工作工艺温度,要保持在1320℃-1450℃,要高于距离底部耐火材料30-60CM距 离的区域玻璃液的工作工艺温度20-80℃;
工艺特点在于:通过从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)设计的距离底部耐火材5-30CM的区域中的玻璃液中,各自的3-20个电极装置,使从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)区域的,距耐火材料底部5-30CM距离的区域的玻璃液中,最少有100立方CM体积的区间的工作工艺温度,要保持在1320℃-1450℃,要高于距离底部耐火材料30-60CM距离的区域玻璃液的工作工艺温度20-80℃;
由于玻璃液在1300℃以上的1450℃,也是热幅射传导热能,又由于采用电极,对从上向下流动的玻璃液进行温度控制的装置(3)的顶部、四周、底部,设计的控制玻璃液温度的加热装置的控制,所以在从上而下的移动的玻璃液,在采用电极,对从上向下流动的玻璃液进行温度控制的装置(3)中,能精确的控制在澄清、排泡所需预定温度的1-5℃的误差之内,所以只需要3-6小时的时间,就可以保障--钠钙玻璃液排气泡、澄清工艺阶段,能达到高水平完成排气泡、澄清的工艺目标。
本发明在钠钙玻璃液排气泡、澄清工艺阶段中,打破了传统工艺及装置的技术偏见-即打破了传统工艺玻璃液要在冷却部或名为工作部的装置中,必须要经过3-5天的时间,慢慢完成排气泡、澄清工艺的过程。本发明能克服其生产效率低,浪费了生产时间的缺陷;本发明能克服其,不可能准确的按照玻璃成分特有的澄清、排泡10 2(帕·秒)的粘度温度,来完成排气泡、澄清工艺的过程,会造成品质缺缺陷。因为先进工艺,可以使玻璃液在稳定的高于的澄清、排泡10 2(帕·秒)的粘度温度之上时,只经过3-6小时,就能达到高品质澄清、排泡的工艺目的。
步骤2.使玻璃液从采用电极,对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)下部,进入的底部流液通道(20),再进入联结着的一个采用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结 构(40);
工艺特点在于:通过底部流液通道(20)中设计的,距离底部耐火材5-30CM的区域中的玻璃液中,设计的3-20个电极装置,使底部流液通道(20)区域的,距耐火材料底部5-30CM距离的区域的玻璃液中,最少有100立方CM体积的区间的工作工艺温度,要保持在1320℃-1450℃,要高于距离底部耐火材料30-60CM距离的区域玻璃液的工作工艺温度20-80℃;
工艺特点在于:通过采用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40)中设计的,距离底部耐火材5-30CM的区域中的玻璃液中,设计的3-20个电极装置,使底部流液通道(20)区域的,距耐火材料底部5-30CM距离的区域的玻璃液中,最少有100立方CM体积的区间的工作工艺温度,要保持在1320℃-1450℃,要高于距离底部耐火材料30-60CM距离的区域玻璃液的工作工艺温度20-80℃;
工艺特点在于:通过其距离底部耐火材5-30CM的区域中的玻璃液中,设计的3-20个电极装置,使底部流液通道(20)区域的,距耐火材料底部5-30CM距离的区域的玻璃液中,最少有100立方CM体积的区间的工作工艺温度,要保持在1320℃-1450℃,要高于距离底部耐火材料30-60CM距离的区域玻璃液的工作工艺温度20-80℃;
步骤3.玻璃液再由底部流液通道(20),进入用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40);
本发明的上述技术要素及工艺的发明目的在于:
工艺特点在于:通过其距离底部耐火材5-30CM的区域中的玻璃液中,设计的3-20个电极装置,使用电极对从下向上流动的玻璃液进行温度控制的玻璃液 上升通道结构(40)区域的,距耐火材料底部5-30CM距离的区域的玻璃液中,最少有100立方CM体积的区间的工作工艺温度,要保持在1320℃-1450℃,要高于距离底部耐火材料30-60CM距离的区域玻璃液的工作工艺温度20-80℃;
而本发明因为采用了上述全新的工艺:在多个区域溶窑结抅装置,的底部耐火材5-30CM距离的区域中的玻璃液中,全部设计了3-20个电极装置,采用了全新的工艺:使多个区域溶窑结抅装置区域的底部耐火材料10-30CM距离的区域的玻璃液中,最少各自有1个区间的工作工艺温度保持在1320℃-1450℃,高于距离底部耐火材料30-60CM距离的区域玻璃液的工作工艺温度20-80℃。所以能形成这几个区域的,距离底部耐火材料5-30-60CM距离的玻璃液小范围的上下流动均化,使“富铝沉降堆积现象--即高氧化铝成份含量的玻璃液部分,因比重大而沉降堆积在底部的现象”,得到均化,得到解决。能从根本上解决进而造成玻璃成品成型阶段因成份严重不均,出现玻筋,条纹,白色不透明富氧块与条等产品根本不合格的难点,使高合格率的生产15--35%的氧化铝含量的玻璃制品成为可能。
而且本发明还能克服先有技术中,通过先有技术试图采用传统的搅拌工艺来达到目的采用传统的搅拌工艺,克服在玻璃液底部出现“富铝沉降堆积现象”产生的难点。
克服其传统的搅拌工艺难点之一:采用传统的搅拌工艺是在靠近玻璃成型区的电熔窑底部或上升通道顶部位置,搅拌工艺易于产生二次气泡,使大量气泡直接出现在产品中;
克服其传统的搅拌工艺难点之二:采用传统的搅拌工艺,在超过如果1300℃的环境中,使用加冷却水循环降温的不锈钢搅拌器,会造成严重的搅拌器边壁附 近玻璃液,因长期水冷降温传导,而产生玻璃液大量析晶,在靠近玻璃成型区的电熔窑底部或上升通道顶部位置,析晶会直接大量出现在产品中;
克服其传统的搅拌工艺难点之三:采用白金搅拌器,会存在成本太高和白金在高温下与玻璃反应出现新的气泡,在靠近玻璃成型区的电熔窑底部或上升通道顶部位置,产生的二次气泡,也会使大量气泡直接出现在产品中。这是现有的技术都无法合格的生产含20%以上的超高铝含量的玻璃制品的重要原因。
又因为几个要素置,都采用了电极,把超高铝玻璃液的温度,控制在高于含氧化铝15-30%的超高铝无碱玻璃纤维原料的析晶温度1310℃度之上的区间;由于玻璃液在1300℃以上的1430℃,也是热幅射传导热能;又由于采用电极,对玻璃液进行温度控制的装置的顶部、四周、底部,设计有控制玻璃液温度的加热装置的控制;所以能精确的控制在所需预定温度的1-5℃的误差之内,所以能有效控制(含氧化铝达15-30%)的超高强玻璃产品的大体积的大流量的玻璃液,在到达玻璃成型工艺之前,完全控制在高于析晶温度的目标。
本发明的发明目的还在于:
在生产超高铝玻璃时,由于生产系统中的火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10);采用电极,对从上向下流动的玻璃液进行温度控制的装置(3);采用电极,对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40);都能在玻璃制品的成型装置(50)停止工作时(如成型工艺中有故障,安全闸门关闭,使整个成型之前的生产系统玻璃液处于各自的装置之内,不按工艺程序流动时),本发明的这3个要素装置中设计的电极的合理位置和电极能量,能把各自的装置之内玻璃液,保持在高于超高铝玻璃的析晶温度1290℃以上,达到1300-1400℃,使玻璃处于热幅射传导热能的状态,从而能保障这三个要素装置中的玻璃液温度控制在预定的要求的+-1-5℃差别的范围。所以能克服在沒有火焰热能主导的玻璃熔化工艺产生的流动玻璃液热能的状态下,保障玻璃液不析晶。
而现有技术的玻璃生产系统装置,由于没有这3个要素装置和沒有其中设 计的电极的合理位置和电极能量,所以根本不能在日产能几百到上千吨的玻璃生产系统装置中,生产含氧化铝达20-30%的超高铝玻璃制品。
这也是本发明权一所述的3个要素装置的位置关系变化和互相作用的关系变化,及3个要素装置中的具体的电极要素变化和互相作用的关系变化所产生的预料不到的技术效果。
而现有技术的玻璃生产系统装置中:A.不只沒有上述的3个要素装置的位置关系变化创新和互相作用的关系变化创新;B.也沒有3个要素装置中的具体的电极要素变化和互相作用的关系变化创新;C.也沒有这些要素互相作用的关系变化创新所产生的预料不到的技术效果。
步骤4.浮法超高铝玻璃成型工艺:
前述的经过上升通道结构(40)的顶部出口的超高铝玻璃液,进入联结着的装载玻璃液的装置(17),再经过玻璃液闸门(8),超高铝玻璃液以1300℃,进入锡窑结构的平滑的布有溶化的锡金属的平面,进行玻璃带的趟平摊薄及抛光工艺;传统钠钙玻璃液进入趟平摊薄工艺阶段时的厚度是6-7mm;但本发明的装置结抅系统的工艺,由于进入趟平摊薄工艺阶段时:A.由于超高铝玻璃液1300℃,比超高铝玻璃10 3(帕·秒)的成型粘度温度1200℃粘度低得多,玻璃液进入趟平摊薄工艺阶段其厚度会比传统6-7mm厚度薄,达到4-5mm;所以玻璃液从1300℃向下降温速度很快;B.又由于可以关掉部分原设计的锡窑上部玻璃带的趟平摊薄及抛光工艺中的大量加热保温装置,大大减少了锡窑结构顶部的电加热能量,所以更能大大提升玻璃液从1300℃向下降温速度;C.又由于锡窑结构的玻璃液之下部,布有溶化的平滑的锡金属,因为其极强的导热性,能迅速把1300℃玻璃液热能传向整个锡窑空间。
本发明的装置结抅系统在成型阶段的工艺的技术效果之一:因为上述A.B.C.的工艺作用,所以本发明的工艺设备装备系统,能把传统的冷却部或名为工作部的降温工艺功能,安排到成型工艺的趟平摊薄及抛光工艺阶段快速完成,使降温后的玻璃带,在进入拉边机时能达到所需的粘度温度要求。
本发明的装置结抅系统在成型阶段的工艺的技术效果之二:因为关掉部分 原设计的锡窑上部玻璃带的趟平摊薄及抛光工艺中的大量加热保温装置,本发明据有在锡窑工艺阶段中,打破传统工艺及装置的技术偏见,能产生节约能耗的技术效果。
本发明的装置结抅系统在成型阶段的工艺的技术效果之三:又由于锡窑结构的玻璃液之下部,布有溶化的平滑的锡金属,因为其极强的导热性,能迅速把1300℃玻璃液热能传向整个锡窑空间,所以不但有利于抛光工艺的抛光品质,而且玻璃带在进入拉边机对形成的玻璃带拉边所需厚度的工艺阶段,较高的空间温度,更有利于原设计的锡窑上部玻璃带的趟平摊薄及抛光工艺中的大量加热保温装置与其适当的配合,使玻璃带更有利于达到工艺所需的合适的粘度温度,更能有利于提升10-40对拉边机把玻璃带拉成所需厚度的拉薄工艺的效率和拉薄工艺的品质。
由于本发明一种玻璃制品的横向火焰池窑生产系统以及生产方法;中,设计了采用电极,对从上向下流动的玻璃液进行温度控制的装置(3),完善的解决了超高铝玻璃的澄清、排泡10 2(帕·秒)的工艺阶段的品质;所以在现有800吨浮法超高铝平板玻璃的设备的基础上,在产品品质合格的基础上,通过提高平板玻璃的拉引量来提升产能,来提高设备效率能使原设计拉引量1000吨浮法超高铝平板玻璃的设备,把拉引量加大30%以上,达到1000吨以上,也能保证浮法超高铝平板玻璃不会出玌严重的气泡问题,产品质量不合格问题。因为先进工艺,可以使玻璃液在稳定的高于的澄清、排泡10 2(帕·秒)的粘度温度之上时,只经过3-4小时,就能达到高品质澄清、排泡的工艺目的)
步骤5.经过成型工艺的浮法超高铝平板玻璃带,再经过退火工序,切材工序,形成预定尺寸的浮法超高铝平板玻璃制品。
本发明权利耍求1的新颖性
(1)本发明是一种要素关系改变发明,在【一种玻璃制品的横向火焰池窑生产系统】专利的权利耍求1中,其主要有6个技术装置结抅要素和4个细分技术装置结抅要素:
其主要有6个技术装置结抅要素是:其包括玻璃原料运输装置(19),火焰 热能主导玻璃熔化的横向火焰池窑结抅装置(10);玻璃液的卡脖流道装置(60);采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30);采用电极,对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40);玻璃制品的成型装置(50)。而且,权利要求1对这六个技术装置结抅要素的本质特征有进一步的表述。
(2)4个细分技术装置结抅要素是:
其玻璃液的卡脖流道装置(60)中,玻璃液的表面与装置底部之间的深度,是火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10)和采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)中,玻璃液的表面与装置底部之间的深度的10%-40%;玻璃液的卡脖流道装置(60)的距离底部耐火材5-30CM的区域中的玻璃液中,设计有3-20个电极装置;
其采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)的四周设计有4-50个控制玻璃液温度的电极,采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)的距离底部耐火材5-30CM的区域中的玻璃液中,设计有3-20个电极装置;
其还设有底部流液通道(20),其距离底部耐火材5-30CM的区域中的玻璃液中,设计有3-20个电极装置;
其采用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构--(40)的四周设计有4-50个控制玻璃液温度的电极;上升通道结构(40)的距离底部耐火材5-30CM的区域中的玻璃液中,设计有3-20个电极装置;
(3)与本发明最接近的现有技术,有6类:
1.所有的日产几百吨-上千吨的大吨位的现有技术的钠钙浮法玻璃生产线的横向火焰池窑系统性组合装置。
【1】其沒有本发明-的主要的技术装置结抅要素是:采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30);采用电极,对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40);底部流液通道(20);这三个本发明-的主要的技术装置结抅要素。
【2】其沒有本发明-的4个细分技术装置结抅要素。
2.在涉及高铝和超高铝浮法平板玻璃和电子玻璃生产线的现有技术的-池窑系统性组合装置。
【1】其沒有本发明-的主要的技术装置结抅要素是:采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30);采用电极,对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40);底部流液通道(20);这三个本发明-的主要的技术装置结抅要素。
【2】其沒有本发明-的4个细分技术装置结抅要素。
3.日产100-600吨的大吨位的玻璃纤维横向火焰池窑生产线的现有技术的系统性组合装置。
【1】其沒有本发明-的主要的技术装置结抅要素是:采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30);采用电极,对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40);底部流液通道(20);这三个本发明-的主要的技术装置结抅要素。
【2】其沒有本发明-的4个细分技术装置结抅要素。
4.现有技术的日产几十吨的全电熔窑系统性组合装置和现有技术的日产几十吨的马蹄窑炉系统性组合装置。
【1】其沒有本发明-的主要的技术装置结抅要素是:火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10);玻璃液的卡脖流道装置(60)。
【2】其沒有本发明-的4个细分技术装置结抅要素。
5.本发明:一种玻璃制品的横向火焰池窑生产系统以及生产方法;人在2014年申请的发明专利一种用于玻璃工艺的冷却部区域的防析晶装置。
【1】其沒有本发明-的主要的技术装置结抅要素是:采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30);采用电极,对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40);底部流液通道(20);这三个本发明-的主要的技术装置结抅要素。
【2】其沒有本发明-的4个细分技术装置结抅要素。
上述5类现有技术,与本发明【一种玻璃制品的横向火焰池窑生产系统】所以本发明权利要求1具有新颖性。
本发明权利耍求1的创造性
根据专利审查指南第二部分第四章4.6.1要素关系改变的发明……要素关系改变,如位置的改变、作用关系的改变……
(2)如果要素关系改变导致发明产生了预料不到的技术效果,则发明具有突出的实质性特点和显著的进步性,具有创造性。
本发明权利要求1中,的技术装置结抅要素,比较5种现有技术:
A.首先本发明表述了在技术装置结抅要素内容和位置上,比较种现有技术有改变;
B.本发明:一种玻璃制品的横向火焰池窑生产系统以及生产方法;也表述了,在技术装置结抅要素的作用关系上,比较种现有技术有改变;
C.而且,本发明说明书中表述了,产生的这些要素关系改变,导致预料不到的技术效果。所以本发明权利要求1具有突出的实质性特点和显著的进步性,具有创造性。
比较现有技术1:
所有的日产几百吨-上千吨的大吨位的现有技术的钠钙浮法玻璃生产线的横向火焰池窑系统性组合装置中,横向火焰池窑结抅装置,由一个卡脖装置联结的是一种冷却部或名为工作部的装置;其卡脖装置、冷却部或名为工作部的装置中,玻璃液的深度都是1米左右,玻璃液总体都是水平方向朝成型装置移动。
本发明由于玻璃液的卡脖流道装置(60)的玻璃液的深度的位置,与火焰 热能主导玻璃熔化的横向火焰池窑结抅装置(10)和采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)的玻璃液深度的位置发生了改变,由现有池窑技术装置中的上述三个技术装置要素中玻璃液深度是一致的,改变为玻璃液的卡脖流道装置(60)的玻璃液的深度,只仅为火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10)和采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)的玻璃液深度的10%-40%。(见说明书附图3)
这种玻璃液的卡脖流道装置(60)玻璃液深度的位置发生的改变,才能使玻璃液的卡脖流道装置(60)玻璃液,从现有技术池窑结抅中玻璃液水平流动,变为使玻璃液的卡脖流道装置(60)玻璃液,从采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)的上侧部流入(见说明书附图3);才能形成玻璃液流动位置的变化,形成玻璃液在采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)中,从上向下流动的变化。
本发明,还把现有技术的技术装置结抅要素【一种冷却部或名为工作部的装置】,改变成【采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置】(3);【采用电极,对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构】(4)。
C.由于在技术装置结抅要素的的改变和作用关系的改变,本发明说明书中表述了,产生的这些要素关系改变,导致预料不到的技术效果:
由于采用电极,对从上向下流动的玻璃液进行温度控制的装置(3)和采用电极,对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40)这2个装置的顶部、四周、底部,都设计的控制玻璃液温度的加热装置,所以其中从上而下的移动的玻璃液和从下向上流动的玻璃液,都能控制在1300℃以上;又因在1300℃以上玻璃液是用热幅射传导热能,所以能精确的控制处于[采用电极,对从上向下流动的玻璃液进行温度控制的装置](3)和[采用电极,对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构](4)之内的钠钙玻璃液,完全处于高于钠钙玻璃澄清、排泡所需的10 2帕·秒的--1430℃温度之上的20℃的稳定状态,[误差在1-5℃的之内]。在这种高水平的玻璃液排气泡、澄清先进制造 工艺中,能在3-6个小时内完成玻璃液达到高品质的澄清、排泡水平的目标。
所以能克服现有技术1中,容纳玻璃液的体积很大,都达到每天拉引玻璃量的3-5倍的现有技术冷却部或名为工作部的装置,即玻璃液要在其中经过3-5天的时间慢慢完成排气泡、澄清工艺的过程的生产效率低的缺陷。
在传统浮法钠钙平板玻璃的生产中,大家都希望在现有设备的基础上,在产品品质合格的基础上,通过提高平板玻璃的拉引量来提升产能,提高设备效率。这是传统浮法钠钙平板玻璃领域中,人们一直渴望解决但始终未能获得成功的技术难题。
而在众多大型浮法钠钙平板玻璃企业,碰到的难题就是:如果玻璃液不经过传统的冷却部或名为工作部的装置中,3-5天的时间慢慢完成排气泡、澄清工艺的过程,而是在成型工艺阶段加大了拉引量30-40%(也就是玻璃液经过传统的冷却部或名为工作部的装置中,只用了2天的时间完成排气泡、澄清工艺的过程)。
其后果1是:浮法钠钙平板玻璃产品中不会出现因溶化工艺阶段原因而出现的碴点、结石的产品质量不合格问题(说明溶化过程生产工艺,在同等能耗同样装备下,加大产能30-40%沒有碴点、结石的产品质量不合格问题);
其后果2是:浮法钠钙平板玻璃生产在同等能耗同样装备下,加大产能30-40%,会出玌严重的气泡问题,产品质量不合格问题。
说明在同等设备同等能耗的状态下,加大拉引产能30-40%熔化不是问题,而气泡品质才是难题。
本发明的装置结抅系统在技术装置结抅要素的的改变和作用关系的改变产生的予料不到的技术效果在于:因为能解决在更短的几个小时的时间[而不是几天时间],就完成玻璃液达到高品质的澄清、排泡水平的目标,所以能在同等设备同等能耗的状态下,加大钠钙浮法玻璃拉引-即能在同等设备同等能耗的状态下,高品质钠钙浮法玻璃的产能可以上升30-40%。
在传统浮法钠钙平板玻璃的生产中,大家都希望在现有设备的基础上,在产品品质合格的基础上,通过提高平板玻璃的拉引量来提升产能,提高设备效 率。这是传统浮法钠钙平板玻璃领域中,人们一直渴望解决但始终未能获得成功的技术难题;
本技术装置结抅要素的改变的发明,解决了这个人们一直渴望解决但始终未能获得成功的技术难题,所以本技术装置结抅要素的改变的发明,具有突出的实质性特点和显著的进步性,具有创造性。
本发明在技术装置结抅要素内容和位置上,在技术装置结抅要素的作用关系上,比较现有技术有本质改变;而且,由于在技术装置结抅要素内容和位置上,在技术装置结抅要素的作用关系上,比较现有技术发生的本质改变,导致预料不到的技术效果。所以本发明权利要求1具有突出的实质性特点和显著的进步性,具有创造性。
比较现有技术2:
在涉及日产100-600吨的大吨位的玻璃纤维横向火焰池窑生产线的现有技术的系统性组合装置中,都采用火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10);直接联结着的装载玻璃液的装置(17)-即主通道,又设计有10-30个玻璃液流道,其每个流道,联结着玻璃制品的玻璃纤维生产的成型装置,分别流入对应的2-30个承载玻璃液的干埚,玻璃液经过对应的2-30个拉丝板,在对应的拉丝机的作用下形成玻璃纤维。现有对比技术--在涉及日产100-600吨的大吨位的玻璃纤维横向火焰池窑生产线的系统性组合装置中,火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10);直接联结着的装载玻璃液的装置(17)-即玻璃液主通道和10-30个玻璃液分流道。在火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10)中的玻璃液,是水平方向移动的,火焰作用的上部与下层玻璃液温差太大,完全不能精确控制火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10)中的大体积的大流量的玻璃液的温度,在进入玻璃液主通道和10-30个玻璃液分流道前,完全高于析晶温度。又由于高铝和超高铝玻璃纤维,含氧化铝达20-25-35%,析晶温度都很高,许多都达到1300℃以上。如果有析晶的玻璃液进入主流道和每个分流道,主流道和每个分流道是无法把析晶的晶体再熔化的。这就会使析晶的晶体进入玻璃维成型干埚和拉丝板,造成堵拉丝孔而佇产。
所以现有对比技术--在涉及日产100-600吨的大吨位的池窑玻璃纤维生产线 的系统性组合装置,目前只能生产含氧化铝达15%的玻璃纤维;从来都不可生产含氧化铝达20-25%的超高强玻璃纤维;更不可能生产含氧化铝达20-49%的超高强玻璃纤维。
A.本发明把在现有技术的技术装置结抅要素火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10);之后,增加了3个新的技术装置结抅要素:玻璃液的卡脖流道装置(60);采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30);采用电极,对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40);由于在技术装置结抅要素的的改变和作用关系的改变:
B.本发明产生的由于这些要素关系的改变,导致的预料不到的技术效果:
本发明由于玻璃液的卡脖流道装置(60)的玻璃液的深度的位置,与火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10)和采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)的玻璃液深度的位置发生了改变,由现有池窑技术装置中的上述三个技术装置要素中玻璃液深度是一致的,改变为玻璃液的卡脖流道装置(60)的玻璃液的深度,只仅为火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10)和采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)的玻璃液深度的10%-40%。(见说明书附图3)
这种玻璃液的卡脖流道装置(60)玻璃液深度的位置发生的改变,才能使玻璃液的卡脖流道装置(60)玻璃液,从现有技术池窑结抅中玻璃液水平流动,变为使玻璃液的卡脖流道装置(60)玻璃液,从采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)的上侧部流入(见说明书附图3),才能形成玻璃液流动位置的变化,形成玻璃液在采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)中从上向下流动的变化。
本发明由于采用电极,对从上向下流动的玻璃液进行温度控制的装置(3)和采用电极,对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40)的顶部、四周、底部,都设计的控制玻璃液温度的加热装置,所以在从上而下的移动的玻璃液和从下向上流动的玻璃液,都能控制在1300℃以上;又因在1300℃ 以上玻璃液是用热幅射传导热能,所以能精确的控制处于[采用电极,对从上向下流动的玻璃液进行温度控制的装置](3)和[采用电极,对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构](4)之内的含氧化铝达20-49%的超高强玻璃纤维的玻璃液,完全处于高于玻璃析晶温度之上20℃的稳定状态,[误差在1-5℃的之内]。
所以,本发明:一种玻璃制品的横向火焰池窑生产系统以及生产方法;这些要素关系改变,能在普通成本的基础上,克服现有技术的缺陷,达到使含氧化铝达20-49%的超高强玻璃纤维的玻璃液,在进入成型工艺之前,能稳定的保持在高于析晶温度之上的技术目的。克服现有技术的因为这些技术要素装置缺失而产生的技术难题,使日产100吨-600吨的高效率池窑玻璃纤维生产线上,能生产高铝和超高铝(含氧化铝20-49%)的超高强玻璃纤维,产生预料不到的技术效果。
本发明的发明目的还在于:
在生产高铝和超高铝(含氧化铝20-49%)的超高强玻璃纤维时,出现玻璃制品的成型装置(50)停止工作的状态时(如成型工艺中有故障,安全闸门关闭,使整个成型之前的生产系统玻璃液处于各自的装置之内,不按工艺程序流动的状态)。
这时,生产系统中的火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10);采用电极,对从上向下流动的玻璃液进行温度控制的装置(3);采用电极,对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40);这3个本发明的这要素装置中,设计的电极的合理位置和电极能量,能把各自的装置之内的玻璃液,保持在高于超高铝玻璃的析晶温度的1300-1480℃以上,使玻璃液处于热幅射传导热能的状态,从而能保障这三个要素装置中的玻璃液温度控制在预定的要求的+-1-5℃差别的范围。
反之,在生产高铝和超高铝(含氧化铝20-49%)的超高强玻璃纤维时,出现玻璃制品的成型装置(50)停止工作的状态时(如成型工艺中有故障,安全闸门关闭,使整个成型之前的生产系统玻璃液处于各自的装置之内,不按工艺程序流动的状态)。如果沒有本发明的沒有上述的3个要素装置的位置关系变化创新和互相作用的关系变化创新,就不一定会出现玻璃液在进入成型工艺前,大范 围析晶。
而现有技术的玻璃纤维池窑大生产系统装置,由于没有这3个要素装置和沒有其中设计的电极的合理位置和电极能量,所以根本不能在日产能100-500吨的大产能、高效率、低成本的玻璃纤维生产系统装置中,生产含氧化铝达20-49%的的超高强玻璃纤维制品。
在现有技术的玻璃纤维池窑大生产系统装置的生产中,大家都希望采用日产100-600吨的大吨位(即年产7-20万吨)的玻璃纤维生产线的装置,来生产含氧化铝20-25-35%的高铝无碱S级玻璃纤维,来达到产品品质合格的基础上,大幅提髙高铝无碱S级玻璃纤维生产效率,以适应髙水平的风电叶、新能源汽车、航空航天市场的要求。这是高铝无碱S级玻璃纤维领域中,人们一直渴望解决但始终未能获得成功的技术难题。但本发明解决了这一技术难题。
本技术装置结抅要素的改变的发明,。解决了这个人们一直渴望解决但始终未能获得成功的技术难题,所以本技术装置结抅要素的改变的发明,具有突出的实质性特点和显著的进步性,具有创造性。
本发明在技术装置结抅要素内容和位置上,在技术装置结抅要素的作用关系上,比较现有技术有改变;而且,由于在技术装置结抅要素内容和位置上,在技术装置结抅要素的作用关系上,比较现有技术发生的改变,导致预料不到的技术效果。所以本发明权利要求1具有突出的实质性特点和显著的进步性,具有创造性。
比较现有技术3:
现有技术的电熔窑系统性组合装置--【没有火焰热能主导玻璃熔化】
对于涉及玻璃器皿类生产线的现有技术的系统性组合装置中,都采用仅几十吨的电熔窑结抅装置;直接联结着的装载玻璃液的装置(17)-即主通道,又联结着2-30个玻璃液分流道,其每个流道,联结着玻璃器皿的成型装置。
比较横向火焰池窑生产线的几百吨产能,电熔窑系统性组合装置:
缺陷之一是:投资产出比率低,生产效率低。
缺陷之二是:相同的产量的能耗比高。
缺陷之三是:相同的产量的人力资源耗用高;缺陷之四是:因为高溶点的高铝无碱玻璃材料中不含髙导电率的碱材料成分,所以没有火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10)的工艺装置(1)的玻璃制品生产装置系统(即纯电熔窑)-就不能充溶化高铝无碱玻璃材料。
缺陷之四是:由于沒有火焰热能主导玻璃熔化的横向火焰池窑结抅装置,不能达到日产量100-1000吨产能。
缺陷之王是:所以电熔窑系统性组合装置,与日产量达几百吨到上千吨的大产能玻璃制品池窑生产线比较,1.其投资产出比率低;2.生产效率低;3.相同的产量的能耗比高;4.相同的产量的人力资源耗用高;存在不能生产高溶点的高铝无碱玻璃材料的缺陷。
本发明的装置结抅系统,能克服电熔窑系统性组合装置存在的缺陷。
比较现有技术4:
一种火焰热能主导的又有电助熔的马蹄窑炉装置
由于一种火焰热能主导的又有电助熔的马蹄窑炉装置结抅,比横向火焰池窑简单,所以成本低,占地少;由于其火焰是呈现U型马蹄状,火焰短,窑池小日生产吨位不大于50吨,采用的是受吨位局限,不能用于日产量达100吨到上千吨的大产能玻璃制品生产线,主要用于制造对玻璃质量要求不高的玻璃器皿产品。
其存在缺陷之一是:联结着一种火焰热能主导的又有电助熔的马蹄窑炉装置,溶化后的玻璃液,全都是水平方向移动的,缺陷是:水平方向移动的玻璃液有回流的现象无法控制;而且玻璃液水平方向移动的距离较长,所以其玻璃液上层就会有散热问题,就会形成水平移动的玻璃液温度不均;就是在距离较长的水平移动的玻璃液上部采用火焰或电热的外加热工艺,由于火焰或电热的外加热工艺,与玻璃液中的电极的电流加热是二种装置,不能有效的控制水平移动的玻璃液上层温度和中下层之间的温度,形成控制的一致性和稳定性。就会形成水平移动的玻璃液温度不均。所以一种火焰热能主导的又有电助熔的马蹄窑炉装置,不能有效达到使玻璃液能精确的控制在澄清、排泡所需预定温度的1-5℃ 的误差之内,不能有效保障玻璃液的排气泡、澄清工艺水平;尤其在生产高铝玻璃这种析晶温度高又析晶速度较快的产品时,不能有效保障玻璃液在进入成工艺阶段之前,玻璃液温度始终高于析晶温度。
其存在缺陷之二是:马蹄窑炉装置溶化后的玻璃液,全都是水平方向移动的;其存在缺陷是:在上层区域的洞口的两边和下部会有不利玻璃液流动的死角,尤其在生产高铝玻璃这种析晶温度高又析晶速度较快的产品时,会很易于在玻璃液不易流动的死角产生玻璃液析晶。
其存在缺陷之三是:比较现有技术--20世纪80年代,德国工业界-“试行”了一种玻璃液深度达3M的澄清区装置的马蹄窑炉装置,其玻璃液从熔化部水平方向流入澄清区装置,在玻璃液深度约1.3M处形成一个1.3-3M深度的澄清区。
[1]虽然一种玻璃液深度达3M的澄清区装置的马蹄窑炉装置,在玻璃液深度达1.4--3M的澄清区中,也安装了电极,也希望解决玻璃液是水平方向移动的而引起玻璃液有回流的现象,不利于控制玻璃液温度的问题。但其在1.3-1.5M的上部深度,玻璃液还是存在水平方向移动缺陷,这就存在水平方向移动的玻璃液会引起玻璃液有回流的现象的问题,不利于控制玻璃液温度。只是到了1.5-3M的深度,玻璃液才开始从上向下流动。
[2]虽然一种玻璃液深度达3M的澄清区装置的马蹄窑炉装置,设计了在玻璃液深度达1.4--3M的澄清区中,使玻璃液在从上向下的移动,其希望由电报来控制玻璃液温度;但其存在缺陷是:在生产氧化铝含量达15-25-39%的髙铝或超高铝玻璃液,的一部分出现分离向下沉降的[富氧化铝分层现象]时即:--[溶化中的氧化铝成分因比重达3.8,大大高于玻璃2.5的比重,产生氧化铝集聚而分层的现象];
这种髙铝玻璃液的一部分出现分离向下沉降的现象[富氧化铝分层现象]在0.8-1.2M深的玻璃液中,还可以用搅拌装置使之克服。但是在玻璃液深度达2-3M的澄清区装置中时:其一是安装搅拌装置十分困难;其二是由于氧化铝比重达3.8,比玻璃2.5更易于下沉到深度达3M的澄清区装置的底部,这时要靠玻璃液向上流动来把一部分出现分离向下沉降的髙铝玻璃液[富氧化铝分层现象],再向上方流向2-3M以上的高度的玻璃成型区是不可能的。就一定会在生产中,玻璃液深度达2-3M的澄清区装置的底层,使这种向下沉降的髙铝玻璃液[富氧化铝分层 现象]大量堆集,而密集的氧化铝含量区域的玻璃成分,已不是设计的玻璃成分,会产生比予定的析晶温度更高的析晶现象,产生此分离向下沉降的髙铝玻璃液[富氧化铝分层现象]的区域,产生大范围的析晶。
这也是此项20世纪80年代,德国工业界-“试行”的,玻璃液深度达3M的澄清区装置,由于没有工业实用性,在近几十年没有被马蹄窑炉装置玻璃企业采用的主要原因。
本发明由于在技术装置要素上,增加了玻璃液的卡脖流道装置(60),和采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30);又改变了这2个技术装置要素的控制玻璃液深度的池底深度位置,产生了不同的对玻璃液的作用关系,产生了予料不到的技术效果:
【A】本发明对玻璃液的卡脖流道装置(60)的玻璃液的深度的位置进行了与现有技术完全不同的要素改变。改变为:玻璃液的卡脖流道装置(60)的玻璃液深度,是火焰热能主导玻璃熔化的火焰池窑结抅装置(2)和采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)的玻璃液深度的玻璃液深度的10%-40%。(见说明书附图3)
【B】本发明对现有技术马蹄窑炉装置中,“试行”的,一种玻璃液深度达3M的澄清区装置---即采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)的玻璃液的深度的位置进行了与现有技术完全不同的要素改变。由深度3M改变为本发明权利要求所述的深度在90-150CM之内;(见说明书附图3)
由于这2个技术装置要素的玻璃液深度位置的改变,形成了经过玻璃液的卡脖流道装置(60)的出口位置大大上升,形成了澄清区装置--即采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)的进玻璃液的入口位置大上升,使玻璃液从上侧部流入(见说明书附图3),改变了现有技术结抅中玻璃液水平流动的状态。(见说明书附图3)
本发明由于在上述多个技术装置要素的关系、位置、作用的变化,比较现有技术的马蹄窑炉装置,包括“试行”的-玻璃液深度达3M的澄清区装置的马蹄窑炉 装置,产生的予料不到的技术效果是:
A.本发明日产100-1000吨的大吨位的玻璃横向火焰池窑生产线的系统性组合装置,能克服现有技术装置,包括“试行”的-马蹄窑炉玻璃液深度达3M的澄清区装置的产能局限在50吨的缺陷;
B.本发明日产100-1000吨的大吨位的玻璃横向火焰池窑生产线的系统性组合装置,能克服现有技术-“试行”的-马蹄窑炉玻璃液深度达3M的澄清区装置的会在生产中,玻璃液深度达3M的澄清区装置的底层,使这种向下沉降的髙铝玻璃液[富氧化铝分层现象]大量堆集,而密集的氧化铝含量区的玻璃成分,已不是设计的玻璃成分,会产生比予定的析晶温度更高的析晶温度,产生此分离向下沉降的髙铝玻璃液[富氧化铝分层现象]的区域,产生大范围的析晶缺陷。
比较现有技术5:
本发明人在2014年申请的发明专利,一种用于玻璃工艺的冷却部区域的防析晶装置,其特征在于:在冷却部的玻璃液面之上的空间中,在靠池壁耐火砖的内侧10-80mm的距离范围内,有2个至80个电加热装置和2个至80个测定温度装置。也提出在冷却部区域的玻璃液中安置电极系统来控制玻璃液温度。
其存在缺陷之一是:
[1]在一种用于玻璃工艺的冷却部区域的防析晶装置装置中,玻璃液都是水平移动的;虽然也安装了电极,希望解决玻璃液的温度控制,但水平方向移动的玻璃液有回流的现象,也无法有效控制玻璃液的温度;
[2]而玻璃液上面的边上的耐火砖上的电热的外加热工艺与玻璃液中的电极的电流加热是二种装置,加上其玻璃液中部区域的上顶部层面沒就控制温度的装置(冷却部一般都有8-15米宽,10-20米长),所以顶部层面散热问题严重。
所以,一种用于玻璃工艺的冷却部区域的防析晶装置,并不能有效的控制水平移动的玻璃液上层温度和中下层之间的温度,形成控制的一致性和稳定性。所以,就会形成水平移动的玻璃液温度不均。
所以,一种用于玻璃工艺的冷却部区域的防析晶装置,不能有效达到使玻璃液能精确的控制在澄清、排泡所需预定温度的1-5℃的误差之内,不能有效保 障玻璃液的排气泡、澄清工艺水平;尤其在生产高铝玻璃这种析晶温度高又析晶速度较快的产品时,不能有效保障玻璃液在进入成工艺阶段前始终高于析晶温度。(本发明技术要素装置,形成的垂直流动的玻璃液和四面的电极能克服此缺陷)
其存在缺陷之二是:
一种用于玻璃工艺的冷却部区域的防析晶装置装置或现有的一切冷却部或名为工作部的装置中,水平移动的玻璃液,都是设计为使玻璃液从冷却部的尾部的上层区域的玻璃液闸板洞口进入成型区的。冷却部一般都有8-15米宽,而玻璃液闸板洞口只有不到2M宽,所以在水平移动的玻璃液闸板洞口的冷却部域的两边和下部,会有不利玻璃液流动的死角,尤其在生产高铝玻璃这种析晶温度高又析晶速度较快的产品时,会很易于在玻璃液不易流动的死角产生玻璃液析晶。(本发明技术要素装置,形成的垂直流动的玻璃液和四面的电极能克服此缺陷)
A.本发明在技术装置结抅要素【卡脖装置】内容和位置上,比较现有技术一种用于玻璃工艺的冷却部区域的防析晶装置的改变是,把玻璃液的卡脖流道装置(60)中,玻璃液的表面与装置底部之间的深度,改变为是火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10)和采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)中,玻璃液的表面与装置底部之间的深度的10%-40%;(见说明书图3)
B.本发明:一种玻璃制品的横向火焰池窑生产系统以及生产方法;把现有技术的技术装置结抅要素【一种用于玻璃工艺的冷却部区域的防析晶装置】,改变成【采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置】(3)和【采用电极,对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构】(4)。(见说明书图3)
C.由于在技术装置结抅要素的的改变和作用关系的改变:
本发明说明书中表述了,产生的这些要素关系改变,导致预料不到的技术效果:
本发明由于玻璃液的卡脖流道装置(60)的玻璃液的深度的位置,与火焰 热能主导玻璃熔化的横向火焰池窑结抅装置(10)和采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)的玻璃液深度的位置发生了改变,由现有池窑技术装置中的上述三个技术装置要素中玻璃液深度是一致的,改变为玻璃液的卡脖流道装置(60)的玻璃液的深度,只仅为火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10)和采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)的玻璃液深度的10%-40%。(见说明书图3)
这种玻璃液的卡脖流道装置(60)玻璃液深度的位置发生的改变,才能使玻璃液的卡脖流道装置(60)玻璃液,从现有技术池窑结抅中玻璃液水平流动,变为使玻璃液的卡脖流道装置(60)玻璃液,从采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)的上侧部流入[见说明书附图3],才能形成玻璃液流动位置的变化,形成玻璃液在采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)中从上向下流动的变化。(见说明书图3)
采用电极,对从上向下流动的玻璃液进行温度控制的装置(3)和采用电极,对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40),的顶部、四周、底部,都设计的控制玻璃液温度的加热装置,所以在从上而下的移动的玻璃液和从下向上流动的玻璃液,都能控制在1300℃以上;又因在1300℃以上玻璃液是用热幅射传导热能,所以能精确的控制处于[采用电极,对从上向下流动的玻璃液进行温度控制的装置](3)和[采用电极,对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构](4)之内的高铝和超高铝浮法平板玻璃和电子玻璃的玻璃液,完全处于高于玻璃澄清、排泡所需的10 2帕·秒的1300-1480℃温度之上的20℃的稳定状态,[误差在1-5℃的之内]。在这种高水平的玻璃液排气泡、澄清先进制造工艺中,能在3-6个小时内完成玻璃液达到高品质的澄清、排泡水平的目标。所以,本发明:一种玻璃制品的横向火焰池窑生产系统以及生产方法;这些要素关系改变,能在普通成本的基础上,使高铝和超高铝浮法平板玻璃和电子玻璃的生产中,克服现有技术的缺陷,达到使高铝和超高铝浮法平板玻璃和电子玻璃的玻璃液,在进入成型工艺之前,能稳定的保持在高于析晶温度之上 的技术目的。
比较现有技术6:
在涉及现有技术高铝和超高铝浮法平板玻璃和电子玻璃的横向火焰池窑生产线的的系统性组合装置中,在火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10)之后联结的是一种冷却部或名为工部的装置,在火焰热能主导玻璃熔化的横向火焰池窑结抅装置之后,由一个卡脖装置联结的是一种冷却部或名为工作部的装置;其卡脖装置、横向火焰池窑结抅装置、冷却部或名为工作部的装置中,玻璃液的深度都是1米左右,玻璃液总体都是水平方向朝成型装置移动。
这种冷却部或名为工作部的装置存在缺陷1:由于这种冷却部或名为工作部的装置中,玻璃液的深度都是1米左右,玻璃液总体都是水平方向朝成型装置移动,玻璃液上面部、左右部、下底层部都沒有完整、准确、统一的加温及控制温度的系统装置,所以尤其是与成型区接近的冷却部或名为工作部后段中,玻璃液上、下层温度差别,达70-90℃。
这会造成高铝和超高铝浮法平板玻璃和电子玻璃的生产中的排气泡、澄清工艺的过程,不可能准确的按照玻璃成分特有的澄清、排泡10 2(帕·秒)的粘度温度,来完成排气泡、澄清工艺的过程,会造成品生产中的气泡和玻筋品质缺缺陷;这是现有技术的冷却部或名为工作部装置,生产高铝和超高铝浮法平板玻璃和电子玻璃的难点(但康宁公司的白金通道技术装置专利和旭硝子公司的抽真空装置专利能克服此缺陷,但成本太高)。
这种冷却部或名为工作部的装置存在缺陷2:由于这种冷却部或名为工作部的装置中,玻璃液的深度都是1米左右,玻璃液总体都是水平方向朝成型装置移动,玻璃液上面部、左右部、下底层部都沒有完整、准确、统一的加温及控制温度的系统装置,所以尤其是与成型区接近的冷却部或名为工作部后段中,玻璃液上、下层温度差别,达70-90℃。
高铝和超高铝浮法平板玻璃和电子玻璃,由于含氧化铝达20-25-35%,析晶温度都很高,许多都达到1300--1480℃以上。所以在生产中,这种冷却部或名为工作 部的装置,解决不了高铝和超高铝浮法平板玻璃和电子玻璃的玻璃液,在进入成型工艺之前,能稳定的保持在高于析晶温度之上的技术难题。
A.本发明在技术装置结抅要素【卡脖装置】内容和位置上,比较现有技术的改变,是把玻璃液的卡脖流道装置(60)中,玻璃液的表面与装置底部之间的深度,是火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10)和采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)中,玻璃液的表面与装置底部之间的深度的10%-40%。(见说明书附图3)
B.本发明:一种玻璃制品的横向火焰池窑生产系统以及生产方法;把现有技术的技术装置结抅要素【一种冷却部或名为工作部的装置】,改变成【采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置】(3)和【采用电极,对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构】(4)。(见说明书附图3)
C.由于在技术装置结抅要素的的改变和作用关系的改变,本发明:一种玻璃制品的横向火焰池窑生产系统以及生产方法;说明书中表述了,产生的这些要素关系改变,导致预料不到的技术效果:
这种玻璃液的卡脖流道装置(60)玻璃液深度的位置发生的改变,才能使玻璃液的卡脖流道装置(60)玻璃液,从现有技术池窑结抅中玻璃液水平流动,变为使玻璃液的卡脖流道装置(60)玻璃液,从采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)的上侧部流入[见说明书附图3],才能形成玻璃液流动位置的变化,形成玻璃液在采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)中从上向下流动的变化。
采用电极,对从上向下流动的玻璃液进行温度控制的装置(3)和采用电极,对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40),的顶部、四周、底部,都设计的控制玻璃液温度的加热装置,所以在从上而下的移动的玻璃液和从下向上流动的玻璃液,都能控制在1300℃以上;又因在1300℃以上玻璃液是用热幅射传导热能,所以能精确的控制处于[采用电极,对从上向下流动的玻璃液进行温度控制的装置](3)和[采用电极,对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构](4)之内的高铝和超高铝浮法平板玻璃和电 子玻璃的玻璃液,完全处于高于玻璃澄清、排泡所需的10 2帕·秒的1300-1480℃温度之上的20℃的稳定状态,[误差在1-5℃的之内]。在这种高水平的玻璃液排气泡、澄清先进制造工艺中,能在3-6个小时内完成玻璃液达到高品质的澄清、排泡水平的目标。所以,本发明:一种玻璃制品的横向火焰池窑生产系统以及生产方法;这些要素关系改变,能在普通成本的基础上,使高铝和超高铝浮法平板玻璃和电子玻璃的生产中,克服现有技术的缺陷,达到使高铝和超高铝浮法平板玻璃和电子玻璃的玻璃液,在进入成型工艺之前,能稳定的保持在高于析晶温度之上的技术目的。
比较现有技术1-6:
先有电溶窑工艺技术及火焰窑工艺技术玻璃制品,主要生产氧化铝含量为1-4%的低铝制品、氧化铝含量为5-9%的中铝制品、氧化铝含量为10-16%的高铝制品。
先有电溶窑工艺技术及火焰窑工艺技术,不具有本发明工艺方法的几个技术要素结抅特征,所以,先有电溶窑技术,不具有克服其技术难点的工艺条件。不具有本发明耍求的,在多个区域中的距离底部耐火材5-30CM的区域中的玻璃液的特定区域位置,设计有3-20个电极装置的要求,和不具有本发明耍求的在多个区域中的,距耐火材料底部5-30CM距离的区域的玻璃液中,最少有100立方CM体积的区间的工作工艺温度,要保持在1320℃-1450℃,要高于距离底部耐火材料30-60CM距离的区域玻璃液的工作工艺温度20-80℃的工艺方法。
【本发明与先前技术(1)-(6)的不同】
(一)首先,本发明所述的工艺特点的制备方法,与先有发明(1)-(6)技术方案和任何先有技术方案也都不同。本发明所述的制备方法特征,才能产生与先有类似产品完全不同的,【玻璃中完全沒有乳白色的富铝条纹或富铝区块,沒有玻璃分层的特征的,氧化铝含量达15--35%的玻璃制品】。
而如果不采用本发明所述的制备方法特征,氧化铝含量达15--35%的玻璃制品中,就会易于存在乳白色的富铝条纹或乳白色的富铝区块的不透明的重大缺陷,或出现玻璃分层的重大缺陷问题。
(二)而本发明因为采用了全新的工艺:在多个区域溶窑结抅装置,的底部耐火材5-30CM距离的区域中的玻璃液中,全部设计了3-20个电极装置,采用了全新的工艺:使多个区域溶窑结抅装置区域的底部耐火材料10-30CM距离的区域的玻璃液中,最少各自有1个区间的工作工艺温度保持在1320℃-1450℃,高于距离底部耐火材料30-60CM距离的区域玻璃液的工作工艺温度20-80℃。所以能形成这几个区域的,距离底部耐火材料5-30-60CM距离的玻璃液小范围的上下流动均化,使“富铝沉降堆积现象--即高氧化铝成份含量的玻璃液部分,因比重大而沉降堆积在底部的现象”,得到均化,得到解决。能从根本上解决进而造成玻璃成品成型阶段因成份严重不均,出现玻筋,条纹,白色不透明富氧块与条等产品根本不合格的难点,使高合格率的生产15--35%的氧化铝含量的玻璃制品成为可能。
而且本发明还能克服先有技术中,通过先有技术试图采用传统的搅拌工艺来达到目的采用传统的搅拌工艺,克服在玻璃液底部出现“富铝沉降堆积现象”产生的难点。
克服其传统的搅拌工艺难点之一:采用传统的搅拌工艺是在靠近玻璃成型区的电熔窑底部或上升通道顶部位置,搅拌工艺易于产生二次气泡,使大量气泡直接出现在产品中;
1.克服其传统的搅拌工艺难点之二:采用传统的搅拌工艺,在超过如果1300℃的环境中,使用加冷却水循环降温的不锈钢搅拌器,会造成严重的搅拌器边壁附近玻璃液,因长期水冷降温传导,而产生玻璃液大量析晶,在靠近玻璃成型区的电熔窑底部或上升通道顶部位置,析晶会直接大量出现 在产品中;
克服其传统的搅拌工艺难点之三:采用白金搅拌器,会存在成本太高和白金在高温下与玻璃反应出现新的气泡,在靠近玻璃成型区的电熔窑底部或上升通道顶部位置,产生的二次气泡,也会使大量气泡直接出现在产品中。这是现有的技术都无法合格的生产含20%以上的超高铝含量的玻璃制品的重要原因。
所以能做到,生产15--35%的氧化铝含量的玻璃制品,不但要在正常生产时,能使各自装置内,尤其底部区域的玻璃液保持在1300℃以上;并能在玻璃制品的成型装置(5)停止工作时,即也沒有从溶化窑结抅装置流动过来的髙温玻璃液时的玻璃液,也能形成这几个区域的,距离底部耐火材料5-30-60CM距离的玻璃液最少各自有1个区间的工作工艺温度保持在1320℃-1450℃,最少各自有1个区间的工作工艺温度保持在1320℃-1450℃,高于距离底部耐火材料30-60CM距离的区域玻璃液的工作工艺温度20-80℃;并小范围的上下流动均化,使“富铝沉降堆积现象--即高氧化铝成份含量的玻璃液部分,因比重大而沉降堆积在底部的现象”,得到均化,得到解决。
全新的工艺发明构思方案,是一种在特定的环境中,对特定的区域的工艺技术方案生产的玻璃产品的发明,产生了予料不到的技术效果。
本发明的发明目的还在于:
在生产高铝和超高铝(含氧化铝20-49%)浮法平板玻璃和电子玻璃时,出现玻璃制品的成型装置(50)停止工作的状态时(如成型工艺中有故障,安全闸门关闭,使整个成型之前的生产系统玻璃液处于各自的装置之内,不按工艺程序流动的状态)。
这时,生产系统中的火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10);采用电极,对从上向下流动的玻璃液进行温度控制的装置(3);采用电极,对 从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40);这3个本发明的这要素装置中,设计的电极的合理位置和电极能量,能把各自的装置之内的玻璃液,保持在高于超高铝玻璃的析晶温度的1300-1480℃以上,使玻璃液处于热幅射传导热能的状态,从而能保障这三个要素装置中的玻璃液温度控制在预定的要求的+-1-5℃差别的范围。
反之,在生产高铝和超高铝(含氧化铝20-49%)浮法平板玻璃和电子玻璃时,出现玻璃制品的成型装置(50)停止工作的状态时(如成型工艺中有故障,安全闸门关闭,使整个成型之前的生产系统玻璃液处于各自的装置之内,不按工艺程序流动的状态)。如果沒有本发明的沒有上述的3个要素装置的位置关系变化创新和互相作用的关系变化创新,就不一定会出现玻璃液在进入成型工艺前,大范围析晶。
而现有技术的高铝和超高铝(含氧化铝20-49%)浮法平板玻璃和电子玻璃池窑生产系统装置,由于没有这3个要素装置和沒有其中设计的电极的合理位置和电极能量,所以根本不能在日产能达100-1000吨的大产能、高效率、低成本的浮法平板玻璃和电子玻璃纤维生产系统装置中,生产含氧化铝达20-49%的高铝和超高铝(含氧化铝20-49%)浮法平板玻璃和电子玻璃制品。
在现有技术中,大家都希望在在日产能100-1000吨的大产能、高效率、低成本的浮法平板玻璃生产系统装置中,生产含氧化铝达20-49%的高铝和超高铝浮法平板玻璃和电子玻璃制品。来达到产品品质合格的基础上,大幅提髙高铝玻璃纤维生产效率,以适应髙水平的建筑玻璃、工程玻璃、特种玻璃、航空航天玻璃市场的要求。这是玻璃领域中,人们一直渴望解决但始终未能获得成功的技术难题。
本发明一种玻璃制品的横向火焰池窑生产系统以及生产方法,解决了人们一直渴望解决但始终未能获得成功的玻璃领域生产中的上述(1).(2).(3).(4).(5).(6)种技术难题,所以,本发明一种玻璃制品的横向火焰池窑生产系统以及生产方法,具有突出的实质性特点和显著的进步性,具有创造性。
而且,只要本发明一种玻璃制品的横向火焰池窑生产系统以及生产方法,能解决了人们一直渴望解决但始终未能获得成功的玻璃领域生产中的上述 (1).(2).(3).(4).(5).(6)种技术难题中的一种,那么本发明一种玻璃制品的横向火焰池窑生产系统以及生产方法,也能具有突出的实质性特点和显著的进步性,具有创造性。
由于本发明一种玻璃制品的横向火焰池窑生产系统以及生产方法,的权利要求1具有突出的实质性特点和显著的进步性,具有创造性,所以权利要求2-13也具有突出的实质性特点和显著的进步性,具有创造性。
以上所述,仅是为了说明本发明的较佳优选实施例而已,然而其并非是对本发明的限制,任何熟悉本项技术的人员可能利用上述揭示的技术内容加以变更或修饰为等同变化的等效实施例,都可以按不同要求和性能实施--本发明一种玻璃制品的横向火焰池窑生产系统以及生产方法。可见,凡是未脱离本发明技术方案的内容,尤其是权利请求项之内容,依据本发明的技术实质对以上实施例所作的任何简单修改,等同变化与修饰,均仍属本发明技术方案的范围内。

Claims (13)

  1. 一种玻璃制品的横向火焰池窑生产系统,其包括:
    玻璃原料运输装置(19),火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10);玻璃液的卡脖流道装置(60);采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30);采用电极,对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40);玻璃制品的成型装置(50):其特征在于:
    玻璃液的卡脖流道装置(60)中,玻璃液的表面与装置底部之间的深度,是火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10)和采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)中,玻璃液的表面与装置底部之间的深度的10%-40%;
    采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)的四周设计有4-50个控制玻璃液温度的电极;
    采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)的下部设计有玻璃液流出的洞口(6),设计的玻璃液流出的洞口(6)联结着一个采用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40),上升通道结构中,设计有控制玻璃液温度的电极;
    采用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40)的顶部出口,联结着一个装载玻璃液的装置(17),其中设计有控制玻璃液温度的电极。
  2. 根据权利要求1所述的一种玻璃制品的横向火焰池窑生产系统,其特征在于:
    其玻璃液的卡脖流道装置(60)中,玻璃液的表面与装置底部之间的深度,是火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10)和采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)中,玻璃液的表面与装置底部之间的深度的10%-40%;玻璃液的卡脖流道装置(60)的距离 底部耐火材5-30CM的区域中的玻璃液中,设计有3-20个电极装置;
    其采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)的四周设计有4-50个控制玻璃液温度的电极,采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)的距离底部耐火材5-30CM的区域中的玻璃液中,设计有3-20个电极装置;
    其还设有底部流液通道(20),其距离底部耐火材5-30CM的区域中的玻璃液中,设计有3-20个电极装置;
    其采用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构--(40)的四周设计有4-50个控制玻璃液温度的电极;上升通道结构(40)的距离底部耐火材5-30CM的区域中的玻璃液中,设计有3-20个电极装置;
  3. 根据权利要求1所述的一种玻璃制品的横向火焰池窑生产系统,其特征在于,采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置的玻璃液,深度在90-150CM之内;采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)的顶部设计有加热装置。
  4. 根据权利要求1所述的一种玻璃制品的横向火焰池窑生产系统,其特征在于,采用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40)的顶部出口,联结着的装载玻璃液的装置(17)的顶部,设计有加热装置;联结着的装载玻璃液的装置(17)的底部,也设计有控制玻璃液温度的电极设计有加热装置。
  5. 根据权利要求1所述的一种玻璃制品的横向火焰池窑生产系统,其特征在于,其火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10)的日产量达到100吨-1500吨;其火焰喷嘴是安装在横向火焰池窑的两测面,火焰喷射方向与横向火焰池窑长度的方向是处于撗方向;其横向火焰池窑结抅装置的玻璃液中,设计有电助熔控制玻璃液温度的电极。
  6. 根据权利要求1所述的一种玻璃制品的横向火焰池窑生产系统,其特征 在于,其采用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40)的顶部出口,联结着的装载玻璃液的装置(17)的顶部,设计有加热装置;联结着的装载玻璃液的装置(17)的底部,也设计有控制玻璃液温度的电极;通向成型装置的区域设计有玻璃液闸门;
    其玻璃制品的成型装置(50),是浮法平板玻璃工艺的锡窑结构,其包括:锡窑底层有锡金属;锡窑两边有10-40对拉边机;锡窑顶部有电加热装置;
    在浮法平板玻璃工艺的锡窑结构之后,还有玻璃退火装置和玻璃板切材装置。
  7. 根据权利要求1所述的一种玻璃制品的横向火焰池窑生产系统,其特征在于,其采用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40)的顶部出口,联结着的装载玻璃液的装置(17)的顶部,设计有加热装置;联结着的装载玻璃液的装置(17)的底部,也设计有控制玻璃液温度的电极,联结着玻璃液的主流道,其联结着有2-30个玻璃液分流道,其各个玻璃液分流道,联结着的玻璃制品的成型装置(50)是玻璃纤维生产的成型装置;其玻璃纤维生产的成型装置包括:承载玻璃液的2-30个干埚、2-30个拉丝板、拉丝机。
  8. 根据权利要求1所述的一种玻璃制品的横向火焰池窑生产系统,其特征在于,其采用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40)的顶部出口,联结着的装载玻璃液的装置(17)的顶部,设计有加热装置;联结着的装载玻璃液的装置(17)的底部,也设计有控制玻璃液温度的电极,联结着玻璃液的主流道,其联结着有2-30个玻璃液分流道,其各个玻璃液分流道,联结着玻璃制品的成型装置(50);玻璃制品的成型装置(50)是工业与日用玻璃器皿的吹制成型装置;在工业与日用玻璃制品的2-30个吹制成型装置(50)之后,还有玻璃制品的退火装置。
  9. 根据权利要求1所述的一种玻璃制品的横向火焰池窑生产系统,其特征在于,其采用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40)的顶部出口,联结着的装载玻璃液的装置(17)的顶部,设计有加热装置;联结着的装载玻璃液的装置(17)的底部,也设计有控制玻璃液温度的 电极,联结着玻璃液的主流道,其联结着有2-30个玻璃液分流道,其各个玻璃液分流道,联结着玻璃制品的成型装置(50);玻璃制品的成型装置(50)是工业与日用玻璃器皿的压制成型装置;在工业与日用玻璃器皿的2-30个压制成型装置(50)之后,还有玻璃制品的退火装置。
  10. 根据权利要求1所述的一种玻璃制品的横向火焰池窑生产系统,其特征在于,其采用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40)的顶部出口,联结着的装载玻璃液的装置(17)的顶部,设计有加热装置;联结着的装载玻璃液的装置(17)的底部,也设计有控制玻璃液温度的电极,联结着玻璃液的主流道,其联结着有2-30个玻璃液分流道,其各个玻璃液分流道,联结着玻璃制品的成型装置(50);玻璃制品的成型装置(50)是工业与日用玻璃器皿的拉制成型装置;在工业与日用玻璃器皿的2-30个拉制的成型装置(50)之后,还有玻璃制品的退火装置。
  11. 根据权利要求1所述的一种玻璃制品的横向火焰池窑生产系统,其特征在于,其采用电极,对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(50)的顶部出口,联结着的装载玻璃液的装置(17)的顶部,设计有加热装置;联结着的装载玻璃液的装置(17)的底部,也设计有控制玻璃液温度的电极,联结着2-30个玻璃液流道,流道联结着玻璃制品的成型装置(50);玻璃制品的成型装置(50)是卫浴玻璃制品的吹制成型装置;在卫浴玻璃制品的2-30个吹制成型装置之后,还有卫浴玻璃制品的退火装置。
  12. 根据权利要求1所述的一种玻璃制品的横向火焰池窑生产系统,其特征在于,其使用的玻璃材料的组成是:按重量百分比计,其氧化铝含量为0.01%--39%,氧化镁含量为5%--20%,氧化硅含量是氧化钙含量的2.51-5.8倍,氧化钙含量是氧化镁含量的0.7倍-2.3倍。
  13. 一种玻璃制品的横向火焰池窑生产系统的工艺制备方法:
    备好所需的装置:火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10),玻璃液的卡脖流道装置(60),采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30),采用电极对从下向上流动的玻璃液进行温度 控制的玻璃液上升通道结构(40),玻璃制品的成型装置(50);这几个装置中的电极能量,都能在玻璃制品的成型装置(50)停止工作时,使各自装置内的玻璃液保持在1300℃以上,並保持在高于玻璃析晶温度之上;
    步骤1.把预定的玻璃原料,通过玻璃原料运输装置,进入火焰热能主导玻璃熔化的横向火焰池窑结抅装置(10)中,进行溶化形成玻璃液,玻璃液再通过玻璃液的卡脖流道装置(60),从侧上部进入采用电极,对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)中;并使卡脖流道装置(60)和采用电极对从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)中的玻璃液的温度,控制在高于澄清、排泡10 2帕·秒的粘度温度之上的区间和高于玻璃析晶温度之上的区间;
    工艺特点在于:通过玻璃液的卡脖流道装置(60)的距离底部耐火材5-30CM的区域中的玻璃液中,设计的3-20个电极装置,使卡脖流道装置(60)区域的,距耐火材料底部10-30CM距离的区域的玻璃液中,最少有100立方CM体积的区间的工作工艺温度,要保持在1320℃-1450℃,要高于距离底部耐火材料30-60CM距离的区域玻璃液的工作工艺温度20-80℃;
    工艺特点在于:通过从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)设计的距离底部耐火材5-30CM的区域中的玻璃液中,各自的3-20个电极装置,使从上向下流动的玻璃液进行温度控制的澄清、排气泡和防析晶装置(30)区域的,距耐火材料底部5-30CM距离的区域的玻璃液中,最少有100立方CM体积的区间的工作工艺温度,要保持在1320℃-1450℃,要高于距离底部耐火材料30-60CM距离的区域玻璃液的工作工艺温度20-80℃;
    步骤2.使玻璃液从采用电极,对从上向下流动的玻璃液进行温度控制的澄 清、排气泡和防析晶装置(30)下部,进入的底部流液通道(20),再进入联结着的一个采用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40);
    工艺特点在于:通过底部流液通道(20)中设计的,距离底部耐火材5-30CM的区域中的玻璃液中,设计的3-20个电极装置,使底部流液通道(20)区域的,距耐火材料底部5-30CM距离的区域的玻璃液中,最少有100立方CM体积的区间的工作工艺温度,要保持在1320℃-1450℃,要高于距离底部耐火材料30-60CM距离的区域玻璃液的工作工艺温度20-80℃;
    工艺特点在于:通过采用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40)中设计的,距离底部耐火材5-30CM的区域中的玻璃液中,设计的3-20个电极装置,使底部流液通道(20)区域的,距耐火材料底部5-30CM距离的区域的玻璃液中,最少有100立方CM体积的区间的工作工艺温度,要保持在1320℃-1450℃,要高于距离底部耐火材料30-60CM距离的区域玻璃液的工作工艺温度20-80℃;
    工艺特点在于:通过其距离底部耐火材5-30CM的区域中的玻璃液中,设计的3-20个电极装置,使底部流液通道(20)区域的,距耐火材料底部5-30CM距离的区域的玻璃液中,最少有100立方CM体积的区间的工作工艺温度,要保持在1320℃-1450℃,要高于距离底部耐火材料30-60CM距离的区域玻璃液的工作工艺温度20-80℃;
    步骤3.玻璃液再由底部流液通道(20),进入用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40);
    工艺特点在于:通过其距离底部耐火材5-30CM的区域中的玻璃液中,设计 的3-20个电极装置,使用电极对从下向上流动的玻璃液进行温度控制的玻璃液上升通道结构(40)区域的,距耐火材料底部5-30CM距离的区域的玻璃液中,最少有100立方CM体积的区间的工作工艺温度,要保持在1320℃-1450℃,要高于距离底部耐火材料30-60CM距离的区域玻璃液的工作工艺温度20-80℃;
    步骤4.成型工艺:
    选择1,第一种玻璃制品成型工艺,前述的经过上升通道结构(40)的顶部出口的玻璃液,进入联结着的装载玻璃液的装置(17),再经过玻璃液闸门(8),进入玻璃制品的成型装置(50);其玻璃制品的成型装置(50)是浮法平板玻璃工艺的锡窑结构;玻璃液进入锡窑结构的平滑的布有溶化的锡金属的平面,进行玻璃液趟平摊薄及抛光;再由两边的10-40对拉边机对形成的玻璃带拉成所需厚度;再经过退火,切材工序,形成浮法平板玻璃制品;或
    选择2,第二种玻璃制品成型工艺,前述的经过上升通道结构(40)的顶部出口的玻璃液,进入联结着的装载玻璃液的装置(17);装载玻璃液的装置(17)就是玻璃液的主流道,玻璃液进入联结着有2-30个玻璃液分流道;玻璃液进入各个分流道联结着的玻璃制品的玻璃纤维生产的成型装置;分别流入对应的2-30个承载玻璃液的干埚,玻璃液经过对应的2-30个拉丝板,在对应的拉丝机的作用下形成玻璃纤维;或
    选择3,第三种玻璃制品成型工艺,前述的经过上升通道结构(40)的顶部出口的玻璃液,进入联结着的装载玻璃液的装置(17);装载玻璃液的装置(17)就是玻璃液的主流道,玻璃液进入联结着有2-30个玻璃液分流道;玻璃液进入各个分流道联结着的玻璃制品的2-30个工业与日用玻璃器皿的吹制成型装置;分别吹制成工业与日用玻璃的制品;再经过玻璃制品的退火装置的处理,制成工业与日用玻璃的吹制成型制品;或
    选择4,第四种玻璃制品成型工艺,前述的经过上升通道结构(40)的顶部出口的玻璃液,进入联结着的装载玻璃液的装置(17);装载玻璃液的装置(17)就是玻璃液的主流道,玻璃液进入联结着有2-30个玻璃液分流道;玻璃液进入各个分流道联结着的玻璃制品的2-30个工业与日用玻璃器皿的压制成型装置; 分别压制成工业与日用玻璃的制品;再经过玻璃制品的退火装置的处理,制成工业与日用玻璃的压制成型制品;或
    选择5,第五种玻璃制品成型工艺,前述的经过上升通道结构(40)的顶部出口的玻璃液,进入联结着的装载玻璃液的装置(17);装载玻璃液的装置(17)就是玻璃液的主流道,玻璃液进入联结着有2-30个玻璃液分流道;玻璃液进入各个分流道联结着的玻璃制品的2-30个工业与日用玻璃的拉制成型装置,分别拉制成工业与日用玻璃的制品;再经过玻璃制品的退火装置的处理,制成工业与日用玻璃的拉制成型制品;或
    选择6,第六种玻璃制品成型工艺,前述的经过上升通道结构(40)的顶部出口的玻璃液,进入联结着的装载玻璃液的装置(17);装载玻璃液的装置(17)就是玻璃液的主流道,玻璃液进入联结着有2-30个玻璃液分流道;玻璃液进入各个分流道联结着的玻璃制品的2-30个卫浴玻璃制品的吹制成型装置,分别制成卫浴玻璃制品;再经过玻璃制品的退火装置的处理,制成卫浴玻璃制品。
PCT/CN2019/000098 2017-12-27 2019-05-10 一种玻璃制品的横向火焰池窑生产系统以及生产方法 WO2019223325A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201711500152 2017-12-27
CN201810544632.2 2018-05-19
CN201810544632.2A CN108706856A (zh) 2017-12-27 2018-05-19 一种玻璃制品的横向火焰池窑生产系统以及生产方法

Publications (1)

Publication Number Publication Date
WO2019223325A1 true WO2019223325A1 (zh) 2019-11-28

Family

ID=63870978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/000098 WO2019223325A1 (zh) 2017-12-27 2019-05-10 一种玻璃制品的横向火焰池窑生产系统以及生产方法

Country Status (2)

Country Link
CN (1) CN108706856A (zh)
WO (1) WO2019223325A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108706856A (zh) * 2017-12-27 2018-10-26 杨德宁 一种玻璃制品的横向火焰池窑生产系统以及生产方法
CN110255867B (zh) * 2019-07-22 2023-09-26 山东柔光新材料有限公司 一种生产柔性玻璃的设备及生产柔性玻璃的方法
CN116947298B (zh) * 2023-08-18 2024-02-27 本溪玉晶玻璃有限公司 一种超大吨位一窑两线玻璃生产线

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4961772A (en) * 1988-09-20 1990-10-09 Toledo Engineering Co., Inc. Method and apparatus for continuously melting glass and intermittently withdrawing melted glass
CN1452598A (zh) * 2000-08-25 2003-10-29 舱壁玻璃公司 玻璃熔体的均化装置
CN2642777Y (zh) * 2003-09-08 2004-09-22 中国建筑材料科学研究院 一种负压澄清玻璃熔窑
CN201296725Y (zh) * 2008-12-03 2009-08-26 四川德阳市弘达尔玻璃制品有限公司 超宽幅光学玻璃板材制造装置
CN102234181A (zh) * 2010-03-18 2011-11-09 杨德宁 一种有高强度的节能环保的低粘度特征玻璃的制备工艺
CN104829091A (zh) * 2015-04-04 2015-08-12 徐林波 一种清除玻璃液内气泡的新方法
CN108706856A (zh) * 2017-12-27 2018-10-26 杨德宁 一种玻璃制品的横向火焰池窑生产系统以及生产方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE451415A (zh) * 1942-07-10
CN102503076A (zh) * 2011-11-01 2012-06-20 河南国控宇飞电子玻璃有限公司 用于熔化高碱铝硅酸盐玻璃的窑炉
CN103508652B (zh) * 2013-09-06 2016-09-21 巨石集团有限公司 玻璃纤维池窑结构及玻璃熔制方法
CN104692622A (zh) * 2013-12-06 2015-06-10 杨德宁 一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工艺方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4961772A (en) * 1988-09-20 1990-10-09 Toledo Engineering Co., Inc. Method and apparatus for continuously melting glass and intermittently withdrawing melted glass
CN1452598A (zh) * 2000-08-25 2003-10-29 舱壁玻璃公司 玻璃熔体的均化装置
CN2642777Y (zh) * 2003-09-08 2004-09-22 中国建筑材料科学研究院 一种负压澄清玻璃熔窑
CN201296725Y (zh) * 2008-12-03 2009-08-26 四川德阳市弘达尔玻璃制品有限公司 超宽幅光学玻璃板材制造装置
CN102234181A (zh) * 2010-03-18 2011-11-09 杨德宁 一种有高强度的节能环保的低粘度特征玻璃的制备工艺
CN104829091A (zh) * 2015-04-04 2015-08-12 徐林波 一种清除玻璃液内气泡的新方法
CN108706856A (zh) * 2017-12-27 2018-10-26 杨德宁 一种玻璃制品的横向火焰池窑生产系统以及生产方法

Also Published As

Publication number Publication date
CN108706856A (zh) 2018-10-26

Similar Documents

Publication Publication Date Title
WO2019223325A1 (zh) 一种玻璃制品的横向火焰池窑生产系统以及生产方法
CN201250173Y (zh) 大型浮法玻璃熔窑澄清台阶池底结构
CN112830661B (zh) 一种大长宽比高电负荷型混熔窑炉及熔化工艺
KR20100119538A (ko) 용융 유리 제조 장치 및 그것을 사용한 용융 유리 제조 방법
CN108996895B (zh) 一种玻璃基板溢流成型析晶控制装置
TWM495364U (zh) 一種用於玻璃工藝的防析晶的冷卻部
CN103232151A (zh) 玻璃的生产设备及成型工艺方法
CN108996890A (zh) 利用玻璃纤维熔窑排放料制备超薄玻璃的设备和方法
CN110028225A (zh) 适于高铝特种玻璃熔化的电助熔系统
WO2019223323A1 (zh) 一种采用新横向火焰池窑生产系统的工艺方法所生产的超高铝玻璃制品
CN101664801A (zh) 稳恒磁场作用下铝合金低过热度复合铸造的方法及装置
CN107915394B (zh) 一种钙镁铝硅建筑浮法微晶玻璃料道及其使用方法
CN107445454A (zh) 浮法玻璃生产结构
WO2015081601A1 (zh) 一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工艺方法
CN113493294B (zh) 一种高锂微晶玻璃生产系统及其生产方法
CN102976589B (zh) 一种有关一座熔窑具有两条生产线的浮法工艺设备及方法
CN114230149A (zh) 用于tft玻璃的生产线
CN108585441A (zh) 玻璃电熔炉熔制玻璃的方法
CN105923981A (zh) 一种利用熔融态黄磷炉渣制备普通玻璃的方法
CN207862162U (zh) 一种玻璃窑炉熔化池池底
CN113636741A (zh) 全电玻璃熔窑
CN102822103B (zh) 玻璃板制造方法
CN204454856U (zh) 空间抗辐照玻璃盖片的一次连续式制备系统
CN102010118A (zh) 一种浮法玻璃熔窑
CN104743877B (zh) 空间抗辐照玻璃盖片的一次连续式制备工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19806993

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19806993

Country of ref document: EP

Kind code of ref document: A1