WO2015081601A1 - 一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工艺方法 - Google Patents
一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工艺方法 Download PDFInfo
- Publication number
- WO2015081601A1 WO2015081601A1 PCT/CN2014/000778 CN2014000778W WO2015081601A1 WO 2015081601 A1 WO2015081601 A1 WO 2015081601A1 CN 2014000778 W CN2014000778 W CN 2014000778W WO 2015081601 A1 WO2015081601 A1 WO 2015081601A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass
- temperature
- crystallization
- cooling
- glass liquid
- Prior art date
Links
- 239000011521 glass Substances 0.000 title claims abstract description 428
- 238000001816 cooling Methods 0.000 title claims abstract description 311
- 238000002425 crystallisation Methods 0.000 title claims abstract description 267
- 238000000034 method Methods 0.000 title claims abstract description 233
- 230000008569 process Effects 0.000 title claims abstract description 179
- 230000008025 crystallization Effects 0.000 title claims abstract description 158
- 238000003672 processing method Methods 0.000 title abstract description 4
- 239000007788 liquid Substances 0.000 claims abstract description 222
- 238000010438 heat treatment Methods 0.000 claims abstract description 192
- 239000011449 brick Substances 0.000 claims abstract description 64
- 238000002844 melting Methods 0.000 claims abstract description 51
- 230000008018 melting Effects 0.000 claims abstract description 50
- 238000000465 moulding Methods 0.000 claims abstract description 37
- 238000009434 installation Methods 0.000 claims abstract description 7
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims description 40
- 239000000292 calcium oxide Substances 0.000 claims description 40
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 40
- 238000005485 electric heating Methods 0.000 claims description 39
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 21
- 229910001948 sodium oxide Inorganic materials 0.000 claims description 20
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 claims description 19
- 239000000395 magnesium oxide Substances 0.000 claims description 18
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 18
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 18
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 17
- 238000000137 annealing Methods 0.000 claims description 16
- 238000005520 cutting process Methods 0.000 claims description 16
- 238000011031 large-scale manufacturing process Methods 0.000 claims description 15
- 238000012423 maintenance Methods 0.000 claims description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 13
- 230000008859 change Effects 0.000 claims description 11
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 11
- 238000013461 design Methods 0.000 claims description 9
- 238000007496 glass forming Methods 0.000 claims description 8
- 238000012858 packaging process Methods 0.000 claims description 8
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 5
- 235000019353 potassium silicate Nutrition 0.000 claims description 3
- 230000007257 malfunction Effects 0.000 claims 10
- 238000004519 manufacturing process Methods 0.000 description 105
- 239000006060 molten glass Substances 0.000 description 78
- 239000000463 material Substances 0.000 description 61
- 230000000694 effects Effects 0.000 description 55
- 239000005357 flat glass Substances 0.000 description 37
- 238000004031 devitrification Methods 0.000 description 36
- 239000013078 crystal Substances 0.000 description 24
- 239000002994 raw material Substances 0.000 description 18
- 230000007547 defect Effects 0.000 description 14
- 230000008901 benefit Effects 0.000 description 11
- 238000000502 dialysis Methods 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 239000005361 soda-lime glass Substances 0.000 description 11
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 230000007704 transition Effects 0.000 description 7
- 239000005347 annealed glass Substances 0.000 description 6
- 238000004806 packaging method and process Methods 0.000 description 6
- 238000010521 absorption reaction Methods 0.000 description 5
- 230000005496 eutectics Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 238000005352 clarification Methods 0.000 description 4
- 239000000110 cooling liquid Substances 0.000 description 4
- 239000005329 float glass Substances 0.000 description 4
- 238000005342 ion exchange Methods 0.000 description 4
- 238000007670 refining Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000005496 tempering Methods 0.000 description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 239000011819 refractory material Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 238000006124 Pilkington process Methods 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 2
- 238000003490 calendering Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000005401 pressed glass Substances 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 238000004886 process control Methods 0.000 description 2
- 230000003678 scratch resistant effect Effects 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 238000004017 vitrification Methods 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- YNFYCBDMMKUYKX-UHFFFAOYSA-N THTA Chemical compound OC(=O)CC1CCCS1 YNFYCBDMMKUYKX-UHFFFAOYSA-N 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000005391 art glass Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000007380 fibre production Methods 0.000 description 1
- 230000009970 fire resistant effect Effects 0.000 description 1
- 238000007511 glassblowing Methods 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000003562 lightweight material Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B5/00—Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
- C03B5/16—Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
- C03B5/18—Stirring devices; Homogenisation
- C03B5/183—Stirring devices; Homogenisation using thermal means, e.g. for creating convection currents
- C03B5/185—Electric means
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B5/00—Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
- C03B5/16—Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
- C03B5/235—Heating the glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
- C03C3/087—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B18/00—Shaping glass in contact with the surface of a liquid
- C03B18/02—Forming sheets
Definitions
- the present invention relates to an anti-crystallization device and a devitrification process for a cooling portion of a glass process,
- the cooling unit device is positioned between the melting device and the molding process device.
- the cooling unit referred to in the present invention includes a glass fiber production line, a glass tube production line, and a glass pressing process.
- the properties of the molding viscosity temperature and the devitrification viscosity temperature of the glass are determined by the process of the cooling part of the existing glass technology, and the technical scheme of the cooling part of the glass and the anti-crystallization method are determined. ;
- the prior art believes that: the crystallization temperature of the glass is higher than the conventional 10 3 Pa * The molding temperature in seconds is not easy to produce on the production line due to the easy devitrification of the glass.
- the prior art CN101357819A is a noble metal material channel heating device.
- an indirect externally wound heating plate or wire is provided, which is used for further heating and further clarification.
- most of these devices are for raising
- the temperature is again discharged from the bubbles, rather than the actual device for homogenization and cooling, which does not solve the technical difficulties revealed by the flat glass produced by the cooling portion anti-crystallization method of the present invention.
- the technical solution of the present invention and its process method are also completely different, and the object of the invention is also completely different.
- US6339610B1 discloses a melting device in which the position of the heating device is installed, the position of which is in the molten glass in front of the melting portion in front of the narrow device and in the front portion of the cooling portion, the technical purpose of which is to ensure narrowness a sufficient temperature of the glass clarification process in the apparatus, re-melting (see the specification plus column 4, lines 22-57, Figures 1, 2), the explanation of which is in no way a cooling section of the invention for the glass process
- the anti-crystallization device and the anti-crystallization process show the technical difficulties of Ming 2.
- US 4,906,277, A (06.03.1990) discloses a glass refining furnace, [1] where the heating device is installed at the corner of the outlet groove of the glass liquid of the glass refining furnace and in the width direction, the technical purpose of which is to protect the molten glass. Sufficient temperature can generate flow; [2] The position where the heating device is installed is the two side parts in the flow direction of the front part of the glass cooling part, and the technical purpose is to prevent the glass liquid of the two sides of the cooling part during normal large production. The liquidity is poor and the temperature is not sufficient, and the crystallization is performed, which cannot solve the technical difficulty revealed by the anti-crystallization device and the anti-crystallization method of the cooling portion region of the glass process of the present invention.
- the inventor of the present invention has the invention of 201310161605. 4 glass production equipment and molding method.
- the object of the invention is to prevent the lower chromatographic crystals from being cooled in the working portion.
- the lower layer is installed with 2 to 100 electric heating devices and temperature measuring devices with a distance of 0. 2m to 6m (the seventh page indicates: the middle and lower layers refer to up to 40% or 40% to 80 measured from the bottom). % deep glass liquid region); it does not solve the technical difficulties revealed by the anti-crystallization device and the anti-crystallization device method for the cooling portion region of the glass process of the present invention.
- CN101381197 discloses a glass cell furnace solubilizing device and a processing method for solving the problem that the liquid crystal glass has high melting temperature, high temperature viscosity, low melting rate, and high volatility during melting, which is The dissolving device and the processing method in the melting portion, the object of the invention is to solve the problem that the liquid crystal glass has a high melting temperature, a high temperature viscosity, a low melting rate, and a large volatility in melting in the melting portion process.
- the problem of the book can not solve the technical difficulties revealed by the anti-crystallization device and the anti-crystallization device of the cooling portion of the present invention.
- the technical solution of the present invention and its process method are also completely different, and the object of the invention is also completely different.
- CN1600711A (30, 03, 2005) discloses a glass melting furnace and a cooling method capable of improving the cooling of molten glass in a working pool, wherein the working pool is in a functional position of the melting section, and a plurality of natural gas squirt guns are disposed.
- the upper layer cold air system is a device and a process of the vitrification furnace part, and the object of the invention is to improve the glass furnace cooling and cooling method of the glass liquid cooling in the working pool of the vitrification furnace, which can not solve the invention for a glass Technical difficulties revealed by the anti-crystallization device and the anti-crystallization process of the cooling portion of the process;
- the use of the aforementioned eight types of prior art can not solve the technical difficulties.
- the object of the present invention is to: reveal the above technical difficulties, invent a new technical solution, overcome such a major difficult problem, and produce an unexpected technical effect of making a glass material with excellent characteristics into a large production, and at the same time, the glass is not A devitrified block structure composed of crystals appears.
- the present invention is an anti-crystallization device and an anti-crystallization device for a cooling portion of a glass process, and is particularly suitable for producing such a glass material having two-sided characteristics: [1] weight percent, alumina 6 - 3 ⁇ [2] There are 35%, sodium oxide is 0. 01-16%, silicon oxide: calcium oxide 1. 6 - 5.
- the glass produced by the invention has the characteristics of low melting viscosity temperature, low bubble viscosity temperature, low molding viscosity temperature, thereby producing energy-saving technical effects, product quality advantages such as less bubbles, less non-melting defects, and high
- the alumina content has the characteristics of high flexural strength of low temperature eutectic, excellent thermal expansion coefficient properties, and excellent technical effects with excellent wear characteristics.
- the anti-crystallization device and the anti-crystallization device method for the cooling portion region of the glass process according to the present invention are particularly useful for the above-mentioned glass materials, and are used for large-scale production of various products as described below, such as:
- Ultra-thin electronic TFT glass products high scratch-resistant wear-resistant touch screen electronic glass products, float glass flat glass products, grid glass products, overflow flat glass products, calendered flat glass products, flat glass products, pull tubes Glass products, pressed glass products, blown glass products. It can be seen from the five sample samples described later that the coverage of such new functional glass materials is obvious: [1], energy saving 50-70% technical effect; [2], less bubbles, less non-melting defects, etc.
- the technical effect of product quality advantage; [3], has the technical effect of high-alumina content and low-temperature eutectic properties to produce a 2-3 times improvement in flexural strength; [4], resulting in lightweight and raw materials 60 — 70% technical effect; [5], with excellent thermal expansion coefficient properties, can be a technical effect on fire-proof and explosion-proof functional glass; [6], technical effect with excellent wear characteristics.
- the high performance of the glass of the present invention can be realized only by the support of the anti-crystallization method of the cooling portion of the present invention.
- an anti-crystallization device for the cooling portion region of the glass process characterized in that: in the space above the glass surface of the cooling portion, on the inner side of the pool wall refractory brick 10 — There are 2 to 80 electric heating units and 2 to 80 measuring temperature units within a distance of 80 mm.
- An anti-crystallization device for a cooling portion region of a glass process characterized in that: in a space above the glass surface of the cooling portion, within a distance of 10 - 80 mm from the inner side of the pool wall refractory brick, 2 to 80 electric heating devices and temperature measuring devices, arranged around the inner side of the pool wall refractory bricks, It is stated that the distance between the heating means of the book is calculated from the geometric center point of the heating device, and the mutual center point distance is 0.3 m to 2 m.
- An anti-crystallization device for a cooling portion region of a glass process characterized in that: a lateral direction is set at a distance of 0.5 m in a longitudinal direction at a lateral exit of a spigot of a flow guiding tank device entering a tin kiln from a cooling portion There are 2-10 electric heating devices and 2-10 temperature measuring devices.
- An anti-crystallization device for a cooling portion of a glass process characterized in that: 2-10 molybdenum metal runner openings are installed at the bottom of the cooling portion.
- a process for preventing a crystallizing device in a cooling portion region of a glass process characterized in that
- the content of sodium oxide is 0.01-16%
- the content of alumina is 6-65%
- the content of silica is 1.8-5.88 times of calcium oxide content. It is a raw material having a calcium oxide content of 1.6 to 5.8 times, a content of calcium oxide of 0.8 to 2.2 times that of magnesium oxide, and after melting, a cooling portion is introduced;
- the heating device starts to heat; when the temperature measuring device measures that the temperature is higher than the crystallization temperature of the glass liquid by 100 , the heating device stops heating;
- a method for preventing a devitrification device for a cooling portion region of a glass process characterized in that: [1] a molten glass in the second half of the total direction of the molten glass in the cooling portion In the range, 6 to 40 electric heating devices installed, the technical solution system;
- the program specification of the process method is designed to: When the temperature measuring device measures the temperature lower than the crystallization temperature of the glass liquid 50 , heating The device starts heating, and when the temperature measuring device measures that the temperature is higher than the crystallization temperature of the glass liquid by 100 ° C, the heating device stops heating; the method for preventing the crystallizing device of the cooling portion region of the glass process of the present invention It is characterized by: [1] installing 6-40 electric heating
- a method for preventing a crystallizing device in a cooling portion region of a glass process characterized in that: [1] a depth of a molten glass in a cooling portion is in a range of 0.15 M to 0.9 M; In the plane area meter, 1 to 5 heating devices and 1 to 5 temperature measuring devices are installed in a range of 0.2 square meters per 0.2 square meter, which is installed in the range from the bottom of the glass liquid to the liquid surface in the cooling portion;
- the premise of the process control program design of the heating device of the process method When the liquid level line of the glass liquid rises and falls, the glass liquid level line also has different degrees of rise and fall changes, or the amount of glass liquid in the cooling part changes; Large failures, or failures in the forming section due to maintenance or operational errors, or failure of the forming section or replacement of the product, or changes in the molding process, changes in product thickness, or the molding process of the glass, or annealing When the process is faulty, or the cutting process is faulty, or the packaging process is faulty, or the process is unavoidable in 13 types of large production such as maintenance without glass liquid, the safety gate at the end of the cooling unit must be closed. ;
- a process for preventing a crystallizing device in a cooling portion region of a glass process characterized in that: the precondition of the process control program design of the heating device of the process method: when the glass liquid plane rises and falls, the glass liquid The plane line also exhibits varying degrees of rise and fall, or changes in the amount of glass in the cooling section; in particular, large failures, or maintenance or operational errors in the forming section, or failure of the forming section or replacement of the product, or molding process During the debugging of the change in the amount of the lead, the thickness of the product, etc., or the molding process of the glass, or the failure of the annealing process, or the failure of the cutting process, or the failure of the packaging process, or the maintenance of the glass When it is unavoidable in the 13 types of large-scale production, the safety gate at the end of the cooling unit must be closed;
- the process control program is designed to; when the temperature measured by the temperature measuring device is lower than the crystallization temperature of the glass liquid by 50 , the heating device starts to heat, in particular, the power of all the heating devices is increased, and the power of the heating device is set to all the heating devices.
- the power is higher than 3-15 times of normal large production; when the temperature measured by the temperature measuring device is higher than the crystallization temperature of the glass liquid by 100 , the heating device stops heating.
- Fig. 1 is a schematic view showing a plan surface of an anti-crystallization device and a devitrification preventing process for a cooling portion of a glass process according to the present invention: it is in a space having a gas above the liquid level of the molten glass.
- a heating device and a temperature measuring device with a mutual distance of 0.8m to lm are installed, which are all surrounded by the inner side of the refractory brick of the pool wall;
- FIG. 3 is a schematic view of a plan surface of an anti-crystallization device and an anti-crystallization device for a cooling portion of a glass process according to the present invention: in the range from the bottom to the liquid surface of the glass liquid, a pool is installed The inner side of the wall refractory brick forms a surrounding installation layout with an electric heating device and a temperature measuring device;
- FIG. 4 is a schematic view showing a plan surface of an anti-crystallization device and a devitrification preventing method for a cooling portion region of a glass process of the present invention: at the bottom of the molten glass in the latter half of the cooling portion to the liquid surface In the range, an electric heating device and a temperature measuring device are installed;
- FIG. 5 is a schematic cross-sectional view showing an anti-crystallization device and a devitrification preventing method for a cooling portion region of a glass process according to the present invention: in the range from the bottom of the molten glass to the liquid surface, by the inner side of the pool wall refractory brick , equipped with an electric heating device and a temperature measuring device;
- Figure 6 is a schematic diagram of the depth of the molten glass in the cooling portion is 0. 15M - 0. 9M; According to the plane area of the glass liquid in the cooling part, 1 to 5 heating devices and 1-5 temperature measuring devices are installed in a range of 0.2 square meters to 2 square meters, which is installed in the bottom of the glass liquid in the cooling portion to the liquid Within the scope of the face. 7 is a schematic view showing a production process flow of an anti-crystallization device and an anti-crystallization device for a cooling portion region of a glass process of the present invention.
- DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The three prior art are re-stated, and the present invention differs from the technical difficulties to be overcome in A; B.
- the technical solutions are different; (:, the achieved technical effects are different:
- the technical solution is also to install the heating device in a local position before and after the narrow device; however, it does not indicate that the depth of the molten glass in the cooling portion is 0.15M ⁇ 0.9M in the cooling portion ; every 0.2% of the plane area of the glass liquid in all the cooling parts 1 to 5 heating devices and 1 to 5 temperature measuring devices are installed in a range of 1 square meter per square meter, which is installed in the range of the bottom of the glass liquid in the cooling portion to the liquid surface; its normal large production has the invention 30 When the glass is glazed in a minute or two, the glass will be devitrified in the area, even if the heating area is not arranged in the area of 1 square meter.
- the object of the prior art is different from the anti-crystallization device and the anti-crystallization device of the cooling portion region of the glass process according to the present invention.
- the object of the invention is: to secure a space above the liquid level of the glass, The temperature of the molten glass adhered to the refractory bricks on the pool side of the cooling section is always higher than the crystallization temperature by 50 ° C or more, and has the technical effect of not crystallization at all;
- An anti-crystallization device and a devitrification process for a cooling portion of a glass process includes: in a space above the glass surface of the cooling portion, on the inner side of the pool wall refractory brick There are 2 to 40 temperature measuring devices and 2 to 60 heating devices in a distance range of 10 - 80 mm, and the distance between adjacent heating devices is 0.3 m to 2 m, and the heating device and the temperature measuring device are formed. a spaced apart layout; say
- the purpose of the prior art invention is different from the purpose of the invention.
- the object of the invention also includes: When there is an inevitable process state in the 13 types of large production, the safety gate of the tail of the cooling unit device must be closed to ensure cooling. From the bottom of the glass to all ranges on the liquid surface [including the space above the glass surface of the cooling section, within the distance of 10 - 80 mm from the inside of the pool refractory brick], the temperature is always high. At a crystallization temperature of 50 ° C or higher, the technical effect of no crystallization at all is achieved; the cooling portion can be produced on the inner side of the refractory brick of the pool wall and is much thicker than the normal steady state production.
- the glass liquid layer With the glass liquid layer, it will increase the power of all the heat devices by 3-5 times higher than the normal large production [including the space above the glass surface of the cooling part, and the inner side of the refractory bricks of the pool wall 10 - The power of the thermal device in the distance of 80mm], and the viscosity becomes lower, flowing into the glass liquid pool of the cooling part, all of which will not lose the dialysis crystal;
- the present invention is formed by intensive heating device layout in the process setting, and the heating device power is increased by 3-15 times than in normal production, especially after the heating device power is increased.
- [C] can overcome the safety shutters that have to close the tail of the cooling unit for 1-15 days due to the inevitable 10 production processes in large production: there will be no high temperature glass liquid of 1450-1540 ⁇ or more from the melting part.
- the basic protection of temperature brought by the entry; B. It can overcome the technical difficulty that the refractory of the cooling part will be quickly dissipated in a large amount according to the normal production design, so that the glass liquid can be quickly cooled; When all the crystals are solidified in the hour, the equipment in the cooling department will be completely destroyed, which will cause serious technical consequences of the production line being shut down;
- the purpose of the anti-crystallization device and the anti-crystallization device for the cooling portion of the glass process is to: reveal the above technical difficulties, invent a new technical solution, and overcome such a major difficult problem, Unexpected glass materials that make excellent features can form the technical effect of large flat glass production.
- the technical solution is to install the heating device at the corner of the outlet groove of the glass liquid of the glass refining furnace and the width direction; however, it is not indicated that the depth of the molten glass in the cooling portion is 0.15M ⁇ 0.9M ;
- the specification is based on the plane area of all the cooling glass liquids.
- One to five heating devices and one to five temperature measuring devices are installed in a range of 0.2 square meters per 0.2 square meter, which is installed in the bottom of the glass liquid in the cooling part.
- the heating device forming a dense mesh layout In the range of the surface; the characteristics of the heating device forming a dense mesh layout; the normal large production of the present invention has a feature of rapid crystallization for 30 minutes and 2 hours, the area, even 1 square meter There is no heating device in the area, where devitrification will occur;
- the object of the prior art is different from the anti-crystallization device and the anti-crystallization device of the cooling portion region of the glass process of the present invention.
- the object of the invention is: to secure a space above the liquid level of the glass, The temperature of the molten glass adhered to the refractory bricks on the pool side of the cooling section is always higher than the crystallization temperature by 50 ° C or more, and has the technical effect of not crystallization at all;
- a technical solution of the anti-crystallization device and the anti-crystallization device for the cooling portion region of the glass process comprises: in the space above the glass surface of the cooling portion, on the inner side of the pool wall refractory brick There are 2 to 40 temperature measuring devices and 2 to 60 heating devices in a distance range of 10 - 80 mm, and the distance between adjacent heating devices is 0.3 m to 2 m, and the heating device and the temperature measuring device are formed. a spaced apart layout;
- the object of the prior art which is different from the anti-crystallization device and the anti-crystallization device of the cooling portion region of the glass process of the present invention, and the object of the invention also includes: Inevitable in the occurrence of 13 types of large-scale production
- the safety gate at the end of the cooling unit must be closed to ensure that the cooling part is in all ranges from the bottom of the glass to the liquid surface [including the space above the glass level of the cooling unit, by the pool
- the inner side of the wall refractory brick is within the distance of 10 - 80mm]
- the temperature is always higher than the crystallization temperature
- the specification is more than 50 °C, and has the technical effect of no crystallization at all; the large amount of adhesive glass which can be produced by the cooling part on the inner side of the refractory brick of the pool wall is much more and thicker than the normal steady state production.
- the liquid layer will be 3-15 times higher than that of normal heating production due to the increase of the power of all the heat devices.
- the inner side of the pool refractory brick is 10-80mm. The power of the thermal device within the range], and the viscosity becomes lower, flowing into the glass liquid pool of the cooling portion, all of which will not lose the dialysis crystal;
- the depth of the molten glass in the cooling part is 0.15M-0.9M; according to the plane area of the glass liquid of all the cooling parts, 1 to 5 are installed in a range of 0.2 square meters per 0.2 square meter. a heating device and one to five temperature measuring devices, which are installed in the range from the bottom of the molten glass in the cooling portion to the liquid surface to form a dense mesh heating device;
- the present invention has a dense heating device layout due to the process setting, which increases the power of the heating device by 3-15 times than the normal production, resulting in a layout of all 0.2 square meters.
- the protection provided by the range of 2 square meters is always higher than the crystallization temperature of 50 ::
- [C] can overcome the safety shutters that must be closed for the tail of the cooling unit due to 10 production processes inevitably in large production. 1-15 days: there will be no continuous supply of 1450-1540 °C from the melting section or The basic protection of the temperature brought by the entry of the high-temperature glass liquid on the instruction sheet; B. It can overcome the technical difficulty that the refractory material of the cooling part will be rapidly dissipated in a large amount according to the normal production design, so that the rapid cooling of the glass liquid is difficult; All the glass liquid in the cooling part will be crystallized and solidified for several hours, which will completely destroy the equipment of the cooling unit, which will cause serious technical consequences of the production stoppage of the whole production line;
- the purpose of the anti-crystallization device and the anti-crystallization device for the cooling portion of the glass process is to: reveal the above technical difficulties, invent a new technical solution, and overcome such a major difficult problem, Unexpected glass materials that make excellent features can form the technical effect of large flat glass production.
- the inventor of the present invention has a 201310161605.4 glass production apparatus and a molding method.
- the purpose of the invention is to prevent the lower chromatographic crystals from being cooled in the working section.
- the cooling working device is characterized in that: the lower layer is installed with 2 to 100 electric heating devices and measuring temperature devices having a mutual distance of 0.2 m to 6 m (the seventh page indicates: the middle and lower layers are measured upward from the bottom) 40% or 40% to 80% depth of the glass area);
- the object of the invention is: to prevent the middle and lower chromatographic crystals in the cooling working part, and to prevent the crystal from being localized;
- the technical solution for installing the heating device is to install 2 to 100 electric heating devices and temperature measuring devices with a mutual distance of 0.2m to 6m in the middle and lower layers, local position; but it is not indicated that the cooling portion is cooling
- the depth of the glass liquid in the part is 0.15M-0.9M; according to the plane area of the glass liquid of all the cooling parts, 1 to 5 heating devices and 1 to 5 temperature measuring devices are installed every 0.2 square meters of 0.2 square meters. It is installed in the range of the bottom of the molten glass in the cooling part to the liquid level; its normal large production, the invention has the characteristics of granulation for 30 minutes and 2 hours, and the area, even 1 square meter There is no heating device in the area, where devitrification will occur;
- the object of the prior art is different from the anti-crystallization device and the anti-crystallization device of the cooling portion region of the glass process of the present invention.
- the object of the invention is: to secure a space above the liquid level of the glass, The temperature of the molten glass adhered to the refractory bricks on the pool side of the cooling portion is always higher than the crystallization temperature by 50'C or more, and has the technical effect of not crystallization at all;
- a technical solution of the anti-crystallization device and the anti-crystallization device for the cooling portion region of the glass process comprises: in the space above the glass surface of the cooling portion, on the inner side of the pool wall refractory brick There are 2 to 40 temperature measuring devices and 2 to 60 heating devices in the distance range of 10 - 80 MM, and the distance between adjacent heating devices is 0.3 M to 2 M, and the heating device and the temperature measuring device are formed. a spaced apart layout;
- the object of the prior art is different from the object of the invention according to the present invention, which also includes: when there is an unavoidable state of the art in the 13 types of production, the safety gate of the tail of the cooling unit must be closed to ensure the cooling portion from the glass. From the bottom of the liquid to all areas of the liquid surface [including the space above the glass surface of the cooling section, within the distance of 10 - 80 MM from the inside of the pool refractory brick], the temperature is always higher than the crystallization Temperature above 50 °C, with the technical effect of no crystallization at all; can make the cooling part produce a lot of much thicker and more adherent glass on the inner side of the pool refractory brick than in the normal stable state.
- the layer will increase the power of all the heating devices by 3-15 times than the normal large production [including the space above the glass surface of the cooling section, and the distance of the inner side of the pool refractory bricks is 10 - 80MM. Within the range of the thermal device power], and the viscosity becomes lower, flowing into the glass liquid pool of the cooling portion, all of which will not lose the dialysis crystal;
- the heating device is densely disposed within a distance of 10 - 80 MM on the inner side of the pool wall refractory brick. 2 to 40 temperature measuring devices and 2 to 60 heating devices of 0.3M to 2M distance of the book set, the heating device and the temperature measuring device forming a circumferential arrangement with a small interval from each other;
- the depth of the molten glass in the cooling portion is 0.15 M_0.9 M; Calculating the plane area of the liquid, installing 1 to 5 heating devices and 1 to 5 temperature measuring devices per 0.2 square meter and 2 square meters, which are installed in the range from the bottom of the glass liquid to the liquid surface in the cooling portion, forming The characteristics of the dense mesh heating device; to overcome the technical difficulties of crystallization and devitrification immediately after the crystallization temperature is less than 30 minutes and 2 hours;
- the invention will overcome the technical difficulties of the glass material in the region where the prior art has no layout heating device in the normal large production, and the technical difficulty of devitrification immediately after the crystallization temperature reaches 30 minutes and 2 hours; the provided is always higher than The protection of the crystallization temperature of 50 ⁇ can make all the glass liquid in the cooling part not lose the dialysis crystal; the invention will produce larger than normal under the specific process conditions due to the formation of a dense heating device in the process setting.
- the heating device is increased by 3-15 times, the resulting layout is guaranteed to be higher than the crystallization temperature of 50 °C in all ranges of 0.2 square meters per 0.2 square meters:
- the invention can overcome the safety rams which have to close the tail of the cooling unit device for 1-15 days due to the inevitable 10 production processes in large production: there will be no high temperature molten glass of 1450-1540 ⁇ or more from the melting part. Entering the basic guarantee of temperature; B. It can overcome the technical difficulty that the refractory of the cooling part will be quickly dissipated in a large amount according to the normal production design, so that the glass liquid can be quickly cooled. When all the crystals are solidified in the hour, the equipment in the cooling department will be completely destroyed, which will cause serious technical consequences of the production line being shut down;
- the invention improves the temperature of the corresponding heating device by the innovative device and the innovative process program design in the prepared cooling portion, so as to ensure that all the molten liquid in the cooling portion does not lose the dialysis crystal, and the above technical difficulties can be solved.
- the invention will be developed under the specific process conditions, because of the dense heating device layout formed in the process setting, the heating device power is increased by 3-15 times than the normal production, and the layout is generated at all every 0.2 square meters.
- the square meter range provides a guarantee that is always higher than the crystallization temperature of 50 ° C:
- the invention can overcome the 1-15 days when the safety shutter of the cooling unit device must be closed due to 10 production processes unavoidable in large production: there will be no high temperature glass of 1450-1540 ° C or higher from the melting part.
- the invention improves the temperature of the corresponding heating device by the innovative device and the innovative process program design in the prepared cooling portion, so as to ensure that all the molten liquid in the cooling portion does not lose the dialysis crystal, and the above technical difficulties can be solved. .
- the purpose of the anti-crystallization device and the anti-crystallization device for the cooling portion of the glass process is to: reveal the above technical difficulties, invent a new technical solution, and overcome such a major difficult problem, Unexpected glass materials that make excellent features can form the technical effect of large flat glass production.
- Prior art 1, 2, 3, 4, 5, 6, 7, 8 None of the disclosed invention discloses an anti-crystallization device and a devitrification preventing method for a cooling portion region of a glass process of the present invention It is especially suitable for the production of such glass materials with two-sided characteristics:
- the glass of this specific composition has sharp crystallization peaks in the DSC curve at the strong crystallization temperature range, and the conversion time of the glass from liquid to crystallization is short and fast.
- the technical difficulty of the glass material being lower than the crystallization temperature for 30 minutes to 2 hours will immediately devitrify the crystal] but excellent glass materials with many excellent characteristics;
- the distance between adjacent heating devices is 0.3m to 2m, and the heating device and the temperature measuring device form a circumferential arrangement spaced apart from each other; the space above the liquid level can be secured, and the wall is located at the cooling portion
- the temperature of the glass liquid adhering to the refractory brick is always higher than the crystallization temperature of 50 ° C or more, and has the technical effect of not crystallization at all;
- the present invention is a cold for glass process
- the anti-crystallization device and the anti-crystallization process method of the region, the object of the invention also includes: when there is an unavoidable process state in the 13-class large production, when the safety gate of the tail of the cooling device device must be closed, Ensure that the cooling part is in the range from the bottom of the glass liquid to all the liquid surface [including the space above the glass surface of the cooling part, within the distance of 10 to 80 mm inside the pool wall refractory brick] It is always higher than the crystallization temperature above 5CTC, and has the technical effect of no crystallization at all; it can make the cooling part produce a lot of much thicker and much thicker than the normal stable state produced by the inner side of the pool wall refractory brick.
- the glass liquid layer With the glass liquid layer, it will increase the power of all the heat devices by 3-5 times higher than the normal large production [including the space above the glass surface of the cooling part, and the inner side of the refractory bricks of the pool wall 10 - The power of the thermal device in the distance of 80mm], and the viscosity becomes lower, flowing into the glass liquid pool of the cooling part, all of which will not lose the dialysis crystal;
- the present invention relates to an anti-crystallization device and a devitrification process for a cooling portion of a glass process, and the technical solution of the claims includes: the latter half of the total volume of the molten glass in the cooling portion: 40-60% In the glass liquid of the part, two to 40 temperature measuring devices and two to 60 heating devices are installed; in the glass liquid of the latter half of the total volume of the glass liquid in the cooling portion, The temperature is always higher than the crystallization temperature of 5 CTC or more, and has the technical effect of not crystallization at all;
- the invention relates to an anti-crystallization device and a devitrification prevention method for a cooling portion region of a glass process
- the technical solution of the claim includes: installing two in a range of 1/2 depth from the bottom of the molten glass Up to 40 temperature measuring devices and 2 to 60 heating devices; the distance between adjacent heating devices is 0.3m to 2m, and the heating device and the temperature measuring device are located around the inner side of the pool wall refractory bricks, forming a Surrounded bottom mounting layout;
- the glass liquid in the range of 1/2 depth from the bottom of the glass liquid can increase the power of the heating device due to the heating device from the bottom 1/2 depth, and the process control program at this time is designed to be the power of the heating device.
- the power of all heating devices is set to be 3-15 times higher than that of normal large production, forming a relative flow of molten glass in each direction of the pair of electrodes; in particular, a glass liquid having a depth of 1/2 from the bottom can be formed.
- a surrounding bottom-mounted layout is formed near the inner side of the refractory bricks of the pool wall. After the power is increased, the heat flow conduction from the bottom to the top is generated by the dense 2 to 60 heating device points.
- the glass liquid around the inner side of the pool wall refractory brick of the cooling part is always higher than the crystallization temperature by 50 ° C or more, achieving the technical effect of no crystallizing at all;
- the invention relates to an anti-crystallization device and a devitrification prevention method for a cooling portion region of a glass process, and the technical solution of the invention includes the depth of the molten glass in the cooling portion is 0.15M ⁇ 0.9M ; Calculating the plane area of all the cooling glass liquids, installing 1 to 5 heating devices and 1 to 5 temperature measuring devices per 0.2 square meter and 2 square meters, which are installed in the bottom of the glass liquid in the cooling part to the liquid surface. Within the range; features forming a densely meshed heating device;
- the liquid level line also changes with different degrees of rise and fall, or when the amount of glass in the cooling part changes; especially a large fault occurs, or maintenance or operation occurs on the forming section.
- Failure, or failure of the molding part to replace the product, or change in the molding process, change in the amount of the product, change the thickness of the product, etc., or the molding process of the glass may cause a failure, or the annealing process may fail, or the cutting process may fail, or
- the safety gate of the tail of the cooling unit must be closed, and the process control program is designed as
- the temperature measured by the temperature device is lower than the crystallization temperature of the glass liquid by 50 ° C
- the heating device starts to heat, especially the power of the heating device; when the temperature measured by the temperature measuring device is higher than the crystallization temperature of the glass liquid by 100 , the heating is performed.
- the depth of the molten glass in the cooling part is 0.15M-0.9M; according to the plane area of the glass liquid of the cooling part, in the range of the bottom of the glass liquid to the liquid surface in the cooling part, one square meter per 0.2 square meter A range of 1 to 5 heating devices and 1 to 5 temperature measuring devices are installed to form a feature of dense heating devices; and the process control program at this time is designed such that the power of the heating device is set to be higher than normal for all heating devices. 3-15 times of production, especially after increasing the power of the heating device, the thermal flow conduction of the molten glass in the opposite direction between each pair of electrodes is formed to ensure the cooling portion from the bottom of the molten liquid to the liquid surface. In all ranges, the temperature is always higher than the crystallization temperature of 50 ° C or more, with the technical effect of no crystallization at all;
- the invention relates to an anti-crystallization device and a de-crystallizing process method for a cooling portion region of a glass process, and the device structure, function and position thereof in the innovative technical solution of the claims, in the following large production
- the technical problems that occur in the inevitable process state, the prior art 1, 2, 3, 4, 5, 6, 7, 8 technical solutions are not solved; the technical effects produced by the innovative technical solutions of the present invention claims, It is impossible to be replaced by the above prior art.
- the electrode of a certain partial area of the cooling portion is a heating device, and the purpose is also to produce crystallization when a certain partial area of the anti-burst cooling portion is cooled too quickly during normal production; and for cost reasons, all of the low power is selected.
- the third reason is that the function of the upper and lower and four sides of the fire-resistant material in the design of all the cooling sections in the normal continuous large-scale production is designed for a large number of heat-dissipating conditions;
- the fourth is because after the safety shutter at the end of the cooling unit is turned off, there is no basic high-temperature glass liquid supplied from the molten glass of 1450-1540 ⁇ or more from the melting part, and no glass liquid is faster. Process conditions for flowing to the forming portion at the cooling portion;
- the crystallization peak in the DSC curve is sharp, and the glass is from the liquid state.
- the depth of the molten glass in the cooling portion is 0.15M-0.9M, and the area of the glass liquid of the cooling portion is calculated, and the range of one square meter per 0.2 square meter is installed.
- a five heating device and one to five temperature measuring devices, a heating device and a temperature measuring device are installed in the range of the bottom of the molten glass in the cooling portion to the liquid surface; forming a dense heating device; and the process control program at this time
- the power of the heating device is designed such that the power of all heating devices is 3-15 times higher than that of normal large production; secondly, and the process control program at this time is designed such that the power of the heating device is set to be higher than that of all heating devices.
- the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without departing from the inventive scope are the scope of the present invention.
- the sulphate content is 1. 8 - 5. 58.
- the content of the content of the oxidized calcium is 1. 8 - 5. 58
- the singularity of the raw material is 0. 8 to 2.
- INSTRUCTION STEP 2 Pour the thoroughly mixed raw material into a deuteration device, melt it to form a glass liquid of a predetermined viscosity, and then pass through the glass liquid into the cooling unit to cool and clarify.
- FIG. 1 is a schematic diagram of an anti-crystallization device and an anti-crystallization device for a cooling portion region of a glass process according to the present invention, a schematic diagram of a heating device and a temperature measuring device used in the cooling portion:
- a heating device and a temperature measuring device used in the cooling portion In the range of 20 Cm of the pool wall refractory brick in the space above the liquid surface of the glass liquid, 14 heating devices and 14 temperature measuring devices with a mutual distance of 0.8 m to lm are installed.
- 41 denotes an electric heating device
- 42 denotes a temperature measuring device
- 43 denotes a pool wall refractory brick
- 44 denotes a liquid surface of the glass liquid;
- the heating device and the temperature measuring device in the spatial range are all in the circumferential position within a distance of 20 cm from the inner side of the pool wall refractory brick; 41 represents an electric heating device, and 42 represents a measuring temperature.
- 43 indicates a pool wall refractory brick, 44 indicates a liquid level of the glass liquid, and 45 indicates a glass liquid; and FIG.
- FIG. 3 is a heating method used when the flat glass is produced by the cooling portion anti-crystallization method in the glass technology of the present invention.
- Schematic diagram of the device and the measuring surface of the temperature device In the range from the bottom of the cooling liquid to the liquid surface, the inner side of the pool refractory brick is installed, forming a surrounding installation layout, and 18 mutual installations are installed.
- FIG. 4 is a schematic diagram of an anti-crystallization device and a devitrification preventing method for a cooling portion region of a glass process according to the present invention, and a schematic diagram of a heating device and a measuring surface of the temperature measuring device: 1/2 of the cooling portion In the range of the bottom half of the glass liquid to the liquid surface, 26 electric heating devices and 22 temperature measuring devices are installed;
- Figure 5 is a cross-sectional view of a temperature-reducing device and a temperature-measuring device used in a cooling portion of a glass process according to the present invention, and a cross-sectional view of a temperature-increasing device and a temperature measuring device:
- the electric heating device and the measuring temperature device are installed at a mutual center point distance of lm;
- 41 is an electric heating device,
- 42 is a temperature measuring device
- 43 is a pool wall refractory brick
- 44 is The liquid surface of the description glass liquid
- 45 denotes a glass liquid;
- FIG. 6 is an anti-crystallization device and an anti-crystallization device method for the cooling portion region of the glass process of the present invention, the heating device and the temperature measuring device used
- the depth of the molten glass in the cooling section is 0. 9M; according to the plane area of the cooling liquid glass, two heating devices and one temperature measuring device are installed in the range of 1 square meter, which is installed in cooling In the range from the bottom of the glass liquid to the liquid surface, there are 96 electric heating devices and 48 temperature measuring devices with a distance of lm from each other at the center point; 41 means electric heating device, 42 means temperature measuring device, 43 means pool Wall refractory bricks, 44 represents the liquid surface of the glass liquid, 45 represents the glass liquid;
- FIG. 7 is a schematic diagram of the production process flow of the anti-crystallization device and the anti-crystallization device method for the cooling portion region of the glass process of the present invention
- 1 denotes a container containing mixed glass raw materials
- 1 denotes a glass melting device
- 3 denotes a glass liquid guiding groove
- 4 denotes a cooling portion
- 5 denotes a tin kiln
- 6 denotes a transition roller table
- 7 denotes annealing
- 8 denotes a cutting dispensing station; means from one of these portions 8 are attached to a float 11 on the base line.
- Step 4 The molten glass enters the tin kiln unit 5 from the cooling unit 4, is flattened, polished, and thinned to form a glass ribbon.
- Step 5 The glass ribbon is pulled by the puller and pulled by the tractor, the tin kiln 5 is pulled out, and passed through the transition roller table 6, and annealed in the annealing kiln 7, and the annealed glass ribbon enters the cutting point.
- the floating plate glass can be obtained by mounting the table 8, slitting and packaging.
- an anti-crystallization device and a process method for a cooling portion of a glass process of the present invention are exemplified by five glass plates of different composition materials; all of which are crystallized in a DSC curve at a strong crystallization temperature range.
- the glass material with sharp peaks and short glass transition from liquid to crystal devitrification has a short conversion time and fast speed:
- the viscosity of the examples of the present invention was measured using a US THTA rotary high temperature viscometer.
- the oxidized magnesium content is 12. 2, the calcium oxide content is 20. 3%, the magnesium oxide content is 12. 2, the magnesium oxide content is 12. 2, the magnesium oxide content is 12. 2, the magnesium oxide content is 12. 2 %;
- the content of the content of the calcium oxide is 1.7 times, the content of the calcium oxide is 1.66 times; the raw materials are mixed and stirred, and placed in the silo 1.
- the sufficiently mixed raw material 1 is poured into the melting device 2 to form a molten glass having a predetermined viscosity. Then, it enters the cooling unit device 4 through the glass liquid guiding groove 3 to be cooled and clarified.
- Step 3 [1] In the space above the glass surface of the cooling section, there are 50 electric heating devices and 30 corresponding to the position of the electric heating device within the distance of 10 to 80 mm inside the pool wall refractory brick.
- the temperature measuring device is used;
- the process control program for designing additional current intensity must be designed as follows: [3] measured by the measuring device corresponding to the position of the electric heating device, and the temperature is lower than the glass crystallization temperature of 50 °C.
- the condition of the actual heating device is such that the electric heating device position range and the corresponding measuring temperature device are arranged in the space above the glass surface of the cooling portion within a distance of 10 - 80 mm from the inner side of the pool wall refractory brick.
- the temperature of the glass liquid adhering to the refractory bricks of the range is higher than the crystallization temperature of 50-80 °C. [3] measured by the temperature measuring device corresponding to the position of the electric heating device, higher than the glass crystallization temperature 10 (TC temperature is the condition for turning off the actual heating device, so that in the space above the glass surface of the cooling portion,
- TC temperature is the condition for turning off the actual heating device, so that in the space above the glass surface of the cooling portion.
- the temperature of the glass liquid adhered to the refractory bricks of the pool wall by the inner wall of the pool wall refractory brick within the range of 10 - 80mra, the temperature range of the electric heating device and the corresponding temperature measuring device range can not be higher than the crystallization Temperature 100 °C.
- the flat glass material 1 has an alumina content of 25% and contains 4% of sodium oxide; in actual melting, 10 1 ⁇ 5 (Pa ⁇ s) has a viscosity temperature of 1470 ° C, which is 110 ° C lower than that of the conventional soda lime glass 158 CTC.
- Step 4 The molten glass enters the tin kiln unit 5 from the cooling unit 4, is flattened, polished, and thinned to form a glass ribbon.
- Step 5 The glass ribbon is pulled by the puller and pulled by the tractor, the tin kiln 5 is pulled out, and passed through the transition roller table 6, and annealed in the annealing kiln 7, and the annealed glass ribbon enters the cutting point.
- the floating plate glass can be obtained by mounting the table 8, slitting and packaging.
- the flexural strength is up to 150 Mpa ;
- the thickness difference of the glass is less than 0. 4mm; 01% ⁇ ;
- the water absorption rate is in the range of 0.1%;
- the expansion ratio is 52 at 20-100 ;
- the expansion rate is only 2 to 3 parts per million.
- Step 2 Pour the thoroughly mixed raw material 1 into the melting device 2 to form a molten glass having a predetermined viscosity. Then, it enters the cooling unit device 4 through the glass liquid guiding groove 3 to be cooled and clarified.
- Step 3 In the range of the glass in the second half of the 1/2 second of the total volume of the glass in the cooling section, [1] install 40 electric heating devices and temperature measuring devices; ] The process control program that must be designed to increase the current intensity is: [3] measured by the temperature measuring device corresponding to the position of the electric heating device, and the temperature lower than the glass crystallization temperature of 50 °C is the condition for opening the actual heating device.
- the temperature of the molten glass in the range of 1/2 second half of the total volume of the molten glass in the cooling portion is higher than the crystallization temperature of 50-80 ° C. [3] measured by the temperature measuring device corresponding to the position of the electric heating device, higher than the glass crystallization temperature ⁇ temperature is the condition for closing the actual heating device, so that the total volume of the glass liquid in the cooling portion is 40-60%.
- the temperature of the molten glass in the range of the glass liquid in the second half of /2 cannot be higher than the crystallization temperature of 100 °C.
- the content of sodium oxide is 6.1%, the content of alumina is 16%; the actual melting time is 10 1 ⁇ 5 (Pa ⁇ s), the viscosity temperature is 1440 ⁇ , which is lower than the conventional soda lime glass 1580 ⁇ . 140 °C; 10 2 (Pa ⁇ s) viscosity temperature of this example is 1340 ° C, which is about 90 ° C lower than the conventional soda lime glass bubble 10 2 (Pa ⁇ s) viscosity temperature 143 CTC;
- Example Flat Glass Article Material Example Flat glass article 2, crystallization temperature range 1140-825 °C, strong crystallization temperature range 1130-882 °C, glass crystallization temperature 114CTC, only lower than glass forming temperature 5 °C.
- Step 4 The molten glass enters the tin kiln unit 5 from the cooling unit 4, is flattened, polished, and thinned to form a glass ribbon.
- Step 5 The glass ribbon is pulled by the puller and pulled by the tractor, the tin kiln 5 is pulled out, and passed through the transition roller table 6, and annealed in the annealing kiln 7, and the annealed glass ribbon enters the cutting point.
- Mount 8 to divide The float glass can be produced by cutting and packaging the book.
- the thickness difference of the glass is less than 0. 1 ⁇ 2m;
- the water absorption rate is in the range of 0.1%
- the expansion ratio is 52 at 20-100 ;
- the expansion rate is only 2 to 3 parts per million.
- Example 3 Step 1: Mixing raw materials of sodium oxide, aluminum oxide, silicon oxide, magnesium oxide and calcium oxide into a silo 1, wherein the content of sodium oxide is 3% by weight, and the content of alumina is 2 ⁇ , The content of the calcium oxide is 3. 2 times, the content of the calcium oxide is 3.2 times the content of the calcium oxide, and the content of the calcium oxide is 3. 2 times, the content of the calcium oxide is ⁇ Magnesium oxide content of 1. 43 times.
- Step 2 Pour the sufficiently mixed raw material 1 into the melting device 2 to form a molten glass of a predetermined viscosity. Then, it enters the cooling unit 4 through the glass flow guiding groove 3 to be cooled and clarified.
- the liquid level line also changes with different degrees of rise and fall, or when the amount of glass in the cooling part changes; especially, a large fault occurs, or the forming section Failure to maintain or operate, or failure of the molding department or replacement of the product, or change in the molding process, change in product thickness, change in product thickness, or failure in the molding process of the glass, or failure in the annealing process, or the cutting process
- the safety gate at the end of the cooling unit must be closed.
- the process control program is designed to When the temperature measured by the temperature measuring device is lower than the crystallization temperature of the glass liquid by 50 , the heating device starts to heat, especially the power of the heating device, and the power of the heating device is set to be higher than that of the normal large production. 5 times; when the temperature measured by the temperature measuring device is higher than the crystallization temperature of the glass by 100'C, the heating device stops heating As the 50 plus intensive
- the thermal device of the specification, and the process control program at this time is designed to increase the power of the heating device, especially after the power of the heating device is increased, the thermal flow conduction of the molten glass in the upward direction of each electrode is formed to ensure the cooling portion from the molten glass.
- the temperature from the bottom to the liquid surface is always higher than the crystallization temperature of 50 ⁇ or more, and has the technical effect of not crystallization at all;
- the temperature of the molten glass in the range of the bottom portion of the lower half of the glass portion of the cooling portion should not be higher than the crystallization temperature of 100 °C.
- the alumina content is 29%, containing 3% of sodium oxide; the actual melting time is 10 1 ⁇ 5 (Pa ⁇ s) viscosity temperature 1530 ° C, 50 ° C lower than the conventional soda lime glass 158 CTC ;
- the viscosity of 10 2 (Pa ⁇ s) is 1400 ° C, which is about 30 ° C lower than that of the conventional soda lime glass when the bubble is 10 2 (Pa ⁇ s).
- the crystallization temperature range of the product material is 1220-840 V, the strong crystallization temperature range is 1190-955 °C, and the glass crystallization temperature is 1220 °C, which is higher than the glass forming temperature of 100 °C.
- Step 4 The molten glass enters the tin kiln unit 5 from the cooling unit 4, is flattened, polished, and thinned to form a glass ribbon.
- Step 5 The glass ribbon is pulled by the puller and pulled by the tractor, the tin kiln 5 is pulled out, and passed through the transition roller table 6, and annealed in the annealing kiln 7, and the annealed glass ribbon enters the cutting point.
- the table 8 is subjected to slitting and packaging to obtain the anti-crystallization device and the process method for the cooling portion region of the glass process, and the flat glass produced is:
- the flexural strength is 186Mpa
- the thickness difference of the glass is less than 0. 4mm;
- the water absorption rate is in the range of 0.1%
- the expansion ratio is 54 at 20-100'C
- the expansion rate is only 2 to 3 parts per million.
- Step 1 mixing and stirring the raw materials of sodium oxide, aluminum oxide, silicon oxide, magnesium oxide and calcium oxide into the silo 1, wherein, according to the weight percentage, the content of sodium oxide is 2%, and the content of alumina is 25%.
- the content of the content of the calcium oxide is 3. 2 times, the content of the calcium oxide is 3.2 times the content of the calcium oxide, and the content of the calcium oxide is 1. 8 times.
- Step 2 Pour the thoroughly mixed raw material 1 into the deuteration device 2 to form a glass liquid having a predetermined viscosity.
- the instructions are then passed through the glass flow guiding channel 3 into the cooling unit 4 for cooling and clarification.
- Step 3 In the range from the bottom of the molten glass to the liquid surface in the cooling portion, the depth of the molten glass in the cooling portion is 0.9 M; according to the plane area of the molten glass, the bottom of the molten glass in the cooling portion is In all ranges of the liquid level, 3 heating devices and 3 temperature measuring devices are installed in every 2 square meters, and a total of 90 electric heating devices and temperature measuring devices are installed; [2] When the glass liquid plane rises and falls When the liquid level line is also changed to different degrees of rise and fall, or when the amount of molten glass in the cooling part changes; in particular, a large failure occurs, or a maintenance or operation error occurs in the forming section, or the molding part fails or the product is replaced.
- the program is designed to: when the temperature measuring device measures the temperature lower than the crystallization temperature of the glass liquid by 50 , the heating device starts to heat, and the process control program at this time is designed to increase the heating device power to be set, due to 90 dense heating
- the power of the heating device should be set to be 4 times higher than that of all normal heating devices; especially when the power of the heating device is increased, the relative flow of molten glass between each pair of electrodes is formed to ensure the thermal flow conduction of the molten glass.
- the temperature of the cooling part from the bottom of the glass liquid to the liquid surface is always higher than the crystallization temperature of 50 ⁇ or more, and has the technical effect of no crystallization at all; when the temperature measurement device measures the temperature higher than the crystallization of the glass liquid When the temperature is 100 Torr, the heating device stops heating, so that the temperature of the molten glass in the molten glass in the range from the bottom of the molten glass to the liquid surface in the cooling portion cannot be higher than the crystallization temperature ioo °c.
- Example flat glass article 4 the alumina content of this example is 25%, containing 2% of sodium oxide; the actual melting time is 10 1 ⁇ 5 (Pa, seconds)
- the viscosity temperature is 1460 ° C, which is 120 ° lower than the conventional soda lime glass 1580 ° C C ; in this example, when the bubble is discharged, the viscosity of 10 2 (Pa ⁇ s) is 1360 ° C, which is about 70 ⁇ lower than the viscosity of the conventional soda lime glass when the bubble is 10 2 (Pa ⁇ s) is 1430 ° C;
- the glass product has a crystallization temperature range of 1190 to 825 ° C, a strong crystallization temperature range of 1160 to 835 ° C, and a glass crystallization temperature of 1190 ° C, which is higher than the glass forming temperature of 70 ° C.
- Step 4 The molten glass enters the tin kiln unit 5 from the cooling unit 4, is flattened, polished, and thinned to form a glass ribbon.
- Step 5 The glass ribbon is pulled by the puller of the edger and pulled by the tractor, and the tin kiln 5 is pulled out and lowered. After passing through the transition roll table 6, and annealing in the annealing kiln 7, the annealed glass ribbon enters the cutting and dispensing station 8, and is slit and packaged to obtain the flat glass produced by the anti-crystallization method of the cooling portion.
- the flat plate glass produced has the following parameters:
- the flexural strength is 153Mpa
- the thickness difference of the glass is less than 0. 4mm;
- the water absorption rate is in the range of 0.1%
- the expansion ratio is 54 at 20-100 ° C;
- the expansion rate is only a million months, and the expansion ratio of 2-3 is changed.
- Step 1 mixing raw materials of sodium oxide, aluminum oxide, silicon oxide, magnesium oxide and calcium oxide into a silo 1, wherein, in terms of weight percentage, the content of sodium oxide is 2%, and the content of alumina is 21%.
- the content of the content of the calcium oxide is 15.2 times, the content of the silicon oxide is 3.2 times the content of the calcium oxide, and the content of the calcium oxide is the content of the magnesium oxide. 43 times.
- Step 2 Pour the thoroughly mixed raw material 1 into the melting device 2 to form a molten glass having a predetermined viscosity. Then, it enters the cooling unit device 4 through the glass liquid guiding groove 3 to be cooled and clarified.
- Step 3 Step 3: In the range of the cooling part from the bottom of the glass liquid to the liquid surface, [1] the depth of the glass liquid in the cooling part is 0.9M; according to the plane area of the cooling liquid glass, in the cooling part In the range from the bottom of the glass liquid to the liquid level, two heating devices and one temperature measuring device are installed in a range of 1 square meter, and there are 100 dense heating devices; [2] when the liquid level line rises and When the change is decreased, the liquid level line also has different degrees of rise and fall changes, or the amount of glass in the cooling part changes; in particular, a large failure occurs, or a maintenance or operation error occurs in the forming section, or the molding part is broken or When the product is replaced, or the molding process changes the amount of the lead, changes the thickness of
- Example glass 5 the alumina content of this example is 21%, containing 2% of sodium oxide; 10 1 5 when actually melting (Pascal * sec) viscosity temperature 1500 ° C, 80 ⁇ lower than the traditional soda lime glass 1580 ° C; this example when the bubble is 10 2 (Pa sec) viscosity temperature 1380 ° C, than the traditional soda lime glass bubble
- 10 2 (Pa ⁇ s) viscosity temperature 1430 ⁇ is lower than 50 ° C; but this example flat glass products material crystallization range 1185-830 ° C, strong crystallization range 1140- 902 ° C, its glass crystallization temperature 1185 ° C, higher than the glass forming temperature of 70 ° C.
- Step 4 The molten glass enters the tin kiln unit 5 from the cooling unit 4, is leveled, polished, and thinned to form a glass ribbon.
- Step 5 The glass ribbon is pulled by the puller and pulled by the tractor, the tin kiln 5 is pulled out, and passed through the transition roller table 6, and annealed in the annealing kiln 7, and the annealed glass ribbon enters the cutting point.
- the float glass is prepared by loading the table 8, slitting and packaging.
- the flexural strength is 141mpa
- the thickness difference of the glass is less than 0. 4mm;
- the water absorption rate is in the range of 0.1%
- the expansion ratio is 54 at 20-100 ° C;
- the expansion rate is only 2 to 3 parts per million.
- a high alumina content flat glass product produced by the anti-crystallization device and the process method for the cooling portion of the glass process, after chemical tempering: soda lime glass, the chemical tempering ion exchange depth can be up to 30-40 microns
- the existing aluminum touch screen panel glass has a chemical tempering ion exchange depth of 150 to 200 micrometers; the chemical tempering ion exchange depth of the invention can be 250-350 micrometers, so the invention adopts the glass technology to produce the cooling part anti-crystallization method
- the flat glass, the tensile strength and wear resistance properties of the chemically tempered ion exchange layer will increase greatly.
- the anti-crystallization device for the cooling portion region of the glass process and the flat glass produced by the anti-crystallization method are innovative and never been publicly disclosed.
- the glass produced by the invention has the characteristics of low melting viscosity temperature, low bubble viscosity temperature, low molding viscosity temperature, thereby producing energy-saving technical effects, product quality advantages such as less bubbles, less non-melting defects, and high
- the alumina content has the characteristics of high flexural strength of low temperature eutectic, excellent thermal expansion coefficient, excellent technical performance and excellent wear characteristics.
- the present invention is an innovative technique that has never been disclosed and disclosed; its object is to:
- ultra-thin electronic TFT glass products high scratch-resistant wear-resistant touch screen electronic glass products
- float glass flat glass products grid glass products
- overflow down glass flat glass Products calendered flat glass products
- glass fiber products drawn glass products, pressed glass products, blown glass products, glass packaging products.
- the glass material has: a high bending strength characteristic of high alumina content and low temperature eutectic, low melting viscosity temperature, low bubble viscosity temperature, low molding viscosity temperature characteristic, thereby It produces energy-saving technical effects, product quality advantages such as less air bubbles, less non-melting defects, excellent technical properties of excellent thermal expansion coefficient, and excellent technical effects with excellent wear resistance characteristics;
- the glass material has the characteristics that the crystallization temperature is higher than the glass forming temperature of 60 - 10 CTC; [2] there is also the crystallization peak in the DSC curve of the glass in the strong crystallization temperature range. Sharp, the glass from the liquid to the devitrification devitrification conversion time is short and fast, its crystallization temperature range of 30 minutes - 2 hours, the glass will be converted from liquid to crystallization devitrification;
- the temperature of the glass liquid adhered to the refractory bricks on the pool side of the cooling section is always higher than the crystallization temperature of 50 ° C or more, with complete non-crystallization technology Effect
- the temperature of the glass liquid is always higher than the crystallization temperature of 50 ⁇ or more, with the technical effect of no crystallization at all, to overcome this kind of strong crystallization temperature range
- the glass has a technical effect of one side of the defect of the glass material from the liquid to the devitrification conversion time and the fast speed.
- the technical solution of the anti-crystallization device and the process method for the cooling portion of the glass process of the present invention cannot be overcome in large production.
- the side of the fast glass material defect cannot make the technical effect of the coating advantage of the glass material of such glass material a reality. Therefore, the obvious technical effect of the anti-crystallization of the invention by the inventive solution of the present invention can make the above-mentioned advantages of the coverage of such new functional glass materials into the reality of large-scale production of products, and has obvious technical effects.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Glass Compositions (AREA)
- Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
Abstract
一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工艺方法。该装置设置在熔化装置与成型工艺装置之间,其包括:在冷却部的玻璃液面之上的空间中,在靠池壁耐火砖的内侧10-80mm的距离范围内,安装有2个至80个相互距离为0.3m至2m的电加热装置和2个至80个测定温度装置。上述点加热装置和测定温度装置形成了一个互相中心点距离为0.3m至2m的环绕安装布局,环绕在靠池壁耐火砖的内侧的四周。
Description
一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工艺方法 技术领域 本发明所述的一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工艺 方法, 冷却部装置位置在溶化装置与成型工艺装置之间。
说
背景技术
明 1
首先要说明本发明所指的冷却部的概书念: 除了平板玻璃生产线有冷却部明 确概念外, 本发明所指冷却部, 包括了在玻璃纤维工艺生产线、 玻璃拉管工艺 生产线、 玻璃压制工艺生产线、 玻璃吹制工艺生产线等, 其溶化装置中的高温 玻璃液, 进入成型工艺前, 都有降温 100— 350°C度的降温装置, 不管其因为生 产线为 1000吨或 2— 8吨, 会体积大小差别多大,; 不管其习惯名称为冷却部或 工作部;本发明所指的冷却部有 2个主要特征: 其一是, 其位置在溶化装置与成 型工艺装置之间;其二是,在装载玻璃液的液面之上, 存在着有气体的空间范围。 根据玻璃工艺学原理, 尤真玻璃的成型粘度温度和析晶粘度温度的性质, 决定了其现有玻璃技术的冷却部的工艺, 决定了在玻璃的冷却部技术装置方案 和防析晶工艺方法;
1、 在现有技术中, 存在一些玻璃生产线工艺装置的缺陷和成型工艺制度的 缺陷和技术偏见, 造成了一些技术难题, 如, 现有技术认为: 玻璃的析晶温度 高于传统 103帕 *秒时成型温度, 由于易产生玻璃失透, 不易在生产线上生产。
2、 先有技术 CN101357819A, 是一种贵金属料道加热装置, 在冷却区设间 接的外部缠绕加热板或丝, 其是为了再升温加热, 从而再澄清, 其实大多数这 种装置是为了升高温度来再次排出气泡, 而不是真正的为了均化和冷却的装置, 其解决不了本发明一种冷却部防析晶方法生产的平板玻璃揭示的技术难点。 本发明与其工艺方法的技术方案也完全不同, 发明目的也完全不同。
3、 由于现有技术的玻璃材料不易析晶, 所以在常规玻璃制品生产线, 尤其 浮法生产线, 从来不会在玻璃液从冷却部装置尾部的导流槽, 进入锡窑后的夹
口的横向出口处, 设置加热装置和与加热装置位置对应的测温装置, 解决不了 本发明一种冷却部防析晶方法生产的平板玻璃揭示的技术难点。
本发明与其工艺方法的技术方案也完全不同, 发明目的也完全不同。
4、 US6339610B1 ( 15.01.2002 ) 公开了一种溶化装置, 其安装加热装置的 位置, 其位置是在窄装置前的溶化部后和的冷却部前部的玻璃液中, 其技术目 的在于保障窄装置中玻璃液澄清工艺的足够温度, 再溶化 (见其说明书加第 4 栏第 22— 57行, 附图 1、 2), 其解说决不了本发明一种用于玻璃工艺的冷却部区 域的防析晶装置和防析晶工艺方法揭示明 2的技术难点。
本发明与其工艺方法的技术方案也完全书不同, 发明目的也完全不同。
5、 US4906277A (06.03.1990)公开了一种玻璃精炼炉, [1]其安装加热装置 的位置是在玻璃精炼炉的玻璃液的出口槽拐角处和宽度方向, 其技术目的在于 保障玻璃液的足够温度能产生流动; [2] 其安装加热装置的位置是在玻璃冷却部 前部的流动方向的二侧边部, 其技术目的在于正常大生产时, 防止冷却部二侧 边部玻璃液因流动性差而没有的足够温度, 而析晶, 其解决不了本发明一种用 于玻璃工艺的冷却部区域的防析晶装置和防析晶工艺方法揭示的技术难点。
本发明与其工艺方法的技术方案也完全不同, 发明目的也完全不同。
6、 本发明人先有发明的 201310161605. 4玻璃的生产设备及成型方法。 其 发明目的是防止冷却工作部中下层析晶。 其中下层安装有 2个至 100个相互距 离为 0. 2m至 6m的电加温装置和测定温度装置 (其第 7页指出: 中下层是指从 底部向上计量的达 40%或 40%至 80%深度的玻璃液区域);其解决不了本发明一种 用于玻璃工艺的冷却部区域的防析晶装置和防析晶工艺方法揭示的技术难点。
本发明与其工艺方法的技术方案也完全不同, 发明目的也完全不同。
7、 CN101381197 ( 11、 03、 2009) 公开了一种解决液晶玻璃溶化温度高、 高温粘度大、 熔化率低、 熔化时挥发性大的难点问题的玻璃池炉助溶装置及工 艺方法, 其是在溶化部的助溶装置及工艺方法, 发明目的是在溶化部工艺中, 解决解决液晶玻璃溶化温度高、 高温粘度大、 熔化率低、 熔化时挥发性大的难
说 明 书 点问题, 其解决不了本发明一种用于玻璃工艺的冷却部区域的防析晶装置和防 析晶工艺方法揭示的技术难点。 本发明与其工艺方法的技术方案也完全不同, 发明目的也完全不同。
8、 CN1600711A (30、 03、 2005) 公开了一种能改善工作池中玻璃液冷却的 玻璃溶炉和冷却方法, 其所述之工作池是在溶化部的功能位置, 设置多个天然 气烧枪和上层之冷风系统, 是玻璃化溶炉部分的装置及工艺, 发明目的是改善 玻璃化溶炉部分工作池中玻璃液冷却的玻璃溶炉和冷却方法, 其解决不了本发 明一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工艺方法揭示的技术 难点;
而采用前述 8类先有技术, 解决不了此技术难点。 本发明目的是: 揭示了上述技术难点, 发明了新的技术方案, 能克服这种 重大难点问题, 产生预料不到的使优秀特征的玻璃材料能形成大生产的技术效 果、 同时该玻璃内不出现由晶体组成的失透的块状结构。 发明内容 本发明一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工艺方法, 特别适用于生产这类有两面性特征的玻璃材料: [1]重量计百分率, 氧化铝 6— 35%、 氧化钠为 0. 01— 16%、 氧化硅: 氧化钙 1. 6— 5. 8倍; 氧化钙; 氧化镁 0. 8 一 2. 2倍的成分的玻璃材料; [2] 有两面性之缺陷特征的玻璃材料:在强析晶温 度范围时, DSC曲线中结晶峰尖锐, 玻璃从液态向析晶失透转化有时间短并速度 快 [大多为 20分钟一 2小时]的特征的玻璃材料。 [3]本发明生产出的玻璃具有低 溶化粘度温度、 低排气泡粘度温度、 低成型粘度温度特征, 从而产生节能技术 效果和少气泡、 少非熔化猹点等产品品质优势、 具有对高氧化铝含量又有低温 共熔的高抗折强度特征、 还具有优秀热膨胀系数性质特征、 具有优秀的耐磨特 征的优秀技术效果。
通过前述的一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工艺方 法: [1]、 来保障玻璃液面之上的空间中, 在位于冷却部靠池壁耐火砖上粘附的 玻璃液的温度始终高于析晶温度 50°C以上, 具备完全不析晶的技术效果; [2]、
说 明 书 来保障在冷却部的占玻璃液总体积 40-60%的后半部的范围中的玻璃液的温度始 终高于析晶温度 5CTC以上, 具备完全不析晶的技术效果; [3]、 来保障玻璃液 的底部到液面上的所有范围中, 玻璃液的温度始终高于析晶温度 50°C以上, 具 备完全不析晶, 能达到克服这类在强析晶温度范围时 DSC曲线中结晶峰尖锐, 玻璃从液态向析晶失透转化时间短并速度快的特征的玻璃材料的缺陷的一面的 技术效果; [4]又能达到, 使其各种上述优秀的材料性质特征能转变成大生产平 板玻璃的产品的技术效果;
本发明所述的一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工艺 方法, 特别实用于上述的玻璃材料, 用于下述的各种产品的大生产, 如:
超薄电子 TFT玻璃制品, 高耐刮划耐磨触摸屏电子玻璃制品, 浮法建筑平 板玻璃制品、 格法平板玻璃制品、 溢流下拉法平板玻璃制品、 压延法平板玻璃 制品平板玻璃制品、 拉管玻璃制品、 压制玻璃制品、 吹制玻璃制品。 从后述的 5 个实例样品可见,这类新功能性玻璃材料的巅覆性优势明显: [1]、节能 50— 70% 的技术效果; [2]、 少气泡、 少非熔化碴点等产品品质优势的技术效果; [3]、 具有对高氧化铝含量又有低温共熔性质而产生提高抗折强度 2— 3倍特征的技术 效果; [4]、 从而产生轻量化又节原料 60— 70%的技术效果; [5]、 具有优秀热膨 胀系数性质特征, 可成为防火防爆功能玻璃上的技术效果; [6]、 具有优秀的耐 磨特征的技术效果。 只有在本发明的冷却部的防析晶方法的支持下, 本发明的 这种玻璃的高性能才得以体现。 所以本发明的创造性技术方案产生的防析晶的 显而易见技术效果, 才能使这类新功能性玻璃材料的巅覆性的上述 6种优势变 为产品大生产的现实, 有显而易见技术效果。 本发明采用下述技术方案: 一种用于玻璃工艺的冷却部区域的防析晶装置, 其特征在于: 在冷却部的 玻璃液面之上的空间中,在靠池壁耐火砖的内侧 10— 80mm的距离范围内,有 2 个至 80个电加热装置和 2个至 80个测定温度装置。 一种用于玻璃工艺的冷却部区域的防析晶装置, 其特征在于: 在冷却部的 玻璃液面之上的空间中,在靠池壁耐火砖的内侧 10— 80mm的距离范围内,有 2 个至 80个电加热装置和测定温度装置, 环绕布局在靠池壁耐火砖的内侧, 所述
说 明 书 加热装置的之间距离以加热装置的几何中心点计算, 相互中心点距离为 0.3m至 2m。 一种用于玻璃工艺的冷却部区域的防析晶装置, 其特征在于: 在玻璃液从 冷却部进入锡窑的导流槽装置的夹口的横向出口处的纵向 0.5m距离内, 设置横 向排列有 2— 10个电加热装置和 2— 10个测定温度装置。 一种用于玻璃工艺的冷却部区域的防析晶装置, 其特征在于: 冷却部的底 部安装有 2— 10个钼金属流道口。
一种用于玻璃工艺的冷却部区域的防析晶装置的工艺方法, 其特征在于,
[1]将按重量百分率计, 氧化钠的含量为 0.01—— 16%, 氧化铝含量为至 6 —— 35%, 氧化硅的含量是氧化钙含量的至 1.8— 5.58倍, 氧化硅的含量是氧化 钙含量的至 1.6— 5.8倍, 氧化钙的含量是氧化镁的含量 0.8至 2.2倍的原料, 熔 化后, 引入冷却部;
[2]在冷却部的玻璃液面之上的空间中, 在靠池壁耐火砖的内侧 10— 80mm 的距离范围内有 2个至 80个相互距离为 0.3m至 2m的电加热装置和 2个至 80 个测定温度装置, 形成了一个互相中心点距离为 0.3m至 2m的环绕安装布局的 装置;
[3]当测温装置测得温度低于玻璃液的析晶温度 50Ό时, 加热装置开始加 热; 当测温装置测得温度高于玻璃液的析晶温度 100Ό时, 加热装置停止加热; 一种用于玻璃工艺的冷却部区域的防析晶装置的工艺方法,其特征在于: [1] 在冷却部的占玻璃液总体积 40— 60%的靠出口方向的后半部的玻璃液的范围 中, 安装的 6个至 40个电加热装置这^^技术方案系统; [2] 工艺方法的程序规 范设计为: 当测温装置测得温度低于玻璃液的析晶温度 50Ό时, 加热装置开始 加热,当测温装置测得温度高于玻璃液的析晶温度 100'C时,加热装置停止加热; 本发明的这种用于玻璃工艺的冷却部区域的防析晶装置的工艺方法, 其特 征在于: [1]在玻璃液的下面深度 1/2底部范围, 安装 6— 40个电加热装置和 6 个至 40个测定温度装置; 其靠池壁耐火砖的内侧的四周, 形成了一个环绕的底 部安装布局; [2] 工艺方法的程序规范设计为: 当测温装置测得温度低于玻璃液
说 明 书 的析晶温度 50 C时, 加热装置开始加热, 当测温装置测得温度高于玻璃液的析 晶温度 100'C时, 加热装置停止加热;
一种用于玻璃工艺的冷却部区域的防析晶装置的工艺方法,其特征在于: [1] 在冷却部中玻璃液的深度为 0.15M~0.9M的范围内; 按冷却部玻璃液的平面面 积计 , 每 0.2平方米一 2平方米范围安装了 1一 5个加热装置和 1一 5个测温装 置, 其安装在冷却部中玻璃液的底部到液面的范围内;
工艺方法的加热装置工艺控制程序设计的前提: 当玻璃液平面线出现上升 和下降变化时, 使玻璃液平面线也出现不同程度的上升和下降变化, 或冷却部 玻璃液量变化时; 尤其产生较大故障, 或成型工段上因维护或操作失误、 或成 型部产生故障或者更换产品、 或者进行成型工艺中变化拉引量、 变化产品厚薄 等调试时、 或玻璃的成型工序产生故障、 或退火工序产生故障、 或切材工序产 生故障、 或装包工序产生故障、 或要在不放玻璃液进行维修等 13类大生产中不 可避免的工艺状态, 必须关闭冷却部装置尾部的安全闸板时;
这时所有的加热装置工艺控制程序设计为; 当测温装置测得温度低于玻璃 液的析晶温度 50°C时, 加热装置开始加热, 尤其要加大加热装置功率; 当测温 装置测得温度高于玻璃液的析晶温度 100°C时, 加热装置停止加热。 一种用于玻璃工艺的冷却部区域的防析晶装置的工艺方法, 其特征在于: 工艺方法的加热装置工艺控制程序设计的前提: 当玻璃液平面线出现上升 和下降变化时, 使玻璃液平面线也出现不同程度的上升和下降变化, 或冷却部 玻璃液量变化时; 尤其产生较大故障, 或成型工段上因维护或操作失误、 或成 型部产生故障或者更换产品、 或者进行成型工艺中变化拉引量、 变化产品厚薄 等调试时、 或玻璃的成型工序产生故障、 或退火工序产生故障、 或切材工序产 生故障、 或装包工序产生故障、 或要在不放玻璃液进行维修等 13类大生产中不 可避免的工艺状态, 必须关闭冷却部装置尾部的安全闸板时;
这时的工艺控制程序设计为; 当测温装置测得温度低于玻璃液的析晶温度 50Ό时, 加热装置开始加热, 尤其要加大所有加热装置功率, 加热装置功率要 设置为所有加热装置的功率高于正常大生产时的 3— 15倍; 当测温装置测得温 度高于玻璃液的析晶温度 100Ό时, 加热装置停止加热。
说 明 书 附图说明 为了更清楚地说明本发明一种用于玻璃工艺的冷却部区域的防析晶装置和 防析晶工艺方法的实施例的技术方案, 下面将对实施例或现有技术描述中所需 要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的 一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。 图 1是本发明的一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工 艺方法的俯面的示意图: 其在玻璃液的液面之上的有着有气体的空间范围中的 靠池壁耐火砖的 14Cm的距离范围内, 安装有相互距离为 0.8m至 lm的加温装 置和测定温度装置, 其都环绕在靠池壁耐火砖的内侧的四周位置; 图 2是本发明的一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工 艺方法的剖面示意图: 其在玻璃液的液面之上, 存在着有气体的空间范围中的 加温装置和测定温度装置, 其都在靠池壁耐火砖的内侧 14Cm的距离范围内的 四周位置;
图 3是本发明的一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工 艺方法的俯面的示意图: 在玻璃液的底部到液面上的范围中, 安装有靠池壁耐 火砖的内侧的四周, 形成了一个环绕安装布局, 安装有电加热装置和测定温度 装置;
图 4是本发明的一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工 艺方法的俯面的示意图: 在冷却部的后半部的玻璃液的底部到液面上的范围 中, 安装有电加热装置和测定温度装置;
图 5是本发明的一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工 艺方法的剖面示意图: 在玻璃液的底部到液面上的范围中靠池壁耐火砖的内侧, 安装有电加热装置和测定温度装置;
图 6是本发明的一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工 艺方法的俯面的示意图:在冷却部中玻璃液的深度为 0. 15M— 0. 9M;按冷却部玻 璃液的平面面积计算, 每 0. 2平方米一 2平方米范围安装了 1一 5个加热装置和 1-5个测温装置, 其安装在冷却部中玻璃液的底部到液面的范围内。
图 7是本发明的一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工 艺方法的生产工艺流程示意图。 具体实施方式 重点再重述 3个先有技术, 与本发明在 A、 要克服的技术难点的不同; B、 工艺技术方案的不同; (:、 达到的技求效果的不同:
4、 US6339610B1 ( 15.01.2002 ) 公开了一种溶化装置:
说
[1]技术目的: 在于正常大生产时明, 8安装加热装置其技术目的在于保障窄装 置中玻璃液澄清工艺的足够温度, 再溶化书, 也是窄装置中的局部位置防析晶目 的; (见其说明书加第 4栏第 22— 57行, 附图 1、 2);
[2] 技术方案也是安装加热装置在窄装置前后的局部位置; 但没有指出冷 却部在冷却部中玻璃液的深度为 0.15M~0.9M; 按所有冷却部玻璃液的平面面 积计算, 每 0.2平方米一 2平方米范围安装了 1一 5个加热装置和 1一 5个测温装 置, 其安装在冷却部中玻璃液的底部到液面的范围内; 其正常大生产本发明有 快速 30分钟一 2小时就析晶的的特征的破璃时, 会那个区域, 那怕 1平方米区 域不布局加热装置, 那里就会析晶失透;
[a]由于没有密集的在所有玻璃液区域中的加热装置网状布局, 就会在正常 大生产时,一定会在没有布局加热装置的位置, 因在生产本发明特定成分范围 的玻璃材料时,玻璃材料在低于析晶温度达 30分钟一 2小时会立即析晶失透, 的技术难点无法克服;
[b]由于出现因大生产中不可避免的 10种生产工艺原因必须关闭冷却部装置 尾部的安全闸板时的特定工艺条件时, 没有从溶化部源源不断的 1450— 1540°C 或以上的高温玻璃液的进入所带来的温度基础性保障, 又没有比正常大生产时 加大加热装置功率 3— 15倍的技术方案, 会使冷却部玻璃液几个小时全部析晶 固化, 会使冷却部装备会全部破坏, 会造成全生产线停产的严重技术后果;
[3]先有技术发明目的不同于本发明一种用于玻璃工艺的冷却部区域的防析 晶装置和防析晶工艺方法权利要求发明目的: 能保障玻璃液面之上的空间中,
在位于冷却部靠池壁耐火砖上粘附的玻璃液的温度始终高于析晶温度 50°C以 上, 具备完全不析晶的技术效果;
一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工艺方法, 权利要 求的技术方案包括: 在冷却部的玻璃液面之上的空间中, 在靠池壁耐火砖的内 侧 10— 80mm的距离范围内设置有 2个至 40个测温装置和 2个至 60个加热装 置, 相邻的加热装置之间的距离为 0.3m至 2m, 所述加热装置和测温装置形成 一个相互间隔的环绕布局; 说
先有技术发明目的不同于本发明权明 9利要求发明目的其中也包括: 当出现 13 类大生产中不可避免的工艺状态, 必须关书闭冷却部装置尾部的安全闸板时, 来 保障冷却部从玻璃液的底部到液面上的所有范围中 [包括了在冷却部的玻璃液面 之上的空间中, 靠池壁耐火砖的内侧 10— 80mm的距离范围内], 的温度始终高 于析晶温度 50°C以上, 具备完全不析晶的技术效果; 可使冷却部在靠池壁耐火 砖的内侧产生的比正常的稳定状态生产时多得多又厚得多的的大量粘附玻璃液 层, 会因加大加所有热装置功率高于正常大生产时的 3— 15倍 [包括了在冷却部 的玻璃液面之上的空间中, 靠池壁耐火砖的内侧 10— 80mm的距离范围内热装 置功率], 而使粘度变低, 流入冷却部玻璃液池中, 全都不会失透析晶;
[4] 其没有揭示本发明完全不同的技术目的: 为了能保障玻璃液面之上的 空间中, 在位于冷却部靠池壁耐火砖上粘附的玻璃液的温度始终高于析晶温度 50°C以上, 具备完全不析晶的技术目的; 而采用本发明权利要求的技术方案, 会因为在靠池壁耐火砖的内侧 10— 80mm的距离范围内设置有加热装置之间为 密集的 03m至 2m距离的 2个至 40个测温装置和 2个至 60个加热装置, 所述 加热装置和测温装置形成一个相互为很小间隔的环绕布局;
[5] 其没有揭示本发明完全不同的发明目的是: 克服下述之技术难点: 在 生产本发明特定成分范围的玻璃材料时 (按重量百分率计, 备好原料, 包括: 氧化钠 0.01— 16%、 氧化铝 2— 35%、 氧化硅的含量是氧化钙的 1.6— 5.8倍、 氧 化钙的含量是氧化镁的 0.8--2.1倍), 玻璃材料的低于析晶温度达 30分钟一 2小 时会立即析晶失透的技术难点;
说 明 书 通过本发明完全不同的技术方案: 在冷却部中玻璃液的深度为
0.15M— 0.9M; 按所有冷却部玻璃液的平面面积计算, 每 0.2平方米一 2平方米 范围安装了 1一 5个加热装置和 1一 5个测温装置, 其安装在冷却部中玻璃液的 底部到液面的范围内, 形成密集网状的加热装置的特征;
[a] 就会在正常大生产时,克服先有技术没有布局加热装置的区域的玻璃材 料, 低于析晶温度达 30分钟一 2小时会立即析晶失透的技术难点; 提供的始终 高于析晶温度 50'C的保障, 能使冷却部中所有的玻璃液全都不会失透析晶;
[b] 就会在特定工艺条件下,本发明由于在工艺设置上巳经形成密集的加热 装置布局, 比正常大生产时加大加热装置功率 3— 15倍, 尤其加大了加热装置 功率后形成了每对电极之间的相对方向的玻璃液热流动传导, 产生的布局在所 有每 0.2平方米一 2平方米范围提供的始终高于析晶温度 50°C的保障:
[C]可克服出现因大生产中不可避免的 10种生产工艺原因必须关闭冷却部 装置尾部的安全闸板 1-15天时:将没有从溶化部源源不断的 1450— 1540Ό或以 上的高温玻璃液的进入所带来的温度基础性保障; B、 可克服冷却部耐火材料按 正常生产设计会大量快速散热, 使玻璃液快速冷却的技术难点; (、 可克服因此 会使冷却部玻璃液几个小时全部析晶固化, 会使冷却部装备会全部破坏, 会造 成全生产线停产的严重技术后果;
[D]通过有准备的冷却部中的创新装置和创新工艺程序设计, 而大幅增加相 应加热装置温度, 才可保障冷却部中所有的玻璃液全都不会失透析晶, 才可解 决的以上技术难点。
本发明一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工艺方法的 目的是: 揭示了上述技术难点, 发明了新的技术方案, 能克服这种重大难点问 题, 产生予料不到的使优秀特征的玻璃材料能形成平扳玻璃大生产的技术效果。
5、 US4906277A (06.03.1990) 公开了一种玻璃精炼炉:
[1]技术目的: 在于正常大生产时, 防止冷却部二侧边部玻璃液因流动性差 而没有的足够温度, 而析晶, 也是的局部位置防析晶目的;
[2]其技术方案安装加热装置的位置是在, 玻璃精炼炉的玻璃液的出口槽拐 角处和宽度方向; 但没有指出冷却部在冷却部中玻璃液的深度为 0.15M~0.9M;
说 明 书 按所有冷却部玻璃液的平面面积计算,每 0.2平方米一 2平方米范围安装了 1一 5 个加热装置和 1一 5个测温装置, 其安装在冷却部中玻璃液的底部到液面的范围 内; 形成密集的网状布局的加热装置的特征; 其正常大生产本发明有快速 30分 钟一 2小时就析晶的的特征的破璃时,会那个区域, 那怕 1平方米区域不布局加 热装置, 那里就会析晶失透;
[a]由于没有密集的在所有玻璃液区域中的加热装置网状布局, 就会在正常 大生产时,一定会在没有布局加热装置的位置, 因在生产本发明特定成分范围 的玻璃材料时,玻璃材料在低于析晶温度达 30分钟一 2小时会立即析晶失透, 的技术难点无法克服;
[b]由于出现因大生产中不可避免的 10种生产工艺原因必须关闭冷却部装置 尾部的安全闸板时的特定工艺条件时, 没有从溶化部源源不断的 1450— 1540Ό 或以上的高温玻璃液的进入所带来的温度基础性保障, 又没有比正常大生产时 加大加热装置功率 3— 15倍的技术方案, 会使冷却部玻璃液几个小时全部析晶 固化, 会使冷却部装备会全部破坏, 会造成全生产线停产的严重技术后果;
[3]先有技术发明目的不同于本发明一种用于玻璃工艺的冷却部区域的防析 晶装置和防析晶工艺方法的权利要求发明目的: 能保障玻璃液面之上的空间中, 在位于冷却部靠池壁耐火砖上粘附的玻璃液的温度始终高于析晶温度 50°C以 上, 具备完全不析晶的技术效果;
一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工艺方法的权利要 求的技术方案包括: 在冷却部的玻璃液面之上的空间中, 在靠池壁耐火砖的内 侧 10— 80mm的距离范围内设置有 2个至 40个测温装置和 2个至 60个加热装 置, 相邻的加热装置之间的距离为 0.3m至 2m, 所述加热装置和测温装置形成 一个相互间隔的环绕布局;
先有技术发明目的, 不同于本发明一种用于玻璃工艺的冷却部区域的防析 晶装置和防析晶工艺方法的权利要求发明目的其中也包括: 当出现 13类大生产 中不可避免的工艺状态, 必须关闭冷却部装置尾部的安全闸板时, 来保障冷却 部从玻璃液的底部到液面上的所有范围中 [包括了在冷却部的玻璃液面之上的空 间中, 靠池壁耐火砖的内侧 10— 80mm的距离范围内], 的温度始终高于析晶温
说 明 书 度 50°C以上, 具备完全不析晶的技术效果; 可使冷却部在靠池壁耐火砖的内侧 产生的比正常的稳定状态生产时多得多又厚得多的的大量粘附玻璃液层, 会因 加大加所有热装置功率高于正常大生产时的 3— 15倍 [包括了在冷却部的玻璃液 面之上的空间中, 靠池壁耐火砖的内侧 10— 80mm的距离范围内热装置功率], 而使粘度变低, 流入冷却部玻璃液池中, 全都不会失透析晶;
[4] 其没有揭示本发明完全不同的技术目的: 为了能保障玻璃液面之上的 空间中, 在位于冷却部靠池壁耐火砖上粘附的玻璃液的温度始终高于析晶温度 50Ό以上, 具备完全不析晶的技术目的; 而采用本发明权利要求的技术方案, 会因为在靠池壁耐火砖的内侧 10— 80mm的距离范围内设置有加热装置之间为 密集的 0.3m至 2m距离的 2个至 40个测温装置和 2个至 60个加热装置, 所述 加热装置和测温装置形成一个相互为很小间隔的环绕布局;
[5] 其没有揭示本发明完全不同的发明目的是: 克服下述之技术难点: 在 生产本发明特定成分范围的玻璃材料时 (按重量百分率计, 备好原料, 包括: 氧化钠 0.01— 16%、 氧化铝 2— 35%、 氧化硅的含量是氧化钙的 1.6— 5.8倍、 氧 化钙的含量是氧化镁的 0.8-2.1倍), 玻璃材料的低于析晶温度达 30分钟一 2小 时会立即析晶失透的技术难点;
通过本发明完全不同的技术方案: 在冷却部中玻璃液的深度为 0.15M— 0.9M; 按所有冷却部玻璃液的平面面积计算, 每 0.2平方米一 2平方米 范围安装了 1一 5个加热装置和 1一 5个测温装置, 其安装在冷却部中玻璃液的 底部到液面的范围内, 形成密集网状的加热装置的特征;
[a] 就会在正常大生产时, 克服先有技术没有布局加热装置的区域的玻璃 材料, 低于析晶温度达 30分钟一 2小时会立即析晶失透的技术难点; 提供的始 终高于析晶温度 50°C的保障, 能使冷却部中所有的玻璃液全都不会失透析晶;
[b] 就会在特定工艺条件下,本发明由于在工艺设置上巳经形成密集的加热 装置布局,比正常大生产时加大加热装置功率 3— 15倍,产生的布局在所有每 0.2 平方米一 2平方米范围提供的始终高于析晶温度 50Ό的保障:
[C]可克服出现因大生产中不可避免的 10种生产工艺原因必须关闭冷却部 装置尾部的安全闸板 1-15天时:将没有从溶化部源源不断的 1450— 1540°C或以
说 明 书 上的高温玻璃液的进入所带来的温度基础性保障; B、 可克服冷却部耐火材料按 正常生产设计会大量快速散热, 使玻璃液快速冷却的技术难点; (、 可克服因此 会使冷却部玻璃液几个小时全部析晶固化, 会使冷却部装备会全部破坏, 会造 成全生产线停产的严重技术后果;
[D]通过有准备的冷却部中的创新装置和创新工艺程序设计, 而大幅增加相 应加热装置温度, 才可保障冷却部中所有的玻璃液全都不会失透析晶, 才可解 决的以上技术难点。
本发明一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工艺方法的 目的是: 揭示了上述技术难点, 发明了新的技术方案, 能克服这种重大难点问 题, 产生予料不到的使优秀特征的玻璃材料能形成平扳玻璃大生产的技术效果。
6、本发明人先有发明的 201310161605.4玻璃的生产设备及成型方法。其发 明目的是防止冷却工作部中下层析晶。 所述冷却工作部装置的特征在于: 其中 下层安装有 2个至 100个相互距离为 0.2m至 6m的电加温装置和测定温 度装置 (其第 7页指出: 中下层是指从底部向上计量的达 40%或 40%至 80%深 度的玻璃液区域);
[1]其提出发明目的: 在于防止冷却工作部中下层析晶, 是局部位置防析晶 目的;
[2]其技术方案安装加热装置的位置是在中下层安装有 2个至 100个 目互 距离为 0.2m至 6m的电加温装置和测定温度装置, 局部位置; 但没有指出 冷却部在冷却部中玻璃液的深度为 0.15M—0.9M; 按所有冷却部玻璃液的平面 面积计算, 每 0.2平方米一 2平方米范围安装了 1一 5个加热装置和 1一 5个测温 装置, 其安装在冷却部中玻璃液的底部到液面的范围内; 其正常大生产本发明 有快速 30分钟一 2小时就析晶的的特征的破璃时, 会那个区域, 那怕 1平方米 区域不布局加热装置, 那里就会析晶失透;
[a]由于没有密集的在所有玻璃液区域中的加热装置网状布局,就会在正常 大生产时,一定会在没有布局加热装置的位置, 因在生产本发明特定成分范围 的玻璃材料时,玻璃材料在低于析晶温度达 30分钟一 2小时会立即析晶失透, 的技术难点无法克服;
说 明 书
[b]由于出现因大生产中不可避免的 10种生产工艺原因必须关闭冷却部装置 尾部的安全闸板时的特定工艺条件时, 没有从溶化部源源不断的 1450— 154CTC 或以上的高温玻璃液的进入所带来的温度基础性保障, 又没有比正常大生产时 加大加热装置功率 3— 15倍的技术方案, 会使冷却部玻璃液几个小时全部析晶 固化, 会使冷却部装备会全部破坏, 会造成全生产线停产的严重技术后果;
[3]先有技术发明目的不同于本发明一种用于玻璃工艺的冷却部区域的防析 晶装置和防析晶工艺方法的权利要求发明目的: 能保障玻璃液面之上的空间中, 在位于冷却部靠池壁耐火砖上粘附的玻璃液的温度始终高于析晶温度 50'C以 上, 具备完全不析晶的技术效果;
一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工艺方法的权利要 求的技术方案包括: 在冷却部的玻璃液面之上的空间中, 在靠池壁耐火砖的内 侧 10— 80MM的距离范围内设置有 2个至 40个测温装置和 2个至 60个加热装置, 相邻的加热装置之间的距离为 0.3M至 2M,所述加热装置和测温装置形成一个相 互间隔的环绕布局;
先有技术发明目的, 不同于本发明权利要求发明目的, 其中也包括: 当出 现 13类大生产中不可避免的工艺状态,必须关闭冷却部装置尾部的安全闸板时, 来保障冷却部从玻璃液的底部到液面上的所有范围中 [包括了在冷却部的玻璃液 面之上的空间中, 靠池壁耐火砖的内侧 10— 80MM的距离范围内], 的温度始终 高于析晶温度 50°C以上, 具备完全不析晶的技术效果; 可使冷却部在靠池壁耐 火砖的内侧产生的比正常的稳定状态生产时多得多又厚得多的的大量粘附玻璃 液层, 会因加大加所有热装置功率高于正常大生产时的 3— 15倍 [包括了在冷却 部的玻璃液面之上的空间中,靠池壁耐火砖的内侧 10— 80MM的距离范围内热装 置功率], 而使粘度变低, 流入冷却部玻璃液池中, 全都不会失透析晶;
[4] 其没有揭示本发明完全不同的技术目的:为了能保障玻璃液面之上的空 间中, 在位于冷却部靠池壁耐火砖上粘附的玻璃液的温度始终高于析晶温度 50 °C以上, 具备完全不析晶的技术目的; 而采用本发明权利要求的技术方案, 会 因为在靠池壁耐火砖的内侧 10— 80MM的距离范围内设置有加热装置之间为密
说 明 书 集的 0.3M至 2M距离的 2个至 40个测温装置和 2个至 60个加热装置, 所述加 热装置和测温装置形成一个相互为很小间隔的环绕布局;
[5] 其没有揭示本发明完全不同的发明目的是: 克服下述之技术难点: 在 生产本发明特定成分范围的玻璃材料时 (按重量百分率计, 备好原料, 包括- 氧化钠 0.01— 16%、 氧化铝 2— 35%、 氧化硅的含量是氧化钙的 1.6— 5.8倍、 氧 化钙的含量是氧化镁的 0.8-2.1倍), 玻璃材料的低于析晶温度达 30分钟一 2小 时会立即析晶失透的技术难点;
通过本发明一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工艺方 法的完全不同的技术方案: 在冷却部中玻璃液的深度为 0.15M_0.9M; 按所有 冷却部玻璃液的平面面积计算, 每 0.2平方米一 2平方米范围安装了 1一 5个加 热装置和 1一 5个测温装置, 其安装在冷却部中玻璃液的底部到液面的范围内, 形成密集网状的加热装置的特征; 来克服低于析晶温度达 30分钟一 2小时会立 即析晶失透的技术难点;
本发明就会在正常大生产时, 克服先有技术没有布局加热装置的区域的玻 璃材料, 低于析晶温度达 30分钟一 2小时会立即析晶失透的技术难点; 提供的 始终高于析晶温度 50Ό的保障,能使冷却部中所有的玻璃液全都不会失透析晶; 本发明就会在特定工艺条件下, 由于在工艺设置上巳经形成密集的加热装 置布局, 比正常大生产时加大加热装置功率 3— 15倍, 产生的布局在所有每 0.2 平方米一 2平方米范围提供的始终高于析晶温度 50°C的保障:
本发明可克服出现因大生产中不可避免的 10种生产工艺原因必须关闭冷却 部装置尾部的安全闸板 1-15天时:将没有从溶化部源源不断的 1450— 1540Ό或 以上的高温玻璃液的进入所带来的温度基础性保障; B、 可克服冷却部耐火材料 按正常生产设计会大量快速散热, 使玻璃液快速冷却的技术难点; (:、 可克服因 此会使冷却部玻璃液几个小时全部析晶固化, 会使冷却部装备会全部破坏, 会 造成全生产线停产的严重技术后果;
本发明通过有准备的冷却部中的创新装置和创新工艺程序设计, 而大幅增 加相应加热装置温度, 才可保障冷却部中所有的玻璃液全都不会失透析晶, 才 可解决的以上技术难点。
说 明 书 本发明就会在特定工艺条件下, 由于在工艺设置上巳经形成密集的加热装 置布局, 比正常大生产时加大加热装置功率 3— 15倍, 产生的布局在所有每 0.2 平方米一 2平方米范围提供的始终高于析晶温度 50°C的保障:
本发明可克服出现因大生产中不可避免的 10种生产工艺原因必须关闭冷却 部装置尾部的安全闸板 1-15天时:将没有从溶化部源源不断的 1450— 1540°C或 以上的高温玻璃液的进入所带来的温度基础性保障; B、 可克服冷却部耐火材料 按正常生产设计会大量快速散热, 使玻璃液快速冷却的技术难点; C、 可克服因 此会使冷却部玻璃液几个小时全部析晶固化, 会使冷却部装备会全部破坏, 会 造成全生产线停产的严重技术后果;
本发明通过有准备的冷却部中的创新装置和创新工艺程序设计, 而大幅增 加相应加热装置温度, 才可保障冷却部中所有的玻璃液全都不会失透析晶, 才 可解决的以上技术难点。
本发明一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工艺方法的 目的是: 揭示了上述技术难点, 发明了新的技术方案, 能克服这种重大难点问 题, 产生予料不到的使优秀特征的玻璃材料能形成平扳玻璃大生产的技术效果。
现综述本发明的技术方案, 是如何克服先有技术的难点, 实现了予料不到 的技术效果:
[1]先有技术 1、 2、 3、 4、 5、 6、 7、 8: 都没有公开和揭示本发明一种用于 玻璃工艺的冷却部区域的防析晶装置和防析晶工艺方法, 特别适用于生产这类 有两面性特征的玻璃材料: 这类特定成分的玻璃在强析晶温度范围时 DSC曲线 中结晶峰尖锐, 玻璃从液态向析晶失透转化时间短并速度快, [玻璃材料的低于 析晶温度达 30分钟一 2小时会立即析晶失透的技术难点]但是又具有多种优秀特 征的优秀玻璃材料;
[2]先有技术 1、 2、 3、 4、 5、 6、 7、 8: 都没有公开和揭示本发明一种冷却 部防析晶方法生产的平板玻璃, 通过前述的一种用于玻璃工艺的冷却部区域的 防析晶装置和防析晶工艺方法的技术方案, 实现了予料不到的技术效果:
[A]与先有技术 1、 2、 3、 4、 5、 6、 7、 8不同, 一种用于玻璃工艺的冷却 部区域的防析晶装置和防析晶工艺方法, 权利要求的技术方案包括: 在冷却部 的玻璃液面之上的空间中, 在靠池壁耐火砖的内侧 10— 80mm的距离范围内设 置有 2个至 40个测温装置和 2个至 60个加热装置, 相邻的加热装置之间的距 离为 0.3m至 2m, 所述加热装置和测温装置形成一个相互间隔的环绕布局;; 能 保障玻璃液面之上的空间中, 在位于冷却部靠池壁耐火砖上粘附的玻璃液的温 度始终高于析晶温度 50°C以上, 具备完全不析晶的技术效果;
说
与先有技术 1、 2、 3、 4、 5、 6、 7、 8不同, 本发明一种用于玻璃工艺的冷
c n 7
却部区域的防析晶装置和防析晶工艺方法书, 权利要求发明目的其中也包括: 当 出现 13类大生产中不可避免的工艺状态, 必须关闭冷却部装置尾部的安全闸板 时, 来保障冷却部从玻璃液的底部到液面上的所有范围中 [包括了在冷却部的玻 璃液面之上的空间中, 靠池壁耐火砖的内侧 10~80mm的距离范围内], 的温度 始终高于析晶温度 5CTC以上, 具备完全不析晶的技术效果; 可使冷却部在靠池 壁耐火砖的内侧产生的比正常的稳定状态生产时多得多又厚得多的的大量粘附 玻璃液层, 会因加大加所有热装置功率高于正常大生产时的 3— 15倍 [包括了在 冷却部的玻璃液面之上的空间中, 靠池壁耐火砖的内侧 10— 80mm的距离范围 内热装置功率], 而使粘度变低, 流入冷却部玻璃液池中, 全都不会失透析晶;
[B] 本发明一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工艺 方法, 权利要求的技术方案包括: 在冷却部的占玻璃液总体积 40— 60%的后半 部的玻璃液的中, 安装 2个至 40个测温装置和 2个至 60个加热装置; 能保障 在冷却部的占玻璃液总体积 40— 60%的后半部的玻璃液的中, 温度始终高于析 晶温度 5CTC以上, 具备完全不析晶的技术效果;
[C] 本发明一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工艺方 法, 权利要求的技术方案包括: 在玻璃液的距离底部 1/2深度的范围, 安装 2个 至 40个测温装置和 2个至 60个加热装置; 相邻的加热装置之间的距离为 0.3m 至 2m, 该加热装置和测温装置位于池壁耐火砖的内侧的四周, 形成了一个环绕 的底部安装布局;
说 明 书 在玻璃液的距离底部 1/2深度的范围中的玻璃液, 能由于距离底部 1/2深度 的加热装置, 加大了加热装置功率, 并且这时的工艺控制程序设计为加热装置 功率要设置为所有加热装置的功率高于正常大生产时的 3— 15倍, 形成了每对 电极之间的相对方向的玻璃液热流动传导;尤其可形成由距离底部 1/2深度的玻 璃液, 在靠近池壁耐火砖的内侧的四周, 形成一个环绕的底部安装布局的, 经 加大功率后, 由密集的 2个至 60个加热装置点产生的, 从下向上方向的热流动 传导, 保障了冷却部在靠近池壁耐火砖的内侧的四周的玻璃液, 始终高于析晶 温度 50°C以上, 达到完全不析晶的技术效果;
[D] 本发明一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工艺方 法, 权利要求的技术方案, 包括在冷却部中玻璃液的深度为 0.15M~0.9M; 按 所有冷却部玻璃液的平面面积计算, 每 0.2平方米一 2平方米范围安装了 1一 5 个加热装置和 1一 5个测温装置, 其安装在冷却部中玻璃液的底部到液面的范围 内; 形成密集网状的加热装置的特征;
当玻璃液平面线出现上升和下降变化时, 使玻璃液平面线也出现不同程度 的上升和下降变化, 或冷却部玻璃液量变化时; 尤其产生较大故障, 或成型工 段上因维护或操作失误、 或成型部产生故障或者更换产品、 或者进行成型工艺 中变化拉引量、 变化产品厚薄等调试时、 或玻璃的成型工序产生故障、 或退火 工序产生故障、 或切材工序产生故障、 或装包工序产生故障、 或要在不放玻璃 液进行维修等 13类大生产中不可避免的工艺状态, 必须关闭冷却部装置尾部的 安全闸板时, 这时的工艺控制程序设计为; 当测温装置测得温度低于玻璃液的 析晶温度 50°C时, 加热装置开始加热, 尤其要加大加热装置功率; 当测温装置 测得温度高于玻璃液的析晶温度 100Ό时, 加热装置停止加热。
由于在冷却部中玻璃液的深度为 0.15M— 0.9M; 按冷却部玻璃液的平面面 积计算, 在冷却部中玻璃液的底部到液面的所有范围内, 每 0.2平方米一 2平方 米范围安装了 1一 5个加热装置和 1一 5个测温装置, 形成密集的加热装置的特 征; 并且这时的工艺控制程序设计为加热装置功率要设置为所有加热装置的功 率高于正常大生产时的 3— 15倍, 尤其加大了加热装置功率后形成了每对电极 之间的相对方向的玻璃液热流动传导, 来保障冷却部从玻璃液的底部到液面上
的所有范围中, 的温度始终高于析晶温度 50°C以上, 具备完全不析晶的技术效 果;
[3]尤其本发明一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工 艺方法, 权利要求的创新技术方案中其装置结抅及功能与位置, 在出现以下大 生产中不可避免的工艺状态时出现的技术难题, 上述先有技术 1、 2、 3、 4、 5、 6、 7、 8技术方案是解决不了的; 本发明权利要求的创新技术方案产生的技术效 果, 是不可能被上述先有技术替代的。
其 1, 是因为在有不断的 145说0— 1540°C或以上的高温玻璃液从溶化部进入 时, 玻璃液是较快的在冷却部向成型部月 9流动; 而现有技术 4、 5、 6技术方案设 书
计的冷却部的某局部区域的电极为加热装置, 目的也是正常生产时, 是以防局 冷却部的某局部区域冷却太快而产生析晶; 并因成本原因, 选用的都是小功率 的加热装置钼电极; 而且现有一切浮法工艺都不在冷却部的玻璃液中安装加热 电极装置;
其 2, 是因为绝大多数生产线都不会采用成本高若干倍的锡电极, 而釆用 成本合适的钼电极为加热装置, 尤其冷却部已紧靠近成型部, 采用高的电流强 度易于会使钼电极分解而产生气体, 大生产时会使玻璃产品出现严重的气泡缺 陷;
其 3, 是因为在一切冷却部所设计的在正常连续大生产时, 上下及四边耐 火材料功能, 都为了大量散热的条件而设计的;
其 4, 是因为关闭冷却部装置尾部的安全闸板后, 就没有从溶化部源源不 断的 1450— 1540Ό或以上的玻璃液提供的基础性保障高温玻璃液进入, 就没有 玻璃液是较快的在冷却部流动向成型部的工艺条件;
可见, 在没有了基础性不断的 1450— 1540°C或以上的高温玻璃液从溶化部 进入时; 在没有了玻璃液是较快的从冷却部向成型部流动的热能流动传导状态 时; 又因上下及四边耐火材料具有大量散热功能时:
如果只靠现有技术的 4、 5、 6技术方案的冷却部的某局部区域的、 少量的、 小功率的、 加热装置, 根本无法加热到高于玻璃液的析晶温度 50°C ; 更根本无 法形成整个冷却部的玻璃液的热能流动传导状态, 来保障整个冷却部的玻璃液 加热到高于玻璃液的析晶温度 50Ό和长期的保温到高于玻璃液的析晶温度 50 。C ;
所以靠现有技术的 4、 5、 6技术方案, 在关闭冷却部装置尾部的安全闸板 时, 在生产这类特定成分的玻璃在强析晶温度范围时 DSC曲线中结晶峰尖锐, 玻璃从液态向析晶失透转化时间短并速度快, 但是又具有多种优秀特征的优秀 玻璃材料时, 一定会使整个冷却部玻璃液几个小时全部析晶固化, 使冷却部被 破坏而停产大修, 是个大的技术难题; 而按本发明一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工艺方 法权利要求的创新技术方案, 在关闭冷却部装置尾部的安全闸板时, 在生产这
说
类特定成分的玻璃在强析晶温度范围时 DSC曲线中结晶峰尖锐, 玻璃从液态向
明 ¾
析晶失透转化时间短并速度快, 但是又具有多种优秀特征的优秀玻璃材料时:
书
其一, 按本发明权利要求的创新技术方案, 在冷却部中玻璃液的深度为 0.15M— 0.9M、 按冷却部玻璃液的平面面积计算, 每 0.2平方米一 2平方米范围 安装了 1一 5个加热装置和 1一 5个测温装置、 加热装置和测温装置安装在冷却 部中玻璃液的底部到液面上的范围中; 形成密集的加热装置; 并且这时的工艺 控制程序设计为加热装置功率要设置为所有加热装置的功率高于正常大生产时 的 3— 15倍; 其二, 并且这时的工艺控制程序设计为加热装置功率要设置为所 有加热装置的功率高于正常大生产时的 3— 15倍; 就可克服整个冷却部玻璃液 几个小时全部析晶固化, 使冷却部被破坏而停产大修的技术难题; 就能达到克 服这类在强析晶温度范围时 DSC曲线中结晶峰尖锐, 玻璃从液态向析晶失透转 化时间短并速度快的特征的平板玻璃材料的缺陷的一面的技术效果; 又能达到, 使其各种上述优秀的材料性质特征能转变成大生产平板玻璃的产品的技术效 果;
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清 楚、 完整地描述; 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。 步骤 1 : 将按重量百分率计, 氧化钠的含量为 0. 01—— 16%, 氧化铝含量为 至 6—— 35%, 氧化硅的含量是氧化钙含量的至 1. 8— 5. 58倍, 氧化硅的含量是 氧化钙含量的至 1. 6-5. 8倍, 氧化钙的含量是氧化镁的含量 0. 8至 2. 2倍的原 料混合搅拌, 放入料仓 1 ;
说 明 书 步骤 2: 将充分混合后的原料倒入瑢化装置, 熔化形成预定的粘度的玻璃 液, 然后经玻璃液进入冷却部装置中冷却澄清。
步骤 3: 图 1是本发明一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工艺 方法, 所使用的加温装置和测定温度装置的俯面的示意图: 其在冷却部玻璃液 的液面之上的有着有气体的空间范围中的靠池壁耐火砖的 20Cm的距离范围内, 安装有 14个相互距离为 0. 8m至 lm的加温装置和 14个测定温度装置, 其都环 绕在靠池壁耐火砖的内侧的四周位置、 41表示电加热装置、 42表示测定温度装 置、 43表示池壁耐火砖、 44表示玻璃液的液面; 图 2是本发明一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工艺 方法, 所使用的加温装置和测定温度装置的剖面示意图: 其在冷却部玻璃液的 液面之上, 存在着有气体的空间范围中的加温装置和测定温度装置, 其都在靠 池壁耐火砖的内侧 20Cm的距离范围内的四周位置; 41表示电加热装置、 42表 示测定温度装置、 43表示池壁耐火砖、 44表示玻璃液的液面、 45表示玻璃液; 图 3是本发明一种采用玻璃技术中冷却部防析晶工艺方法生产平板玻璃 时, 所使用的加温装置和测定温度装置的俯面的示意图: 在冷却部玻璃液的底 部到液面上的范围中, 安装有靠池壁耐火砖的内侧的四周, 形成了一个环绕安 装布局,安装的 18个相互中心点距离为 lm的电加热装置和 18个测定温度装置; 41表示电加热装置、 42表示测定温度装置、 43表示池壁耐火砖、 44表示玻璃 液的液面;
图 4是本发明一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工艺 方法, 所使用的加温装置和测定温度装置的俯面的示意图: 在冷却部的 1/2后 半部的玻璃液的底部到液面上的范围中, 安装有 26个电加热装置和 22个测定 温度装置;
图 5是本发明一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工艺 方法, 所使用的加温装置和测定温度装置的剖面示意图: 在冷却部玻璃液的底 部到液面上的范围中, 安装的相互中心点距离为 lm的电加热装置和测定温度装 置; 41表示电加热装置、 42表示测定温度装置、 43表示池壁耐火砖、 44表示
说 明 书 玻璃液的液面、 45表示玻璃液; 图 6是本发明一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工艺 方法, 所使用的加温装置和测定温度装置的俯面的示意图: 在冷却部中玻璃液 的深度为 0. 9M; 按冷却部玻璃液的平面面积计算, 每 1平方米范围安装了 2个 加热装置和 1个测温装置, 其安装在冷却部中玻璃液的底部到液面的范围内, 共安装有 96个相互中心点距离为 lm的电加热装置和 48个测定温度装置; 41 表示电加热装置、 42表示测定温度装置、 43表示池壁耐火砖、 44表示玻璃液的 液面、 45表示玻璃液; 图 7是本发明一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工艺 方法, 的生产工艺流程示意图, 1表示装有混合好的玻璃原料的容器; 1表示玻 璃熔化装置; 3表示玻璃液导流槽; 4表示冷却部; 5表示锡窑; 6表示过渡辊 台; 7表示退火窑; 8表示切割分装台; 从 1一 8的这些部分的装置均安装于浮 法线基体 11上。
步骤 4: 玻璃液从冷却部 4进入锡窑装置 5, 进行摊平、 抛光, 并拉薄制成 玻璃带。
步骤 5: 所述玻璃带经拉边机的导拉和牵引机的牵引, 拉出锡窑 5, 并经降 经过渡辊台 6, 并在退火窑 7退火, 退火后的玻璃带进入切割分装台 8, 进行分 切和包装, 即可制得所述浮法平板玻璃。
现对本发明一种用于玻璃工艺的冷却部区域的防析晶装置及工艺方法, 举出 5个不同成份材料的平板玻璃实施例; 其都是一类在强结晶温度范围时 DSC曲线 中结晶吸峯尖锐, 玻璃从液态向析晶失透转化时间短并速度快的特征的玻璃材 料:
本发明实施例中粘度的测定釆用美国 THTA旋转高温粘度计。
实施例 步骤 1 : 按重量百分比计: 氧化钠的含量为 4%, 氧化铝含量为 25%, 氧化硅 的含量是 38. 5%, 氧化钙含量 20. 3%, 氧化镁的含量 12. 2%, 氧化硅的含量是氧 化钙含量的至 1. 9倍,氧化钙的含量是氧化镁的含量 1. 66倍;将原料混合搅拌, 放入料仓 1。
说 明 书 步骤 2:将充分混合后的原料 1倒入熔化装置 2,形成预定的粘度的玻璃液。 然后经玻璃液导流槽 3进入冷却部装置 4中冷却澄清。
步骤 3: [1]在冷却部的玻璃液面之上的空间中, 靠池壁耐火砖的内侧 10— 80mm的距离范围内, 有 50个电加热装置和与电加热装置位置对应的 30个测定 温度装置; [2]必须设计另外的加大电流强度的工艺控制程序为: [3]以电加热 装置位置对应的测定温度装置所测之, 低于玻璃析晶温度 50°C温度为开启实际 的加热装置的条件, 使在冷却部的玻璃液面之上的空间中, 靠池壁耐火砖的内 侧 10— 80mm的距离范围内所布局的, 电加热装置位置范围和对应的测定温度装 置范围的靠池壁耐火砖上粘附的玻璃液的温度, 高于析晶温度 50— 80°C。 [3] 以电加热装置位置对应的测定温度装置所测之,高于玻璃析晶温度 10(TC温度为 关闭实际的加热装置的条件, 使在冷却部的玻璃液面之上的空间中, 靠池壁耐 火砖的内侧 10— 80mra的距离范围内所布局的, 电加热装置位置范围和对应的测 定温度装置范围的靠池壁耐火砖上粘附的玻璃液的温度,不能高于析晶温度 100 °C。
此实例平板玻璃制品材料 1中, 氧化铝含量 25%, 含氧化钠 4%; 实际溶化 时 101·5 (帕 ·秒) 粘度温度 1470°C, 比传统钠钙玻璃 158CTC还低 110°C ; 本实 例排气泡时 102 (帕 ·秒)粘度温度 1360Ό , 比传统钠钙玻璃排气泡时 102 (帕 · 秒)粘度温度 1430Ό低 70Ό左右;但此实例平板玻璃制品材料析晶温度范围 1190 — 825°C , 强析晶温度范围 1150— 912°C, 其玻璃析晶温度 119CTC, 高于玻璃成 型温度 70°C。
步骤 4: 玻璃液从冷却部 4进入锡窑装置 5, 进行摊平、 抛光, 并拉薄制成 玻璃带。
步骤 5: 所述玻璃带经拉边机的导拉和牵引机的牵引, 拉出锡窑 5, 并经降 经过渡辊台 6, 并在退火窑 7退火, 退火后的玻璃带进入切割分装台 8, 进行分 切和包装, 即可制得所述浮法平板玻璃。
通过上述一种用于玻璃工艺的冷却部区域的防析晶装置及工艺方法实施 例, 制造出来的平板玻璃, 具有下列参数:
抗折强度达 150 Mpa;
该玻璃的厚薄差小于 0. 4mm;
说 明 书 其吸水率在 0. 1%的范围内;
在 20— 100Ό时膨胀率为 52;
在 450— 600°C时膨胀率仅有百万分之 2— 3的膨胀率变化。
实施例 2: 步骤 1 : 将原料氧化钠、 氧化铝、 氧化硅、 氧化镁以及氧化钙混合搅拌, 放入料仓 1,其中,按重量百分率计,氧化钠的含量为 6. 1%,氧化铝含量为 16%, 氧化硅的含量是 57. 9%, 氧化钙含量 11. 1%, 氧化镁的含量 8. 9%, 氧化硅的含量 是氧化钙含量的至 5. 2倍, 氧化钙的含量是氧化镁的含量 1. 6倍。
步骤 2:将充分混合后的原料 1倒入熔化装置 2,形成预定的粘度的玻璃液。 然后经玻璃液导流槽 3进入冷却部装置 4中冷却澄清。 步骤 3: 在冷却部的占玻璃液总体积 40— 60%的 1/2后半部的玻璃液的范围 中, [1]安装 40个电加热装置和测定温度装置这个技术方案系统; [2] 必须设 计另外的加大电流强度的工艺控制程序为: [3]以电加热装置位置对应的测定温 度装置所测之, 低于玻璃析晶温度 50°C温度为开启实际的加热装置的条件, 使 在冷却部的占玻璃液总体积 40— 60%的 1/2后半部的玻璃液的范围中玻璃液的温 度,高于析晶温度 50— 80°C。 [3]以电加热装置位置对应的测定温度装置所测之, 高于玻璃析晶温度 ΙΟΟΌ温度为关闭实际的加热装置的条件,使在冷却部的占玻 璃液总体积 40— 60%的 1/2后半部的玻璃液的范围中玻璃液的温度,不能高于析 晶温度 100°C。 此实例平板玻璃制品材料 2中,氧化钠的含量为 6. 1%,氧化铝含量为 16%; 实际溶化时 101·5 (帕 ·秒)粘度温度 1440Ό , 比传统钠钙玻璃 1580Ό还低 140 °C ; 本实例排气泡时 102 (帕 ·秒)粘度温度 1340°C, 比传统钠钙玻璃排气泡时 102 (帕 ·秒)粘度温度 143CTC低 90°C左右; 但此实例平板玻璃制品材料实例平 板玻璃制品 2, 析晶温度范围 1140— 825 °C, 强析晶温度范围 1130— 882 °C ,其 玻璃析晶温度 114CTC, 仅低于玻璃成型温度 5°C。
步骤 4: 玻璃液从冷却部 4进入锡窑装置 5, 进行摊平、 抛光, 并拉薄制成 玻璃带。
步骤 5: 所述玻璃带经拉边机的导拉和牵引机的牵引, 拉出锡窑 5, 并经降 经过渡辊台 6, 并在退火窑 7退火, 退火后的玻璃带进入切割分装台 8, 进行分
说 明 书 切和包装, 即可制得所述浮法玻璃。
通过上述一种用于玻璃工艺的冷却部区域的防析晶装置及工艺方法实施 例, 制造出来的平板玻璃, 具有下列参数:
抗折强度达 120 Mpa;
该玻璃的厚薄差小于 0. ½m;
其吸水率在 0. 1%的范围内;
在 20— 100Ό时膨胀率为 52;
在 450— 600°C时膨胀率仅有百万分之 2— 3的膨胀率变化。
实施例 3: 步骤 1 : 将原料氧化钠、 氧化铝、 氧化硅、 氧化镁以及氧化钙混合搅拌, 放入料仓 1, 其中, 按重量百分率计, 氧化钠的含量为 3%, 氧化铝含量为 29%, 氧化硅的含量是 44. 4%, 氧化钙含量 13. 9%, 氧化镁的含量 9. 7%, 氧化硅的含量 是氧化钙含量的 3. 2倍, 氧化钙的含量是氧化镁的含量 1. 43倍。
步骤 2:将充分混合后的原料 1倒入熔化装置 2,形成预定的粘度的玻璃液。 然后经玻璃液导流槽 3进入冷却部装置 4中冷却澄清。
步骤 3:
[1]在冷却部玻璃液的下面 1/2范围底部, 安装 50个电加热装置和 30; 其 靠池壁耐火砖的内侧的四周, 形成了一个环绕的底部安装布局;
[2]当玻璃液平面线出现上升和下降变化时, 使玻璃液平面线也出现不同程 度的上升和下降变化, 或冷却部玻璃液量变化时; 尤其产生较大故障, 或成型 工段上因维护或操作失误、 或成型部产生故障或者更换产品、 或者进行成型工 艺中变化拉引量、 变化产品厚薄等调试时、 或玻璃的成型工序产生故障、 或退 火工序产生故障、 或切材工序产生故障、 或装包工序产生故障、 或要在不放玻 璃液进行维修等 13类大生产中不可避免的工艺状态, 必须关闭冷却部装置尾部 的安全闸板时, 这时的工艺控制程序设计为: 当测温装置测得温度低于玻璃液 的析晶温度 50Ό时, 加热装置开始加热, 尤其要加大加热装置功率, 加热装置 功率要设置为所有加热装置的功率高于正常大生产时的 5倍; 当测温装置测得 温度高于玻璃液的析晶温度 100'C时, 加热装置停止加热, 由于 50个密集的加
说 明 书 热装置, 并且这时的工艺控制程序设计为加大加热装置功率要设置, 尤其加大 了加热装置功率后形成了每个电极向上方向的玻璃液热流动传导, 来保障冷却 部从玻璃液的底部到液面上的所有范围中,的温度始终高于析晶温度 50Ό以上, 具备完全不析晶的技术效果;
使在冷却部玻璃液的下面 1/2范围底部的范围中玻璃液的温度, 不能高于 析晶温度 100°C。
实例平板玻璃制品 3中, 氧化铝含量 29%, 含氧化钠 3%; 实际溶化时 101·5 (帕 ·秒)粘度温度 1530°C, 比传统钠钙玻璃 158CTC还低 50°C ; 本实例排气泡 时 102 (帕 ·秒)粘度温度 1400°C, 比传统钠钙玻璃排气泡时 102 (帕 ·秒) 粘 度温度 1430°C低 30°C左右;但此实例平板玻璃制品材料析晶温度范围 1220— 840 V , 强析晶温度范围 1190— 955°C , 其玻璃析晶温度 1220 °C, 高于玻璃成型温 度 100°C。
步骤 4: 玻璃液从冷却部 4进入锡窑装置 5, 进行摊平、 抛光, 并拉薄制成 玻璃带。
步骤 5: 所述玻璃带经拉边机的导拉和牵引机的牵引, 拉出锡窑 5, 并经降 经过渡辊台 6, 并在退火窑 7退火, 退火后的玻璃带进入切割分装台 8, 进行分 切和包装, 即可制得所述一种用于玻璃工艺的冷却部区域的防析晶装置及工艺 方法, 生产的平板玻璃:
抗折强度达 186Mpa;
该玻璃的厚薄差小于 0. 4mm;
其吸水率在 0. 1%的范围内;
在 20— 100'C时膨胀率为 54;
在 450— 600°C时膨胀率仅有百万分之 2— 3的膨胀率变化。
实施例 4:
步骤 1 : 将原料氧化钠、 氧化铝、 氧化硅、 氧化镁以及氧化钙混合搅拌, 放入料仓 1, 其中, 按重量百分率计, 氧化钠的含量为 2%, 氧化铝含量为 25%, 氧化硅的含量是 49%, 氧化钙含量 15. 4%, 氧化镁的含量 8. 6%, 氧化硅的含量是 氧化钙含量的 3. 2倍, 氧化钙的含量是氧化镁的含量 1. 8倍。
步骤 2:将充分混合后的原料 1倒入瑢化装置 2,形成预定的粘度的玻璃液。
说 明 书 然后经玻璃液导流槽 3进入冷却部装置 4中冷却澄清。 步骤 3:在冷却部从玻璃液的底部到液面上的范围中,在冷却部中玻璃液的 深度为 0.9M; 按冷却部玻璃液的平面面积计算, 在冷却部中玻璃液的底部到液 面的所有范围内, 每 2平方米范围安装了 3个加热装置和 3个测温装置, 共达 90个电加热装置和测定温度装置; [2] 当玻璃液平面线出现上升和下降变化时, 使玻璃液平面线也出现不同程度的上升和下降变化, 或冷却部玻璃液量变化时; 尤其产生较大故障, 或成型工段上因维护或操作失误、 或成型部产生故障或者 更换产品、 或者进行成型工艺中变化拉引量、 变化产品厚薄等调试时、 或玻璃 的成型工序产生故障、 或退火工序产生故障、 或切材工序产生故障、 或装包工 序产生故障、或要在不放玻璃液进行维修等 13类大生产中不可避免的工艺状态, 必须关闭冷却部装置尾部的安全闸板时, [3]这时的工艺控制程序设计为; 当测 温装置测得温度低于玻璃液的析晶温度 50Ό时, 加热装置开始加热, 并且这时 的工艺控制程序设计为加大加热装置功率要设置, 由于 90个密集的加热装置, 加热装置功率要设置为所有加热装置的功率高于正常大生产时的 4倍; 尤其加 大了加热装置功率后形成了每对电极之间的相对方向的玻璃液热流动传导, 来 保障冷却部从玻璃液的底部到液面上的所有范围中, 的温度始终高于析晶温度 50Ό以上, 具备完全不析晶的技术效果; 当测温装置测得温度高于玻璃液的析晶温度 100Ό时, 加热装置停止加热, 使在冷却部从玻璃液的底部到液面上的范围中的玻璃液中玻璃液的温度, 不能高于析晶温度 ioo°c。
实例平板玻璃制品 4, 本实例氧化铝含量 25%, 含氧化钠 2%; 实际溶化时 101·5 (帕,秒) 粘度温度 1460°C, 比传统钠钙玻璃 1580°C还低 120°C ; 本实例 排气泡时 102 (帕 ·秒)粘度温度 1360°C, 比传统钠钙玻璃排气泡时 102 (帕 · 秒)粘度温度 1430°C低 70Ό左右;但此实例平板玻璃制品材料析晶温度范围 1190 一 825°C, 强析晶温度范围 1160— 835°C, 其玻璃析晶温度 1190°C, 高于玻璃成 型温度 70°C。
步骤 4: 玻璃液从冷却部 4进入锡窑装置 5, 进行摊平、 抛光, 并拉薄制成 玻璃带。
步骤 5: 所述玻璃带经拉边机的导拉和牵引机的牵引, 拉出锡窑 5, 并经降
经过渡辊台 6, 并在退火窑 7退火, 退火后的玻璃带进入切割分装台 8, 进行分 切和包装, 即可制得所述一种冷却部防析晶方法生产的平板玻璃。
通过上述一种用于玻璃工艺的冷却部区域的防析晶装置及工艺方法实施 例, 制造出来的平扳玻璃具有下列参数:
抗折强度达 153Mpa;
该玻璃的厚薄差小于 0. 4mm;
其吸水率在 0. 1%的范围内;
说
在 20— 100°C时膨胀率为 54;
在 450— 600 °C时膨胀率仅有百万分月 8之 2— 3的膨胀率变化。
书
实施例 5:
步骤 1 : 将原料氧化钠、 氧化铝、 氧化硅、 氧化镁以及氧化钙混合搅拌, 放入料仓 1, 其中, 按重量百分率计, 氧化钠的含量为 2%, 氧化铝含量为 21%, 氧化硅的含量是 50. 3%, 氧化钙含量 15. 7%, 氧化镁的含量 11%, 氧化硅的含量 是氧化钙含量的 3. 2倍, 氧化钙的含量是氧化镁的含量 1. 43倍。
步骤 2:将充分混合后的原料 1倒入熔化装置 2,形成预定的粘度的玻璃液。 然后经玻璃液导流槽 3进入冷却部装置 4中冷却澄清。 步骤 3: 步骤 3: 在冷却部从玻璃液的底部到液面上的范围中, [1]在冷却 部中玻璃液的深度为 0.9M; 按冷却部玻璃液的平面面积计算, 在冷却部中玻璃 液的底部到液面的所有范围内, 每 1平方米范围安装了 2个加热装置和 1个测 温装置, 共有 100个密集的加热装置; [2] 当玻璃液平面线出现上升和下降变 化时, 使玻璃液平面线也出现不同程度的上升和下降变化, 或冷却部玻璃液量 变化时; 尤其产生较大故障, 或成型工段上因维护或操作失误、 或成型部产生 故障或者更换产品、 或者进行成型工艺中变化拉引量、 变化产品厚薄等调试时、 或玻璃的成型工序产生故障、 或退火工序产生故障、 或切材工序产生故障、 或 装包工序产生故障、 或要在不放玻璃液进行维修等 13类大生产中不可避免的工 艺状态, 必须关闭冷却部装置尾部的安全闸板时, [3]这时的工艺控制程序设计 为: 当测温装置测得温度低于玻璃液的析晶温度 50Ό时, 并且这时的工艺控制 程序设计为加大加热装置功率要设置, 由于 100个密集的加热装置, 加热装置 功率要设置为所有加热装置的功率高于正常大生产时的 6倍; 尤其加大了加热
说 明 书 装置功率后形成了每对电极之间的相对方向的玻璃液热流动传导, 来保障冷却 部从玻璃液的底部到液面上的所有范围中,的温度始终高于析晶温度 50°C以上, 具备完全不析晶的技术效果;
当测温装置测得温度高于玻璃液的析晶温度 100°C时, 加热装置停止加热, [实例玻璃 5, 本实例氧化铝含量 21%, 含氧化钠 2%; 实际溶化时 101 5 (帕 * 秒)粘度温度 1500°C, 比传统钠钙玻璃 1580°C还低 80Ό ; 本实例排气泡时 102 (帕 ·秒)粘度温度 1380°C, 比传统钠钙玻璃排气泡时 102 (帕 ·秒)粘度温度 1430Ό低 50°C左右; 但此实例平板玻璃制品材料析晶范围 1185— 830°C, 强析 晶范围 1140— 902°C, 其玻璃析晶温度 1185°C, 高于玻璃成型温度 70°C。
步骤 4: 玻璃液从冷却部 4进入锡窑装置 5, 进行摊平、抛光, 并拉薄制成 玻璃带。
步骤 5: 所述玻璃带经拉边机的导拉和牵引机的牵引, 拉出锡窑 5, 并经降 经过渡辊台 6, 并在退火窑 7退火, 退火后的玻璃带进入切割分装台 8, 进行分 切和包装, 即可制得所述浮法玻璃。
通过上述一种用于玻璃工艺的冷却部区域的防析晶装置及工艺方法实施 例, 制造出来的平板玻璃, 具有下列参数:
抗折强度达 141mpa;
该玻璃的厚薄差小于 0. 4mm;
其吸水率在 0. 1%的范围内;
在 20— 100°C时膨胀率为 54;
在 450— 600°C时膨胀率仅有百万分之 2— 3的膨胀率变化。
尤其一种用于玻璃工艺的冷却部区域的防析晶装置及工艺方法生产的高氧 化铝含量平板玻璃产品, 在化学钢化后: 钠钙玻璃, 其化学钢化离子交换深度 最高可 30— 40微米; 现有铝触摸屏面板玻璃, 其化学钢化离子交换深度可 150 一 200微米; 本发明的化学钢化离子交换深度可 250— 350微米, 所以本发明的 采用玻璃技术中冷却部防析晶工艺方法生产的平板玻璃, 化学钢化后的离子交 换层的抗拉强度与耐磨度性质会大大上升。
从上述 5个实施例可见, 本发明所述的一种用于玻璃工艺的冷却部区域的 防析晶装置和防析晶工艺方法生产的平板玻璃, 是一种创新的, 从来没有被公
说 明 书 开和揭示的技术; 其发明目的是:
特别适用于生产这类有两面性特征的的玻璃材料: [1]重量计百分率, 氧化 铝 2— 35%、 氧化钠为 0. 01— 16%、 氧化硅: 氧化钙 1. 6— 5. 8倍; 氧化钙; 氧化 镁 0. 8— 1. 8倍的成分的玻璃材料; [2] 有两面性之缺陷特征的玻璃材料: 在强 析晶温度范围时, DSC曲线中结晶峰尖锐,玻璃从液态向析晶失透转化有时间短 并速度快 [大多为 20分钟一 2小时]的特征的玻璃材料。 [3]本发明生产出的玻璃 具有低溶化粘度温度、 低排气泡粘度温度、 低成型粘度温度特征, 从而产生节 能技术效果和少气泡、 少非熔化碴点等产品品质优势、 具有对高氧化铝含量又 有低温共熔的高抗折强度特征、 还具有优秀热膨胀系数性质特征、 具有优、 秀 的耐磨特征的优秀技术效果。
从上述 5个实施例可见, 本发明是一种创新的, 从来沒有被公开和揭示的 技术; 其发明目的是:
特别实用于生产一种有两面性特征的玻璃材料: 超薄电子 TFT玻璃制品, 高耐刮划耐磨触摸屏电子玻璃制品, 浮法建筑平板玻璃制品、 格法平板玻璃制 品、 溢流下拉法平板玻璃制品、 压延法平板玻璃制品、 玻璃纤维制品、 拉管玻 璃制品、 压制玻璃制品、 吹制玻璃制品、 玻璃包装制品。
1、从上述 5个实施例可见, 玻璃材料具有: 对高氧化铝含量又有低温共熔 的高抗折强度特征、 低溶化粘度温度 、 低排气泡粘度温度、 低成型粘度温度特 征, 从而产生节能技术效果和少气泡、 少非熔化碴点等产品品质优势、 还具有 优秀热膨胀系数性质特征、 具有优秀的耐磨度特征的优秀技术效果;
2、 从上述 5个实施例可见, [1]玻璃材料又具有析晶温度高于玻璃成型温 度 60—— 10CTC的特征; [2]又有玻璃在强结晶温度范围时 DSC曲线中结晶吸峯 尖锐, 玻璃从液态向析晶失透转化时间短并速度快的特征, 其析晶温度范围达 30分钟—— 2小时, 玻璃会从液态向析晶失透转化;
3、从上述 5个实施例可见,在生产本发明限定成分的这类特征的玻璃材料 时, 又在出现前述的大生产中会无法廻避的 10类工艺状态时: 通过前述的一种 用于玻璃工艺的冷却部区域的防析晶装置及工艺方法技术方案:
[1]、来保障玻璃液面之上的空间中,在位于冷却部靠池壁耐火砖上粘附的 玻璃液的温度始终高于析晶温度 50°C以上, 具备完全不析晶的技术效果;
[2]、来保障在冷却部的占玻璃液总体积 40~60%的后半部的范围中的玻璃
说 明 书 液的温度始终高于析晶温度 50°C以上, 具备完全不析晶的技术效果;
[3]、 来保障玻璃液的底部到液面上的所有范围中, 玻璃液的温度始终高 于析晶温度 50Ό以上, 具备完全不析晶的技术效果, 达到克服这类在强结晶温 度范围时 DSC曲线中结晶吸峯尖锐, 玻璃从液态向析晶失透转化时间短并速度 快的特征的玻璃材料的缺陷的一面的技术效果。
[4] 在生产这类特征的平板玻璃材料时, 能克服先有技术, 在大生产中不 可避免的 10种生产工艺原因必须关闭冷却部装置尾部的安全闸板时: 将没有从 溶化部源源不断的 1450— 1540 C或以上的高温玻璃液的进入所带来的温度基础 性保障, 因此会使冷却部玻璃液几个小时全部析晶固化, 会使冷却部装备会全 部破坏, 会造成全生产线停产的严重技术后果的难点问题;
4、从上述 5个实施例可见,只有通过前述的一种用于玻璃工艺的冷却部区 域的防析晶装置及工艺方法的技术方案, 才可使这类新功能性的有巅覆性明显 优势的玻璃材料, 在大生产中克服析晶失透转化时间短并速度快的缺陷的一面, 成为有巅覆性明显优势的产品: 具有低溶化粘度温度 、 低排气泡粘度温度、低 成型粘度温度特征, 从而产生节能技术效果和少气泡、 少非熔化碴点等产品品 质优势、 具有对高氧化铝含量又有低温共熔的高抗折强度特征、 还具有优秀热 膨胀系数性质特征、 具有优秀的耐磨特征的技术效果的, 使这类玻璃材料的玻 璃制品的巅覆性优势的技术效果成为现实。
5、如不采用前述的本发明一种用于玻璃工艺的冷却部区域的防析晶装置及 工艺方法的技术方案, 则不能在大生产中, 克服这类析晶失透转化时间短并速 度快的玻璃材料缺陷的一面, 不能使这类玻璃材料的玻璃制品的巅覆性优势的 技术效果成为现实。 所以本发明的创造性技术方案产生的防析晶的显而易见技 术效果, 才能使这类新功能性玻璃材料的巅覆性的上述优势变为产品大生产的 现实, 有显而易见技术效果。
6、 一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工艺方法, 揭示 了从来没有被现有技术公幵或揭示的 -
[1]在生产本发明限定成分的这类特征的玻璃材料时, 出现的技术难点, 而 这些技术难点是先有技术解决不了的;
[2]通过前述的一种用于玻璃工艺的冷却部区域的防析晶装置及工艺方法
说 明 书 技术方案, 能克服这些技术难点是先有技术解决不了的技术难点;
[3]能产生的预料不到的前述多种技术效果: [a]能克服位于冷却部靠池壁耐 火砖上粘附的玻璃液析晶, 出现大量失透的晶体块, 不断掉入冷却部玻璃液池 中, 流入成型部而造成玻璃产品中有大量析晶的失透的晶体块, 使品质完全不 合格的难点问题;
[b] 能克服先有技术, 在大生产中不可避免的 10种生产工艺原因必须关闭 冷却部装置尾部的安全闸板时: 将没有从溶化部源源不断的 1450— 154CTC或以 上的高温玻璃液的进入所带来的温度基础性保障, 因此会使冷却部玻璃液几个 小时全部析晶固化, 会使冷却部装备会全部破坏, 会造成全生产线停产的严重 技术后果的难点问题;
所以上述多种层次的技术效果, 也不是业内人士显而易见的; 也不是一种 事后认为的用简单的逻辑推理或者简单试验就可以得出的; 都是预料不到的效 果产生了的 "质"和 "量" 的变化, 本发明方案是非显而易见的, 具有突出的 实质性特点和显著的技术进步。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发 明的精神和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发 明的保护范围之内。
Claims
1、 一种用于玻璃工艺的冷却部区域的防析晶装置, 其特征在于: 在冷却部 的玻璃液面之上的空间中, 在靠池壁耐火砖的内侧 10— 80mm的距离范围内, 有 2个至 80个电加热装置和 2个至 80个测定温度装置。
2、 根据权利要求 1所述的一种用于玻璃工艺的冷却部区域的防析晶装置, 其特征在于: 在冷却部的玻璃液面之上的空间中, 在靠池壁耐火砖的内侧 10— 80mm的距离范围内, 有 2个至 80个电加热装置和测定温度装置, 环绕布局在 靠池壁耐火砖的内侧; 所述加热装置的之间距离以加热装置的几何中心点计算, 相互中心点距离为 0.3m至 2m。
3、 根据权利要求 1所述的一种用于玻璃工艺的冷却部区域的防析晶装置, 其特征在于: 在玻璃液从冷却部进入锡窑的导流槽装置的夹口的横向出口处的 纵向 0.5m距离内, 设置横向排列有 2— 10个电加热装置和 2— 10个测定温度装 置。
4、 根据权利要求 1所述的一种用于玻璃工艺的冷却部区域的防析晶装置, 其特征在于: 冷却部的底部安装有 2— 10个钼金属流道口。
5、根据权利要求 1所述的一种用于玻璃工艺的冷却部区域的防析晶装置的 工艺方法, 其特征在于,
[1]将按重量百分率计, 氧化钠的含量为 0.01—— 16%, 氧化铝含量为至 6 —— 35%, 氧化硅的含量是氧化钙含量的至 1.8— 5.58倍, 氧化硅的含量是氧化 钙含量的至 1.6— 5.8倍, 氧化钙的含量是氧化镁的含量 0.8至 2.2倍的原料, 熔 化后, 引入冷却部;
[2]在冷却部的玻璃液面之上的空间中, 在靠池壁耐火砖的内侧 10— 80mm 的距离范围内有 2个至 80个相互距离为 0.3m至 2m的电加热装置和 2个至 80 个测定温度装置, 形成了一个互相中心点距离为 0.3m至 2m的环绕安装布局的 装置;
[3]当测温装置测得温度低于玻璃液的析晶温度 50°C时, 加热装置开始加 热; 当测温装置测得温度高于玻璃液的析晶温度 100'C时, 加热装置停止加热。
权 利 要 求 书
6、 根据权利要求 5所述的一种用于玻璃工艺的冷却部区域的防析晶装置的 工艺方法, 其特征在于: [1]在冷却部的占玻璃液总体积 40— 60%的靠出口方向 的后半部的玻璃液的范围中,安装的 6个至 40个电加热装置这个技术方案系统; [2] 工艺方法的程序规范设计为:当测温装置测得温度低于玻璃液的析晶温度 50 °C时,加热装置开始加热,当测温装置测得温度高于玻璃液的析晶温度 100Ό时, 加热装置停止加热。
7、 根据权利要求 5所述的一种用于玻璃工艺的冷却部区域的防析晶装置 的工艺方法, 其特征在于: [1]在玻璃液的下面深度 1/2底部范围, 安装 6— 40 个电加热装置和 6个至 40个测定温度装置; 其靠池壁耐火砖的内侧的四周, 形 成了一个环绕的底部安装布局; [2] 工艺方法的程序规范设计为: 当测温装置测 得温度低于玻璃液的析晶温度 50°C时, 加热装置开始加热, 当测温装置测得温 度高于玻璃液的析晶温度 100°C时, 加热装置停止加热。
8、根据权利要求 5所述的一种用于玻璃工艺的冷却部区域的防析晶装置的 工艺方法, 其特征在于: [1] 在冷却部中玻璃液的深度为 0.15M— 0.9M的区域 内, 按冷却部玻璃液的平面面积计示示, 每间隔 0.2平方米一 2平方米范围安装了 1—5个加热装置和 1一 5个测温装置;
工艺方法的加热装置工艺控制程序设计的前提: 当玻璃液平面线出现上升 和下降变化时, 使玻璃液平面线也出现不同程度的上升和下降变化, 或冷却部 玻璃液量变化时; 尤其产生较大故障, 或成型工段上因维护或操作失误、 或成 型部产生故障或者更换产品、 或者进行成型工艺中变化拉引量、 变化产品厚薄 等调试时、 或玻璃的成型工序产生故障、 或退火工序产生故障、 或切材工序产 生故障、 或装包工序产生故障、 或要在不放玻璃液进行维修等 13类大生产中不 可避免的工艺状态, 必须关闭冷却部装置尾部的安全闸板时, 加大加热装置功 率。
9、根据权利要求 5所述的一种用于玻璃工艺的冷却部区域的防析晶装置的 工艺方法, 其特征在于:
工艺方法的加热装置工艺控制程序设计的前提: 当玻璃液平面线出现上升 和下降变化时, 使玻璃液平面线也出现不同程度的上升和下降变化, 或冷却部
权 利 要 求 书 玻璃液量变化时; 尤其产生较大故障, 或成型工段上因维护或操作失误、 或成 型部产生故障或者更换产品、 或者进行成型工艺中变化拉引量、 变化产品厚薄 等调试时、 或玻璃的成型工序产生故障、 或退火工序产生故障、 或切材工序产 生故障、 或装包工序产生故障、 或要在不放玻璃液进行维修等 13类大生产中不 可避免的工艺状态, 必须关闭冷却部装置尾部的安全闸板时;
这时的工艺控制程序设计为; 加大所有加热装置功率, 加热装置功率要设 置为所有加热装置的功率高于正常大生产时的 3— 15倍。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310646500.8 | 2013-12-06 | ||
CN201310646500.8A CN104692622A (zh) | 2013-12-06 | 2013-12-06 | 一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工艺方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015081601A1 true WO2015081601A1 (zh) | 2015-06-11 |
Family
ID=53272796
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/000778 WO2015081601A1 (zh) | 2013-12-06 | 2014-08-19 | 一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工艺方法 |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN104692622A (zh) |
TW (1) | TW201522258A (zh) |
WO (1) | WO2015081601A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114988668A (zh) * | 2022-05-27 | 2022-09-02 | 凤阳凯盛硅材料有限公司 | 一种解决硼硅玻璃缺陷的放料工艺 |
CN115974368A (zh) * | 2022-12-20 | 2023-04-18 | 甘肃旭盛显示科技有限公司 | 玻璃生产方法及玻璃生产装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108706856A (zh) * | 2017-12-27 | 2018-10-26 | 杨德宁 | 一种玻璃制品的横向火焰池窑生产系统以及生产方法 |
CN110510868A (zh) * | 2018-05-21 | 2019-11-29 | 杨德宁 | 一种采用新横向火焰池窑生产系统的工艺方法所生产的超高铝玻璃制品 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101405231A (zh) * | 2006-01-24 | 2009-04-08 | 肖特股份公司 | 熔体的温度操控方法 |
CN103232151A (zh) * | 2012-06-05 | 2013-08-07 | 杨德宁 | 玻璃的生产设备及成型工艺方法 |
CN203728703U (zh) * | 2013-12-06 | 2014-07-23 | 杨德宁 | 一种用于玻璃工艺的防析晶的冷却部 |
-
2013
- 2013-12-06 CN CN201310646500.8A patent/CN104692622A/zh active Pending
-
2014
- 2014-08-19 TW TW103128369A patent/TW201522258A/zh unknown
- 2014-08-19 WO PCT/CN2014/000778 patent/WO2015081601A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101405231A (zh) * | 2006-01-24 | 2009-04-08 | 肖特股份公司 | 熔体的温度操控方法 |
CN103232151A (zh) * | 2012-06-05 | 2013-08-07 | 杨德宁 | 玻璃的生产设备及成型工艺方法 |
CN203728703U (zh) * | 2013-12-06 | 2014-07-23 | 杨德宁 | 一种用于玻璃工艺的防析晶的冷却部 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114988668A (zh) * | 2022-05-27 | 2022-09-02 | 凤阳凯盛硅材料有限公司 | 一种解决硼硅玻璃缺陷的放料工艺 |
CN115974368A (zh) * | 2022-12-20 | 2023-04-18 | 甘肃旭盛显示科技有限公司 | 玻璃生产方法及玻璃生产装置 |
CN115974368B (zh) * | 2022-12-20 | 2024-07-09 | 甘肃旭盛显示科技有限公司 | 玻璃生产方法及玻璃生产装置 |
Also Published As
Publication number | Publication date |
---|---|
CN104692622A (zh) | 2015-06-10 |
TW201522258A (zh) | 2015-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW201522246A (zh) | 一種超薄玻璃成型工藝生產的浮法平板玻璃 | |
WO2015081604A1 (zh) | 一种冷却部防析晶方法生产的平板玻璃 | |
TWM495364U (zh) | 一種用於玻璃工藝的防析晶的冷卻部 | |
TWI538889B (zh) | Manufacture of glass plates | |
WO2015081601A1 (zh) | 一种用于玻璃工艺的冷却部区域的防析晶装置和防析晶工艺方法 | |
CN110746095B (zh) | 一种精细化温度调整的基板玻璃生产成型设备 | |
KR102483260B1 (ko) | 무알칼리 유리 기판의 제조방법 | |
WO2012132474A1 (ja) | ガラス基板の製造方法 | |
JP7421161B2 (ja) | 無アルカリガラス基板の製造方法及び無アルカリガラス基板 | |
TW201245070A (en) | Method for producing glass plate | |
JP5777590B2 (ja) | ガラス基板の製造方法及びガラス基板の製造装置 | |
JP2016153344A (ja) | フロートガラス製造方法、フロートガラス製造装置、およびフロートガラス | |
WO2013181923A1 (zh) | 玻璃的生产设备及成型工艺方法 | |
JP6665435B2 (ja) | ガラス物品の製造方法 | |
WO2015081602A1 (zh) | 一种冷却部防析晶方法生产的玻璃纤维 | |
CN203558961U (zh) | 玻璃板制造装置 | |
WO2019223325A1 (zh) | 一种玻璃制品的横向火焰池窑生产系统以及生产方法 | |
JP2014009133A (ja) | ガラス基板の製造方法およびガラス基板の製造装置 | |
JP5921742B2 (ja) | ガラス板の製造方法、及び、ガラス板の製造装置 | |
WO2021002260A1 (ja) | ガラス物品の製造方法及びガラス物品の製造装置 | |
WO2015081605A1 (zh) | 一种冷却部防析晶方法生产的玻璃器皿 | |
CN113493294B (zh) | 一种高锂微晶玻璃生产系统及其生产方法 | |
CN102822103B (zh) | 玻璃板制造方法 | |
CN102190424B (zh) | 无机板材的制造方法、装置 | |
CN103373803A (zh) | 玻璃基板的制造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14867166 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14867166 Country of ref document: EP Kind code of ref document: A1 |