WO2019223189A1 - Pva水凝胶、使用其的复合材料、其制造方法及其应用 - Google Patents

Pva水凝胶、使用其的复合材料、其制造方法及其应用 Download PDF

Info

Publication number
WO2019223189A1
WO2019223189A1 PCT/CN2018/105453 CN2018105453W WO2019223189A1 WO 2019223189 A1 WO2019223189 A1 WO 2019223189A1 CN 2018105453 W CN2018105453 W CN 2018105453W WO 2019223189 A1 WO2019223189 A1 WO 2019223189A1
Authority
WO
WIPO (PCT)
Prior art keywords
pva
hydrogel
pva hydrogel
solution
composite material
Prior art date
Application number
PCT/CN2018/105453
Other languages
English (en)
French (fr)
Inventor
刑孟秋
吴军
叶海雁
刘抗
邱佩琪
Original Assignee
湖州斯蔓生物材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖州斯蔓生物材料有限公司 filed Critical 湖州斯蔓生物材料有限公司
Publication of WO2019223189A1 publication Critical patent/WO2019223189A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L17/00Materials for surgical sutures or for ligaturing blood vessels ; Materials for prostheses or catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/04Macromolecular materials
    • A61L29/041Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • A61L29/145Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/048Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/145Hydrogels or hydrocolloids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/06Flowable or injectable implant compositions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/16Materials with shape-memory or superelastic properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/21Urea; Derivatives thereof, e.g. biuret

Definitions

  • the invention relates to a polyvinyl alcohol (PVA) hydrogel, a composite material based on the PVA hydrogel, a method for manufacturing the PVA hydrogel, and an application of the PVA hydrogel.
  • PVA polyvinyl alcohol
  • Polyvinyl alcohol is one of the most important synthetic polymers composed of carbon, oxygen and hydrogen atoms, and is biodegradable under aerobic and anaerobic conditions. It is widely used in commercial, industrial, medical and nutritional care field. PVA can be easily dissolved in water.
  • PVA hydrogels are generally synthesized by two common mechanisms, including chemical bonding using a cross-linking agent such as glutamate and / or physical means such as freezing and thawing. PVA is very important for biomedical, tissue engineering and soft robot applications.
  • the PVA hydrogels prepared by the above conventional methods have the disadvantages of relatively poor mechanical properties and complex preparation processes. It is expected that a method can be developed that can be prepared in a simple manner.
  • the excellent performance of PVA hydrogel makes PVA hydrogel more suitable for applications in implantable electronics, nanomedicine and minimally invasive technology, and biomedicine.
  • PVA hydrogel can be obtained in a simple manner by gelling PVA using an alkaline solution.
  • PVA hydrogels with excellent properties that can be applied in various fields can be obtained.
  • the invention provides a PVA hydrogel, which has an elastic modulus of 1 MPa-20 MPa and an ultimate strength of 10 MPa-100 MPa.
  • the PVA hydrogel of the present invention has a deformation recovery rate of 65-95% when water is added.
  • the PVA hydrogel of the present invention has a deformation recovery rate of 70-92% when water is added.
  • the contact angle of the PVA hydrogel of the present invention is 15-20 degrees.
  • the invention also relates to a composite material comprising the PVA hydrogel.
  • the composite material includes the PVA hydrogel and magnetic nanoparticles incorporated in the PVA hydrogel.
  • the composite material includes the PVA hydrogel and graphene incorporated in the PVA hydrogel.
  • the composite material includes the PVA hydrogel and carbon nanotubes incorporated in the PVA hydrogel.
  • the composite material includes the PVA hydrogel and urea incorporated in the PVA hydrogel.
  • the composite material includes a layer formed from the PVA hydrogel and polyaniline coated on the PVA hydrogel.
  • the composite material includes a layer formed of a PVA hydrogel containing silver nanoparticles, a layer formed of a PVA hydrogel, and a layer formed of a PVA hydrogel containing carbon nanotubes, which are sequentially stacked.
  • the invention also relates to a novel method for preparing a PVA hydrogel, which comprises mixing polyvinyl alcohol having a molecular weight of 100-1000K with water to obtain a PVA solution, then pouring the PVA solution into a petri dish, and preparing the PVA after drying. And then immersing the PVA film in an alkaline solution having a molar concentration of 1 to 10 M to obtain a PVA hydrogel.
  • the method of the present invention can manufacture a PVA hydrogel in a simpler manner.
  • examples of the alkaline solution include solutions of NaOH, KOH, LiOH, ammonia, sodium carbonate, sodium bicarbonate, and the like.
  • the alkaline solution is a NaOH solution or a KOH solution, and the molar concentration is 3-10M. More preferably, the alkaline solution is a NaOH solution or a KOH solution, and the molar concentration is 3-6M.
  • the method of the present invention further comprises washing the PVA hydrogel with pure water.
  • the method of the present invention further comprises dehydrating the PVA hydrogel.
  • This dehydration treatment can further improve the mechanical strength of the PVA hydrogel.
  • the dehydration treatment is air drying at room temperature for 2-8 hours.
  • the dehydration treatment is dried at room temperature for 2-5 hours using a micro fan.
  • polyvinyl alcohol and water are mixed at a mass ratio of 1: 5 to 1:30, and placed in a shaking bath at 60 ° C. overnight to obtain a PVA solution.
  • polyvinyl alcohol is mixed with water to obtain a PVA solution having a concentration of 10%, and the ratio between the PVA solution and the alkaline solution in parts by weight is 1: 3-10.
  • the PVA solution is poured into a petri dish and dried at room temperature for 8-24 hours.
  • the PVA film is immersed in the alkaline solution for 1-60 minutes; further preferably, the PVA film is immersed in the alkaline solution for 10-20 minutes.
  • the invention also relates to a PVA hydrogel prepared by using the above method.
  • the PVA hydrogel has excellent mechanical properties, shape memory, hydrophilicity, biocompatibility, 3D printability, or injectability. .
  • the invention also relates to the application of a PVA hydrogel, which is used to manufacture any one of a catheter, a 3D printable solution, an injectable electronic device, a microfluidic channel, a bioabsorbable sensor, and a miniature robot.
  • the invention also relates to the application of a PVA hydrogel for the manufacture of any of tissue engineering scaffolds, surgical sutures, medical gloves and condoms.
  • the present invention can provide multifunctional polyvinyl alcohol with excellent mechanical properties, shape memory, hydrophilicity, biocompatibility, 3D printability or injectability by gelling PVA with an alkaline solution. Hydrogels.
  • PVA polyvinyl alcohol
  • the ability to benefit from 3D printing and microfluidics technology offers great promise for the commercialization of this new type of material for different industrial fields.
  • the present invention can provide a strong PVA hydrogel that can carry a weight 1500 times higher than its weight.
  • the simple manufacturing process and biocompatibility of the PVA hydrogel can not only represent a good candidate for the next generation of resistance catheters, but also can be combined with a catheter-based monitoring system.
  • the PVA hydrogel thus prepared can be used in the manufacture of tissue engineering scaffolds, surgical sutures, medical gloves and condoms.
  • the new material has proposed numerous applications in the fields of drug delivery, biomedical devices, biorobots and biomedicine.
  • Figure 1 shows a PVA hydrogel-based composite material made by combining a 10% PVA solution with different nanomaterials by the method of the present invention, where Figure A is a combination of PVA and MNP (magnetic nanoparticles); Figure B is The combination of PVA and exfoliated graphene; Figure C is a PVA ultra-thin film containing CNT (carbon nanotubes); Figure D is a PVA coated with PANI (polyaniline) after one and multiple coatings; Figure E is a pass PANI-coated PVA performs pH sensing of color changes.
  • Figure A is a combination of PVA and MNP (magnetic nanoparticles)
  • Figure B is The combination of PVA and exfoliated graphene
  • Figure C is a PVA ultra-thin film containing CNT (carbon nanotubes)
  • Figure D is a PVA coated with PANI (polyaniline) after one and multiple coatings
  • Figure E is a pass PANI-coated PVA performs pH sensing of color changes
  • FIG. 2A shows the chemical structure of fully hydrolyzed PVA
  • FIG. 2B shows the chemical structure of partially hydrolyzed PVA.
  • FIG. 3A shows the chemical structure of a partially hydrolyzed PVA aqueous solution
  • FIG. 3B shows that the dried PVA film is cured by adding a concentrated NaOH solution with strong hydrogen bonds.
  • FIG. 4A shows the ATR-FTIR results of a PVA hydrogel prepared with a molar concentration of 6M NaOH according to the present invention
  • FIG. 4B shows the ATR-FTIR results of a dry original PVA film.
  • FIG. 5 is an SEM image of a hydrogel obtained by mixing PVA and urea at different ratios (for determining the swelling ratio) of the present invention, where FIG. A is a mixture of PVA and urea at a ratio of 90:10 by mass percentage Pour into a petri dish and dry the hydrogel obtained by gelation with sodium hydroxide.
  • Figure B is a mixture of 5ml urea (molar concentration 8M) and 5ml PVA (with 0.4gr PVA powder added). A sample obtained by gelation of sodium.
  • Figure 6 shows the ATR-FTIR results of PVA hydrogels made of different concentrations of NaOH (molar concentrations of 1M, 3M, and 6M, respectively) according to the present invention.
  • 7A, 7B, and 7C are photographs of a PVA hydrogel prepared using NaOH having a molar concentration of 1M, 3M, and 6M, respectively.
  • FIG. 8 shows the tensile results of 10% PVA hydrogels cured with different types and concentrations of hydroxides according to the present invention, where FIG. 8A is a photograph of PVA hydrogels during a tensile test; Stress-strain curves and elastic modulus of PVA hydrogels prepared with different concentrations of NaOH (sizes (length, width, and thickness) of samples prepared using NaOH at concentrations of 3M, 5M, and 6M were 15, 5, 0.1 (Unit: mm), the size of the sample prepared using NaOH concentration of 1M is (length, width and thickness) 12, 5, 0.05 (unit: mm), the test speed is 10mm / min); Figure 8C is using KOH The stress-strain curve and elastic modulus of PVA hydrogels prepared by NaOH and LiOH (the size (length, width and thickness) of samples made using KOH and NaOH are 15, 5, 0.1 (unit: mm); use The dimensions (length, width, and thickness) of the samples prepared by LiOH were 15, 3, and 0.05 (unit:
  • Figure 8E shows the PVA hydrogel strip Tensile properties after air drying for 2.5 hours (test speed of 5mm / min, sample size is 111, 10, 0.3 (unit: mm) (top curve)) (second time); 94, 10, 0.3 (mm) ( The curve at the lower end) (first time));
  • Figure 8F is the cyclic tensile test under indoor conditions (PVA samples made by pouring 20ml PVA were cut into lengths, widths and thicknesses of 17, 5 and 0.1, respectively (Dimensions in mm);
  • Figure 8G is a cyclic tensile test of a PVA hydrogel when a humidifier is used to prevent dehydration during the test (length, width, width
  • FIG. 9A shows the sharp object resistance of the PVA hydrogel of the present invention
  • FIG. 9B shows the PVA-PANI coating tape carrying a weight of 15Kg.
  • Fig. 10 shows the degradation test of PVA hydrogel under heating, in which Figs. 10A, 10B and 10C are SEM observations of a conventional PVA hydrogel film; Figs. 10D, 10E and 10F are obtained by heating at 70C for 30 minutes SEM images of PVA films, where the samples of FIGS. 10A, 10B, 10D, and 10E were gold-plated before SEM, and the samples of FIGS. 10C and 10F were not gold-plated.
  • Fig. 12 shows the shape memory of the PVA hydrogel of the present invention, wherein Fig. 12A shows that the PVA strip is immersed in a 6M NaOH solution and stretched from 13mm to 36mm, and then immersed in water and recovered after a few seconds Its original length; Figure 12B shows that the shrinkage force caused by adding water can increase the weight of 500gr to 3.5cm; Figure 12C shows that the shrinkage force caused by adding water can increase the weight of 200gr to 10cm; Figure 12D shows the same as 12B, The same samples used in 12C and 12E, where L0 is the original length, L1 is the length when the sample is stretched to 32mm, and L2 is related to the time of immersion in water after testing; Figure 12E shows the shrinkage force caused by water addition.
  • FIGS. 13A and 13B are SEM images of a PVA hydrogel immersed in a NaOH solution of the present invention
  • FIGS. 13C and 13D are SEM images of a PVA hydrogel of the present invention, which are first immersed in a NaOH solution and then completely Stretch to the plastic area (arrows indicate stretching direction).
  • Figure 14 shows the EDX results of a PVA hydrogel of the present invention, where Figure 14A shows a SEM image of a PVA hydrogel immersed in a NaOH solution, with selected regions for EDX analysis; Figures 14B and 14C The atomic and weight percentages of the elements in the selected area and the quantitative results are shown.
  • 15A and 15B are SEM images of a cross-section of a three-layer composite material according to the present invention, where the left layer is PVA-CNT, the middle layer is separate PVA, and the right layer is PVA-silver nanoparticles; 15C and 15D show high-resolution boundaries between two layers with and without CNT (right); Figures 15E and 15F show higher resolution of PVA layers containing silver nanoparticles .
  • FIG. 16 shows the EDX results of the CNT-PVA-silver nanoparticle composite material of the present invention, wherein FIG. 16A is a SEM image of a cross section of a composite material including three layers and three regions selected for EDX research; FIG. 16B , 16C and 16D are the element percentages and quantitative results for each selected area.
  • Fig. 17A shows the synthesis of tubes of different diameters based on the PVA hydrogel of the present invention
  • Fig. 17B shows that the tube behaves like a balloon when high pressure air is applied
  • Fig. 17C shows that the tube is strong when dry, but the area in contact with water is elastic Yes, so when high pressure air passes through the tube, the tube will mimic a balloon.
  • Figure 18 shows an injectable mesh electronic device with an open macroporous structure and similar mechanical properties to brain tissue, which provides a new minimally invasive method for mapping and regulating brain activity.
  • Figure 19A shows the PVA-CNT solution during printing during 3D printing
  • Figure 19B is a cured 3D printing net
  • Figures 19C and 19D are 3D printing nets injected through a small pipette tip with a diameter of 400 ⁇ m.
  • Figure 20 shows a PVA-CNT conductive ink printed on a thin PVA film.
  • FIG. 21A illustrates the synthesis of microfluidic channels on a PVA hydrogel film
  • FIG. 21B illustrates alginate printed on a PVA hydrogel film and curing layer by layer.
  • FIGS. 22A and 22B are optical images of a microfluidic channel made on a PVA tube by using a small rod for manufacturing a tube, in which water containing dye is injected into the channel and the tube is placed in water under UV to micron The fluid is shown in the flow control system, and Figure 22B shows a large tube with multiple printed microchannels on the tube wall.
  • FIG. 23A is a schematic diagram of a bioabsorbable electronic scaffold (BES) including a bioabsorbable temperature and flow sensor, a memory module, and a therapeutic nanoparticle, in which a NIR exposure can be used to initiate a treatment function;
  • FIG. 23B shows a BES Placed on a balloon catheter to deliver it into the dog's common carotid artery in vivo;
  • Figure 23C shows X-ray images of the balloon catheter and BES in a dog model before (left) and after (right) inflation of the balloon catheter
  • FIG. 23D shows a BES implanted in vivo in the common carotid artery of a dog;
  • FIG. 23E shows a volume-drawn CT image of the BES in vivo.
  • Figure 24A is a photo of a tube with a printed CNT net (for recording signal changes related to internal pressure);
  • Figure 24B shows a sensor made of CNT / PVA (the sensor is connected to a fluid through (Pipe) of the catheter.
  • FIG. 25 shows a PVA-gelatin film, which is obtained by pouring 5 mL of a PVA solution on a petri dish, and leaving it to stand in a NaOH solution after drying to form a gel.
  • FIG. 26 is a schematic diagram showing a liver lobular microstructure and a synthetic method for manufacturing linear liver micro-organs, wherein FIG. 26A shows a liver lobular microstructure: parenchymal hepatocytes (PH) are separated from sinusoids and form a liver having a thickness of 1
  • Figure 26B shows the binding
  • the alginate hydrogel microfibers of hepatocytes and 3T3 cells are manufactured using a microfluidic system, and the following figures show cross-sectional views of the alginate line of encapsulated cells before and after gelation.
  • Figure 27 is a schematic diagram of a droplet focusing microfluidic channel for layer-by-layer microgel manufacturing, where light gray with black dots is a drug-containing PVA hydrogel, and dark color is another PVA solution as a second A layer whose droplets can be formed by using a NaOH solution as a gel solution.
  • the invention provides a method for preparing a PVA hydrogel.
  • the method comprises sizing and drying a PVA solution in a mold and immersing the solution in an alkaline solution to obtain a PVA hydrogel.
  • the PVA having a molecular weight of 205,000 was dissolved in distilled water to make 10% PVA (100 mg / mL; 10 g of PVA was dissolved in 100 ml of distilled water) and left in a shaking bath heated at 60 ° C. overnight to form a PVA viscous solution. Then, 20 ml of a 10% PVA solution was poured into a glass dish with a diameter of 10 cm, dried at room temperature overnight, and then immersed in a 1M NaOH solution for 10-20 minutes. After gelation, it was washed with pure water. After washing, Drain the water and store it in a sealed container.
  • a PVA hydrogel was prepared in the same manner as in Example 1, except that the concentration of NaOH was changed to 3M.
  • a PVA hydrogel was prepared in the same manner as in Example 1, except that the concentration of NaOH was changed to 5M.
  • a PVA hydrogel was prepared in the same manner as in Example 1, except that the concentration of NaOH was changed to 6M.
  • a PVA hydrogel was prepared in the same manner as in Example 4 except that NaOH was changed to LiOH.
  • a PVA hydrogel was prepared in the same manner as in Example 4 except that NaOH was changed to KOH.
  • a PVA hydrogel was prepared in the same manner as in Example 4, except that the obtained PVA hydrogel was air-dried at room temperature for 2.5 hours.
  • the polyvinyl alcohol and water were mixed at a mass ratio of 10: 100, and the mixture was placed at 85-90 ° C under stirring conditions, and was completely dissolved in a constant temperature oil bath to obtain a PVA solution. Then put the PVA solution into the refrigerator, freeze it at -20 ° C for 18 hours, and then thaw it at room temperature for 3 hours. This freeze-thaw cycle is performed 3 times to obtain a conventional PVA hydrogel.
  • the PVA hydrogel designed by the invention has the capability of uniformly incorporating different nano materials.
  • a 10% PVA solution was used in combination with magnetic nanoparticles (MNP), exfoliated graphene, carbon nanotubes (CNT), and polyaniline (PANI) to prepare various The composite material of the PVA hydrogel of the present invention.
  • MNP magnetic nanoparticles
  • CNT carbon nanotubes
  • PANI polyaniline
  • FIG. 1A it can be known that combining PVA and MNP results in a stretchable magnetic film that can be used as a magnetic actuator (0.1gr magnetic nanoparticles are added to 5mL of PVA solution and sonicated and stirred, and then poured into the culture In a dish, it was dipped into a sodium hydroxide solution to gel after drying, to obtain a PVA hydrogel film doped with MNP).
  • Figure 1A shows how the magnetic film dances with the movement of the magnet.
  • FIG. 1B shows that the exfoliated graphene is perfectly embedded in the PVA network and made into a uniformly distributed film.
  • Figure 1C is a very thin nanofilm made of PVA and CNT (PVA and CNT 10mg / mL), in which the solution is poured on a petri dish and dried overnight, and then immersed in sodium hydroxide solution to gel and obtain a uniform The CNT-doped PVA hydrogel membrane, the image on the right shows an image when 10 mL of the solution was left to dry on a petri dish.
  • Figure 1D shows a PVA film coated with PANI (polyaniline) after one coating and multiple coatings. It is observed that PANI can be well coated on PVA films and can provide many applications in pH indicators Or for super capacitors. As shown in FIG. 1D and FIG.
  • the PVA film coated with PANI can effectively detect the change in pH by changing its color from green in an acidic environment to purple in an alkaline environment.
  • the preparation method of the present invention provides adjustable thickness production. It can be known from FIGS. 1A-1E that the PVA hydrogel of the present invention has excellent ability to combine various materials and can be used to prepare various composite materials.
  • the PVA hydrogel of the present invention was characterized by EDX, Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM). The mechanical and chemical properties, swelling ratio, and degradability of the PVA hydrogel of the present invention were analyzed. the study.
  • Figure 4 provides FTIR spectra of various samples to help further discuss the prepared composite films.
  • Figure 4A shows the FTIR spectrum of the cross-linked PVA treated with NaOH;
  • the cross-linked PVA pad was immersed in water for several days to ensure a successful cross-linking process.
  • the PVA hydrogel was immersed in a urea solution with a molar concentration of 8M and kept overnight, causing the PVA hydrogel to dissolve. This fact reveals the important role of hydrogen bonding.
  • a PVA solution and urea were mixed at 90/10 weight percent (PVA / urea) to prepare a PVA-urea hydrogel.
  • the SEM image in Figure 5 reveals an increase in the size of the porosity, which may be due to hindering the hydrogen bonding in the PVA hydrogel.
  • Figure 8A shows a sample of PVA-NaOH (6 molar molar NaOH) during a tensile test.
  • PVA hydrogel reached a high strain (about 300% strain)
  • a color change from transparent to white was observed in the sample, which indicates that the internal PVA chains are aligned in parallel and more ordered.
  • FIG. 8B studies the tensile properties and mechanical properties of the PVA hydrogels of Examples 1-4 prepared from different concentrations of NaOH.
  • the reported modulus of elasticity (at 50% strain) was obtained by averaging the results of the three samples of each group. It can be seen that the sample gelated with 1M NaOH in Example 1 has a very small elastic modulus of 0.04 MPa and has a very weak film.
  • the concentration of NaOH is increased to 3M, 5M, and 6M, strong PVA hydrogel films are obtained, the elastic modulus is increased to the order of 1 MPa, and the ultimate strength is significantly increased to the order of 10 MPa.
  • stretched to at least 100% strain linear elastic behavior was observed for all samples.
  • the film exhibits excellent stretchability, exceeding 350% of its original length.
  • FIG. 8C compares the tensile properties of the PVA hydrogels of Examples 4-6 gelled with different kinds of hydroxides including LiOH, NaOH, and KOH. The results show that the use of LiOH results in a weak PVA hydrogel, while the use of NaOH and KOH shows strong mechanical properties, the ultimate strength is greater than 10MPa, and the Young's modulus is greater than 1.3MPa.
  • FIG. 8D shows the effect of drying on the mechanical properties of PVA hydrogels.
  • 30mL of 10% PVA was poured into a large petri dish, and after drying, it was gelled with a 6M sodium hydroxide solution to form a 0.3mm thick PVA hydrogel film.
  • the PVA hydrogel sample was stored in distilled water. After wiping off the water from the sample surface, the tensile properties of the PVA hydrogel were tested three times at a speed of 5 mm / min, and the results are shown in FIG. 8D.
  • the PVA hydrogel exhibits stronger behavior, and it can be seen that dehydration plays a key role in the mechanical strength of the PVA hydrogel. It can be seen from FIG. 8D that when the PVA hydrogel is drier, the ultimate strength and Young's modulus increase.
  • the tensile test was repeated for the PVA hydrogel of Example 7 dried for 2.5 hours, and the results are shown in FIG. 8E.
  • the sample was tested twice at a speed of 5 mm / min. In the first test, it was stretched to 30% and slipped off the fixture. In the second test, the hydrogel exactly followed the same trend as the previous results shown after 2.5 hours, which It is shown that the effect of drying on the mechanical properties during this test is negligible.
  • the cycle tensile test was repeated for the same PVA hydrogel sample of FIG. 8G and in order to evaluate the drying effect, this time the hydrogel was exposed to a water vapor generating humidifier to prevent water evaporation during the cycle test.
  • the cyclic test shown in FIG. 8G shows that the upper left, upper right, and lower left figures represent the cyclic tensile and relaxation results under 12% -40%, 22% -70%, and 25% -100% strain, respectively.
  • Figure 8F which tested the gel under room conditions, there is only a difference between the first cycle and the last cycle, highlighting the effect of hydration on tensile behavior. Further testing of the same sample showed the presence of tensile behavior at the humidity shown in the upper left plot in Figure 8G.
  • FIG. 9 The PVA hydrogel made by pouring 5mL of PVA solution and dried after being treated with NaOH is shown in FIG. 9.
  • the film has excellent resistance to sharp metals, doctor blades and gentle push pins.
  • Figure 9B shows a photo of a PANI-coated PVA hydrogel used to carry a weight of 15 kg.
  • the degradability of the PVA hydrogel of the present invention was evaluated by leaving the hydrogel in water for 1 year, and no degradation was observed.
  • studies in combination with degradable materials can be performed.
  • urea can weaken the intramolecular effects and hydrogen bonding of PVA, and change the lattice energy and crystallinity.
  • the PVA hydrogel When soaked in a urea solution overnight, the PVA hydrogel was dissolved in a urea solution (molar concentration 8M).
  • a very stable chemical property was observed because it retained its properties even when immersed in a strong acid.
  • the 0.5mm thick PVA hydrogel film is heated; for temperatures below 50 ° C, the hydrogel is very stable, but at about 70 ° C, the hydrogel begins to regenerate and disappear.
  • the hydrogel film was heated at 70 ° C for 30 minutes and collected and kept in water at room temperature overnight. This heat treatment substantially reduces its mechanical properties and increases the swelling ratio.
  • FIG. 11A shows water droplets on a PDMS with a contact angle of 92.7 °.
  • FIG. 11B shows that the dried PVA film before gelation had a CA of 56.88 °.
  • FIG. 11C shows that the NaOH gelled PVA film of the present invention has a CA of 16 °, which indicates that the PVA hydrogel of the present invention is rich in hydrophilic surfaces (the contact angle is calculated after the droplets contact the film 5 seconds).
  • the shape memory of the PVA hydrogel in Example 4 of the present invention is shown in Figs. 12A and 12B.
  • samples within 2 hours show that they can recover more than 70% of their original length when water is added (samples with 26, 8, 0.1 (mm) dimensions are stretched to 100 mm and placed in water for several minutes , Then take it out and measure).
  • the maximum length was 32.6 mm, showing that 67.4 mm of plastic deformation was recovered (with a deformation recovery rate of about 91%), and samples having the same properties and appearance could be reused.
  • FIG. 13A and 13B show SEM images of a PVA hydrogel immersed in a NaOH solution of the present invention.
  • Figures 13C and 13D show the PVA hydrogel stretched to its plastic region. Comparing the high-resolution images ( Figures 13B and 13D), it is clear that the material fabric becomes a flat structure when the hydrogel is fully stretched. Moreover, the cracks appearing in FIG. 13D are perpendicular to the stretching direction. After adding water to the stretched strip, these cracks can be eliminated, corresponding to the restoration of plastic deformation. Therefore, the phenomenon of microscopic self-healing is obvious.
  • the layer-by-layer manufacturing capability of the method of the invention makes it possible to design multifunctional composite materials with various properties.
  • a composite film with PVA containing silver nanoparticles (NP), individual PVA, and CNT-containing PVA was prepared, and its cross section was investigated by SEM ( Figure 15), showing clear boundaries of micron thickness.
  • 0.5gr of each solution was poured into small dishes in three steps. The first solution was poured and dried completely, then similarly the second and third solutions were poured and air-dried. After that, a 6M NaOH solution was poured into the dried PVA composite film to complete gelation.
  • the conductivity of CNTs measured with a two-point probe is 30-50 Kohm / cm, silver nanoparticles are 400-600 kohm, and PVA is 10 Mohm.
  • FIG. 16 shows the EDX results of each layer in the composite material of the present invention. From the results, it can be seen that the PVA-CNT layer contains the highest amount of carbon compared to the other two layers. Silver picks also appear on the third floor. Therefore, the method of the present invention can synthesize micro-scale and nano-scale films with different materials and properties.
  • Catheter is a very important tool in minimally invasive cardiac therapy.
  • different types of polymers can be used to make catheters, including silicon, nylon, polyurethane, polyethylene terephthalate (PET), latex, and thermoplastic elastomers.
  • PET polyethylene terephthalate
  • thermoplastic elastomers thermoplastic elastomers
  • the PVA hydrogels developed by the present invention are beneficial as permanent and temporary (biodegradable) catheter-based implants.
  • Microtubes with adjustable mechanical properties and thickness can be manufactured by the method of the invention. To make the small tube, a metal rod was immersed in a 10% PVA solution and rotated by a custom motor with an additional drying fan for a single layer coating (Figure 17A). As the speed increases to higher frequencies, a uniform coating can be achieved. The coating process is repeated to achieve the desired thickness.
  • Various PVA-based solutions can be used for coating to obtain different composite materials. After drying, the coated rods were immersed in NaOH solution for 10 minutes to gel. They are easily peeled from metal bars and rinsed with water.
  • Balloon catheter manufactured layer by layer
  • the developed tube can also be used as a balloon catheter. Due to its elasticity, the tube acts like a balloon and can blow air when pressurized with fluid. As can be seen from FIG. 14B below, when the hydrogel is dried, it has a strong resistance to the applied pressure when the air passes. Water was used to wet a particular part of the tube to restore its elastic properties, which blow like a balloon after applying pressure ( Figure 14C).
  • PVA hydrogels with flexible, biodegradable, wireless, and injectable electronics can provide a long-term monitoring system for minimally invasive surgery and brain activity.
  • One challenge associated with the use of PVA hydrogels is the lack of controlled doses for real-time interactions. This can be solved by using layer-by-layer hydrogels, microfluidics or injectable electronics.
  • a 10% PVA solution (10% PVA solution with 10 mg / ml CNT) combined with a conductive agent enables the preparation of a conductive ink that can be gelled using the mechanism of the present invention.
  • PVA as a surfactant can help effectively disperse carbon nanotubes in solution without coagulation.
  • 10 mg / mL of CNTs were dispersed in a 2% (weight percent) PVA solution, sonicated and stirred for 1 hour. Add more PVA to reach 10 wt% PVA, keep heating and move the bath at 60 ° C overnight.
  • PVA-CNT ink was used as a printing ink to print an electronic net on the back of a petri dish, as shown in FIGS. 19A and 19B.
  • FIG 19B shows several print nets in the water. The ability to print very thin webs and high mechanical strength allows the development of injectable electronic webs; as seen in Figure 19, the strong gel is retained even after being pushed out through the hollow, narrow part of the tip of a small pipette Its completeness ( Figures 19C and 19D).
  • conductive inks including PVA-Ag nanowires and PVA-graphene are also manufactured.
  • the conductive particles containing the PVA solution can also be printed on the dried PVA hydrogel, printed layer by layer, and the electronic board can be printed on the PVA film.
  • Fig. 20 shows a printing screen on a PVA substrate, which prints well and is assembled with its substrate (Fig. 20 shows the performance of a printing screen on a PVA substrate).
  • To prepare the substrate 5 ml of 10 wt% PVA was poured into a petri dish and dried overnight. Then, PVA-CNT was printed on the dried PVA substrate, and then dried for several minutes, and then NaOH was added for curing (Figure 20).
  • microfluidic chips are usually made with PDMS membranes using different methods and processes, and are often associated with surface modification of the inner channel to enhance the hydrophilicity of microfluidic applications.
  • the present invention introduces new alternatives to microfluidic channels that are typically made with PDMS.
  • the PVA hydrogel of the present invention has been shown to be capable of being used as an alternative method for manufacturing microfluidic channels of various shapes and sizes.
  • the application of PVA hydrogels in novel biomedical sensors and catheters is by combining PVA and conductive nanomaterial And it is compatible with 3D printing manufacturing to present, it provides a new solution for the microfluidic chip laboratory system.
  • microfluidic channels can be printed on non-planar surfaces.
  • a metal rod was immersed in a PVA solution and rotated under a fan to obtain a uniform film covering the rod. This process was repeated three times. Alginate was then printed on the surface of the PVA. Then, the alginate-printed PVA was immersed in the PVA again and dried three times, and then the system was placed in a NaOH solution for 20 minutes. The sample was washed with water and easily removed from the stick. The samples were left in water overnight to neutralize the pH. The printed alginate was then pushed out of the channel, resulting in the formation of microfluidic channels on the PVA tube ( Figure 22).
  • the PVA-based manufacturing method of the present invention provides new opportunities for the development of new microfluidic devices. Compared with commonly used PDMS films, it shows higher mechanical properties, stretchability, ease of preparation, and hydrophilicity Surface and biocompatibility. This design is useful for introducing the concept of a chip laboratory for novel applications.
  • the PVA hydrogel developed by the present invention can be introduced into a biomedical sensor for measuring flow, pressure, and biological activity in different applications and environments, and has adjustable mechanical properties. Combining the PVA hydrogel of the present invention and a recently developed inexpensive technical laboratory with wireless data communication can provide a new generation of health monitoring systems for different conditions and different organs. Importantly, this may lay the foundation for imperceptible real-time health monitoring.
  • Figure 24 shows a catheter with a printed CNT-based conductive mesh to record the resistance signal caused by internal flow.
  • the elasticity and contractile properties of the hydrogel of the present invention can provide a new type of culture substrate, which stimulates human muscles to have contractile motion like myocardium.
  • PVA can be mixed with cell attachment proteins such as gelatin and dopamine to improve cell compatibility and be used in cell culture studies. After approaching the optimal mixture of PVA and gelatin with excellent cell viability properties, 3D printable cell culture media can be synthesized for different applications.
  • Figure 25 shows PVA (10% PVA and 1% gelatin) mixed with gelatin.
  • PVA hydrogels can be used to make new catheters.
  • Catheter is one of the means of drug delivery, it can deliver a large volume of the target solution to the target site.
  • the ability to design microfluidic channels on a tube allows drugs, cells or molecules to reach a desired area in a controlled and continuous amount.
  • Microfluidic technology provides a way to obtain a size and property controlled system by encapsulating a target molecule, drug or particle in a microgel.
  • the scale-up capability allows thousands of microgels to be produced.
  • the physical gelation of alginate and calcium makes them an interesting combination for encapsulating different reagents, which are prepared by co-flowing two or more solutions via microchannels at different speeds with the help of microfluidic systems Microgels with different sizes.
  • Alginate-calcium has been widely used in tissue engineering, cell culture and drug delivery (Figure 26)
  • FIG. 26 is a schematic diagram showing a liver lobular microstructure and a synthetic method for manufacturing linear liver micro-organs.
  • FIG. 26A shows the hepatic lobular microstructure: parenchymal hepatocytes (PH) are separated from the sinusoids and form a linear structure of a hepatocyte layer with a thickness of 1. The hepatocyte cord is covered by an endothelial cell (EC) layer, and between PH and EC, there is a space of sinus where the stellate cells are arranged.
  • FIG. 26B shows that alginate hydrogel microfibers that bind hepatocytes and 3T3 cells are manufactured using a microfluidic system, and the following figures show cross-sectional views of alginate lines of encapsulated cells before and after gelation.
  • the proposed mechanism can provide a new method for preparing different hydrogel ranges.
  • a new controlled release mechanism for the purpose of drug delivery can be provided.
  • a droplet-focused microfluidic channel is designed, and NaOH as a separator can produce a size-controllable PVA microgel that can be further washed in other parts of a microfluidic chip Custom designed for washing out NaOH from microgels.
  • Designing a microfluidic system with multiple co-flows can facilitate the production of layer-by-layer microgels for targeted applications (Figure 27).
  • the elastic and rough surfaces of PVA hydrogels as well as the resistance properties may bring new families of microcapsules.
  • a magnetically controllable mechanism can be developed and a multifunctional micro-robot used for monitoring and drug delivery systems.
  • PVA with conductive materials such as graphene, CNT, and PANI can be beneficial for nanoenergy applications.
  • conductive materials such as graphene, CNT, and PANI
  • the PVA-CNT and PVA-graphene hydrogels prepared in this study were electrodeposited and coated with PANI multiple times, which could be used as supercapacitors.
  • PVA hydrogels can be used to develop bioabsorbable sensors with strong stretchable rough hydrophilic surface properties.
  • the present invention develops PVA hydrogels and composite materials based on them with various interesting properties.
  • Strong stretchable PVA hydrogel films can be made with adjustable thicknesses of a few microns.
  • Various nanomaterials such as carbon nanotubes and graphene can be incorporated into films for sensor applications.
  • the PVA hydrogel film can recover large plastic deformation, and its shrinking force can increase the weight of 500gr.
  • the materials designed by the present invention can be mechanically and chemically stable, have good performance and are compatible with the target application.
  • membranes made with PVA are mechanically weak, and the present invention introduces a very strong PVA hydrogel with a low swelling ratio of about 1.5.
  • the PVA hydrogel of the present invention has a good contact angle and hydrophilicity, showing a promising alternative to microfluidic channels.
  • the scalable process of the present invention can provide convenient commercialization for any application.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Dermatology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Materials For Medical Uses (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明提供了一种PVA水凝胶和基于该PVA水凝胶的复合材料,该PVA水凝胶不仅具有优异的力学性能、形状记忆性、亲水性和生物相容性,而且具有3D可打印性和可注射性。本发明还提供了一种新颖的用于制造PVA水凝胶的方法。本发明还提供了PVA水凝胶在导管、可3D打印的溶液、可注射电子器件、微流体通道、生物可吸收传感器、微型机器人、组织工程支架、手术缝合线、医用手套和避孕套等各种领域中的应用。

Description

PVA水凝胶、使用其的复合材料、其制造方法及其应用 技术领域
本发明涉及一种聚乙烯醇(PVA)水凝胶、基于该PVA水凝胶的复合材料、用于制造该PVA水凝胶的方法以及该PVA水凝胶的应用。
背景技术
聚乙烯醇(PVA)是由碳、氧和氢原子组成的最重要的合成聚合物之一,并且在有氧和无氧条件下均可生物降解,广泛用于商业、工业、医疗和营养保健领域。PVA可以很容易地溶解在水中。目前,PVA水凝胶通常通过两种常用机制合成,包括使用交联剂如谷氨酸盐的化学键合和/或如冷冻和融化的物理方式。PVA对于生物医学、组织工程和软机器人应用是非常重要的。
目前通过上述常规方法制备的PVA水凝胶(下文中简称为常规PVA水凝胶)存在力学性能相对较差、制备过程复杂等缺陷,人们期望能开发一种方法,其能以简便的方式制备性能优异的PVA水凝胶,使得PVA水凝胶能更合适地应用在植入式电子学、纳米医学和微创技术以及生物医学等领域。
发明内容
本发明人意外地发现,通过使用碱性溶液对PVA进行凝胶化可以简便的方式获得PVA水凝胶。通过引入这种新颖的凝胶化机制,可获得能应用于各种领域的具有优异性能的PVA水凝胶。
本发明提供了一种PVA水凝胶,该PVA水凝胶具有1MPa-20MPa的弹性模量和10MPa-100MPa的极限强度。
进一步地,本发明的PVA水凝胶在加入水时具有65-95%的变形恢复率。优选地,本发明的PVA水凝胶在加入水时具有70-92%的变形恢复率。此处,变形恢复率通过下式计算:变形恢复率=PVA水凝胶在加入水时的变形恢复长度/PVA水凝胶的拉伸变形长度。
进一步地,本发明的PVA水凝胶的接触角为15-20度。
本发明还涉及一种复合材料,其包括该PVA水凝胶。
优选地,所述复合材料包括该PVA水凝胶和掺入在该PVA水凝胶内的磁性纳米粒子。
优选地,所述复合材料包括该PVA水凝胶和掺入在该PVA水凝胶内的石墨烯。
优选地,所述复合材料包括该PVA水凝胶和掺入在该PVA水凝胶内的碳纳米管。
优选地,所述复合材料包括该PVA水凝胶和掺入在该PVA水凝胶内的尿素。
优选地,所述复合材料包括由该PVA水凝胶形成的层和涂覆在该PVA水凝胶上的聚苯胺。
优选地,所述复合材料包括依次层叠的由含有银纳米颗粒的PVA水凝胶形成的层、由PVA水凝胶形成的层和由含有碳纳米管的PVA水凝胶形成的层。
本发明还涉及一种新颖的制备PVA水凝胶的方法,其包括将分子量为100-1000K的聚乙烯醇与水混合获得PVA溶液,接着将PVA溶液倒入培养皿,经干燥后制得PVA膜,之后将PVA膜浸入摩尔浓度为1~10M的碱性溶液中,获得PVA水凝胶。与现有的制备PVA水凝胶的方法相比,本发明的方法能以更简便的方式制造PVA水凝胶。
在本发明的方法中,作为碱性溶液的例子,包括NaOH、KOH、LiOH、氨水、碳酸钠、碳酸氢钠等的溶液。
考虑到PVA水凝胶的力学性能,优选地,碱性溶液为NaOH溶液或KOH溶液,摩尔浓度为3~10M。更优选地,碱性溶液为NaOH溶液或KOH溶液,摩尔浓度为3~6M。
优选地,本发明的方法还包括用纯水洗涤PVA水凝胶。
优选地,本发明的方法还包括对该PVA水凝胶进行脱水处理。该脱水处理能进一步提高PVA水凝胶的机械强度。
优选地,该脱水处理为在室温下空气干燥2-8小时。
优选地,该脱水处理使用微型风扇在室温下干燥2-5小时。
优选地,在本发明的方法中,聚乙烯醇与水按质量比1:5~1:30混合,并在60℃的振荡浴中放置过夜,获得PVA溶液。
优选地,在本发明的方法中,聚乙烯醇与水混合获得浓度为10%的PVA溶液,以及该PVA溶液与碱性溶液之间按重量份数计的比率为1:3-10。
优选地,PVA溶液倒入培养皿后在室温下干燥8-24小时。
优选地,PVA膜浸入碱性溶液中1-60分钟;进一步优选地,PVA膜浸入碱性溶液中10-20分钟。
本发明还涉及使用上述方法制得的PVA水凝胶,所述PVA水凝胶具有优异的力学性能、形状记忆性、亲水性、生物相容性、3D可打印性或可注射性等性能。
本发明还涉及PVA水凝胶的应用,用于制造导管、可3D打印的溶液、可注射电子器件、微流体通道、生物可吸收传感器、微型机器人中的任一种。
本发明还涉及PVA水凝胶的应用,用于制造组织工程支架、手术缝合线、医用手套和避孕套中的任一种。
本发明通过用碱性溶液将PVA凝胶化,可提供具有优异的力学性能、形状记忆性、亲水性、生物相容性、3D可打印性或可注射性等性能的多功能聚乙烯醇水凝胶。通过本发明的新的凝胶化机制,可将PVA与其他材料组合制成新的复合材料。从3D打印和微流控技术中受益的能力为这种用于不同工业领域的新型材料的商业化提供了很大的希望。本发明可提供一种强韧的PVA水凝胶,其可承载比其重量高1500倍的重量。该PVA水凝胶的简易制造工艺和生物相容性不仅可以代表下一代电阻导管的良好候选,而且还可以结合基于导管的监测系统。考虑到其良好的形状记忆性,可将由此制得的PVA水凝胶用于制造组织工程支架、手术缝合线、医用手套和避孕套中。该新型材料提出了无数在药物输送、生物医学装置、生物机器人和生物医学领域中的应用。
附图说明
图1所示为通过本发明的方法将10%PVA溶液与不同纳米材料组合制得的基于PVA水凝胶的复合材料,其中图A为PVA与MNP(磁性纳米粒子)的组合;图B为PVA与剥离石墨烯的组合;图C为含CNT(碳纳米管)的PVA超薄膜;图D为经过一次涂覆和多次涂覆后涂有PANI(聚苯胺)的PVA;图E为通过涂有PANI的PVA进行颜色变化的PH感应。
图2A所示为完全水解的PVA的化学结构,图2B所示为部分水解的PVA的化学结构。
图3A所示为部分水解的PVA水溶液的化学结构,图3B显示干的PVA膜通过加入具有强氢键的浓缩NaOH溶液而固化。
图4A所示为本发明的用摩尔浓度为6M的NaOH制备的PVA水凝胶的ATR-FTIR结果,图4B所示为干的原始PVA膜的ATR-FTIR结果。
图5所示为本发明的以不同比率混合PVA和尿素获得的水凝胶的SEM图(用于测定溶胀比),其中图A为将PVA和尿素按质量百分比以90:10的比率混合并倒入培养 皿中,干燥后经氢氧化钠凝胶化获得的水凝胶,图B为将5ml尿素(摩尔浓度为8M)与5ml PVA(添加 0.4gr PVA粉末)混合,干燥后用氢氧化钠进行凝胶化获得的样品。
图6所示为本发明的由不同浓度NaOH(摩尔浓度分别为1M、3M和6M)制成的PVA水凝胶的ATR-FTIR结果。
图7A、7B和7C分别为本发明的用摩尔浓度为1M、3M和6M的NaOH制备的PVA水凝胶的照片。
图8所示为本发明的用不同种类和不同浓度的氢氧化物固化的10%PVA水凝胶的拉伸结果,其中图8A为拉伸测试期间PVA水凝胶的照片;图8B为用不同浓度的NaOH制备的PVA水凝胶的应力-应变曲线和弹性模量(使用浓度分别为3M、5M和6M的NaOH制得的样品的尺寸(长度、宽度和厚度)为15、5、0.1(单位:mm),使用浓度为1M的NaOH制得的样品的尺寸为(长度、宽度和厚度)12、5、0.05(单位:mm),测试速度为10mm/min);图8C为用KOH、NaOH和LiOH制备的PVA水凝胶的应力-应变曲线和弹性模量(使用KOH和NaOH制得的样品的尺寸(长度、宽度和厚度)为15、5、0.1(单位:mm);使用LiOH制得的样品的尺寸(长度、宽度和厚度)为15、3、0.05(单位:mm),测试速度为10mm/min);图8D为用NaOH(摩尔浓度为6M)固化的PVA水凝胶的拉伸结果并测试3次(样品尺寸(长度、宽度和厚度):120、10、0.3(单位:mm)(位于最下端的曲线);118、10、0.3(单位:mm)(位于中间的曲线);111、10、0.3(单位:mm)(位于最上端的曲线),速度为5mm/min);图8E为将PVA水凝胶条带空气干燥2.5小时的拉伸性能(5mm/min的测试速度,样品尺寸为111、10、0.3(单位:mm)(位于上端的曲线)(第2次);94、10、0.3(mm)(位于下端的曲线)(第1次));图8F为在室内条件下的循环拉伸试验(通过倒入20ml PVA制成的PVA样品被切割成长度、宽度和厚度分别为17、5和0.1(单位:mm)的尺寸);图8G为当使用外部湿度产生增湿器以避免试验过程中脱水时,PVA水凝胶的循环拉伸试验(用20毫升PVA溶液制成长度、宽度和厚度分别为25、5和0.1(单位:mm)的水凝胶,测试速度为20mm/min),其中左上图、右上图和左下图分别为在12%-40%、22%-70%和25%-100%的应变范围内进行循环,右下图为同一样品在保湿条件下的应力-应变曲线。
图9A所示为本发明的PVA水凝胶的耐尖锐物体性,图9B所示为用PVA-PANI涂层带承载15Kg重量。
图10所示为PVA水凝胶在加热下的降解试验,其中图10A、10B和10C为常规PVA水凝胶膜的SEM观察图;图10D、10E和10F为在70℃下加热30分钟的PVA膜的SEM图像,其中图10A、10B、10D、10E的样品在SEM之前镀金,图10C和10F的样品没 有镀金。
图11所示为测量的接触角(CA),其中图11A显示对于PDMS,CA=92.718°;图11B显示对于仅干燥的PVA水凝胶样品,CA=56.88°;图11C显示对于本发明的经NaOH凝胶化的PVA水凝胶样品(液滴落下后5秒),CA=16.608°。
图12所示为本发明的PVA水凝胶的形状记忆性,其中图12A显示将PVA条带浸入6M的NaOH溶液中并从13mm拉长至36mm,然后将其浸入水中,几秒钟后恢复其原始长度;图12B显示由于加水而产生的收缩力可将500gr重量提升至3.5cm;图12C显示由于加水而产生的收缩力可将200gr重量提升至10cm;图12D中所示为与12B、12C、12E所用相同的样品,其中L0是原始长度,L1是当样品拉长到32mm时的长度,L2与测试后浸入水中的时间有关;图12E所示为加水引起的收缩力。
图13A和13B所示为本发明的浸入NaOH溶液中的PVA水凝胶的SEM图像,图13C和13D所示为本发明的PVA水凝胶的SEM图像,其首先浸入NaOH溶液中,然后完全拉伸到塑性区域(箭头表示拉伸方向)。
图14所示为本发明的PVA水凝胶的EDX结果,其中图14A所示为浸入NaOH溶液中的PVA水凝胶的SEM图像,其具有用于EDX分析的选定区域;图14B和14C所示为选定区域中的元素的原子和重量百分比以及定量结果。
图15A和15B所示为本发明的包含三层的复合材料的横截面的SEM图像,其中左侧层为PVA-CNT、中间层为单独的PVA、右侧层为PVA-银纳米颗粒;图15C和15D所示为具有CNT(左侧)和不具有CNT(右侧)的两层之间的高分辨率边界;图15E和15F所示为含银纳米颗粒的PVA层的更高分辨率。
图16所示为本发明的CNT-PVA-银纳米颗粒复合材料的EDX结果,其中图16A为包含三层的复合材料的横截面的SEM图像和选择用于EDX研究的三个区域;图16B、16C和16D为每个选定区域的元素百分比和定量结果。
图17A显示基于本发明的PVA水凝胶的不同直径的管的合成,图17B显示施加高压空气时,管表现得像气球,图17C显示干燥时管很坚固,但与水接触的区域是弹性的,所以在高压空气通过该管时,该管会模仿气球。
图18所示为具有开放式大孔结构和与脑组织类似力学性能的可注射网状电子器件,其为映射和调节大脑活动提供了新的微创方法。
图19A所示为3D打印过程中打印时的PVA-CNT溶液,图19B为固化的3D打印网,图19C和19D为3D打印网通过直径为400μm的小型移液管尖端进行注射。
图20所示为在薄PVA膜上打印的PVA-CNT导电油墨。
图21A所示为PVA水凝胶膜上微流体通道的合成,图21B所示为在PVA水凝胶膜上打印的藻酸盐以及逐层固化。
图22A和22B所示为通过使用用于制造管子的小棒在PVA管上制作的微流体通道的光学图像,其中含有染料的水被注入通道并将管子放置在UV下的水内以在微流控系统中显示流体,图22B显示在管壁上具有多个打印的微通道的大管子。
图23A为包含生物可吸收性温度和流量传感器、记忆模块和治疗用纳米颗粒的生物可吸收性电子支架(BES)的示意图,其中可以使用NIR曝光来启动治疗功能;图23B所示为将BES置于气囊导管上以在体内将其输送到犬颈总动脉中;图23C所示为在气囊导管膨胀之前(左侧)和之后(右侧),犬模型中气囊导管和BES的X射线图像;图23D所示为在犬颈总动脉中体内植入的BES;图23E所示为体内BES的体绘制CT图像。
图24A为带有打印的CNT网的管子(用于记录与内部压力相关的信号变化)的照片;图24B所示为安装有由CNT/PVA制成的传感器(该传感器连接到流体可以通过的管子)的导管的照片。
图25所示为PVA-明胶膜,其通过如下方式获得:将5mL PVA溶液倒在培养皿上,待干燥后在NaOH溶液中静置以形成凝胶。
图26所示为显示肝小叶微结构和制造线状肝脏微器官的合成方法的示意图,其中图26A显示肝小叶微结构:实质肝细胞(PH)从血窦中分离并形成厚度为1的肝细胞层的线状结构,其中肝细胞索被内皮细胞(EC)层覆盖,并且在PH与EC之间,存在星状细胞布置在其中的窦周隙(the space of Disse);图26B显示结合肝细胞和3T3细胞的藻酸盐水凝胶微纤维用微流控系统制造,其下图显示了凝胶化之前和之后的封装细胞的藻酸盐线的横截面图。
图27所示为用于逐层微凝胶制造的液滴聚焦微流体通道的示意图,其中带黑点的浅灰色是含有药物的PVA水凝胶,深色是另一种PVA溶液作为第二层,其液滴可以通过使用NaOH溶液作为凝胶溶液形成。
具体实施方式
本发明提供一种制备PVA水凝胶的方法,该方法包括将PVA溶液在模具中定型干燥后浸泡在碱性溶液中以获得PVA水凝胶。
下面结合实施例和附图对本发明进行具体说明,但本发明不限于此。
实施例1
通过将分子量为205,000的PVA溶解在蒸馏水中,制成10%PVA(100mg/mL;10g PVA溶于100ml蒸馏水中)并且在60℃加热的振荡浴中放置过夜,形成PVA粘性溶液。然后将20ml的10%PVA溶液倒于直径10cm的玻璃皿中,在室温下干燥过夜,接着浸入摩尔浓度为1M的NaOH溶液中10-20分钟,凝胶化后用纯水洗涤,洗净后沥干水分,密封保存。
实施例2
使用与实施例1相同的方法制备PVA水凝胶,所不同的只是将NaOH的浓度变为3M。
实施例3
使用与实施例1相同的方法制备PVA水凝胶,所不同的只是将NaOH的浓度变为5M。
实施例4
使用与实施例1相同的方法制备PVA水凝胶,所不同的只是将NaOH的浓度变为6M。
实施例5
使用与实施例4相同的方法制备PVA水凝胶,所不同的只是将NaOH变为LiOH。
实施例6
使用与实施例4相同的方法制备PVA水凝胶,所不同的只是将NaOH变为KOH。
实施例7
使用与实施例4相同的方法制备PVA水凝胶,所不同的只是对获得的PVA水凝胶在室温下空气干燥2.5小时。
比较例1
将聚乙烯醇与水按质量比10:100进行混合,搅拌条件下置于85-90℃,恒温油浴中完全溶解,获得PVA溶液。然后将PVA溶液放入冰箱中,在-20℃的温度下,冷冻18小时后,置于室温下解冻3小时,如此冻融循环进行3次,获得常规PVA水凝胶。
本发明设计的PVA水凝胶具有均匀掺入不同纳米材料的能力。在这里,通过使用本发明的上述方法,将10%的PVA溶液与磁性纳米粒子(MNP)、剥离的石墨烯、碳纳米管(CNT)和聚苯胺(PANI)组合使用,制备了各种基于本发明的PVA水凝胶的复合材料。
根据图1A可知,将PVA与MNP组合导致可拉伸的磁性膜,其可用作磁致动器(将0.1gr磁性纳米粒子添加至5mL的PVA溶液中并超声处理和搅拌,然后浇注至培养皿中,干燥后浸入氢氧化钠溶液中凝胶化,制得掺有MNP的PVA水凝胶膜)。图1A显示了磁膜如何随着磁铁的运动而舞动。图1B显示剥离的石墨烯完美嵌入PVA网络并制成均匀分布的膜。图1C是用PVA和CNT(PVA和CNT 10mg/mL)制成的非常薄的纳米膜,其中将溶液倾倒在培养皿上并干燥过夜,然后浸入氢氧化钠溶液中凝胶化,制得均匀的掺有CNT的PVA水凝胶 膜,右侧的图像显示当10mL溶液留在培养皿上干燥时的图像。图1D所示为经过一次涂覆和多次涂覆后涂有PANI(聚苯胺)的PVA膜,据观察,PANI可以很好地涂覆在PVA膜上,可以在PH指示剂中提供许多应用或用于超级电容器。如图1D和图1E所示,涂有PANI的PVA膜可以通过将其颜色从酸性环境下的绿色变为碱性环境下的紫色,有效检测PH值的变化。本发明的制备方法提供了可调整的厚度生产。由图1A-1E可知,本发明的PVA水凝胶具有优异的结合各种材料的能力,可用于制备各种复合材料。
表征
通过EDX、傅里叶变换红外光谱(FTIR)和扫描电子显微镜(SEM)来表征本发明的PVA水凝胶,对本发明的PVA水凝胶的机械和化学性质、溶胀比以及降解性等进行了研究。
凝胶机理和FTIR分析
全部水解和部分水解的PVA聚合物的化学结构分别如图2A和图2B所示。对于部分水解的PVA聚合物(将PVA称为部分水解的聚合物),残留的乙酸酯分子存在于聚合物中。在PVA溶液中,水分子与相邻的PVA网络形成氢键(参见图2)。当PVA溶液被干燥时,在PVA的羟基之间形成弱氢键,而残留的乙酸酯阻碍另外的氢键。将PVA膜浸入高浓度碱性溶液中后,残留的乙酸酯将被除去,从而导致水凝胶膜产生更强的氢键(参见图3)。如EDX和FTIR分析所示,使用水来洗涤PVA水凝胶,从而除去钠离子和羟基离子,并调节合成材料的PH值。
图4提供了各种样品的FTIR光谱,以帮助进一步讨论所制备的复合膜。图4A所示为用NaOH处理的交联PVA的FTIR光谱;图4B所示为原始PVA的FTIR光谱,其具有在3000-3600cm -1(宽的-OH拉伸)、2800-3000cm -1(C-H烷基拉伸)、1733cm -1(残留的乙酸酯CH 3CO 2-的C=O拉伸)、1300-1500cm -1(C-H弯曲)和1084cm -1(C-O拉伸)的典型峰。
交联PVA的FTIR光谱显示PVA的所有预期特征峰,但在1733cm -1处的峰显著收缩(或几乎消失),这证明乙酸酯被成功除去(参见图4A)。
在原始PVA和交联PVA的FTIR光谱中,发现在1084cm -1(C-O拉伸)和1142cm -1(C-O-C拉伸)的峰。交联PVA在1142cm -1处的峰强度增加,这表明交联PVA的结晶度增加。
将交联的PVA垫在水中浸泡数天以确保成功的交联工序。为了阐明机理,将PVA水凝胶浸入摩尔浓度为8M的尿素溶液中并保持过夜,导致PVA水凝胶溶解。这一事实揭示了氢键的重要作用。此外,将PVA溶液与尿素按90/10重量百分比(PVA/尿素)混合以制备PVA-尿素水凝胶。图5中的SEM图揭示多孔尺寸增加,这可能是由于阻碍了PVA水凝胶中的氢键所导致的。
用摩尔浓度分别为1M、3M和6M的NaOH制备的实施例1、实施例2和4的PVA水凝胶的FTIR结果显示在图6中。随着NaOH的过量,残留的乙酸酯拾取(acetate pick)被更多地减少。考虑到PVA的力学性能和凝胶化,可以看到用1M的NaOH制成的实施例1中的水凝胶是非常薄弱的。因此,去除残留的乙酸酯不是导致强氢键的主要原因,NaOH溶液的高浓度起到了关键作用。用上述不同浓度的NaOH制成的PVA的光学照片如图7所示。
力学性能
图8A显示了拉伸测试期间的PVA-NaOH(NaOH的摩尔浓度为6M)样品。当该PVA水凝胶达到高应变(约300%应变)时,观察到样品从透明到白色的颜色变化,这表明内部的PVA链平行排列并且更有序。
图8B研究了由不同浓度的NaOH制备的实施例1-4的PVA水凝胶的拉伸性能和力学性能。通过计算每个组的三个样品结果的平均值获得报告的弹性模量(在50%应变下)。可以看出,实施例1中的使用1M的NaOH胶凝的样品,弹性模量非常小,为0.04MPa,并且具有非常薄弱的薄膜。然而,当NaOH的浓度增加到3M、5M和6M时,则获得强的PVA水凝胶薄膜,弹性模量提高到1MPa的数量级并且极限强度显著增加到10MPa的数量级。当拉伸到至少100%应变时,观察到所有样品的线性弹性行为。该膜表现出优异的可拉伸性能,超过其原始长度的350%。这种伸长受拉伸机性能的影响,因为大多数样品从夹具上滑落或由于夹具用以保持样品的应力集中而在边缘处切割。因此,所有数据显示PVA水凝胶的最小强度和伸长。为了确保最快的凝胶化和强大的性能,用浓度为6M的氢氧化物制成的PVA水凝胶用于本发明的实验。图8C比较了用不同种类的氢氧化物(包括LiOH、NaOH和KOH)凝胶化的实施例4-6的PVA水凝胶的拉伸性能。结果显示,使用LiOH导致薄弱的PVA水凝胶,而使用NaOH和KOH则表现出强的力学性能,极限强度大于10MPa,杨氏模量大于1.3MPa。
图8D和8E进一步研究了干燥对PVA水凝胶的力学性能的影响。将30mL 10%的PVA倒入大培养皿中,干燥后经6M的氢氧化钠溶液凝胶化形成0.3mm厚的PVA水凝胶膜。将PVA水凝胶样品保存在蒸馏水中,在从样品表面擦去水之后,以5mm/min的速度对PVA水凝胶的拉伸性能测试三次,结果如图8D所示。每次,该PVA水凝胶表现出更强的行为,由此可知,脱水对PVA水凝胶的机械强度起着关键作用。根据图8D可以看出,当PVA水凝胶更干燥时,极限强度和杨氏模量增加。
对于干燥2.5小时的实施例7的PVA水凝胶重复进行拉伸试验,结果如图8E所示。以5mm/min的速度对该样品测试2次。在第一次测试中,它被拉伸至30%并从夹具中滑落,在 第二次测试中,该水凝胶精确地遵循与之前的在2.5小时后所显示的结果相同的趋势,这表明,在该测试期间干燥对力学性能的影响可忽略。
在图8F中,在从PVA水凝胶样品表面除去水之后,将该水凝胶用于拉伸循环测试,并在30%至58%应变之间拉伸释放10个循环。可以看出,在循环拉伸过程中,水凝胶被干燥,从而影响力学性能,如在第十次循环中所见,与第一次循环相比,最大强度提高了14%(10个循环大约需要8分钟)。
对于图8G的相同PVA水凝胶样品重复进行循环拉伸测试并且为了评估干燥效果,这次将水凝胶暴露于产生水蒸气的增湿器中以防止在循环测试期间水的蒸发。图8G所示的循环试验表明,左上图、右上图和左下图分别代表12%-40%、22%-70%和25%-100%应变下的循环拉伸和松弛结果。与在室内条件下测试凝胶的图8F相比,仅在第一次循环和最后一次循环之间有差异,突出显示了水合对拉伸行为的影响。进一步测试相同的样品,显示存在图8G中左上图所示的湿度下的拉伸行为。
倒入5mL PVA溶液干燥后经NaOH处理制成的PVA水凝胶如图9所示。该膜具有优异的耐尖锐金属、刮刀和轻轻推针的性能。图9B显示了用于承载15kg重量的涂有PANI的PVA水凝胶的照片。
降解性、形态和溶胀比
本发明的PVA水凝胶的降解性通过将该水凝胶在水中放置1年来评估,并且未观察到降解。为了提高PVA水凝胶的降解度,可以进行与可降解材料结合的研究。例如,尿素可以弱化PVA的分子内作用和氢键,并改变晶格能和结晶度。当在尿素溶液中浸泡过夜时,PVA水凝胶溶解在尿素溶液(摩尔浓度为8M)中。对于PVA水凝胶来说,观察到非常稳定的化学性质,因为其即使浸泡在强酸中时也保持其性质。
加热0.5mm厚的PVA水凝胶膜;对于低于50℃的温度,该水凝胶非常稳定,但在70℃左右,水凝胶开始再生并消失。将该水凝胶膜在70℃加热30分钟并收集和在室温下保持在水中过夜。这种加热处理实质上降低了其力学性能并提高了溶胀比。根据以下公式计算该研究的溶胀比:溶胀比=[W f-W 0/W 0];其中W f为完全溶胀状态下的水凝胶重量,W 0为干燥状态的重量。
对于比较例1中的常规PVA水凝胶,溶胀比约为0.8。但是,当水凝胶被加热并收集时,溶胀比增加到9.5。在冷冻和干燥后,将常规PVA水凝胶(图10A、B、C)和经加热的PVA水凝胶(图10D、E、F)用于SEM研究。如图10所示,对于加热样品,多孔尺寸显著增加。考虑到热降解,引入了可回收和可重复使用的器件范围。
接触角
通过测量接触角(CA)评估本发明的PVA水凝胶的亲水性能。图11A显示了具有92.7°接触角的PDMS上的水滴。图11B显示了凝胶化前干燥的PVA膜具有56.88°的CA。图11C显示了本发明的经NaOH凝胶化的PVA膜具有16°的CA,这表明本发明的PVA水凝胶富含亲水性表面(液滴接触膜5秒后,计算接触角)。
形状记忆性和人造肌肉
本发明的实施例4中的PVA水凝胶的形状记忆性如图12A和12B所示。将PVA条带从原来的13cm长度拉伸至36cm,这表明在浸入NaOH溶液后,条带延伸至其原始长度的300%。在加入水后,条带保持其塑性变形并在短时间内恢复到15cm(具有约91%的变形恢复率(通过如下计算获得:(36cm-15cm)/(36cm-13cm)=91%);恢复260%的应变比)。这个过程与能够移动500gr重量(相当于175mJ能量)的强大收缩力相关联。
另外,在2小时内风干的样品显示,它们在加入水时可以恢复超过其原始长度的70%(具有26、8、0.1(mm)尺寸的样品被拉伸至100mm,并且放置在水中几分钟,然后拿出并进行测定)。最大长度为32.6mm,显示恢复了67.4mm的塑性变形(具有约91%的变形恢复率),并且具有相同性能和外观的样品可重复使用。
向培养皿中倒入20ml PVA溶液,干燥后浸入NaOH溶液中5min后制成PVA水凝胶条带,用于人造肌肉测试并测量收缩力。条带的初始长度为L 0=12cm,用NaOH润湿后拉伸至L 1=32cm,装载500gr后进一步拉长至L 2=43cm。根据图12B、12C,由于添加水而引起的水凝胶收缩力可将0.2kg重量提升至10cm以及将0.5kg重量提升至3.5cm。使用相同的样品进行拉伸测试以测量收缩力。类似地,条带被拉长到L 1=32cm,并位于抓握面之间(图12D)。校准后,手动拉长条带以达到5N的预载荷,以模拟重量悬挂。在将水连续添加到水凝胶条带的两侧的同时测量该力。在50秒内收缩力增加到10N时的最大值(图12E)。
图13A和13B显示了本发明的浸入NaOH溶液中的PVA水凝胶的SEM图像。图13C和13D显示PVA水凝胶拉伸到其塑性区域。比较高分辨率图像(图13B和13D),显而易见地,当水凝胶被完全拉伸时,材料织物变成扁平结构。而且,图13D中出现的裂缝与拉伸方向垂直。在拉伸后的条带中加水后,这些裂纹可以消除,相应于恢复塑性变形。因此,微观自我修复现象是显而易见的。
在图14中研究了本发明的保持在NaOH溶液中的PVA水凝胶膜的EDX结果。与常规PVA水凝胶膜相比,本发明的氧气百分比更高。另外,确认可以用水除去元素Na。
逐层制造和应用
本发明方法的逐层制造的能力使设计具有各种性质的多功能复合材料成为可能。制备了一种具有含银纳米颗粒(NP)的PVA、单独的PVA和含CNT的PVA的复合膜,并用SEM研究其横截面(图15),显示出微米厚度的清晰边界。第一种溶液:10%银纳米颗粒和10%PVA混合;第二种溶液:10%PVA;第三种溶液:8.8%CNT和10%PVA混合。将0.5gr的每种溶液分三步浇注在小培养皿上。浇注第一种溶液并完全干燥,然后类似地倒入第二种溶液和第三种溶液并风干。之后,倒入6M的NaOH溶液浸没干燥的PVA复合膜以完成凝胶化。用两点探针仪测量的CNT的电导率为30-50Kohm/cm,银纳米颗粒为400-600kohm,PVA为10Mohm。
图16显示本发明的复合材料中各层的EDX结果。根据结果可知,与另两层相比,PVA-CNT层含有最高量的碳元素。银拾取(Ag pick)也出现在第三层。因此,本发明的方法能够合成具有不同材料和性质的微米级膜和纳米级膜。
管和导管
导管是微创心脏治疗中一个非常重要的工具。目前,不同类型的聚合物可用于制造导管,包括硅、尼龙、聚氨酯、聚对苯二甲酸乙二醇酯(PET)、胶乳和热塑性弹性体。然而,目前的导管存在机械性能较差,舒适性和安全性仍有待提高的问题
强大的弹性和具有粗糙表面的耐用植入物是导管中的重要因素。鉴于优异的表面粗糙度,本发明开发的PVA水凝胶作为永久的和临时的(可生物降解的)导管基植入物是有益的。通过本发明的方法可以制造具有可调机械性能和厚度的微管。为了制造小管,将金属棒浸入10%的PVA溶液中,并通过具有附加的干燥风扇的定制电机旋转,进行单层涂层(图17A)。随着速度提高到更高的频率,可以实现均匀的涂层。重复涂覆过程以达到所需的厚度。各种基于PVA的溶液可用于涂覆以获得不同的复合材料。干燥后,将带涂层的棒浸泡在NaOH溶液中10分钟进行凝胶化。它们很容易从金属棒上剥落并用水冲洗。
气囊导管(逐层制造)
开发的管也可以用作气囊导管。由于具有弹性,管子就像气球一样起作用,并且在用流体加压时可以吹气。根据下面的图14B可知,当水凝胶干燥时,它在空气通过时对施加的压力具有很强的抵抗力。使用水来润湿管的特定部分以恢复其弹性特性,其在施加压力后像气球一样吹气(图14C)。
3D打印制作和应用
PVA与不同材料混合的能力可获得粘性可打印溶液。这可以帮助合成不同范围的打印油墨。
可注射电子器件
将PVA水凝胶与柔韧的可生物降解的、无线和可注射电子器件相结合,可以提供微创手术和大脑活动的长期监测系统。与使用PVA水凝胶相关的一个挑战是缺乏对实时相互作用的可控剂量。这可以通过使用逐层水凝胶、微流控技术或可注射电子器件来解决。
使用结合了导电剂的10%PVA溶液(具有10mg/ml CNT的10%PVA溶液)能够制备可以使用本发明机制凝胶化的导电油墨。PVA作为表面活性剂可以帮助有效地将碳纳米管分散在溶液中而不会凝结。首先,将10mg/mL的CNT分散在2%(重量百分比)的PVA溶液中,超声处理并搅拌1小时。加入更多的PVA以达到10wt%的PVA,保持加热并在60℃下移动浴过夜。将PVA-CNT油墨用作打印油墨以在培养皿背面打印电子网,如图19A和19B中所示。当打印品干燥时,加入NaOH溶液以凝结PVA和CNT网络用以固化。制得的网可以很容易地从基底上剥离,形成非常坚固和可拉伸的导电网,在可穿戴式传感器和可打印电子器件中提供无数应用。图19B显示了水中的几个打印网。打印非常薄的网的能力和高机械强度可以开发可注入的电子网;正如在图19中所看到的那样,即使经由小型移液管尖端的中空狭窄部位推出后,强凝胶仍能保持其完整性(图19C和19D)。
带PVA膜的可拉伸电子板
还制造了包括PVA-Ag纳米线和PVA-石墨烯的其他导电油墨。包含PVA溶液的导电颗粒也可以印在干燥的PVA水凝胶上,逐层打印并可在PVA膜上打印电子板。图20显示了PVA基材上的打印网,其良好地打印并与其基材组装(图20显示了PVA基材上的打印网的性能)。为了制备基材,将5ml 10wt%的PVA倒入培养皿中并干燥过夜。然后,将PVA-CNT打印在干燥的PVA基材上,然后干燥几分钟,接着加入NaOH用于固化(图20)。
微流体通道
流体力学领域涉及微观流体,从500微米到0.1微米的通道尺寸可以被认为是微流体通道。微流控芯片通常采用不同的方法和工艺用PDMS膜制备,并且通常与用以增强微流控应用的亲水性的内通道表面改性相关。本发明为通常用PDMS制造的微流体通道引入了新的替代方案。本发明的PVA水凝胶已显示出可用作制造各种形状和尺寸的微流体通道的替代方法的能力,PVA水凝胶在新型生物医学传感器和导管中的应用通过结合PVA和导电纳米材料并且与3D打印制造相兼容来呈现,其为微流控芯片实验室系统提供了新的解决方案。
膜上微流体通道的合成
将20ml的10%PVA溶液倒入大培养皿中并干燥过夜。然后,制备5%的藻酸盐溶液用于在PVA膜上作为牺牲材料(sacrificial material)进行打印。在打印不同的图案之后,具有 3d打印的藻酸盐的干燥的PVA用另外的20mL PVA溶液覆盖并且在室温下再干燥一晚。然后,将干燥的PVA膜浸入NaOH溶液20分钟(图21A)。凝胶化后,用水洗涤膜,并将藻酸盐溶液从按压膜的边缘移除。洗涤通道并使水通过微小针头和注射器的通道来清除藻酸盐。如图21B所示,将在UV光下可追踪的黄色染料注入通道中。
PVA管上3d微流体通道的合成
按照用于膜的相同工艺,可以在非平面表面打印形成微流体通道。为了显示这种能力,将金属棒浸入PVA溶液中并在风扇下旋转以获得覆盖棒的均匀膜。这个过程重复了三次。然后,将藻酸盐打印在PVA表面上。然后,将印有藻酸盐的PVA再次浸入PVA中并干燥三次,然后将该体系置于NaOH溶液中20分钟。样品用水洗涤并容易地从棒上除去。样品放置在水中过夜以中和PH。然后将打印的藻酸盐推出通道,导致在PVA管上形成微流体通道(图22)。
因此,本发明的基于PVA的制造方法为开发新型微流体装置提供了新的机会,与常用PDMS膜相比,其显示出更高的机械性能、可拉伸性、易制备性、亲水性表面和生物相容性。这种设计有益于引入新颖应用的芯片实验室的概念。
本发明开发的PVA水凝胶可引入生物医学传感器,用于测量不同应用和环境下的流量、压力和生物活性,其具有可调的力学性能。将本发明的PVA水凝胶和最近开发的廉价技术实验室与无线数据通信结合在一起可提供新一代的用于不同条件和不同器官的健康监测系统。重要的是,这可能为难以察觉的实时健康监测奠定基础。图24显示了带有打印的CNT基导电网的导管,用于记录内部流动导致的电阻信号。
其他潜在的应用
细胞培养、体外和体内应用
本发明的水凝胶的弹性和收缩性能可以提供一种新型的培养基质,刺激人类的肌肉像心肌一样具有收缩运动。PVA可与细胞附着蛋白如明胶和多巴胺混合以改善细胞相容性并用于细胞培养研究。在接近具有优异细胞活力特性的PVA和明胶的最佳混合物之后,可以合成用于不同应用的3D可打印细胞培养基。图25显示了与明胶混合的PVA(10%PVA和1%明胶)。
药物输送
如所解释的,PVA水凝胶可用于制造新的导管。导管是药物输送的手段之一,它可以将大体积的目标溶液输送到目标部位。另一方面,在管上设计微流体通道的能力可以使药物、细胞或分子以受控和连续的量到达期望的区域。
药物释放微胶囊和微凝胶
目前,不同范围的生物相容性天然的、合成的聚合物和蛋白质已用于活性剂的封装和延 长释放。微流控技术通过将目标分子、药物或颗粒封装在微凝胶中提供了一种获得尺寸和性质受控系统的方法。放大能力可以让数千个微凝胶生产。藻酸盐和钙的物理凝胶化使得它们成为用于封装不同试剂的有趣组合,它们在微流控系统的帮助下以不同速度经由微通道通过共同流动的两种或更多种溶液以制备具有不同尺寸的微凝胶。藻酸盐-钙已广泛用于组织工程、细胞培养和药物输送(图26)
图26为显示肝小叶微结构和制造线状肝脏微器官的合成方法的示意图。图26A所示为肝小叶微结构:实质肝细胞(PH)从血窦中分离并形成厚度为1的肝细胞层的线状结构。肝细胞索被内皮细胞(EC)层覆盖,并且在PH与EC之间,存在星状细胞布置在其中的窦周隙(the space of Disse)。图26B显示结合肝细胞和3T3细胞的藻酸盐水凝胶微纤维用微流控系统制造,其下图显示了凝胶化之前和之后的封装细胞的藻酸盐线的横截面图。
本发明提出的机制可以提供一种制备不同水凝胶范围的新方法。通过将本发明PVA的降解性提高到期望值并改变NaOH的浓度,可以提供用于药物输送目的的新的控制释放机制。
当PVA溶液为主流时,设计液滴聚焦的微流体通道,并且NaOH作为分离器可以产生尺寸可控的PVA微凝胶,其可以在微流体芯片的其他部分中进一步洗涤,所述微流体芯片定制设计用于从微凝胶中洗去NaOH。设计具有多个共流的微流控系统可以便于为目标应用生产逐层微凝胶(图27)。PVA水凝胶的弹性和粗糙表面以及电阻性能可能带来新的微胶囊家族。
微型机器人
根据PVA水凝胶,通过结合纳米颗粒如MNP和逐层制造,可以开发一种磁性可控机制,并设计一个多功能微型机器人用于监测和药物输送系统。
纳米能源和超级电容器
将PVA与石墨烯、CNT和PANI等导电材料结合可以有利于纳米能源应用。将本研究中制备的PVA-CNT和PVA-石墨烯水凝胶电沉积并用PANI涂覆多次,可以用作超级电容器。
生物可吸收传感器
考虑到抗菌性改进以及可降解性调整,PVA水凝胶可用于开发具有强的可拉伸粗糙亲水表面性能的生物可吸收传感器。
本发明开发了具有各种有趣特性的PVA水凝胶和基于其的复合材料。强的可拉伸PVA水凝胶膜可以制造成几微米小的可调节厚度。如碳纳米管和石墨烯等各种不同的纳米材料可以结合到用于传感器应用的膜中。另外,该PVA水凝胶膜能够恢复大的塑性变形,其收缩力可以提升500gr的重量。本发明所设计的材料可以是机械和化学稳定的,具有良好的性能并 且与目标应用兼容。通常,用PVA制成的膜力学上较弱,而本发明引入了一种具有约1.5的低溶胀比的非常强的PVA水凝胶。本发明的PVA水凝胶具有良好的接触角和亲水性,显示出对于微流体通道的有希望的替代。本发明的可规模化的工艺可以为任何应用提供便利的商业化。

Claims (22)

  1. 一种PVA水凝胶,其具有1MPa~20MPa的弹性模量和10MPa~100MPa的极限强度。
  2. 根据权利要求1所述的PVA水凝胶,其特征在于,所述PVA水凝胶在加入水时具有65%~95%的变形恢复率。
  3. 根据权利要求2所述的PVA水凝胶,其特征在于,所述PVA水凝胶在加入水时具有70%~92%的变形恢复率。
  4. 根据权利要求1所述的PVA水凝胶,其特征在于,所述PVA水凝胶的接触角为15-20度。
  5. 一种复合材料,包括权利要求1-4中任一项所述的PVA水凝胶。
  6. 根据权利要求5所述的复合材料,其中,所述PVA水凝胶内掺有磁性纳米粒子。
  7. 根据权利要求5所述的复合材料,其中,所述PVA水凝胶内掺有石墨烯。
  8. 根据权利要求5所述的复合材料,其中,所述PVA水凝胶内掺有碳纳米管。
  9. 根据权利要求5所述的复合材料,其中,所述PVA水凝胶内掺有尿素。
  10. 根据权利要求5所述的复合材料,包括由所述PVA水凝胶形成的层,其中,所述PVA水凝胶的层上涂有聚苯胺。
  11. 根据权利要求5所述的复合材料,包括依次层叠的由含有银纳米颗粒的PVA水凝胶形成的层、由PVA水凝胶形成的层和由含有碳纳米管的PVA水凝胶形成的层。
  12. 一种用于制备权利要求1-4中任一项所述的PVA水凝胶的方法,包括将分子量为100-1000K的聚乙烯醇与水混合获得PVA溶液,接着将PVA溶液倒入培养皿中,经干燥后制得PVA膜,然后将PVA膜浸入摩尔浓度为3~10M的碱性溶液中,获得PVA水凝胶。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括用纯水洗涤PVA水凝胶。
  14. 根据权利要求12所述的方法,其特征在于,所述方法还包括对所述PVA水凝胶进行脱水处理。
  15. 根据权利要求14所述的方法,其特征在于,所述脱水处理为在室温下空气干燥2-8小时。
  16. 根据权利要求12-15中任一项所述的方法,其特征在于,聚乙烯醇与水按质量比1:5~1:30混合,并在60℃的振荡浴中放置过夜,获得PVA溶液。
  17. 根据权利要求12-15中任一项所述的方法,其特征在于,聚乙烯醇与水混合获得浓度为10%的PVA溶液,以及所述PVA溶液与碱性溶液之间按重量份数计的比率为1:3-10。
  18. 根据权利要求12-15中任一项所述的方法,其特征在于,所述干燥在室温下进行8-24 小时。
  19. 根据权利要求12-15中任一项所述的方法,其特征在于,PVA膜浸入碱性溶液中1-60分钟。
  20. 根据权利要求12-15中任一项所述的方法,其特征在于,所述碱性溶液为NaOH溶液或KOH溶液,摩尔浓度为3-6M。
  21. 权利要求1-4中任一项所述的PVA水凝胶的应用,用于制造导管、可3D打印的溶液、可注射电子器件、微流体通道、生物可吸收传感器、微型机器人中的任一种。
  22. 权利要求1-4中任一项所述的PVA水凝胶的应用,用于制造组织工程支架、手术缝合线、医用手套和避孕套中的任一种。
PCT/CN2018/105453 2018-05-25 2018-09-13 Pva水凝胶、使用其的复合材料、其制造方法及其应用 WO2019223189A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810560799.8A CN108715641B (zh) 2018-05-25 2018-05-25 Pva水凝胶、使用其的复合材料、其制造方法及其应用
CN201810560799.8 2018-05-25

Publications (1)

Publication Number Publication Date
WO2019223189A1 true WO2019223189A1 (zh) 2019-11-28

Family

ID=63912789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105453 WO2019223189A1 (zh) 2018-05-25 2018-09-13 Pva水凝胶、使用其的复合材料、其制造方法及其应用

Country Status (2)

Country Link
CN (2) CN108774327B (zh)
WO (1) WO2019223189A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114211004A (zh) * 2021-12-17 2022-03-22 北京工商大学 3d打印不锈钢工件表面的pva基复合膜层及制备方法
CN116038653A (zh) * 2022-12-21 2023-05-02 深圳大学 一种以微藻为模板的磁性微米机器人及其制备方法
CN116059440A (zh) * 2023-02-14 2023-05-05 厦门大学 一种具有各向异性的仿生肌肉材料及其制备方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109966545A (zh) * 2019-02-27 2019-07-05 韩建中 一种基于3d打印技术的环保型抗菌抗感染的创面愈合敷料
CN112138731B (zh) * 2019-04-09 2022-05-03 厦门大学 微流控器件以及其制造方法、制造装置
CN110146198B (zh) * 2019-05-22 2021-11-16 厦门大学 一种柔性自供能压力传感器
CN110885463B (zh) * 2019-11-20 2022-05-20 常州大学 一种三维网络结构的pva水凝胶的制备方法
CN112126016B (zh) * 2020-09-03 2022-04-12 山东星宇手套有限公司 一种有衬里的三层pva防化手套的制备方法
CN112476405B (zh) * 2020-12-07 2022-01-25 北京大学 一种软体机器人及其制造方法
CN113372574B (zh) * 2021-04-29 2022-08-02 青岛海洋科学与技术国家实验室发展中心 一种聚乙烯醇水凝胶及其制备方法
CN113376914B (zh) * 2021-05-31 2022-11-04 西南医科大学 一种用于反射式显示的可拉伸微胶囊薄膜及制备方法
CN114796587A (zh) * 2022-03-28 2022-07-29 上海长征医院 一种医用水凝胶缝合线及其制备方法
CN114789495A (zh) * 2022-04-29 2022-07-26 中国科学院武汉植物园 一种基于有机原材料的植物育苗容器的制备方法
CN116850336A (zh) * 2023-05-30 2023-10-10 中国人民解放军陆军军医大学 一种双向液体传输和传感通信的中空水凝胶缝合线及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1774474A (zh) * 2003-04-15 2006-05-17 英诺格尔股份公司 聚乙烯醇凝胶
CN101274970A (zh) * 2007-03-28 2008-10-01 日本高度纸工业株式会社 高离子传导性固体电解质的制造方法
CN107828067A (zh) * 2017-11-13 2018-03-23 福建农林大学 一种高强度自修复导电磁性pva水凝胶及其制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57162607A (en) * 1981-03-30 1982-10-06 Unitika Ltd Polyvinyl alcohol dialysis membrane having no elongation or contraction in water and its production
CN1093552C (zh) * 1998-12-30 2002-10-30 北京科技大学 半晶聚乙烯醇水凝胶制造法
CN101323713B (zh) * 2007-06-15 2011-09-07 中国科学院化学研究所 表面具有双重性质的无机物片状复合材料及其制备方法
CN101773789B (zh) * 2010-03-23 2012-06-27 何涛 亲水膜材料及其制备方法
CN103030908A (zh) * 2011-09-30 2013-04-10 中国石油化工集团公司 一种聚乙烯醇/无机纳米复合水凝胶及其制备方法
CN103173003B (zh) * 2013-02-27 2015-05-20 国家纳米科学中心 一种碳纳米管-水溶性聚合物复合柔性电热薄膜、制备方法及其用途
CN106279722B (zh) * 2015-08-21 2018-11-06 北京师范大学 高强度物理交联水凝胶和弹性体及其制备方法
CN105161316B (zh) * 2015-09-16 2018-07-27 中国科学院电工研究所 一种柔性超级电容器及其制备方法
CN105664241B (zh) * 2016-01-18 2018-07-17 西北工业大学 一种力学性能可控的聚乙烯醇软骨支架的制备方法
CN105694088B (zh) * 2016-04-11 2018-06-15 福州大学 一种聚乙烯醇/壳聚糖固体电解质薄膜的制备方法及应用
CN106432759B (zh) * 2016-10-12 2020-10-09 福州大学 一种高强度聚乙烯醇水凝胶的制备方法
CN106601338B (zh) * 2016-11-18 2018-11-23 深圳先进技术研究院 一种具有功能化的柔性电极及其制备方法
CN107233802B (zh) * 2017-06-13 2020-05-26 江苏理工学院 一种聚乙烯醇/纳米二氧化硅-钛杂化膜及其制备方法
CN107903418A (zh) * 2017-12-11 2018-04-13 合肥华福土工合成材料有限公司 一种基于扩散渗析pva阳离子膜的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1774474A (zh) * 2003-04-15 2006-05-17 英诺格尔股份公司 聚乙烯醇凝胶
CN101274970A (zh) * 2007-03-28 2008-10-01 日本高度纸工业株式会社 高离子传导性固体电解质的制造方法
CN107828067A (zh) * 2017-11-13 2018-03-23 福建农林大学 一种高强度自修复导电磁性pva水凝胶及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG, JUNHONG ET. AL.: "PVA Electrochemical Stability of PVA Alkaline Gel Polymer Electrolyte Membranes", JOURNAL OF ELECTROCHEMISTRY, vol. 11, no. 2, 31 May 2005 (2005-05-31), pages 129 - 132, ISSN: 1000-3471 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114211004A (zh) * 2021-12-17 2022-03-22 北京工商大学 3d打印不锈钢工件表面的pva基复合膜层及制备方法
CN114211004B (zh) * 2021-12-17 2024-01-12 北京工商大学 3d打印不锈钢工件表面的pva基复合膜层及制备方法
CN116038653A (zh) * 2022-12-21 2023-05-02 深圳大学 一种以微藻为模板的磁性微米机器人及其制备方法
CN116038653B (zh) * 2022-12-21 2024-01-12 深圳大学 一种以微藻为模板的磁性微米机器人及其制备方法
CN116059440A (zh) * 2023-02-14 2023-05-05 厦门大学 一种具有各向异性的仿生肌肉材料及其制备方法
CN116059440B (zh) * 2023-02-14 2023-12-19 厦门大学 一种具有各向异性的仿生肌肉材料及其制备方法

Also Published As

Publication number Publication date
CN108774327B (zh) 2022-01-11
CN108715641B (zh) 2022-05-03
CN108774327A (zh) 2018-11-09
CN108715641A (zh) 2018-10-30

Similar Documents

Publication Publication Date Title
WO2019223189A1 (zh) Pva水凝胶、使用其的复合材料、其制造方法及其应用
Park et al. Water-responsive materials for sustainable energy applications
Lei et al. A general strategy of 3D printing thermosets for diverse applications
Jia et al. Flexible, biocompatible and highly conductive MXene-graphene oxide film for smart actuator and humidity sensor
Tang et al. Highly stretchable core–sheath fibers via wet-spinning for wearable strain sensors
Azimi et al. Electrospinning piezoelectric fibers for biocompatible devices
Darabi et al. An alkaline based method for generating crystalline, strong, and shape memory polyvinyl alcohol biomaterials
KR101231565B1 (ko) Dna- 탄소나노튜브 하이드로겔 파이버의 제조방법 및 이에 의해 제조되는 dna- 탄소나노튜브 하이드로겔 파이버
Kaczmarek et al. Advances in the study of piezoelectric polymers
Cha et al. Materials engineering, processing, and device application of hydrogel nanocomposites
Liu et al. Design, fabrication and applications of soft network materials
Fu et al. Nanofiber‐based hydrogels: controllable synthesis and multifunctional applications
Pérez-Madrigal et al. Insulating and semiconducting polymeric free-standing nanomembranes with biomedical applications
Saxena et al. A comparative analysis of the basic properties and applications of poly (vinylidene fluoride)(PVDF) and poly (methyl methacrylate)(PMMA)
Sharma et al. Ultrasensitive flexible wearable pressure/strain sensors: Parameters, materials, mechanisms and applications
Chen et al. Bio-inspired hydrogels with fibrous structure: A review on design and biomedical applications
Qin et al. Nanofibrous actuator with an alignment gradient for millisecond-responsive, multidirectional, multimodal, and multidimensional large deformation
Yu et al. Fiber-shaped soft actuators: fabrication, actuation mechanism and application
Nasseri et al. Programmable nanocomposites of cellulose nanocrystals and zwitterionic hydrogels for soft robotics
JP4815496B2 (ja) ナノポーラス表面を有する立体製品の製造方法
US20230331937A1 (en) Hierarchically Structured Hydrogel with Tunable Mechanical Properties
Dong et al. Emerging smart micro/nanofiber‐based materials for next‐generation wound dressings
Taccola et al. On the injectability of free-standing magnetic nanofilms
Wang et al. Advances in Latest Application Status, Challenges, and Future Development Direction of Electrospinning Technology in the Biomedical
Mi et al. Freeze-casting in synthetic porous materials: Principles, different dimensional building units and recent applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18919837

Country of ref document: EP

Kind code of ref document: A1