WO2019221339A1 - 반도체 발광 소자를 이용한 램프 및 그 제조 방법 - Google Patents

반도체 발광 소자를 이용한 램프 및 그 제조 방법 Download PDF

Info

Publication number
WO2019221339A1
WO2019221339A1 PCT/KR2018/010534 KR2018010534W WO2019221339A1 WO 2019221339 A1 WO2019221339 A1 WO 2019221339A1 KR 2018010534 W KR2018010534 W KR 2018010534W WO 2019221339 A1 WO2019221339 A1 WO 2019221339A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
semiconductor light
layer
emitting device
substrate
Prior art date
Application number
PCT/KR2018/010534
Other languages
English (en)
French (fr)
Inventor
최봉석
강민구
송후영
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US17/042,867 priority Critical patent/US11804585B2/en
Priority to CN201880093147.6A priority patent/CN112106210B/zh
Priority to DE112018007610.5T priority patent/DE112018007610B4/de
Publication of WO2019221339A1 publication Critical patent/WO2019221339A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/151Light emitting diodes [LED] arranged in one or more lines
    • F21S41/153Light emitting diodes [LED] arranged in one or more lines arranged in a matrix
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/10Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source
    • F21S43/13Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by the light source characterised by the type of light source
    • F21S43/14Light emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the present invention relates to a lamp, and more particularly, to a lamp using a semiconductor light emitting device and a method of manufacturing the same.
  • the vehicle is equipped with various vehicle lamps having an illumination function and a signal function.
  • halogen lamps or gas discharge lamps have been mainly used, but recently, light emitting diodes (LEDs) have attracted attention as light sources of vehicle lamps.
  • LEDs light emitting diodes
  • a light emitting diode itself, not a package, is a semiconductor light emitting device that converts current into light, and is being developed as a light source for display images of electronic devices including information communication devices.
  • a vehicle lamp developed to date uses a light emitting diode in a package form, and thus has a weak point that mass yield is not good and expensive, and the degree of flexibility is weak.
  • the light traveling to the lower portion of the semiconductor light emitting element is a factor to reduce the light amount of the lamp. Accordingly, structures for increasing light extraction rate of a lamp by reflecting light traveling under the semiconductor light emitting device have been developed.
  • An object of the present invention is to provide a structure for increasing the amount of light of the lamp by reflecting the light traveling to the lower portion of the semiconductor light emitting device.
  • the present invention is a substrate, a plurality of semiconductor light emitting elements disposed on the substrate, a flat layer formed between the semiconductor light emitting elements and the substrate and the And a spacer disposed between the planar layers, and an air gap is formed between each of the semiconductor light emitting devices and the spacer.
  • the air gap may be formed to surround the periphery of the semiconductor light emitting device.
  • the present invention further includes a wiring electrode disposed on the substrate and a metal solder layer disposed between the wiring electrode and the semiconductor light emitting device, wherein the air gap is formed on the wiring electrode, It may be formed to surround the side of the metal solder layer.
  • a portion of each side of each of the semiconductor light emitting devices may be surrounded by the flat layer, and the other part may be surrounded by the air gap.
  • the entire side surface of each of the semiconductor light emitting devices may be surrounded by the flat layer, and the air gap may be formed to surround the metal solder layer.
  • the flat layer may include a first region surrounding the semiconductor light emitting devices and a second region surrounding the first region, and the air gap may be formed between the first region and the substrate. .
  • the spacer may be formed at a boundary between the first and second regions, and the second region may be formed to surround the spacer.
  • the semiconductor light emitting device may further include a glass layer formed around the substrate, and the spacer may protrude from the glass layer in a thickness direction of the semiconductor light emitting device.
  • a portion of the second region may be disposed on the glass layer.
  • the present invention comprises the steps of forming a wiring electrode on the substrate, the step of transferring the semiconductor light emitting device having a chip guide formed on the side on the wiring electrode, spin coating a glass-based resin on the substrate to form a coating layer And hardening the coating layer, after curing the coating layer, forming a flat layer between the semiconductor light emitting devices, and etching a portion of the flat layer to form an upper electrode.
  • the transferring of the semiconductor light emitting device to the wiring electrode is performed such that a space is formed between the chip guide and the substrate, and the forming of the coating layer is performed such that the coating layer is formed on the space. It provides a manufacturing method.
  • the air gap formed around the semiconductor light emitting device totally reflects the light traveling under the semiconductor light emitting device, the light extraction rate of the lamp can be improved.
  • the air gap can be formed around the semiconductor light emitting device without additional process, it is possible to increase the light extraction rate of the lamp without increasing the production cost.
  • FIG. 1 is a conceptual diagram illustrating an embodiment of a lamp using a semiconductor light emitting device of the present invention.
  • FIG. 2 is a partially enlarged view of a portion A of FIG. 1, and FIG. 3 is a sectional view.
  • FIG. 4 is a conceptual diagram illustrating the vertical semiconductor light emitting device of FIG. 3.
  • 5 and 6 are cross-sectional views of the lamp according to the invention.
  • FIG. 7 to 11 are conceptual diagrams showing a method of manufacturing a lamp according to the present invention.
  • the lamp described herein can be applied to a vehicle.
  • the lamp according to the present invention may include a headlight (head lamp), taillights, traffic lights, fog lights, turn signals, brake lights, emergency lights, reversing lights (tail lamps).
  • headlight head lamp
  • taillights traffic lights
  • fog lights fog lights
  • turn signals brake lights
  • emergency lights emergency lights
  • reversing lights tail lamps
  • FIG. 1 is a conceptual diagram illustrating an embodiment of a lamp using a semiconductor light emitting device of the present invention.
  • the lamp 10 according to the exemplary embodiment of the present invention includes a frame 11 fixed to a vehicle body and a light source unit 12 installed on the frame 11.
  • the frame 11 is connected to a wiring line for supplying power to the light source 12, and the frame 11 may be directly fastened to the vehicle body or fixed through a bracket. According to the illustration, a lens unit may be provided to more diffuse and clarify the light emitted from the light source unit 12.
  • the light source unit 12 may be a flexible light source unit that can be bent, twisted, folded, or rolled, which can be bent by an external force.
  • the light source unit 12 In a state where the light source unit 12 is not bent (for example, a state having an infinite curvature radius, hereinafter referred to as a first state), the light source unit 12 becomes a plane. In the first state bent by an external force (for example, a state having a finite radius of curvature, hereinafter referred to as a second state), the flexible light source unit may be a curved surface at least partially curved or bent.
  • the pixel of the light source unit 12 may be implemented by a semiconductor light emitting device.
  • a light emitting diode LED
  • the light emitting diode is formed to have a small size, thereby enabling it to serve as a pixel even in the second state.
  • the light source unit 12 includes a unit light source, a base substrate, and a connection electrode.
  • the light source unit 12 may be formed of only the unit light source.
  • the unit light source will be described in detail through the light source unit 12 including only the unit light source.
  • FIG. 2 is an enlarged view of a portion A of FIG. 1
  • FIG. 3 is a cross-sectional view
  • FIG. 4 is a conceptual view illustrating the vertical semiconductor light emitting device of FIG. 3.
  • PM passive matrix
  • AM active matrix
  • the unit light source 100 includes a substrate 110, a first electrode 120, a first adhesive layer 130, a second electrode 140, and a plurality of semiconductor light emitting devices 150.
  • the substrate 110 may be a base layer in which a structure is formed through the entire process, and may be a wiring substrate in which the first electrode 120 is disposed.
  • the substrate 110 may include glass or polyimide (PI) in order to implement a flexible light source.
  • the substrate 110 may be a thin metal.
  • any material such as polyethylene naphthalate (PEN) and polyethylene terephthalate (PET) may be used as long as it is an insulating and flexible material.
  • the substrate 110 may be either a transparent material or an opaque material.
  • a heat dissipation sheet or a heat sink may be mounted on the substrate 110 to implement a heat dissipation function.
  • the heat dissipation sheet, the heat sink, or the like may be mounted on a surface opposite to the surface on which the first electrode 120 is disposed.
  • the first electrode 120 is positioned on the substrate 110 and may be formed as a surface electrode. Accordingly, the first electrode 120 may be an electrode layer disposed on the substrate and may serve as a data electrode. Meanwhile, as illustrated in FIG. 6 to be described below, an electrode pad 123 may be disposed on the first electrode 120 to facilitate electrical connection with the connection electrode 220.
  • the first adhesive layer 130 is formed on the substrate 110 on which the first electrode 120 is located.
  • the first adhesive layer 130 may be a layer having adhesiveness and conductivity.
  • the first adhesive layer 130 may be mixed with a conductive material and an adhesive material. Therefore, the first adhesive layer may be referred to as a conductive first adhesive layer.
  • the first adhesive layer 130 is flexible, thereby enabling the flexible function in the light source unit.
  • the first adhesive layer 130 may be an anisotropic conductive film (ACF), an anisotropic conductive paste, a solution containing conductive particles, or the like.
  • ACF anisotropic conductive film
  • the first adhesive layer 130 allows electrical interconnection in the Z direction through the thickness, but may be configured as a layer having electrical insulation in the horizontal X-Y direction. Therefore, the first adhesive layer 130 may be referred to as a Z-axis conductive layer.
  • the anisotropic conductive film is a film in which an anisotropic conductive medium is mixed with an insulating base member. When the heat and pressure are applied, only the specific portion is conductive by the anisotropic conductive medium.
  • the heat and pressure is applied to the anisotropic conductive film, other methods are possible in order for the anisotropic conductive film to be partially conductive. Such a method can be, for example, only one of the heat and pressure applied or UV curing or the like.
  • the anisotropic conductive medium may be, for example, conductive balls or conductive particles.
  • the anisotropic conductive film in this example is a film in which the conductive ball is mixed with the insulating base member, and only a specific portion of the conductive ball is conductive when heat and pressure are applied.
  • the anisotropic conductive film may be in a state in which a core of a conductive material contains a plurality of particles coated by an insulating film made of a polymer material, and in this case, a portion to which heat and pressure are applied becomes conductive by the core as the insulating film is destroyed. .
  • the shape of the core may be deformed to form a layer in contact with each other in the thickness direction of the film.
  • heat and pressure are applied to the anisotropic conductive film as a whole, and the electrical connection in the Z-axis direction is partially formed by the height difference of the counterpart bonded by the anisotropic conductive film.
  • the anisotropic conductive film may be in a state containing a plurality of particles coated with a conductive material on the insulating core.
  • the portion to which the heat and pressure are applied is deformed (pressed) to have conductivity in the thickness direction of the film.
  • the conductive material may penetrate the insulating base member in the Z-axis direction and have conductivity in the thickness direction of the film. In this case, the conductive material may have a pointed end.
  • the anisotropic conductive film may be a fixed array anisotropic conductive film (fixed array ACF) consisting of a conductive ball inserted into one surface of the insulating base member.
  • the insulating base member is formed of an adhesive material, and the conductive ball is concentrated on the bottom portion of the insulating base member, and deforms with the conductive ball when heat and pressure are applied to the base member. Therefore, it has conductivity in the vertical direction.
  • the present invention is not necessarily limited thereto, and the anisotropic conductive film has a form in which conductive balls are randomly mixed in an insulating base member or a plurality of layers, in which a conductive ball is disposed in one layer (double- ACF) etc. are all possible.
  • the anisotropic conductive paste is a combination of a paste and a conductive ball, and may be a paste in which conductive balls are mixed with an insulating and adhesive base material.
  • solutions containing conductive particles can be solutions in the form of conductive particles or nanoparticles.
  • the first adhesive layer may include a tin-based alloy, Au, Al, or Pb for Eutectic bonding, and the substrate and the semiconductor light emitting device may be bonded by Eutectic bonding.
  • the semiconductor light emitting device 150 Since the semiconductor light emitting device 150 has excellent brightness, individual unit pixels may be configured with a small size.
  • the size of the individual semiconductor light emitting device 150 may be 80 ⁇ m or less in length of one side, and may be a rectangular or square device.
  • the area of the single semiconductor light emitting device may have a range of 10 ⁇ 10 to 10 ⁇ 5 m 2 , and a gap between the light emitting devices may have a range of 100 ⁇ m to 10 mm.
  • the semiconductor light emitting device 150 may have a vertical structure.
  • a plurality of second electrodes 140 are positioned between the vertical semiconductor light emitting devices, and the plurality of second electrodes 140 are electrically connected to the semiconductor light emitting devices 150.
  • the vertical semiconductor light emitting device includes the p-type electrode 156, the p-type semiconductor layer 155 formed on the p-type electrode 156, and the active layer 154 formed on the p-type semiconductor layer 155. ), An n-type semiconductor layer 153 formed on the active layer 154, and an n-type electrode 152 formed on the n-type semiconductor layer 153.
  • the lower p-type electrode 156 may be electrically connected by the first electrode 120 and the first adhesive layer 130
  • the upper n-type electrode 152 may be a second electrode (described later). 140 may be electrically connected. Since the vertical semiconductor light emitting device 150 can arrange electrodes up and down, the vertical semiconductor light emitting device 150 has a great advantage of reducing the chip size.
  • the plurality of semiconductor light emitting devices 150 may constitute an array of light emitting devices, and an insulating layer 160 may be formed between the plurality of semiconductor light emitting devices 150.
  • an insulating layer 160 is formed on one surface of the first adhesive layer 130 to fill a space between the semiconductor light emitting devices 150.
  • the present invention is not necessarily limited thereto, and a structure in which the first adhesive layer 130 fills all of the semiconductor light emitting devices without the insulating layer 160 is possible.
  • the insulating layer 160 may be a transparent insulating layer including silicon oxide (SiOx) or the like.
  • the insulating layer 160 is a structure for preventing the short between the electrodes and has a high insulating properties and low light absorption polymer material such as epoxy, methyl, phenyl-based silicon or inorganic materials such as SiN, Al2O3 Can be used.
  • the phosphor layer 180 is formed on the light emitting element array.
  • the phosphor layer 180 may be formed on one surface of the semiconductor light emitting device 150.
  • the semiconductor light emitting device 150 may be a blue semiconductor light emitting device 151 that emits blue (B) light, and a phosphor layer 180 may be provided to convert the blue (B) light into another color.
  • the phosphor layer 180 may include a red phosphor capable of converting blue light into red (R) light, a green phosphor capable of converting blue light into green (G) light, or white (W) light of blue light. It can be provided with a yellow phosphor that can be converted to.
  • the wavelength of the light formed in the Nitride-based semiconductor light emitting device has a range of 390 ⁇ 550nm, it can be converted to 450 ⁇ 670nm through the film inserted phosphor.
  • a red phosphor and a green phosphor are all provided, and light of various wavelengths may be mixed to realize white light.
  • a light diffusion film may be used instead of a phosphor when using a GaAs-based red semiconductor light emitting device.
  • a patterned sheet may be inserted to improve light extraction efficiency.
  • an optical gap layer 171 may exist between the semiconductor light emitting device 150 and the phosphor layer 180.
  • the optical gap layer 171 may be made of a material such as epoxy, acrylic, methyl, or phenyl-based silicon having low light absorption and excellent bending characteristics.
  • a patterned sheet may be inserted or particles having different refractive indices may be mixed to optimize light efficiency.
  • the color filter 172 may be stacked on the phosphor layer 180 to improve the color purity of the converted light.
  • the protective layer 173 may be formed to cover the color filter 172 to protect the light source unit from moisture, oxygen, and external impact.
  • the protective layer 173 may be implemented through film bonding or resin coating.
  • the present invention includes a substrate, a plurality of semiconductor light emitting devices 350, a flat layer 330, a spacer 371, and an air gap 380.
  • 5 and 6 are cross-sectional views of the lamp according to the invention.
  • the plurality of semiconductor light emitting elements 350 are disposed on the substrate 310.
  • wiring electrodes 320 for applying a voltage to the plurality of semiconductor light emitting devices 350 are disposed on the substrate 310, and each of the semiconductor light emitting devices 350 is electrically connected to the wiring electrodes 320. do.
  • the present invention electrically connects the semiconductor light emitting devices 350 and the wiring electrode 320 by using a metal solder without using the anisotropic conductive film described above. Accordingly, the wiring electrode 320 and the metal solder layer 360 are disposed between the semiconductor light emitting device 350 and the substrate 310.
  • a flat layer 330 is formed between the semiconductor light emitting devices 350.
  • the flat layer 330 may be made of a light transmissive resin.
  • the flat layer 330 is formed to the height of the semiconductor light emitting device 350. Through this, the flat layer 330 allows the above-described phosphor layer, color filter, etc. to be stably stacked on the semiconductor light emitting device 350.
  • the spacer 371 is formed between the flat layer 330 and the substrate 310.
  • the spacer 371 is formed on the substrate 310 or the wiring electrode 320 to surround the semiconductor light emitting devices.
  • the spacer 371 is formed on the wiring electrode 320.
  • the spacer 371 is formed on the substrate 310.
  • the spacer 371 is formed only on the wiring electrode 320.
  • the spacer 371 is formed at a lower height than the semiconductor light emitting devices, the spacer 371 is formed to surround only the lower portion of the metal solder 360 layer and the semiconductor light emitting device.
  • the air gap 380 is formed to surround a portion of the side surface of the semiconductor light emitting device. In this case, the air gap 380 may improve the light extraction rate of the lamp by totally reflecting a part of the light toward the side of the semiconductor light emitting device.
  • the spacer 371 may be formed at the same height as the metal solder layer 360. In this case, the spacer 371 does not surround the side surface of the semiconductor light emitting device 350.
  • the spacer 371 may be made of a siloxane or silica-based resin such as spin on glass.
  • the flat layer 330 around the semiconductor light emitting device 350 may be formed to be spaced apart from the substrate 310 and the wiring electrode 320 by a predetermined distance. According to this structure, a space is formed around the semiconductor light emitting device. This space is the air gap 380 according to the present invention.
  • the spacer 371 is disposed in a space where the substrate 310, the wiring electrode 320, and the flat layer 330 are spaced apart from each other.
  • the air gap 380 is formed only between the spacer 371 and the semiconductor light emitting device 350, and is not formed in a region other than the region surrounded by the spacer 371.
  • the above-described flat layer 330 is divided into two regions.
  • the materials forming the two regions are the same, and the two regions may be physically divided regions or virtually divided regions.
  • a region surrounding the semiconductor light emitting device among the entire regions of the planar layer is called a first region 331, and a region surrounding the first region 331 is called a second region 332.
  • the first region 331 is formed to surround the side surface of the semiconductor light emitting device 350.
  • the first region 331 is formed to be spaced apart from the substrate 310 and the wiring electrode 320 by a predetermined distance, and is formed so as not to surround the side surface of the metal solder layer 360.
  • the first region 331 may be formed so as not to surround the entire side surface of the semiconductor light emitting device 350 or to surround a portion of the side surface of the semiconductor light emitting device 350.
  • the spacer 371 is formed between the first region 331 and the substrate 310 or between the first region 331 and the wiring electrode 320.
  • the spacer 371 is formed at a boundary between the first region 331 and the second region 332.
  • the second region 332 is formed to surround the spacer 371, and is not spaced apart from the substrate 310 and the wiring electrode 320.
  • the second region 332 is disposed to cover the wiring electrode 320 in the region where the wiring electrode 320 passes, and the second region 332 in the region where the wiring electrode 320 does not pass. ) Is disposed to cover the substrate 310. Accordingly, no air gap is formed between the second region 332, the substrate 310, and the wiring electrode 320.
  • the lamp according to the present invention may be formed around the semiconductor light emitting devices 350 and the glass layer 370 disposed on the substrate 310 and the wiring board 320 may be disposed.
  • the glass layer 370 is disposed to cover the wiring board 320 in a region where the wiring board 320 passes.
  • the glass layer 370 is disposed to cover the substrate 310 in an area where the wiring substrate 320 does not pass.
  • the glass layer 370 may be formed up to an area where the second region 332 is disposed. Accordingly, at least a portion of the second region 332 may be formed on the glass layer 370.
  • the spacer 371 is formed to protrude from the glass layer 370 in the thickness direction of the semiconductor light emitting device 350.
  • the spacer 371 and the glass layer 370 are made of the same material.
  • the glass layer 370 and the flat layer 330 are spaced apart from each other by a predetermined distance, and the air gap 380 is formed between the glass layer 370 and the flat layer 330.
  • the air gap 380 is formed below the semiconductor light emitting device 350. Since the air gap 380 totally reflects the light emitted from the semiconductor light emitting device and proceeds to the lower side of the light emitting device, the light extraction rate of the lamp may be improved. In particular, since the air gap 380 has no loss due to light absorption, unlike the metal reflective layer, the air gap 380 can dramatically improve the light loss of the lamp.
  • the air gap can be simply formed without adding a separate process.
  • the manufacturing method which forms the said air gap is demonstrated concretely.
  • FIG. 7 to 11 are conceptual diagrams showing a method of manufacturing a lamp according to the present invention.
  • the wiring electrode 420 is disposed on the substrate 410, and the semiconductor light emitting device 450 is transferred onto the wiring electrode 420.
  • the semiconductor light emitting device 450 is formed in a wafer unit.
  • the semiconductor light emitting device 450 formed on the wafer is separated from the wafer and transferred.
  • a lift lift method (LLO) or a chemical lift-off method (CLO) may be used.
  • a chip guide 431 is formed around the semiconductor light emitting device 450 to prevent the semiconductor light emitting device 450 from being damaged.
  • the chip guide 431 is made of a light transmissive resin, and remains unremoved when the semiconductor light emitting device 450 is transferred.
  • the chip guide 431 is formed to cover at least a portion of the side surface of the semiconductor light emitting device 450. Specifically, the chip guide 431 is formed to cover at least a portion of the side surface of the semiconductor light emitting device 450 when the semiconductor light emitting device 450 is transferred onto the wiring electrode 420.
  • a metal solder layer 460 is formed between the semiconductor light emitting device 450 and the wiring electrode 420, whereby the chip guide 431 and the wiring electrode 420 are spaced apart from each other by a predetermined distance. In the region where the wiring electrode 420 does not pass, the chip guide 431 and the substrate 410 are spaced apart from each other by a predetermined distance.
  • the spaces formed between the chip guides 431 are all referred to as "separation spaces" (S).
  • the chip guide 431 covers the entire side surface of the semiconductor light emitting device 450, the chip guide 431, the wiring electrode 420, and the substrate 410 are formed due to the metal solder layer 460. Are spaced a predetermined distance apart.
  • the viscosity of the resin being spin coated may be about 1 cps, but is not limited thereto.
  • the thickness of the coating layer 470 formed by the spin coating is several hundred nm to 1 ⁇ m.
  • the coating layer 470 is formed on the semiconductor light emitting device, the side surface of the chip guide 431, the wiring electrode 420, and the substrate 410. At this time, the coating layer 470 is also formed in the space (S).
  • a solvent such as Ethyl acetate or PGMEA is evaporated, which reduces the thickness of the coating layer to several tens to several hundred nm.
  • the coating layer 470 formed in the separation space (S) is cured to escape to the outside, at this time, to form a spacer 471 around the chip guide 431. Due to the spacer 471, a closed space is formed around the semiconductor light emitting device 450.
  • the spacer 471 prevents an external material from flowing into the separation space S and allows an air gap 480 to be formed around the semiconductor light emitting device 450.
  • a step of forming a flat layer 432 between the semiconductor light emitting devices is performed.
  • the flat layer 432 is made of the same material as the chip guide 431. For this reason, the chip guide 431 and the flat layer 432 may not be physically separated.
  • the first region 331 of the flat layer described with reference to FIGS. 5 and 6 is the chip guide 431, and the second region 332 is the flat layer 432 formed at this stage.
  • a portion of the flattening layer 430 is etched to form the upper electrode 440.
  • the glass layer 471 ′ and the flat layer 430 covering the semiconductor light emitting device are removed.
  • the glass layer is disposed only on the substrate 410 or the wiring electrode 420.
  • the air gap is formed in the glass layer coating process for improving the insulation of the lamp. That is, according to the present invention, the air gap can be formed without a separate air gap forming process.
  • the display device using the semiconductor light emitting device described above is not limited to the configuration and method of the embodiments described above, but the embodiments may be configured by selectively combining all or part of the embodiments so that various modifications may be made. It may be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Engineering & Computer Science (AREA)
  • Led Device Packages (AREA)

Abstract

본 발명은 램프에 관한 것으로 특히, 반도체 발광 소자를 이용한 램프 및 그 제조 방법에 관한 것이다. 본 발명은 기판, 상기 기판상에 배치되는 복수의 반도체 발광소자들, 상기 반도체 발광소자들 사이에 형성되는 평탄층 및 상기 기판 및 상기 평탄층 사이에 배치되는 스페이서를 포함하고, 상기 반도체 발광소자들 각각과 상기 스페이서 사이에는 에어갭이 형성되는 것을 특징으로 하는 램프를 제공한다.

Description

반도체 발광 소자를 이용한 램프 및 그 제조 방법
본 발명은 램프에 관한 것으로 특히, 반도체 발광 소자를 이용한 램프 및 그 제조 방법에 관한 것이다.
차량은 조명 기능이나 신호 기능을 가지는 다양한 차량용 램프를 구비하고 있다. 일반적으로, 할로겐 램프나 가스 방전식 램프가 주로 사용되어 왔으나, 최근에는 발광다이오드(LED; Light Emitting Diode)가 차량용 램프의 광원으로 주목 받고 있다.
발광다이오드의 경우 사이즈를 최소화함으로서 램프의 디자인 자유도를 높여줄 뿐만 아니라 반영구적인 수명으로 인해 경제성도 갖추고 있으나, 현재 대부분 패키지 형태로 생산되고 있다. 패키지가 아닌 발광 다이오드(Light Emitting Diode: LED) 자체는 전류를 빛으로 변환시키는 반도체 발광 소자로서, 정보 통신기기를 비롯한 전자장치의 표시 화상용 광원으로 개발 중이다.
하지만, 현재까지 개발된 차량용 램프는 패키지 형태의 발광 다이오드를 이용하는 것이기에 양산 수율이 좋지 않고 비용이 많이 소요될 뿐 아니라, 플렉서블의 정도가 약하다는 약점이 존재한다.
한편, 반도체 발광소자의 하부로 진행하는 빛은 램프의 광량을 저하시키는 요인이 된다. 이에, 반도체 발광소자 하부로 진행하는 빛을 반사시켜 램프의 광추출률을 상승시키기 위한 구조들이 개발되고 있다.
본 발명의 일 목적은 반도체 발광소자의 하부로 진행하는 빛을 반사시켜 램프의 광량을 증가시키기 위한 구조를 제공하는 것이다.
상기 또는 다른 목적을 달성하기 위해 본 발명의 일 측면에 따르면, 본 발명은 기판, 상기 기판상에 배치되는 복수의 반도체 발광소자들, 상기 반도체 발광소자들 사이에 형성되는 평탄층 및 상기 기판 및 상기 평탄층 사이에 배치되는 스페이서를 포함하고, 상기 반도체 발광소자들 각각과 상기 스페이서 사이에는 에어갭이 형성되는 것을 특징으로 하는 램프를 제공한다.
일 실시 예에 있어서, 상기 에어갭은 상기 반도체 발광소자의 주변을 에워싸도록 형성될 수 있다.
일 실시 예에 있어서, 본 발명은 상기 기판 상에 배치되는 배선전극 및 상기 배선전극과 상기 반도체 발광소자 사이에 배치되는 메탈 솔더층을 더 포함하고, 상기 에어갭은 상기 배선전극 상에 형성되며, 상기 메탈 솔더층의 측면을 에워싸도록 형성될 수 있다.
일 실시 예에 있어서, 상기 반도체 발광소자들 각각의 측면의 일부는 상기 평탄층으로 에워싸이고, 나머지 일부는 상기 에어갭으로 에워싸일 수 있다.
일 실시 예에 있어서, 상기 반도체 발광소자들 각각의 측면 전체는 상기 평탄층으로 에워싸이고, 상기 에어갭은 상기 메탈 솔더층을 에워싸도록 형성될 수 있다.
일 실시 예에 있어서, 상기 평탄층은 상기 반도체 발광소자들을 에워싸는 제1영역 및 상기 제1영역을 에워싸는 제2영역을 포함하고, 상기 에어갭은 상기 제1영역 및 상기 기판 사이에 형성될 수 있다.
일 실시 예에 있어서, 상기 스페이서는 상기 제1 및 제2영역의 경계에 형성되고, 상기 제2영역은 상기 스페이서를 에워싸도록 형성될 수 있다.
일 실시 예에 있어서, 상기 반도체 발광소자들 주변에 형성되며, 상기 기판 상에 배치되는 글라스층을 더 포함하고, 상기 스페이서는 상기 글라스층에서 상기 반도체 발광소자의 두께 방향으로 돌출되어 형성될 수 있다.
일 실시 예에 있어서, 상기 제2영역의 일부는 상기 글라스층 상에 배치될 수 있다.
또한, 본 발명은 기판 상에 배선전극을 형성하는 단계, 측면에 칩 가이드가 형성된 반도체 발광소자들을 상기 배선전극에 상에 전사하는 단계, 상기 기판 상에 글라스 기반의 레진을 스핀 코팅하여 코팅층을 형성하는 단계, 상기 코팅층을 경화시키는 단계, 상기 코팅층을 경화시킨 후, 상기 반도체 발광소자들 사이에 평탄층을 형성하는 단계, 상부 전극 형성을 위해, 평탄층의 일부를 식각하는 단계를 포함하고, 상기 배선전극에 반도체 발광소자를 전사하는 단계는 상기 칩 가이드와 상기 기판 사이에 이격 공간이 형성되도록 진행되고, 상기 코팅층을 형성하는 단계는 상기 이격 공간에 코팅층이 형성되도록 진행되는 것을 특징으로 하는 램프의 제조방법을 제공한다.
본 발명에 따르면, 반도체 발광소자 주변에 형성된 에어갭이 반도체 발광소자 하부로 진행하는 빛을 전반사 시키기 때문에 램프의 광추출률을 향상시킬 수 있게 된다.
또한, 본 발명에 따르면, 별도의 공정 추가 없이 반도체 발광소자 주변에 에어갭을 형성할 수 있기 때문에, 생산 비용 증가 없이 램프의 광추출률을 증가시킬 수 있게 된다.
도 1은 본 발명의 반도체 발광 소자를 이용한 램프의 일 실시예를 나타내는 개념도이다.
도 2는 도 1의 A부분의 부분 확대도이고, 도 3은 단면도이다.
도 4는 도 3의 수직형 반도체 발광소자를 나타내는 개념도이다.
도 5 및 6은 본 발명에 따른 램프의 단면도들이다.
도 7 내지 11은 본 발명에 따른 램프를 제조하는 방법을 나타내는 개념도이들이다.
이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다. 또한, 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되는 것으로 해석되어서는 아니 됨을 유의해야 한다.
또한, 층, 영역 또는 기판과 같은 요소가 다른 구성요소 "상(on)"에 존재하는 것으로 언급될 때, 이것은 직접적으로 다른 요소 상에 존재하거나 또는 그 사이에 중간 요소가 존재할 수도 있다는 것을 이해할 수 있을 것이다.
본 명세서에서 설명되는 램프는 차량에 적용될 수 있다. 구체적으로, 본 발명에 따른 램프는 전조등(헤드 램프), 미등, 차폭등, 안개등, 방향지시등, 제동등, 비상등, 후진등(테일 램프) 등이 포함될 수 있다. 본 명세서에서는 설명의 편의를 위하여 본 발명에 따른 램프가 차량에 적용되는 일 실시 예에 대하여 설명하나, 본 발명에 따른 램프는 차량에 한정되지 않고, 조명 기구가 필요한 모든 장치에 적용될 수 있다.
도 1은 본 발명의 반도체 발광 소자를 이용한 램프의 일 실시예를 나타내는 개념도이다.
본 발명의 일 실시예에 따른 램프(10)는 차체에 고정되는 프레임(11)과, 프레임(11)에 설치되는 광원부(12)를 포함하여 이루어진다.
프레임(11)에는 광원부(12)에 전원을 공급하기 위한 배선라인이 연결되어 있으며, 상기 프레임(11)은 차체에 직접 체결 고정되거나 브라켓을 매개로 고정될 수 있다. 도시에 의하면, 광원부(12)가 발광하는 빛을 보다 확산하고 선명하게 하기 위하여 렌즈부가 구비될 수 있다.
상기 광원부(12)는 외력에 의하여 휘어질 수 있는, 구부러질 수 있는, 비틀어질 수 있는, 접힐 수 있는, 말려질 수 있는 플렉서블 광원부가 될 수 있다.
상기 광원부(12)가 휘어지지 않는 상태(예를 들어, 무한대의 곡률반경을 가지는 상태, 이하 제1상태라 한다)에서는 상기 광원부(12)는 평면이 된다. 상기 제1상태에서 외력에 의하여 휘어진 상태(예를 들어, 유한의 곡률반경을 가지는 상태, 이하, 제2상태라 한다)에서는 상기 플렉서블 광원부는 적어도 일부가 휘어지거나 굽어진 곡면이 될 수 있다.
상기 광원부(12)의 화소는 반도체 발광 소자에 의하여 구현될 수 있다. 본 발명에서는 전류를 빛으로 변환시키는 반도체 발광 소자의 일 종류로서 발광 다이오드(Light Emitting Diode: LED)를 예시한다. 상기 발광 다이오드는 작은 크기로 형성되며, 이를 통하여 상기 제2상태에서도 화소의 역할을 할 수 있게 된다.
한편, 본 발명에 따른 광원부(12)는 단위 광원, 베이스 기판, 연결전극을 포함하여 이루어진다. 이하에서는, 상술한 구성요소들에 대하여 구체적으로 설명한다.
광원부(12)는 상기 단위 광원만으로 이루어질 수 있다. 이하, 단위 광원만으로 이루어진 광원부(12)를 통해, 상기 단위 광원에 대하여 구체적으로 설명한다.
도 2는 도 1의 A부분의 부분 확대도이고, 도 3은 단면도이며, 도 4는 도 3의 수직형 반도체 발광소자를 나타내는 개념도이다.
도 2, 도 3 및 도 4의 도시에 의하면, 반도체 발광 소자를 이용한 단위 광원(100)로서 패시브 매트릭스(Passive Matrix, PM) 방식의 반도체 발광 소자를 이용한 경우를 예시한다. 다만, 이하 설명되는 예시는 액티브 매트릭스(Active Matrix, AM) 방식의 반도체 발광 소자에도 적용 가능하다.
상기 단위 광원(100)은 기판(110), 제1전극(120), 제1접착층(130), 제2전극(140) 및 복수의 반도체 발광 소자(150)를 포함한다.
기판(110)은 전체 공정을 통해 구조가 형성되는 기본층(base layer)이며, 제1전극(120)이 배치되는 배선기판이 될 수 있다. 상기 기판(110)은 플렉서블(flexible) 광원부를 구현하기 위하여 유리나 폴리이미드(PI)를 포함할 수 있다. 또한, 기판(110)은 박형 금속이 될 수 있다. 이외에도 절연성이 있고, 유연성 있는 재질이면 예를 들어 PEN(Polyethylene Naphthalate), PET(Polyethylene Terephthalate) 등 어느 것이라도 사용될 수 있다. 또한, 상기 기판(110)은 투명한 재질 또는 불투명한 재질 어느 것이나 될 수 있다.
한편, 상기 기판(110)에는 방열 시트나 히트 싱크 등이 장착되어, 방열 기능이 구현될 수 있다. 이 경우에, 상기 제1전극(120)이 배치되는 면의 반대면에 상기 방열 시트나 히트 싱크 등이 장착될 수 있다.
제1전극(120)은 기판(110) 상에 위치하며, 면 형태의 전극으로 형성될 수 있다. 따라서, 상기 제1전극(120)은 상기 기판상에 배치되는 전극층이 될 수 있으며, 데이터 전극의 역할을 하도록 이루어질 수 있다. 한편, 후술할 도 6과 같이, 제1전극(120)위에는 연결 전극(220)과 전기적 연결을 용이하게 하는 전극패드(123)가 배치될 수 있다.
제1접착층(130)은 제1전극(120)이 위치하는 기판(110)상에 형성된다.
상기 제1접착층(130)은 접착성과 전도성을 가지는 층이 될 수 있으며, 이를 위하여 상기 제1접착층(130)에서는 전도성을 가지는 물질과 접착성을 가지는 물질이 혼합될 수 있다. 따라서, 상기 제1접착층은 전도성 제1접착층으로 지칭될 수 있다. 또한 제1접착층(130)은 연성을 가지며, 이를 통하여 광원부에서 플렉서블 기능을 가능하게 한다.
이러한 예로서, 제1접착층(130)은 이방성 전도성 필름(anistropy conductive film, ACF), 이방성 전도 페이스트(paste), 전도성 입자를 함유한 솔루션(solution) 등이 될 수 있다. 상기 제1접착층(130)은 두께를 관통하는 Z 방향으로는 전기적 상호 연결을 허용하나, 수평적인 X-Y 방향으로는 전기절연성을 가지는 레이어로서 구성될 수 있다. 따라서 상기 제1접착층(130)은 Z축 전도층으로 명명될 수 있다.
상기 이방성 전도성 필름은 이방성 전도매질(anisotropic conductive medium)이 절연성 베이스부재에 혼합된 형태의 필름으로서, 열 및 압력이 가해지면 특정 부분만 이방성 전도매질에 의하여 전도성을 가지게 된다. 이하, 상기 이방성 전도성 필름에는 열 및 압력이 가해지는 것으로 설명하나, 상기 이방성 전도성 필름이 부분적으로 전도성을 가지기 위하여 다른 방법도 가능하다. 이러한 방법은, 예를 들어 상기 열 및 압력 중 어느 하나만이 가해지거나 UV 경화 등이 될 수 있다.
또한, 상기 이방성 전도매질은 예를 들어, 도전볼이나 전도성 입자가 될 수 있다. 도시에 의하면, 본 예시에서 상기 이방성 전도성 필름은 도전볼이 절연성 베이스 부재에 혼합된 형태의 필름으로서, 열 및 압력이 가해지면 특정부분만 도전볼에 의하여 전도성을 가지게 된다. 이방성 전도성 필름은 전도성 물질의 코어가 폴리머 재질의 절연막에 의하여 피복된 복수의 입자가 함유된 상태가 될 수 있으며, 이 경우에 열 및 압력이 가해진 부분이 절연막이 파괴되면서 코어에 의하여 도전성을 가지게 된다. 이때, 코어의 형태는 변형되어 필름의 두께방향으로 서로 접촉하는 층을 이룰 수 있다. 보다 구체적인 예로서, 열 및 압력은 이방성 전도성 필름에 전체적으로 가해지며, 이방성 전도성 필름에 의하여 접착되는 상대물의 높이차에 의하여 Z축 방향의 전기적 연결이 부분적으로 형성된다.
다른 예로서, 이방성 전도성 필름은 절연 코어에 전도성 물질이 피복된 복수의 입자가 함유된 상태가 될 수 있다. 이 경우에는 열 및 압력이 가해진 부분이 전도성 물질이 변형되어(눌러 붙어서) 필름의 두께방향으로 전도성을 가지게 된다. 또 다른 예로서, 전도성 물질이 Z축 방향으로 절연성 베이스 부재를 관통하여 필름의 두께방향으로 전도성을 가지는 형태도 가능하다. 이 경우에, 전도성 물질은 뽀족한 단부를 가질 수 있다.
도시에 의하면, 상기 이방성 전도성 필름은 도전볼이 절연성 베이스 부재의 일면에 삽입된 형태로 구성되는 고정배열 이방성 전도성 필름(fixed array ACF)가 될 수 있다. 보다 구체적으로, 절연성 베이스부재는 접착성을 가지는 물질로 형성되며, 도전볼은 상기 절연성 베이스부재의 바닥부분에 집중적으로 배치되며, 상기 베이스부재에서 열 및 압력이 가해지면 상기 도전볼과 함께 변형됨에 따라 수직방향으로 전도성을 가지게 된다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 상기 이방성 전도성 필름은 절연성 베이스부재에 도전볼이 랜덤하게 혼입된 형태나, 복수의 층으로 구성되며 어느 한 층에 도전볼이 배치되는 형태(double-ACF) 등이 모두 가능하다.
이방성 전도 페이스트는 페이스트와 도전볼의 결합형태로서, 절연성 및 접착성의 베이스 물질에 도전볼이 혼합된 페이스트가 될 수 있다. 또한, 전도성 입자를 함유한 솔루션은 전도성 particle 혹은 nano 입자를 함유한 형태의 솔루션이 될 수 있다.
기판(110) 상에 제1전극(120)이 위치하는 상태에서, 예를 들어 이방성 전도성 필름을 위치시킨 후에, 반도체 발광 소자(150)를 열 및 압력을 가하여 접속시키면, 상기 반도체 발광 소자(150)가 제1전극(120)과 전기적으로 연결된다. 이 때, 상기 반도체 발광 소자(150)는 제1전극(120) 상에 위치되도록 배치되는 것이 바람직하다. 또한, 이방성 전도성 필름은 접착 성분을 함유하기 때문에, 제1접착층(130)은 반도체 발광 소자(150)와 제1전극(120) 사이에서 전기적 연결뿐만 아니라 기계적 결합까지 구현한다.
또 다른 예로서, 상기 제1접착층은 Eutectic bonding을 위한 주석계열 alloy, Au, Al 또는 Pb 등을 구비하며, 상기 기판과 상기 반도체 발광소자는 Eutectic bonding에 의하여 결합될 수 있다.
반도체 발광 소자(150)는 휘도가 우수하므로, 작은 크기로도 개별 단위 픽셀을 구성할 수 있다. 이와 같은 개별 반도체 발광 소자(150)의 크기는 한 변의 길이가 80㎛ 이하일 수 있고, 직사각형 또는 정사각형 소자일 수 있다. 이 경우에, 단일 반도체 발광소자의 면적은 10-10~10-5m2 의 범위를 가지며, 발광소자 간 간격은 100um~10mm 의 범위를 가질 수 있다.
상기 반도체 발광 소자(150)는 수직형 구조가 될 수 있다.
수직형 반도체 발광 소자들의 사이에는 복수의 제2전극(140)이 위치하며, 상기 복수의 제2전극(140)은 상기 반도체 발광 소자(150)와 전기적으로 연결된다.
도 4를 참조하면, 이러한 수직형 반도체 발광 소자는 p형 전극(156), p형 전극(156) 상에 형성된 p형 반도체층(155), p형 반도체층(155) 상에 형성된 활성층(154), 활성층(154)상에 형성된 n형 반도체층(153) 및 n형 반도체층(153) 상에 형성된 n형 전극(152)을 포함한다. 이 경우, 하부에 위치한 p형 전극(156)은 제1전극(120)과 제1접착층(130)에 의하여 전기적으로 연결될 수 있고, 상부에 위치한 n형 전극(152)은 후술하는 제2전극(140)과 전기적으로 연결될 수 있다. 이러한 수직형 반도체 발광 소자(150)는 전극을 상/하로 배치할 수 있으므로, 칩 사이즈를 줄일 수 있다는 큰 강점을 가지고 있다.
다시 도 2 및 도 3을 참조하면, 또한, 복수의 반도체 발광 소자(150)는 발광 소자 어레이(array)를 구성하며, 복수의 반도체 발광 소자(150)의 사이에는 절연층(160)이 형성된다. 예를 들어, 상기 제1접착층(130)의 일면에 절연층(160)이 형성되어 상기 반도체 발광 소자(150)의 사이 공간을 채우게 된다.
다만, 본 발명은 반드시 이에 한정되는 것은 아니며, 상기 절연층(160)이 없이 상기 제1접착층(130)이 상기 반도체 발광소자의 사이를 모두 채우는 구조도 가능하다.
상기 절연층(160)은 실리콘 옥사이드(SiOx) 등을 포함하는 투명 절연층이 될 수 있다. 다른 예로서, 상기 절연층(160)에는 전극간의 short를 방지하기 위한 구조로 절연특성이 우수하고 광흡수가 적은 에폭시 혹은 methyl, phenyl 계열 실리콘 등의 고분자 물질 혹은, SiN, Al2O3 등의 무기 물질이 사용될 수 있다.
도시에 의하면, 상기 발광 소자 어레이에는 형광체층(180)이 형성된다.
상기 형광체층(180)은 상기 반도체 발광 소자(150)의 일면에 형성될 수 있다. 예를 들어, 반도체 발광 소자(150)는 청색(B) 광을 발광하는 청색 반도체 발광 소자(151)이고, 이러한 청색(B) 광을 다른 색상으로 변환시키기 위한 형광체층(180)이 구비될 수 있다. 이 경우에, 형광체층(180)은 청색 광을 적색(R) 광으로 변환시킬 수 있는 적색 형광체, 청색 광을 녹색(G) 광으로 변환시킬 수 있는 녹색 형광체 또는 청색 광을 백색(W) 광으로 변환시킬 수 있는 황색 형광체를 구비할 수 있다.
이 경우에, Nitride 기반 반도체 발광소자에서 형성되는 광의 파장은 390~550nm 의 범위를 가지며, 형광체가 삽입된 필름을 통해 450~670nm 로 변환시킬 수 있다. 또한, 적색 형광체 및 녹색 형광체를 전부 구비하여, 여러 파장의 광을 혼합하여, 백색 광을 구현할 수 있다. 또한, 적색계열의 광이 필요할 때, GaAs 계열의 적색 반도체 발광소자를 사용할 경우 형광체가 아닌 광 확산 필름을 사용할 수 있다. 또한, 광추출 효율을 향상시키기 위해 패턴된 시트가 삽입될 수 있다.
이 경우에, 상기 반도체 발광소자(150)와 상기 형광체층(180)의 사이에는 광학갭층(171)이 존재할 수 있다. 상기 광학갭층(171)은 광흡수가 적고 bending 특성이 우수한 에폭시, 아크릴, 혹은 methyl, phenyl 계열 실리콘 등의 재질로 이루어질 수 있다. 또한, 광효율 최적화를 위해 패턴된 시트가 삽입되거나, 굴절율이 다른 입자가 혼합될 수 있다.
한편, 이 때에 컬러 필터(172)가 상기 형광체층(180)에 적층되어 변환된 광의 색순도를 향상시키는 것도 가능하다. 또한, 수분, 산소 및 외부충격으로부터 광원부를 보호하기 위하여 상기 컬러 필터(172)를 보호층(173)이 덮도록 형성될 수 있다. 이 때에, 상기 보호층(173)은 필름 접합 또는 레진 코팅을 통하여 구현될 수 있다.
본 발명은 기판, 복수의 반도체 발광소자들(350), 평탄층(330), 스페이서(371) 및 에어갭(380)을 포함한다. 이하, 상술한 구성요소에 대하여 첨부된 도면을 통해 보다 구체적으로 설명한다.
도 5 및 6은 본 발명에 따른 램프의 단면도이다.
복수의 반도체 발광소자들(350)은 기판(310) 상에 배치된다. 구체적으로, 기판(310) 상에는 복수의 반도체 발광소자(350)에 전압을 인가하는 배선전극(320)이 배치되며, 상기 반도체 발광소자(350)들 각각은 상기 배선전극(320)에 전기적으로 연결된다. 본 발명은 상술한 이방성 전도성 필름을 사용하지 않고, 메탈 솔더를 이용하여 반도체 발광소자(350)들과 배선전극(320)을 전기적으로 연결시킨다. 이에 따라, 반도체 발광소자(350)와 기판(310) 사이에는 배선전극(320) 및 메탈 솔더층(360)이 배치된다.
한편, 상기 반도체 발광소자(350)들 사이에는 평탄층(330)이 형성된다. 상기 평탄층(330)은 광투과성 레진으로 이루어질 수 있다. 상기 평탄층(330)은 반도체 발광소자(350)의 높이까지 형성된다. 이를 통해, 상기 평탄층(330)은 상술한 형광체층, 컬러 필터 등이 상기 반도체 발광소자(350) 상에 안정적으로 적층되도록 한다.
한편, 스페이서(371)는 상기 평탄층(330)과 기판(310) 사이에 형성된다. 상기 스페이서(371)는 상기 기판(310) 또는 상기 배선전극(320) 상에 형성되며, 상기 반도체 발광소자들 각각의 주변을 에워싸도록 형성된다.
구체적으로, 도 5를 참조하면, 배선전극(320)이 지나는 영역에서 상기 스페이서(371)는 상기 배선전극(320) 상에 형성된다. 이와 달리, 도 6을 참조하면, 상기 배선전극(320)이 지나지 않는 영역에서 상기 스페이서(371)는 상기 기판(310)상에 형성된다.
도시되지 않았지만, 상기 배선전극(320)이 면 형태로 이루어지는 경우, 상기 스페이서(371)는 상기 배선전극(320) 상에만 형성된다.
한편, 상기 스페이서(371)는 상기 반도체 발광소자들보다 낮은 높이로 형성되기 때문에, 상술한 메탈 솔더(360)층 및 반도체 발광소자의 하측 일부분만 에워싸도록 형성된다. 이러한 경우, 상기 에어갭(380)은 상기 반도체 발광소자의 측면 일부분을 에워싸도록 형성된다. 이때, 상기 에어갭(380)은 상기 반도체 발광소자의 측면으로 향하는 빛의 일부를 전반사시켜 램프의 광추출률을 향상시킬 수 있다.
도시되지 않았지만, 상기 스페이서(371)는 상기 메탈 솔더층(360)과 같은 높이로 형성될 수 있다. 이러한 경우, 상기 스페이서(371)는 상기 반도체 발광소자(350)의 측면을 에워싸지 않는다.
한편, 상기 스페이서(371)는 Spin on Glass와 같은 Siloxane 또는 Silica 기반의 레진으로 이루어질 수 있다.
한편, 상기 반도체 발광소자(350) 주위의 평탄층(330)은 상기 기판(310) 및 상기 배선전극(320)과 소정 거리 이격되도록 형성될 수 있다. 이러한 구조에 따르면, 반도체 발광소자 주변에 이격 공간이 형성된다. 이러한 이격 공간이 본 발명에 따른 에어갭(380)이다.
상기 스페이서(371)는 상기 기판(310) 및 상기 배선전극(320)과 상기 평탄층(330)이 이격되어 형성된 공간에 배치된다. 상기 에어갭(380)은 상기 스페이서(371)와 상기 반도체 발광소자(350) 사이에만 형성되며, 상기 스페이서(371)로 에워싸인 영역 외의 영역에는 형성되지 않는다.
본 발명에 따른 램프의 구조를 보다 명확히 설명하기 위해, 상술한 평탄층(330)을 두 개의 영역으로 나누어 설명한다. 상기 두 개의 영역을 이루는 물질은 서로 같으며, 상기 두 개의 영역은 물리적으로 구분된 영역이거나, 가상으로 구획된 영역일 수 있다. 본 명세서에서는 평탄층의 전체 영역 중 반도체 발광소자를 에워싸는 영역을 제1영역(331)이라 하고, 상기 제1영역(331)을 에워싸는 영역을 제2영역(332)이라 한다.
상기 제1영역(331)은 상기 반도체 발광소자(350)의 측면을 에워싸도록 형성된다. 여기서, 상기 제1영역(331)은 상기 기판(310) 및 상기 배선전극(320)과 소정거리 이격되어 형성되며, 상기 메탈 솔더층(360)의 측면을 에워싸지 않도록 형성된다. 한편, 상기 제1영역(331)은 상기 반도체 발광소자(350)의 측면 전체를 에워싸거나, 상기 반도체 발광소자(350)의 측면 일부를 에워싸지 않도록 형성될 수 있다. 상기 스페이서(371)는 상기 제1영역(331)과 상기 기판(310) 사이에 형성되거나, 상기 제1영역(331)과 상기 배선전극(320) 사이에 형성된다.
한편, 상기 스페이서(371)는 상기 제1영역(331)과 상기 제2영역(332)의 경계에 형성된다. 상기 제2영역(332)은 스페이서(371)를 에워싸도록 형성되며, 상기 기판(310) 및 상기 배선전극(320)과 이격되지 않는다. 구체적으로, 상기 배선전극(320)이 지나는 영역에서 상기 제2영역(332)은 상기 배선전극(320)을 덮도록 배치되고, 상기 배선전극(320)이 지나지 않는 영역에서 상기 제2영역(332)은 상기 기판(310)을 덮도록 배치된다. 이에 따라, 상기 제2영역(332)과 상기 기판(310) 및 상기 배선전극(320) 사이에는 에어갭이 형성되지 않는다.
한편, 본 발명에 따른 램프는 상기 반도체 발광소자(350)들 주변에 형성되며 상기 기판(310) 및 상기 배선기판(320) 상에 배치되는 글라스층(370)이 배치될 수 있다. 도 5와 같이, 상기 배선기판(320)이 지나는 영역에서 상기 글라스층(370)은 상기 배선기판(320)을 덮도록 배치된다. 이와 달리, 도 6을 참조하면, 상기 배선기판(320)이 지나지 않는 영역에서 상기 글라스층(370)은 상기 기판(310)을 덮도록 배치된다.
한편, 상기 글라스층(370)은 상기 제2영역(332)이 배치되는 영역까지 형성될 수 있다. 이에 따라, 상기 제2영역(332)의 적어도 일부는 상기 글라스층(370) 상에 형성될 수 있다.
상기 스페이서(371)는 상기 글라스층(370)에서 상기 반도체 발광소자(350)의 두께 방향으로 돌출되어 형성된다. 상기 스페이서(371)와 상기 글라스층(370)은 동일한 물질로 이루어진다.
상기 글라스층(370)과 상기 평탄층(330)은 소정거리 이격되며, 상기 에어갭(380)은 상기 글라스층(370)과 상기 평탄층(330) 사이에 형성된다.
상술한 구조에 따르면, 반도체 발광소자(350)의 하측에 에어갭(380)이 형성된다. 상기 에어갭(380)은 상기 반도체 발광소자에서 발광되어 발광소자 하측으로 진행하는 빛을 전반사시키기 때문에, 램프의 광추출률을 향상시킬 수 있게 된다. 특히, 상기 에어갭(380)은 금속 반사층과는 달리 광 흡수에 의한 손실이 없기 때문에 램프의 광손실을 비약적으로 향상시킬 수 있게 된다.
한편, 상기 에어갭은 별도의 공정 추가 없이 간단하게 형성될 수 있다. 이하, 상기 에어갭을 형성하는 제조 방법에 대하여 구체적으로 설명한다.
도 7 내지 11은 본 발명에 따른 램프를 제조하는 방법을 나타내는 개념도이들이다.
먼저, 도 7을 참조하면, 기판(410)상에 배선전극(420)을 배치하고, 상기 배선전극(420) 상에 반도체 발광소자(450)를 전사하는 단계가 진행된다.
상기 반도체 발광소자(450)는 웨이퍼(wafer) 단위로 형성된다. 웨이퍼 상에 형성된 반도체 발광소자(450)는 상기 웨이퍼로부터 분리되어 전사된다. 상기 반도체 발광소자(450)를 웨이퍼로부터 분리시킬 때, 리프트 오프법(Laser Lift-off, LLO) 또는 화학적 리프트 오프법(Chemical Lift-off, CLO) 등이 사용될 수 있다.
반도체 발광소자(450)를 웨이퍼에서 분리시킬 때, 반도체 발광소자(450)가 파손되는 것을 방지하기 위해, 반도체 발광소자(450) 주변에는 칩 가이드(431)가 형성된다. 상기 칩 가이드(431)는 광투과성 레진으로 이루어지며, 반도체 발광소자(450) 전사시 제거되지 않고 잔류한다.
상기 칩 가이드(431)는 반도체 발광소자(450)의 측면의 적어도 일부를 덮도록 형성된다. 구체적으로, 상기 칩 가이드(431)는 반도체 발광소자(450)가 배선전극(420) 상에 전사되었을 때, 반도체 발광소자(450)의 측면의 적어도 일부를 덮도록 형성된다.
상기 반도체 발광소자(450)와 상기 배선전극(420) 사이에는 메탈 솔더층(460)이 형성되는데, 이로 인하여, 상기 칩 가이드(431)와 상기 배선전극(420)은 소정 거리 이격된다. 또한, 상기 배선전극(420)이 지나지 않는 영역에서는 상기 칩 가이드(431)와 상기 기판(410)이 소정거리 이격된다.
본 명세서에서는 상기 배선전극(420)이 지나는 영역에서 상기 배선전극(420)과 상기 칩 가이드(431) 사이에 형성되는 공간, 상기 배선전극(420)이 지나지 않는 영역에서 상기 기판(410)과 상기 칩 가이드(431) 사이에 형성되는 공간을 모두 "이격 공간"(S)이라 칭한다.
상기 칩 가이드(431)가 상기 반도체 발광소자(450)의 측면 전체를 덮더라도, 상기 메탈 솔더층(460)으로 인하여, 상기 칩 가이드(431)와 상기 배선전극(420) 및 상기 기판(410)은 소정거리 이격된다.
다음으로, 도 8과 같이, 반도체 발광소자(450)를 상기 배선전극(420)에 전사시킨 후, 글라스 기반의 레진을 스핀 코팅하는 단계가 진행된다. 스핀 코팅되는 레진의 점도는 약 1cp일 수 있으나 이에 한정되지 않는다.
상기 스핀 코팅에 따라 형성되는 코팅층(470)의 두께는 수백 nm 내지 1㎛이다. 상기 코팅층(470)은 반도체 발광소자의 상측, 상기 칩 가이드(431)의 측면, 상기 배선전극(420) 및 상기 기판(410) 상에 형성된다. 이때, 상기 코팅층(470)은 이격 공간(S)에도 형성된다.
다음으로, 도 9과 같이, 코팅층 형성이 완료된 후, 상기 코팅층을 경화시키는 단계가 진행된다.
상기 코팅층(470 및 470')은 60 내지 200℃의 온도에서 경화된다. 상기 경화과정에서, Ethyl acetate 또는 PGMEA와 같은 용매가 증발되는데, 이로 인하여 상기 코팅층의 두께는 수십 내지 수백 nm로 감소한다.
한편, 상기 경화과정에서, 상기 이격 공간(S)에 형성된 코팅층(470)은 외부로 빠져나가며 경화되는데, 이때, 상기 칩 가이드(431) 주변에 스페이서(471)를 형성하게 된다. 상기 스페이서(471)로 인하여 상기 반도체 발광소자(450) 주변에는 닫힌 공간이 형성된다. 상기 스페이서(471)는 이후 외부 물질이 상기 이격 공간(S)으로 유입되는 것을 방지하며, 상기 반도체 발광소자(450) 주변에 에어 갭(480)이 형성되도록 한다.
다음으로, 도 10과 같이, 상기 코팅층을 경화시킨 후, 상기 반도체 발광소자들 사이에 평탄층(432)을 형성하는 단계가 진행된다.
상기 평탄층(432)은 상기 칩 가이드(431)와 동일한 물질로 이루어진다. 이로 인하여, 상기 칩가이드(431)와 상기 평탄층(432)은 물리적으로 구분되지 않을 수 있다. 도 5 및 6에서 설명한 평탄층의 제1영역(331)은 상기 칩 가이드(431)이며, 상기 제2영역(332)은 현 단계에서 형성된 평탄층(432)이다.
마지막으로, 도 11과 같이, 상부 전극 형성(440)을 위해, 평탄층(430)의 일부를 식각하는 단계가 진행된다. 이러한 과정에서, 상기 반도체 발광소자를 덮는 글라스 층(471') 및 평탄층(430)이 제거된다. 결과적으로, 상기 글라스 층은 상기 기판(410) 또는 상기 배선전극(420) 상에만 배치된다.
상술한 제조방법에 따르면, 상기 에어갭은 램프의 절연성을 향상시키기 위한 글라스 층 코팅과정에서 형성된다. 즉, 본 발명에 따르면 별도의 에어갭 형성 공정 없이도, 에어갭을 형성할 수 있다.
이상에서 설명한 반도체 발광 소자를 이용한 디스플레이 장치는 위에서 설명된 실시예들의 구성과 방법에 한정되는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.

Claims (10)

  1. 기판;
    상기 기판상에 배치되는 복수의 반도체 발광소자들;
    상기 반도체 발광소자들 사이에 형성되는 평탄층; 및
    상기 기판 및 상기 평탄층 사이에 배치되는 스페이서를 포함하고,
    상기 반도체 발광소자들 각각과 상기 스페이서 사이에는 에어갭이 형성되는 것을 특징으로 하는 램프.
  2. 제1항에 있어서,
    상기 에어갭은 상기 반도체 발광소자의 주변을 에워싸도록 형성되는 것을 특징으로 하는 램프.
  3. 제2항에 있어서,
    상기 기판 상에 배치되는 배선전극; 및
    상기 배선전극과 상기 반도체 발광소자 사이에 배치되는 메탈 솔더층을 더 포함하고,
    상기 에어갭은 상기 배선전극 상에 형성되며, 상기 메탈 솔더층의 측면을 에워싸도록 형성되는 것을 특징으로 하는 램프.
  4. 제3항에 있어서,
    상기 반도체 발광소자들 각각의 측면의 일부는 상기 평탄층으로 에워싸이고,
    나머지 일부는 상기 에어갭으로 에워싸이는 것을 특징으로 하는 램프.
  5. 제3항에 있어서,
    상기 반도체 발광소자들 각각의 측면 전체는 상기 평탄층으로 에워싸이고,
    상기 에어갭은 상기 메탈 솔더층을 에워싸도록 형성되는 것을 특징으로 하는 램프.
  6. 제1항에 있어서,
    상기 평탄층은,
    상기 반도체 발광소자들을 에워싸는 제1영역; 및
    상기 제1영역을 에워싸는 제2영역을 포함하고,
    상기 에어갭은 상기 제1영역 및 상기 기판 사이에 형성되는 것을 특징으로 하는 램프.
  7. 제6항에 있어서,
    상기 스페이서는 상기 제1 및 제2영역의 경계에 형성되고,
    상기 제2영역은 상기 스페이서를 에워싸도록 형성되는 것을 특징으로 하는 램프.
  8. 제7항에 있어서,
    상기 반도체 발광소자들 주변에 형성되며, 상기 기판 상에 배치되는 글라스층을 더 포함하고,
    상기 스페이서는 상기 글라스층에서 상기 반도체 발광소자의 두께 방향으로 돌출되어 형성되는 것을 특징으로 하는 램프.
  9. 제8항에 있어서,
    상기 제2영역의 일부는 상기 글라스층 상에 배치되는 것을 특징으로 하는 램프.
  10. 기판 상에 배선전극을 형성하는 단계;
    측면에 칩 가이드가 형성된 반도체 발광소자들을 상기 배선전극에 상에 전사하는 단계;
    상기 기판 상에 글라스 기반의 레진을 스핀 코팅하여 코팅층을 형성하는 단계;
    상기 코팅층을 경화시키는 단계;
    상기 코팅층을 경화시킨 후, 상기 반도체 발광소자들 사이에 평탄층을 형성하는 단계; 및
    상부 전극 형성을 위해, 평탄층의 일부를 식각하는 단계를 포함하고,
    상기 배선전극에 반도체 발광소자를 전사하는 단계는 상기 칩 가이드와 상기 기판 사이에 이격 공간이 형성되도록 진행되고,
    상기 코팅층을 형성하는 단계는 상기 이격 공간에 코팅층이 형성되도록 진행되는 것을 특징으로 하는 램프의 제조방법.
PCT/KR2018/010534 2018-05-16 2018-09-10 반도체 발광 소자를 이용한 램프 및 그 제조 방법 WO2019221339A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/042,867 US11804585B2 (en) 2018-05-16 2018-09-10 Lamp using semiconductor light-emitting device and manufacturing method thereof
CN201880093147.6A CN112106210B (zh) 2018-05-16 2018-09-10 使用半导体发光元件的灯及其制造方法
DE112018007610.5T DE112018007610B4 (de) 2018-05-16 2018-09-10 Eine lichtemittierende Halbleitervorrichtung verwendende Lampe und Herstellungsverfahren dafür

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180056131A KR102539444B1 (ko) 2018-05-16 2018-05-16 반도체 발광 소자를 이용한 램프 및 그 제조 방법
KR10-2018-0056131 2018-05-16

Publications (1)

Publication Number Publication Date
WO2019221339A1 true WO2019221339A1 (ko) 2019-11-21

Family

ID=68540527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/010534 WO2019221339A1 (ko) 2018-05-16 2018-09-10 반도체 발광 소자를 이용한 램프 및 그 제조 방법

Country Status (5)

Country Link
US (1) US11804585B2 (ko)
KR (1) KR102539444B1 (ko)
CN (1) CN112106210B (ko)
DE (1) DE112018007610B4 (ko)
WO (1) WO2019221339A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090268459A1 (en) * 2008-04-23 2009-10-29 Foxconn Technology Co., Ltd. Light emitting diode lamp
WO2012027616A2 (en) * 2010-08-27 2012-03-01 Quarkstar, Llc Solid state light sheet or strip for general illumination
JP2012513673A (ja) * 2008-12-23 2012-06-14 クリー インコーポレイテッド ウエハレベルの白色ledの色補正
US9620695B2 (en) * 2013-07-08 2017-04-11 Apple Inc. Micro device with stabilization post
KR101803874B1 (ko) * 2016-05-03 2017-12-04 엘지전자 주식회사 반도체 발광 소자를 이용한 차량용 램프 및 이의 제조방법

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004053116A1 (de) * 2004-11-03 2006-05-04 Tridonic Optoelectronics Gmbh Leuchtdioden-Anordnung mit Farbkonversions-Material
JP4765916B2 (ja) * 2006-12-04 2011-09-07 サンケン電気株式会社 半導体発光素子
KR101238010B1 (ko) 2008-09-10 2013-03-04 엘지디스플레이 주식회사 백라이트 유닛과 이를 이용한 액정표시장치
JP4870826B2 (ja) * 2009-04-27 2012-02-08 株式会社エンプラス 発光装置、面光源装置、及び表示装置
KR101883841B1 (ko) * 2011-10-20 2018-08-01 엘지이노텍 주식회사 발광 모듈 및 이를 포함하는 해드 램프
US8591072B2 (en) * 2011-11-16 2013-11-26 Oree, Inc. Illumination apparatus confining light by total internal reflection and methods of forming the same
JP2014120572A (ja) 2012-12-14 2014-06-30 Stanley Electric Co Ltd 半導体発光装置及びその製造方法
US9831387B2 (en) 2014-06-14 2017-11-28 Hiphoton Co., Ltd. Light engine array
US10910350B2 (en) 2014-05-24 2021-02-02 Hiphoton Co., Ltd. Structure of a semiconductor array
DE102015112538B4 (de) * 2015-07-30 2023-08-03 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelektronisches Bauelement und ein Verfahren zur Herstellung eines optoelektronischen Bauelements
EP3159608A1 (en) * 2015-10-23 2017-04-26 AGC Glass Europe Glass panel with integrated electronic device
US10304813B2 (en) * 2015-11-05 2019-05-28 Innolux Corporation Display device having a plurality of bank structures
US10170671B2 (en) * 2016-05-25 2019-01-01 Chen-Fu Chu Methods of filling a flowable material in a gap of an assembly module
JP6115903B1 (ja) 2016-06-14 2017-04-19 住宅環境設備株式会社 Led表示パネルおよび車載用led表示装置
CN106876406B (zh) * 2016-12-30 2023-08-08 上海君万微电子科技有限公司 基于iii-v族氮化物半导体的led全彩显示器件结构及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090268459A1 (en) * 2008-04-23 2009-10-29 Foxconn Technology Co., Ltd. Light emitting diode lamp
JP2012513673A (ja) * 2008-12-23 2012-06-14 クリー インコーポレイテッド ウエハレベルの白色ledの色補正
WO2012027616A2 (en) * 2010-08-27 2012-03-01 Quarkstar, Llc Solid state light sheet or strip for general illumination
US9620695B2 (en) * 2013-07-08 2017-04-11 Apple Inc. Micro device with stabilization post
KR101803874B1 (ko) * 2016-05-03 2017-12-04 엘지전자 주식회사 반도체 발광 소자를 이용한 차량용 램프 및 이의 제조방법

Also Published As

Publication number Publication date
DE112018007610B4 (de) 2024-05-08
US11804585B2 (en) 2023-10-31
CN112106210A (zh) 2020-12-18
KR102539444B1 (ko) 2023-06-02
US20210020818A1 (en) 2021-01-21
KR20190131359A (ko) 2019-11-26
DE112018007610T5 (de) 2021-02-04
CN112106210B (zh) 2023-08-18

Similar Documents

Publication Publication Date Title
WO2016080768A1 (ko) 발광 장치 및 이를 포함하는 차량용 램프
WO2009157664A2 (ko) 반도체 소자 패키지
WO2010062079A2 (en) Light emitting device package
WO2011002208A2 (ko) 발광 다이오드 패키지
WO2013012181A1 (en) Display device
WO2013012183A1 (en) Display device
US10753567B2 (en) Car lamp using semiconductor light emitting device
WO2015064883A1 (en) Light source module and backlight unit having the same
KR101803874B1 (ko) 반도체 발광 소자를 이용한 차량용 램프 및 이의 제조방법
WO2019146819A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치의 제조방법 및 디스플레이 장치
CN110005997B (zh) 使用半导体发光器件的车灯及其控制方法
KR102513351B1 (ko) 반도체 발광 소자를 이용한 차량용 램프
WO2019135421A1 (ko) 반도체 발광 소자를 이용한 차량용 램프
KR101852436B1 (ko) 반도체 발광 소자를 이용한 차량용 램프
WO2019221339A1 (ko) 반도체 발광 소자를 이용한 램프 및 그 제조 방법
WO2019139336A1 (ko) 조명 모듈 및 이를 구비한 조명 장치
WO2020009275A1 (ko) 반도체 발광 소자를 이용한 디스플레이 장치 및 이의 제조방법
US11664483B2 (en) Light emitting device, package device and method of light emitting device manufacturing
TWI782401B (zh) 發光陣列結構及顯示器
WO2020242175A1 (ko) 캔틸레버 전극을 갖는 발광 소자, 그것을 갖는 디스플레이 패널 및 디스플레이 장치
WO2018034454A1 (ko) 자외선 발광 다이오드 패키지
WO2020022544A1 (ko) 반도체 발광소자를 이용한 차량용 램프
WO2018030680A1 (ko) 반도체 발광소자
WO2021141353A1 (en) Light emitting device and display apparatus
WO2022203452A1 (ko) 발광 다이오드 패키지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18918447

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18918447

Country of ref document: EP

Kind code of ref document: A1