WO2019221259A1 - メタルダイアフラムダンパの取付構造 - Google Patents

メタルダイアフラムダンパの取付構造 Download PDF

Info

Publication number
WO2019221259A1
WO2019221259A1 PCT/JP2019/019616 JP2019019616W WO2019221259A1 WO 2019221259 A1 WO2019221259 A1 WO 2019221259A1 JP 2019019616 W JP2019019616 W JP 2019019616W WO 2019221259 A1 WO2019221259 A1 WO 2019221259A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal diaphragm
outer peripheral
diaphragm damper
diaphragms
housing
Prior art date
Application number
PCT/JP2019/019616
Other languages
English (en)
French (fr)
Inventor
俊昭 岩
小川 義博
裕亮 佐藤
Original Assignee
イーグル工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーグル工業株式会社 filed Critical イーグル工業株式会社
Priority to KR1020207032120A priority Critical patent/KR20200137010A/ko
Priority to JP2020519934A priority patent/JPWO2019221259A1/ja
Priority to CN201980026782.7A priority patent/CN111989477A/zh
Priority to EP19803571.9A priority patent/EP3795818A4/en
Priority to US17/048,992 priority patent/US11242832B2/en
Publication of WO2019221259A1 publication Critical patent/WO2019221259A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/04Means for damping vibrations or pressure fluctuations in injection pump inlets or outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/02Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
    • F02M55/025Common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/445Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/48Assembling; Disassembling; Replacing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/31Fuel-injection apparatus having hydraulic pressure fluctuations damping elements
    • F02M2200/315Fuel-injection apparatus having hydraulic pressure fluctuations damping elements for damping fuel pressure fluctuations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/80Fuel injection apparatus manufacture, repair or assembly
    • F02M2200/8084Fuel injection apparatus manufacture, repair or assembly involving welding or soldering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/90Selection of particular materials

Definitions

  • the present invention relates to a mounting structure of a metal diaphragm damper for absorbing pulsation used in a portion where pulsation occurs such as a high-pressure fuel pump.
  • the high-pressure fuel pump that pumps fuel supplied from the fuel tank to the injector.
  • the high pressure fuel pump pressurizes and discharges fuel by reciprocating movement of a plunger driven by rotation of a camshaft of an internal combustion engine.
  • a pulsation is generated in the fuel chamber due to a change in the amount of fuel discharged from the high pressure fuel pump to the injector and a change in the injection amount of the injector.
  • a damper is built in.
  • a metal diaphragm damper as disclosed in Patent Document 1, two disk-shaped diaphragms are welded at the outer diameter edge portion, so that a sealed space in which a gas of a predetermined pressure is sealed is formed.
  • the fuel chamber is a space formed between the housing and the housing cover, and an annular mounting member is attached to the inner peripheral surface by friction engagement.
  • the mounting member has clip-shaped holding portions at a plurality of locations in the circumferential direction, and the metal diaphragm damper is installed so as to partition the fuel chamber by sandwiching the outer diameter edge portion by the holding portions. Further, the fuel can flow into the space on both the front and back sides of the metal diaphragm damper in the fuel chamber through the radial gap between the mounting member and the metal diaphragm damper.
  • This metal diaphragm damper reduces the pulsation by changing the volume of the fuel chamber by elastically deforming each diaphragm in response to the fuel pressure accompanied by the pulsation. Also, for example, when a pulsation accompanied by a shock wave is received from one side of the metal diaphragm damper, the outer diameter edge of the diaphragm or the mounting member is deformed to reduce the pulsation while integrally moving both diaphragms to the other side. Can be done.
  • the metal diaphragm damper of Patent Document 1 can perform elastic deformation of each diaphragm and integral movement of both diaphragms, high pulsation reduction capability can be realized, but a separate diaphragm is used to hold the metal diaphragm damper. Since the mounting member is used, the number of parts is large, the structure is complicated, and the assembling work is complicated. Further, since the clip-shaped holding portion is sandwiched from the outer diameter edge portion where the diaphragm is welded to the inner diameter side, it affects the deformation of the deformable portion on the inner diameter side with respect to the diaphragm welding position. It was.
  • This invention was made paying attention to such a problem, and it aims at providing the attachment structure of the metal diaphragm damper which can exhibit a high pulsation reduction function with a simple structure.
  • the metal diaphragm damper mounting structure of the present invention is Mounting structure for mounting a metal diaphragm damper, in which gas is sealed inside by a welded portion in which the outer diameter sides of two disk-shaped diaphragms are annularly welded, to a space formed between the housing and the housing cover Because
  • the diaphragm has an outer peripheral portion on the outer diameter side of the welded portion, The outer peripheral portions of the two diaphragms are sandwiched in the thickness direction of the diaphragm by the housing and the housing cover.
  • the outer peripheral portions of the diaphragm are directly sandwiched between the housing and the housing cover, so that there is no need to prepare a separate mounting member and the like, and a pulsation accompanied by a shock wave is received from one side of the diaphragm.
  • a pulsation accompanied by a shock wave is received from one side of the diaphragm.
  • the outer peripheral portion is deformed and a portion inside the welded portion of the diaphragm is allowed to move to the other side, a high pulsation reducing function can be realized with a simple structure.
  • the outer peripheral portions of the two diaphragms are formed so as to be spaced apart from each other in the outer diameter direction. According to this, since the elastic restoring force works when the outer peripheral portions are clamped by the housing and the housing cover, the metal diaphragm damper can be securely attached.
  • a communication path communicating in the thickness direction is formed in the outer peripheral portion.
  • the communicating path which makes a fluid wrap around the diaphragm of both front and back can be formed simply.
  • the communication path is formed by cutting out an outer edge of the outer peripheral portion. According to this, even if it is a case where an outer peripheral part is small, a communicating path can be formed.
  • a communication groove is formed between the housing and the housing cover.
  • a communication path having a wide channel cross-sectional area can be formed by the communication path on the diaphragm side and the communication groove on the housing side.
  • a curved portion that is curved away from each other toward the inner diameter side from the base end portion is formed. Is in contact. According to this, it can suppress that stress is concentrated on the base end parts of a curved part, and stress is applied to a welding part.
  • the outer peripheral portions of the two diaphragms are held apart from each other. According to this, regardless of the dimensional accuracy of the housing and the housing cover, the metal diaphragm damper can be securely attached by the elastic restoring force of the outer peripheral portion.
  • outer peripheral portions of the two diaphragms are held in contact with each other. According to this, outer peripheral parts can be integrally deformed.
  • FIG. 3 is an exploded perspective view showing a structure around a metal diaphragm damper in the first embodiment. It is a bottom view which shows the state which attached the metal diaphragm damper in Example 1 between the housing and the housing cover.
  • (A) is sectional drawing which shows the structure of the outer peripheral part of the metal diaphragm damper in Example 1
  • (b) is AA sectional drawing
  • (c) is BB sectional drawing.
  • A) is sectional drawing which shows the state at the time of diaphragm contraction in Example 1
  • (b) is sectional drawing which shows the state at the time of diaphragm movement in Example 1.
  • FIG. (A) is sectional drawing which shows the state which attached the metal diaphragm damper in Example 2 of this invention between the housing and the housing cover
  • (b) is sectional drawing which shows the state at the time of the diaphragm movement in Example 2.
  • FIG. . (A) is a top view which shows the metal diaphragm damper in Example 3 of this invention
  • (b) is sectional drawing which shows the state which attached the metal diaphragm damper in Example 3 between the housing and the housing cover.
  • the metal diaphragm damper 1 of this embodiment is built in a high-pressure fuel pump 10 that pumps fuel supplied from a fuel tank through a fuel inlet (not shown) to the injector side.
  • the high-pressure fuel pump 10 pressurizes and discharges fuel by reciprocating movement of a plunger 12 driven by rotation of a camshaft (not shown) of the internal combustion engine.
  • the high-pressure fuel pump 10 pressurizes fuel by repeating the cycle of the intake stroke, the metering stroke, and the pressurization stroke, opens the discharge valve 15 and discharges the fuel to the injector side. At this time, a pulsation that repeats high pressure and low pressure occurs in the fuel chamber 11 due to a change in the amount of fuel discharged from the high pressure fuel pump 10 to the injector and a change in the injection amount of the injector.
  • the metal diaphragm damper 1 of the present embodiment is used for reducing pulsation generated in the fuel chamber 11 (space) of such a high-pressure fuel pump 10.
  • the metal diaphragm damper 1 is disposed so as to divide the fuel chamber 11 of the high-pressure fuel pump 10 vertically.
  • the fuel chamber 11 is composed of a recessed portion 16a that is recessed downward formed in the housing 16 of the high-pressure fuel pump 10 and a housing cover 17 that has a U-shaped section that faces downward and closes the recessed portion 16a.
  • the metal diaphragm damper 1 is The outer peripheral portions 21 and 21 described later are sandwiched between the housing 16 and the housing cover 17.
  • an annular wall 16b thinner than the housing body 16A is formed on the inner diameter side of the upper end edge of the housing 16 so as to extend upward.
  • a step portion 16e is formed between the main body portion 16A.
  • the step portion 16e includes an outer peripheral surface of the wall portion 16b, a horizontal surface 16f extending to the outer diameter side so as to be orthogonal to the wall portion 16b, and an outer peripheral surface of the housing main body portion 16A extending so as to be orthogonal to the outer edge of the horizontal surface 16f. It is configured.
  • convex portions 16c extending further upward are formed on the wall portion 16b at a predetermined interval in the circumferential direction.
  • a concave portion 16d formed by the side surface of the convex portion 16c and the upper end surface of the wall portion 16b is formed between the adjacent convex portions 16c.
  • illustration of the structure below the housing 16 is omitted.
  • the lower end portion of the housing cover 17 is formed with a cylindrical portion 17a that is externally fitted to the wall portion 16b.
  • the lower end surface is a horizontal surface of the step portion 16e. Positioned in the vertical direction in contact with 16f.
  • the convex portion 16c On the inner diameter side of the cylindrical portion 17a, the convex portion 16c is disposed so as to face the convex portion 16c with a distance L1 (see FIG. 4B) in the vertical direction in a state of being fitted to the wall portion 16b.
  • An extending convex portion 17b and a concave portion 17c provided on the opposite side (upper side) of the concave portion 16d so as to face the concave portion 16d are formed.
  • the convex part 16c and the convex part 17b are arrange
  • the distance L2 between the concave portion 16d and the concave portion 17c is greater than the distance L1 between the convex portion 16c and the convex portion 16c.
  • S2 (refer to FIG. 4C) is provided inside the housing 16 and the housing cover 17 and is recessed on the outer diameter side in the circumferential direction.
  • the housing 16 and the housing cover 17 are fixed in a sealed manner by laser welding.
  • the metal diaphragm damper 1 is configured in a disk shape by two disk-shaped diaphragms 2a and 2b being joined together in an air-tight manner by laser welding. Yes.
  • the diaphragms 2a and 2b are formed with a welded portion W (particularly see FIG. 4A) inside the outer peripheral portions 21 and 21, and the outer edges of the outer peripheral portions 21 and 21 on the inner diameter side.
  • a plurality of U-shaped cutouts 21a and 21a in a plan view that are recessed in the circumferential direction are formed in the circumferential direction (note that the cutouts 21a and 21a do not require cutout processing but are cutout shapes) Good.) That is, the outer peripheral portion 21 is formed with a plurality of mountain-shaped plate-like portions 21b in plan view (that is, remaining portions other than the notches 21a).
  • the notches 21a and the plate-like portions 21b of the diaphragms 2a and 2b are welded and fixed with their positions in the circumferential direction being matched.
  • the outer peripheral part 21 in a present Example points out the outer diameter side part rather than the welding part W in diaphragm 2a, 2b.
  • a gas having a predetermined pressure composed of argon, helium, or the like. Is enclosed.
  • the metal diaphragm damper 1 can obtain suitable pulsation absorption performance by adjusting the volume change amount by the internal pressure of the gas sealed in the sealed space S3.
  • the diaphragms 2a and 2b are formed by pressing a metal plate, and in order from the outer diameter side, the outer peripheral portion 21, the curved portion 22, and the central side (inner diameter side).
  • the deformation acting portions 23 are respectively formed.
  • the metal plates constituting the diaphragms 2a and 2b are laser-welded at the welded portion W by superimposing two metal plates of the same material and substantially the same shape, and the whole has a uniform thickness.
  • the housing 16 actually exists on the front side of the sheet, but the illustration of the configuration of the housing 16 is omitted for convenience of explanation.
  • the plate-like portions 21b and 21b which are the outer peripheral portions 21 and 21 of the diaphragms 2a and 2b, are separated from each other as they go in the outer diameter direction (in FIG. The same shall apply hereinafter.)
  • the curved portions 22 and 22 of the diaphragms 2a and 2b are curved in an S-shaped cross section from the welded portion W toward the inner diameter side, and the first curved portions 22a and 22a that are base end portions on the welded portion W side. Are curved so that their tops approach each other, and the second bending parts 22b, 22b on the deformation acting part 23 side are curved in directions away from each other.
  • the first curved portions 22a and 22a are in contact with each other when no pulsation is applied to the diaphragms 2a and 2b (that is, when the fuel chamber 11 is at a low pressure).
  • the deformation acting part 23 is a dome-shaped part that is elastically deformed by the differential pressure between the external pressure and the internal pressure of the gas sealed in the sealed space S3.
  • transformation action part 23 is good also as a shape which has a single continuous curved surface, and a shape which has several curved surfaces, for example, a cross-sectional view waveplate shape, It can change freely.
  • the plate-like portions 21b of the diaphragms 2a and 2b are located between the convex portion 16c of the housing 16 and the convex portion 17b of the housing cover 17. It is held in the thickness direction by (gap S1).
  • the outer peripheral portions 21b and 21b which are the outer peripheral portions 21 and 21 are sandwiched between the convex portion 16c and the convex portion 17b (see FIG. 4A).
  • the outer edges of the outer peripheral portions 21 and 21 are separated from each other in the plate thickness direction by a distance L10.
  • the outer peripheral portion 21. , 21 are parallel to each other with a distance L1 that is shorter than the distance L10 and spaced apart in the plate thickness direction (L1 ⁇ L10).
  • the metal diaphragm damper 1 can be securely attached without rattling. Further, since the outer diameter of the metal diaphragm damper 1 is smaller than the inner diameter of the cylindrical portion 17a, a gap is formed in the radial direction between the metal diaphragm damper 1 and the cylindrical portion 17a.
  • the notches 21a of the diaphragms 2a and 2b are partially fueled in a state where the metal diaphragm damper 1 is mounted between the housing 16 and the housing cover 17. It is disposed in the chamber 11. Therefore, the fuel in the fuel chamber 11 can be moved to one side (lower side) and the other side (upper side) of the metal diaphragm damper 1 through the notches 21a.
  • each notch 21a communicates with a gap S2 (communication groove) between the concave portion 16d and the concave portion 17c, and the gap S2 is larger in the vertical direction than the gap S1. That is, each notch 21a and the gap S2 function as a communication path communicating with one side and the other side of the metal diaphragm damper 1, and the flow passage cross-sectional area of the communication path can be widened. Further, since the gaps S1 and S2 are continuous in the circumferential direction, the flow passage cross-sectional area of the communication path can be formed wider than in the case where the gaps are divided in the circumferential direction. Moreover, since the notch 21a is formed by notching the outer edges of the outer peripheral portions 21, 21, a communication path can be formed even when the outer peripheral portions 21, 21 have a narrow radial width.
  • the diaphragms 2a and 2b expand in the outer diameter direction.
  • the diameter of the diaphragms 2a and 2b is allowed to be increased, and the inner diameter side of the welded portion W is allowed.
  • the provided curved portions 22 and 22 are deformed.
  • the first curved portions 22a and 22a are further strongly pressed to concentrate stress on the first curved portions 22a and 22a. Thereby, it is difficult to apply a large stress to the welded portion W, and damage to the welded portion W is prevented.
  • the outer peripheral portions 21 and 21 of the diaphragms 2a and 2b are directly sandwiched by the housing 16 and the housing cover 17, it is not necessary to prepare separate mounting members and the like, and the number of parts can be reduced. That is, in the mounting structure of the metal diaphragm damper 1 of the present embodiment, a high pulsation reducing function can be realized with a simple structure. In addition, since the high-strength housing 16 and the housing cover 17 sandwich the outer peripheral portions 21 and 21, the metal diaphragm damper 1 is securely held as compared with the case where the metal diaphragm damper 1 is held by a separate mounting member. it can.
  • the welded portion W is provided on the inner side of the outer peripheral portions 21 and 21 which are the fixed portions of the metal diaphragm damper 1, the outer peripheral portions 21 and 21 are deformed to be on the inner side of the welded portion W in the diaphragms 2a and 2b.
  • a large pulsation accompanied by a shock wave can be reduced.
  • the outer peripheral portion 21 of the diaphragm 2a and the outer peripheral portion 21 of the diaphragm 2b are separately elastically deformed and rotated, and the diaphragm Since the outer peripheral portion 21 of 2a and the outer peripheral portion 21 of the diaphragm 2b are deformed differently, stress can be distributed to different portions of the outer peripheral portions 21 and 21, and the outer peripheral portions 21 and 21 can be prevented from being damaged.
  • a portion inside the welded portion W in the diaphragms 2a and 2b may move from the upper side to the lower side.
  • the convex portion 16c ′ of the housing 16 and the convex portion 17b ′ of the housing cover 17 according to the second embodiment are arranged closer to those of the first embodiment.
  • the metal diaphragm damper 1 includes a state in which the outer peripheral portions 21 and 21 are in contact with each other in the plate thickness direction in a state where the outer peripheral portions 21 and 21 are sandwiched between the convex portions 16c ′ and 17b ′. It has become.
  • the convex portion 16c ′ in the outer peripheral portions 21 and 21 It deforms from the edge on the inner diameter side with the convex portion 17b ′. That is, the outer peripheral portions 21 and 21 can be integrally deformed, and the elastic return force of the outer peripheral portions 21 and 21 is not applied when the outer peripheral portions 21 and 21 are deformed. It is easier to move the inner part than.
  • edge portions on the inner diameter side of the convex portions 16c ′ and the convex portions 17b ′ in the outer peripheral portions 21 and 21 may be formed thinly to be easily deformed, or the edge portions may be formed thick to form the edges. You may make it raise the intensity
  • each through hole 211b is disposed in the fuel chamber 11 in a state where the metal diaphragm damper 100 is mounted between the housing 16 and the housing cover 17, and each through hole 211b The fuel can be moved to one side and the other side of the metal diaphragm damper 100 through the hole 211b.
  • the through hole 211b is not limited to a circular shape in plan view, and may be, for example, an elliptical shape (long hole) or a rectangular shape in plan view.
  • the diaphragms 2a and 2b are described as being joined by laser welding.
  • the present invention is not limited to this, and the sealed space S3 can be formed between the diaphragms 2a and 2b.
  • they may be joined by various welding or caulking.
  • the metal diaphragm damper side communication path (notch 21a or through hole 211b) and the housing and housing cover side communication paths (gap S1, S2) are exemplified.
  • the communication path may be provided on at least one side of the metal diaphragm damper side or the housing and housing cover side.
  • the first curved portions 22a and 22a are in contact with each other in the circumferential direction.
  • the present invention is not limited to this, and projections are provided in the circumferential direction on the base end portion (that is, the welded portion W side).
  • a plurality of protrusions may be provided so that the protrusions are in contact with each other.
  • a regulating member that regulates excessive elastic deformation of the diaphragms 2a and 2b (particularly the curved portion 22) may be disposed inside the metal diaphragm damper 1.
  • the regulating member has a shape that does not hinder an appropriate volume change rate of the diaphragms 2a and 2b.
  • the regulating member is made of a material that does not damage the diaphragms 2a and 2b due to contact with the regulating member when the diaphragms 2a and 2b are elastically deformed.
  • the shape of a diaphragm may be designed freely, for example, The shape may include a deforming portion having a linear cross section and a curved portion having a circular arc shape provided at the outer edge thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Diaphragms And Bellows (AREA)

Abstract

簡素な構造で高い脈動低減機能を発揮できるメタルダイアフラムダンパの取付構造を提供する。 2枚の円板状のダイアフラム2a,2bの外径側が環状に溶接された溶接部Wにより内部S3に気体が封入されるメタルダイアフラムダンパ1を、ハウジング16とハウジングカバー17との間に形成される空間11に取付けるための取付構造であって、ダイアフラム2a,2bは、溶接部Wの外径側に外周部21,21を有し、2枚のダイアフラム2a,2bにおける外周部21,21同士がハウジング16とハウジングカバー17とによりダイアフラム2a,2bの板厚方向に狭持される。

Description

メタルダイアフラムダンパの取付構造
 本発明は、高圧燃料ポンプ等の脈動が生じる箇所に用いられる脈動吸収用のメタルダイアフラムダンパの取付構造に関する。
 燃料タンクから供給される燃料をインジェクタ側へ圧送する高圧燃料ポンプがある。高圧燃料ポンプは、内燃機関のカムシャフトの回転により駆動されるプランジャの往復移動によって燃料の加圧及び吐出を行っている。このような高圧燃料ポンプは、該高圧燃料ポンプからインジェクタへの燃料の吐出量の変化やインジェクタの噴射量の変化によって燃料チャンバにおいて脈動が発生するため、燃料チャンバに発生する脈動を低減させるメタルダイアフラムダンパが内蔵されていることが一般的である。
 例えば、特許文献1に開示されているようなメタルダイアフラムダンパは、2枚の円板状のダイアフラムが外径縁部で溶接されることにより、内部に所定圧の気体が封入される密閉空間が形成されており、燃料チャンバ内に設けられている。燃料チャンバは、ハウジングとハウジングカバーとの間に形成された空間であり、内周面には環状の取付部材が摩擦係合により取付けられている。取付部材は、周方向の複数個所にクリップ状の保持部を有しており、保持部により外径縁部が挟まれることでメタルダイアフラムダンパが燃料チャンバを区画するように設置されている。また、取付部材とメタルダイアフラムダンパとの径方向の隙間を通って燃料チャンバにおけるメタルダイアフラムダンパの表裏両側の空間に燃料が回り込むことが可能となっている。
 このメタルダイアフラムダンパは、脈動を伴う燃料圧を受けて各ダイアフラムがそれぞれ弾性変形することにより、燃料チャンバの容積を可変し、脈動を低減している。また、例えば、衝撃波を伴う脈動をメタルダイアフラムダンパの一方側から受けたときには、ダイアフラムの外径縁部または取付部材が変形して両ダイアフラムを一体的に他方側に移動させつつ脈動を低減させることができるようになっている。
特開2014-190188号公報(第7頁、第2図)
 特許文献1のメタルダイアフラムダンパは、各ダイアフラムの弾性変形と両ダイアフラムの一体的な移動とを行うことができるため、高い脈動低減能力を実現できるが、メタルダイアフラムダンパを保持するために別体の取付部材を用いているため、部品点数が多く構造が複雑であり組立作業などが煩雑であった。また、クリップ状の保持部は、ダイアフラムの溶接箇所である外径縁部から内径側にかけて挟持しているため、ダイアフラムの溶接箇所よりも内径側の変形可能部分の変形に影響を与えるものであった。
 本発明は、このような問題点に着目してなされたもので、簡素な構造で高い脈動低減機能を発揮できるメタルダイアフラムダンパの取付構造を提供することを目的とする。
 前記課題を解決するために、本発明のメタルダイアフラムダンパの取付構造は、
 2枚の円板状のダイアフラムの外径側が環状に溶接された溶接部により内部に気体が封入されるメタルダイアフラムダンパを、ハウジングとハウジングカバーとの間に形成される空間に取付けるための取付構造であって、
 前記ダイアフラムは、前記溶接部の外径側に外周部を有し、
 2枚の前記ダイアフラムにおける前記外周部同士が前記ハウジングと前記ハウジングカバーとにより前記ダイアフラムの板厚方向に狭持されることを特徴としている。
 この特徴によれば、ダイアフラムの外周部同士をハウジングとハウジングカバーとにより直接狭持することにより、別体の取付部材等を用意する必要がなく、且つ衝撃波を伴う脈動をダイアフラムの一方側から受けたときに、外周部が変形してダイアフラムにおける溶接部よりも内側の部分が他方側に移動することが許容されるので、高い脈動低減機能を簡素な構造で実現することができる。
 好適には、2枚の前記ダイアフラムにおける前記外周部は外径方向にいくにつれ互いに離間する方向に開いて形成されている。
 これによれば、ハウジングとハウジングカバーとにより外周部同士を挟持した時に弾性復帰力が働くので、メタルダイアフラムダンパを確実に取付けることができる。
 好適には、前記外周部には板厚方向に連通する連通路が形成されている。
 これによれば、表裏両側のダイアフラムに流体を回り込ませる連通路を簡便に形成できる。
 好適には、前記連通路は前記外周部の外縁を切り欠いて形成されている。
 これによれば、外周部が小さい場合であっても連通路を形成できる。
 好適には、前記ハウジングと前記ハウジングカバーとに亘って連通溝が形成されている。
 これによれば、ダイアフラム側の連通路とハウジング側の連通溝とで流路断面積の広い連通路を形成することができる。
 好適には、2枚の前記ダイアフラムにおける前記溶接部の内径側には、それらの基端部から内径側にいくにつれて互いに離間する方向に湾曲する湾曲部が形成されており、これら基端部同士が接触していることを特徴としている。
 これによれば、湾曲部の基端部同士に応力を集中させて溶接部に応力がかかることを抑制できる。
 好適には、2枚の前記ダイアフラムにおける前記外周部同士は、離間した状態で狭持されている。
 これによれば、ハウジングとハウジングカバーとの寸法精度に関わらず外周部の弾性復帰力によりメタルダイアフラムダンパを確実に取付けることができる。
 好適には、2枚の前記ダイアフラムにおける前記外周部同士は、当接した状態で狭持されている。
 これによれば、外周部同士を一体的に変形させることができる。
本発明の実施例1におけるメタルダイアフラムダンパが内蔵される高圧燃料ポンプを示す断面図である。 実施例1におけるメタルダイアフラムダンパ周辺の構造を示す分解斜視図である。 実施例1におけるメタルダイアフラムダンパをハウジングとハウジングカバーとの間に取付けた状態を示す下面図である。 (a)は実施例1におけるメタルダイアフラムダンパの外周部の構造を示す断面図、(b)はA-A断面図、(c)はB-B断面図である。 (a)は実施例1におけるダイアフラム収縮時の状態を示す断面図、(b)は実施例1におけるダイアフラム移動時の状態を示す断面図である。 (a)は本発明の実施例2におけるメタルダイアフラムダンパをハウジングとハウジングカバーとの間に取付けた状態を示す断面図、(b)は実施例2におけるダイアフラム移動時の状態を示す断面図である。 (a)は本発明の実施例3におけるメタルダイアフラムダンパを示す上面図、(b)は実施例3におけるメタルダイアフラムダンパをハウジングとハウジングカバーとの間に取付けた状態を示す断面図である。
 本発明に係るメタルダイアフラムダンパを実施するための形態を実施例に基づいて以下に説明する。
 実施例1に係るメタルダイアフラムダンパの取付構造につき、図1から図5を参照して説明する。
 本実施例のメタルダイアフラムダンパ1は、図1に示されるように、燃料タンクから図示しない燃料入口を通して供給される燃料をインジェクタ側へ圧送する高圧燃料ポンプ10に内蔵されている。高圧燃料ポンプ10は、内燃機関の図示しないカムシャフトの回転により駆動されるプランジャ12の往復移動によって燃料の加圧及び吐出を行っている。
 高圧燃料ポンプ10内における燃料の加圧及び吐出の仕組みとして、先ず、プランジャ12が下降するときに吸入弁13を開けて燃料入口側に形成される燃料チャンバ11から加圧室14へ燃料を吸入する吸入行程が行われる。次に、プランジャ12が上昇するときに加圧室14の燃料の一部を燃料チャンバ11へ戻す調量行程が行われて、吸入弁13を閉じた後、プランジャ12がさらに上昇するときに燃料を加圧する加圧行程が行われる。このように、高圧燃料ポンプ10は、吸入行程、調量行程及び加圧行程のサイクルを繰り返すことにより、燃料を加圧して吐出弁15を開いてインジェクタ側へ吐出している。このとき、高圧燃料ポンプ10からインジェクタへの燃料の吐出量の変化やインジェクタの噴射量の変化によって燃料チャンバ11において高圧と低圧を繰り返す脈動が発生する。
 本実施例のメタルダイアフラムダンパ1は、このような高圧燃料ポンプ10の燃料チャンバ11(空間)において発生する脈動を低減するために使用される。尚、メタルダイアフラムダンパ1は、高圧燃料ポンプ10の燃料チャンバ11を上下に区画するように配置されている。燃料チャンバ11は、高圧燃料ポンプ10のハウジング16に形成される下方に凹む凹部16aと、凹部16aを閉塞する断面下向きU字状のハウジングカバー17と、により構成されており、メタルダイアフラムダンパ1は、後述する外周部21,21がハウジング16とハウジングカバー17とによって狭持されている。
 図2,図4に示されるように、ハウジング16の上端縁の内径側にはハウジング本体部16Aよりも薄肉の環状の壁部16bが上方に延出して形成されており、壁部16bとハウジング本体部16Aとの間には段部16eが形成されている。段部16eは、壁部16bの外周面と、壁部16bと直交するように外径側に延びる水平面16fと、水平面16fの外縁から直交するように延びるハウジング本体部16Aの外周面と、から構成されている。また、壁部16bには、さらに上方に延出する凸状部16cが周方向に所定間隔離間して形成されている。つまり、隣接する凸状部16c同士の間には、凸状部16cの側面と壁部16bの上端面とで形成される凹状部16dが形成されている。尚、図2では、説明の便宜上、ハウジング16の下部の構造の図示を省略している。
 ハウジングカバー17の下端部は、壁部16bに外嵌する筒状部17aが形成されており、筒状部17aは、壁部16bに外嵌した状態において、その下端面が段部16eの水平面16fに接触して上下方向に位置決めされる。
 筒状部17aの内径側には、壁部16bに外嵌した状態で凸状部16cと上下方向に距離L1(図4(b)参照)を空けて対向するように凸状部16c側に延出する凸状部17bと、凹状部16dと対向するように凹状部16dと反対側(上側)に凹設される凹状部17cと、が形成されている。このように、凸状部16cと凸状部17bとはメタルダイアフラムダンパ1に対して上下方向に反対側の位置に配置されている。凹状部16dと凹状部17cについても同様である。
 すなわち、ハウジング16にハウジングカバー17が取付けられた状態において、凹状部16dと凹状部17cとの距離L2(図4(c)参照)は、凸状部16cと凸状部16cとの距離L1よりも長くなっているとともに、凸状部16cと凸状部17bとの間に形成される隙間S1(図4(b)参照)と、凹状部16dと凹状部17cとの間に形成される隙間S2(図4(c)参照)とは、ハウジング16とハウジングカバー17との内側に設けられ外径側に凹み周方向に亘って連続している。尚、ハウジング16とハウジングカバー17とは、レーザ溶接により密封状に固定される。
 図1及び図2に示されるように、メタルダイアフラムダンパ1は、2枚の円板状のダイアフラム2a,2bがレーザ溶接により全周に亘って気密に接合されることにより円盤状に構成されている。
 詳しくは、ダイアフラム2a,2bは、外周部21,21を残してその内側に溶接部W(特に図4(a)参照)が形成されており、外周部21,21の外縁には、内径側に凹む平面視U字状の切欠き21a,21aが周方向に複数形成されている(尚、切欠き21a,21aは切り欠き加工を要件とはするものではなく切り欠かれた形状であればよい。)。すなわち、外周部21には、平面視複数の山型の板状部21b(すなわち切欠き21a以外の残存する部分)が形成されている。ダイアフラム2a,2bの各切欠き21a及び各板状部21bは、互いの周方向の位置を合わせた状態で溶接固定されている。尚、本実施例における外周部21とは、ダイアフラム2a,2bにおいて溶接部Wよりも外径側の部分を指す。
 接合されたダイアフラム2a,2bの間に形成される密閉空間S3(すなわちメタルダイアフラムダンパ1の内部空間(図1及び図4参照))内には、アルゴン、ヘリウム等から構成される所定圧力の気体が封入されている。尚、メタルダイアフラムダンパ1は、密閉空間S3に封入される気体の内部圧によって容積変化量の調整を行うことにより、好適な脈動吸収性能を得ることができる。
 図3及び図4(a)に示されるように、ダイアフラム2a,2bは、金属板のプレス加工により成形され、外径側から順に外周部21と、湾曲部22と、中央側(内径側)の変形作用部23と、がそれぞれ形成されている。ダイアフラム2a,2bを構成する金属板は、同一素材、かつ略同形状の2枚の金属板を重ねて溶接部Wにおいてレーザ溶接されており、全体が均一な厚みを有している。尚、図3では、実際には、紙面手前側にハウジング16が存在するが、説明の便宜上、ハウジング16の構成の図示を省略している。
 特に、図4(a)に示されるように、ダイアフラム2a,2bの外周部21,21である板状部21b,21bは、外径方向にいくにつれ互いに離間(図4において上下方向に離間、以下同様。)する方向に開いて形成されている。また、ダイアフラム2a,2bの湾曲部22,22は、溶接部Wから内径側に向けて断面S字状に湾曲しており、溶接部W側の基端部である第1湾曲部22a,22aは、その頂部が互いに近づくように湾曲しており、変形作用部23側の第2湾曲部22b,22bは、互いに離間する方向に湾曲している。尚、第1湾曲部22a,22aは、ダイアフラム2a,2bに脈動が作用していない時(すなわち燃料チャンバ11内が低圧時)において互いに接触している。
 変形作用部23は、ドーム状を成し、外部の圧力と密閉空間S3に封入される気体の内部圧との差圧によって弾性変形する部分である。尚、変形作用部23は、形状を単一の連続する曲面としてもよいし、複数の曲面を有する形状例えば、断面視波板形状としてもよく、自由に変更できる。
 図3及び図4(b)に示されるように、メタルダイアフラムダンパ1は、ダイアフラム2a,2bの各板状部21bがハウジング16の凸状部16cとハウジングカバー17の凸状部17bとの間(隙間S1)で板厚方向に狭持される。
 具体的には、外周部21,21である板状部21b,21bが凸状部16cと凸状部17bとの間で狭持される前の状態(図4(a)参照)にあっては、外周部21,21の外縁が、距離L10分板厚方向に離間している。また、外周部21,21である板状部21b,21bが凸状部16cと凸状部17bとの間で狭持された状態(図4(b)参照)にあっては、外周部21,21の外縁が距離L10よりも短い距離L1分板厚方向に離間した状態で平行となる(L1<L10)。すなわち、外周部21,21が凸状部16cと凸状部17bとの間で狭持されたときに、凸状部16cと凸状部17bとに外周部21,21の弾性復帰力が働くため、ハウジング16とハウジングカバー17との寸法精度に関わらずメタルダイアフラムダンパ1をがたつかせることなく確実に取付けることができる。また、メタルダイアフラムダンパ1の外径は、筒状部17aの内径よりも小さく形成されているため、メタルダイアフラムダンパ1と筒状部17aとには、径方向に隙間が形成されている。
 図3及び図4(c)に示されるように、ダイアフラム2a,2bの各切欠き21aは、メタルダイアフラムダンパ1がハウジング16とハウジングカバー17との間に取付けられた状態において、一部が燃料チャンバ11内に配置されている。そのため、燃料チャンバ11内の燃料を各切欠き21aを通してメタルダイアフラムダンパ1の一方側(下側)と他方側(上側)とに移動させることができる。
 また、各切欠き21aは、凹状部16dと凹状部17cとの隙間S2(連通溝)と連通しており、隙間S2は、隙間S1よりも上下方向に大きくなっている。すなわち、各切欠き21aと隙間S2とは、メタルダイアフラムダンパ1の一方側と他方側とに連通する連通路として機能しており、連通路の流路断面積を広く構成することができる。また、隙間S1,S2は、周方向に亘って連続しているので、周方向に分断される場合に比べて連通路の流路断面積を広く形成できる。また、切欠き21aは、外周部21,21の外縁を切り欠いて形成されているので、外周部21,21の径方向の幅が狭い場合であっても連通路を形成することができる。
 次いで、動作について説明する。図5(a)に示されるように、脈動に伴う燃料圧が低圧から高圧になり、ダイアフラム2a,2bが燃料チャンバ11側から略均一に燃料圧を受けると、変形作用部23,23が密閉空間S3側に押し潰されるように変形する。尚、変形作用部23,23が密閉空間S3側に押し潰されることにより、密閉空間S3内の気体は、圧縮される。
 変形作用部23,23が密閉空間S3側に押し潰されると、ダイアフラム2a,2bが外径方向に拡径する。前述のように、メタルダイアフラムダンパ1と筒状部17aとには、径方向に隙間が形成されているので、ダイアフラム2a,2bの拡径が許容されるとともに、溶接部Wよりも内径側に設けられる湾曲部22,22が変形する。特に、湾曲部22,22は互いに近づく方向に変形することから、第1湾曲部22a,22a同士がさらに強く押し付けられ、該第1湾曲部22a,22aに応力が集中するようになる。これにより、溶接部Wに大きな応力がかかりにくくなっており、該溶接部Wの破損が防止される。
 このように、溶接部Wよりも外径側の外周部21,21がハウジング16とハウジングカバー17とによって狭持されるため、溶接部Wよりも内径側に配設される変形作用部23,23にハウジング16及びハウジングカバー17が接触することがなく、変形作用部23,23の弾性変形をハウジング16とハウジングカバー17とが阻害することがない。すなわち、ハウジング16及びハウジングカバー17が脈動低減機能に影響を与えないようにできる。
 また、ダイアフラム2a,2bの外周部21,21をハウジング16とハウジングカバー17とによって直接狭持しているため、別体の取付部材等を用意する必要がなく、部品点数を少なくできる。すなわち、本実施例のメタルダイアフラムダンパ1の取付構造にあっては、高い脈動低減機能を簡素な構造で実現することができる。また、強度の高いハウジング16とハウジングカバー17とが外周部21,21を狭持するため、別体の取付部材でメタルダイアフラムダンパ1を保持する場合に比べて、メタルダイアフラムダンパ1を確実に保持できる。
 また、図5(b)に示されるように、衝撃波を伴う大きな脈動をメタルダイアフラムダンパ1の一方側(下側)から受けたときには、その直後にダイアフラムダンパ1には全体的に他方側(上側)に湾曲することで衝撃波により生じる力を軽減できるようになっている。
 具体的には、ダイアフラム2a,2bにおける溶接部Wよりも内側の部分が全体的にメタルダイアフラムダンパ1の上方側方向の力を受けると、ほぼ同時にダイアフラム2aの外周部21とダイアフラム2bの外周部21とが各々弾性変形や隙間S1を基点として回動する。ダイアフラム2aにおける湾曲部22及び変形作用部23は、上方側に燃料が存在することから上方側に僅かに湾曲する一方、ダイアフラム2bにおける湾曲部22及び変形作用部23は、さらに上方側へ押し上げられ、密閉空間S3側に押し潰されるように変形する(図5(b)参照)。その後、ダイアフラム2a側にも高圧の圧力が伝播すると、ダイアフラム2aも密閉空間S3側に押し潰され、ダイアフラムダンパ1は変形した状態となる(図5(a)参照)。
 このように、メタルダイアフラムダンパ1の固定部である外周部21,21よりも内側に溶接部Wを設けたので、外周部21,21を変形させてダイアフラム2a,2bにおける溶接部Wよりも内側の部分を移動させることができ、これにより衝撃波を伴う大きな脈動を低減できるようになっている。
 また、衝撃波を伴う大きな脈動を受けてメタルダイアフラムダンパ1が一方側から他方側に移動したときには、ダイアフラム2aの外周部21とダイアフラム2bの外周部21とが別々に弾性変形や回動し、ダイアフラム2aの外周部21とダイアフラム2bの外周部21とが異なる変形をするため、外周部21,21の別々の箇所に応力を分散でき、外周部21,21が破損することを抑制できる。
 尚、メタルダイアフラムダンパ1が適用される高圧燃料ポンプ10の種類によってはダイアフラム2a,2bにおける溶接部Wよりも内側の部分が上方側から下方側に移動することもある。
 次に、実施例2に係るメタルダイアフラムダンパの取付構造ににつき、図6を参照して説明する。尚、前記実施例に示される構成部分と同一構成部分については同一符号を付して重複する説明を省略する。
 図6(a)に示されるように、本実施例2のハウジング16の凸状部16c’とハウジングカバー17の凸状部17b’とは、前記実施例1よりも近付けて配設されており、メタルダイアフラムダンパ1は、外周部21,21が凸状部16c’と凸状部17b’との間で狭持された状態において、外周部21,21が板厚方向に当接した状態となっている。
 図6(b)に示されるように、ダイアフラム2a,2bにおける溶接部Wよりも内側の部分が一方側から他方側に大きな脈動を受けたときには、外周部21,21における凸状部16c’と凸状部17b’との内径側のエッジから変形する。すなわち、外周部21,21を一体的に変形させることができるとともに、外周部21,21を変形させるときに該外周部21,21の弾性復帰力がかからないので、ダイアフラム2a,2bにおける溶接部Wよりも内側の部分を移動させやすい。
 尚、外周部21,21における凸状部16c’と凸状部17b’との内径側のエッジ部分を薄く形成して変形しやすくしてもよいし、前記エッジ部分を厚く形成して該エッジ部分の強度を高めるようにしてもよい。
 次に、実施例3に係るメタルダイアフラムダンパの取付構造ににつき、図7を参照して説明する。尚、前記実施例に示される構成部分と同一構成部分については同一符号を付して重複する説明を省略する。
 図7(a)に示されるように、本実施例3のメタルダイアフラムダンパ100は、ダイアフラム102a,102bの各外周部211に板厚方向に貫通する平面視円形状の貫通孔211bが周方向に離間して複数形成されている。図7(b)に示されるように、各貫通孔211bは、メタルダイアフラムダンパ100がハウジング16とハウジングカバー17との間に取付けられた状態において、燃料チャンバ11内に配置されており、各貫通孔211bを通してメタルダイアフラムダンパ100の一方側と他方側とに燃料を移動させることができるようになっている。尚、貫通孔211bは、平面視円形状に限られず、例えば、平面視楕円形状(長孔)や矩形状等であってもよい。
 以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。
 例えば、前記実施例1~3では、ダイアフラム2a,2b同士がレーザ溶接により接合されるものとして説明したが、これに限らず、ダイアフラム2a,2b同士の間に密閉空間S3を構成できるものであれば、各種溶接やかしめ等によって接合されていてもよい。
 また、前記実施例1~3では、メタルダイアフラムダンパ側の連通路(切欠き21aまたは貫通孔211b)と、ハウジング及びハウジングカバー側の連通路(隙間S1,S2)とを両方備える形態を例示したが、前記連通路は、メタルダイアフラムダンパ側またはハウジング及びハウジングカバー側の少なくとも一方側に設けられていればよい。
 前記実施例1~3では、第1湾曲部22a,22aが周方向に亘って接触していたが、これに限られず、湾曲部の基端部(すなわち溶接部W側)に突起を周方向に複数設け、該突起同士が接触するようになっていてもよい。
 また、メタルダイアフラムダンパ1の内部にダイアフラム2a,2b(特に湾曲部22)の過剰な弾性変形を規制する規制部材を配置してもよい。この場合、規制部材をダイアフラム2a,2bの適正な容積変化率を阻害しないような形状とすることが好ましい。また、ダイアフラム2a,2bが弾性変形したときに、規制部材との接触によりダイアフラム2a,2bが破損しないような素材で規制部材を構成することが好ましい。
 また、前記実施例では、断面S字状の湾曲部22と、ドーム状の変形作用部23とを有するダイアフラム2a,2bを説明したが、ダイアフラムの形状は自由に設計してもよく、例えば、断面直線状の変形作用部と、その外縁に設けられる断面円弧状の湾曲部とを有する形状であってもよい。
1        メタルダイアフラムダンパ
2a,2b    ダイアフラム
10       高圧燃料ポンプ
11       燃料チャンバ(空間)
16       ハウジング
16c,16c’ 凸状部
16d      凹状部
17       ハウジングカバー
17b,17b’ 凸状部
17c      凹状部
21       外周部
21a      切欠き(連通路)
22       湾曲部
22a      第1湾曲部(接触部)
22b      第2湾曲部
23       変形作用部
S1,S2    隙間(連通路、連通溝)
S3       密閉空間
W        溶接部

Claims (8)

  1.  2枚の円板状のダイアフラムの外径側が環状に溶接された溶接部により内部に気体が封入されるメタルダイアフラムダンパを、ハウジングとハウジングカバーとの間に形成される空間に取付けるための取付構造であって、
     前記ダイアフラムは、前記溶接部の外径側に外周部を有し、
     2枚の前記ダイアフラムにおける前記外周部同士が前記ハウジングと前記ハウジングカバーとにより前記ダイアフラムの板厚方向に狭持されることを特徴とするメタルダイアフラムダンパの取付構造。
  2.  2枚の前記ダイアフラムにおける前記外周部は外径方向にいくにつれ互いに離間する方向に開いて形成されている請求項1に記載のメタルダイアフラムダンパの取付構造。
  3.  前記外周部には板厚方向に連通する連通路が形成されている請求項1または2に記載のメタルダイアフラムダンパの取付構造。
  4.  前記連通路は前記外周部の外縁を切り欠いて形成されている請求項3に記載のメタルダイアフラムダンパの取付構造。
  5.  前記ハウジングと前記ハウジングカバーとに亘って連通溝が形成されている請求項3または4に記載のメタルダイアフラムダンパの取付構造。
  6.  2枚の前記ダイアフラムにおける前記溶接部の内径側には、それらの基端部から内径側にいくにつれて互いに離間する方向に湾曲する湾曲部が形成されており、これら基端部同士が接触している請求項1ないし5のいずれかに記載のメタルダイアフラムダンパの取付構造。
  7.  2枚の前記ダイアフラムにおける前記外周部同士は、離間した状態で狭持されている請求項1ないし6のいずれかに記載のメタルダイアフラムダンパの取付構造。
  8.  2枚の前記ダイアフラムにおける前記外周部同士は、当接した状態で狭持されていることを特徴とする請求項1ないし6のいずれかに記載のメタルダイアフラムダンパの取付構造。
PCT/JP2019/019616 2018-05-18 2019-05-17 メタルダイアフラムダンパの取付構造 WO2019221259A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020207032120A KR20200137010A (ko) 2018-05-18 2019-05-17 메탈 다이어프램 댐퍼의 장착 구조
JP2020519934A JPWO2019221259A1 (ja) 2018-05-18 2019-05-17 メタルダイアフラムダンパの取付構造
CN201980026782.7A CN111989477A (zh) 2018-05-18 2019-05-17 金属隔膜减震器的安装构造
EP19803571.9A EP3795818A4 (en) 2018-05-18 2019-05-17 METAL DIAPHRAGM SHOCK MOUNTING STRUCTURE
US17/048,992 US11242832B2 (en) 2018-05-18 2019-05-17 Structure for attaching metal diaphragm damper

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-096188 2018-05-18
JP2018096188 2018-05-18

Publications (1)

Publication Number Publication Date
WO2019221259A1 true WO2019221259A1 (ja) 2019-11-21

Family

ID=68539935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/019616 WO2019221259A1 (ja) 2018-05-18 2019-05-17 メタルダイアフラムダンパの取付構造

Country Status (6)

Country Link
US (1) US11242832B2 (ja)
EP (1) EP3795818A4 (ja)
JP (1) JPWO2019221259A1 (ja)
KR (1) KR20200137010A (ja)
CN (1) CN111989477A (ja)
WO (1) WO2019221259A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7074563B2 (ja) * 2018-05-18 2022-05-24 イーグル工業株式会社 ダンパ装置
WO2019221261A1 (ja) 2018-05-18 2019-11-21 イーグル工業株式会社 ダンパユニット
JP7258448B2 (ja) 2018-05-18 2023-04-17 イーグル工業株式会社 ダンパ装置
EP3805548A4 (en) 2018-05-25 2022-02-16 Eagle Industry Co., Ltd. DAMPER DEVICE

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014319A (ja) * 2007-09-11 2008-01-24 Hitachi Ltd ダンパ機構及び高圧燃料供給ポンプ
US20110103985A1 (en) * 2009-11-03 2011-05-05 MAGNETI MARELLI S.p.A. Fuel pump with an improved damping device for a direct injection system
JP2013064364A (ja) * 2011-09-20 2013-04-11 Hitachi Automotive Systems Ltd 高圧燃料供給ポンプ
JP2014190188A (ja) 2013-03-26 2014-10-06 Maruyasu Industries Co Ltd 燃料圧力の脈動低減装置
WO2017022604A1 (ja) * 2015-07-31 2017-02-09 イーグル工業株式会社 ダイアフラムダンパ装置及びその保持部材、並びにダイアフラムダンパ装置の製造方法
JP2018071443A (ja) * 2016-10-31 2018-05-10 日立オートモティブシステムズ株式会社 燃料供給ポンプ

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10299609A (ja) 1997-04-18 1998-11-10 Zexel Corp 脈動低減用ダンパ
JP4036153B2 (ja) 2003-07-22 2008-01-23 株式会社日立製作所 ダンパ機構及び高圧燃料供給ポンプ
WO2008086012A1 (en) 2007-01-10 2008-07-17 Stanadyne Corporation Inlet pressure attenuator for single plunger fuel pump
JP4380724B2 (ja) 2007-04-16 2009-12-09 株式会社日立製作所 ダンパ機構及び高圧燃料供給ポンプ
JP5002523B2 (ja) 2008-04-25 2012-08-15 日立オートモティブシステムズ株式会社 燃料の圧力脈動低減機構、及びそれを備えた内燃機関の高圧燃料供給ポンプ
DE102008043217A1 (de) 2008-10-28 2010-04-29 Robert Bosch Gmbh Kraftstoff-Hochdruckpumpe für eine Brennkraftmaschine
JP4726262B2 (ja) 2009-02-13 2011-07-20 株式会社デンソー ダンパ装置及びそれを用いた高圧ポンプ
JP4736142B2 (ja) 2009-02-18 2011-07-27 株式会社デンソー 高圧ポンプ
JP4678065B2 (ja) 2009-02-25 2011-04-27 株式会社デンソー ダンパ装置、それを用いた高圧ポンプおよびその製造方法
WO2010106645A1 (ja) 2009-03-17 2010-09-23 トヨタ自動車 株式会社 パルセーションダンパ
IT1396143B1 (it) 2009-11-03 2012-11-16 Magneti Marelli Spa Pompa carburante con ridotta usura di una guarnizione per un sistema di iniezione diretta
JP5333937B2 (ja) 2009-11-09 2013-11-06 株式会社デンソー 高圧ポンプ
JP5136919B2 (ja) 2010-04-08 2013-02-06 株式会社デンソー 高圧ポンプ
US8727752B2 (en) 2010-10-06 2014-05-20 Stanadyne Corporation Three element diaphragm damper for fuel pump
CN102619660B (zh) 2011-01-28 2015-06-24 株式会社电装 高压泵
KR101199323B1 (ko) 2011-02-08 2012-11-09 (주)모토닉 직접분사식 가솔린 엔진용 고압연료펌프
JP5644615B2 (ja) 2011-03-22 2014-12-24 株式会社デンソー パルセーションダンパおよびこれを備えた高圧ポンプ
US9109593B2 (en) 2011-08-23 2015-08-18 Denso Corporation High pressure pump
JP5569573B2 (ja) 2012-03-05 2014-08-13 株式会社デンソー 高圧ポンプ
JP5821769B2 (ja) * 2012-04-24 2015-11-24 株式会社デンソー ダンパ装置
US20150017040A1 (en) 2013-07-12 2015-01-15 Denso Corporation Pulsation damper and high-pressure pump having the same
JP5979092B2 (ja) 2013-07-23 2016-08-24 トヨタ自動車株式会社 パルセーションダンパおよび高圧燃料ポンプ
DE102013219428A1 (de) 2013-09-26 2015-03-26 Continental Automotive Gmbh Dämpfer für eine Hochdruckpumpe
JP5907145B2 (ja) 2013-11-12 2016-04-20 株式会社デンソー 高圧ポンプ
JP2015232283A (ja) 2014-06-09 2015-12-24 トヨタ自動車株式会社 ダンパー装置
KR20160121010A (ko) * 2015-04-09 2016-10-19 주식회사 현대케피코 연료의 맥동을 저감시키는 고압 연료펌프의 댐퍼구조체
DE112016002359T5 (de) * 2015-05-27 2018-02-15 Denso Corporation Pulsationsdämpfer
EP3330563B1 (en) 2015-07-31 2021-03-03 Eagle Industry Co., Ltd. Diaphragm damper device coiled wave spring and damper system
JP6676054B2 (ja) 2015-07-31 2020-04-08 イーグル工業株式会社 ダイアフラムダンパ
JP6434871B2 (ja) 2015-07-31 2018-12-05 トヨタ自動車株式会社 ダンパ装置
DE102015219537A1 (de) 2015-10-08 2017-04-27 Robert Bosch Gmbh Membrandose zum Dämpfen von Druckpulsationen in einem Niederdruckbereich einer Kolbenpumpe
DE102015223159A1 (de) 2015-11-24 2017-06-08 Robert Bosch Gmbh Kraftstoffeinspritzsystem mit einem Membrandämpfer
DE102016200125B4 (de) * 2016-01-08 2018-05-30 Continental Automotive Gmbh Kraftstoffhochdruckpumpe
DE102016203217B4 (de) * 2016-02-29 2020-12-10 Vitesco Technologies GmbH Dämpferkapsel, Druckpulsationsdämpfer und Kraftstoffhochdruckpumpe
DE102016205428A1 (de) 2016-04-01 2017-10-05 Robert Bosch Gmbh Druckdämpfungseinrichtung für eine Fluidpumpe, insbesondere für eine Hochdruckpumpe eines Kraftstoffeinspritzsystems
EP3517770B1 (en) * 2016-09-26 2021-06-09 Eagle Industry Co., Ltd. Metal diaphragm damper
JP6919314B2 (ja) 2017-05-11 2021-08-18 株式会社デンソー パルセーションダンパおよび燃料ポンプ装置
DE102017213891B3 (de) 2017-08-09 2019-02-14 Continental Automotive Gmbh Kraftstoffhochdruckpumpe für ein Kraftstoffeinspritzsystem
KR20210006328A (ko) 2018-03-14 2021-01-18 노스트럼 에너지 피티이. 리미티드 내연 기관용 펌프 및 이를 형성하는 방법
JP7258448B2 (ja) 2018-05-18 2023-04-17 イーグル工業株式会社 ダンパ装置
WO2019221261A1 (ja) 2018-05-18 2019-11-21 イーグル工業株式会社 ダンパユニット
JP2021110312A (ja) 2020-01-15 2021-08-02 株式会社デンソー アッセンブリの製造方法、パーツセット、燃料噴射ポンプの製造方法、及び、燃料噴射ポンプ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008014319A (ja) * 2007-09-11 2008-01-24 Hitachi Ltd ダンパ機構及び高圧燃料供給ポンプ
US20110103985A1 (en) * 2009-11-03 2011-05-05 MAGNETI MARELLI S.p.A. Fuel pump with an improved damping device for a direct injection system
JP2013064364A (ja) * 2011-09-20 2013-04-11 Hitachi Automotive Systems Ltd 高圧燃料供給ポンプ
JP2014190188A (ja) 2013-03-26 2014-10-06 Maruyasu Industries Co Ltd 燃料圧力の脈動低減装置
WO2017022604A1 (ja) * 2015-07-31 2017-02-09 イーグル工業株式会社 ダイアフラムダンパ装置及びその保持部材、並びにダイアフラムダンパ装置の製造方法
JP2018071443A (ja) * 2016-10-31 2018-05-10 日立オートモティブシステムズ株式会社 燃料供給ポンプ

Also Published As

Publication number Publication date
EP3795818A4 (en) 2022-02-16
US20210246860A1 (en) 2021-08-12
JPWO2019221259A1 (ja) 2021-06-10
US11242832B2 (en) 2022-02-08
EP3795818A1 (en) 2021-03-24
KR20200137010A (ko) 2020-12-08
CN111989477A (zh) 2020-11-24

Similar Documents

Publication Publication Date Title
WO2019221259A1 (ja) メタルダイアフラムダンパの取付構造
JP7237952B2 (ja) ダンパユニット
US8366421B2 (en) Fluid pressure pulsation damper mechanism and high-pressure fuel pump equipped with fluid pressure pulsation damper mechanism
CN107614864B (zh) 脉动阻尼器
US10378524B2 (en) High-pressure fuel pump
CN109715932B (zh) 金属膜片减振器
CN111989479B (zh) 减震器装置
JP7118183B2 (ja) 金属ダイアフラム、金属ダンパ、及びこれらを備えた燃料ポンプ
CN112055781B (zh) 减震器装置
WO2019225627A1 (ja) ダンパ装置
WO2019102982A1 (ja) メタルダイアフラムダンパ
JP5608590B2 (ja) プランジャポンプ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19803571

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020519934

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207032120

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019803571

Country of ref document: EP