WO2019221053A1 - 無停電電源装置 - Google Patents

無停電電源装置 Download PDF

Info

Publication number
WO2019221053A1
WO2019221053A1 PCT/JP2019/018913 JP2019018913W WO2019221053A1 WO 2019221053 A1 WO2019221053 A1 WO 2019221053A1 JP 2019018913 W JP2019018913 W JP 2019018913W WO 2019221053 A1 WO2019221053 A1 WO 2019221053A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
power
supply unit
abnormality
voltage
Prior art date
Application number
PCT/JP2019/018913
Other languages
English (en)
French (fr)
Inventor
西村 荘治
吉則 河▲崎▼
怜史 宇田
Original Assignee
日新電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新電機株式会社 filed Critical 日新電機株式会社
Priority to US17/053,790 priority Critical patent/US11476701B2/en
Priority to EP19803427.4A priority patent/EP3796514A4/en
Priority to AU2019268825A priority patent/AU2019268825B2/en
Priority to CN201980031502.1A priority patent/CN112106273A/zh
Publication of WO2019221053A1 publication Critical patent/WO2019221053A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/001Methods to deal with contingencies, e.g. abnormalities, faults or failures
    • H02J3/00125Transmission line or load transient problems, e.g. overvoltage, resonance or self-excitation of inductive loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/24Arrangements for preventing or reducing oscillations of power in networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Definitions

  • the present invention relates to an uninterruptible power supply of a commercial power supply system.
  • the uninterruptible power supply of the commercial power supply system compensates for instantaneous voltage drop and frequency fluctuation of the system voltage of the commercial power system.
  • a power supply unit having a storage battery and a parallel inverter is provided. It is connected to the load in parallel, and a switch is provided above them. When the system voltage of the commercial power system deviates from a predetermined allowable voltage range, the switch is opened and power is supplied from the power storage unit to the load.
  • the present invention has been made to solve the above-mentioned problems, and it is a main object of the present invention to provide an uninterruptible power supply that can cope with various system abnormalities other than voltage drop and frequency fluctuation including instantaneous voltage drop. It is what.
  • the uninterruptible power supply according to the present invention is an uninterruptible power supply that is provided between a commercial power system and an important load and supplies AC power to the important load, from the commercial power system to the important load.
  • a power supply unit having a power converter and a storage battery connected to a power line for supplying power, an open switch provided on the commercial power system side of the power line relative to the power supply unit, and opening and closing the power line; and from the open switch
  • system abnormality that is at least one of voltage rise, phase fluctuation, voltage imbalance, harmonic abnormality or flicker
  • a system abnormality detection unit for detecting the system switch, and the open switch when the detected system abnormality is greater than a tolerance for the system abnormality of the important load or the power supply unit.
  • a control unit that supplies AC power from the power supply unit to the important load.
  • the system abnormality detection unit in addition to at least one of a voltage drop including an instantaneous voltage drop or a frequency fluctuation, adds a voltage rise, phase fluctuation, voltage imbalance, harmonic abnormality or flicker.
  • the open switch is opened, so the voltage drop including instantaneous voltage drop It is also possible to cope with various system abnormalities other than frequency fluctuations.
  • the open switch is opened using not only the tolerance to the system abnormality of the critical load but also the tolerance of the system abnormality of the power supply as a parameter, it is possible to cope with the system abnormality considering not only the important load but also the power supply part. Can respond.
  • phase fluctuation voltage imbalance, harmonic abnormality or flicker
  • the three-phase system voltage is further converted into a three-phase to two-phase conversion ( ⁇ - In a complex number that has undergone ⁇ -0 conversion, the ⁇ component (which is a real component) and the ⁇ component (which is an imaginary component) are expressed by Equation 1.
  • each element is as follows.
  • v system voltage
  • V 1 system voltage amplitude
  • f system voltage frequency
  • system voltage phase
  • phase fluctuation with phase jump is a change of this element.
  • the flicker is low period fluctuation of several to several tens Hz for V 1.
  • the voltage drop and the frequency fluctuation including the instantaneous voltage drop are the same as the uninterruptible power supply of the constant inverter power supply system that is more expensive. It is also possible to deal with other system abnormal elements such as voltage rise, phase fluctuation, voltage imbalance, harmonic abnormality or flicker. As an example, as shown in ⁇ Simulation of the first embodiment> described later, it is possible to prevent an abnormality of the uninterruptible power supply (in this simulation, a drop due to an overcurrent abnormality of an important load with a linked inverter).
  • the power supply unit is operated in a self-supporting manner within a limit tolerance range in which the tolerance to the system abnormality of the important load or the power supply unit is small with the open switch opened. Is desirable.
  • control unit is configured such that the system abnormality detected by the system abnormality detection unit is greater than the tolerance to the system abnormality of the important load or the power supply unit.
  • the degree of abnormality is not less than a predetermined threshold value, it is desirable that the power supply unit performs a compensation operation for the system abnormality.
  • the uninterruptible power supply apparatus 100 is provided between the commercial power system 10 and the important load 30, and always supplies power to the important load 30 when the commercial power system 10 is abnormal.
  • This is a commercial power supply system.
  • the commercial power system 10 is a power supply network of an electric power company (electricity company) and has a power plant, a power transmission system, and a power distribution system.
  • the important load 20 is a load to which power should be stably supplied even in the event of a system abnormality such as a power failure or a momentary voltage drop, and is one in FIG. 1, but may be a plurality.
  • the uninterruptible power supply 100 detects the voltage on the commercial power system 10 side of the power supply unit 2, the open switch 3 connecting the commercial power system 10, the power supply unit 2 and the important load 30, and the open switch 3.
  • a system voltage detection unit 4 that performs detection
  • a system abnormality detection unit 5 that detects a system abnormality from the detection voltage of the system side voltage detection unit 4
  • a control unit 6 that opens the open switch 3 based on a detection signal from the system abnormality detection unit 5 It has.
  • the power source unit 2 is connected to a power line L1 for supplying power from the commercial power system 10 to the important load 30.
  • the power supply unit 2 is connected to the commercial power system 10 and includes a power storage device (storage device) 21 such as a secondary battery (storage battery) and a power converter (power conditioner) 22. .
  • the open switch 3 is provided closer to the commercial power system 10 than the connection point of the power supply unit 2 in the power line L1, and opens and closes the power line L1, for example, a semiconductor switch or a combination of a semiconductor switch and a mechanical switch
  • a non-instantaneous switch capable of high-speed switching such as a hybrid switch can be used.
  • the switching time can be set to 2 milliseconds or less, and the circuit can be shut off regardless of the zero point.
  • the switching time can be set to 2 milliseconds or less, and not only the interruption can be performed regardless of the zero point, but also the energization loss can be reduced to zero.
  • the opening switch 3 is controlled to be opened and closed by the control unit 6.
  • the saddle system side voltage detection part 4 detects the voltage by the side of the commercial power system 10 rather than the open switch 3 in the power line L1 via the instrument transformer 41. Specifically, the system side voltage detection unit 4 is connected to the commercial power system 10 side from the open switch 3 and the instrument transformer 41.
  • the saddle system abnormality detection unit 5 detects each system abnormality on the commercial power system 10 side with respect to the open switch 3 from the detection voltage detected by the system side voltage detection unit 4.
  • the system abnormality of this embodiment is voltage drop including voltage drop, voltage rise, frequency fluctuation, phase fluctuation, voltage imbalance, abnormal harmonic, and flicker.
  • the system abnormality detection unit 5 includes a voltage drop detection unit 51 that detects a voltage drop including an instantaneous drop, a frequency fluctuation detection unit 52 that detects a frequency fluctuation, a voltage rise detection unit 53 that detects a voltage rise, A phase fluctuation detection unit 54 that detects phase fluctuation, a voltage imbalance detection unit 55 that detects voltage imbalance, an abnormal harmonic detection unit 56 that detects abnormal harmonics, and a flicker detection unit 57 that detects flicker.
  • a voltage drop detection unit 51 that detects a voltage drop including an instantaneous drop
  • a frequency fluctuation detection unit 52 that detects a frequency fluctuation
  • a voltage rise detection unit 53 that detects a voltage rise
  • a phase fluctuation detection unit 54 that detects phase fluctuation
  • a voltage imbalance detection unit 55 that detects voltage imbalance
  • an abnormal harmonic detection unit 56 that detects abnormal harmonics
  • a flicker detection unit 57 that detects flicker.
  • the soot voltage drop detection unit 51 detects a voltage drop by comparing the detection voltage of the system side voltage detection unit 4 with a predetermined set value.
  • the settling value for detecting the voltage drop is a voltage value for detecting the instantaneous drop, for example, the remaining voltage is 20%.
  • the frequency fluctuation detection unit 52 detects frequency fluctuations (frequency increase (OF), frequency decrease (UF)) from the detection voltage of the system side voltage detection unit 4.
  • the frequency fluctuation is, for example, a step up or a ramp up / down.
  • the soot voltage rise detection unit 53 detects a voltage rise by comparing the detection voltage of the system side voltage detection unit 4 with a predetermined set value.
  • the settling value for detecting the voltage rise is, for example, 107% of the system voltage.
  • the soot phase fluctuation detector 54 detects a phase fluctuation such as a 10 ° phase jump from the phase of the detection voltage of the system side voltage detector 4.
  • the soot voltage imbalance detection unit 55 detects that the amplitude magnitude or phase difference 120 ° between the three phases is different from the detection voltage of the system side voltage detection unit 4.
  • the abnormal harmonic detection unit 56 detects the harmonic voltage from the detection voltage of the system side voltage detection unit 4.
  • the flicker detection unit 57 detects voltage fluctuation (flicker) from the detection voltage of the system side voltage detection unit 4.
  • the saddle controller 6 outputs a control signal to the open switch 3 based on each detection signal detected by the system abnormality detector 5 to open the open switch 3.
  • the control unit 6 of the present embodiment receives the detection signals from the detection units 51 to 57 and opens the open switch 3 when any one of the detection signals satisfies a predetermined condition (OR condition).
  • control unit 6 opens the release switch 3 when at least one of the system abnormalities detected by the detection units 51 to 57 is equal to or greater than the tolerance for each system abnormality of the important load 30 or the power supply unit 2.
  • the uninterruptible power supply apparatus 100 normally closes the open switch 3, and the power supply unit 2 and the important load 30 are connected to the commercial power system 10 through the open switch 3.
  • the control unit 6 uses the open switch 3 The state where the is input is maintained. At this time, the power supply unit 2 is continuously operated following the system abnormality of the commercial power system 10.
  • the control unit 6 opens the open switch 3 To do. In this state, the power supply unit 2 continues to operate within the limit tolerance range in which the system load tolerance of the important load 30 or the power supply unit 2 is smaller (self-sustained operation of the power supply unit 2).
  • Each of the detection units 51 to 57 detects each system abnormality of the commercial power system 10 regardless of whether the open switch 3 is opened or closed, and the control unit 6 determines that each system abnormality of the commercial power system 10 is smaller.
  • the open switch 3 is closed when the system abnormal tolerance is exceeded.
  • FIG. 3 shows a system model of this simulation and a monitor control model of the phase jump ⁇ of the voltage v at the switch output point.
  • FIG. 4 shows the voltage v, current i, and phase jump ⁇ at the switch output point when the open switch is not operated.
  • a phase jump of 10 ° occurs in the commercial power system at time 0.5 seconds, and immediately after that, an overcurrent twice as large as the steady-state amplitude is generated in the current i to the PCS of the important load.
  • FIG. 5 shows the voltage v, current i, and phase jump ⁇ at the switch output point when the open switch is operated.
  • a phase jump of 10 ° occurs in the commercial power system at time 0.5 seconds, and the open switch is opened after 2 milliseconds by detecting this phase jump. It is assumed that the phase jump detection is not performed while the switch is open.
  • the system abnormality detection unit adds a voltage rise, a phase change, a voltage
  • the open switch 3 is set. Since it is opened, it can cope with various system abnormalities other than voltage drop and frequency fluctuation including instantaneous voltage drop.
  • the open switch 3 is opened using not only the tolerance to the system abnormality of the important load but also the tolerance of the power supply unit 2 to the system abnormality as a parameter, not only the important load 30 but also the power supply unit 2 is considered. Can handle system abnormalities.
  • the uninterruptible power supply device of the second embodiment is different from the above embodiment in the configuration of the control unit 6 and the operation of the power supply unit 2.
  • control unit 6 of the second embodiment has at least one of each system abnormality detected by each of the detection units 51 to 57 more than the system abnormality tolerance of the important load 30 or the power supply unit 2.
  • the power supply unit 2 performs a compensation operation for each system abnormality without opening the open switch 3.
  • the uninterruptible power supply apparatus 100 normally closes the open switch 3, and the power supply unit 2 and the important load 30 are connected to the commercial power system 10 through the open switch 3.
  • the control unit 6 maintains the state where the open switch 3 is turned on. At this time, the power supply unit 2 is continuously operated following the system abnormality of the commercial power system 10.
  • the control unit 6 When the detected system abnormality is equal to or greater than the predetermined threshold (FIG. 7 (2)), the control unit 6 maintains the state where the open switch 3 is turned on. At this time, the power supply unit 2 performs a compensation operation (system abnormality change mitigation operation) for a system abnormality in the commercial power system. In this case, it is assumed that the detected system abnormality is smaller than the system abnormality tolerance of the power supply unit 2 and the important load 30.
  • the control unit 7 opens the open switch 3 To do. In this state, the power supply unit 2 continues to operate in the range of the limit tolerance with which the system load tolerance of the important load 30 or the power supply unit 2 is smaller (independent operation).
  • a generator 7 connected to the power line L ⁇ b> 1 may be provided separately from the power supply unit 2.
  • the generator 7 is connected to the important load 30 side with respect to the open switch 3. If it is this structure, it can respond to the prolongation of the independent operation time (at the time of a system
  • the release switch 3 is opened when any one of the system abnormalities satisfies the condition, but when the combination of two or more system abnormalities satisfies the predetermined condition.
  • the open switch 3 may be opened.

Abstract

瞬時電圧低下を含む電圧低下及び周波数変動以外の種々の系統異常にも対応できる無停電電源装置を提供する。商用電力系統10と重要負荷30との間に設けられ、重要負荷30に交流電力を供給する無停電電源装置100であって、商用電力系統10から重要負荷30に給電するための電力線L1に接続された電力変換器22及び蓄電池21を有する電源部2と、電力線L1において電源部2よりも商用電力系統側に設けられ、電力線L1を開閉する開放スイッチ3と、開放スイッチ3よりも商用電力系統側で発生する瞬時電圧低下を含む電圧低下又は周波数変動の少なくとも1つに加えて、電圧上昇、位相変動、電圧不平衡、高調波異常又はフリッカの少なくとも1つである系統異常を検出する系統異常検出部5と、検出された系統異常が重要負荷30又は電源部2の系統異常への耐量以上である場合に開放スイッチ3を開放し、電源部2から重要負荷30に交流電力を供給する制御部6とを備える。

Description

無停電電源装置
  本発明は、常時商用給電方式の無停電電源装置に関するものである。
  常時商用給電方式の無停電電源装置は、商用電力系統の系統電圧の瞬時電圧低下や周波数変動を補償するものであり、例えば、特許文献1に示すように、蓄電池及び並列インバータを有する電源部を負荷と並列に接続し、これらの上位にスイッチを設けて構成されている。そして、商用電力系統の系統電圧が所定の許容電圧範囲を逸脱した場合にスイッチを開放して、蓄電部から負荷に給電する。
  しかしながら、従来の常時商用給電方式の無停電電源装置では、負荷に対して瞬時電圧低下及び周波数変動の補償動作のみであり、その他の系統異常の補償動作を行うことができない。また、系統異常に対する配慮が負荷に対してのみであり、蓄電部に対する配慮がなされていない。
特開2005-229662号公報
  そこで本発明は、上記問題点を解決すべくなされたものであり、瞬時電圧低下を含む電圧低下及び周波数変動以外の種々の系統異常にも対応できる無停電電源装置を提供することをその主たる課題とするものである。
  すなわち本発明に係る無停電電源装置は、商用電力系統と重要負荷との間に設けられ、前記重要負荷に交流電力を供給する無停電電源装置であって、前記商用電力系統から前記重要負荷に給電するための電力線に接続された電力変換器及び蓄電池を有する電源部と、前記電力線において前記電源部よりも前記商用電力系統側に設けられ、前記電力線を開閉する開放スイッチと、前記開放スイッチよりも前記商用電力系統側で発生する瞬時電圧低下を含む電圧低下又は周波数変動の少なくとも1つに加えて、電圧上昇、位相変動、電圧不平衡、高調波異常又はフリッカの少なくとも1つである系統異常を検出する系統異常検出部と、検出された系統異常が前記重要負荷又は前記電源部の前記系統異常への耐量以上である場合に前記開放スイッチを開放し、前記電源部から前記重要負荷に交流電力を供給する制御部とを備えることを特徴とする。
  このような無停電電源装置であれば、系統異常検出部により、瞬時電圧低下を含む電圧低下又は周波数変動の少なくとも1つに加えて、電圧上昇、位相変動、電圧不平衡、高調波異常又はフリッカの少なくとも1つである系統異常を検出しており、検出された系統異常が重要負荷又は電源部の系統異常への耐量以上である場合に開放スイッチを開放するので、瞬時電圧低下を含む電圧低下及び周波数変動以外の種々の系統異常にも対応できる。また、重要負荷の系統異常への耐量だけでなく、電源部の系統異常への耐量をパラメータとして開放スイッチの開放を行っているので、重要負荷だけでなく、電源部を考慮した系統異常への対応ができる。
  ここで、系統異常要素として上記位相変動、電圧不平衡、高調波異常又はフリッカが考えられることは連系規程から読み取ることができるが、さらに三相系統電圧を三相-二相変換(α-β-0変換)した複素数において、そのα成分(これを実数成分とする)、β成分(これを虚数成分とする)を表現すると、数1で表現される。
Figure JPOXMLDOC01-appb-M000001
  ここで各要素は以下である。
  v:系統電圧
  V1:系統電圧振幅
  f:系統電圧周波数
  θ:系統電圧位相、位相跳躍との位相変動はこの要素の変化である。
  Σn≠1n:基本波正相分以外の成分、n=-1の逆相成分と|n|≠1の高調波成分がある。
  なお、フリッカはV1の数~数十Hzの低周期変動である。
  この考察による系統異常要素の追加の結果、常時商用給電方式の無停電電源装置において、より高価である常時インバータ給電方式の無停電電源装置と同じように、瞬時電圧低下を含む電圧低下及び周波数変動以外の電圧上昇、位相変動、電圧不平衡、高調波異常又はフリッカ等の系統異常要素についても対応することができる。その一例として、後述する<第1実施形態のシミュレーション>で示すように無停電電源装置の異常(このシミュレーションでは連系インバータ付き重要負荷の過電流異常による脱落)を未然に防止することができる。
  具体的な実施の態様としては、前記電源部は、前記開放スイッチが開放した状態で、前記重要負荷又は前記電源部の前記系統異常への耐量が小さい方における限界耐量の範囲で自立運転することが望ましい。
  ランニングコストの高い自立運転への移行頻度を低減するためには、前記制御部は、前記系統異常検出部により検出された系統異常が、前記重要負荷又は前記電源部の前記系統異常への耐量よりも異常の程度が小さい所定の閾値以上の場合に、前記電源部により前記系統異常に対する補償動作を行わせることが望ましい。
  自立運転時間の長時間化に対応するためには、前記電源部とは別に前記電力線に接続された発電機を備えることが望ましい。
  このように構成した本発明によれば、瞬時電圧低下を含む電圧低下及び周波数変動以外の種々の系統異常にも対応できる無停電電源装置を提供することができる。
第1実施形態の無停電電源装置の構成を示す模式図である。 第1実施形態の系統異常における動作状態の一覧を示す表である。 位相跳躍時の補償動作のシミュレーションモデルを示す図である。 開放スイッチが動作しない場合のシミュレーション結果を示す図である。 開放スイッチが動作した場合のシミュレーション結果を示す図である。 第2実施形態の無停電電源装置の構成を示す模式図である。 第2実施形態の系統異常における動作状態の一覧を示す表である。 その他の変形実施形態の無停電電源装置の構成を示す模式図である。
<第1実施形態>
  以下に、本発明に係る無停電電源装置の第1実施形態について、図面を参照して説明する。
  第1実施形態の無停電電源装置100は、図1に示すように、商用電力系統10と重要負荷30との間に設けられ、商用電力系統10の異常時に重要負荷30に電力を供給する常時商用給電方式のものである。
  ここで、商用電力系統10は、電力会社(電気事業者)の電力供給網であり、発電所、送電系統及び配電系統を有するものである。また、重要負荷20は、停電や瞬低などの系統異常時においても電力を安定して供給すべき負荷であり、図1では1つであるが、複数あっても良い。
  具体的に無停電電源装置100は、電源部2と、商用電力系統10と電源部2及び重要負荷30とを接続する開放スイッチ3と、開放スイッチ3よりも商用電力系統10側の電圧を検出する系統側電圧検出部4と、系統側電圧検出部4の検出電圧から系統異常を検出する系統異常検出部5と、系統異常検出部5の検出信号により開放スイッチ3を開放する制御部6とを備えている。
  電源部2は、商用電力系統10から重要負荷30に給電するための電力線L1に接続されている。この電源部2は、商用電力系統10に連系されるものであり、二次電池(蓄電池)などの電力貯蔵装置(蓄電デバイス)21と電力変換器(パワーコンディショナー)22とを有するものである。
  開放スイッチ3は、電力線L1において電源部2の接続点よりも商用電力系統10側に設けられて電力線L1を開閉するものであり、例えば半導体スイッチ、又は、半導体スイッチと機械式スイッチとを組み合わせたハイブリッドスイッチなどの高速切り替えが可能な無瞬断スイッチを用いることができる。例えば半導体スイッチを用いた場合には、切替時間を2ミリ秒以下にすることができ、ゼロ点関係なく遮断することができる。また、ハイブリッドスイッチを用いた場合には、切替時間を2ミリ秒以下にすることができ、ゼロ点関係なく遮断できるだけでなく、通電損失をゼロにすることができる。なお、この開放スイッチ3は、制御部6により開閉制御される。
  系統側電圧検出部4は、電力線L1において開放スイッチ3よりも商用電力系統10側の電圧を、計器用変圧器41を介して検出するものである。具体的に系統側電圧検出部4は、開放スイッチ3及よりも商用電力系統10側に計器用変圧器41を介して接続されている。
  系統異常検出部5は、系統側電圧検出部4により検出された検出電圧から、開放スイッチ3よりも商用電力系統10側の各系統異常を検出するものである。本実施形態の系統異常は、瞬低を含む電圧低下、電圧上昇、周波数変動、位相変動、電圧不平衡、異常高調波、フリッカである。
  このため、系統異常検出部5は、瞬低を含む電圧低下を検出する電圧低下検出部51と、周波数変動を検出する周波数変動検出部52と、電圧上昇を検出する電圧上昇検出部53と、位相変動を検出する位相変動検出部54と、電圧不平衡を検出する電圧不平衡検出部55と、異常高調波を検出する異常高調波検出部56と、フリッカを検出するフリッカ検出部57とを有する。
  電圧低下検出部51は、系統側電圧検出部4の検出電圧と所定の整定値とを比較することにより電圧低下を検出するものである。ここで、電圧低下を検出するための整定値は、瞬低を検出するための電圧値であり、例えば残電圧20%である。
  周波数変動検出部52は、系統側電圧検出部4の検出電圧から周波数変動(周波数上昇(OF)、周波数低下(UF))を検出するものである。なお、周波数変動は、例えばステップ上昇や、ランプ上昇・下降である。
  電圧上昇検出部53は、系統側電圧検出部4の検出電圧と所定の整定値とを比較することにより電圧上昇を検出するものである。ここで、電圧上昇を検出するための整定値は、系統電圧に対して例えば107%の電圧である。
  位相変動検出部54は、系統側電圧検出部4の検出電圧の位相から例えば10°の位相跳躍等の位相変動を検出するものである。
  電圧不平衡検出部55は、系統側電圧検出部4の検出電圧から三相間の振幅の大きさ又は位相差120°が異なる状態となっていることを検出するものである。
  異常高調波検出部56は、系統側電圧検出部4の検出電圧から高調波電圧を検出するものである。フリッカ検出部57は、系統側電圧検出部4の検出電圧から電圧変動(フリッカ)を検出するものである。
  制御部6は、系統異常検出部5により検出された各検出信号に基づいて、開放スイッチ3に制御信号を出力して開放スイッチ3を開放するものである。本実施形態の制御部6は、各検出部51~57からの検出信号を受け付けて何れか1つの検出信号が所定の条件(OR条件)を満たす場合に、開放スイッチ3を開放する。
  具体的に制御部6は、各検出部51~57により検出された各系統異常の少なくとも1つが重要負荷30又は電源部2の各系統異常に対する耐量以上である場合に開放スイッチ3を開放する。
  制御部6の具体的な開放スイッチ3の開閉制御とともに電源部2の動作について、図2を参照して説明する。
  無停電電源装置100は、通常時には、開放スイッチ3を閉じており、電源部2及び重要負荷30は開放スイッチ3を介して商用電力系統10に接続された状態である。
(1)検出された各系統異常が、電源部2及び重要負荷30の系統異常耐量のうち小さい方の系統異常耐量よりも小さい場合(図2(1))、制御部6は、開放スイッチ3を投入した状態を維持する。このとき、電源部2は商用電力系統10の系統異常に追従して継続運転される。
(2)検出された系統異常が、電源部2及び重要負荷30の系統異常耐量のうち小さい方の系統異常耐量以上の場合(図2(2))、制御部6は、開放スイッチ3を開放する。この状態で、電源部2は、重要負荷30又は電源部2の系統異常耐量が小さい方の限界耐量の範囲で運転継続する(電源部2の自立運転)。
  なお、各検出部51~57は、開放スイッチ3の開閉に関係なく、商用電力系統10の各系統異常を検出しており、制御部6は、商用電力系統10の各系統異常が前記小さい方の系統異常耐量未満になった場合に、開放スイッチ3を閉じる。
<第1実施形態のシミュレーション>
  系統異常の一例として商用電力系統に位相跳躍(10°の位相跳躍)があった場合の電源部への影響をシミュレーションした。このシミュレーションの系統モデル、及びスイッチ出力点の電圧vの位相跳躍Δθの監視制御モデルを図3に示す。
  開放スイッチを動作させない場合のスイッチ出力点の電圧v、電流i及び位相跳躍Δθを図4に示す。
  時刻0.5秒で商用電力系統に10°の位相跳躍が発生しており、直後に重要負荷のPCSへの電流iに定常振幅の2倍の過電流が発生している。
  開放スイッチを動作させた場合のスイッチ出力点の電圧v、電流i及び位相跳躍Δθを図5に示す。
  時刻0.5秒で商用電力系統に10°の位相跳躍が発生しており、この位相跳躍検出により2ミリ秒後に開放スイッチを開放する。なお、スイッチ開放中には位相跳躍検出はしない制御とする。
  以上のシミュレーション結果により、位相跳躍発生時の電圧変動は電圧振幅の10%程度であるが、過電流が発生することが分かる。このような場合、位相跳躍を監視して大きく位相跳躍する前に開放スイッチを開放すれば、仮に重要負荷のPCS(インバータ)の過電流耐量が2倍以下の場合には、重要負荷が過電流で開放(脱落)することを防止できる(逆に言うと、この対応をしなければ重要負荷を過電流で脱落させてしまう)。
  このシミュレーション結果から、位相跳躍検出が有効であること、瞬時電圧低下を含む電圧低下検出機能だけでは、系統異常に対応できないことが分かる。
<第1実施形態の効果>
  このように構成した第1実施形態の無停電電源装置100によれば、系統異常検出部により、瞬時電圧低下を含む電圧低下又は周波数変動の少なくとも1つに加えて、電圧上昇、位相変動、電圧不平衡、高調波異常又はフリッカの少なくとも1つである系統異常を検出しており、検出された系統異常が重要負荷30又は電源部2の系統異常への耐量以上である場合に開放スイッチ3を開放するので、瞬時電圧低下を含む電圧低下及び周波数変動以外の種々の系統異常にも対応できる。また、重要負荷の系統異常への耐量だけでなく、電源部2の系統異常への耐量をパラメータとして開放スイッチ3の開放を行っているので、重要負荷30だけでなく、電源部2を考慮した系統異常への対応ができる。
<第2実施形態>
  次に本発明の係る無停電電源装置の第2実施形態について説明する。
  第2実施形態の無停電電源装置は、図6に示すように、前記実施形態とは制御部6の構成及び電源部2の動作が異なる。
  つまり、第2実施形態の制御部6は、前記実施形態に加えて、各検出部51~57により検出された各系統異常の少なくとも1つが、重要負荷30又は電源部2の系統異常耐量よりも小さい所定の閾値以上の場合に、開放スイッチ3を開放すること無く、電源部2により各系統異常に対する補償動作を行わせる。
  制御部6の具体的な開放スイッチ3の開閉制御とともに電源部2の動作について、図7を参照して説明する。
  無停電電源装置100は、通常時には、開放スイッチ3を閉じており、電源部2及び重要負荷30は開放スイッチ3を介して商用電力系統10に接続された状態である。
(1)検出された系統異常が、前記所定の閾値よりも小さい場合(図7(1))、制御部6は、開放スイッチ3を投入した状態を維持する。このとき、電源部2は、商用電力系統10の系統異常に追従して継続運転される。
(2)検出された系統異常が、前記所定の閾値以上の場合(図7(2))、制御部6は、開放スイッチ3を投入した状態を維持する。このとき、電源部2は、商用電力系統の系統異常に対する補償動作(系統異常の変化軽減動作)を行う。なお、この場合は、検出された系統異常が、電源部2及び重要負荷30の系統異常耐量よりも小さいことを前提とする。
(3)検出された系統異常が、電源部2及び重要負荷30の系統異常耐量のうち小さい方の系統異常耐量以上の場合(図7(3))、制御部7は、開放スイッチ3を開放する。この状態で、電源部2は、重要負荷30又は電源部2の系統異常耐量が小さい方の限界耐量の範囲で運転継続する(自立運転する)。
<第2実施形態の効果>
  このように構成した第2実施形態の無停電電源装置100によれば、前記第1実施形態の効果に加えて、ランニングコストの高い自立運転への移行頻度を低減することができる。
<その他の変形実施形態>
  なお、本発明は前記実施形態に限られるものではない。
  例えば、図8に示すように、電源部2とは別に電力線L1に接続された発電機7を備えても良い。この発電機7は、開放スイッチ3よりも重要負荷30側に接続されている。この構成であれば、自立運転時間の長時間化(系統停電時)に対応することができる。
  また、前記各実施形態では、系統異常の何れか1つが条件を満たした場合に開放スイッチ3を開放するものであったが、2つ以上の系統異常の組み合わせが所定の条件を満たした場合に開放スイッチ3を開放するようにしても良い。
  その他、本発明は前記実施形態に限られず、その趣旨を逸脱しない範囲で種々の変形が可能であるのは言うまでもない。
100・・・無停電電源装置
10  ・・・商用電力系統
30  ・・・重要負荷
L1  ・・・電力線
2    ・・・分散型電源
3    ・・・開放スイッチ
4    ・・・系統側電圧検出部
5    ・・・系統異常検出部
51  ・・・電圧低下検出部
52  ・・・周波数変動検出部
53  ・・・電圧上昇検出部
54  ・・・位相変動検出部
55  ・・・電圧不平衡検出部
56  ・・・異常高調波検出部
57  ・・・フリッカ検出部
6    ・・・制御部
7    ・・・発電機

Claims (4)

  1.   商用電力系統と重要負荷との間に設けられ、前記重要負荷に交流電力を供給する無停電電源装置であって、
      前記商用電力系統から前記重要負荷に給電するための電力線に接続された電力変換器及び蓄電池を有する電源部と、
      前記電力線において前記電源部よりも前記商用電力系統側に設けられ、前記電力線を開閉する開放スイッチと、
      前記開放スイッチよりも前記商用電力系統側で発生する瞬時電圧低下を含む電圧低下又は周波数変動の少なくとも1つに加えて、電圧上昇、位相変動、電圧不平衡、高調波異常又はフリッカの少なくとも1つである系統異常を検出する系統異常検出部と、
      検出された系統異常が前記重要負荷又は前記電源部の前記系統異常への耐量以上である場合に前記開放スイッチを開放し、前記電源部から前記重要負荷に交流電力を供給する制御部とを備える無停電電源装置。
  2.   前記電源部は、前記開放スイッチが開放した状態で、前記重要負荷又は前記電源部の前記系統異常への耐量が小さい方における限界耐量の範囲で自立運転する、請求項1記載の無停電電源装置。
  3.   前記制御部は、前記系統異常検出部により検出された系統異常が、前記重要負荷又は前記電源部の前記系統異常への耐量よりも異常の程度が小さい閾値以上の場合に、前記電源部により前記系統異常に対する補償動作を行わせる、請求項1又は2記載の無停電電源装置。
  4.   前記電源部とは別に前記電力線に接続された発電機を備える、請求項1乃至3の何れか一項に記載の無停電電源装置。
PCT/JP2019/018913 2018-05-15 2019-05-13 無停電電源装置 WO2019221053A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/053,790 US11476701B2 (en) 2018-05-15 2019-05-13 Uninterruptable power supply device
EP19803427.4A EP3796514A4 (en) 2018-05-15 2019-05-13 UNINTERRUPTABLE POWER SUPPLY
AU2019268825A AU2019268825B2 (en) 2018-05-15 2019-05-13 Uninterruptable power supply device
CN201980031502.1A CN112106273A (zh) 2018-05-15 2019-05-13 不断电电源装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-094073 2018-05-15
JP2018094073A JP7180112B2 (ja) 2018-05-15 2018-05-15 無停電電源装置

Publications (1)

Publication Number Publication Date
WO2019221053A1 true WO2019221053A1 (ja) 2019-11-21

Family

ID=68539952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018913 WO2019221053A1 (ja) 2018-05-15 2019-05-13 無停電電源装置

Country Status (7)

Country Link
US (1) US11476701B2 (ja)
EP (1) EP3796514A4 (ja)
JP (1) JP7180112B2 (ja)
CN (1) CN112106273A (ja)
AU (1) AU2019268825B2 (ja)
TW (1) TWI701890B (ja)
WO (1) WO2019221053A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113906647A (zh) 2019-07-01 2022-01-07 日新电机株式会社 不断电电源装置
DE102019214682B4 (de) * 2019-09-25 2021-07-08 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Schutz wenigstens eines Teiles eines Netzsegments eines elektrischen Energieverteilungsnetzes und Netzsegment eines elektrischen Energieverteilungsnetzes
US11303149B2 (en) * 2020-02-03 2022-04-12 Schneider Electric It Corporation Short-circuit current capacity enhancement
CN111987791A (zh) * 2020-08-18 2020-11-24 百度在线网络技术(北京)有限公司 电池模组控制装置和方法、电源设备和系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11252826A (ja) * 1998-02-25 1999-09-17 Shin Kobe Electric Mach Co Ltd 無停電電源装置
JP2000278882A (ja) * 1999-03-24 2000-10-06 Sanyo Denki Co Ltd 無停電電源装置
WO2005041384A1 (ja) * 2003-10-27 2005-05-06 Mitsubishi Denki Kabushiki Kaisha 電源装置
JP2005229662A (ja) 2004-02-10 2005-08-25 Fuji Electric Systems Co Ltd 無停電電源装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6304006B1 (en) * 2000-12-28 2001-10-16 Abb T&D Technology Ltd. Energy management uninterruptible power supply system
EP1559179A4 (en) * 2002-10-22 2006-07-12 Youtility Inc HYBRID VARIABLE SPEED GENERATOR / POWER SUPPLY CONVERTER WITHOUT INTERRUPTION
AU2003293372B2 (en) * 2002-12-06 2008-08-07 Electric Power Research Institute, Inc. Electrical power supply
US20050105229A1 (en) * 2003-11-14 2005-05-19 Ballard Power Systems Corportion Two-level protection for uninterrupted power supply
US7262520B2 (en) * 2003-12-18 2007-08-28 General Electric Company Robust power distribution systems and methods
JP3929449B2 (ja) * 2004-03-29 2007-06-13 日新電機株式会社 無停電電源装置、及び停電補償システム
JP4410670B2 (ja) * 2004-12-10 2010-02-03 山洋電気株式会社 無停電電源装置
JP4814264B2 (ja) 2008-01-25 2011-11-16 三菱電機株式会社 無停電電源装置
WO2011016092A1 (ja) 2009-08-07 2011-02-10 清水建設株式会社 分散型電源の自立運転システム
JP5877480B2 (ja) * 2011-12-06 2016-03-08 清水建設株式会社 分散型電源の自立運転システム及びその方法
US8937406B2 (en) * 2012-03-16 2015-01-20 Cyber Power Systems Inc. Uninterruptible power supply system having a simplified voltage detection circuit
EP3240138B1 (en) * 2014-12-25 2022-03-30 Toshiba Mitsubishi-Electric Industrial Systems Corporation Uninterruptible power supply system
US10298054B2 (en) * 2015-07-07 2019-05-21 Toshiba Mitsubishi-Electric Industrial Systems Corporation Uninterruptible power supply
JPWO2018087876A1 (ja) * 2016-11-11 2019-09-26 東芝三菱電機産業システム株式会社 無停電電源装置
JP6748234B2 (ja) * 2017-02-03 2020-08-26 東芝三菱電機産業システム株式会社 無停電電源装置
WO2018198190A1 (ja) * 2017-04-25 2018-11-01 東芝三菱電機産業システム株式会社 電源装置
JP7017116B2 (ja) * 2018-04-11 2022-02-08 日新電機株式会社 電源システム
CN108923409B (zh) * 2018-08-20 2021-07-02 台达电子工业股份有限公司 直流供电系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11252826A (ja) * 1998-02-25 1999-09-17 Shin Kobe Electric Mach Co Ltd 無停電電源装置
JP2000278882A (ja) * 1999-03-24 2000-10-06 Sanyo Denki Co Ltd 無停電電源装置
WO2005041384A1 (ja) * 2003-10-27 2005-05-06 Mitsubishi Denki Kabushiki Kaisha 電源装置
JP2005229662A (ja) 2004-02-10 2005-08-25 Fuji Electric Systems Co Ltd 無停電電源装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3796514A4

Also Published As

Publication number Publication date
US11476701B2 (en) 2022-10-18
CN112106273A (zh) 2020-12-18
US20210265857A1 (en) 2021-08-26
TW201947838A (zh) 2019-12-16
JP7180112B2 (ja) 2022-11-30
EP3796514A4 (en) 2022-01-19
AU2019268825A1 (en) 2020-12-03
EP3796514A1 (en) 2021-03-24
TWI701890B (zh) 2020-08-11
JP2019201475A (ja) 2019-11-21
AU2019268825B2 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
WO2019221053A1 (ja) 無停電電源装置
JP6338131B1 (ja) 電源システム
WO2019198585A1 (ja) 電源システム
EP2919363B1 (en) Redundant uninterruptible power supply systems
EP2879262A1 (en) Distributed power system and operation method
US20180034316A1 (en) Device for commanding/controlling a source changeover switch
TWI723454B (zh) 電源系統
Moore et al. Design and implementation of a microgrid controller for bumpless transitions between grid-connected and island operation
US11277007B2 (en) Power conversion device, power system and method of suppressing reactive power in power system
JP2017215179A (ja) 試験装置
JP7401793B2 (ja) 無停電電源装置
JP7328544B2 (ja) 電源システム
KR100653284B1 (ko) 3상 디지털 유피에스 시스템
TW202103406A (zh) 不斷電電源裝置
JP7265702B2 (ja) 電源システム
CA3060181A1 (en) Method for detecting formation of a separate system
CN113013981B (zh) 一种配电系统
JP2005269816A (ja) 自家用発電機設備
JP6768244B2 (ja) アーク放電防止装置
JP6658012B2 (ja) 電力変換装置
WO2018020666A1 (ja) 電力変換装置及びその制御方法
JP2020018028A (ja) 電源システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19803427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019268825

Country of ref document: AU

Date of ref document: 20190513

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019803427

Country of ref document: EP

Effective date: 20201215