WO2019220996A1 - 酸基含有(メタ)アクリレート樹脂組成物、硬化性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材 - Google Patents

酸基含有(メタ)アクリレート樹脂組成物、硬化性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材 Download PDF

Info

Publication number
WO2019220996A1
WO2019220996A1 PCT/JP2019/018501 JP2019018501W WO2019220996A1 WO 2019220996 A1 WO2019220996 A1 WO 2019220996A1 JP 2019018501 W JP2019018501 W JP 2019018501W WO 2019220996 A1 WO2019220996 A1 WO 2019220996A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
meth
acid
compound
acrylate
Prior art date
Application number
PCT/JP2019/018501
Other languages
English (en)
French (fr)
Inventor
駿介 山田
亀山 裕史
和久 矢本
弘司 林
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to CN201980032027.XA priority Critical patent/CN112105661B/zh
Priority to JP2020502501A priority patent/JP6705574B2/ja
Publication of WO2019220996A1 publication Critical patent/WO2019220996A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention provides an acid group-containing (meth) acrylate resin composition having high photosensitivity and excellent heat resistance and dielectric properties, a curable resin composition containing the same, a cured product, and the curable resin composition
  • the present invention relates to an insulating material, a solder resist resin material, and a resist member.
  • solder resist resin material for solder resists for printed wiring boards
  • curable resin compositions that can be cured by active energy rays such as ultraviolet rays
  • the required properties for the solder resist resin material include various properties such as curing with a small exposure amount, excellent alkali developability, and excellent heat resistance, strength, dielectric properties, etc. in the cured product.
  • an acid group-containing epoxy acrylate resin obtained by further reacting a tetrahydrophthalic anhydride with an intermediate obtained by reacting a cresol novolak type epoxy resin, acrylic acid and phthalic anhydride Is known (for example, see Patent Document 1).
  • the heat resistance of the cured product is not sufficient, and the dielectric constant and dielectric loss tangent increase due to the generation of hydroxyl groups. There were problems such as deterioration of characteristics.
  • Problems to be solved by the present invention include an acid group-containing (meth) acrylate resin composition having high photosensitivity and excellent heat resistance and dielectric properties, a curable resin composition containing the same, a cured product, It is providing the insulating material which consists of the said photosensitive resin composition, the resin material for soldering resists, and a resist member.
  • the present invention comprises an acid group-containing (meth) acrylate resin composition comprising a polymerizable unsaturated bond-containing aromatic ester compound (A) and an acid group-containing (meth) acrylate resin (B). And a curable resin composition containing the same, a cured product, an insulating material comprising the curable resin composition, a resin material for solder resist, and a resist member.
  • the acid group-containing (meth) acrylate resin composition of the present invention has high photosensitivity and can form a cured product having excellent heat resistance and dielectric properties, an insulating material, a resin material for solder resist, and the solder resist It can use suitably for the resist member which consists of resin.
  • excellent dielectric property means low dielectric constant and low dielectric loss tangent.
  • the acid group-containing (meth) acrylate resin composition of the present invention contains a polymerizable unsaturated bond-containing aromatic ester compound (A) and an acid group-containing (meth) acrylate resin (B). .
  • the polymerizable unsaturated bond-containing aromatic ester compound (A) is a compound having one or more polymerizable unsaturated bonds in a molecular structure and a structural part in which aromatic rings are bonded by an ester bond.
  • other specific structures and molecular weights are not particularly limited, and a wide variety of compounds can be used.
  • Examples of the polymerizable unsaturated bond-containing aromatic ester compound (A) include an aromatic compound having a phenolic hydroxyl group, an aromatic compound having a carboxyl group, an acid halide thereof and / or an esterified product thereof (this specification).
  • a reaction product with an aromatic compound having a carboxyl group, an acid halide thereof, and / or an esterified product thereof may be collectively referred to as “aromatic compound having a carboxyl group, etc.”)
  • Examples include one in which any one of the aromatic compound having a phenolic hydroxyl group and the aromatic compound having a carboxyl group has a polymerizable unsaturated bond-containing substituent.
  • Examples of the aromatic compound having a phenolic hydroxyl group include a first aromatic compound having two or more phenolic hydroxyl groups and a second aromatic compound having one phenolic hydroxyl group.
  • the first aromatic compound has two or more phenolic hydroxyl groups.
  • an ester structure can be formed by reacting with a third aromatic compound or the like or a fourth aromatic compound described later.
  • the first aromatic compound is not particularly limited, and examples thereof include a compound having two or more phenolic hydroxyl groups in a substituted or unsubstituted first aromatic ring having 3 to 30 carbon atoms.
  • Examples of the first aromatic ring having 3 to 30 carbon atoms include a monocyclic aromatic ring, a condensed aromatic ring, and a ring assembly aromatic ring.
  • Examples of the monocyclic aromatic ring include benzene, furan, pyrrole, thiophene, imidazole, pyrazole, oxazole, isoxazole, thiazole, isothiazole, pyridine, pyrimidine, pyridazine, pyrazine, and triazine.
  • condensed aromatic ring examples include naphthalene, anthracene, phenalene, phenanthrene, quinoline, isoquinoline, quinazoline, phthalazine, pteridine, coumarin, indole, benzimidazole, benzofuran, and acridine.
  • ring-aggregated aromatic ring examples include biphenyl, binaphthalene, bipyridine, bithiophene, phenylpyridine, phenylthiophene, terphenyl, diphenylthiophene, quaterphenyl, and the like.
  • the first aromatic ring having 3 to 30 carbon atoms may have a substituent.
  • substituent of the first aromatic ring include an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a halogen atom, and a polymerizable unsaturated bond-containing substituent Etc.
  • alkyl group having 1 to 10 carbon atoms examples include methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, Isopentyl, tert-pentyl, neopentyl, 1,2-dimethylpropyl, n-hexyl, isohexyl, n-nonyl, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclo Examples include an octyl group and a cyclononyl group.
  • alkoxy group having 1 to 10 carbon atoms examples include methoxy group, ethoxy group, propoxy group, isopropoxy group, butoxy group, pentyloxy group, hexyloxy group, 2-ethylhexyloxy group, octyloxy group, and nonyloxy. Groups and the like.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the polymerizable unsaturated bond-containing substituent means a substituent having 2 to 30 carbon atoms having at least one polymerizable unsaturated bond.
  • the term “unsaturated bond” means a carbon-carbon double bond or a carbon-carbon triple bond.
  • Examples of the unsaturated bond-containing substituent include an alkenyl group and an alkynyl group.
  • alkenyl group examples include a vinyl group, allyl group, propenyl group, isopropenyl group, 1-propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-hexenyl group and 2-hexenyl group.
  • 3-hexenyl group 4-hexenyl group, 5-hexenyl group, 1-octenyl group, 2-octenyl group, 1-undecenyl group, 1-pentadecenyl group, 3-pentadecenyl group, 7-pentadecenyl group, 1-octadecenyl group 2-octadecenyl group, cyclopentenyl group, cyclohexenyl group, cyclooctenyl group, 1,3-butadienyl group, 1,4-butadienyl group, hexa-1,3-dienyl group, hexa-2,5-dienyl group, pentadeca -4,7-dienyl group, hexa-1,3,5-trienyl group, pentadeca-1,4,7-to Enyl group and the like.
  • alkynyl group examples include ethynyl group, propargyl group, 1-butynyl group, 2-butynyl group, 3-butynyl group, 3-pentynyl group, 4-pentynyl group, 1,3-butadiynyl group and the like.
  • the polymerizable unsaturated bond-containing substituent is preferably an alkenyl group having 2 to 30 carbon atoms, more preferably an alkenyl group having 2 to 10 carbon atoms, and 2 carbon atoms. More preferably, it is an alkenyl group of 1 to 5, and is preferably a vinyl group, allyl group, propenyl group, isopropenyl group, 1-propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1,3-butadienyl. And particularly preferably an allyl group, a propenyl group, an isopropenyl group, or a 1-propenyl group.
  • the above-mentioned substituents of the first aromatic ring may be included alone or in combination of two or more.
  • the first aromatic compound is obtained by substituting at least two hydrogen atoms constituting the above-mentioned substituted or unsubstituted first aromatic ring having 3 to 30 carbon atoms with a hydroxyl group. It is.
  • first monocyclic aromatic ring compound examples include, for example, catechol, resorcinol, hydroquinone , Hydroxynol, phloroglucinol, pyrogallol, 2,3-dihydroxypyridine, 2,4-dihydroxypyridine, 4,6-dihydroxypyrimidine, 3-methylcatechol, 4-methylcatechol, 4-allylpyrocatechol, etc. .
  • first condensed aromatic ring compound examples include, for example, 1,3-naphthalene Diol, 1,5-naphthalenediol, 2,6-naphthalenediol, 2,7-naphthalenediol, 1,2,4-naphthalenetriol, 1,4,5-naphthalenetriol, 9,10-dihydroxyanthracene, 1, 4,9,10-tetrahydroxyanthracene, 2,4-dihydroxyquinoline, 2,6-dihydroxyquinoline, 5,6-dihydroxyindole, 2-methylnaphthalene-1,4-diol and the like.
  • first ring-assembled aromatic ring compound examples include, for example, 2,2′- Examples include dihydroxybiphenyl, 4,4′-dihydroxybiphenyl, 3,4,4′-trihydroxybiphenyl, 2,2 ′, 3-trihydroxybiphenyl, and the like.
  • the first aromatic compound may have a structure in which the first aromatic rings are connected by a linking group.
  • the first aromatic compound is represented by the following chemical formula (1).
  • Ar 1 is each independently a substituted or unsubstituted first aromatic ring group
  • Ar 2 is each independently a substituted or unsubstituted second aromatic ring group
  • X is independently an oxygen atom, a sulfur atom, a substituted or unsubstituted alkylene, a substituted or unsubstituted cycloalkylene, or an aralkylene
  • n is an integer of 0 to 10.
  • at least two of the hydrogen atoms constituting Ar 1 and Ar 2 are substituted with hydroxyl groups.
  • X corresponds to a linking group.
  • Ar 1 is a substituted or unsubstituted first aromatic ring group.
  • one of the hydrogen atoms of the aromatic ring constituting the above-described substituted or unsubstituted aromatic ring is bonded to “X”.
  • Examples of the first aromatic ring group include monocyclic aromatic compounds such as benzene, furan, pyrrole, thiophene, imidazole, pyrazole, oxazole, isoxazole, thiazole, isothiazole, pyridine, pyrimidine, pyridazine, pyrazine, and triazine.
  • monocyclic aromatic compounds such as benzene, furan, pyrrole, thiophene, imidazole, pyrazole, oxazole, isoxazole, thiazole, isothiazole, pyridine, pyrimidine, pyridazine, pyrazine, and triazine.
  • a hydrogen atom from a condensed aromatic compound such as naphthalene, anthracene, phenalene, phenanthrene, quinoline, isoquinoline, quinazoline, phthalazine, pteridine, coumarin, indole, benzimidazole, benzofuran, acridine
  • a condensed aromatic compound such as naphthalene, anthracene, phenalene, phenanthrene, quinoline, isoquinoline, quinazoline, phthalazine, pteridine, coumarin, indole, benzimidazole, benzofuran, acridine
  • aromatic compounds for example, ring-aggregated aromatic compounds such as biphenyl, binaphthalene, bipyridine, bithiophene, phenylpyridine, phenylthiophene, terphenyl, diphenylthiophene, quaterphenyl, etc. From which one hydrogen atom is removed.
  • ring-aggregated aromatic compounds such as biphenyl, binaphthalene, bipyridine, bithiophene, phenylpyridine, phenylthiophene, terphenyl, diphenylthiophene, quaterphenyl, etc. From which one hydrogen atom is removed.
  • the first aromatic ring group may have a substituent, and in this case, the “substituent of the first aromatic ring group” constitutes the first aromatic ring group. It is substituted with at least one hydrogen atom of the aromatic ring.
  • the “substituent of the first aromatic ring group” include an alkyl group, an alkoxy group, an alkyloxycarbonyl group, an alkylcarbonyloxy group, and a halogen atom.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, and a tert-pentyl group.
  • neopentyl group 1,2-dimethylpropyl group, n-hexyl group, isohexyl group, cyclohexyl group and the like.
  • alkoxy group examples include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, a pentyloxy group, and a hexyloxy group.
  • alkyloxycarbonyl group examples include methyloxycarbonyl group, ethyloxycarbonyl group, propyloxycarbonyl group, isopropyloxycarbonyl group, butyloxycarbonyl group, n-butyloxycarbonyl group, isobutyloxycarbonyl group, sec-butyl. Examples thereof include an oxycarbonyl group and a tert-butyloxycarbonyl group.
  • alkylcarbonyloxy group examples include methylcarbonyloxy group, ethylcarbonyloxy group, propylcarbonyloxy group, isopropylcarbonyloxy group, butylcarbonyloxy group, n-butylcarbonyloxy group, isobutylcarbonyloxy group, sec-butyl. Examples thereof include a carbonyloxy group and a tert-butylcarbonyloxy group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Ar 1 is one hydrogen atom removed from benzene, naphthalene, anthracene, phenalene, phenanthrene, biphenyl, binaphthalene, quaterphenyl, allylbenzene, diallylbenzene, allylnaphthalene, diallylnaphthalene, allylbiphenyl, diallylbiphenyl. It is preferable that the hydrogen atom be removed from benzene, naphthalene, biphenyl, allylbenzene, diallylnaphthalene, or diallylbiphenyl.
  • Ar 2 is each independently a substituted or unsubstituted second aromatic ring group.
  • Ar 2 is bonded to “X”.
  • Examples of the second aromatic ring group include monocyclic aromatic compounds such as benzene, furan, pyrrole, thiophene, imidazole, pyrazole, oxazole, isoxazole, thiazole, isothiazole, pyridine, pyrimidine, pyridazine, pyrazine, and triazine.
  • monocyclic aromatic compounds such as benzene, furan, pyrrole, thiophene, imidazole, pyrazole, oxazole, isoxazole, thiazole, isothiazole, pyridine, pyrimidine, pyridazine, pyrazine, and triazine.
  • a hydrogen atom from a condensed aromatic compound such as naphthalene, anthracene, phenalene, phenanthrene, quinoline, isoquinoline, quinazoline, phthalazine, pteridine, coumarin, indole, benzimidazole, benzofuran, acridine
  • a compound obtained by removing two hydrogen atoms from an aromatic compound such as a compound obtained by removing two compounds.
  • aromatic compounds for example, ring-aggregated aromatic compounds such as biphenyl, binaphthalene, bipyridine, bithiophene, phenylpyridine, phenylthiophene, terphenyl, diphenylthiophene, quaterphenyl, etc. From which two hydrogen atoms are removed.
  • ring-aggregated aromatic compounds such as biphenyl, binaphthalene, bipyridine, bithiophene, phenylpyridine, phenylthiophene, terphenyl, diphenylthiophene, quaterphenyl, etc. From which two hydrogen atoms are removed.
  • the second aromatic ring group may have a substituent.
  • substituent of the second aromatic ring group include the same as the “substituent of the first aromatic ring group” described above.
  • X is independently an oxygen atom, a sulfur atom, a substituted or unsubstituted alkylene, a substituted or unsubstituted cycloalkylene, or an aralkylene.
  • alkylene examples include methylene, ethylene, propylene, 1-methylmethylene, 1,1-dimethylmethylene, 1-methylethylene, 1,1-dimethylethylene, 1,2-dimethylethylene, propylene, butylene, 1- Examples include methylpropylene, 2-methylpropylene, pentylene, hexylene and the like.
  • cycloalkylene examples include cyclopropylene, cyclobutylene, cyclopentylene, cyclohexylene, cyclopentylene, cycloheptylene, and cycloalkylene represented by the following chemical formulas (2-1) to (2-4). Is mentioned.
  • aralkylene examples include aralkylene represented by the following chemical formulas (3-1) to (3-8).
  • alkylene, the cycloalkylene, and the aralkylene may have a substituent.
  • examples of the “substituent of X” include those similar to the “substituent of the first aromatic ring” described above.
  • n is an integer of 0 to 10, preferably an integer of 0 to 8, and more preferably an integer of 0 to 5.
  • n means an average value thereof.
  • Examples of the various bisphenol compounds include bisphenol A, bisphenol AP, bisphenol B, bisphenol E, bisphenol F, and bisphenol Z.
  • n is an integer of 0 to 10, preferably 0 to 5.
  • oligomer means a compound containing a compound having 1 to 5 repeating units
  • polymer means a compound containing a compound having 6 or more repeating units.
  • substitution position of the hydroxyl group which is a substituent on the aromatic ring is arbitrary, and in the case of the naphthalene ring, it may be either a ring bonded to another structure or a ring not bonded.
  • the above-mentioned first aromatic ring represented by the chemical formula (1) is obtained by substituting at least one hydrogen atom constituting the first aromatic ring with a hydroxyl group. And a divinyl compound or a dialkyloxymethyl compound.
  • examples of the divinyl compound and dialkyloxymethyl compound include fats such as 1,3-butadiene, 1,5-hexadiene, dicyclopentadiene, tricyclopentadiene, tetracyclopentadiene, pentacyclopentadiene, and hexacyclopentadiene.
  • Aromatic diene compounds such as divinylbenzene and divinylbiphenyl; dialkyl such as dimethoxymethylbenzene, dimethoxymethylbiphenyl, bisphenol A methoxy adduct, bisphenol A ethoxy adduct, bisphenol F methoxy adduct and bisphenol F ethoxy adduct
  • An oxymethyl compound etc. are mentioned.
  • the above first aromatic compound having two or more phenolic hydroxyl groups can be used alone or in combination of two or more.
  • an acid group-containing (meth) acrylate resin composition having high photosensitivity and capable of forming a cured product having excellent heat resistance and dielectric properties is obtained. It is preferably 130 to 500 g / equivalent, and more preferably 130 to 400 g / equivalent.
  • the weight average molecular weight has high photosensitivity and excellent heat resistance and dielectric properties.
  • the acid group-containing (meth) acrylate resin composition capable of forming a cured product is preferably obtained, and is preferably 200 to 3000, more preferably 200 to 2000.
  • the value measured by the following method is adopted as the value of “weight average molecular weight”. That is, the value obtained by measuring gel permeation chromatography (GPC) under the following conditions is employed.
  • GPC measurement conditions Measuring device: “HLC-8320 GPC” manufactured by Tosoh Corporation Column: Guard column “HXL-L” manufactured by Tosoh Corporation + “TSK-GEL G4000HXL” manufactured by Tosoh Corporation + Tosoh Corporation “TSK-GEL G3000HXL” + “TSK-GEL G2000HXL” manufactured by Tosoh Corporation + “TSK-GEL G2000HXL” manufactured by Tosoh Corporation Detector: RI (differential refractometer) Data processing: “GPC workstation EcoSEC-WorkStation” manufactured by Tosoh Corporation Column temperature: 40 ° C Developing solvent: Tetrahydrofuran Flow rate: 1.0 ml / min Standard: Based on the above-mentioned measurement manual “GPC-8320 GPC”, the following monodispersed polystyrene having a known molecular weight is used.
  • A-500” manufactured by Tosoh Corporation “A-1000” manufactured by Tosoh Corporation “A-2500” manufactured by Tosoh Corporation “A-5000” manufactured by Tosoh Corporation “F-1” manufactured by Tosoh Corporation “F-2” manufactured by Tosoh Corporation “F-4” manufactured by Tosoh Corporation “F-10” manufactured by Tosoh Corporation “F-20” manufactured by Tosoh Corporation “F-40” manufactured by Tosoh Corporation “F-80” manufactured by Tosoh Corporation “F-128” manufactured by Tosoh Corporation Sample: A 1.0 mass% tetrahydrofuran solution in terms of resin solid content filtered through a microfilter (50 ⁇ l).
  • the second aromatic compound has one phenolic hydroxyl group. Since the second aromatic compound has one phenolic hydroxyl group, it has a function of stopping the esterification reaction.
  • Examples of the second aromatic compound include a compound having one phenolic hydroxyl group in a substituted or unsubstituted second aromatic ring having 3 to 30 carbon atoms.
  • Examples of the second aromatic ring having 3 to 30 carbon atoms include a monocyclic aromatic ring, a condensed aromatic ring, a ring assembly aromatic ring, and an aromatic ring connected by alkylene.
  • Examples of the monocyclic aromatic ring, the condensed aromatic ring, and the ring assembly aromatic ring include those similar to the first aromatic ring described above.
  • Examples of the aromatic ring connected by alkylene include diphenylmethane, diphenylethane, 1,1-diphenylethane, 2,2-diphenylpropane, naphthylphenylmethane, triphenylmethane, dinaphthylmethane, dinaphthylpropane, and phenyl.
  • Examples include pyridylmethane, fluorene, diphenylcyclopentane and the like.
  • the second aromatic ring having 3 to 30 carbon atoms related to the second aromatic compound may have a substituent.
  • examples of the “substituent of the second aromatic ring” include those similar to the “substituent of the first aromatic ring” described above.
  • one of the hydrogen atoms constituting the above-described substituted or unsubstituted second aromatic ring having 3 to 30 carbon atoms is substituted with a hydroxyl group.
  • Examples of the second aromatic compound include compounds represented by the following chemical formulas (5-1) to (5-17).
  • R 1 is a polymerizable unsaturated bond-containing substituent.
  • the polymerizable unsaturated bond-containing substituent is the same as described above.
  • p is 0 or an integer of 1 or more, preferably 1 to 3, more preferably 1 or 2, and further preferably 1.
  • the bonding position on the aromatic ring is arbitrary.
  • the chemical formula (5-9), etc. it indicates that the benzene ring existing in one molecule may be substituted on any ring, and the number of substituents in one molecule is p. It is shown that.
  • examples of the second aromatic compound include phenol, cresol, xylenol, orthoallylphenol, methallylphenol, paraallylphenol, 2,4-diallylphenol, 2,6-diallylphenol, 2- Single aromatic rings such as allyl-4-methylphenol, 2-allyl-6-methylphenol, 2-allyl-4-methoxy-6-methylphenol, 2-propargylphenol, 3-propargylphenol, 4-propargylphenol A compound which is a ring aromatic ring (hereinafter sometimes referred to simply as “second monocyclic aromatic ring compound”); 1-naphthol, 2-naphthol, 2-allyl-1-naphthol, 3-allyl-1 -Naphthol, 1-allyl-2-naphthol, 3-allyl-2-naphthol, 5-allyl- -Naphthol, 6-allyl-1-naphthol, diallylnaphthol, 2-allyl-4-methoxy-1-na
  • the second aromatic compound is preferably a second monocyclic aromatic ring compound or a second condensed aromatic ring compound, such as orthoallylphenol, methallylphenol, paraallylphenol, 2-allyl-1-naphthol, 3-allyl-1-naphthol, 1-allyl-2-naphthol, 3-allyl-2-naphthol, 5-allyl-1-naphthol, 6-allyl-1-naphthol Is more preferable.
  • a second monocyclic aromatic ring compound or a second condensed aromatic ring compound such as orthoallylphenol, methallylphenol, paraallylphenol, 2-allyl-1-naphthol, 3-allyl-1-naphthol, 1-allyl-2-naphthol, 3-allyl-2-naphthol, 5-allyl-1-naphthol, 6-allyl-1-naphthol Is more preferable.
  • the second aromatic compound is preferably a second condensed aromatic ring compound (condensed aromatic ring compound), such as 2-allyl-1-naphthol, -Allyl-1-naphthol, 1-allyl-2-naphthol, 3-allyl-2-naphthol, 5-allyl-1-naphthol, and 6-allyl-1-naphthol are more preferable.
  • the second aromatic compound is preferably a condensed-ring aromatic ring compound because the dielectric loss tangent can be reduced by suppressing molecular motion due to steric hindrance.
  • 2-allylphenol having a benzene ring skeleton is preferred, while the resulting acid group-containing (meth) is obtained.
  • the acrylate resin composition has high photosensitivity and can form a cured product having excellent heat resistance and dielectric properties, 2-allyl-1-naphthol, 1-allyl-2-naphthol and the like having a naphthalene ring skeleton are available. preferable.
  • the 2nd aromatic compound which has one above-mentioned phenolic hydroxyl group can be used individually, or can also use 2 or more types together.
  • aromatic compound having a carboxyl group examples include, for example, a third aromatic compound having two or more carboxyl groups, a fourth aromatic compound having one carboxyl group, or an acid halide or esterified product thereof. Is mentioned.
  • the third aromatic compound, its acid halide, and / or its esterified product is an aromatic compound having two or more carboxyl groups, or a derivative thereof, specifically an acid halide or esterified product (this book).
  • the third aromatic compound, its acid halide, and / or its esterified product may be collectively referred to as “third aromatic compound etc.”).
  • the third aromatic compound or the like can form an ester structure by reacting with the above-described first aromatic compound or second aromatic compound by having two or more carboxyl groups and the like.
  • Examples of the third aromatic compound include compounds having two or more carboxyl groups on a substituted or unsubstituted third aromatic ring having 3 to 30 carbon atoms.
  • the “carboxyl group and the like” is, for example, a carboxyl group; an acyl halide group such as an acyl fluoride group, an acyl chloride group and an acyl bromide group; an alkyloxycarbonyl group such as a methyloxycarbonyl group and an ethyloxycarbonyl group; And aryloxycarbonyl groups such as phenyloxycarbonyl group and naphthyloxycarbonyl group.
  • the third aromatic compound is an acid halide, and when it has an alkyloxycarbonyl group or an aryloxycarbonyl group, the third aromatic compound can be an esterified product.
  • the third aromatic compound preferably has a carboxyl group, an acyl halide group, or an aryloxycarbonyl group, more preferably a carboxyl group or an acyl halide group, and a carboxyl group or an acyl chloride group. More preferably, it has an acyl bromide group.
  • Examples of the third aromatic ring having 3 to 30 carbon atoms include a monocyclic aromatic ring, a condensed aromatic ring, a ring assembly aromatic ring, and an aromatic ring connected by alkylene.
  • the monocyclic aromatic ring, the condensed aromatic ring, the ring assembly aromatic ring, and the aromatic ring connected by alkylene are the same as the first aromatic ring and the second aromatic ring described above. Things.
  • the third aromatic ring having 3 to 30 carbon atoms related to the third aromatic compound or the like may have a substituent.
  • examples of the “substituent of the third aromatic ring” include those similar to the “substituent of the first aromatic ring” described above.
  • Examples of the third aromatic compound include compounds represented by the following chemical formulas (6-1) to (6-15).
  • R 1 is a polymerizable unsaturated bond-containing substituent.
  • the polymerizable unsaturated bond-containing substituent is the same as described above.
  • R 2 is a hydroxyl group, a halogen atom, an alkyloxy group, or an aryloxy group.
  • P is an integer of 0 or 1 or more, preferably 0 or 1 to 3, more preferably 0 or 1, and further preferably 0.
  • q is 2 or 3.
  • the bonding position on the aromatic ring is arbitrary.
  • examples of the third aromatic compound include benzenedicarboxylic acids such as isophthalic acid, terephthalic acid, 5-allylisophthalic acid, and 2-allylterephthalic acid; trimellitic acid and 5-allyl trimellitic acid Benzenetricarboxylic acid such as naphthalene-1,5-dicarboxylic acid, naphthalene-2,3-dicarboxylic acid, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid, 3-allylnaphthalene-1,4 -Naphthalene dicarboxylic acid such as dicarboxylic acid, 3,7-diallylnaphthalene-1,4-dicarboxylic acid; pyridine tricarboxylic acid such as 2,4,5-pyridinetricarboxylic acid; 1,3,5-triazine-2,4, Examples thereof include triazine carboxylic acids such as 6-tricarboxylic acid
  • benzenedicarboxylic acid and benzenetricarboxylic acid are preferable, and isophthalic acid, terephthalic acid, isophthalic acid chloride, terephthalic acid chloride, 1,3,5-benzenetricarboxylic acid, 1,3,5-benzenetricarbonyl Trichloride is more preferable, and isophthalic acid chloride, terephthalic acid chloride, and 1,3,5-benzenetricarbonyl trichloride are further preferable.
  • the aromatic ring is preferably a monocyclic aromatic ring such as a third aromatic compound, and the like, and preferably the aromatic ring is a condensed aromatic ring such as a third aromatic compound.
  • Benzenetricarboxylic acid, naphthalenedicarboxylic acid, and acid halides thereof are preferable, benzenedicarboxylic acid, naphthalenedicarboxylic acid, and acid halides thereof are more preferable, and isophthalic acid, terephthalic acid, naphthalene-1, More preferred are 5-dicarboxylic acid, naphthalene-2,3-dicarboxylic acid, naphthalene-2,6-dicarboxylic acid, naphthalene-2,7-dicarboxylic acid, and acid halides thereof.
  • the above-mentioned 3rd aromatic compound etc. can be used individually, or can also use 2 or more types together.
  • the fourth aromatic compound, its acid halide, and / or its esterified product is an aromatic compound having one carboxyl group, or a derivative thereof, specifically, an acid halide or esterified product (this specification)
  • the fourth aromatic compound, the acid halide thereof, and / or the esterified product thereof may be collectively referred to as “fourth aromatic compound etc.”). Since the fourth aromatic compound has one carboxyl group and the like, it has a function of stopping the esterification reaction.
  • Examples of the fourth aromatic compound include compounds having one carboxyl group or the like in a substituted or substituted fourth aromatic ring having 3 to 30 carbon atoms.
  • Examples of the “carboxyl group and the like” include those similar to the above “carboxyl group and the like”.
  • Examples of the fourth aromatic ring having 3 to 30 carbon atoms include a monocyclic aromatic ring, a condensed aromatic ring, a ring assembly aromatic ring, and an aromatic ring connected by alkylene.
  • Examples of the aromatic ring connected by the monocyclic aromatic ring, the condensed aromatic ring, the ring assembly aromatic ring, and the alkylene include the first aromatic ring, the second aromatic ring, and the third aromatic ring described above. Examples of the aromatic ring are the same.
  • the fourth aromatic ring having 3 to 30 carbon atoms related to the fourth aromatic compound or the like may have a substituent.
  • examples of the “substituent on the fourth aromatic ring” include those similar to the “substituent on the first aromatic ring” described above.
  • Examples of the fourth aromatic compound include compounds represented by the following chemical formulas (7-1) to (7-15).
  • R 1 is a polymerizable unsaturated bond-containing substituent.
  • the polymerizable unsaturated bond-containing substituent is the same as described above.
  • R 2 represents a hydroxyl group, a halogen atom, an alkyloxy group, or an aryloxy group.
  • p is 0 or an integer of 1 or more, preferably 0 or 1 to 3, more preferably 0 or 1, and further preferably 0.
  • q is 1.
  • the position of the substituent on the aromatic ring in the above chemical formula is arbitrary. For example, in the naphthalene ring of the chemical formula (7-5) or the heterocycle of the chemical formula (7-15), the substituent is substituted on any ring. In formula (7-7) and the like, this indicates that the benzene ring present in one molecule may be substituted on any ring, and the number of substituents in one molecule is p and q. It is shown that.
  • examples of the fourth aromatic compound include benzoic acid, benzyl chloride, naphthalene carboxylic acid, naphthalene carbonyl chloride, and the like.
  • At least one of the aromatic compound having a phenolic hydroxyl group and the aromatic compound having a carboxyl group has a polymerizable unsaturated bond-containing substituent having 2 to 30 carbon atoms. That is, both of the aromatic compound having the phenolic hydroxyl group and the aromatic compound having the carboxyl group may have a polymerizable unsaturated bond-containing substituent, or the aromatic compound having the phenolic hydroxyl group. Only the aromatic compound may have a polymerizable unsaturated bond-containing substituent, or only the aromatic compound having the carboxyl group may have a polymerizable unsaturated bond-containing substituent. In addition, when using an aromatic compound having two or more types of phenolic hydroxyl groups, an aromatic compound having two or more types of carboxyl groups, etc., only a part thereof has a polymerizable unsaturated bond-containing substituent. May be.
  • the second aromatic compound has a polymerizable unsaturated bond-containing substituent.
  • the structure derived from the second aromatic compound is located at the molecular end of the polymerizable unsaturated bond-containing aromatic ester compound (A).
  • the polymerizable unsaturated bond-containing substituent of the second aromatic compound is also arranged at the molecular end of the aromatic ester compound (A).
  • the obtained acid group-containing (meth) acrylate resin composition is preferable because it has high photosensitivity and can form a cured product having excellent heat resistance and dielectric properties.
  • the polymerizable unsaturated bond-containing aromatic ester compound (A) is a reaction product of a compound having a phenolic hydroxyl group and an aromatic compound having a carboxyl group.
  • various compounds such as the aromatic compound may be included, one or both of the second aromatic compound and the fourth aromatic compound are essential because it has a function of stopping the esterification reaction. Contained as.
  • the configuration of the polymerizable unsaturated bond-containing aromatic ester compound (A) can be controlled by appropriately changing the amount of the first to fourth aromatic compounds used, reaction conditions, and the like.
  • the polymerizable unsaturated bond-containing aromatic ester compound (A) is, for example, a polymerizable unsaturated bond that is a reaction product of a first aromatic compound and a fourth aromatic compound. Containing aromatic ester compound; polymerizable unsaturated bond-containing aromatic ester compound that is a reaction product of the first aromatic compound, the second aromatic compound, the third aromatic compound, and the like; A polymerizable unsaturated bond-containing aromatic ester compound that is a reaction product of an aromatic compound, a third aromatic compound, a fourth aromatic compound, and the like; a first aromatic compound, and a second aromatic A polymerizable unsaturated bond-containing aromatic ester compound which is a reaction product of the aromatic compound, the third aromatic compound and the like, and the fourth aromatic compound and the like; the second aromatic compound and the third aromatic An aromatic compound which is a reaction product with an aromatic compound; And aromatic compounds, fourth aromatic compound with the reaction product and is a polymerizable unsaturated bond-containing aromatic compounds, and the like.
  • the polymerizable unsaturated bond-containing aromatic ester compound (A) according to this embodiment does not have a hydroxyl group in the resin molecule obtained in principle.
  • a compound having a hydroxyl group may be included as a by-product of the reaction product.
  • the polymerizable unsaturated bond-containing aromatic ester compound (A) includes a compound represented by the following chemical formula (8).
  • Ar 1 is a structure derived from the first aromatic compound
  • Ar 2 is a structure derived from the second aromatic compound
  • Ar 3 is derived from the third aromatic compound. It is a structure to do.
  • N is an integer of 0 to 10.
  • n represents the average value.
  • each Ar 1 is independently a substituted or unsubstituted first aromatic ring having 3 to 30 carbon atoms, or two or more hydrogen atoms removed, or One having two or more hydrogen atoms removed from one having a structure in which one aromatic ring is linked by a linking group.
  • Ar 2 may be independently a group in which one hydrogen atom is removed from a substituted or unsubstituted second aromatic ring having 3 to 30 carbon atoms.
  • Ar 3 includes a substituted or unsubstituted third aromatic ring having 3 to 30 carbon atoms in which two or more hydrogen atoms are removed.
  • Ar 1 , Ar 2 , and Ar 3 may have a polymerizable unsaturated bond-containing substituent having 2 to 30 carbon atoms.
  • Ar 1 may have a further branched structure.
  • Ar 3 may have a further branched structure.
  • the polymerizable unsaturated bond-containing aromatic ester compound (A) includes a compound represented by the following chemical formula (9).
  • Ar 1 is a structure derived from the first aromatic compound
  • Ar 2 is a structure derived from the second aromatic compound
  • Ar 3 is derived from the third aromatic compound
  • Ar 4 is a structure derived from the fourth aromatic compound.
  • N is an integer of 0 to 10.
  • n represents the average value.
  • each Ar 1 is independently a substituted or unsubstituted first aromatic ring having 3 to 30 carbon atoms in which two or more hydrogen atoms are removed, or One having two or more hydrogen atoms removed from one having a structure in which one aromatic ring is linked by a linking group.
  • Ar 2 may be independently a group in which one hydrogen atom has been removed from a substituted or unsubstituted second aromatic ring having 3 to 30 carbon atoms.
  • Ar 3 includes those in which two or more hydrogen atoms are removed from a substituted or unsubstituted third aromatic ring having 3 to 30 carbon atoms.
  • Ar 4 includes one in which one hydrogen atom is removed from a substituted or unsubstituted fourth aromatic ring having 3 to 30 carbon atoms.
  • Ar 1 , Ar 2 , Ar 3 and Ar 4 may have a polymerizable unsaturated bond-containing substituent having 2 to 30 carbon atoms.
  • Ar 1 may have a further branched structure.
  • Ar 3 may have a further branched structure.
  • the polymerizable unsaturated bond-containing aromatic ester compound (A) includes a compound represented by the following chemical formula (10).
  • Ar 1 is a structure derived from the first aromatic compound
  • Ar 3 is a structure derived from the third aromatic compound
  • Ar 4 is derived from the fourth aromatic compound. It is a structure to do.
  • N is an integer of 0 to 10.
  • n represents the average value.
  • each Ar 1 is independently a substituted or unsubstituted first aromatic ring having 3 to 30 carbon atoms in which two or more hydrogen atoms are removed, or One having two or more hydrogen atoms removed from one having a structure in which one aromatic ring is linked by a linking group.
  • Ar 3 includes a substituted or unsubstituted third aromatic ring having 3 to 30 carbon atoms in which two or more hydrogen atoms are removed.
  • Ar 4 includes one in which one hydrogen atom is removed from a substituted or unsubstituted fourth aromatic ring having 3 to 30 carbon atoms.
  • At least one of Ar 1 , Ar 3, and Ar 4 may have a polymerizable unsaturated bond-containing substituent having 2 to 30 carbon atoms.
  • Ar 1 may have a further branched structure.
  • Ar 3 may have a further branched structure.
  • examples of the compound contained in the polymerizable unsaturated bond-containing aromatic ester compound (A) include compounds represented by the following chemical formulas (11-1) to (11-10).
  • s is an integer of 0 to 10, preferably 0 to 5
  • r is an integer of 1 to 10.
  • the broken line in the chemical formula is a structure obtained by reaction of Ar 3 and a compound corresponding to Ar 1 and / or Ar 2 .
  • the polymerizable unsaturated bond-containing aromatic ester compound (A) is, for example, a polymerizable unsaturated bond-containing aromatic ester compound (A-1) represented by the following chemical formula (a1): And a polymerizable unsaturated bond-containing aromatic ester compound (A-2) represented by the following chemical formula (a2).
  • Ar 5 is each independently a substituted or unsubstituted aromatic ring group
  • Ar 6 is each independently a substituted or unsubstituted second aromatic ring group
  • At least one of Ar 5 and Ar 6 has a polymerizable unsaturated bond-containing substituent.
  • n is an integer of 1 to 3.
  • the polymerizable unsaturated bond-containing aromatic ester compound (A-1) is represented by the chemical formula (a1).
  • Ar 5 in the chemical formula (a1) is a substituted or unsubstituted first aromatic ring group.
  • n in the chemical formula (a1) is an integer of 1 to 3
  • one to three hydrogen atoms of the aromatic ring constituting the first aromatic ring group are represented by “—C (O) OAr 6 ”.
  • Examples of the first aromatic ring group include monocyclic aromatic compounds such as benzene, furan, pyrrole, thiophene, imidazole, pyrazole, oxazole, isoxazole, thiazole, isothiazole, pyridine, pyrimidine, pyridazine, pyrazine, and triazine.
  • monocyclic aromatic compounds such as benzene, furan, pyrrole, thiophene, imidazole, pyrazole, oxazole, isoxazole, thiazole, isothiazole, pyridine, pyrimidine, pyridazine, pyrazine, and triazine.
  • aromatic compounds for example, ring-aggregated aromatic compounds such as biphenyl, binaphthalene, bipyridine, bithiophene, phenylpyridine, phenylthiophene, terphenyl, diphenylthiophene, quaterphenyl, etc.
  • ring-aggregated aromatic compounds such as biphenyl, binaphthalene, bipyridine, bithiophene, phenylpyridine, phenylthiophene, terphenyl, diphenylthiophene, quaterphenyl, etc.
  • diphenylmethane diphenylethane, 1,1-diphenylethane, 2,2-diphenylpropane, naphthylphenylmethane, triphenylmethane, dinaphthylmethane, dinaphthylpropane, phenyl
  • diphenylmethane diphenylethane, 1,1-diphenylethane, 2,2-diphenylpropane, naphthylphenylmethane, triphenylmethane, dinaphthylmethane, dinaphthylpropane, phenyl
  • alkylene such as pyridylmethane, fluorene and diphenylcyclopentane.
  • Ar 5 is substituted or unsubstituted benzene. It is preferably a ring structure or a naphthalene ring structure, and more preferably a substituted or unsubstituted benzene ring structure.
  • the first aromatic ring group according to Ar 5 may have a substituent, and in this case, the substituent of the first aromatic ring group constitutes the first aromatic ring group. And at least one hydrogen atom of the aromatic ring to be substituted.
  • the “substituent of the first aromatic ring group” include an alkyl group, an alkoxy group, an alkyloxycarbonyl group, an alkylcarbonyloxy group, and a halogen atom.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, and a tert-pentyl group.
  • neopentyl group 1,2-dimethylpropyl group, n-hexyl group, isohexyl group, cyclohexyl group and the like.
  • alkoxy group examples include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, a butoxy group, a pentyloxy group, and a hexyloxy group.
  • alkyloxycarbonyl group examples include methyloxycarbonyl group, ethyloxycarbonyl group, propyloxycarbonyl group, isopropyloxycarbonyl group, butyloxycarbonyl group, n-butyloxycarbonyl group, isobutyloxycarbonyl group, sec-butyl. Examples thereof include an oxycarbonyl group and a tert-butyloxycarbonyl group.
  • alkylcarbonyloxy group examples include methylcarbonyloxy group, ethylcarbonyloxy group, propylcarbonyloxy group, isopropylcarbonyloxy group, butylcarbonyloxy group, n-butylcarbonyloxy group, isobutylcarbonyloxy group, sec-butyl. Examples thereof include a carbonyloxy group and a tert-butylcarbonyloxy group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the Ar 5 may have a polymerizable unsaturated bond-containing substituent.
  • the polymerizable unsaturated bond-containing substituent include an alkenyl group and an alkynyl group.
  • alkenyl group examples include a vinyl group, allyl group, propenyl group, isopropenyl group, 1-propenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group, 1-hexenyl group and 2-hexenyl group.
  • 3-hexenyl group 4-hexenyl group, 5-hexenyl group, 1-octenyl group, 2-octenyl group, 1-undecenyl group, 1-pentadecenyl group, 3-pentadecenyl group, 7-pentadecenyl group, 1-octadecenyl group 2-octadecenyl group, cyclopentenyl group, cyclohexenyl group, cyclooctenyl group, 1,3-butadienyl group, 1,4-butadienyl group, hexa-1,3-dienyl group, hexa-2,5-dienyl group, pentadeca -4,7-dienyl group, hexa-1,3,5-trienyl group, pentadeca-1,4,7-to Enyl group and the like.
  • alkynyl group examples include ethynyl group, propargyl group, 1-butynyl group, 2-butynyl group, 3-butynyl group, 3-pentynyl group, 4-pentynyl group, 1,3-butadiynyl group and the like.
  • the polymerizable unsaturated bond-containing substituent may further have a substituent.
  • the substituent is substituted with at least one hydrogen atom constituting the polymerizable unsaturated bond-containing substituent.
  • the substituent include an alkyloxycarbonyl group, an alkylcarbonyloxy group, and a halogen atom.
  • examples of the alkyloxycarbonyl group, alkylcarbonyloxy group, and halogen atom include those described above.
  • the polymerizable unsaturated bond-containing substituent is preferably a substituted or unsubstituted alkenyl group having 2 to 30 carbon atoms, and a substituted or unsubstituted alkenyl group having 2 to 10 carbon atoms.
  • a substituted or unsubstituted alkenyl group having 2 to 5 carbon atoms vinyl group, allyl group, propenyl group, isopropenyl group, 1-propenyl group, 1-butenyl group, A 2-butenyl group, a 3-butenyl group, and a 1,3-butadienyl group are particularly preferable, and an allyl group, a propenyl group, an isopropenyl group, and a 1-propenyl group are most preferable.
  • Preferred examples of the structure of Ar 5 include the following formulas (12-1) to (12-17).
  • the formulas (12-1) to (12-11) are preferable, and the formulas (12-1), (12-2), (12-6), (12-7), (12- 9) is more preferable, and formulas (12-1), (12-2), (12-6), and (12-7) are more preferable.
  • the formulas (12-1) and (12-2) are preferred. Since the group-containing (meth) acrylate resin composition has high photosensitivity and can form a cured product having excellent heat resistance and dielectric properties, the formulas (12-6) and (12-7) preferable.
  • At least one of the aromatic ring hydrogen atoms in the formulas (12-1) to (12-17) may be substituted with a polymerizable unsaturated bond-containing group.
  • Ar 6 in the chemical formula (a1) is a substituted or unsubstituted second aromatic ring group.
  • one of the hydrogen atoms of the aromatic ring constituting the second aromatic ring group is substituted with “—OC (O) Ar 5 ”. Become.
  • Examples of the second aromatic ring group include monocyclic aromatic compounds such as benzene, furan, pyrrole, thiophene, imidazole, pyrazole, oxazole, isoxazole, thiazole, isothiazole, pyridine, pyrimidine, pyridazine, pyrazine, and triazine.
  • monocyclic aromatic compounds such as benzene, furan, pyrrole, thiophene, imidazole, pyrazole, oxazole, isoxazole, thiazole, isothiazole, pyridine, pyrimidine, pyridazine, pyrazine, and triazine.
  • a hydrogen atom from a condensed aromatic compound such as naphthalene, anthracene, phenalene, phenanthrene, quinoline, isoquinoline, quinazoline, phthalazine, pteridine, coumarin, indole, benzimidazole, benzofuran, acridine
  • a condensed aromatic compound such as naphthalene, anthracene, phenalene, phenanthrene, quinoline, isoquinoline, quinazoline, phthalazine, pteridine, coumarin, indole, benzimidazole, benzofuran, acridine
  • aromatic compounds for example, ring-aggregated aromatic compounds such as biphenyl, binaphthalene, bipyridine, bithiophene, phenylpyridine, phenylthiophene, terphenyl, diphenylthiophene, quaterphenyl, etc.
  • ring-aggregated aromatic compounds such as biphenyl, binaphthalene, bipyridine, bithiophene, phenylpyridine, phenylthiophene, terphenyl, diphenylthiophene, quaterphenyl, etc.
  • Ar 6 is substituted or unsubstituted benzene because an acid group-containing (meth) acrylate resin composition having high photosensitivity and capable of forming a cured product excellent in heat resistance and dielectric properties is obtained. It is preferably a ring structure or a naphthalene ring structure.
  • the second aromatic ring group according to Ar 6 may have a substituent, and in this case, the substituent of the second aromatic ring group constitutes the second aromatic ring group And at least one hydrogen atom of the aromatic ring to be substituted.
  • the “substituent of the second aromatic ring group” include an alkyl group, an alkoxy group, an alkyloxycarbonyl group, an alkylcarbonyloxy group, and a halogen atom.
  • examples of the alkyl group, alkoxy group, alkyloxycarbonyl group, alkylcarbonyloxy group, and halogen atom include those described above.
  • Ar 6 may have a polymerizable unsaturated bond-containing substituent such as the alkenyl group or alkynyl group described above.
  • the polymerizable unsaturated bond-containing substituents may be present alone or in combination of two or more.
  • Preferred structures of Ar 6 include the following formulas (13-1) to (13-17).
  • the formulas (13-1) to (13-11) are preferable, the formulas (13-1), (13-6), and (13-9) are more preferable, and the formula (13 -1) and (13-6) are more preferable.
  • At least one of the hydrogen atoms of the aromatic rings of formulas (13-1) to (13-17) may be substituted with a polymerizable unsaturated bond-containing group.
  • Ar 5 is the above formula (12-1), (12-2), (12-6), (12-7), (12-9), and Ar 6 is the above formula ( 13-1), (13-6), and (13-9) are more preferable, and Ar 5 is represented by the above formulas (12-1), (12-2), (12-6), (12-7). And Ar 6 is more preferably the above formulas (13-1) and (13-6), Ar 5 is the above formula (12-1), and Ar 6 is the above formula (13-1). (13-6) is particularly preferable.
  • At least one of Ar 5 and Ar 6 has a polymerizable unsaturated bond-containing substituent.
  • Ar 5 may have a polymerizable unsaturated bond-containing substituent
  • Ar 6 may have a polymerizable unsaturated bond-containing substituent
  • Ar 5 and Ar 6 Both may have a polymerizable unsaturated bond-containing substituent.
  • the above formula (a1) preferably it has at least one of polymerizable unsaturated bond-containing substituent group of Ar 6, that all of Ar 6 has a polymerizable unsaturated bond-containing substituent group It is more preferable that Ar 5 does not have a polymerizable unsaturated bond-containing substituent, and that all Ar 6 have a polymerizable unsaturated bond-containing substituent.
  • Ar 6 an acid group-containing (meth) acrylate resin composition having high photosensitivity and capable of forming a cured product having a good balance between heat resistance and dielectric properties is obtained. This is preferable.
  • At least one of preferably has a polymerizable unsaturated bond-containing substituent group all Ar 5 is a polymerizable unsaturated bond-containing substituent group of Ar 5 More preferably, Ar 6 does not have a polymerizable unsaturated bond-containing substituent, and more preferably, all Ar 5 have a polymerizable unsaturated bond-containing substituent.
  • Ar 5 an acid group-containing (meth) acrylate resin composition having high photosensitivity and capable of forming a cured product having a good balance between heat resistance and dielectric properties is obtained. This is preferable.
  • n is an integer of 1 to 3. That is, the polymerizable unsaturated bond-containing aromatic ester compound (A-1) has 1 to 3 ester bonds that connect two aromatic rings.
  • a more preferable embodiment of the polymerizable unsaturated bond-containing aromatic ester compound (A-1) represented by the chemical formula (a1) is represented by the following chemical formula (a1-1) or (a1-2): And the compounds represented.
  • R 1 is a polymerizable unsaturated bond-containing substituent.
  • R 2 is each independently an alkyl group, an alkoxy group, an alkyloxycarbonyl group, an alkylcarbonyloxy group, or a halogen atom.
  • h is an integer of 1 to 3
  • i is each independently an integer of 1 or more
  • j is independently 0 or an integer of 1 or more
  • i + j is an integer of 5 or less.
  • k is an integer of 1 to 3
  • l is each independently an integer of 1 or more
  • m is each independently 0 or an integer of 1 or more
  • l + m is an integer of 7 or less.
  • R 1 or R 2 may be the same as or different from each other.
  • R 1 and R 2 may be substituted on any carbon atom on the naphthalene ring.
  • R 1 particularly preferable examples include an allyl group, a propenyl group, an isopropenyl group, and a 1-propenyl group as described above.
  • i is preferably 1 or 2, and more preferably 1.
  • R 1 particularly preferable examples include an allyl group, a propenyl group, an isopropenyl group, and a 1-propenyl group as described above.
  • l is preferably 1 or 2, and more preferably 1.
  • the specific structure of the polymerizable unsaturated bond-containing aromatic ester compound (A-1) represented by the above chemical formula (a1) is not particularly limited.
  • the chemical formulas (14-1) to (14-44) are preferable, and the chemical formulas (14-1) to (14-3), (14-10) ) To (14-13), (14-18) to (14-39), and more preferred are chemical formulas (14-1) to (14-3), (14-12), (14-13) , (14-19) to (14-21), (14-23) to (14-26), (14-29), (14-30), (14-32) to (14-39). More preferably, the chemical formulas are (14-1), (14-2), (14-12), (14-13), (14-26), (14-32), (14-37). Is particularly preferred.
  • the method for producing the polymerizable unsaturated bond-containing aromatic ester compound (A-1) is not particularly limited, and can be suitably produced by a known method.
  • Examples of the method for producing the polymerizable unsaturated bond-containing aromatic ester compound (A-1) include a method of reacting the second aromatic compound with the third aromatic compound and the like.
  • the polymerizable unsaturated bond-containing aromatic ester compound (A-2) is represented by the chemical formula (a2).
  • Ar 5 in the chemical formula (a2) is a substituted or unsubstituted first aromatic ring group.
  • n in the chemical formula (a2) is an integer of 1 to 3
  • one of the hydrogen atoms of the aromatic ring constituting the first aromatic ring group is “—C (O)”. It will be substituted with “OAr 6 ”.
  • Ar 5 in the chemical formula (a2) examples include those similar to the “first aromatic ring group” in the above-mentioned “Ar 6 in the chemical formula (10)”.
  • Ar 6 in the chemical formula (a2) is a substituted or unsubstituted second aromatic ring group.
  • one to three hydrogen atoms of the aromatic ring constituting the second aromatic ring group are substituted with “—OC (O) Ar 5 ”.
  • Examples of Ar 6 in the chemical formula (a2) include those similar to the “second aromatic ring group” in the “Ar 6 in the chemical formula (a1)” described above.
  • n is an integer of 1 to 3. That is, the polymerizable unsaturated bond-containing aromatic ester compound (A-2) has 1 to 3 ester bonds that connect two aromatic rings.
  • a more preferable embodiment of the polymerizable unsaturated bond-containing aromatic ester compound (A-2) represented by the chemical formula (a2) is represented by the following chemical formula (1-3) or (1-4): And the compounds represented.
  • R 1 is a polymerizable unsaturated bond-containing substituent.
  • R 2 is each independently an alkyl group, an alkoxy group, an alkyloxycarbonyl group, an alkylcarbonyloxy group, or a halogen atom.
  • h is an integer of 1 to 3
  • i is each independently an integer of 1 or more
  • j is independently 0 or an integer of 1 or more
  • i + j is an integer of 5 or less.
  • the plurality of R 1 or R 2 may be the same as or different from each other.
  • R 1 particularly preferable examples include an allyl group, a propenyl group, an isopropenyl group, and a 1-propenyl group as described above.
  • i is preferably 1 or 2, and more preferably 1.
  • R 1 particularly preferable examples include an allyl group, a propenyl group, an isopropenyl group, and a 1-propenyl group as described above.
  • l is preferably 1 or 2, and more preferably 1.
  • the specific structure of the polymerizable unsaturated bond-containing aromatic ester compound (A-2) represented by the chemical formula (a2) is not particularly limited, but for example, the following chemical formulas (15-1) to (15) -3) and the like.
  • the method for producing the polymerizable unsaturated bond-containing aromatic ester compound (A-2) is not particularly limited, and can be suitably produced by a known method.
  • Examples of the method for producing the polymerizable unsaturated bond-containing aromatic ester compound (A-2) include a method in which the first aromatic compound and the fourth aromatic compound are reacted.
  • the method for producing the polymerizable unsaturated bond-containing aromatic ester compound (A) is not particularly limited, and can be suitably produced by a known method.
  • the ratio of the number of moles of a carboxyl group of an aromatic compound having a carboxyl group to the number of moles of a hydroxyl group of an aromatic compound having a phenolic hydroxyl group (carboxyl group etc./hydroxyl group) has high photosensitivity and heat resistance.
  • an acid group-containing (meth) acrylate resin composition capable of forming a cured product having excellent dielectric properties it is preferably 0.3 to 3.
  • reaction of the aromatic compound having a phenolic hydroxyl group and the aromatic compound having a carboxyl group in the production of the polymerizable unsaturated bond-containing aromatic ester compound (A) is not particularly limited with respect to the reaction conditions. Any known method can be employed as appropriate.
  • the pH during the reaction is not particularly limited, but is preferably 11 or more.
  • the pH can be adjusted by using an acid such as hydrochloric acid, sulfuric acid, nitric acid or acetic acid; a base such as sodium hydroxide, potassium hydroxide, calcium hydroxide or ammonia.
  • the reaction temperature is not particularly limited, and is preferably 20 to 100 ° C., more preferably 40 to 80 ° C.
  • the reaction pressure is not particularly limited, and is preferably a normal pressure.
  • the reaction time is not particularly limited, and is preferably 0.5 to 10 hours, more preferably 1 to 5 hours.
  • the acid group-containing (meth) acrylate resin (B) will be described.
  • the acid group-containing (meth) acrylate resin (B) only needs to have an acid group and a (meth) acryloyl group, and other specific structures and molecular weights are not particularly limited, and a wide variety of resins are used. Can do.
  • Examples of the acid group contained in the acid group-containing (meth) acrylate resin (B) include a carboxyl group, a sulfonic acid group, and a phosphoric acid group. Among these, a carboxyl group is preferable because it exhibits excellent alkali developability.
  • Examples of the acid group-containing (meth) acrylate resin (B) include [1] epoxy resin (B-1) having an acid group and (meth) acryloyl group, [2] an acid group and (meth) acryloyl group.
  • Acrylamide resin (B-2) [3] Amidoimide resin (B-3) having acid group and (meth) acryloyl group, [4] Acrylic resin (B-4) having acid group and (meth) acryloyl group, [5] Urethane resin (B-5) having an acid group and a (meth) acryloyl group.
  • Examples of the epoxy resin (B-1) having an acid group and a (meth) acryloyl group include an epoxy resin (b1-1), an unsaturated monocarboxylic acid (b1-2), and a polycarboxylic acid anhydride ( and b1-3) as essential reaction raw materials.
  • the specific structure of the epoxy resin (b1-1) is not particularly limited as long as it has a plurality of epoxy groups in the resin.
  • Examples of the epoxy resin (b1-1) include bisphenol type epoxy resins, hydrogenated bisphenol type epoxy resins, phenylene ether type epoxy resins, naphthylene ether type epoxy resins, biphenyl type epoxy resins, hydrogenated biphenyl type epoxy resins, and triphenyl.
  • Methane type epoxy resin phenol novolac type epoxy resin, cresol novolac type epoxy resin, bisphenol novolac type epoxy resin, naphthol novolak type epoxy resin, naphthol-phenol co-condensed novolac type epoxy resin, naphthol-cresol co-condensed novolak type epoxy resin, phenol Aralkyl epoxy resin, naphthol aralkyl epoxy resin, dicyclopentadiene-phenol addition reaction epoxy resin, biphenyl aralkyl epoxy resin Carboxymethyl resins, fluorene type epoxy resin, a xanthene type epoxy resin, dihydroxybenzene type epoxy resin, and trihydroxybenzene type epoxy resin or the like.
  • the unsaturated monocarboxylic acid (b1-2) refers to a compound having a (meth) acryloyl group and a carboxyl group in one molecule, and examples thereof include acrylic acid and methacrylic acid. Further, esterified products, acid halides, acid anhydrides and the like of the unsaturated monocarboxylic acid (b1-2) can also be used. These unsaturated monocarboxylic acids (b1-2) can be used alone or in combination of two or more.
  • esterified product of the unsaturated monocarboxylic acid (b1-2) examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, isopropyl (meth) acrylate, ( (Meth) acrylic acid alkyl esters such as n-butyl (meth) acrylate, isobutyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate Compound; Hydroxyl group-containing (meth) acrylate compound such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate; dimethylaminoethyl (meth) acrylate, (meth) acrylic Nitrogen-containing (meth) acrylic acid ester such as dieth
  • Examples of the acid halide of the unsaturated monocarboxylic acid (b1-2) include (meth) acrylic acid chloride.
  • Examples of the acid anhydride of the unsaturated monocarboxylic acid (b1-2) include (meth) acrylic acid anhydride.
  • any acid anhydride of a compound having two or more carboxyl groups in one molecule can be used.
  • the polycarboxylic acid anhydride include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, citraconic acid, itaconic acid, Glutaconic acid, 1,2,3,4-butanetetracarboxylic acid, tetrahydrophthalic acid, hexahydrophthalic acid, methylhexahydrophthalic acid, cyclohexanetricarboxylic acid, cyclohexanetetracarboxylic acid, bicyclo [2.2.1] heptane- 2,3-dicarboxylic acid, methylbicyclo [2.2.1] heptane-2,3-dicarboxylic acid, 4- (2,
  • the method for producing the epoxy resin (B-1) having an acid group and a (meth) acryloyl group includes the epoxy resin (b1-1), the unsaturated monocarboxylic acid (b1-2), and the polycarboxylic acid anhydride.
  • the product (b1-3) is not particularly limited as long as it is an essential reaction raw material, and may be produced by any method. For example, it may be produced by a method in which all of the reaction raw materials are reacted together, or may be produced by a method in which the reaction raw materials are reacted sequentially.
  • the epoxy resin (b1-1) and the unsaturated monocarboxylic acid (b1-2) are first reacted, and then the polycarboxylic acid anhydride (b1-3)
  • the method of reacting is preferred.
  • the reaction is performed, for example, by reacting an epoxy resin (b1-1) and an unsaturated monocarboxylic acid (b1-2) in the temperature range of 100 to 150 ° C. in the presence of an esterification reaction catalyst.
  • the polycarboxylic acid anhydride (b1-3) may be added to and reacted in a temperature range of 80 to 120 ° C.
  • the reaction ratio between the epoxy resin (b1-1) and the unsaturated monocarboxylic acid (b1-2) is an amount of the unsaturated monocarboxylic acid (b1-2) with respect to 1 mol of the epoxy group in the epoxy resin (b1-1). ) Is preferably used in the range of 0.9 to 1.1 mol.
  • the reaction ratio of the polycarboxylic acid anhydride (b1-3) is preferably in the range of 0.2 to 1.0 mol with respect to 1 mol of the epoxy group in the epoxy resin (b1-1).
  • esterification reaction catalyst examples include phosphorus compounds such as trimethylphosphine, tributylphosphine and triphenylphosphine, amine compounds such as triethylamine, tributylamine and dimethylbenzylamine, 2-methylimidazole, 2-heptadecylimidazole, 2- Examples thereof include imidazole compounds such as ethyl-4-methylimidazole, 1-benzyl-2-methylimidazole and 1-isobutyl-2-methylimidazole. These reaction catalysts can be used alone or in combination of two or more.
  • the amount of the reaction catalyst added is preferably in the range of 0.001 to 5 parts by mass with respect to 100 parts by mass in total of the reaction raw materials.
  • the reaction of the epoxy resin (b1-1), the unsaturated monocarboxylic acid (b1-2), and the polycarboxylic acid anhydride (b1-3) can be performed in an organic solvent as necessary.
  • organic solvent examples include ketone solvents such as methyl ethyl ketone, acetone, dimethylformamide, and methyl isobutyl ketone; cyclic ether solvents such as tetrahydrofuran and dioxolane; ester solvents such as methyl acetate, ethyl acetate, and butyl acetate; toluene, xylene, solvent Aromatic solvents such as naphtha; Alicyclic solvents such as cyclohexane and methylcyclohexane; Alcohol solvents such as carbitol, cellosolve, methanol, isopropanol, butanol, and propylene glycol monomethyl ether; Alkylene glycol monoalkyl ether and dialkylene glycol monoalkyl ether Glycol ether solvents such as dialkylene glycol monoalkyl ether acetate; methoxypropanol, cyclohexanone, Chiruserosor
  • the acid value of the epoxy resin (B-1) having an acid group and a (meth) acryloyl group has a high photosensitivity and can form a cured product having excellent heat resistance and dielectric properties (meth) Since an acrylate resin composition is obtained, the range of 30 to 150 mgKOH / g is preferable, and the range of 40 to 120 mgKOH / g is more preferable.
  • the acid value of the epoxy resin (B-1) having an acid group and a (meth) acryloyl group is a value measured by a neutralization titration method of JIS K 0070 (1992).
  • Examples of the acrylamide resin (B-2) having an acid group and a (meth) acryloyl group include a phenolic hydroxyl group-containing resin (b2-1) and a cyclic carbonate compound (b2-2a) or a cyclic ether compound (b2- 2b), unsaturated monocarboxylic acid (b2-3a) and / or N-alkoxyalkyl (meth) acrylamide compound (b2-3b), and polycarboxylic acid anhydride (b2-4) as essential reaction raw materials What is obtained is mentioned.
  • the phenolic hydroxyl group-containing resin (b2-1) refers to a resin having two or more phenolic hydroxyl groups in the molecule, such as an aromatic polyhydroxy compound or a compound having one phenolic hydroxyl group in the molecule.
  • a novolak-type phenol resin using one or more kinds as a reaction raw material, a compound having one phenolic hydroxyl group, and a compound represented by any of the following structural formulas (x-1) to (x-5) ( and reaction products using x) as an essential reaction raw material.
  • R 1 is each independently an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, an aryloxy group, or an aralkyl group, and i is 0. Or an integer of 1 to 4.
  • Z is a vinyl group, a halomethyl group, a hydroxymethyl group, or an alkyloxymethyl group, and Y is an alkylene group having 1 to 4 carbon atoms, an oxygen atom, or a sulfur atom.
  • carbonyl group, j is an integer of 1 to 4.
  • aromatic polyhydroxy compound examples include dihydroxybenzene, trihydroxybenzene, tetrahydroxybenzene, dihydroxynaphthalene, trihydroxynaphthalene, tetrahydroxynaphthalene, dihydroxyanthracene, trihydroxyanthracene, tetrahydroxyanthracene, biphenol, tetrahydroxybiphenyl, In addition to bisphenol and the like, compounds having one or more substituents on these aromatic nuclei may be mentioned.
  • substituent on the aromatic nucleus examples include a methyl group, an ethyl group, a vinyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a cyclohexyl group, a heptyl group, an octyl group, and a nonyl group.
  • Aliphatic hydrocarbon group such as methoxy group, ethoxy group, propyloxy group, butoxy group; halogen atom such as fluorine atom, chlorine atom, bromine atom; phenyl group, naphthyl group, anthryl group, and aromatic nucleus thereof
  • These aromatic polyhydroxy compounds can be used alone or in combination of
  • Examples of the novolac type phenol resin include those obtained by reacting one or more compounds having one phenolic hydroxyl group in the molecule with an aldehyde compound in the presence of an acidic catalyst.
  • the compound having one phenolic hydroxyl group in the molecule may be any compound as long as it is an aromatic compound having one hydroxyl group on the aromatic nucleus.
  • aromatic compound having one hydroxyl group on the aromatic nucleus For example, one or a plurality of compounds on the aromatic nucleus of phenol or phenol are used.
  • Phenol compounds having one or more substituents, naphthols or naphthol compounds having one or more substituents on the aromatic nucleus of naphthol, anthracans having one or more substituents on the aromatic nucleus of anthracenol or anthracenol Examples include a senol compound.
  • substituent on the aromatic nucleus examples include an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group, an aryloxy group, and an aralkyl group, and specific examples of each are as described above. These compounds having one phenolic hydroxyl group can be used alone or in combination of two or more.
  • aldehyde compound examples include formaldehyde; alkyl aldehydes such as acetaldehyde, propyl aldehyde, butyraldehyde, isobutyraldehyde, pentyl aldehyde, hexyl aldehyde; salicyl aldehyde, 3-hydroxybenzaldehyde, 4-hydroxybenzaldehyde, 2-hydroxy-4 -Hydroxybenzaldehydes such as methylbenzaldehyde, 2,4-dihydroxybenzaldehyde, 3,4-dihydroxybenzaldehyde; 2-hydroxy-3-methoxybenzaldehyde, 3-hydroxy-4-methoxybenzaldehyde, 4-hydroxy-3-methoxybenzaldehyde, 3 -Ethoxy-4-hydroxybenzaldehyde, 4-hydroxy-3,5-dimethoxybenzaldehyde Benzaldehydes having both hydroxy groups and alkoxy groups; alky
  • the acidic catalyst examples include inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid, organic acids such as methanesulfonic acid, paratoluenesulfonic acid, and oxalic acid, and Lewis acids such as boron trifluoride, anhydrous aluminum chloride, and zinc chloride. Etc. These acidic catalysts can be used alone or in combination of two or more.
  • a compound having one phenolic hydroxyl group in the molecule and the compound (x) can be obtained by a method of heating and stirring under a temperature condition of about 80 to 200 ° C. under an acidic catalyst.
  • the reaction ratio between the compound having one phenolic hydroxyl group in the molecule and the compound (x) is 0 for the compound having one phenolic hydroxyl group in the molecule with respect to 1 mol of the compound (x).
  • the ratio is preferably 5 to 5 mol.
  • the acid catalyst is the same as described above.
  • Examples of the cyclic carbonate compound (b2-2a) include ethylene carbonate, propylene carbonate, butylene carbonate, pentylene carbonate, and the like. These cyclic carbonate compounds can be used alone or in combination of two or more. Among these, since an acid group-containing (meth) acrylate resin composition capable of forming a cured product having high photosensitivity and excellent heat resistance and dielectric properties is obtained, ethylene carbonate or propylene carbonate is used. preferable.
  • Examples of the cyclic ether compound (b2-2b) include ethylene oxide, propylene oxide, and tetrahydrofuran. These cyclic ether compounds can be used alone or in combination of two or more. Among these, since an acid group-containing (meth) acrylate resin composition capable of forming a cured product having high photosensitivity and excellent heat resistance and dielectric properties is obtained, ethylene oxide or propylene oxide is used. preferable.
  • the same unsaturated monocarboxylic acid (b1-2) as described above can be used.
  • N-alkoxyalkyl (meth) acrylamide compound (b2-3b) examples include N-methoxymethyl (meth) acrylamide, N-ethoxymethyl (meth) acrylamide, N-butoxymethyl (meth) acrylamide, and N-methoxy. Examples include ethyl (meth) acrylamide, N-ethoxyethyl (meth) acrylamide, and N-butoxyethyl (meth) acrylamide. Among these, N-methoxymethyl (meth) acrylamide is preferable because an acid group-containing (meth) acrylate resin composition having high photosensitivity and capable of forming a cured product having excellent heat resistance can be obtained. Moreover, these N-alkoxyalkyl (meth) acrylamide compounds can be used alone or in combination of two or more.
  • polycarboxylic acid anhydride (b2-4) the same polycarboxylic acid anhydride (b1-3) described above can be used.
  • the equivalent ratio [(b2-3b) / (b2-4)) to the polycarboxylic acid anhydride (b2-4)) is From the viewpoint of obtaining an acid group-containing (meth) acrylate resin composition having high photosensitivity and capable of forming a cured product having excellent heat resistance and dielectric properties, the range of 0.2 to 7 is preferable. A range of 25 to 6.7 is more preferable.
  • the method for producing the acrylamide resin (B-2) having an acid group and a (meth) acryloyl group is not particularly limited, and any method may be used. For example, it may be produced by a method in which all of the reaction raw materials are reacted together, or may be produced by a method in which the reaction raw materials are reacted sequentially.
  • the phenolic hydroxyl group-containing resin (b2-1) is first reacted with the cyclic carbonate compound (b2-2a) or the cyclic ether compound (b2-2b), Next, after reacting the unsaturated monocarboxylic acid (b2-3a) and / or the N-alkoxyalkyl (meth) acrylamide compound (b2-3b), the polycarboxylic acid anhydride (b2-4) is reacted.
  • the reaction is performed, for example, by combining the phenolic hydroxyl group-containing resin (b2-1) with the cyclic carbonate compound (b2-2a) or the cyclic ether compound (b2-2b) in the presence of a basic catalyst.
  • the unsaturated monocarboxylic acid (b2-3a) and / or the N-alkoxyalkyl (meth) acrylamide compound (b2-3b) is heated at a temperature of 80 to 140 ° C. in the presence of an acidic catalyst
  • the reaction can be carried out within the range, followed by the addition of polycarboxylic acid anhydride (b2-4) and the reaction in the temperature range of 80 to 140 ° C.
  • Examples of the basic catalyst include N-methylmorpholine, pyridine, 1,8-diazabicyclo [5.4.0] undecene-7 (DBU), 1,5-diazabicyclo [4.3.0] nonene. 5 (DBN), 1,4-diazabicyclo [2.2.2] octane (DABCO), tri-n-butylamine or dimethylbenzylamine, butylamine, octylamine, monoethanolamine, diethanolamine, triethanolamine, imidazole, 1 -Methylimidazole, 2,4-dimethylimidazole, 1,4-diethylimidazole, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3- (N-phenyl) aminopropyltrimethoxysilane, 3- ( 2-Aminoethyl) aminopropyltri Amine compounds such as toxisilane, 3- (2-aminoethyl)
  • the acidic catalyst examples include inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid, organic acids such as methanesulfonic acid, paratoluenesulfonic acid, and oxalic acid, and Lewis acids such as boron trifluoride, anhydrous aluminum chloride, and zinc chloride. Etc. These acidic catalysts can be used alone or in combination of two or more.
  • the reaction of the alkyl (meth) acrylamide compound (b2-3b) and the polycarboxylic acid anhydride (b2-4) can be carried out in an organic solvent as necessary.
  • organic solvent the same organic solvents as described above can be used, and the organic solvents can be used alone or in combination of two or more.
  • the amount of the organic solvent used is preferably in the range of 10 to 500 parts by mass with respect to 100 parts by mass in total of the reaction raw materials because the reaction efficiency is good.
  • the specific structure of the acrylamide resin (B-2) having an acid group and a (meth) acryloyl group is not particularly limited, and the phenolic hydroxyl group-containing resin (b2-1) and the cyclic carbonate compound (b2-2a) or cyclic An ether compound (b2-2b), an unsaturated monocarboxylic acid (b2-3a) and / or an N-alkoxyalkyl (meth) acrylamide compound (b2-3b), and a polycarboxylic acid anhydride (b2-4)
  • the essential reaction raw material may be any resin having an acid group and a (meth) acryloyl group in the resin.
  • Examples of the acrylamide resin (B-2) having an acid group and a (meth) acryloyl group to be obtained include And a structural unit (I) represented by the following structural formula (a-1) and a structural site (II) represented by the following structural formula (a-2) Or a structural part (III) represented by the following structural formula (a-3) and a structural part (IV) represented by the following structural formula (a-4) as repeating structural units What has a resin structure is mentioned.
  • R 2 is independently a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms.
  • R 3 is each independently a hydrogen atom, a hydrocarbon group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom, and n is each independently 1 or 2.
  • R 4 is each independently a methylene group or a structural moiety represented by any of the following structural formulas (x′-1) to (x′-5).
  • R 5 and R 6 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms. R 5 and R 6 may be linked to form a saturated or unsaturated ring.
  • R 7 is a hydrocarbon group having 1 to 12 carbon atoms.
  • R 8 is a hydrogen atom or a methyl group.
  • x represents the structural site represented by R 3 or the structural site (I) represented by the structural formula (a-1) or the structural site (II) represented by the structural formula (a-2).
  • R 2 is independently a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms.
  • R 3 is each independently a hydrogen atom, a hydrocarbon group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a halogen atom, and n is each independently 1 or 2.
  • R 4 is each independently a methylene group or a structural moiety represented by any of the following structural formulas (x′-1) to (x′-5).
  • R 5 and R 6 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms. R 5 and R 6 may be linked to form a saturated or unsaturated ring.
  • R 7 is a hydrocarbon group having 1 to 12 carbon atoms.
  • R 8 is a hydrogen atom or a methyl group.
  • x is the structural site represented by R 3 or the structural site (III) represented by the structural formula (a-3) or the structural site (IV) represented by the structural formula (a-4).
  • h is 0 or 1.
  • R 9 is independently an aliphatic hydrocarbon group, an alkoxy group, a halogen atom, an aryl group or an aralkyl group, and i is 0 or an integer of 1 to 4.
  • R 10 is a hydrogen atom or a methyl group.
  • W is the following structural formula (w-1) or (w-2).
  • Y is any one of an alkylene group having 1 to 4 carbon atoms, an oxygen atom, a sulfur atom, and a carbonyl group.
  • j is an integer of 1 to 4.
  • R 11 is each independently a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms.
  • R 12 and R 13 are each independently a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms.
  • R 12 and R 13 may be linked to form a saturated or unsaturated ring,
  • R 14 is a hydrocarbon group having 1 to 12 carbon atoms, and
  • R 15 is hydrogen. An atom or a methyl group.
  • the acid value of the acrylamide resin (B-2) having the acid group and the (meth) acryloyl group has a high photosensitivity and can form a cured product having excellent heat resistance and dielectric properties (meth) Since an acrylate resin composition is obtained, the range of 30 to 150 mgKOH / g is preferable, and the range of 40 to 120 mgKOH / g is more preferable.
  • the acid value of the acid group-containing (meth) acrylate resin is a value measured based on a neutralization titration method of JIS K 0070 (1992).
  • Examples of the amideimide resin (B-3) having an acid group and a (meth) acryloyl group include an amideimide resin (b3-1) having an acid group or an acid anhydride group, and a hydroxyl group-containing (meth) acrylate compound (b3). -2) and the like obtained as essential reaction raw materials.
  • the amideimide resin (b3-1) may have only one of an acid group or an acid anhydride group, or may have both. From the viewpoints of reactivity and reaction control with the hydroxyl group-containing (meth) acrylate compound (b3-2), those having an acid anhydride group are preferred, those having both an acid group and an acid anhydride group It is more preferable that
  • the acid value of the amideimide resin (b3-1) is preferably in the range of 60 to 350 mgKOH / g under neutral conditions, that is, under conditions where the acid anhydride group is not ring-opened.
  • the measured value under the condition where the acid anhydride group is opened, such as in the presence of water is preferably in the range of 61 to 360 mgKOH / g.
  • the specific structure and production method of the amideimide resin (b3-1) are not particularly limited, and general amideimide resins and the like can be widely used.
  • amideimide resins and the like can be widely used.
  • what can be obtained by using a polyisocyanate compound and polycarboxylic acid or its acid anhydride as a reaction raw material is mentioned.
  • polyisocyanate compound examples include aliphatic diisocyanate compounds such as butane diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and 2,4,4-trimethylhexamethylene diisocyanate; norbornane diisocyanate, isophorone diisocyanate, Cycloaliphatic diisocyanate compounds such as hydrogenated xylylene diisocyanate and hydrogenated diphenylmethane diisocyanate; tolylene diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate, 4,4'-diisocyanato-3 , 3'-dimethylbiphenyl, o-tolidine diisocyanate, etc.
  • aliphatic diisocyanate compounds such as butane diis
  • Cyanate compound polymethylene polyphenyl polyisocyanate having a repeating structure represented by the following structural formula (i-1); these isocyanurate modified product, a biuret modified product, and the like allophanate modified product. These polyisocyanate compounds can be used alone or in combination of two or more.
  • R 1 is independently a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms.
  • R 2 is each independently an alkyl group having 1 to 4 carbon atoms, or a bonding point that is linked to a structural moiety represented by the structural formula (i-1) via a methylene group marked with *. is there.
  • l is 0 or an integer of 1 to 3
  • m is an integer of 1 or more.
  • an acid group-containing (meth) acrylate resin composition having high solvent solubility is obtained, and therefore, an alicyclic diisocyanate compound or a modified product thereof, an aliphatic diisocyanate compound or a modified product thereof is used.
  • An alicyclic diisocyanate or its isocyanurate-modified product, and an aliphatic diisocyanate or its isocyanurate-modified product are more preferable.
  • the ratio of the total mass of an alicyclic diisocyanate compound or its modified body and an aliphatic diisocyanate compound or its modified body in the total mass of the said polyisocyanate compound is 70 mass% or more, and 90 mass % Or more is preferable.
  • the mass ratio of the two is preferably in the range of 30/70 to 70/30.
  • the polycarboxylic acid or its acid anhydride is not particularly limited as long as it is a compound having a plurality of carboxyl groups in its molecular structure or its acid anhydride, and a wide variety of compounds can be used.
  • the amideimide resin (b3-1) In order for the amideimide resin (b3-1) to have both an amide group and an imide group, it is necessary that both a carboxyl group and an acid anhydride group exist in the system.
  • a compound having both a carboxyl group and an acid anhydride group in the molecule may be used, or a compound having a carboxyl group and a compound having an acid anhydride group may be used in combination.
  • polycarboxylic acid or acid anhydride thereof examples include aliphatic polycarboxylic acid compounds or acid anhydrides thereof, alicyclic polycarboxylic acid compounds or acid anhydrides thereof, aromatic polycarboxylic acid compounds or acid anhydrides thereof. Etc.
  • the aliphatic hydrocarbon group may be either a linear type or a branched type, and may have an unsaturated bond in the structure.
  • Examples of the aliphatic polycarboxylic acid compound or acid anhydride thereof include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, maleic acid, fumaric acid, Examples include citraconic acid, itaconic acid, glutaconic acid, 1,2,3,4-butanetetracarboxylic acid, and acid anhydrides thereof.
  • the alicyclic polycarboxylic acid compound or acid anhydride thereof is an alicyclic polycarboxylic acid compound or acid anhydride thereof in which a carboxyl group or an acid anhydride group is bonded to an alicyclic structure.
  • the presence or absence of an aromatic ring at other structural sites is not questioned.
  • the alicyclic polycarboxylic acid compound or acid anhydride thereof include tetrahydrophthalic acid, hexahydrophthalic acid, methylhexahydrophthalic acid, cyclohexanetricarboxylic acid, cyclohexanetetracarboxylic acid, and bicyclo [2.2.1].
  • Heptane-2,3-dicarboxylic acid methylbicyclo [2.2.1] heptane-2,3-dicarboxylic acid, 4- (2,5-dioxotetrahydrofuran-3-yl) -1,2,3,4 -Tetrahydronaphthalene-1,2-dicarboxylic acid, and acid anhydrides thereof.
  • aromatic polycarboxylic acid compound or acid anhydride thereof examples include phthalic acid, trimellitic acid, pyromellitic acid, naphthalenedicarboxylic acid, naphthalenetricarboxylic acid, naphthalenetetracarboxylic acid, biphenyldicarboxylic acid, biphenyltricarboxylic acid, and biphenyl.
  • aromatic polycarboxylic acid compound or acid anhydride thereof examples include phthalic acid, trimellitic acid, pyromellitic acid, naphthalenedicarboxylic acid, naphthalenetricarboxylic acid, naphthalenetetracarboxylic acid, biphenyldicarboxylic acid, biphenyltricarboxylic acid, and biphenyl.
  • examples thereof include tetracarboxylic acid and benzophenone tetracarboxylic acid.
  • the alicyclic polycarboxylic acid compound or The acid anhydride or the aromatic polycarboxylic acid compound or acid anhydride thereof is preferred.
  • the amideimide resin (b3-1) can be efficiently produced, it is preferable to use a tricarboxylic acid anhydride having both a carboxyl group and an acid anhydride group in the molecular structure, and cyclohexanetricarboxylic acid anhydride or It is particularly preferable to use trimellitic anhydride.
  • the ratio of the total amount of the alicyclic tricarboxylic acid anhydride and the aromatic tricarboxylic acid anhydride to the total mass of the polycarboxylic acid or acid anhydride is preferably 70% by mass or more, and 90% by mass or more. It is more preferable that
  • the amideimide resin (b3-1) is a reaction raw material comprising the polyisocyanate compound and the polycarboxylic acid or acid anhydride thereof
  • other reaction raw materials depending on the desired resin performance, etc. May be used in combination.
  • the ratio of the total mass of the polyisocyanate compound and the polycarboxylic acid or acid anhydride thereof to the total mass of the reaction raw material of the amideimide resin (b3-1) Is preferably 90% by mass or more, and more preferably 95% by mass or more.
  • the amideimide resin (b3-1) uses a polyisocyanate compound and polycarboxylic acid or an acid anhydride as a reaction raw material
  • it is not particularly limited and may be produced by any method.
  • it can be produced by the same method as a general amideimide resin.
  • 0.5 to 2.0 moles of polycarboxylic acid or its acid anhydride is used with respect to 1 mole of isocyanate group of the polyisocyanate compound, and the mixture is stirred and mixed at a temperature of about 120 to 180 ° C. The method of making it react is mentioned.
  • the reaction between the polyisocyanate compound and polycarboxylic acid or acid anhydride thereof can be performed in the presence of a basic catalyst, if necessary. Moreover, this reaction can also be performed in an organic solvent as needed.
  • the same basic catalyst as described above can be used, and the basic catalyst can be used alone or in combination of two or more.
  • organic solvent the same organic solvents as described above can be used, and the organic solvents can be used alone or in combination of two or more.
  • the amount of the organic solvent used is preferably in the range of 10 to 500 parts by mass with respect to 100 parts by mass in total of the reaction raw materials because the reaction efficiency is good.
  • the hydroxyl group-containing (meth) acrylate compound (b3-2) is not particularly limited as long as it has a hydroxyl group and a (meth) acryloyl group in the molecular structure, and a wide variety of compounds are used. be able to.
  • the amideimide resin (B-3) having an acid group and a (meth) acryloyl group the amideimide resin (b3-1) and a hydroxyl group-containing (meth) acrylate compound (b3-2) are optionally used.
  • a (meth) acryloyl group-containing epoxy compound (b3-3) can be used in combination as a reaction raw material.
  • the amideimide resin (B-3) having an acid group and a (meth) acryloyl group the amideimide resin (b3-1) and a hydroxyl group-containing (meth) acrylate compound (b3-2) are optionally used.
  • a (meth) acryloyl group-containing epoxy compound (b3-3) and a polycarboxylic acid anhydride (b3-4) can be used together as reaction raw materials.
  • the (meth) acryloyl group-containing epoxy compound (b3-3) is not particularly limited as long as it has a (meth) acryloyl group and an epoxy group in the molecular structure, and a wide variety of compounds can be used. Can be used.
  • glycidyl group-containing (meth) acrylate monomers such as glycidyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether, and epoxycyclohexylmethyl (meth) acrylate; dihydroxybenzene diglycidyl ether, dihydroxynaphthalenediglycidyl ether, Examples thereof include mono (meth) acrylates of diglycidyl ether compounds such as biphenol diglycidyl ether and bisphenol diglycidyl ether.
  • the glycidyl group-containing (meth) acrylate monomer is preferable. Moreover, it is preferable that the molecular weight is 500 or less. Furthermore, the proportion of the glycidyl group-containing (meth) acrylate monomer in the total mass of the (meth) acryloyl group-containing epoxy compound (b3-3) is preferably 70% by mass or more, and 90% by mass or more. Is more preferable.
  • polycarboxylic acid anhydride (b3-4) those exemplified as the above-mentioned polycarboxylic acid anhydride (b1-3) can be used, and the polycarboxylic acid (b3-4) is used alone. Two or more types can be used in combination.
  • the amideimide resin (B-3) having an acid group and a (meth) acryloyl group includes the amideimide resin (b3-1) having an acid group or an acid anhydride group, depending on the desired resin performance, etc.
  • the (meth) acrylate compound (b3-2) the (meth) acryloyl group-containing epoxy compound (b3-3) and the polycarboxylic acid anhydride (b3-4)
  • other reaction raw materials can be used in combination.
  • the ratio of the total mass of the components (b3-1) to (b3-4) in the total reaction mass of the acid group-containing (meth) acrylate resin (B-3) is 80% by mass or more. Preferably, it is 90 mass% or more.
  • the method for producing the amideimide resin (B-3) having an acid group and a (meth) acryloyl group is not particularly limited, and any method may be used.
  • it may be produced by a method in which all reaction raw materials including the amideimide resin (b3-1) and the hydroxyl group-containing (meth) acrylate compound (b3-2) are reacted together, or the reaction raw materials are sequentially reacted. You may manufacture by the method to make.
  • the reaction between the amideimide resin (b3-1) and the hydroxyl group-containing (meth) acrylate compound (b3-2) mainly includes an acid group and / or an acid anhydride group in the amideimide resin (b3-1). It reacts with a hydroxyl group in the hydroxyl group-containing (meth) acrylate compound (b3-2). Since the hydroxyl group-containing (meth) acrylate compound (b3-2) is particularly excellent in reactivity with an acid anhydride group, as described above, the amideimide resin (b3-1) has an acid anhydride group. It is preferable.
  • the content of the acid anhydride group in the amideimide resin (b3-1) is the difference between the two measured acid values, that is, the acid value under the condition where the acid anhydride group is ring-opened. And the difference between the acid value under the condition that the acid anhydride group is not ring-opened.
  • the reaction ratio between the amideimide resin (b3-1) and the hydroxyl group-containing (meth) acrylate compound (b3-2) is determined when the amideimide resin (b3-1) has an acid group and an acid anhydride group, and When the amidoimide resin (b3-1) has an acid anhydride group, the hydroxyl group of the hydroxyl group-containing (meth) acrylate compound (b3-2) with respect to 1 mol of the acid anhydride group of the amidoimide resin (b3-1) Is preferably used in a range of 0.9 to 1.1.
  • the amideimide resin (b3-1) has an acid group
  • a basic catalyst or an acidic catalyst may be used as necessary.
  • a basic catalyst when the amideimide resin (b3-1) has an acid group and an acid anhydride group, and when the amideimide resin (b3-1) has an acid anhydride group, it is preferable to use a basic catalyst.
  • the amideimide resin (b3-1) has an acid group, it is preferable to use an acidic catalyst.
  • the basic catalyst those exemplified above as the basic catalyst can be used, and the basic catalyst can be used alone or in combination of two or more.
  • the acidic catalyst those exemplified as the above-mentioned acidic catalyst can be used, and the acidic catalyst can be used alone or in combination of two or more.
  • the addition amount of the basic catalyst or the acidic catalyst is preferably in the range of 0.001 to 5 parts by mass with respect to 100 parts by mass of the total mass of the reaction raw materials.
  • the reaction between the amideimide resin (b3-1) and the hydroxyl group-containing (meth) acrylate compound (b3-2) is performed by heating and stirring in the presence of a suitable catalyst at a temperature of about 80 to 140 ° C. It can be carried out.
  • the reaction may be carried out in an organic solvent as necessary.
  • the organic solvent the same organic solvent as described above can be used, and the organic solvent can be used alone or in combination of two or more. It can also be used together.
  • the reaction may be continued as it is in the organic solvent used in the production of the amideimide resin (b3-1).
  • the amideimide resin (B-3) having the acid group and (meth) acryloyl group is used as a reaction raw material.
  • the (meth) acryloyl group-containing epoxy compound (b3-3) is used, the amideimide resin (b3-1), the hydroxyl group-containing (meth) acrylate compound (b3-2), and the (meth) acryloyl group-containing epoxy compound It may be produced by a method in which all of the reaction raw materials including (b3-3) are reacted together, or may be produced by a method in which reaction raw materials are reacted sequentially.
  • production a product obtained by reacting the amideimide resin (b3-1) with the hydroxyl group-containing (meth) acrylate compound (b3-2) (hereinafter referred to as “production”).
  • production a product obtained by reacting the amideimide resin (b3-1) with the hydroxyl group-containing (meth) acrylate compound (b3-2) (hereinafter referred to as “production”).
  • the product (1) may be referred to as the (meth) acryloyl group-containing epoxy compound (b3-3).
  • the reaction between the product (1) and the (meth) acryloyl group-containing epoxy compound (b3-3) mainly comprises an acid group in the product (1) and the (meth) acryloyl group-containing epoxy compound ( b3-3).
  • the reaction ratio was such that the number of moles of the epoxy group of the (meth) acryloyl group-containing epoxy compound (b3-3) relative to 1 mole of the acid group of the product (1) was 0.05 to 1.1. It is preferable to use in the range.
  • the reaction can be carried out, for example, with heating and stirring under a temperature condition of about 90 to 140 ° C. in the presence of a suitable basic catalyst.
  • a basic catalyst may not be added or may be added as appropriate. . Moreover, you may perform this reaction in an organic solvent as needed.
  • the said basic catalyst and the said organic solvent can use the same thing as the above-mentioned basic catalyst and the organic solvent, and they can be used individually or can use 2 or more types together.
  • the amideimide resin (B-3) having the acid group and (meth) acryloyl group is used as a reaction raw material.
  • the reaction raw material including the (meth) acryloyl group-containing epoxy compound (b3-3) and the polycarboxylic acid anhydride (b3-4) may be produced by a method of reacting all at once. You may manufacture by the method of making it react one by one.
  • the product obtained by reacting the (meth) acryloyl group-containing epoxy compound (b3-3) (hereinafter sometimes referred to as “product (2)”) to the polycarboxylic acid anhydride (b3 -4) is preferably produced by a reaction method.
  • the reaction between the product (2) and the polycarboxylic acid anhydride (b3-4) is mainly a reaction between the hydroxyl group in the product (2) and the polybasic acid anhydride.
  • the reaction ratio between the product (1) and the (meth) acryloyl group-containing epoxy compound (b3-3) is 1 mol of acid groups of the product (1).
  • the number of moles of the epoxy group of the (meth) acryloyl group-containing epoxy compound (b3-3) is preferably 0.1 to 1.2, and preferably 0.2 to 1.1. More preferably.
  • a hydroxyl group generated by ring opening of the epoxy group in the (meth) acryloyl group-containing epoxy compound (b3-3) is present.
  • the reaction rate of the polycarboxylic acid anhydride (b3-4) is adjusted so that the acid value of the produced amideimide resin (B-3) having an acid group and a (meth) acryloyl group is about 50 to 120 mgKOH / g. It is preferred that The reaction can be carried out, for example, with heating and stirring under a temperature condition of about 80 to 140 ° C. in the presence of a suitable basic catalyst.
  • a basic catalyst may not be added or may be added as appropriate. Moreover, you may perform this reaction in an organic solvent as needed.
  • the said basic catalyst and the said organic solvent can use the same thing as the above-mentioned basic catalyst and the organic solvent, and they can be used individually or can use 2 or more types together.
  • the acid value of the amideimide resin (B-3) having an acid group and a (meth) acryloyl group has high photosensitivity and can form a cured product having excellent heat resistance and dielectric properties (meth) Since an acrylate resin composition is obtained, the range of 30 to 150 mgKOH / g is preferable, and the range of 40 to 120 mgKOH / g is more preferable.
  • the acid value of the amideimide resin (B-3) having an acid group and a (meth) acryloyl group is a value measured by a neutralization titration method of JIS K 0070 (1992).
  • Examples of the acrylic resin (B-4) having an acid group and a (meth) acryloyl group include a (meth) acrylate compound ( ⁇ ) having a reactive functional group such as a hydroxyl group, a carboxyl group, an isocyanate group, or a glycidyl group.
  • the (meth) acryloyl group is introduced into the acrylic resin intermediate obtained by polymerization as an essential component by further reacting with a (meth) acrylate compound ( ⁇ ) having a reactive functional group capable of reacting with these functional groups.
  • reaction products obtained by reacting polybasic acid anhydrides with hydroxyl groups in the reaction products are examples of the acrylic resin (B-4) having an acid group and a (meth) acryloyl group.
  • the acrylic resin intermediate may be a copolymer obtained by copolymerizing other polymerizable unsaturated group-containing compound as required, in addition to the (meth) acrylate compound ( ⁇ ).
  • the other polymerizable unsaturated group-containing compound include (meth) methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and the like.
  • Acrylic acid alkyl ester Cyclohexyl (meth) acrylate, isoboronyl (meth) acrylate, alicyclic structure-containing (meth) acrylate such as dicyclopentanyl (meth) acrylate, phenyl (meth) acrylate, benzyl (meth) acrylate, phenoxy Aromatic ring-containing (meth) acrylates such as ethyl acrylate; silyl group-containing (meth) acrylates such as 3-methacryloxypropyltrimethoxysilane; styrene derivatives such as styrene, ⁇ -methylstyrene, and chlorostyrene That. These can be used alone or in combination of two or more.
  • the said (meth) acrylate compound ((beta)) will not be specifically limited if it can react with the reactive functional group which the said (meth) acrylate compound ((alpha)) has, it is the following combinations from a reactive viewpoint. Is preferred. That is, when a hydroxyl group-containing (meth) acrylate is used as the (meth) acrylate compound ( ⁇ ), it is preferable to use an isocyanate group-containing (meth) acrylate as the (meth) acrylate compound ( ⁇ ).
  • the (meth) acrylate compound ( ⁇ ) When a glycidyl group-containing (meth) acrylate is used as the (meth) acrylate compound ( ⁇ ), it is preferable to use a carboxyl group-containing (meth) acrylate as the (meth) acrylate compound ( ⁇ ).
  • the (meth) acrylate compound ( ⁇ ) can be used alone or in combination of two or more.
  • polybasic acid anhydride examples include phthalic anhydride, succinic anhydride, trimellitic anhydride, pyromellitic anhydride, maleic anhydride, tetrahydrophthalic anhydride, methyltetrahydrophthalic anhydride, methyl nadic anhydride, hexahydro anhydride
  • polybasic acid anhydrides can be used alone or in combination of two or more.
  • the production method of the acrylic resin (B-4) having an acid group and a (meth) acryloyl group is not particularly limited, and may be produced by any method. In the production of the acrylic resin (B-4) having an acid group and a (meth) acryloyl group, it may be carried out in an organic solvent if necessary, and a basic catalyst may be used if necessary. .
  • organic solvent the same organic solvents as described above can be used, and the organic solvents can be used alone or in combination of two or more.
  • the same basic catalyst as described above can be used, and the basic catalyst can be used alone or in combination of two or more.
  • the acid value of the acrylic resin (B-4) having the acid group and (meth) acryloyl group has high photosensitivity, and can form a cured product having excellent heat resistance and dielectric properties (meth) Since an acrylate resin composition is obtained, the range of 30 to 150 mgKOH / g is preferable, and the range of 40 to 120 mgKOH / g is more preferable.
  • the acid value of the acrylic resin (B-4) having an acid group and a (meth) acryloyl group is a value measured by a neutralization titration method of JIS K 0070 (1992).
  • Examples of the urethane resin (B-5) having an acid group and a (meth) acryloyl group include a polyisocyanate compound, a hydroxyl group-containing (meth) acrylate compound, a carboxyl group-containing polyol compound, and, if necessary, a polybasic acid anhydride.
  • Products obtained by reacting polyol compounds other than the carboxyl group-containing polyol compound, polyols other than polyisocyanate compounds, hydroxyl group-containing (meth) acrylate compounds, polybasic acid anhydrides, and carboxyl group-containing polyol compounds Those obtained by reacting with a compound, those obtained by reacting an epoxy resin, an unsaturated monobasic acid, a polybasic acid anhydride, a polyisocyanate compound, and a hydroxyl group-containing (meth) acrylate compound, etc. Can be mentioned.
  • polyisocyanate compound the same polyisocyanate compounds can be used, and the polyisocyanate compounds can be used alone or in combination of two or more.
  • the hydroxyl group-containing (meth) acrylate compound As the hydroxyl group-containing (meth) acrylate compound, the same hydroxyl group-containing (meth) acrylate compound (b3-2) as described above can be used, and the hydroxyl group-containing (meth) acrylate compound can be used alone. Two or more kinds can be used in combination.
  • carboxyl group-containing polyol compound examples include 2,2-dimethylolpropionic acid, 2,2-dimethylolbutanoic acid, 2,2-dimethylolvaleric acid, and the like.
  • the carboxyl group-containing polyol compound can be used alone or in combination of two or more.
  • polybasic acid anhydride those exemplified as the above-mentioned polybasic acid anhydride can be used, and the polybasic acid anhydride can be used alone or in combination of two or more.
  • polyol compounds other than the carboxyl group-containing polyol compound examples include aliphatic polyol compounds such as ethylene glycol, propylene glycol, butanediol, hexanediol, glycerin, trimethylolpropane, ditrimethylolpropane, pentaerythritol, and dipentaerythritol; Aromatic polyol compounds such as biphenol and bisphenol; (poly) oxyalkylene chains such as (poly) oxyethylene chains, (poly) oxypropylene chains, (poly) oxytetramethylene chains) in the molecular structures of the various polyol compounds.
  • aliphatic polyol compounds such as ethylene glycol, propylene glycol, butanediol, hexanediol, glycerin, trimethylolpropane, ditrimethylolpropane, pentaerythritol, and dipentaery
  • epoxy resin those exemplified as the above-mentioned epoxy resin (b1-1) can be used, and the epoxy resins can be used alone or in combination of two or more.
  • the unsaturated monobasic acid examples include acrylic acid, methacrylic acid, crotonic acid, cinnamic acid, ⁇ -cyanocinnamic acid, ⁇ -styrylacrylic acid, ⁇ -furfurylacrylic acid and the like. Further, esterified products, acid halides, acid anhydrides, and the like of the unsaturated monobasic acid can also be used. These unsaturated monobasic acids can be used alone or in combination of two or more.
  • the production method of the urethane resin (B-5) having an acid group and a (meth) acryloyl group is not particularly limited and may be produced by any method.
  • the production of the urethane resin having an acid group and a polymerizable unsaturated bond may be performed in an organic solvent as necessary, and a basic catalyst may be used as necessary.
  • organic solvent the same organic solvents as described above can be used, and the organic solvents can be used alone or in combination of two or more.
  • the same basic catalyst as described above can be used, and the basic catalyst can be used alone or in combination of two or more.
  • the acid group-containing (meth) acrylate resin composition of the present invention contains the polymerizable unsaturated bond-containing aromatic ester compound (A) and the acid group-containing (meth) acrylate resin (B).
  • the content of the polymerizable unsaturated bond-containing aromatic ester compound (A) in the acid group-containing (meth) acrylate resin composition of the present invention has high photosensitivity, and has excellent heat resistance and dielectric properties. From the viewpoint of obtaining an acid group-containing (meth) acrylate resin composition capable of forming a product, the range of 10 to 90% by mass is preferable.
  • the content of the acid group-containing (meth) acrylate resin (B) in the acid group-containing (meth) acrylate resin composition of the present invention is preferably in the range of 90 to 10% by mass.
  • the mass ratio [(A) / (B)] of the solid content of the polymerizable unsaturated bond-containing aromatic ester compound (A) and the acid group-containing (meth) acrylate resin (B) has high photosensitivity.
  • the acid group-containing (meth) acrylate resin composition can be obtained, which can form a cured product having excellent heat resistance and dielectric properties, and is preferably in the range of 50/50 to 95/5.
  • the acid group-containing (meth) acrylate resin composition of the present invention can be used as a curable resin composition by adding a photopolymerization initiator.
  • photopolymerization initiator examples include 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- [4- (2-hydroxyethoxy) phenyl] -2- Hydroxy-2-methyl-1-propan-1-one, thioxanthone and thioxanthone derivatives, 2,2'-dimethoxy-1,2-diphenylethane-1-one, diphenyl (2,4,6-trimethoxybenzoyl) phosphine Oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, 2-methyl-1- (4-methylthiophenyl) -2-morpholinopropane-1- ON, 2-benzyl-2-dimethylamino-1- (4-morpho Nofeniru) -1-butanone, and the like.
  • photopolymerization initiators examples include “Omnirad-1173”, “Omnirad-184”, “Omnirad-127”, “Omnirad-2959”, “Omnirad-369”, “Omnirad-379”.
  • the addition amount of the photopolymerization initiator is preferably used in the range of 1 to 20% by mass in the curable resin composition, for example.
  • the curable resin composition of the present invention may contain other resin components other than the acid group-containing (meth) acrylate resin (B).
  • the other resin components include (meth) acrylic acid, dicarboxylic acid anhydride, and unsaturated monocarboxylic acid anhydride, if necessary, to epoxy resin such as bisphenol type epoxy resin and novolak type epoxy resin.
  • epoxy resin such as bisphenol type epoxy resin and novolak type epoxy resin.
  • examples thereof include resins having a carboxyl group and a (meth) acryloyl group in the resin, various (meth) acrylate monomers, and the like.
  • Examples of the (meth) acrylate monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, hexyl (meth) acrylate, and 2-ethylhexyl.
  • Aliphatic mono (meth) acrylate compounds such as (meth) acrylate and octyl (meth) acrylate; alicyclic mono (meth) acrylate compounds such as cyclohexyl (meth) acrylate, isobornyl (meth) acrylate and adamantyl mono (meth) acrylate ; Heterocyclic mono (meth) acrylate compounds such as glycidyl (meth) acrylate and tetrahydrofurfuryl acrylate; benzyl (meth) acrylate, phenyl (meth) acrylate, phenylben (Meth) acrylate, phenoxy (meth) acrylate, phenoxyethyl (meth) acrylate, phenoxyethoxyethyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, phenoxybenzyl (meth) acrylate, benz
  • the curable resin composition of the present invention includes a curing agent, a curing accelerator, an organic solvent, inorganic fine particles and polymer fine particles, a pigment, an antifoaming agent, a viscosity modifier, a leveling agent, a flame retardant, Various additives such as a storage stabilizer can also be contained.
  • the curing agent is not particularly limited as long as it has a functional group capable of reacting with a carboxy group in the acid group-containing (meth) acrylate resin, and examples thereof include an epoxy resin.
  • the epoxy resin include bisphenol type epoxy resin, phenylene ether type epoxy resin, naphthylene ether type epoxy resin, biphenyl type epoxy resin, triphenylmethane type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, Bisphenol novolac type epoxy resin, naphthol novolak type epoxy resin, naphthol-phenol co-condensed novolac type epoxy resin, naphthol-cresol co-condensed novolac type epoxy resin, phenol aralkyl type epoxy resin, naphthol aralkyl type epoxy resin, dicyclopentadiene-phenol addition Reactive epoxy resin, biphenyl aralkyl epoxy resin, fluorene epoxy resin, xanthene epoxy resin, dihydride Kishibenzen type epoxy resins
  • epoxy resins can be used alone or in combination of two or more.
  • a curable resin composition having excellent alkali developability and high photosensitivity and capable of forming a cured product having excellent elongation can be obtained, a phenol novolac type epoxy resin, cresol novolac Novolak type epoxy resins such as epoxy resin, bisphenol novolak type epoxy resin, naphthol novolak type epoxy resin, naphthol-phenol co-condensed novolac type epoxy resin, naphthol-cresol co-condensed novolac type epoxy resin, etc. are preferable, and the softening point is 20 to 120. Those having a temperature range of ° C are particularly preferred.
  • the curing accelerator which accelerates the curing reaction of the curing agent, and when using an epoxy resin as the curing agent, phosphorus compound, amine compound, imidazole, organic acid metal salt, Lewis acid, Examples include amine complex salts. These curing accelerators can be used alone or in combination of two or more.
  • the addition amount of the curing accelerator is preferably in the range of 1 to 10 parts by mass with respect to 100 parts by mass of the curing agent, for example.
  • organic solvent the same organic solvents as described above can be used, and the organic solvents can be used alone or in combination of two or more.
  • the cured product of the present invention can be obtained by irradiating the curable resin composition with active energy rays.
  • active energy rays include ionizing radiation such as ultraviolet rays, electron beams, ⁇ rays, ⁇ rays, and ⁇ rays.
  • irradiation may be performed in an inert gas atmosphere such as nitrogen gas or an air atmosphere in order to efficiently perform a curing reaction with ultraviolet rays.
  • an ultraviolet lamp is generally used from the viewpoint of practicality and economy. Specific examples include a low-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a xenon lamp, a gallium lamp, a metal halide lamp, sunlight, and an LED.
  • the integrated light amount of the active energy ray is not particularly limited, but is preferably 10 to 5,000 mJ / cm 2 , and more preferably 50 to 1,000 mJ / cm 2 . It is preferable for the integrated light amount to be in the above-mentioned range because the generation of uncured portions can be prevented or suppressed.
  • the irradiation of the active energy ray may be performed in one step, or may be performed in two or more steps.
  • the cured product obtained by curing the curable resin composition of the present invention is excellent in heat resistance and dielectric properties.
  • a solder resist, an interlayer insulating material, a package material, an underfill It can be suitably used as a package adhesive layer for materials, circuit elements, etc., or as an adhesive layer between integrated circuit elements and circuit boards.
  • it can be suitably used for a thin film transistor protective film, a liquid crystal color filter protective film, a color filter pigment resist, a black matrix resist, a spacer, etc. in thin display applications typified by LCD and OELD.
  • the resin material for solder resist of the present invention is composed of the curable resin composition.
  • the resist member of the present invention is, for example, a photomask in which a desired pattern is formed after applying the solder resist resin material on a substrate and evaporating and drying an organic solvent in a temperature range of about 60 to 100 ° C. And exposed to an active energy ray, developed in an unexposed portion with an aqueous alkali solution, and further heat-cured in a temperature range of about 140 to 180 ° C.
  • Examples of the base material include metal foil such as copper foil and aluminum foil.
  • the acid value of the acid group-containing (meth) acrylate resin was measured by the neutralization titration method of JIS K 0070 (1992).
  • the weight average molecular weight of the acid group-containing (meth) acrylate resin was measured by GPC under the following conditions.
  • Measuring device “HLC-8320 GPC” manufactured by Tosoh Corporation Column: Guard column “HXL-L” manufactured by Tosoh Corporation + “TSK-GEL G4000HXL” manufactured by Tosoh Corporation + Tosoh Corporation “TSK-GEL G3000HXL” + “TSK-GEL G2000HXL” manufactured by Tosoh Corporation + “TSK-GEL G2000HXL” manufactured by Tosoh Corporation Detector: RI (differential refractometer) Data processing: “GPC workstation EcoSEC-WorkStation” manufactured by Tosoh Corporation Column temperature: 40 ° C Developing solvent: Tetrahydrofuran Flow rate: 1.0 ml / min Standard: Based on the above-mentioned measurement manual “GPC-8320 GPC”, the following monodispersed polystyrene having a known molecular weight is used.
  • A-500” manufactured by Tosoh Corporation “A-1000” manufactured by Tosoh Corporation “A-2500” manufactured by Tosoh Corporation “A-5000” manufactured by Tosoh Corporation “F-1” manufactured by Tosoh Corporation “F-2” manufactured by Tosoh Corporation “F-4” manufactured by Tosoh Corporation “F-10” manufactured by Tosoh Corporation “F-20” manufactured by Tosoh Corporation “F-40” manufactured by Tosoh Corporation “F-80” manufactured by Tosoh Corporation “F-128” manufactured by Tosoh Corporation Sample: A 1.0% by mass tetrahydrofuran solution in terms of resin solid content filtered through a microfilter (50 ⁇ l).
  • This acid group-containing (meth) acrylate resin (B-1) had a solid acid value of 85 mgKOH / g and a weight average molecular weight of 8850.
  • Example 1 Preparation of acid group-containing (meth) acrylate resin composition (1)
  • Type epoxy resin (“EPICLON N-680” manufactured by DIC Corporation)
  • dipentaerythritol hexaacrylate diethylene glycol
  • Examples 2 to 7 Preparation of acid group-containing (meth) acrylate resin compositions (2) to (7)
  • Acid group-containing (meth) acrylate resin compositions (2) to (7) were obtained in the same manner as in Example 1 with the compositions and formulations shown in Table 1.
  • Comparative Example 2 Preparation of acid group-containing (meth) acrylate resin composition (C2)
  • Comparative Example except that the acid group-containing (meth) acrylate resin (B-2) obtained in Synthesis Example 4 was used instead of the acid group-containing (meth) acrylate resin (B-1) used in Comparative Example 1
  • an acid group-containing (meth) acrylate resin composition (C2) was obtained.
  • Acid group-containing (meth) acrylate resin compositions (1) to (7) prepared in Examples 1 to 7 and acid group-containing (meth) acrylate resin compositions (C1) and (C1) prepared in Comparative Examples 1 and 2 The composition and evaluation results of C2) are shown in Table 1.
  • Example 8 Preparation of acid group-containing (meth) acrylate resin composition (8)
  • EPICLON N-680 manufactured by DIC Corporation
  • dimethylaminopyridine as a curing accelerator
  • photopolymerization initiator (“Omnirad 907” manufactured by IGM)
  • a 6 mm ⁇ 35 mm test piece was cut out from the cured product, and a viscoelasticity measuring device (DMA: solid viscoelasticity measuring device “RSAII” manufactured by Rheometric Co., Ltd., tension method: frequency 1 Hz, temperature rising rate 3 ° C./min)
  • DMA solid viscoelasticity measuring device “RSAII” manufactured by Rheometric Co., Ltd., tension method: frequency 1 Hz, temperature rising rate 3 ° C./min
  • the temperature at which the change in elastic modulus was maximized was evaluated as the glass transition temperature. In addition, it shows that it is excellent in heat resistance, so that glass transition temperature is high.
  • test piece a humidity of 50% for 24 hours is used as a test piece, and the dielectric loss tangent of the test piece at 1 GHz is measured by a cavity resonance method using “Network Analyzer E8362C” manufactured by Agilent Technologies. It was measured.
  • Acid group-containing (meth) acrylate resin compositions (8) to (14) prepared in Examples 8 to 14, and acid group-containing (meth) acrylate resin compositions (C3) and (C3) prepared in Comparative Examples 3 and 4 The composition and evaluation results of C4) are shown in Table 2.
  • the compounding quantity of the acid group containing (meth) acrylate resin (B-1) and (B-2) in Tables 1 and 2 is a solid content value.
  • the “curing agent” in Tables 1 and 2 represents an ortho-cresol novolac type epoxy resin (“EPICLON N-680” manufactured by DIC Corporation, epoxy equivalent: 214).
  • curing accelerator indicates dimethylaminopyridine.
  • Organic solvent in Tables 1 and 2 represents diethylene glycol monomethyl ether acetate.
  • Photopolymerization initiator in Tables 1 and 2 indicates “Omnirad-907” manufactured by IGM.
  • Examples 1 to 14 shown in Tables 1 and 2 are examples of the acid group-containing (meth) acrylate resin composition of the present invention, but the acid group-containing (meth) acrylate resin composition of the present invention is excellent in light.
  • the cured product of the acid group-containing (meth) acrylate resin composition of the present invention has excellent heat resistance, and has a low dielectric constant and dielectric loss tangent, resulting in a dielectric property. It was confirmed that it was excellent.
  • Comparative Examples 1 to 4 are examples of an acid group-containing (meth) acrylate resin composition using an aromatic ester compound having no polymerizable unsaturated bond. It was confirmed that the cured product had a high dielectric constant and dielectric loss tangent, and the dielectric properties were extremely insufficient.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials For Photolithography (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本発明は、重合性不飽和結合含有芳香族エステル化合物(A)と、酸基含有(メタ)アクリレート樹脂(B)とを含有することを特徴とする酸基含有(メタ)アクリレート樹脂組成物、これを含有する硬化性樹脂組成物、硬化物、前記硬化性樹脂組成物からなる絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材を提供する。この酸基含有(メタ)アクリレート樹脂組成物は、高い光感度を有し、耐熱性及び誘電特性に優れた硬化物を形成することができる。

Description

酸基含有(メタ)アクリレート樹脂組成物、硬化性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材
 本発明は、高い光感度を有し、優れた耐熱性及び誘電特性を有する酸基含有(メタ)アクリレート樹脂組成物、これを含有する硬化性樹脂組成物、硬化物、前記硬化性樹脂組成物からなる絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材に関する。
 近年、プリント配線板向けのソルダーレジスト用樹脂材料としては、紫外線等の活性エネルギー線により硬化可能な硬化性樹脂組成物が広く用いられている。前記ソルダーレジスト用樹脂材料に対する要求特性としては、少ない露光量で硬化すること、アルカリ現像性に優れること、硬化物における耐熱性や強度、誘電特性等に優れることなど様々なものが挙げられる。
 従来のソルダーレジスト用樹脂材料としては、クレゾールノボラック型エポキシ樹脂とアクリル酸と無水フタル酸とを反応させて得られる中間体に、更にテトラヒドロ無水フタル酸を反応させて得られる酸基含有エポキシアクリレート樹脂を含む感光性樹脂組成物が知られているが(例えば、特許文献1参照。)、硬化物における耐熱性が十分ではなく、また、水酸基の生成により誘電率及び誘電正接が上昇するため、誘電特性が悪化する等の問題があった。
 そこで、高い光感度を有し、硬化物における耐熱性及び基材密着性により一層優れた材料が求められていた。
特開平8-259663号公報
 本発明が解決しようとする課題は、高い光感度を有し、優れた耐熱性及び誘電特性を有する酸基含有(メタ)アクリレート樹脂組成物、これを含有する硬化性樹脂組成物、硬化物、前記感光性樹脂組成物からなる絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材を提供することである。
 本発明者らは、上記課題を解決するため鋭意検討を行った結果、重合性不飽和結合含有芳香族エステル化合物と、酸基含有(メタ)アクリレート樹脂とを含有する酸基含有(メタ)アクリレート樹脂組成物を用いることによって、上記課題を解決できることを見出し、本発明を完成させた。
 すなわち、本発明は、重合性不飽和結合含有芳香族エステル化合物(A)と、酸基含有(メタ)アクリレート樹脂(B)とを含有することを特徴とする酸基含有(メタ)アクリレート樹脂組成物、これを含有する硬化性樹脂組成物、硬化物、前記硬化性樹脂組成物からなる絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材に関するものである。
 本発明の酸基含有(メタ)アクリレート樹脂組成物は、高い光感度を有し、耐熱性及び誘電特性に優れた硬化物を形成できることから、絶縁材料、ソルダーレジスト用樹脂材料、及び前記ソルダーレジスト用樹脂からなるレジスト部材に好適に用いることができる。なお、本発明でいう「優れた誘電特性」とは、低誘電率及び低誘電正接のことを云う。
 本発明の酸基含有(メタ)アクリレート樹脂組成物は、重合性不飽和結合含有芳香族エステル化合物(A)と、酸基含有(メタ)アクリレート樹脂(B)とを含有することを特徴とする。
 前記重合性不飽和結合含有芳香族エステル化合物(A)とは、分子構造中に重合性不飽和結合を1つまたは複数有し、芳香環同士がエステル結合にて結合された構造部位を有する化合物を云い、その他の具体構造や分子量等は特に問われず、多種多様な化合物を用いることができる。
 前記重合性不飽和結合含有芳香族エステル化合物(A)としては、例えば、フェノール性水酸基を有する芳香族化合物と、カルボキシル基を有する芳香族化合物、その酸ハロゲン化物及び/またはそのエステル化物(本明細書において、カルボキシル基を有する芳香族化合物、その酸ハロゲン化物、及び/またはそのエステル化物を併せて「カルボキシル基を有する芳香族化合物等」と称することがある。)との反応生成物であり、前記フェノール性水酸基を有する芳香族化合物、及び、前記カルボキシル基を有する芳香族化合物等のいずれか1つが、重合性不飽和結合含有置換基を有するものが挙げられる。
 前記フェノール性水酸基を有する芳香族化合物としては、例えば、フェノール性水酸基を2つ以上有する第1の芳香族化合物、フェノール性水酸基を1つ有する第2の芳香族化合物が挙げられる。
 前記第1の芳香族化合物としては、フェノール性水酸基を2つ以上有するものである。2つ以上のフェノール性水酸基を有することにより、後述する第3の芳香族化合物等または第4の芳香族化合物等と反応することでエステル構造を形成しうる。
 前記第1の芳香族化合物としては、特に制限されないが、例えば、置換または非置換の炭素原子数3~30の第1の芳香族環に2つ以上のフェノール性水酸基を有する化合物が挙げられる。
 前記炭素原子数3~30の第1の芳香族環としては、例えば、単環芳香族環、縮環芳香族環、環集合芳香族環等が挙げられる。
 前記単環芳香族環としては、例えば、ベンゼン、フラン、ピロール、チオフェン、イミダゾール、ピラゾール、オキサゾール、イソキサゾール、チアゾール、イソチアゾール、ピリジン、ピリミジン、ピリダジン、ピラジン、トリアジン等が挙げられる。
 前記縮環芳香族環としては、例えば、ナフタレン、アントラセン、フェナレン、フェナントレン、キノリン、イソキノリン、キナゾリン、フタラジン、プテリジン、クマリン、インドール、ベンゾイミダゾール、ベンゾフラン、アクリジン等が挙げられる。
 前記環集合芳香族環としては、例えば、ビフェニル、ビナフタレン、ビピリジン、ビチオフェン、フェニルピリジン、フェニルチオフェン、テルフェニル、ジフェニルチオフェン、クアテルフェニル等が挙げられる。
 前記炭素原子数3~30の第1の芳香族環は置換基を有していてもよい。この際、「第1の芳香族環の置換基」としては、例えば、炭素原子数1~10のアルキル基、炭素原子数1~10のアルコキシ基、ハロゲン原子、重合性不飽和結合含有置換基等が挙げられる。
 前記炭素原子数1~10のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、tert-ペンチル基、ネオペンチル基、1,2-ジメチルプロピル基、n-ヘキシル基、イソヘキシル基、n-ノニル基、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロノニル基が挙げられる。
 前記炭素原子数1~10のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、2-エチルヘキシルオキシ基、オクチルオキシ基、ノニルオキシ基等が挙げられる。
 ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 前記重合性不飽和結合含有置換基とは、重合性不飽和結合を少なくとも1つ有する炭素原子数2~30の置換基を意味する。この際、「不飽和結合」とは、炭素原子-炭素原子の二重結合、炭素原子-炭素原子の三重結合を意味する。前記不飽和結合含有置換基としては、アルケニル基やアルキニル基等が挙げられる。
 前記アルケニル基としては、例えば、ビニル基、アリル基、プロペニル基、イソプロペニル基、1-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1-ヘキセニル基、2-ヘキセニル基、3-ヘキセニル基、4-ヘキセニル基、5-ヘキセニル基、1-オクテニル基、2-オクテニル基、1-ウンデセニル基、1-ペンタデセニル基、3-ペンタデセニル基、7-ペンタデセニル基、1-オクタデセニル基、2-オクタデセニル基、シクロペンテニル基、シクロヘキセニル基、シクロオクテニル基、1,3-ブタジエニル基、1,4-ブタジエニル基、ヘキサ-1,3-ジエニル基、ヘキサ-2,5-ジエニル基、ペンタデカ-4,7-ジエニル基、ヘキサ-1,3,5-トリエニル基、ペンタデカ-1,4,7-トリエニル基等が挙げられる。
 前記アルキニル基としては、例えば、エチニル基、プロパルギル基、1-ブチニル基、2-ブチニル基、3-ブチニル基、3-ペンチニル基、4-ペンチニル基、1,3-ブタジイニル基等が挙げられる。
 これらのうち、重合性不飽和結合含有置換基としては、炭素原子数2~30のアルケニル基であることが好ましく、炭素原子数2~10のアルケニル基であることがより好ましく、炭素原子数2~5のアルケニル基であることがさらに好ましく、ビニル基、アリル基、プロペニル基、イソプロペニル基、1-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1,3-ブタジエニル基であることが特に好ましく、アリル基、プロペニル基、イソプロペニル基、1-プロペニル基であることが最も好ましい。
 上述の第1の芳香族環の置換基は、単独で含んでいても、2種以上を組み合わせて含んでいてもよい。
 そして、上述のように第1の芳香族化合物は、上述の置換または非置換の炭素原子数3~30の第1の芳香族環を構成する水素原子の少なくとも2つが水酸基に置換されてなるものである。
 前記第1の芳香族環が単環芳香族環である化合物(以下、単に「第1の単環芳香族環化合物」と称することがある)の具体例としては、例えば、カテコール、レゾルシノール、ヒドロキノン、ヒドロキシノール、フロログルシノール、ピロガロール、2,3-ジヒドロキシピリジン、2,4-ジヒドロキシピリジン、4,6-ジヒドロキシピリミジン、3-メチルカテコール、4-メチルカテコール、4-アリルピロカテコール等が挙げられる。
 前記第1の芳香族環が縮環芳香族環である化合物(以下、単に「第1の縮環芳香族環化合物」と称することがある)の具体例としては、例えば、1,3-ナフタレンジオール、1,5-ナフタレンジオール、2,6-ナフタレンジオール、2,7-ナフタレンジオール、1,2,4-ナフタレントリオール、1,4,5-ナフタレントリオール、9,10-ジヒドロキシアントラセン、1,4,9,10-テトラヒドロキシアントラセン、2,4-ジヒドロキシキノリン、2,6-ジヒドロキシキノリン、5,6-ジヒドロキシインドール、2-メチルナフタレン-1,4-ジオール等が挙げられる。
 前記第1の芳香族環が環集合芳香族環である化合物(以下、単に「第1の環集合芳香族環化合物」と称することがある)の具体例としては、例えば、2,2’-ジヒドロキシビフェニル、4,4’-ジヒドロキシビフェニル、3,4,4’-トリヒドロキシビフェニル、2,2’,3-トリヒドロキシビフェニル等が挙げられる。
 また、前記第1の芳香族化合物は、前記第1の芳香族環が連結基により連結された構造を有するものであってもよい。一実施形態において、第1の芳香族化合物は、下記化学式(1)で表される。
Figure JPOXMLDOC01-appb-C000002
 上記化学式(1)において、Arは、それぞれ独立して置換または非置換の第1の芳香族環基であり、Arは、それぞれ独立して置換または非置換の第2の芳香族環基であり、Xは、それぞれ独立して酸素原子、硫黄原子、置換または非置換のアルキレン、置換または非置換のシクロアルキレン、アラルキレンであり、nは0~10の整数である。この際、前記Ar及び前記Arを構成する水素原子の少なくとも2つが、水酸基に置換されてなる。なお、前記Xが連結基に相当する。
 前記Arは、置換または非置換の第1の芳香族環基である。上記化学式(1)の記載からも明らかなように、上述の置換または非置換の芳香族環を構成する芳香族環の水素原子のうちの1つが「X」と結合することとなる。
 前記第1の芳香族環基としては、例えば、ベンゼン、フラン、ピロール、チオフェン、イミダゾール、ピラゾール、オキサゾール、イソキサゾール、チアゾール、イソチアゾール、ピリジン、ピリミジン、ピリダジン、ピラジン、トリアジン等の単環芳香族化合物から水素原子が1つ除かれたもの;ナフタレン、アントラセン、フェナレン、フェナントレン、キノリン、イソキノリン、キナゾリン、フタラジン、プテリジン、クマリン、インドール、ベンゾイミダゾール、ベンゾフラン、アクリジン等の縮環芳香族化合物から水素原子が1つ除かれたもの等の芳香族化合物から水素原子が1つ除かれたものが挙げられる。また、これらの芳香族化合物を複数組み合わせたものであってもよく、例えば、ビフェニル、ビナフタレン、ビピリジン、ビチオフェン、フェニルピリジン、フェニルチオフェン、テルフェニル、ジフェニルチオフェン、クアテルフェニル等の環集合芳香族化合物から水素原子が1つ除かれたものが挙げられる。
 この際、第1の芳香族環基は置換基を有していてもよく、この際、「第1の芳香族環基の置換基」とは、前記第1の芳香族環基を構成する芳香族環の水素原子の少なくとも1つと置換されるものである。前記「第1の芳香族環基の置換基」としては、例えば、アルキル基、アルコキシ基、アルキルオキシカルボニル基、アルキルカルボニルオキシ基、ハロゲン原子等が挙げられる。
 前記アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、tert-ペンチル基、ネオペンチル基、1,2-ジメチルプロピル基、n-ヘキシル基、イソヘキシル基、シクロヘキシル基等が挙げられる。
 前記アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基等が挙げられる。
 前記アルキルオキシカルボニル基としては、例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、プロピルオキシカルボニル基、イソプロピルオキシカルボニル基、ブチルオキシカルボニル基、n-ブチルオキシカルボニル基、イソブチルオキシカルボニル基、sec-ブチルオキシカルボニル基、tert-ブチルオキシカルボニル基等が挙げられる。
 前記アルキルカルボニルオキシ基としては、例えば、メチルカルボニルオキシ基、エチルカルボニルオキシ基、プロピルカルボニルオキシ基、イソプロピルカルボニルオキシ基、ブチルカルボニルオキシ基、n-ブチルカルボニルオキシ基、イソブチルカルボニルオキシ基、sec-ブチルカルボニルオキシ基、tert-ブチルカルボニルオキシ基等が挙げられる。
 前記ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 これらのうち、Arは、ベンゼン、ナフタレン、アントラセン、フェナレン、フェナントレン、ビフェニル、ビナフタレン、クアテルフェニル、アリルベンゼン、ジアリルベンゼン、アリルナフタレン、ジアリルナフタレン、アリルビフェニル、ジアリルビフェニルから水素原子が1つ除かれたものであることが好ましく、ベンゼン、ナフタレン、ビフェニル、アリルベンゼン、ジアリルナフタレン、ジアリルビフェニルから水素原子が1つ除かれたものであることがより好ましい。
 前記Arは、それぞれ独立して置換または非置換の第2の芳香族環基である。上記化学式(1)の記載からも明らかなように、上述の置換または非置換の芳香族環を構成する芳香族環の水素原子のうち2つが「X」と結合することとなる。
 前記第2の芳香族環基としては、例えば、ベンゼン、フラン、ピロール、チオフェン、イミダゾール、ピラゾール、オキサゾール、イソキサゾール、チアゾール、イソチアゾール、ピリジン、ピリミジン、ピリダジン、ピラジン、トリアジン等の単環芳香族化合物から水素原子が2つ除かれたもの;ナフタレン、アントラセン、フェナレン、フェナントレン、キノリン、イソキノリン、キナゾリン、フタラジン、プテリジン、クマリン、インドール、ベンゾイミダゾール、ベンゾフラン、アクリジン等の縮環芳香族化合物から水素原子が2つ除かれたもの等の芳香族化合物から水素原子が2つ除かれたものが挙げられる。また、これらの芳香族化合物を複数組み合わせたものであってもよく、例えば、ビフェニル、ビナフタレン、ビピリジン、ビチオフェン、フェニルピリジン、フェニルチオフェン、テルフェニル、ジフェニルチオフェン、クアテルフェニル等の環集合芳香族化合物から水素原子が2つ除かれたものが挙げられる。
 この際、第2の芳香族環基は置換基を有していてもよい。「第2の芳香族環基の置換基」としては、上述した「第1の芳香族環基の置換基」と同様のものが挙げられる。
 前記Xは、それぞれ独立して、酸素原子、硫黄原子、置換または非置換のアルキレン、置換または非置換のシクロアルキレン、アラルキレンである。
 前記アルキレンとしては、例えば、メチレン、エチレン、プロピレン、1-メチルメチレン、1,1-ジメチルメチレン、1-メチルエチレン、1,1-ジメチルエチレン、1,2-ジメチルエチレン、プロピレン、ブチレン、1-メチルプロピレン、2-メチルプロピレン、ペンチレン、ヘキシレン等が挙げられる。
 前記シクロアルキレンとしては、例えば、シクロプロピレン、シクロブチレン、シクロペンチレン、シクロヘキシレン、シクロペンチレン、シクロへプチレン、および下記化学式(2-1)~(2-4)で表されるシクロアルキレン等が挙げられる。
Figure JPOXMLDOC01-appb-C000003
 なお、上記化学式(2-1)~(2-4)において、「*」はArまたはArと結合する部位を表す。
 前記アラルキレンとしては、例えば、下記化学式(3-1)~(3-8)で表されるアラルキレン等が挙げられる。
Figure JPOXMLDOC01-appb-C000004
 なお、上記化学式(3-1)~(3-8)において、「*」はArまたはArと結合する部位を表す。
 前記アルキレン、前記シクロアルキレン、前記アラルキレンは置換基を有していてもよい。この際、「Xの置換基」としては、上述した「第1の芳香族環の置換基」と同様のものが挙げられる。
 上記化学式(1)中のnは、0~10の整数であり、好ましくは0~8の整数であり、より好ましくは0~5の整数である。なお、上記化学式(1)で表される化合物がオリゴマーまたはポリマーである場合、nはその平均値を意味する。
 そして、前記Ar及び前記Arを構成する水素原子の少なくとも2つが、水酸基に置換されてなる。
 下記化学式(1)で表される化合物の具体例としては、特に制限されないが、例えば、各種のビスフェノール化合物や、下記化学式(4-1)~(4-8)で表される化合物、及びこれらの芳香核上に1つまたは複数の重合性不飽和結合含有置換基を有するものが挙げられる。
Figure JPOXMLDOC01-appb-C000005
 前記各種のビスフェノール化合物としては、例えば、ビスフェノールA、ビスフェノールAP、ビスフェノールB、ビスフェノールE、ビスフェノールF、ビスフェノールZ等が挙げられる。
 上記化学式(4-1)~(4-8)において、nは0~10の整数、好ましくは0~5の整数である。この際、化学式(4-1)~(4-8)で表される化合物がオリゴマーまたはポリマーである場合、nはその平均値を意味する。なお、本明細書において、「オリゴマー」とは、繰り返し単位が1~5である化合物を含むものを意味し、「ポリマー」とは、繰り返し単位が6以上である化合物を含むものを意味する。また、芳香環上の置換基である水酸基の置換位置については任意であり、ナフタレン環の場合において、他の構造と結合している環、結合していない環のいずれであってもよい。
 なお、一実施形態において、上述の第1の芳香族環が上記化学式(1)で表されるものは、第1の芳香族環を構成する水素原子の少なくとも1つが水酸基に置換されてなるものと、ジビニル化合物やジアルキルオキシメチル化合物との反応により合成することができる。
 この際、前記ジビニル化合物やジアルキルオキシメチル化合物としては、例えば、1,3-ブタジエン、1,5-ヘキサジエン、ジシクロペンタジエン、トリシクロペンタジエン、テトラシクロペンタジエン、ペンタシクロペンタジエン、ヘキサシクロペンタジエン等の脂肪族ジエン化合物;ジビニルベンゼン、ジビニルビフェニル等の芳香族ジエン化合物;ジメトキシメチルベンゼン、ジメトキシメチルビフェニル、ビスフェノールAメトキシ付加物、ビスフェノールAエトキシ付加物、ビスフェノールFメトキシ付加物、ビスフェノールFエトキシ付加物等のジアルキルオキシメチル化合物等が挙げられる。
 上述のフェノール性水酸基を2つ以上有する第1の芳香族化合物は、単独で用いることも2種以上を併用することもできる。
 前記第1の芳香族化合物の水酸基当量としては、高い光感度を有し、耐熱性及び誘電特性に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、130~500g/当量であることが好ましく、130~400g/当量であることがより好ましい。
 前記第1の芳香族化合物が、上記化学式(1)で表されるものであって、nがオリゴマーまたはポリマーの場合における重量平均分子量は、高い光感度を有し、耐熱性及び誘電特性に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、200~3000であることが好ましく、200~2000であることがより好ましい。なお、本明細書において、「重量平均分子量」の値は以下の方法により測定された値を採用するものとする。すなわち、ゲル浸透クロマトグラフィ(GPC)を以下の条件により測定して得られた値を採用する。
 GPCの測定条件
 測定装置:東ソー株式会社製「HLC-8320 GPC」
 カラム:東ソー株式会社製ガードカラム「HXL-L」
    +東ソー株式会社製「TSK-GEL G4000HXL」
    +東ソー株式会社製「TSK-GEL G3000HXL」
    +東ソー株式会社製「TSK-GEL G2000HXL」
    +東ソー株式会社製「TSK-GEL G2000HXL」
 検出器:RI(示差屈折計)
 データ処理:東ソー株式会社製「GPCワークステーション EcoSEC-WorkStation」
 カラム温度:40℃
 展開溶媒:テトラヒドロフラン
 流速:1.0ml/分
 標準:前記「GPC-8320 GPC」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた
 使用ポリスチレン
   東ソー株式会社製「A-500」
   東ソー株式会社製「A-1000」
   東ソー株式会社製「A-2500」
   東ソー株式会社製「A-5000」
   東ソー株式会社製「F-1」
   東ソー株式会社製「F-2」
   東ソー株式会社製「F-4」
   東ソー株式会社製「F-10」
   東ソー株式会社製「F-20」
   東ソー株式会社製「F-40」
   東ソー株式会社製「F-80」
   東ソー株式会社製「F-128」
 試料:樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)。
 前記第2の芳香族化合物としては、フェノール性水酸基を1つ有するものである。前記第2の芳香族化合物はフェノール性水酸基を1つ有することから、エステル化の反応を停止させる機能を有する。
 前記第2の芳香族化合物としては、例えば、置換または非置換の炭素原子数3~30の第2の芳香族環に1つのフェノール性水酸基を有する化合物が挙げられる。
 前記炭素原子数3~30の第2の芳香族環としては、例えば、単環芳香族環、縮環芳香族環、環集合芳香族環、アルキレンにより連結される芳香族環等が挙げられる。前記単環芳香族環、前記縮環芳香族環、前記環集合芳香族環としては、上述した第1の芳香族環と同様のものが挙げられる。
 前記アルキレンにより連結される芳香族環としては、例えば、ジフェニルメタン、ジフェニルエタン、1,1-ジフェニルエタン、2,2-ジフェニルプロパン、ナフチルフェニルメタン、トリフェニルメタン、ジナフチルメタン、ジナフチルプロパン、フェニルピリジルメタン、フルオレン、ジフェニルシクロペンタン等が挙げられる。
 第2の芳香族化合物に係る炭素原子数3~30の第2の芳香族環は置換基を有していてもよい。この際、「第2の芳香族環の置換基」としては、上述した「第1の芳香族環の置換基」と同様のものが挙げられる。
 そして、上述のように第2の芳香族化合物は、上述の置換または非置換の炭素原子数3~30の第2の芳香族環を構成する水素原子の1つが水酸基に置換される。
 前記第2の芳香族化合物としては、例えば、下記化学式(5-1)~(5-17)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000006
 上記化学式(5-1)~(5-17)において、Rは、重合性不飽和結合含有置換基である。前記重合性不飽和結合含有置換基は上述したものと同様である。さらに、pは、0または1以上の整数であり、好ましくは1~3であり、より好ましくは1または2であり、さらに好ましくは1である。なお、pが2以上の場合、芳香環上の結合位置は任意であり、例えば、化学式(5-6)のナフタレン環や化学式(5-17)の複素環においてはいずれの環上に置換していてもよく、化学式(5-9)等では、1分子中に存在するベンゼン環のいずれの環上に置換していても良いことを示し、1分子中における置換基の個数がpであることを示している。
 前記第2の芳香族化合物としては、より具体的には、フェノール、クレゾール、キシレノール、オルトアリルフェノール、メタアリルフェノール、パラアリルフェノール、2,4-ジアリルフェノール、2,6-ジアリルフェノール、2-アリル-4-メチルフェノール、2-アリル-6-メチルフェノール、2-アリル-4-メトキシ-6-メチルフェノール、2-プロパルギルフェノール、3-プロパルギルフェノール、4-プロパルギルフェノール等の芳香族環が単環芳香族環である化合物(以下、単に「第2の単環芳香族環化合物」と称することがある);1-ナフトール、2-ナフトール、2-アリル-1-ナフトール、3-アリル-1-ナフトール、1-アリル-2-ナフトール、3-アリル-2-ナフトール、5-アリル-1-ナフトール、6-アリル-1-ナフトール、ジアリルナフトール、2-アリル-4-メトキシ-1-ナフトール、2-プロパルギル-1-ナフトール、3-プロパルギル-1-ナフトール、1-プロパルギル-2-ナフトール、3-プロパルギル-2-ナフトール等の芳香族環が縮環芳香族環である化合物(以下、単に「第2の縮環芳香族環化合物」と称することがある);アリルヒドロキシビフェニル、ヒドロキシプロパルギルビフェニル等の芳香族環が環集合芳香族環である化合物(以下、単に「第2の環集合芳香族環化合物」と称することがある)等が挙げられる。
 上述のうち、前記第2の芳香族化合物は、第2の単環芳香族環化合物、第2の縮環芳香族環化合物であることが好ましく、オルトアリルフェノール、メタアリルフェノール、パラアリルフェノール、2-アリル-1-ナフトール、3-アリル-1-ナフトール、1-アリル-2-ナフトール、3-アリル-2-ナフトール、5-アリル-1-ナフトール、6-アリル-1-ナフトールであることがより好ましい。
 また、別の一実施形態において、前記第2の芳香族化合物は、第2の縮環芳香族環化合物(縮環芳香族環化合物)であることが好ましく、2-アリル-1-ナフトール、3-アリル-1-ナフトール、1-アリル-2-ナフトール、3-アリル-2-ナフトール、5-アリル-1-ナフトール、6-アリル-1-ナフトールであることがより好ましい。第2の芳香族化合物は、縮環芳香族環化合物であると、立体障害により分子運動が抑制されることで、誘電正接が低下しうることから好ましい。また、重合性不飽和結合含有芳香族エステル化合物(A)の高ハンドリング性、低粘度である観点においてはベンゼン環骨格を有する2-アリルフェノール等が好ましく、一方、得られる酸基含有(メタ)アクリレート樹脂組成物が高い光感度を有し、耐熱性及び誘電特性に優れた硬化物を形成可能なことからナフタレン環骨格を有する2-アリル-1-ナフトール、1-アリル-2-ナフトール等が好ましい。
 なお、上述のフェノール性水酸基を1つ有する第2の芳香族化合物は、単独で用いることも2種以上を併用することもできる。
 前記カルボキシル基を有する芳香族化合物等としては、例えば、カルボキシル基を2つ以上有する第3の芳香族化合物、カルボキシル基を1つ有する第4の芳香族化合物、またはそれらの酸ハロゲン化物やエステル化物が挙げられる。
 前記第3の芳香族化合物、その酸ハロゲン化物、及び/またはそのエステル化物は、カルボキシル基を2つ以上有する芳香族化合物、またはその誘導体、具体的には酸ハロゲン化物、エステル化物である(本明細書において、第3の芳香族化合物、その酸ハロゲン化物、及び/またはそのエステル化物を併せて「第3の芳香族化合物等」と称することがある。)。第3の芳香族化合物等は、2以上のカルボキシル基等を有することにより、上述の第1の芳香族化合物または第2の芳香族化合物と反応することでエステル構造を形成しうる。
 前記第3の芳香族化合物等としては、例えば、置換または非置換の炭素原子数3~30の第3の芳香族環にカルボキシル基等を2つ以上有する化合物が挙げられる。
 前記「カルボキシル基等」とは、例えば、カルボキシル基;フッ化アシル基、塩化アシル基、臭化アシル基等のハロゲン化アシル基;メチルオキシカルボニル基、エチルオキシカルボニル基等のアルキルオキシカルボニル基;フェニルオキシカルボニル基、ナフチルオキシカルボニル基等のアリールオキシカルボニル基等が挙げられる。なお、ハロゲン化アシル基を有する場合、前記第3の芳香族化合物は酸ハロゲン化物であり、アルキルオキシカルボニル基、アリールオキシカルボニル基を有する場合、前記第3の芳香族化合物はエステル化物となりうる。これらのうち、前記第3の芳香族化合物はカルボキシル基、ハロゲン化アシル基、アリールオキシカルボニル基を有することが好ましく、カルボキシル基、ハロゲン化アシル基を有することがさらに好ましく、カルボキシル基、塩化アシル基、臭化アシル基を有することがさらに好ましい。
 前記炭素原子数3~30の第3の芳香族環としては、例えば、単環芳香族環、縮環芳香族環、環集合芳香族環、アルキレンにより連結される芳香族環等が挙げられる。前記単環芳香族環、前記縮環芳香族環、前記環集合芳香族環、アルキレンにより連結される芳香族環としては、上述した第1の芳香族環および第2の芳香族環と同様のものが挙げられる。
 前記第3の芳香族化合物等に係る炭素原子数3~30の第3の芳香族環は置換基を有していてもよい。この際、「第3の芳香族環の置換基」としては、上述した「第1の芳香族環の置換基」と同様のものが挙げられる。
 前記第3の芳香族化合物等としては、例えば、下記化学式(6-1)~(6-15)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 上記化学式(6-1)~(6-15)において、Rは、重合性不飽和結合含有置換基である。この際、前記重合性不飽和結合含有置換基は上述したものと同様である。また、Rは、水酸基、ハロゲン原子、アルキルオキシ基、アリールオキシ基である。また、pは0または1以上の整数であり、好ましくは0または1~3であり、より好ましくは0または1であり、さらに好ましくは0である。qは、2または3である。なお、p及びqが2以上の場合、芳香環上の結合位置は任意であり、例えば、化学式(6-5)のナフタレン環や化学式(6-15)の複素環においてはいずれの環上に置換していてもよく、化学式(6-7)等では、1分子中に存在するベンゼン環のいずれの環上に置換していてもよいことを示し、1分子中における置換基の個数がp及びqであることを示している。
 前記第3の芳香族化合物等としては、より具体的には、イソフタル酸、テレフタル酸、5-アリルイソフタル酸、2-アリルテレフタル酸等のベンゼンジカルボン酸;トリメリット酸、5-アリルトリメリット酸等のベンゼントリカルボン酸;ナフタレン-1,5-ジカルボン酸、ナフタレン-2,3-ジカルボン酸、ナフタレン-2,6-ジカルボン酸、ナフタレン-2,7-ジカルボン酸、3-アリルナフタレン-1,4-ジカルボン酸、3,7-ジアリルナフタレン-1,4-ジカルボン酸等のナフタレンジカルボン酸;2,4,5-ピリジントリカルボン酸等のピリジントリカルボン酸;1,3,5-トリアジン-2,4,6-トリカルボン酸等のトリアジンカルボン酸;これらの酸ハロゲン化物、エステル化物等が挙げられる。これらのうち、ベンゼンジカルボン酸、ベンゼントリカルボン酸であることが好ましく、イソフタル酸、テレフタル酸、イソフタル酸クロリド、テレフタル酸クロリド、1,3,5-ベンゼントリカルボン酸、1,3,5-ベンゼントリカルボニルトリクロリドであることがより好ましく、イソフタル酸クロリド、テレフタル酸クロリド、1,3,5-ベンゼントリカルボニルトリクロリドであることがさらに好ましい。
 上述のうち、芳香族環が単環芳香族環である第3の芳香族化合物等、芳香族環が縮環芳香族環である第3の芳香族化合物等であることが好ましく、ベンゼンジカルボン酸、ベンゼントリカルボン酸、ナフタレンジカルボン酸、これらの酸ハロゲン化物であることが好ましく、ベンゼンジカルボン酸、ナフタレンジカルボン酸、これらの酸ハロゲン化物であることがより好ましく、イソフタル酸、テレフタル酸、ナフタレン-1,5-ジカルボン酸、ナフタレン-2,3-ジカルボン酸、ナフタレン-2,6-ジカルボン酸、ナフタレン-2,7-ジカルボン酸、これらの酸ハロゲン化物であることがさらに好ましい。
 なお、上述の第3の芳香族化合物等は、単独で用いることも2種以上を併用することもできる。
 前記第4の芳香族化合物、その酸ハロゲン化物、及び/またはそのエステル化物は、カルボキシル基を1つ有する芳香族化合物、またはその誘導体、具体的には酸ハロゲン化物、エステル化物である(本明細書において、第4の芳香族化合物、その酸ハロゲン化物、及び/またはそのエステル化物を併せて「第4の芳香族化合物等」と称することがある。)。第4の芳香族化合物等は、カルボキシル基等を1つ有することから、エステル化反応を停止させる機能を有する。
 前記第4の芳香族化合物等としては、例えば、置換または置換の炭素原子数3~30の第4の芳香族環にカルボキシル基等を1つ有する化合物が挙げられる。
 前記「カルボキシル基等」とは、上述した「カルボキシル基等」と同様のものが挙げられる。
 前記炭素原子数3~30の第4の芳香族環としては、例えば、単環芳香族環、縮環芳香族環、環集合芳香族環、アルキレンにより連結される芳香族環等が挙げられる。前記単環芳香族環、前記縮環芳香族環、前記環集合芳香族環、アルキレンにより連結される芳香族環としては、上述した第1の芳香族環、第2の芳香族環及び第3の芳香族環と同様のものが挙げられる。
 前記第4の芳香族化合物等に係る炭素原子数3~30の第4の芳香族環は置換基を有していてもよい。この際、「第4の芳香族環の置換基」としては、上述した「第1の芳香族環の置換基」と同様のものが挙げられる。
 前記第4の芳香族化合物等としては、例えば、下記化学式(7-1)~(7-15)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000008
 上記化学式(7-1)~(7-15)において、Rは、重合性不飽和結合含有置換基である。この際、前記重合性不飽和結合含有置換基は上述したものと同様である。また、Rは水酸基、ハロゲン原子、アルキルオキシ基、アリールオキシ基である。また、pは、0または1以上の整数であり、好ましくは0または1~3であり、より好ましくは0または1であり、さらに好ましくは0である。qは、1である。なお、上記化学式における芳香環上の置換基の位置については、任意であり、例えば、化学式(7-5)のナフタレン環や化学式(7-15)の複素環においてはいずれの環上に置換していてもよく、化学式(7-7)等では、1分子中に存在するベンゼン環のいずれの環上に置換していてもよいことを示し、1分子中における置換基の個数がp及びqであることを示している。
 前記第4の芳香族化合物等としては、より具体的には、安息香酸、ベンジルクロライド、ナフタレンカルボン酸、ナフタレンカルボニルクロリド等が挙げられる。
 [重合性不飽和結合含有芳香族エステル化合物(A)の構成]
 前記フェノール性水酸基を有する芳香族化合物、及び、前記カルボキシル基を有する芳香族化合物等の少なくとも1つが、炭素原子数2~30の重合性不飽和結合含有置換基を有する。すなわち、前記フェノール性水酸基を有する芳香族化合物、及び、前記カルボキシル基を有する芳香族化合物等の両方が重合性不飽和結合含有置換基を有していてもよいし、前記フェノール性水酸基を有する芳香族化合物のみが重合性不飽和結合含有置換基を有していてもよいし、前記カルボキシル基を有する芳香族化合物等のみが重合性不飽和結合含有置換基を有していてもよい。また、2種以上のフェノール性水酸基を有する芳香族化合物、2種以上のカルボキシル基を有する芳香族化合物等を用いる場合には、その一部のみが重合性不飽和結合含有置換基を有していてもよい。
 一実施形態において、少なくとも前記第2の芳香族化合物が重合性不飽和結合含有置換基を有することが好ましい。上述の通り、前記第2の芳香族化合物に由来する構造は、重合性不飽和結合含有芳香族エステル化合物(A)の分子末端に位置することとなる。その結果、第2の芳香族化合物が有する重合性不飽和結合含有置換基もまた芳香族エステル化合物(A)の分子末端に配置されることとなる。この場合、得られる酸基含有(メタ)アクリレート樹脂組成物が高い光感度を有し、耐熱性及び誘電特性に優れた硬化物を形成可能なことから好ましい。
 前記重合性不飽和結合含有芳香族エステル化合物(A)は、上述のように、フェノール性水酸基を有する化合物と、カルボキシル基を有する芳香族化合物等との反応生成物であり、前記第1~4の芳香族化合物等、種々の化合物を含みうるが、エステル化の反応を停止する機能を有することから、第2の芳香族化合物、及び第4の芳香族化合物のいずれか一方、または両方を必須として含有する。なお、前記重合性不飽和結合含有芳香族エステル化合物(A)の構成については、前記第1~4の芳香族化合物等の使用量、反応条件等を適宜変更することで制御することができる。
 一実施形態において、前記重合性不飽和結合含有芳香族エステル化合物(A)は、例えば、第1の芳香族化合物と、第4の芳香族化合物等との反応生成物である重合性不飽和結合含有芳香族エステル化合物;第1の芳香族化合物と、第2の芳香族化合物と、第3の芳香族化合物等との反応生成物である重合性不飽和結合含有芳香族エステル化合物;第1の芳香族化合物と、第3の芳香族化合物と、第4の芳香族化合物等との反応生成物である重合性不飽和結合含有芳香族エステル化合物;第1の芳香族化合物と、第2の芳香族化合物と、第3の芳香族化合物等と、第4の芳香族化合物等との反応生成物である重合性不飽和結合含有芳香族エステル化合物;第2の芳香族化合物と、第3の芳香族化合物との反応生成物である芳香族化合物;第2の芳香族化合物と、第4の芳香族化合物との反応生成物である重合性不飽和結合含有芳香族化合物などが挙げられる。
 なお、本形態に係る重合性不飽和結合含有芳香族エステル化合物(A)は、原則として、得られる樹脂の分子中に水酸基を有さない。ただし、本発明の効果を阻害しない範囲において、反応生成物の副生物として水酸基を有する化合物を含んでもよい。
 一実施形態において、前記重合性不飽和結合含有芳香族エステル化合物(A)は、下記化学式(8)で表される化合物を含む。
Figure JPOXMLDOC01-appb-C000009
 上記化学式(8)において、Arは第1の芳香族化合物に由来する構造であり、Arは第2の芳香族化合物に由来する構造であり、Arは第3の芳香族化合物に由来する構造である。また、nは0~10の整数である。なお、重合性不飽和結合含有芳香族エステル化合物(A)がオリゴマーまたはポリマーである場合、nはその平均値を表す。
 すなわち、上記化学式(8)中、Arは、それぞれ独立して、置換または非置換の炭素原子数3~30の第1の芳香族環から水素原子が2つ以上除かれたもの、または第1の芳香族環が連結基により連結された構造を有するものから水素原子が2つ以上除かれたものが挙げられる。
 また、上記化学式(8)中、Arは、それぞれ独立して、置換または非置換の炭素原子数3~30の第2の芳香族環から水素原子が1つ除かれたものが挙げられる。
 上記化学式(8)中、Arは、置換または非置換の炭素原子数3~30の第3の芳香族環から水素原子が2つ以上除かれたものが挙げられる。
 なお、Ar、Ar、及びArの少なくとも1つが炭素原子数2~30の重合性不飽和結合含有置換基を有していてもよい。
 この際、前記第1の芳香族化合物がフェノール性水酸基を3つ以上有する場合には、Arがさらに分岐した構造を有しうる。
 また、前記第3の芳香族化合物が3つ以上のカルボキシル基等を有する場合には、Arがさらに分岐した構造を有しうる。
 一実施形態において、前記重合性不飽和結合含有芳香族エステル化合物(A)は、下記化学式(9)で表される化合物を含む。
Figure JPOXMLDOC01-appb-C000010
 上記化学式(9)において、Arは第1の芳香族化合物に由来する構造であり、Arは第2の芳香族化合物に由来する構造であり、Arは第3の芳香族化合物に由来する構造であり、Arは第4の芳香族化合物に由来する構造である。また、nは0~10の整数である。なお、重合性不飽和結合含有芳香族エステル化合物(A)がオリゴマーまたはポリマーである場合、nはその平均値を表す。
 すなわち、上記化学式(9)中、Arは、それぞれ独立して、置換または非置換の炭素原子数3~30の第1の芳香族環から水素原子が2つ以上除かれたもの、または第1の芳香族環が連結基により連結された構造を有するものから水素原子が2つ以上除かれたものが挙げられる。
 また、上記化学式(9)中、Arは、それぞれ独立して、置換または非置換の炭素原子数3~30の第2の芳香族環から水素原子が1つ除かれたものが挙げられる。
 上記化学式(9)中、Arは、置換または非置換の炭素原子数3~30の第3の芳香族環から水素原子が2つ以上除かれたものが挙げられる。
 上記化学式(9)中、Arは、置換または非置換の炭素原子数3~30の第4の芳香族環から水素原子が1つ除かれたものが挙げられる。
 なお、Ar、Ar、Ar及びArの少なくとも1つが炭素原子数2~30の重合性不飽和結合含有置換基を有していてもよい。
 この際、前記第1の芳香族化合物がフェノール性水酸基を3つ以上有する場合には、Arがさらに分岐した構造を有しうる。
 また、前記第3の芳香族化合物等が3つ以上のカルボキシル基等を有する場合には、Arがさらに分岐した構造を有しうる。
 一実施形態において、前記重合性不飽和結合含有芳香族エステル化合物(A)は、下記化学式(10)で表される化合物を含む。
Figure JPOXMLDOC01-appb-C000011
 上記化学式(10)において、Arは第1の芳香族化合物に由来する構造であり、Arは第3の芳香族化合物に由来する構造であり、Arは第4の芳香族化合物に由来する構造である。また、nは0~10の整数である。なお、重合性不飽和結合含有芳香族エステル化合物(A)がオリゴマーまたはポリマーである場合、nはその平均値を表す。
 すなわち、上記化学式(10)中、Arは、それぞれ独立して、置換または非置換の炭素原子数3~30の第1の芳香族環から水素原子が2つ以上除かれたもの、または第1の芳香族環が連結基により連結された構造を有するものから水素原子が2つ以上除かれたものが挙げられる。
 また、上記化学式(10)中、Arは、置換または非置換の炭素原子数3~30の第3の芳香族環から水素原子が2つ以上除かれたものが挙げられる。
 上記化学式(10)中、Arは、置換または非置換の炭素原子数3~30の第4の芳香族環から水素原子が1つ除かれたものが挙げられる。
 なお、Ar、Ar及びArの少なくとも1つが炭素原子数2~30の重合性不飽和結合含有置換基を有していてもよい。
 この際、前記第1の芳香族化合物がフェノール性水酸基を3つ以上有する場合には、Arがさらに分岐した構造を有しうる。
 また、前記第3の芳香族化合物等が3つ以上のカルボキシル基等を有する場合には、Arがさらに分岐した構造を有しうる。
 一実施形態において、重合性不飽和結合含有芳香族エステル化合物(A)が含む化合物としては、例えば、下記化学式(11-1)~(11-10)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 上記化学式(11-1)~(11-10)において、sは0~10の整数であり、好ましくは0~5の整数であり、rは1~10の整数である。この際、化学式(11-1)~(11-10)で表される化合物がオリゴマーまたはポリマーである場合、s、rはその平均値を意味する。なお、化学式中の破線は、Ar、並びにAr及び/またはArに相当する化合物が反応して得られる構造である。
 また、前記重合性不飽和結合含有芳香族エステル化合物(A)は、一実施形態において、例えば、下記化学式(a1)で表される重合性不飽和結合含有芳香族エステル化合物(A-1)や、下記化学式(a2)で表される重合性不飽和結合含有芳香族エステル化合物(A-2)を含む。
Figure JPOXMLDOC01-appb-C000015
〔式中、Arは、それぞれ独立して、置換または非置換の芳香族環基であり、Arは、それぞれ独立して、置換または非置換の第2の芳香族環基であり、前記Ar及び前記Arの少なくとも1つが重合性不飽和結合含有置換基を有するものである。nは、1~3の整数である。〕
 前記重合性不飽和結合含有芳香族エステル化合物(A-1)としては、前記化学式(a1)で表されるものである。
 前記化学式(a1)中のArは、置換または非置換の第1の芳香族環基である。後述するように、前記化学式(a1)中のnは1~3の整数であることから、第1の芳香族環基を構成する芳香族環の水素原子のうち1つ~3つが「-C(O)OAr」に置換されることとなる。
 前記第1の芳香族環基としては、例えば、ベンゼン、フラン、ピロール、チオフェン、イミダゾール、ピラゾール、オキサゾール、イソキサゾール、チアゾール、イソチアゾール、ピリジン、ピリミジン、ピリダジン、ピラジン、トリアジン等の単環芳香族化合物から水素原子が2つまたは3つ除かれたもの;ナフタレン、アントラセン、フェナレン、フェナントレン、キノリン、イソキノリン、キナゾリン、フタラジン、プテリジン、クマリン、インドール、ベンゾイミダゾール、ベンゾフラン、アクリジン等の縮環芳香族化合物から水素原子が2つまたは3つ除かれたものなどの芳香族化合物から水素原子が2つまたは3つ除かれたものが挙げられる。また、これらの芳香族化合物を複数組み合わせたものであってもよく、例えば、ビフェニル、ビナフタレン、ビピリジン、ビチオフェン、フェニルピリジン、フェニルチオフェン、テルフェニル、ジフェニルチオフェン、クアテルフェニル等の環集合芳香族化合物から水素原子が2つまたは3つが除かれたもの;ジフェニルメタン、ジフェニルエタン、1,1-ジフェニルエタン、2,2-ジフェニルプロパン、ナフチルフェニルメタン、トリフェニルメタン、ジナフチルメタン、ジナフチルプロパン、フェニルピリジルメタン、フルオレン、ジフェニルシクロペンタン等のアルキレンにより連結される芳香族化合物から水素原子が2つまたは3つ除かれたもの等が挙げられる。これらの中でも、高い光感度を有し、耐熱性及び誘電特性に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、Arは置換または非置換のベンゼン環構造又はナフタレン環構造であることが好ましく、置換または非置換のベンゼン環構造であることがより好ましい。
 Arに係る前記第1の芳香族環基は、置換基を有していてもよく、この際、第1の芳香族環基の置換基とは、前記第1の芳香族環基を構成する芳香族環の水素原子の少なくとも1つと置換されるものである。前記「第1の芳香族環基の置換基」としては、例えば、アルキル基、アルコキシ基、アルキルオキシカルボニル基、アルキルカルボニルオキシ基、ハロゲン原子等が挙げられる。
 前記アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、tert-ペンチル基、ネオペンチル基、1,2-ジメチルプロピル基、n-ヘキシル基、イソヘキシル基、シクロヘキシル基等が挙げられる。
 前記アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基等が挙げられる。
 前記アルキルオキシカルボニル基としては、例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、プロピルオキシカルボニル基、イソプロピルオキシカルボニル基、ブチルオキシカルボニル基、n-ブチルオキシカルボニル基、イソブチルオキシカルボニル基、sec-ブチルオキシカルボニル基、tert-ブチルオキシカルボニル基等が挙げられる。
 前記アルキルカルボニルオキシ基としては、例えば、メチルカルボニルオキシ基、エチルカルボニルオキシ基、プロピルカルボニルオキシ基、イソプロピルカルボニルオキシ基、ブチルカルボニルオキシ基、n-ブチルカルボニルオキシ基、イソブチルカルボニルオキシ基、sec-ブチルカルボニルオキシ基、tert-ブチルカルボニルオキシ基等が挙げられる。
 前記ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 本発明の一実施形態において、前記Arは重合性不飽和結合含有置換基を有していてもよい。前記重合性不飽和結合含有置換基の具体例としては、アルケニル基やアルキニル基等が挙げられる。
 前記アルケニル基としては、例えば、ビニル基、アリル基、プロペニル基、イソプロペニル基、1-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1-ヘキセニル基、2-ヘキセニル基、3-ヘキセニル基、4-ヘキセニル基、5-ヘキセニル基、1-オクテニル基、2-オクテニル基、1-ウンデセニル基、1-ペンタデセニル基、3-ペンタデセニル基、7-ペンタデセニル基、1-オクタデセニル基、2-オクタデセニル基、シクロペンテニル基、シクロヘキセニル基、シクロオクテニル基、1,3-ブタジエニル基、1,4-ブタジエニル基、ヘキサ-1,3-ジエニル基、ヘキサ-2,5-ジエニル基、ペンタデカ-4,7-ジエニル基、ヘキサ-1,3,5-トリエニル基、ペンタデカ-1,4,7-トリエニル基等が挙げられる。
 前記アルキニル基としては、例えば、エチニル基、プロパルギル基、1-ブチニル基、2-ブチニル基、3-ブチニル基、3-ペンチニル基、4-ペンチニル基、1,3-ブタジイニル基等が挙げられる。
 前記重合性不飽和結合含有置換基は、さらに、置換基を有していてもよい。前記置換基とは、前記重合性不飽和結合含有置換基を構成する水素原子の少なくとも1つと置換されるものである。前記置換基としては、例えば、アルキルオキシカルボニル基、アルキルカルボニルオキシ基、ハロゲン原子等が挙げられる。この際、アルキルオキシカルボニル基、アルキルカルボニルオキシ基、ハロゲン原子としては上述したものが挙げられる。
 これらのうち、重合性不飽和結合含有置換基としては、置換または非置換の炭素原子数2~30のアルケニル基であることが好ましく、置換または非置換の炭素原子数2~10のアルケニル基であることがより好ましく、置換または非置換の炭素原子数2~5のアルケニル基であることがさらに好ましく、ビニル基、アリル基、プロペニル基、イソプロペニル基、1-プロペニル基、1-ブテニル基、2-ブテニル基、3-ブテニル基、1,3-ブタジエニル基であることが特に好ましく、アリル基、プロペニル基、イソプロペニル基、1-プロペニル基であることが最も好ましい。
 前記Arの好ましい構造としては、例えば、下記式(12-1)~(12-17)等が挙げられる。
Figure JPOXMLDOC01-appb-C000016
 上記式(12-1)~(12-17)において、「*」は、「-C(O)OAr」に結合する位置を示す。なお、「-*」は芳香環のどの位置に結合されていてもよい。
 これらのうち、式(12-1)~(12-11)であることが好ましく、式(12-1)、(12-2)、(12-6)、(12-7)、(12-9)であることがより好ましく、式(12-1)、(12-2)、(12-6)、(12-7)であることがさらに好ましい。また、重合性不飽和結合含有芳香族エステル化合物(A)の高ハンドリング性、低粘度である観点においては式(12-1)、(12-2)であることが好ましく、一方、得られる酸基含有(メタ)アクリレート樹脂組成物が高い光感度を有し、耐熱性及び誘電特性に優れた硬化物を形成可能なことから、式(12-6)、(12-7)であることが好ましい。
 なお、式(12-1)~(12-17)の芳香族環の水素原子の少なくとも1つが重合性不飽和結合含有基と置換していてもよい。
 前記化学式(a1)中のArは、置換または非置換の第2の芳香族環基である。前記化学式(10)の記載からも明らかなように、第2の芳香族環基を構成する芳香族環の水素原子のうちの1つが「-OC(O)Ar」に置換されることとなる。
 前記第2の芳香族環基としては、例えば、ベンゼン、フラン、ピロール、チオフェン、イミダゾール、ピラゾール、オキサゾール、イソキサゾール、チアゾール、イソチアゾール、ピリジン、ピリミジン、ピリダジン、ピラジン、トリアジン等の単環芳香族化合物から水素原子が1つ除かれたもの;ナフタレン、アントラセン、フェナレン、フェナントレン、キノリン、イソキノリン、キナゾリン、フタラジン、プテリジン、クマリン、インドール、ベンゾイミダゾール、ベンゾフラン、アクリジン等の縮環芳香族化合物から水素原子が1つ除かれたものなどの芳香族化合物から水素原子が1つ除かれたものが挙げられる。また、これらの芳香族化合物を複数組み合わせたものであってもよく、例えば、ビフェニル、ビナフタレン、ビピリジン、ビチオフェン、フェニルピリジン、フェニルチオフェン、テルフェニル、ジフェニルチオフェン、クアテルフェニル等の環集合芳香族化合物から水素原子が1つ除かれたもの;ジフェニルメタン、ジフェニルエタン、1,1-ジフェニルエタン、2,2-ジフェニルプロパン、ナフチルフェニルメタン、トリフェニルメタン、ジナフチルメタン、ジナフチルプロパン、フェニルピリジルメタン、フルオレン、ジフェニルシクロペンタン等のアルキレンにより連結される芳香族化合物から水素原子が1つ除かれたもの等が挙げられる。これらの中でも、高い光感度を有し、耐熱性及び誘電特性に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、Arは置換または非置換のベンゼン環構造又はナフタレン環構造であることが好ましい。
 Arに係る前記第2の芳香族環基は、置換基を有していてもよく、この際、第2の芳香族環基の置換基とは、前記第2の芳香族環基を構成する芳香族環の水素原子の少なくとも1つと置換されるものである。前記「第2の芳香族環基の置換基」としては、例えば、アルキル基、アルコキシ基、アルキルオキシカルボニル基、アルキルカルボニルオキシ基、ハロゲン原子等が挙げられる。この際、アルキル基、アルコキシ基、アルキルオキシカルボニル基、アルキルカルボニルオキシ基、ハロゲン原子としては上述したものが挙げられる。
 本発明の一実施形態において、前記Arは、上述したアルケニル基やアルキニル基等の重合性不飽和結合含有置換基を有していてもよい。前記重合性不飽和結合含有置換基は、単独で有していても、2種以上が組み合わされて有していてもよい。
 前記Arの好ましい構造としては、下記式(13-1)~(13-17)が挙げられる。
Figure JPOXMLDOC01-appb-C000017
 上記式(13-1)~(13-17)において、「*」は、「-OC(O)Ar」に結合する位置を示す。なお、「-*」は芳香環のどの位置に結合されていてもよい。
 これらのうち、式(13-1)~(13-11)であることが好ましく、式(13-1)、(13-6)、(13-9)であることがより好ましく、式(13-1)、(13-6)であることがさらに好ましい。
 なお、式(13-1)~(13-17)の芳香族環の水素原子の少なくとも1つが重合性不飽和結合含有基と置換していてもよい。
 一実施形態によれば、Arが上記式(12-1)、(12-2)、(12-6)、(12-7)、(12-9)であり、Arが上記式(13-1)、(13-6)、(13-9)であることがより好ましく、Arが上記式(12-1)、(12-2)、(12-6)、(12-7)であり、Arが上記式(13-1)、(13-6)であることがさらに好ましく、Arが上記式(12-1)であり、Arが上記式(13-1)、(13-6)であることが特に好ましい。
 上記化学式(a1)及び(a2)において、前記Ar及び前記Arの少なくとも1つが重合性不飽和結合含有置換基を有する。この際、Arのみが重合性不飽和結合含有置換基を有していてもよいし、Arのみが重合性不飽和結合含有置換基を有していてもよいし、Ar及びArがともに重合性不飽和結合含有置換基を有していてもよい。
 一実施形態によれば、上記化学式(a1)において、Arの少なくとも1つが重合性不飽和結合含有置換基を有することが好ましく、すべてのArが重合性不飽和結合含有置換基を有することがより好ましく、Arが重合性不飽和結合含有置換基を有さず、かつ、すべてのArが重合性不飽和結合含有置換基を有することがさらに好ましい。重合性不飽和結合含有置換基がArに存在すると、高い光感度を有し、耐熱性と誘電特性のバランスに優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから好ましい。
 また、一実施形態によれば、上記化学式(a2)において、Arの少なくとも1つが重合性不飽和結合含有置換基を有することが好ましく、すべてのArが重合性不飽和結合含有置換基を有することがより好ましく、Arが重合性不飽和結合含有置換基を有さず、かつ、すべてのArが重合性不飽和結合含有置換基を有することがさらに好ましい。重合性不飽和結合含有置換基がArに存在すると、高い光感度を有し、耐熱性と誘電特性のバランスに優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから好ましい。
 上記化学式(a1)及び(a2)において、nは、1~3の整数である。すなわち、前記重合性不飽和結合含有芳香族エステル化合物(A-1)は、2つの芳香族環を結合するエステル結合を1つ~3つ有する。
 以上のことから、前記化学式(a1)で表される重合性不飽和結合含有芳香族エステル化合物(A-1)のより好ましい形態としては、下記化学式(a1-1)または(a1-2)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000018
〔式中Rは、重合性不飽和結合含有置換基である。Rは、それぞれ独立にアルキル基、アルコキシ基、アルキルオキシカルボニル基、アルキルカルボニルオキシ基、ハロゲン原子のいずれかである。hは1~3の整数であり、iはそれぞれ独立に1以上の整数であり、jはそれぞれ独立に0または1以上の整数であり、i+jは5以下の整数である。kは1~3の整数であり、lはそれぞれ独立に1以上の整数であり、mはそれぞれ独立に0または1以上の整数であり、l+mは7以下の整数である。i、j、l、mが2以上の整数である場合、複数のR或いはRは互いに同一であってもよいし、異なっていてもよい。式(a1-2)においてR、Rはナフタレン環上の何れの炭素原子上に置換していてもよい。〕
 前記式(a1-1)において、Rの特に好ましいものとしては、前述の通り、アリル基、プロペニル基、イソプロペニル基、1-プロペニル基が挙げられる。iは1または2であることが好ましく、1であることがより好ましい。
前記式(a1-2)において、Rの特に好ましいものとしては、前述の通り、アリル基、プロペニル基、イソプロペニル基、1-プロペニル基が挙げられる。lは1または2であることが好ましく、1であることがより好ましい。
 上述の化学式(a1)で表される重合性不飽和結合含有芳香族エステル化合物(A-1)の具体的な構造としては、特に制限されないが、例えば、下記化学式(14-1)~(14-47)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
 上記化学式(14-1)~(14-44)中、化学式(14-1)~(14-39)であることが好ましく、化学式(14-1)~(14-3)、(14-10)~(14-13)、(14-18)~(14-39)であることがより好ましく、化学式(14-1)~(14-3)、(14-12)、(14-13)、(14-19)~(14-21)、(14-23)~(14-26)、(14-29)、(14-30)、(14-32)~(14-39)であることがさらに好ましく、化学式(14-1)、(14-2)、(14-12)、(14-13)、(14-26)、(14-32)、(14-37)であることが特に好ましい。
 前記重合性不飽和結合含有芳香族エステル化合物(A-1)の製造方法は特に制限されず、適宜公知の方法により製造することができる。
 前記重合性不飽和結合含有芳香族エステル化合物(A-1)の製造方法としては、例えば、前記第2の芳香族化合物と、前記第3の芳香族化合物等とを反応させる方法が挙げられる。
 前記重合性不飽和結合含有芳香族エステル化合物(A-2)としては、前記化学式(a2)で表されるものである。
 前記化学式(a2)中のArは、置換または非置換の第1の芳香族環基である。後述するように、前記化学式(a2)中のnは1~3の整数であることから、第1の芳香族環基を構成する芳香族環の水素原子のうち1つが「-C(O)OAr」に置換されることとなる。
 前記化学式(a2)中のArとしては、上述した「前記化学式(10)中のAr」における「第1の芳香族環基」と同様のものが挙げられる。
 前記化学式(a2)中のArは、置換または非置換の第2の芳香族環基である。前記化学式(11)の記載からも明らかなように、第2の芳香族環基を構成する芳香族環の水素原子のうちの1つ~3つが「-OC(O)Ar」に置換されることとなる。
 前記化学式(a2)中のArとしては、上述した「前記化学式(a1)中のAr」における「第2の芳香族環基」と同様のものが挙げられる。
 前記化学式(a2)において、nは、1~3の整数である。すなわち、前記重合性不飽和結合含有芳香族エステル化合物(A-2)は、2つの芳香族環を結合するエステル結合を1つ~3つ有する。
 以上のことから、前記化学式(a2)で表される重合性不飽和結合含有芳香族エステル化合物(A-2)のより好ましい形態としては、下記化学式(1-3)または(1-4)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000023
〔式中Rは、重合性不飽和結合含有置換基である。Rは、それぞれ独立にアルキル基、アルコキシ基、アルキルオキシカルボニル基、アルキルカルボニルオキシ基、ハロゲン原子のいずれかである。hは1~3の整数であり、iはそれぞれ独立に1以上の整数であり、jはそれぞれ独立に0または1以上の整数であり、i+jは5以下の整数である。i、jが2以上の整数である場合、複数のR或いはRは互いに同一であってもよいし、異なっていてもよい。〕
 前記式(a2-1)において、Rの特に好ましいものとしては、前述の通り、アリル基、プロペニル基、イソプロペニル基、1-プロペニル基が挙げられる。iは1または2であることが好ましく、1であることがより好ましい。
 前記式(a2-2)において、Rの特に好ましいものとしては、前述の通り、アリル基、プロペニル基、イソプロペニル基、1-プロペニル基が挙げられる。lは1または2であることが好ましく、1であることがより好ましい。
 上述の化学式(a2)で表される重合性不飽和結合含有芳香族エステル化合物(A-2)の具体的な構造としては、特に制限されないが、例えば、下記化学式(15-1)~(15-3)で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000024
 前記重合性不飽和結合含有芳香族エステル化合物(A-2)の製造方法は特に制限されず、適宜公知の方法により製造することができる。
 前記重合性不飽和結合含有芳香族エステル化合物(A-2)の製造方法としては、例えば、前記第1の芳香族化合物と、前記第4の芳香族化合物等とを反応させる方法が挙げられる。
 前記重合性不飽和結合含有芳香族エステル化合物(A)の製造方法は、特に制限されず、適宜公知の方法により製造することができる。
 例えば、フェノール性水酸基を有する芳香族化合物の水酸基のモル数に対するカルボキシル基を有する芳香族化合物のカルボキシル基等のモル数の比(カルボキシル基等/水酸基)は、高い光感度を有し、耐熱性及び誘電特性に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、0.3~3であることが好ましい。
 また、前記重合性不飽和結合含有芳香族エステル化合物(A)の製造における、前記フェノール性水酸基を有する芳香族化合物と、カルボキシル基を有する芳香族化合物の反応は、反応条件については特に制限されず、適宜公知の手法が採用され得る。
 反応時のpHは、特に制限されないが、11以上であることが好ましい。この際、pHの調整は、塩酸、硫酸、硝酸、酢酸等の酸;水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、アンモニア等の塩基が使用され得る。
 反応温度も特に制限されず、20~100℃であることが好ましく、40~80℃であることがより好ましい。
 反応圧力も特に制限されず、常圧であることがより好ましい。
 反応時間も特に制限されず、0.5~10時間であることが好ましく、1~5時間であることがより好ましい。
 前記酸基含有(メタ)アクリレート樹脂(B)について説明する。
 前記酸基含有(メタ)アクリレート樹脂(B)としては、酸基及び(メタ)アクリロイル基を有していればよく、その他の具体構造や分子量等は特に問われず、多種多様な樹脂を用いることができる。
 前記酸基含有(メタ)アクリレート樹脂(B)が含有する酸基としては、例えば、カルボキシル基、スルホン酸基、燐酸基等が挙げられる。これらの中でも優れたアルカリ現像性を発現することから、カルボキシル基が好ましい。
 前記酸基含有(メタ)アクリレート樹脂(B)としては、例えば、〔1〕酸基及び(メタ)アクリロイル基を有するエポキシ樹脂(B-1)、〔2〕酸基及び(メタ)アクリロイル基を有するアクリルアミド樹脂(B-2)〔3〕酸基及び(メタ)アクリロイル基を有するアミドイミド樹脂(B-3)、〔4〕酸基及び(メタ)アクリロイル基を有するアクリル樹脂(B-4)、〔5〕酸基及び(メタ)アクリロイル基を有するウレタン樹脂(B-5)等が挙げられる。
 〔1〕酸基及び(メタ)アクリロイル基を有するエポキシ樹脂(B-1)について説明する。
 前記酸基及び(メタ)アクリロイル基を有するエポキシ樹脂(B-1)としては、例えば、エポキシ樹脂(b1-1)と、不飽和モノカルボン酸(b1-2)と、ポリカルボン酸無水物(b1-3)とを必須の反応原料として得られるもの等が挙げられる。
 前記エポキシ樹脂(b1-1)としては、樹脂中に複数のエポキシ基を有しているものであれば、その具体構造は特に限定されない。
 前記エポキシ樹脂(b1-1)としては、ビスフェノール型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、フェニレンエーテル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、ビフェニル型エポキシ樹脂、水添ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、フルオレン型エポキシ樹脂、キサンテン型エポキシ樹脂、ジヒドロキシベンゼン型エポキシ樹脂、トリヒドロキシベンゼン型エポキシ樹脂等が挙げられる。
 前記不飽和モノカルボン酸(b1-2)とは、一分子中に(メタ)アクリロイル基とカルボキシル基とを有する化合物をいい、例えば、アクリル酸、メタクリル酸等が挙げられる。また、前記不飽和モノカルボン酸(b1-2)のエステル化物、酸ハロゲン化物、酸無水物等も用いることができる。これらの不飽和モノカルボン酸(b1-2)は、単独で用いることも2種以上を併用することもできる。
 前記不飽和モノカルボン酸(b1-2)のエステル化物としては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸イソプロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸2-エチルヘキシル等の(メタ)アクリル酸アルキルエステル化合物;(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸ヒドロキシブチル等の水酸基含有(メタ)アクリル酸エステル化合物;(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ジエチルアミノエチル等の窒素含有(メタ)アクリル酸エステル化合物;(メタ)アクリル酸グリシジル、(メタ)アクリル酸テトラヒドロフルフリル、(メタ)アクリル酸モルホリル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸シクロへキシル等のその他(メタ)アクリル酸エステル化合物などが挙げられる。
 前記不飽和モノカルボン酸(b1-2)の酸ハロゲン化物としては、例えば、(メタ)アクリル酸クロライド等が挙げられる。
 前記不飽和モノカルボン酸(b1-2)の酸無水物としては、例えば、(メタ)アクリル酸無水物等が挙げられる。
 前記ポリカルボン酸無水物(b1-3)は、一分子中に2つ以上のカルボキシル基を有する化合物の酸無水物であれば、いずれのものも用いることができる。前記ポリカルボン酸無水物としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、マレイン酸、フマル酸、シトラコン酸、イタコン酸、グルタコン酸、1,2,3,4-ブタンテトラカルボン酸、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルヘキサヒドロフタル酸、シクロヘキサントリカルボン酸、シクロヘキサンテトラカルボン酸、ビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸、メチルビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸、フタル酸、トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸、ナフタレントリカルボン酸、ナフタレンテトラカルボン酸、ビフェニルジカルボン酸、ビフェニルトリカルボン酸、ビフェニルテトラカルボン酸、ベンゾフェノンテトラカルボン酸等のジカルボン酸化合物の酸無水物などが挙げられる。
 前記酸基及び(メタ)アクリロイル基を有するエポキシ樹脂(B-1)の製造方法は、前記エポキシ樹脂(b1-1)、前記不飽和モノカルボン酸(b1-2)、及び前記ポリカルボン酸無水物(b1-3)を必須の反応原料とするものであれば特に限定されず、どのような方法にて製造してもよい。例えば、反応原料の全てを一括で反応させる方法で製造してもよいし、反応原料を順次反応させる方法で製造してもよい。なかでも、反応の制御が容易であることから、先にエポキシ樹脂(b1-1)と不飽和モノカルボン酸(b1-2)とを反応させ、次いで、ポリカルボン酸無水物(b1-3)を反応させる方法が好ましい。該反応は、例えば、エポキシ樹脂(b1-1)と不飽和モノカルボン酸(b1-2)とをエステル化反応触媒の存在下、100~150℃の温度範囲で反応させた後、反応系中にポリカルボン酸無水物(b1-3)を加え、80~120℃の温度範囲で反応させる方法等により行うことができる。
 前記エポキシ樹脂(b1-1)と不飽和モノカルボン酸(b1-2)との反応割合は、エポキシ樹脂(b1-1)中のエポキシ基1モルに対し、不飽和モノカルボン酸(b1-2)を0.9~1.1モルの範囲で用いることが好ましい。また、前記ポリカルボン酸無水物(b1-3)の反応割合は、エポキシ樹脂(b1-1)中のエポキシ基1モルに対し、0.2~1.0モルの範囲で用いることが好ましい。
 前記エステル化反応触媒としては、例えば、トリメチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン等のリン化合物、トリエチルアミン、トリブチルアミン、ジメチルベンジルアミン等のアミン化合物、2-メチルイミダゾール、2-ヘプタデシルイミダゾール、2-エチル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-イソブチル-2-メチルイミダゾール等のイミダゾール化合物などが挙げられる。これらの反応触媒は、単独で用いることも2種以上を併用することもできる。
 前記反応触媒の添加量は、反応原料の合計100質量部に対して0.001~5質量部の範囲が好ましい。
 前記エポキシ樹脂(b1-1)、前記不飽和モノカルボン酸(b1-2)、及び前記ポリカルボン酸無水物(b1-3)の反応は、必要に応じて有機溶剤中で行うこともできる。
 前記有機溶剤としては、例えば、メチルエチルケトン、アセトン、ジメチルホルムアミド、メチルイソブチルケトン等のケトン溶剤;テトラヒドロフラン、ジオキソラン等の環状エーテル溶剤;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル溶剤;トルエン、キシレン、ソルベントナフサ等の芳香族溶剤;シクロヘキサン、メチルシクロヘキサン等の脂環族溶剤;カルビトール、セロソルブ、メタノール、イソプロパノール、ブタノール、プロピレングリコールモノメチルエーテルなどのアルコール溶剤;アルキレングリコールモノアルキルエーテル、ジアルキレングリコールモノアルキルエーテル、ジアルキレングリコールモノアルキルエーテルアセテート等のグリコールエーテル溶剤;メトキシプロパノール、シクロヘキサノン、メチルセロソルブ、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等が挙げられる。これらの有機溶剤は、単独で用いることも2種以上を併用することもできる。また、前記有機溶剤の使用量は、反応効率が良好となることから、反応原料の合計質量に対し0.1~5倍量程度の範囲で用いることが好ましい。
 前記酸基及び(メタ)アクリロイル基を有するエポキシ樹脂(B-1)の酸価は、高い光感度を有し、耐熱性及び誘電特性に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、30~150mgKOH/gの範囲が好ましく、40~120mgKOH/gの範囲がより好ましい。なお、本願発明において酸基及び(メタ)アクリロイル基を有するエポキシ樹脂(B-1)の酸価は、JIS K 0070(1992)の中和滴定法にて測定される値である。
 次に、〔2〕酸基及び(メタ)アクリロイル基を有するアクリルアミド樹脂(B-2)について説明する。
 前記酸基及び(メタ)アクリロイル基を有するアクリルアミド樹脂(B-2)としては、例えば、フェノール性水酸基含有樹脂(b2-1)と、環状カーボネート化合物(b2-2a)または環状エーテル化合物(b2-2b)と、不飽和モノカルボン酸(b2-3a)及び/またはN-アルコキシアルキル(メタ)アクリルアミド化合物(b2-3b)と、ポリカルボン酸無水物(b2-4)とを必須の反応原料として得られるもの等が挙げられる。
 前記フェノール性水酸基含有樹脂(b2-1)とは、分子内にフェノール性水酸基を2つ以上有する樹脂をいい、例えば、芳香族ポリヒドロキシ化合物や、分子内にフェノール性水酸基を1つ有する化合物の1種または2種以上を反応原料とするノボラック型フェノール樹脂や、前記フェノール性水酸基を1つ有する化合物と下記構造式(x-1)~(x-5)の何れかで表される化合物(x)とを必須の反応原料とする反応生成物等が挙げられる。
Figure JPOXMLDOC01-appb-C000025
(式中hは、0または1である。Rは、それぞれ独立に脂肪族炭化水素基、アルコキシ基、ハロゲン原子、アリール基、アリールオキシ基、アラルキル基の何れかであり、iは、0または1~4の整数である。Zは、ビニル基、ハロメチル基、ヒドロキシメチル基、アルキルオキシメチル基の何れかである。Yは、炭素原子数1~4のアルキレン基、酸素原子、硫黄原子、カルボニル基の何れかである。jは1~4の整数である。)
 前記芳香族ポリヒドロキシ化合物としては、例えば、ジヒドロキシベンゼン、トリヒドロキシベンゼン、テトラヒドロキシベンゼン、ジヒドロキシナフタレン、トリヒドロキシナフタレン、テトラヒドロキシナフタレン、ジヒドロキシアントラセン、トリヒドロキシアントラセン、テトラヒドロキシアントラセン、ビフェノール、テトラヒドロキシビフェニル、ビスフェノール等の他、これらの芳香核上に1つまたは複数の置換基を有する化合物などが挙げられる。また、芳香核上の置換基としては、例えば、メチル基、エチル基、ビニル基、プロピル基、ブチル基、ペンチル基、へキシル基、シクロへキシル基、ヘプチル基、オクチル基、ノニル基等の脂肪族炭化水素基;メトキシ基、エトキシ基、プロピルオキシ基、ブトキシ基等のアルコキシ基;フッ素原子、塩素原子、臭素原子等のハロゲン原子;フェニル基、ナフチル基、アントリル基、及びこれらの芳香核上に前記脂肪族炭化水素基、前記アルコキシ基、前記ハロゲン原子等が置換したアリール基;フェニルオキシ基、ナフチルオキシ基、及びこれらの芳香核上に前記脂肪族炭化水素基、前記アルコキシ基、前記ハロゲン原子等が置換したアリールオキシ基;フェニルメチル基、フェニルエチル基、ナフチルメチル基、ナフチルエチル基、及びこれらの芳香核上に前記脂肪族炭化水素基、前記アルコキシ基、前記ハロゲン原子等が置換したアラルキル基などが挙げられる。これらの芳香族ポリヒドロキシ化合物は、単独で用いることも2種以上を併用することもできる。これらの中でも、高い絶縁信頼性を有する酸基含有(メタ)アクリレート樹脂が得られることから、ハロゲンを含有しない化合物が好ましい。
 前記ノボラック型フェノール樹脂としては、例えば、分子内にフェノール性水酸基を1つ有する化合物の1種または2種以上と、アルデヒド化合物とを酸性触媒下で反応させて得られるものが挙げられる。
 前記分子内にフェノール性水酸基を1つ有する化合物としては、芳香核上に水酸基を1つ有する芳香族化合物であれば何れの化合物でもよく、例えば、フェノール或いはフェノールの芳香核上に1つまたは複数の置換基を有するフェノール化合物、ナフトール或いはナフトールの芳香核上に1つまたは複数の置換基を有するナフトール化合物、アントラセノール或いはアントラセノールの芳香核上に1つまたは複数の置換基を有するアントラセノール化合物等が挙げられる。また、芳香核上の置換基としては、例えば、脂肪族炭化水素基、アルコキシ基、ハロゲン原子、アリール基、アリールオキシ基、アラルキル基等が挙げられ、それぞれの具体例は前述の通りである。これらのフェノール性水酸基を1つ有する化合物は、単独で用いることも、2種以上を併用することもできる。
 前記アルデヒド化合物としては、例えば、ホルムアルデヒド;アセトアルデヒド、プロピルアルデヒド、ブチルアルデヒド、イソブチルアルデヒド、ペンチルアルデヒド、へキシルアルデヒド等のアルキルアルデヒド;サリチルアルデヒド、3-ヒドロキシベンズアルデヒド、4-ヒドロキシベンズアルデヒド、2-ヒドロキシ-4-メチルベンズアルデヒド、2,4-ジヒドロキシベンズアルデヒド、3,4-ジヒドロキシベンズアルデヒド等のヒドロキシベンズアルデヒド;2-ヒドロキシ-3-メトキシベンズアルデヒド、3-ヒドロキシ-4-メトキシベンズアルデヒド、4-ヒドロキシ-3-メトキシベンズアルデヒド、3-エトキシ-4-ヒドロキシベンズアルデヒド、4-ヒドロキシ-3,5-ジメトキシベンズアルデヒド等のヒドロキシ基とアルコキシ基の両方を有するベンズアルデヒド;メトキシベンズアルデヒド、エトキシベンズアルデヒド等のアルコキシベンズアルデヒド;1-ヒドロキシ-2-ナフトアルデヒド、2-ヒドロキシ-1-ナフトアルデヒド、6-ヒドロキシ-2-ナフトアルデヒド等のヒドロキシナフトアルデヒド;ブロムベンズアルデヒド等のハロゲン化ベンズアルデヒド等が挙げられる。
 前記酸性触媒としては、例えば、塩酸、硫酸、リン酸等の無機酸、メタンスルホン酸、パラトルエンスルホン酸、シュウ酸等の有機酸、三フッ化ホウ素、無水塩化アルミニウム、塩化亜鉛等のルイス酸などが挙げられる。これらの酸性触媒は、単独で用いることも2種以上を併用することもできる。
 前記フェノール性水酸基を1つ有する化合物と前記化合物(x)とを必須の反応原料とする反応生成物としては、例えば、前記分子内にフェノール性水酸基を1つ有する化合物と前記化合物(x)とを、酸性触媒下で80~200℃程度の温度条件下で加熱撹拌する方法により得ることができる。前記分子内にフェノール性水酸基を1つ有する化合物と前記化合物(x)との反応割合は、前記化合物(x)1モルに対して、前記分子内にフェノール性水酸基を1つ有する化合物が、0.5~5モルとなる割合であることが好ましい。
 前記酸性触媒としては、上述したものと同様である。
 前記環状カーボネート化合物(b2-2a)としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ペンチレンカーボネート等が挙げられる。これらの環状カーボネート化合物は、単独で用いることも2種以上を併用することもできる。また、これらの中でも、高い光感度を有し、耐熱性及び誘電特性に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、エチレンカーボネート、またはプロピレンカーボネートが好ましい。
 前記環状エーテル化合物(b2-2b)としては、例えば、エチレンオキサイド、プロピレンオキサイド、テトラヒドロフラン等が挙げられる。これらの環状エーテル化合物は、単独で用いることも2種以上を併用することもできる。また、これらの中でも、高い光感度を有し、耐熱性及び誘電特性に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、エチレンオキサイド、またはプロピレンオキサイドが好ましい。
 前記不飽和モノカルボン酸(b2-3a)としては、上述の不飽和モノカルボン酸(b1-2)と同様のものを用いることができる。
 前記N-アルコキシアルキル(メタ)アクリルアミド化合物(b2-3b)としては、例えば、N-メトキシメチル(メタ)アクリルアミド、N-エトキシメチル(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミド、N-メトキシエチル(メタ)アクリルアミド、N-エトキシエチル(メタ)アクリルアミド、N-ブトキシエチル(メタ)アクリルアミド等が挙げられる。これらの中でも、高い光感度を有し、耐熱性に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、N-メトキシメチル(メタ)アクリルアミドが好ましい。また、これらのN-アルコキシアルキル(メタ)アクリルアミド化合物は、単独で用いることも2種以上を併用することもできる。
 前記ポリカルボン酸無水物(b2-4)としては、上述のポリカルボン酸無水物(b1-3)と同様のものを用いることができる。
 前記N-アルコキシアルキル(メタ)アクリルアミド化合物(b2-3b)を用いる場合、前記ポリカルボン酸無水物(b2-4))との当量比[(b2-3b)/(b2-4))]は、高い光感度を有し、耐熱性及び誘電特性に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、0.2~7の範囲が好ましく、0.25~6.7の範囲がより好ましい。
 前記酸基及び(メタ)アクリロイル基を有するアクリルアミド樹脂(B-2)の製造方法は、特に限定されず、どのような方法にて製造してもよい。例えば、反応原料の全てを一括で反応させる方法で製造してもよいし、反応原料を順次反応させる方法で製造してもよい。なかでも、反応の制御が容易であることから、先にフェノール性水酸基含有樹脂(b2-1)と、環状カーボネート化合物(b2-2a)または環状エーテル化合物(b2-2b)とを反応させて、次いで、不飽和モノカルボン酸(b2-3a)及び/またはN-アルコキシアルキル(メタ)アクリルアミド化合物(b2-3b)を反応させた後、ポリカルボン酸無水物(b2-4)を反応させる方法が好ましい。該反応は、例えば、前記フェノール性水酸基含有樹脂(b2-1)と前記前記環状カーボネート化合物(b2-2a)または前記環状エーテル化合物(b2-2b)とを塩基性触媒の存在下、100~200℃の温度範囲で反応させた後、酸性触媒の存在下、不飽和モノカルボン酸(b2-3a)及び/またはN-アルコキシアルキル(メタ)アクリルアミド化合物(b2-3b)を80~140℃の温度範囲で反応させ、次いで、ポリカルボン酸無水物(b2-4)を加え、80~140℃の温度範囲で反応させる方法等により行うことができる。
 前記塩基性触媒としては、例えば、N-メチルモルフォリン、ピリジン、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)、1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、トリ-n-ブチルアミンもしくはジメチルベンジルアミン、ブチルアミン、オクチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、イミダゾール、1-メチルイミダゾール、2,4-ジメチルイミダゾール、1,4-ジエチルイミダゾール、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-(N-フェニル)アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、テトラメチルアンモニウムヒドロキシド等のアミン化合物類;トリオクチルメチルアンモニウムクロライド、トリオクチルメチルアンモニウムアセテート等の四級アンモニウム塩類;トリメチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン等のホスフィン類;テトラメチルホスホニウムクロライド、テトラエチルホスホニウムクロライド、テトラプロピルホスホニウムクロライド、テトラブチルホスホニウムクロライド、テトラブチルホスホニウムブロマイド、トリメチル(2-ヒドロキシルプロピル)ホスホニウムクロライド、トリフェニルホスホニウムクロライド、ベンジルホスホニウムクロライド等のホスホニウム塩類;ジブチル錫ジラウレート、オクチル錫トリラウレート、オクチル錫ジアセテート、ジオクチル錫ジアセテート、ジオクチル錫ジネオデカノエート、ジブチル錫ジアセテート、オクチル酸錫、1,1,3,3-テトラブチル-1,3-ドデカノイルジスタノキサン等の有機錫化合物;オクチル酸亜鉛、オクチル酸ビスマス等の有機金属化合物;オクタン酸錫等の無機錫化合物;無機金属化合物などが挙げられる。これらの塩基性触媒は、単独で用いることも2種以上を併用することもできる。
 前記酸性触媒としては、例えば、塩酸、硫酸、リン酸等の無機酸、メタンスルホン酸、パラトルエンスルホン酸、シュウ酸等の有機酸、三フッ化ホウ素、無水塩化アルミニウム、塩化亜鉛等のルイス酸などが挙げられる。これらの酸性触媒は、単独で用いることも2種以上を併用することもできる。
 前記フェノール性水酸基含有樹脂(b2-1)、前記環状カーボネート化合物(b2-2a)または前記環状エーテル化合物(b2-2b)、前記不飽和モノカルボン酸(b2-3a)及び/または前記N-アルコキシアルキル(メタ)アクリルアミド化合物(b2-3b)、並びに前記ポリカルボン酸無水物(b2-4)の反応は、必要に応じて有機溶剤中で行うこともできる。
 前記有機溶剤としては、上述の有機溶剤と同様のものを用いることができ、前記有機溶剤は、単独で用いることも2種以上を併用することもできる。
 前記有機溶剤の使用量は、反応効率が良好となることから、反応原料の合計100質量部に対して10~500質量部の範囲が好ましい。
 前記酸基及び(メタ)アクリロイル基を有するアクリルアミド樹脂(B-2)の具体的構造は特に限定されず、フェノール性水酸基含有樹脂(b2-1)と、環状カーボネート化合物(b2-2a)または環状エーテル化合物(b2-2b)と、不飽和モノカルボン酸(b2-3a)及び/またはN-アルコキシアルキル(メタ)アクリルアミド化合物(b2-3b)と、ポリカルボン酸無水物(b2-4)とを必須の反応原料とし、樹脂中に酸基及び(メタ)アクリロイル基を有するものであればよいが、得られる前記酸基及び(メタ)アクリロイル基を有するアクリルアミド樹脂(B-2)としては、例えば、下記構造式(a-1)で表される構造部位(I)と下記構造式(a-2)で表される構造部位(II)とを繰り返し構造単位とする樹脂構造を有するものや、下記構造式(a-3)で表される構造部位(III)と下記構造式(a-4)で表される構造部位(IV)とを繰り返し構造単位とする樹脂構造を有するものが挙げられる。
Figure JPOXMLDOC01-appb-C000026
[式中Rは、それぞれ独立に水素原子または炭素原子数1~4の炭化水素基である。Rは、それぞれ独立に水素原子、炭素原子数1~4の炭化水素基、炭素原子数1~4のアルコキシ基、ハロゲン原子の何れかであり、nは、それぞれ独立に1または2である。Rは、それぞれ独立にメチレン基または下記構造式(x’-1)~(x’-5)の何れかで表される構造部位である。R、Rは、それぞれ独立に水素原子または炭素原子数1~20の炭化水素基である。また、RとRとが、連結して飽和または不飽和の環を形成してもよい。Rは、炭素原子数1~12の炭化水素基である。Rは、水素原子またはメチル基である。xは、前記Rで表される構造部位、或いは、構造式(a-1)で表される構造部位(I)または構造式(a-2)で表される構造部位(II)とが、*印が付されたRを介して連結する結合点である。]
Figure JPOXMLDOC01-appb-C000027
[式中Rは、それぞれ独立に水素原子または炭素原子数1~4の炭化水素基である。Rは、それぞれ独立に水素原子、炭素原子数1~4の炭化水素基、炭素原子数1~4のアルコキシ基、ハロゲン原子の何れかであり、nは、それぞれ独立に1または2である。Rは、それぞれ独立にメチレン基または下記構造式(x’-1)~(x’-5)の何れかで表される構造部位である。R、Rは、それぞれ独立に水素原子または炭素原子数1~20の炭化水素基である。また、RとRとが、連結して飽和または不飽和の環を形成してもよい。Rは、炭素原子数1~12の炭化水素基である。Rは、水素原子またはメチル基である。xは、前記Rで表される構造部位、或いは、構造式(a-3)で表される構造部位(III)または構造式(a-4)で表される構造部位(IV)とが、*印が付されたRを介して連結する結合点である。]
Figure JPOXMLDOC01-appb-C000028
[式中hは、0または1である。Rは、それぞれ独立して脂肪族炭化水素基、アルコキシ基、ハロゲン原子、アリール基、アラルキル基の何れかであり、iは、0または1~4の整数である。R10は、水素原子またはメチル基である。Wは、下記構造式(w-1)または(w-2)である。Yは、炭素原子数1~4のアルキレン基、酸素原子、硫黄原子、カルボニル基の何れかである。jは、1~4の整数である。]
Figure JPOXMLDOC01-appb-C000029
(式中R11は、それぞれ独立に水素原子または炭素原子数1~4の炭化水素基である。R12、R13は、それぞれ独立に水素原子または炭素原子数1~20の炭化水素基である。また、R12とR13とが、連結して飽和または不飽和の環を形成してもよい。R14は、炭素原子数1~12の炭化水素基である。R15は、水素原子またはメチル基である。)
 前記酸基及び(メタ)アクリロイル基を有するアクリルアミド樹脂(B-2)の酸価は、高い光感度を有し、耐熱性及び誘電特性に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、30~150mgKOH/gの範囲が好ましく、40~120mgKOH/gの範囲がより好ましい。なお、本発明において、前記酸基含有(メタ)アクリレート樹脂の酸価は、JIS K 0070(1992)の中和滴定法に基づいて測定される値である。
 次に、〔3〕酸基及び(メタ)アクリロイル基を有するアミドイミド樹脂(B-3)について説明する。
 前記酸基及び(メタ)アクリロイル基を有するアミドイミド樹脂(B-3)としては、例えば、酸基または酸無水物基を有するアミドイミド樹脂(b3-1)と、水酸基含有(メタ)アクリレート化合物(b3-2)とを必須の反応原料として得られるもの等が挙げられる。
 前記アミドイミド樹脂(b3-1)としては、酸基または酸無水物基のどちらか一方のみを有するものであってもよいし、両方を有するものであってもよい。前記水酸基含有(メタ)アクリレート化合物(b3-2)との反応性や反応制御の観点から、酸無水物基を有するものであることが好ましく、酸基と酸無水物基との両方を有するものであることがより好ましい。前記アミドイミド樹脂(b3-1)の酸価は、中性条件下、即ち、酸無水物基を開環させない条件での測定値が60~350mgKOH/gの範囲であることが好ましい。他方、水の存在下等、酸無水物基を開環させた条件での測定値が61~360mgKOH/gの範囲であることが好ましい。
 前記アミドイミド樹脂(b3-1)の具体構造や製造方法は特に限定されず、一般的なアミドイミド樹脂等を広く用いることができる。例えば、ポリイソシアネート化合物と、ポリカルボン酸またはその酸無水物とを反応原料として得られるものが挙げられる。
 前記ポリイソシアネート化合物としては、例えば、ブタンジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート化合物;ノルボルナンジイソシアネート、イソホロンジイソシアネート、水添キシリレンジイソシアネート、水添ジフェニルメタンジイソシアネート等の脂環式ジイソシアネート化合物;トリレンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、ジフェニルメタンジイソシアネート、1,5-ナフタレンジイソシアネート、4,4’-ジイソシアナト-3,3’-ジメチルビフェニル、o-トリジンジイソシアネート等の芳香族ジイソシアネート化合物;下記構造式(i-1)で表される繰り返し構造を有するポリメチレンポリフェニルポリイソシアネート;これらのイソシアヌレート変性体、ビウレット変性体、アロファネート変性体などが挙げられる。また、これらのポリイソシアネート化合物は、単独で用いることも2種以上を併用することもできる。
Figure JPOXMLDOC01-appb-C000030
[式中、Rはそれぞれ独立に水素原子、炭素原子数1~6の炭化水素基の何れかである。Rはそれぞれ独立に炭素原子数1~4のアルキル基、または構造式(i-1)で表される構造部位と*印が付されたメチレン基を介して連結する結合点の何れかである。lは0または1~3の整数であり、mは1以上の整数である。]
 また、前記ポリイソシアネート化合物としては、高い溶剤溶解性を有する酸基含有(メタ)アクリレート樹脂組成物が得られることから、脂環式ジイソシアネート化合物またはその変性体、脂肪族ジイソシアネート化合物またはその変性体が好ましく、脂環式ジイソシアネートまたはそのイソシアヌレート変性体、脂肪族ジイソシアネートまたはそのイソシアヌレート変性体がより好ましい。
 また、前記ポリイソシアネート化合物の総質量中における、脂環式ジイソシアネート化合物またはその変性体と、脂肪族ジイソシアネート化合物またはその変性体の合計質量の割合が、70質量%以上であることが好ましく、90質量%以上であることが好ましい。
 また、脂環式ジイソシアネート化合物またはその変性体と、脂肪族ジイソシアネート化合物またはその変性体とを併用する場合には、両者の質量比が30/70~70/30の範囲であることが好ましい。
 前記ポリカルボン酸またはその酸無水物としては、分子構造中に複数のカルボキシル基を有する化合物またはその酸無水物であれば具体構造は特に問われず、多種多様な化合物を用いることができる。なお、前記アミドイミド樹脂(b3-1)がアミド基とイミド基の両方を有するためには、系中にカルボキシル基及び酸無水物基の両方が存在している必要があるが、本発明においては、分子中にカルボキシル基と酸無水物基との両方を有する化合物を用いてもよいし、カルボキシル基を有する化合物と酸無水物基を有する化合物とを併用してもよい。
 前記ポリカルボン酸またはその酸無水物としては、例えば、脂肪族ポリカルボン酸化合物またはその酸無水物、脂環式ポリカルボン酸化合物またはその酸無水物、芳香族ポリカルボン酸化合物またはその酸無水物等が挙げられる。
 前記脂肪族ポリカルボン酸化合物またはその酸無水物としては、脂肪族炭化水素基は直鎖型及び分岐型のいずれでもよく、構造中に不飽和結合を有していてもよい。
 前記脂肪族ポリカルボン酸化合物またはその酸無水物としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、マレイン酸、フマル酸、シトラコン酸、イタコン酸、グルタコン酸、1,2,3,4-ブタンテトラカルボン酸、及びこれらの酸無水物等が挙げられる。
 前記脂環式ポリカルボン酸化合物またはその酸無水物としては、本発明では、カルボキシル基または酸無水物基が脂環構造に結合しているものを脂環式ポリカルボン酸化合物またはその酸無水物とし、それ以外の構造部位における芳香環の有無は問わないものとする。前記脂環式ポリカルボン酸化合物またはその酸無水物としては、例えば、テトラヒドロフタル酸、ヘキサヒドロフタル酸、メチルヘキサヒドロフタル酸、シクロヘキサントリカルボン酸、シクロヘキサンテトラカルボン酸、ビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸、メチルビシクロ[2.2.1]ヘプタン-2,3-ジカルボン酸、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸、及びこれらの酸無水物等が挙げられる。
 前記芳香族ポリカルボン酸化合物またはその酸無水物としては、例えば、フタル酸、トリメリット酸、ピロメリット酸、ナフタレンジカルボン酸、ナフタレントリカルボン酸、ナフタレンテトラカルボン酸、ビフェニルジカルボン酸、ビフェニルトリカルボン酸、ビフェニルテトラカルボン酸、ベンゾフェノンテトラカルボン酸等が挙げられる。
 これらの中でも、高い光感度を有し、耐熱性及び誘電特性に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、前記脂環式ポリカルボン酸化合物またはその酸無水物、或いは前記芳香族ポリカルボン酸化合物またはその酸無水物が好ましい。また、前記アミドイミド樹脂(b3-1)を効率的に製造できることから、分子構造中にカルボキシル基と酸無水物基との両方を有するトリカルボン酸無水物を用いることが好ましく、シクロヘキサントリカルボン酸無水物またはトリメリット酸無水物を用いることが特に好ましい。更に、前記ポリカルボン酸またはその酸無水物の総質量に対する脂環式トリカルボン酸無水物と芳香族トリカルボン酸無水物との合計量の割合が70質量%以上であることが好ましく、90質量%以上であることがより好ましい。
 前記アミドイミド樹脂(b3-1)が、前記ポリイソシアネート化合物と、前記ポリカルボン酸またはその酸無水物とを反応原料とするものである場合、所望の樹脂性能等に応じて、これら以外の反応原料を併用してもよい。この場合、本発明が奏する効果が十分に発揮されることから、アミドイミド樹脂(b3-1)の反応原料総質量に対する前記ポリイソシアネート化合物と前記ポリカルボン酸またはその酸無水物との合計質量の割合が90質量%以上であることが好ましく、95質量%以上であることがより好ましい。
 前記アミドイミド樹脂(b3-1)が、ポリイソシアネート化合物とポリカルボン酸またはその酸無水物とを反応原料とするものである場合、特に限定されず、どのような方法にて製造してもよい。例えば、一般的なアミドイミド樹脂と同様の方法にて製造することができる。具体的には、ポリイソシアネート化合物が有するイソシアネート基1モルに対し、0.5~2.0モルのポリカルボン酸またはその酸無水物を用い、120~180℃程度の温度条件下で撹拌混合して反応させる方法が挙げられる。
 前記ポリイソシアネート化合物とポリカルボン酸またはその酸無水物との反応は、必要に応じて、塩基性触媒の存在下で行うこともできる。また、該反応は、必要に応じて有機溶剤中で行うこともできる。
 前記塩基性触媒としては、上述の塩基性触媒と同様のものを用いることができ、前記塩基性触媒は、単独で用いることも2種以上を併用することもできる。
 前記有機溶剤としては、上述の有機溶剤と同様のものを用いることができ、前記有機溶剤は、単独で用いることも2種以上を併用することもできる。
 前記有機溶剤の使用量は、反応効率が良好となることから、反応原料の合計100質量部に対して10~500質量部の範囲が好ましい。
 前記水酸基含有(メタ)アクリレート化合物(b3-2)としては、分子構造中に水酸基と(メタ)アクリロイル基とを有する化合物であれば他の具体構造は特に限定されず、多種多様な化合物を用いることができる。例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等のヒドロキシ(メタ)アクリレート化合物;前記各種のヒドロキシ(メタ)アクリレート化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入した(ポリ)オキシアルキレン変性体;前記各種のヒドロキシ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性体等が挙げられる。これらの中でも、高い光感度を有し、耐熱性及び誘電特性に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、分子量が1,000以下のものが好ましい。また、前記水酸基含有(メタ)アクリレート化合物(b3-2)が、前記オキシアルキレン変性体やラクトン変性体である場合には、重量平均分子量(Mw)が1,000以下であることが好ましい。これらの水酸基含有(メタ)アクリレート化合物は、単独で用いることも2種以上を併用することもできる。
 また、前記酸基及び(メタ)アクリロイル基を有するアミドイミド樹脂(B-3)としては、必要に応じて、前記アミドイミド樹脂(b3-1)と、水酸基含有(メタ)アクリレート化合物(b3-2)以外に、(メタ)アクリロイル基含有エポキシ化合物(b3-3)を反応原料として併用することもできる。また、前記酸基及び(メタ)アクリロイル基を有するアミドイミド樹脂(B-3)としては、必要に応じて、前記アミドイミド樹脂(b3-1)と、水酸基含有(メタ)アクリレート化合物(b3-2)以外に、(メタ)アクリロイル基含有エポキシ化合物(b3-3)及びポリカルボン酸無水物(b3-4)を反応原料として併用することもできる。
 前記(メタ)アクリロイル基含有エポキシ化合物(b3-3)は、分子構造中に(メタ)アクリロイル基とエポキシ基とを有するものであれば他の具体構造は特に限定されず、多種多様な化合物を用いることができる。例えば、グリシジル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、エポキシシクロへキシルメチル(メタ)アクリレート等のグリシジル基含有(メタ)アクリレートモノマー;ジヒドロキシベンゼンジグリシジルエーテル、ジヒドロキシナフタレンジグリシジルエーテル、ビフェノールジグリシジルエーテル、ビスフェノールジグリシジルエーテル等のジグリシジルエーテル化合物のモノ(メタ)アクリレート化物などが挙げられる。これらの中でも、高い光感度を有し、耐熱性及び誘電特性に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、グリシジル基含有(メタ)アクリレートモノマーが好ましい。また、その分子量は、500以下であることが好ましい。さらに、前記(メタ)アクリロイル基含有エポキシ化合物(b3-3)の総質量中の前記グリシジル基含有(メタ)アクリレートモノマーの割合が70質量%以上であることが好ましく、90質量%以上であることがより好ましい。
 前記ポリカルボン酸無水物(b3-4)としては、上述のポリカルボン酸無水物(b1-3)として例示したものを用いることができ、前記ポリカルボン酸(b3-4)は、単独で用いることも2種以上を併用することもできる。
 前記酸基及び(メタ)アクリロイル基を有するアミドイミド樹脂(B-3)は、所望の樹脂性能等に応じて、前記酸基または酸無水物基を有するアミドイミド樹脂(b3-1)、前記水酸基含有(メタ)アクリレート化合物(b3-2)、(メタ)アクリロイル基含有エポキシ化合物(b3-3)及びポリカルボン酸無水物(b3-4)以外に、他の反応原料を併用することもできる。この場合、酸基含有(メタ)アクリレート樹脂(B-3)の反応原料総質量中の前記(b3-1)~(b3-4)成分の合計質量の割合が80質量%以上であることが好ましく、90質量%以上であることがより好ましい。
 前記酸基及び(メタ)アクリロイル基を有するアミドイミド樹脂(B-3)の製造方法としては、特に限定されず、どのような方法にて製造してもよい。例えば、前記アミドイミド樹脂(b3-1)、及び前記水酸基含有(メタ)アクリレート化合物(b3-2)を含む反応原料の全てを一括で反応させる方法で製造してもよいし、反応原料を順次反応させる方法で製造してもよい。
 前記アミドイミド樹脂(b3-1)と前記水酸基含有(メタ)アクリレート化合物(b3-2)との反応は、主に、前記アミドイミド樹脂(b3-1)中の酸基及び/または酸無水物基と水酸基含有(メタ)アクリレート化合物(b3-2)中の水酸基とを反応させるものである。前記水酸基含有(メタ)アクリレート化合物(b3-2)は特に酸無水物基との反応性に優れることから、前述の通り、前記アミドイミド樹脂(b3-1)は酸無水物基を有していることが好ましい。なお、前記アミドイミド樹脂(b3-1)中の酸無水物基の含有量は、前述した2通りの酸価の測定値の差分、即ち、酸無水物基を開環させた条件での酸価と、酸無水物基を開環させない条件での酸価との差分から算出することができる。
 前記アミドイミド樹脂(b3-1)と前記水酸基含有(メタ)アクリレート化合物(b3-2)との反応割合は、前記アミドイミド樹脂(b3-1)が酸基及び酸無水物基を有する場合、並びに前記アミドイミド樹脂(b3-1)が酸無水物基を有する場合、前記アミドイミド樹脂(b3-1)が有する酸無水物基1モルに対する、前記水酸基含有(メタ)アクリレート化合物(b3-2)が有する水酸基のモル数が、0.9~1.1となる範囲で用いることが好ましい。また、前記アミドイミド樹脂(b3-1)が酸基を有する場合、前記アミドイミド樹脂(b3-1)が有する酸基1モルに対する、前記水酸基含有(メタ)アクリレート化合物(b3-2)が有する水酸基のモル数が、0.01~1.0となる範囲で用いることが好ましい。
 前記アミドイミド樹脂(b3-1)と前記水酸基含有(メタ)アクリレート化合物(b3-2)との反応は、必要に応じて、塩基性触媒または酸性触媒を用いてもよい。なかでも、前記アミドイミド樹脂(b3-1)が酸基及び酸無水物基を有する場合、並びに前記アミドイミド樹脂(b3-1)が酸無水物基を有する場合は、塩基性触媒を用いることが好ましく、前記アミドイミド樹脂(b3-1)が酸基を有する場合は、酸性触媒を用いることが好ましい。
 前記塩基性触媒としては、上述の塩基性触媒として例示したものを用いることができ、前記塩基性触媒は単独で用いることも2種以上を併用することもできる。
 前記酸性触媒としては、上述の酸性触媒として例示したものを用いることができ、前記酸性触媒は単独で用いることも2種以上を併用することもできる。
 前記塩基性触媒または前記酸性触媒の添加量は、反応原料の合計質量100質量部に対して0.001~5質量部の範囲で用いることが好ましい。
 また、前記アミドイミド樹脂(b3-1)と前記水酸基含有(メタ)アクリレート化合物(b3-2)との反応は、適当な触媒の存在下、80~140℃程度の温度条件下で加熱撹拌して行うことができる。
 該反応は必要に応じて有機溶剤中で行ってもよく、前記有機溶剤としては、上述の有機溶剤と同様のものを用いることができ、前記有機溶剤は、単独で用いることも2種以上を併用することもできる。なお、前記アミドイミド樹脂(b3-1)の製造と連続して行う場合には、前記アミドイミド樹脂(b3-1)の製造で用いた有機溶剤中でそのまま反応を続けてもよい。
 前記酸基及び(メタ)アクリロイル基を有するアミドイミド樹脂(B-3)が、反応原料として、前記アミドイミド樹脂(b3-1)、及び前記水酸基含有(メタ)アクリレート化合物(b3-2)以外に、(メタ)アクリロイル基含有エポキシ化合物(b3-3)を用いる場合、前記アミドイミド樹脂(b3-1)、前記水酸基含有(メタ)アクリレート化合物(b3-2)、及び前記(メタ)アクリロイル基含有エポキシ化合物(b3-3)を含む反応原料の全てを一括で反応させる方法で製造してもよいし、反応原料を順次反応させる方法で製造してもよい。なかでも、反応の制御が容易であることから、前記アミドイミド樹脂(b3-1)と前記水酸基含有(メタ)アクリレート化合物(b3-2)とを反応させて得られた生成物(以下、「生成物(1)」と称することがある。)に、前記(メタ)アクリロイル基含有エポキシ化合物(b3-3)を反応させる方法で製造することが好ましい。
 前記生成物(1)と前記(メタ)アクリロイル基含有エポキシ化合物(b3-3)との反応は、主に、前記生成物(1)中の酸基と前記(メタ)アクリロイル基含有エポキシ化合物(b3-3)とを反応させるものである。その反応割合は、前記生成物(1)が有する酸基1モルに対する、前記(メタ)アクリロイル基含有エポキシ化合物(b3-3)が有するエポキシ基のモル数が、0.05~1.1となる範囲で用いることが好ましい。該反応は、例えば、適当な塩基性触媒の存在下、90~140℃程度の温度条件下で加熱撹拌して行うことができる。前記アミドイミド樹脂(b3-1)と前記水酸基含有(メタ)アクリレート化合物(b3-2)との反応と連続して行う場合、塩基性触媒は追加しなくてもよいし、適宜追加してもよい。また、該反応は必要に応じて有機溶剤中で行ってもよい。なお、前記塩基性触媒及び前記有機溶剤は、上述の塩基性触媒及び有機溶剤と同様のものを用いることができ、それらは、単独で用いることも2種以上を併用することもできる。
 前記酸基及び(メタ)アクリロイル基を有するアミドイミド樹脂(B-3)が、反応原料として、前記アミドイミド樹脂(b3-1)、及び前記水酸基含有(メタ)アクリレート化合物(b3-2)以外に、(メタ)アクリロイル基含有エポキシ化合物(b3-3)及びポリカルボン酸無水物(b3-4)を用いる場合、前記アミドイミド樹脂(b3-1)、前記水酸基含有(メタ)アクリレート化合物(b3-2)、前記(メタ)アクリロイル基含有エポキシ化合物(b3-3)、及びポリカルボン酸無水物(b3-4)を含む反応原料の全てを一括で反応させる方法で製造してもよいし、反応原料を順次反応させる方法で製造してもよい。なかでも、反応の制御が容易であることから、前記アミドイミド樹脂(b3-1)と前記水酸基含有(メタ)アクリレート化合物(b3-2)とを反応させて得られた生成物(1)に、前記(メタ)アクリロイル基含有エポキシ化合物(b3-3)を反応させ、得られた生成物(以下、「生成物(2)」と称することがある。)に、前記ポリカルボン酸無水物(b3-4)を反応させる方法で製造することが好ましい。
 前記生成物(2)と前記ポリカルボン酸無水物(b3-4)との反応は、主に、前記生成物(2)中の水酸基と前記多塩基酸無水物とを反応させるものである。この際、前記生成物(2)において、前記生成物(1)と前記(メタ)アクリロイル基含有エポキシ化合物(b3-3)との反応割合は、前記生成物(1)が有する酸基1モルに対する、前記(メタ)アクリロイル基含有エポキシ化合物(b3-3)が有するエポキシ基のモル数は、0.1~1.2となる範囲で用いることが好ましく、0.2~1.1となることが更に好ましい。ここで、前記生成物(2)中には、例えば、前記(メタ)アクリロイル基含有エポキシ化合物(b3-3)中のエポキシ基の開環により生じた水酸基等が存在する。前記ポリカルボン酸無水物(b3-4)の反応割合は、製造される酸基及び(メタ)アクリロイル基を有するアミドイミド樹脂(B-3)の酸価が50~120mgKOH/g程度になるよう調整されることが好ましい。該反応は、例えば、適当な塩基性触媒の存在下、80~140℃程度の温度条件下で加熱撹拌して行うことができる。前記生成物(1)と前記(メタ)アクリロイル基含有エポキシ化合物(b3-3)との反応と連続して行う場合、塩基性触媒は追加しなくてもよいし、適宜追加してもよい。また、該反応は必要に応じて有機溶剤中で行ってもよい。なお、前記塩基性触媒及び前記有機溶剤は、上述の塩基性触媒及び有機溶剤と同様のものを用いることができ、それらは、単独で用いることも2種以上を併用することもできる。
 前記酸基及び(メタ)アクリロイル基を有するアミドイミド樹脂(B-3)の酸価は、高い光感度を有し、耐熱性及び誘電特性に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、30~150mgKOH/gの範囲が好ましく、40~120mgKOH/gの範囲がより好ましい。なお、本願発明において酸基及び(メタ)アクリロイル基を有するアミドイミド樹脂(B-3)の酸価は、JIS K 0070(1992)の中和滴定法にて測定される値である。
 次に、〔4〕酸基及び(メタ)アクリロイル基を有するアクリル樹脂(B-4)について説明する。
 前記酸基及び(メタ)アクリロイル基を有するアクリル樹脂(B-4)としては、例えば、水酸基やカルボキシル基、イソシアネート基、グリシジル基等の反応性官能基を有する(メタ)アクリレート化合物(α)を必須の成分として重合させて得られるアクリル樹脂中間体に、これらの官能基と反応し得る反応性官能基を有する(メタ)アクリレート化合物(β)をさらに反応させることにより(メタ)アクリロイル基を導入して得られる反応生成物や、前記反応生成物中の水酸基に多塩基酸無水物を反応させて得られるもの等が挙げられる。
 前記アクリル樹脂中間体は、前記(メタ)アクリレート化合物(α)の他、必要に応じてその他の重合性不飽和基含有化合物を共重合させたものであってもよい。前記その他の重合性不飽和基含有化合物は、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等の(メタ)アクリル酸アルキルエステル;シクロヘキシル(メタ)アクリレート、イソボロニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート等の脂環式構造含有(メタ)アクリレート;フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチルアクリレート等の芳香環含有(メタ)アクリレート;3-メタクリロキシプロピルトリメトキシシラン等のシリル基含有(メタ)アクリレート;スチレン、α-メチルスチレン、クロロスチレン等のスチレン誘導体等が挙げられる。これらは単独で用いることも2種以上を併用することもできる。
 前記(メタ)アクリレート化合物(β)は、前記(メタ)アクリレート化合物(α)が有する反応性官能基と反応し得るものであれば特に限定されないが、反応性の観点から以下の組み合わせであることが好ましい。即ち、前記(メタ)アクリレート化合物(α)として水酸基含有(メタ)アクリレートを用いた場合には、(メタ)アクリレート化合物(β)としてイソシアネート基含有(メタ)アクリレートを用いることが好ましい。前記(メタ)アクリレート化合物(α)としてカルボキシル基含有(メタ)アクリレートを用いた場合には、(メタ)アクリレート化合物(β)としてグリシジル基含有(メタ)アクリレートを用いることが好ましい。前記(メタ)アクリレート化合物(α)としてイソシアネート基含有(メタ)アクリレートを用いた場合には、(メタ)アクリレート化合物(β)として水酸基含有(メタ)アクリレートを用いることが好ましい。前記(メタ)アクリレート化合物(α)としてグリシジル基含有(メタ)アクリレートを用いた場合には、(メタ)アクリレート化合物(β)としてカルボキシル基含有(メタ)アクリレートを用いることが好ましい。前記(メタ)アクリレート化合物(β)は、単独で用いることも2種以上を併用することもできる。
 前記多塩基酸無水物は、例えば、無水フタル酸、無水コハク酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、オクテニル無水コハク酸、テトラプロぺニル無水コハク酸等が挙げられる。これらの多塩基酸無水物は、単独で用いることも2種以上を併用することもできる。
 前記酸基及び(メタ)アクリロイル基を有するアクリル樹脂(B-4)の製造方法としては、特に限定されず、どのような方法で製造してもよい。前記酸基及び(メタ)アクリロイル基を有するアクリル樹脂(B-4)の製造においては、必要に応じて有機溶剤中で行ってもよく、また、必要に応じて塩基性触媒を用いてもよい。
 前記有機溶剤としては、上述の有機溶剤と同様のものを用いることができ、前記有機溶剤は、単独で用いることも2種以上を併用することもできる。
 前記塩基性触媒としては、上述の塩基性触媒と同様のものを用いることができ、前記塩基性触媒は、単独で用いることも2種以上を併用することもできる。
 前記酸基及び(メタ)アクリロイル基を有するアクリル樹脂(B-4)の酸価は、高い光感度を有し、耐熱性及び誘電特性に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、30~150mgKOH/gの範囲が好ましく、40~120mgKOH/gの範囲がより好ましい。なお、本願発明において酸基及び(メタ)アクリロイル基を有するアクリル樹脂(B-4)の酸価は、JIS K 0070(1992)の中和滴定法にて測定される値である。
 次に、〔5〕酸基及び(メタ)アクリロイル基を有するウレタン樹脂(B-5)について説明する。
 前記酸基及び(メタ)アクリロイル基を有するウレタン樹脂(B-5)としては、例えば、ポリイソシアネート化合物、水酸基含有(メタ)アクリレート化合物、カルボキシル基含有ポリオール化合物、及び必要に応じて多塩基酸無水物、前記カルボキシル基含有ポリオール化合物以外のポリオール化合物とを反応させて得られたものや、ポリイソシアネート化合物、水酸基含有(メタ)アクリレート化合物、多塩基酸無水物、及びカルボキシル基含有ポリオール化合物以外のポリオール化合物とを反応させて得られたものや、エポキシ樹脂、不飽和一塩基酸、多塩基酸無水物、ポリイソシアネート化合物、及び水酸基含有(メタ)アクリレート化合物とを反応させて得られたもの等が挙げられる。
 前記ポリイソシアネート化合物としては、上述のポリイソシアネート化合物と同様のものを用いることができ、前記ポリイソシアネート化合物は、単独で用いることも2種以上を併用することもできる。
 前記水酸基含有(メタ)アクリレート化合物としては、上述の水酸基含有(メタ)アクリレート化合物(b3-2)と同様のものを用いることができ、前記水酸基含有(メタ)アクリレート化合物は、単独で用いることも2種以上を併用することもできる。
 前記カルボキシル基含有ポリオール化合物としては、例えば、2,2-ジメチロールプロピオン酸、2,2-ジメチロールブタン酸、2,2-ジメチロール吉草酸等が挙げられる。前記カルボキシル基含有ポリオール化合物は、単独で用いることも2種以上を併用することもできる。
 前記多塩基酸無水物としては、上述の多塩基酸無水物として例示したものを用いることができ、前記多塩基酸無水物は、単独で用いることも2種以上を併用することもできる。
 前記カルボキシル基含有ポリオール化合物以外のポリオール化合物としては、例えば、エチレングリコール、プロピレングリコール、ブタンジオール、ヘキサンジオール、グリセリン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール等の脂肪族ポリオール化合物;ビフェノール、ビスフェノール等の芳香族ポリオール化合物;前記各種のポリオール化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入した(ポリ)オキシアルキレン変性体;前記各種のポリオール化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性体等が挙げられる。前記カルボキシル基含有ポリオール化合物以外のポリオール化合物は、単独で用いることも2種以上を併用することもできる。
 前記エポキシ樹脂としては、上述のエポキシ樹脂(b1-1)として例示したものを用いることができ、前記エポキシ樹脂は、単独で用いることも2種以上を併用することもできる。
 前記不飽和一塩基酸としては、例えば、アクリル酸、メタクリル酸、クロトン酸、桂皮酸、α-シアノ桂皮酸、β-スチリルアクリル酸、β-フルフリルアクリル酸等が挙げられる。また、前記不飽和一塩基酸のエステル化物、酸ハロゲン化物、酸無水物等も用いることができる。これらの不飽和一塩基酸は、単独で用いることも2種以上を併用することもできる。
 前記酸基及び(メタ)アクリロイル基を有するウレタン樹脂(B-5)の製造方法としては、特に限定されず、どのような方法で製造してもよい。前記酸基及び重合性不飽和結合を有するウレタン樹脂の製造においては、必要に応じて有機溶剤中で行ってもよく、また、必要に応じて塩基性触媒を用いてもよい。
 前記有機溶剤としては、上述の有機溶剤と同様のものを用いることができ、前記有機溶剤は、単独で用いることも2種以上を併用することもできる。
 前記塩基性触媒としては、上述の塩基性触媒と同様のものを用いることができ、前記塩基性触媒は、単独で用いることも2種以上を併用することもできる。
 本発明の酸基含有(メタ)アクリレート樹脂組成物は、前記重合性不飽和結合含有芳香族エステル化合物(A)と前記酸基含有(メタ)アクリレート樹脂(B)を含有するものである。
 本発明の酸基含有(メタ)アクリレート樹脂組成物中の前記重合性不飽和結合含有芳香族エステル化合物(A)の含有量は、高い光感度を有し、耐熱性及び誘電特性に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、10~90質量%の範囲が好ましい。
 また、本発明の酸基含有(メタ)アクリレート樹脂組成物中の前記酸基含有(メタ)アクリレート樹脂(B)の含有量は、90~10質量%の範囲が好ましい。
 前記重合性不飽和結合含有芳香族エステル化合物(A)と、前記酸基含有(メタ)アクリレート樹脂(B)との固形分の質量割合[(A)/(B)]は、高い光感度を有し、耐熱性及び誘電特性に優れた硬化物を形成可能な酸基含有(メタ)アクリレート樹脂組成物が得られることから、50/50~95/5の範囲が好ましい。
 本発明の酸基含有(メタ)アクリレート樹脂組成物は、光重合開始剤を添加することにより硬化性樹脂組成物として用いることができる。
 前記光重合開始剤としては、例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-〔4-(2-ヒドロキシエトキシ)フェニル〕-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、チオキサントン及びチオキサントン誘導体、2,2′-ジメトキシ-1,2-ジフェニルエタン-1-オン、ジフェニル(2,4,6-トリメトキシベンゾイル)ホスフィンオキシド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-1-ブタノン等が挙げられる。
 前記その他の光重合開始剤の市販品としては、例えば、「Omnirad-1173」、「Omnirad-184」、「Omnirad-127」、「Omnirad-2959」、「Omnirad-369」、「Omnirad-379」、「Omnirad-907」、「Omnirad-4265」、「Omnirad-1000」、「Omnirad-651」、「Omnirad-TPO」、「Omnirad-819」、「Omnirad-2022」、「Omnirad-2100」、「Omnirad-754」、「Omnirad-784」、「Omnirad-500」、「Omnirad-81」(IGM社製)、「カヤキュア-DETX」、「カヤキュア-MBP」、「カヤキュア-DMBI」、「カヤキュア-EPA」、「カヤキュア-OA」(日本化薬株式会社製)、「バイキュア-10」、「バイキュア-55」(ストウファ・ケミカル社製)、「トリゴナルP1」(アクゾ社製)、「サンドレイ1000」(サンドズ社製)、「ディープ」(アプジョン社製)、「クオンタキュア-PDO」、「クオンタキュア-ITX」、「クオンタキュア-EPD」(ワードブレンキンソップ社製)、「Runtecure-1104」(Runtec社製)等が挙げられる。
 前記光重合開始剤の添加量は、例えば、前記硬化性樹脂組成物中に、1~20質量%の範囲で用いることが好ましい。
 本発明の硬化性樹脂組成物は、前記酸基含有(メタ)アクリレート樹脂(B)以外のその他の樹脂成分を含有しても良い。前記その他の樹脂成分としては、例えば、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂等のエポキシ樹脂に、(メタ)アクリル酸、ジカルボン酸無水物、必要に応じて不飽和モノカルボン酸無水物等を反応させて得られる、樹脂中にカルボキシル基と(メタ)アクリロイル基とを有する樹脂、各種の(メタ)アクリレートモノマー等が挙げられる。
 前記(メタ)アクリレートモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート等の脂肪族モノ(メタ)アクリレート化合物;シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、アダマンチルモノ(メタ)アクリレート等の脂環型モノ(メタ)アクリレート化合物;グリシジル(メタ)アクリレート、テトラヒドロフルフリルアクリレート等の複素環型モノ(メタ)アクリレート化合物;ベンジル(メタ)アクリレート、フェニル(メタ)アクリレート、フェニルベンジル(メタ)アクリレート、フェノキシ(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシエトキシエチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、フェノキシベンジル(メタ)アクリレート、ベンジルベンジル(メタ)アクリレート、フェニルフェノキシエチル(メタ)アクリレート等の芳香族モノ(メタ)アクリレート化合物等のモノ(メタ)アクリレート化合物:前記各種のモノ(メタ)アクリレートモノマーの分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等のポリオキシアルキレン鎖を導入した(ポリ)オキシアルキレン変性モノ(メタ)アクリレート化合物;前記各種のモノ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性モノ(メタ)アクリレート化合物;エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等の脂肪族ジ(メタ)アクリレート化合物;1,4-シクロヘキサンジメタノールジ(メタ)アクリレート、ノルボルナンジ(メタ)アクリレート、ノルボルナンジメタノールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート等の脂環型ジ(メタ)アクリレート化合物;ビフェノールジ(メタ)アクリレート、ビスフェノールジ(メタ)アクリレート等の芳香族ジ(メタ)アクリレート化合物;前記各種のジ(メタ)アクリレート化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入したポリオキシアルキレン変性ジ(メタ)アクリレート化合物;前記各種のジ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性ジ(メタ)アクリレート化合物;トリメチロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート等の脂肪族トリ(メタ)アクリレート化合物;前記脂肪族トリ(メタ)アクリレート化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入した(ポリ)オキシアルキレン変性トリ(メタ)アクリレート化合物;前記脂肪族トリ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性トリ(メタ)アクリレート化合物;ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の4官能以上の脂肪族ポリ(メタ)アクリレート化合物;前記脂肪族ポリ(メタ)アクリレート化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入した4官能以上の(ポリ)オキシアルキレン変性ポリ(メタ)アクリレート化合物;前記脂肪族ポリ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入した4官能以上のラクトン変性ポリ(メタ)アクリレート化合物などが挙げられる。前記各種の(メタ)アクリレートモノマーは、単独で用いることも2種以上を併用することもできる。
 また、本発明の硬化性樹脂組成物には、必要に応じて、硬化剤、硬化促進剤、有機溶剤、無機微粒子やポリマー微粒子、顔料、消泡剤、粘度調整剤、レベリング剤、難燃剤、保存安定化剤等の各種添加剤を含有することもできる。
 前記硬化剤としては、前記酸基含有(メタ)アクリレート樹脂中のカルボキシ基と反応し得る官能基を有するものであれば特に制限されず、例えば、エポキシ樹脂が挙げられる。前記エポキシ樹脂としては、例えば、ビスフェノール型エポキシ樹脂、フェニレンエーテル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、ビフェニル型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジシクロペンタジエン-フェノール付加反応型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂、フルオレン型エポキシ樹脂、キサンテン型エポキシ樹脂、ジヒドロキシベンゼン型エポキシ樹脂、トリヒドロキシベンゼン型エポキシ樹脂等が挙げられる。これらのエポキシ樹脂は、単独で用いることも2種以上を併用することもできる。また、これらの中でも、優れたアルカリ現像性及び高い光感度を有し、優れた伸度を有する硬化物を形成可能な硬化性樹脂組成物が得られることから、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールノボラック型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトール-フェノール共縮ノボラック型エポキシ樹脂、ナフトール-クレゾール共縮ノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂が好ましく、軟化点が20~120℃の範囲であるものが特に好ましい。
 前記硬化促進剤としては、前記硬化剤の硬化反応を促進するものであり、前記硬化剤としてエポキシ樹脂を用いる場合には、リン系化合物、アミン系化合物、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。これらの硬化促進剤は、単独で用いることも2種以上を併用することもできる。また、前記硬化促進剤の添加量は、例えば、前記硬化剤100質量部に対し1~10質量部の範囲で用いることが好ましい。
 前記有機溶剤としては、上述の有機溶剤と同様のものを用いることができ、前記有機溶剤は、単独で用いることも2種以上を併用することもできる。
 本発明の硬化物は、前記硬化性樹脂組成物に、活性エネルギー線を照射することで得ることができる。前記活性エネルギー線としては、例えば、紫外線、電子線、α線、β線、γ線等の電離放射線が挙げられる。また、前記活性エネルギー線として、紫外線を用いる場合、紫外線による硬化反応を効率よく行う上で、窒素ガス等の不活性ガス雰囲気下で照射してもよく、空気雰囲気下で照射してもよい。
 紫外線発生源としては、実用性、経済性の面から紫外線ランプが一般的に用いられている。具体的には、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、ガリウムランプ、メタルハライドランプ、太陽光、LED等が挙げられる。
 前記活性エネルギー線の積算光量は、特に制限されないが、10~5,000mJ/cmであることが好ましく、50~1,000mJ/cmであることがより好ましい。積算光量が上記範囲であると、未硬化部分の発生の防止または抑制ができることから好ましい。
 なお、前記活性エネルギー線の照射は、一段階で行ってもよいし、二段階以上に分けて行ってもよい。
 また、本発明の硬化性樹脂組成物を硬化させて得られた硬化物は、耐熱性及び誘電特性に優れることから、例えば、半導体デバイス用途における、ソルダーレジスト、層間絶縁材料、パッケージ材、アンダーフィル材、回路素子等のパッケージ接着層や、集積回路素子と回路基板の接着層として好適に用いることができる。また、LCD、OELDに代表される薄型ディスプレイ用途における、薄膜トランジスタ保護膜、液晶カラーフィルタ保護膜、カラーフィルタ用顔料レジスト、ブラックマトリックス用レジスト、スペーサー等に好適に用いることができる。
 本発明のソルダーレジスト用樹脂材料は、前記硬化性樹脂組成物からなるものである。
 本発明のレジスト部材は、例えば、前記ソルダーレジスト用樹脂材料を基材上に塗布し、60~100℃程度の温度範囲で有機溶剤を揮発乾燥させた後、所望のパターンが形成されたフォトマスクを通して活性エネルギー線にて露光させ、アルカリ水溶液にて未露光部を現像し、更に140~180℃程度の温度範囲で加熱硬化させて得ることができる。
 前記基材としては、例えば、銅箔、アルミニウム箔等の金属箔などが挙げられる。
 以下、実施例と比較例とにより、本発明を具体的に説明する。
 本願実施例において酸基含有(メタ)アクリレート樹脂の酸価はJIS K 0070(1992)の中和滴定法にて測定した。
 本願実施例において酸基含有(メタ)アクリレート樹脂の重量平均分子量は下記条件のGPCにて測定した。
 測定装置:東ソー株式会社製「HLC-8320 GPC」
 カラム:東ソー株式会社製ガードカラム「HXL-L」
    +東ソー株式会社製「TSK-GEL G4000HXL」
    +東ソー株式会社製「TSK-GEL G3000HXL」
    +東ソー株式会社製「TSK-GEL G2000HXL」
    +東ソー株式会社製「TSK-GEL G2000HXL」
 検出器:RI(示差屈折計)
 データ処理:東ソー株式会社製「GPCワークステーション EcoSEC-WorkStation」
 カラム温度:40℃
 展開溶媒:テトラヒドロフラン
 流速:1.0ml/分
 標準:前記「GPC-8320 GPC」の測定マニュアルに準拠して、分子量が既知の下記の単分散ポリスチレンを用いた
 使用ポリスチレン
   東ソー株式会社製「A-500」
   東ソー株式会社製「A-1000」
   東ソー株式会社製「A-2500」
   東ソー株式会社製「A-5000」
   東ソー株式会社製「F-1」
   東ソー株式会社製「F-2」
   東ソー株式会社製「F-4」
   東ソー株式会社製「F-10」
   東ソー株式会社製「F-20」
   東ソー株式会社製「F-40」
   東ソー株式会社製「F-80」
   東ソー株式会社製「F-128」
 試料:樹脂固形分換算で1.0質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(50μl)。
(合成例1:重合性不飽和結合含有芳香族エステル化合物(A-1)の合成)
 温度計、滴下ロート、冷却管、分留管、撹拌機を取り付けたフラスコにオルトアリルフェノール268質量部(2.0mol)、トルエン1200質量部を仕込み、系内を減圧窒素置換した。次いで、イソフタル酸クロリド203質量部(1.0mol)を仕込み、系内を減圧窒素置換した。次いで、テトラブチルアンモニウムブロミド0.6質量部を添加し、窒素ガスパージ処理を行いながら、系内を60℃以下に制御して、20%水酸化ナトリウム水溶液412質量部を3時間かけて滴下し、滴下終了後、1時間撹拌した。反応終了後、静置分液により水層を除去した。得られたトルエン層にさらに水を投入して15分間撹拌し、静置分液により水層を除去した。この操作を水層のpHが7になるまで繰り返した。そして、加熱減圧乾燥することで、下記化学式で表される重合性不飽和結合含有芳香族エステル化合物(A-1)を得た。この重合性不飽和結合含有芳香族エステル化合物(A-1)のエステル基当量は、199g/当量であった。なお、前記エステル基当量は、仕込み比から算出した計算値である。
Figure JPOXMLDOC01-appb-C000031
(合成例2:重合性不飽和結合含有芳香族エステル化合物(A-2)の合成)
 温度計、滴下ロート、冷却管、分留管、撹拌機を取り付けたフラスコにオルトアリルフェノール134質量部(1.0mol)、トルエン711質量部を仕込み、系内を減圧窒素置換した。次いで、ベンジルクロライド140質量部(1.0mol)を仕込み、系内を減圧窒素置換した。次いで、テトラブチルアンモニウムブロミド0.4質量部を添加し、窒素ガスパージ処理を行いながら、系内を60℃以下に制御して、20%水酸化ナトリウム水溶液205質量部を3時間かけて滴下し、滴下終了後、1時間撹拌した。反応終了後、静置分液により水層を除去した。得られたトルエン層にさらに水を投入して15分間撹拌し、静置分液により水層を除去した。この操作を水層のpHが7になるまで繰り返した。そして、加熱減圧乾燥することで、下記化学式で表される芳香族エステル化合物(A-2)を得た。この芳香族エステル化合物(A-2)のエステル基当量は、119g/当量であった。なお、前記エステル基当量は、仕込み比から算出した計算値である。
Figure JPOXMLDOC01-appb-C000032
(合成例3:芳香族エステル化合物(A-3)の合成)
 温度計、滴下ロート、冷却管、分留管、撹拌機を取り付けたフラスコにオルソクレゾール216質量部(2.0mol)、トルエン1200質量部を仕込み、系内を減圧窒素置換した。次いで、イソフタル酸クロリド203質量部(1.0mol)を仕込み、系内を減圧窒素置換した。次いで、テトラブチルアンモニウムブロミド0.5質量部を添加し、窒素ガスパージ処理を行いながら、系内を60℃以下に制御して、20%水酸化ナトリウム水溶液412質量部を3時間かけて滴下し、滴下終了後、1時間撹拌した。反応終了後、静置分液により水層を除去した。得られたトルエン層にさらに水を投入して15分間撹拌し、静置分液により水層を除去した。この操作を水層のpHが7になるまで繰り返した。そして、加熱減圧乾燥することで、下記化学式で表される芳香族エステル化合物(A-3)を得た。この芳香族エステル化合物(A-3)のエステル基当量は、173g/当量であった。なお、前記エステル基当量は、仕込み比から算出した計算値である。
Figure JPOXMLDOC01-appb-C000033
(合成例4:酸基含有(メタ)アクリレート樹脂(B-1)の合成)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート101質量部を入れ、オルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製「EPICLON N-680」、エポキシ当量:214)428質量部を溶解し、酸化防止剤としてジブチルヒドロキシトルエン4質量部、熱重合禁止剤としてメトキノン0.4質量部加えた後、アクリル酸144質量部、トリフェニルホスフィン1.6質量部を添加し、空気を吹き込みながら120℃で10時間エステル化反応を行なった。その後、ジエチレングリコールモノメチルエーテルアセテート311質量部、テトラヒドロ無水フタル酸160質量部を加え110℃で2.5時間反応して、固形分が64.0質量%の酸基含有(メタ)アクリレート樹脂(B-1)を得た。この酸基含有(メタ)アクリレート樹脂(B-1)の固形分酸価は85mgKOH/gであり、重量平均分子量は、8850であった。
(合成例5:酸基含有(メタ)アクリレート樹脂(B-2)の合成)
 温度計、攪拌器、及び還流冷却器を備えたフラスコに、ジエチレングリコールモノメチルエーテルアセテート392質量部、イソホロンジイソシアネートのイソシアヌレート変性体(EVONIK社製「VESTANAT T-1890/100」、イソシアネート基含有量17.2質量%)(以下、「T-1890」と略記する。)244質量部、無水トリメリット酸192質量部、ジブチルヒドロキシトルエン1.0質量部を加えて溶解させた。窒素雰囲気下、160℃で5時間反応させ、イソシアネート基含有量が0.1質量%以下となっていることを確認した。酸無水物基非開環条件で測定した固形分酸価は160mgKOH/gであった。メトキノン0.3質量部、ペンタエリスリトールポリアクリレート混合物(東亜合成株式会社製「アロニックスM-306」、ペンタエリスリトールトリアクリレート含有量約67%、水酸基価159.7mgKOH/g)(以下、「M-306」と略記する。)172質量部及びトリフェニルホスフィン3.6質量部を添加し、空気を吹き込みながら110℃で5時間反応させた。次いで、グリシジルメタクリレート163質量部を添加し、110℃で5時間反応させた。更に、無水コハク酸112質量部、ジエチレングリコールモノメチルエーテルアセテート122質量部を加えて110℃で5時間反応させ、固形分が62.1質量%の酸基含有(メタ)アクリレート樹脂(B-2)を得た。この酸基含有(メタ)アクリレート樹脂(B-2)の固形分酸価は79mgKOH/gであり、重量平均分子量は、3790であった。
(実施例1:酸基含有(メタ)アクリレート樹脂組成物(1)の調製)
 合成例1で得た重合性不飽和結合含有芳香族エステル化合物(A-1)と、合成例4で得た酸基含有(メタ)アクリレート樹脂(B-1)と、硬化剤としてオルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製「EPICLON N-680」)と、ジペンタエリスリトールヘキサアクリレートと、ジエチレングリコールモノエチルエーテルアセテートと、光重合開始剤(IGM社製「Omnirad 907」)と、2-エチル-4-メチルイミダゾールと、フタロシアニングリーンとを表1に示す質量部で配合し、ロールミルにより混錬して酸基含有(メタ)アクリレート樹脂組成物(1)を得た。
(実施例2~7:酸基含有(メタ)アクリレート樹脂組成物(2)~(7)の調製)
 表1に示す組成及び配合で実施例1と同様の方法にて、酸基含有(メタ)アクリレート樹脂組成物(2)~(7)を得た。
(比較例1:酸基含有(メタ)アクリレート樹脂組成物(C1)の調製)
 合成例3で得た芳香族エステル化合物(A-3)と、合成例4で得た酸基含有(メタ)アクリレート樹脂(B-1)と、硬化剤としてオルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製「EPICLON N-680」)と、ジペンタエリスリトールヘキサアクリレートと、ジエチレングリコールモノエチルエーテルアセテートと、光重合開始剤(IGM社製「Omnirad 907」)と、2-エチル-4-メチルイミダゾールと、フタロシアニングリーンとを表1に示す質量部で配合し、ロールミルにより混錬して酸基含有(メタ)アクリレート樹脂組成物(C1)を得た。
(比較例2:酸基含有(メタ)アクリレート樹脂組成物(C2)の調製)
 比較例1で用いた酸基含有(メタ)アクリレート樹脂(B-1)の代わりに、合成例4で得た酸基含有(メタ)アクリレート樹脂(B-2)を用いた以外は、比較例1と同様にして酸基含有(メタ)アクリレート樹脂組成物(C2)を得た。
 上記の実施例及び比較例で得られた酸基含有(メタ)アクリレート樹脂組成物を用いて、下記の評価を行った。
[光感度の評価方法]
 各実施例及び比較例で得られた酸基含有(メタ)アクリレート樹脂組成物を、アプリケーターを用いてガラス基材上に膜厚50μmとなるように塗布し、80℃で30分乾燥させた。次いで、乾燥させた塗膜上にコダック社製「ステップタブレットNo.2」を乗せ、メタルハライドランプを用いて1000mJ/cmの紫外線を照射した。これを1%の炭酸ナトリウム水溶液で30℃180秒間現像し、ステップタブレット法に基づきステップタブレットの残存段数にて評価した。なお、残存段数が多いほど光感度が高いことを示す。
 実施例1~7で調製した酸基含有(メタ)アクリレート樹脂組成物(1)~(7)、並びに比較例1及び2で調製した酸基含有(メタ)アクリレート樹脂組成物(C1)及び(C2)の組成及び評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000034
 表1中の比較例2の評価における「-」は、評価不可を示す。これは、芳香族エステル化合物と酸基含有(メタ)アクリレート樹脂が相溶せず、混合した際に白濁したため、評価不可とした。
(実施例8:酸基含有(メタ)アクリレート樹脂組成物(8)の調製)
 合成例1で得た重合性不飽和結合含有芳香族エステル化合物(A-1)と、合成例4で得た酸基含有(メタ)アクリレート樹脂(B-1)と、硬化剤としてオルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製「EPICLON N-680」)と、硬化促進剤としてジメチルアミノピリジンと、光重合開始剤(IGM社製「Omnirad 907」)と、有機溶剤としてジエチレングリコールモノメチルエーテルアセテートとを表2に示す質量部で配合し、ロールミルにより混錬して酸基含有(メタ)アクリレート樹脂組成物(8)を得た。
(実施例9~14:酸基含有(メタ)アクリレート樹脂組成物(9)~(14)の調製)
 表2に示す組成及び配合で実施例8と同様の方法にて、酸基含有(メタ)アクリレート樹脂組成物(9)~(14)を得た。
(比較例3:酸基含有(メタ)アクリレート樹脂組成物(C3)の調製)
 合成例3で得た芳香族エステル化合物(A-3)と、合成例4で得た酸基含有(メタ)アクリレート樹脂(B-1)と、硬化剤としてオルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製「EPICLON N-680」と、硬化促進剤としてジメチルアミノピリジンと、光重合開始剤(IGM社製「Omnirad 907」)と、有機溶剤としてジエチレングリコールモノメチルエーテルアセテートとを表2に示す質量部で配合し、ロールミルにより混錬して酸基含有(メタ)アクリレート樹脂組成物(C3)を得た。
(比較例4:酸基含有(メタ)アクリレート樹脂組成物(C4)の調製)
 比較例3で用いた酸基含有(メタ)アクリレート樹脂(B-1)の代わりに、合成例5で得た酸基含有(メタ)アクリレート樹脂(B-2)を用いた以外は、比較例3と同様にして酸基含有(メタ)アクリレート樹脂組成物(C4)を得た。
 上記の実施例及び比較例で得られた酸基含有(メタ)アクリレート樹脂組成物を用いて、下記の評価を行った。
[耐熱性の評価方法]
 各実施例及び比較例で得られた酸基含有(メタ)アクリレート樹脂組成物を、アプリケーターを用いてガラス基材上に膜厚50μmとなるように塗布し、80℃で30分乾燥させた。次いで、メタルハライドランプを用いて1000mJ/cmの紫外線を照射した後、160℃で1時間加熱して、硬化物をガラス基材から剥離し、硬化物を得た。前記硬化物から6mm×35mmの試験片を切り出し、粘弾性測定装置(DMA:レオメトリック社製固体粘弾性測定装置「RSAII」、引張り法:周波数1Hz、昇温速度3℃/分)を用いて、弾性率変化が最大となる温度をガラス転移温度として評価した。なお、ガラス転移温度が高いほど耐熱性に優れていることを示す。
[誘電率の測定方法]
 各実施例及び比較例で得られた酸基含有(メタ)アクリレート樹脂組成物を、アプリケーターを用いてガラス基材上に膜厚50μmとなるように塗布し、80℃で30分乾燥させた。次いで、メタルハライドランプを用いて1000mJ/cmの紫外線を照射した後、160℃で1時間加熱して、硬化物をガラス基材から剥離し、硬化物を得た。次いで、温度23℃、湿度50%の室内に24時間保管したものを試験片とし、アジレント・テクノロジー株式会社製「ネットワークアナライザE8362C」を用いて、空洞共振法により試験片の1GHzでの誘電率を測定した。
[誘電正接の測定方法]
 各実施例及び比較例で得られた酸基含有(メタ)アクリレート樹脂組成物を、アプリケーターを用いてガラス基材上に膜厚50μmとなるように塗布し、80℃で30分乾燥させた。次いで、メタルハライドランプを用いて1000mJ/cmの紫外線を照射した後、160℃で1時間加熱して、硬化物をガラス基材から剥離し、硬化物を得た。次いで、温度23℃、湿度50%の室内に24時間保管したものを試験片とし、アジレント・テクノロジー株式会社製「ネットワークアナライザE8362C」を用いて、空洞共振法により試験片の1GHzでの誘電正接を測定した。
 実施例8~14で調製した酸基含有(メタ)アクリレート樹脂組成物(8)~(14)、並びに比較例3及び4で調製した酸基含有(メタ)アクリレート樹脂組成物(C3)及び(C4)の組成及び評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000035
 なお、表1及び2中の酸基含有(メタ)アクリレート樹脂(B-1)及び(B-2)の配合量は、固形分値である。
 表2中の比較例4の評価における「-」は、評価不可を示す。これは、芳香族エステル化合物と酸基含有(メタ)アクリレート樹脂が相溶せず、混合した際に白濁したため、評価不可とした。
 なお、表1及び2中の「硬化剤」は、オルソクレゾールノボラック型エポキシ樹脂(DIC株式会社製「EPICLON N-680」、エポキシ当量:214)を示す。
 表2中の「硬化促進剤」は、ジメチルアミノピリジンを示す。
 表1及び2中の「有機溶剤」は、ジエチレングリコールモノメチルエーテルアセテートを示す。
 表1及び2中の「光重合開始剤」は、IGM社製「Omnirad-907」を示す。
 表1及び2に示した実施例1~14は、本発明の酸基含有(メタ)アクリレート樹脂組成物の例であるが、本発明の酸基含有(メタ)アクリレート樹脂組成物は優れた光感度を有しており、また、本発明の酸基含有(メタ)アクリレート樹脂組成物の硬化物は、優れた耐熱性を有しており、また、誘電率及び誘電正接ともに低く、誘電特性にも優れることが確認できた。
 一方、比較例1~4は、重合性不飽和結合を有しない芳香族エステル化合物を用いた酸基含有(メタ)アクリレート樹脂組成物の例であるが、この酸基含有(メタ)アクリレート樹脂組成物の硬化物は、誘電率及び誘電正接ともに高く、誘電特性が著しく不十分であることが確認できた。

Claims (10)

  1.  重合性不飽和結合含有芳香族エステル化合物(A)と、酸基含有(メタ)アクリレート樹脂(B)とを含有することを特徴とする酸基含有(メタ)アクリレート樹脂組成物。
  2.  前記重合性不飽和結合含有芳香族エステル化合物(A)が、
    フェノール性水酸基を有する芳香族化合物と、
    カルボキシル基を有する芳香族化合物、その酸ハロゲン化物及び/またはそのエステル化物と、
    の反応生成物であり、前記フェノール性水酸基を有する芳香族化合物、並びに、カルボキシル基を有する芳香族化合物、その酸ハロゲン化物及び/またはそのエステル化物の少なくとも1つが、重合性不飽和結合含有置換基を有するものである請求項1記載の酸基含有(メタ)アクリレート樹脂組成物。
  3.  前記重合性不飽和結合含有芳香族エステル化合物(A)が、下記化学式(a1)または下記化学式(a2)で表されるものである請求項1記載の酸基含有(メタ)アクリレート樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    〔式中、Arは、それぞれ独立して、置換または非置換の第1の芳香族環基であり、Arは、それぞれ独立して、置換または非置換の第2の芳香族環基であり、前記Ar及び前記Arの少なくとも1つが重合性不飽和結合含有置換基を有するものである。nは、1~3の整数である。〕
  4.  前記重合性不飽和結合含有芳香族エステル化合物(A)と、前記酸基含有(メタ)アクリレート樹脂(B)との固形分の質量割合[(A)/(B)]が、50/50~95/5の範囲である請求項1記載の酸基含有(メタ)アクリレート樹脂組成物。
  5.  請求項1~3のいずれか1項記載の酸基含有(メタ)アクリレート樹脂組成物と、光重合開始剤とを含有することを特徴とする硬化性樹脂組成物。
  6.  さらに、有機溶剤と、硬化剤とを含有するものである請求項5記載の硬化性樹脂組成物。
  7.  請求項5または6記載の硬化性樹脂組成物の硬化反応物であることを特徴とする硬化物。
  8.  請求項5または6記載の硬化性樹脂組成物からなることを特徴とする絶縁材料。
  9.  請求項5または6記載の硬化性樹脂組成物からなることを特徴とするソルダーレジスト用樹脂材料。
  10.  請求項9記載のソルダーレジスト用樹脂材料からなることを特徴とするレジスト部材。
PCT/JP2019/018501 2018-05-15 2019-05-09 酸基含有(メタ)アクリレート樹脂組成物、硬化性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材 WO2019220996A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980032027.XA CN112105661B (zh) 2018-05-15 2019-05-09 含酸基(甲基)丙烯酸酯树脂组合物、固化性树脂组合物、固化物及阻焊剂用树脂材料
JP2020502501A JP6705574B2 (ja) 2018-05-15 2019-05-09 酸基含有(メタ)アクリレート樹脂組成物、硬化性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018093762 2018-05-15
JP2018-093762 2018-05-15

Publications (1)

Publication Number Publication Date
WO2019220996A1 true WO2019220996A1 (ja) 2019-11-21

Family

ID=68540012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018501 WO2019220996A1 (ja) 2018-05-15 2019-05-09 酸基含有(メタ)アクリレート樹脂組成物、硬化性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材

Country Status (4)

Country Link
JP (1) JP6705574B2 (ja)
CN (1) CN112105661B (ja)
TW (1) TWI796478B (ja)
WO (1) WO2019220996A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021014577A (ja) * 2019-07-12 2021-02-12 味の素株式会社 樹脂組成物
JP2021075628A (ja) * 2019-11-08 2021-05-20 Dic株式会社 酸基含有(メタ)アクリレート樹脂組成物、硬化性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材
JP2021075623A (ja) * 2019-11-08 2021-05-20 Dic株式会社 酸基含有(メタ)アクリレート樹脂組成物、硬化性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材
JP2021075625A (ja) * 2019-11-08 2021-05-20 Dic株式会社 酸基含有(メタ)アクリレート樹脂組成物、硬化性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材
WO2024166470A1 (ja) * 2023-02-09 2024-08-15 日本ゼオン株式会社 多官能化合物及びその製造方法、重合性組成物、並びに硬化物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023003576A (ja) * 2021-06-24 2023-01-17 Dic株式会社 樹脂、硬化性樹脂組成物、硬化物、絶縁材料及びレジスト部材

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276406A (ja) * 2008-05-12 2009-11-26 Fujifilm Corp 黒色感光性樹脂組成物、及びカラーフィルタ並びにその製造方法
JP2010085604A (ja) * 2008-09-30 2010-04-15 Fujifilm Corp 感光性樹脂組成物、カラーフィルタの製造方法及びカラーフィルタ
JP2013145283A (ja) * 2012-01-13 2013-07-25 Fujifilm Corp 感光性樹脂組成物、絶縁性材料、ソルダーレジストインク、感光性積層体、フレキシブル回路基板および永久パターン形成方法
JP2013231897A (ja) * 2012-05-01 2013-11-14 Fujifilm Corp 感光性樹脂組成物、感光性積層体、フレキシブル回路基板、及び永久パターン形成方法
JP2014037475A (ja) * 2012-08-14 2014-02-27 Dic Corp ビニルエステル化合物、ビニルエステル樹脂、その製造方法、感光性樹脂組成物、その硬化物、及びレジストインキ
JP2014219522A (ja) * 2013-05-07 2014-11-20 太陽ホールディングス株式会社 ソルダーレジスト組成物およびそれを用いたプリント配線板

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4749270B2 (ja) * 2006-08-03 2011-08-17 旭化成イーマテリアルズ株式会社 感光性樹脂組成物及び積層体
WO2014133052A1 (ja) * 2013-02-28 2014-09-04 昭和電工株式会社 硬化性組成物、透明耐熱材料及びその用途
CN105075409B (zh) * 2013-04-23 2018-07-03 太阳控股株式会社 阻焊剂组合物和使用了该阻焊剂组合物的印刷电路板
KR101922354B1 (ko) * 2014-09-24 2018-11-26 아사히 가세이 가부시키가이샤 감광성 수지 조성물, 감광성 수지 적층체, 수지 패턴의 제조 방법, 경화막 및 표시 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009276406A (ja) * 2008-05-12 2009-11-26 Fujifilm Corp 黒色感光性樹脂組成物、及びカラーフィルタ並びにその製造方法
JP2010085604A (ja) * 2008-09-30 2010-04-15 Fujifilm Corp 感光性樹脂組成物、カラーフィルタの製造方法及びカラーフィルタ
JP2013145283A (ja) * 2012-01-13 2013-07-25 Fujifilm Corp 感光性樹脂組成物、絶縁性材料、ソルダーレジストインク、感光性積層体、フレキシブル回路基板および永久パターン形成方法
JP2013231897A (ja) * 2012-05-01 2013-11-14 Fujifilm Corp 感光性樹脂組成物、感光性積層体、フレキシブル回路基板、及び永久パターン形成方法
JP2014037475A (ja) * 2012-08-14 2014-02-27 Dic Corp ビニルエステル化合物、ビニルエステル樹脂、その製造方法、感光性樹脂組成物、その硬化物、及びレジストインキ
JP2014219522A (ja) * 2013-05-07 2014-11-20 太陽ホールディングス株式会社 ソルダーレジスト組成物およびそれを用いたプリント配線板

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021014577A (ja) * 2019-07-12 2021-02-12 味の素株式会社 樹脂組成物
JP7354947B2 (ja) 2019-07-12 2023-10-03 味の素株式会社 樹脂組成物
JP2021075628A (ja) * 2019-11-08 2021-05-20 Dic株式会社 酸基含有(メタ)アクリレート樹脂組成物、硬化性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材
JP2021075623A (ja) * 2019-11-08 2021-05-20 Dic株式会社 酸基含有(メタ)アクリレート樹脂組成物、硬化性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材
JP2021075625A (ja) * 2019-11-08 2021-05-20 Dic株式会社 酸基含有(メタ)アクリレート樹脂組成物、硬化性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材
JP7228103B2 (ja) 2019-11-08 2023-02-24 Dic株式会社 酸基含有(メタ)アクリレート樹脂組成物、硬化性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材
JP7228101B2 (ja) 2019-11-08 2023-02-24 Dic株式会社 酸基含有(メタ)アクリレート樹脂組成物、硬化性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材
JP7247862B2 (ja) 2019-11-08 2023-03-29 Dic株式会社 酸基含有(メタ)アクリレート樹脂組成物、硬化性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材
WO2024166470A1 (ja) * 2023-02-09 2024-08-15 日本ゼオン株式会社 多官能化合物及びその製造方法、重合性組成物、並びに硬化物

Also Published As

Publication number Publication date
CN112105661A (zh) 2020-12-18
CN112105661B (zh) 2023-02-24
TW202003620A (zh) 2020-01-16
JP6705574B2 (ja) 2020-06-03
TWI796478B (zh) 2023-03-21
JPWO2019220996A1 (ja) 2020-05-28

Similar Documents

Publication Publication Date Title
JP6705574B2 (ja) 酸基含有(メタ)アクリレート樹脂組成物、硬化性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材
JP7172555B2 (ja) 酸基含有(メタ)アクリレート樹脂組成物、硬化性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材
JP6743993B2 (ja) エポキシ(メタ)アクリレート樹脂組成物、硬化性樹脂組成物、硬化物及び物品
JPWO2003087186A1 (ja) 不飽和基含有多分岐化合物、それを含有する硬化性組成物及びその硬化物
JP6780809B1 (ja) 酸基含有(メタ)アクリレート樹脂、硬化性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材
JP6813135B1 (ja) 酸基含有(メタ)アクリレート樹脂、硬化性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材
JP6797354B2 (ja) 酸基含有(メタ)アクリレート樹脂、硬化性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材
JP7188053B2 (ja) 酸基含有(メタ)アクリレート樹脂、硬化性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材
JPWO2002090418A1 (ja) 不飽和基含有多分岐化合物、それを含有する硬化性組成物及びその硬化物
JP7192521B2 (ja) 酸基含有(メタ)アクリレート樹脂、硬化性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材
JP7183761B2 (ja) 酸基含有(メタ)アクリレート樹脂、硬化性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材
JP2020176214A (ja) アミドイミド樹脂組成物、硬化性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材
JP7196587B2 (ja) 酸基含有(メタ)アクリレート樹脂、硬化性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材
JP7228093B2 (ja) 酸基含有(メタ)アクリレート樹脂、硬化性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材
JP7275898B2 (ja) 酸基含有(メタ)アクリレート樹脂、硬化性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材
JP7264004B2 (ja) 酸基含有(メタ)アクリレート樹脂組成物、硬化性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材
JP6753552B2 (ja) 酸基含有(メタ)アクリレート樹脂組成物、硬化性樹脂組成物、硬化物、及びソルダーレジスト用樹脂材料
JP2023090562A (ja) 重合性不飽和基を有する樹脂組成物、硬化性樹脂組成物、硬化物、及び物品
JP2020083985A (ja) 酸基含有(メタ)アクリレート樹脂、硬化性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材
JP2023090561A (ja) 樹脂組成物、硬化性組成物、硬化物、絶縁材料、及びレジスト部材
JPWO2021065318A1 (ja) 酸基含有(メタ)アクリレート樹脂、酸基含有(メタ)アクリレート樹脂組成物、硬化性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材
JP2020097702A (ja) 硬化性樹脂組成物、硬化物、絶縁材料、ソルダーレジスト用樹脂材料及びレジスト部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19803976

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020502501

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19803976

Country of ref document: EP

Kind code of ref document: A1