WO2019220862A1 - Inductor and method for producing same - Google Patents

Inductor and method for producing same Download PDF

Info

Publication number
WO2019220862A1
WO2019220862A1 PCT/JP2019/016838 JP2019016838W WO2019220862A1 WO 2019220862 A1 WO2019220862 A1 WO 2019220862A1 JP 2019016838 W JP2019016838 W JP 2019016838W WO 2019220862 A1 WO2019220862 A1 WO 2019220862A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating layer
region
conductor portions
layer
inductor
Prior art date
Application number
PCT/JP2019/016838
Other languages
French (fr)
Japanese (ja)
Inventor
牛見 義光
篤史 世古
亜季子 宇野
竹内 雅樹
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2019220862A1 publication Critical patent/WO2019220862A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor

Definitions

  • the present invention relates to an inductor and a manufacturing method thereof.
  • a first example of an inductor is described in JP-T-2002-513511 (Patent Document 1).
  • a pattern of a first conductive layer is formed on a substrate, and a first isolation layer is formed so as to cover it.
  • a seed layer is formed on the upper side of the first isolation layer, and a magnetic core is formed by electroplating so as to cover the exposed portion of the seed layer.
  • a second example of the inductor is described in JP-T-2004-524696 (Patent Document 2).
  • a coil is formed in a recess formed in a substrate.
  • JP 2002-513511 A JP-T-2004-524696
  • the first isolation layer is formed on the substrate so as to cover the pattern of the first conductive layer. Irregularities occur on the surface of one isolation layer. Since the magnetic core is formed on the first isolation layer having such irregularities, the axis of the magnetic core can be in a non-linear state due to the irregularities. In such a magnetic core, the magnetization direction is disturbed, the original magnetic characteristics of the magnetic film are not exhibited, and the performance as an inductor is inferior.
  • an object of the present invention is to provide an inductor that can arrange the direction of magnetization and can satisfactorily exhibit the performance as an inductor according to the original magnetic characteristics of the magnetic film, and a method for manufacturing the inductor.
  • an inductor includes a substrate having a main surface and a plurality of portions arranged so as to protrude from both sides of the first region across the first region set on the main surface.
  • a second insulating layer disposed in the region to be extended, a magnetic core disposed so as to extend into the first region above the second insulating layer, and a third covering the upper side and the side of the magnetic core.
  • An insulating layer and a plurality of second conductor portions connected to the plurality of first conductor portions and arranged to straddle an upper side of the third insulating layer, and an upper surface of the plurality of first conductor portions and the above
  • the upper surface of the first insulating layer is located in the same plane and is above the first conductor portion.
  • the magnetic core 5 can be formed on a substantially non-concave surface. . Therefore, since the axis of the magnetic core can be made linear, it is possible to realize an inductor in which the direction of magnetization is aligned and the performance as an inductor can be satisfactorily exhibited according to the original magnetic characteristics of the magnetic film. .
  • FIG. 3 is a plan view corresponding to that shown in FIG. 2. It is explanatory drawing of the 2nd process of the manufacturing method of the inductor in Embodiment 1 based on this invention. It is explanatory drawing of the 3rd process of the manufacturing method of the inductor in Embodiment 1 based on this invention. It is a top view corresponding to what was shown in FIG. It is explanatory drawing of the 4th process of the manufacturing method of the inductor in Embodiment 1 based on this invention.
  • FIG. 10 is a plan view corresponding to that shown in FIG. 9. It is explanatory drawing of the 6th process of the manufacturing method of the inductor in Embodiment 1 based on this invention. It is explanatory drawing of the 7th process of the manufacturing method of the inductor in Embodiment 1 based on this invention. It is a top view corresponding to what was shown in FIG. It is explanatory drawing of the 8th process of the manufacturing method of the inductor in Embodiment 1 based on this invention. It is a top view corresponding to what was shown in FIG.
  • FIG. 32 is a plan view corresponding to that shown in FIG. 31. It is explanatory drawing of the 9th process of the manufacturing method of the inductor in Embodiment 2 based on this invention. It is a top view corresponding to what was shown in FIG. It is explanatory drawing of the 10th process of the manufacturing method of the inductor in Embodiment 2 based on this invention. It is explanatory drawing of the 1st modification of the magnetic core with which the inductor based on this invention is equipped. It is explanatory drawing of the 2nd modification of the magnetic core with which the inductor based on this invention is equipped. It is explanatory drawing of the 3rd modification of the magnetic core with which the inductor based on this invention is equipped.
  • FIG. 1 shows a flowchart of the method for manufacturing an inductor in the present embodiment.
  • a plurality of first inductors arranged so as to protrude from both sides of the first region across the first region with respect to the substrate having the main surface in which the first region is set.
  • Step S1 of forming one conductor portion on the main surface Step S2 of forming a first insulating layer so as to cover the plurality of first conductor portions and to separate the plurality of first conductor portions from each other.
  • step S5 Forming a magnetic core in the step S5 and the magnetic A step S6 of forming a third insulating layer so as to cover the upper side and the side of the upper side, and a plurality of second conductor portions connected to the plurality of first conductor portions and straddling the upper side of the third insulating layer.
  • step S7 Forming step S7.
  • the first conductor portion and the second conductor portion are alternately connected to form a coil structure.
  • an SiO 2 layer 12 is formed on the Si substrate 11 as an insulating film.
  • a substrate formed of a material such as glass may be used instead of the Si substrate 11.
  • the insulating film formed on the upper surface may be an Al 2 O 3 layer or the like.
  • the insulating film should just be a film
  • the substrate 1 is a combination of the Si substrate 11 and the SiO 2 layer 12.
  • the substrate 1 has a main surface 1u. In the example shown in FIG. 2, the main surface 1 u is the upper surface of the SiO 2 layer 12.
  • Fig. 3 shows a plan view of this state.
  • a first region 4 is set on the main surface 1 u of the substrate 1.
  • the first region 4 is a region where a magnetic core is to be arranged.
  • the first region 4 is conceptual and is indicated by a two-dot chain line that represents an imaginary line.
  • seed layer 2 is formed so as to cover main surface 1 u of substrate 1.
  • the seed layer 2 covers the upper surface of the SiO 2 layer 12.
  • the seed layer 2 may be formed of a material such as Cu or Au.
  • the seed layer 2 can be formed by sputtering, for example.
  • a resist pattern 18 is formed on the seed layer 2. For patterning, a resist layer is once formed so as to cover the entire seed layer 2, the resist layer is exposed so as to correspond to a desired pattern, and unnecessary portions of the resist layer are removed by development.
  • FIG. 6 shows a plan view of the state shown in FIG.
  • each opening 18 a of the resist pattern 18 extends in a direction slightly inclined from the direction perpendicular to the longitudinal direction of the first region 4.
  • the coil axis of the coil structure formed later extends in the vertical direction in FIG.
  • FIG. 6 a cross-sectional view taken along an appropriate straight line in a direction perpendicular to the longitudinal direction of the first region 4 corresponds to FIG. 5.
  • the length and ratio of the opening 18a of the resist pattern 18 appearing on the left and right respectively are different from those shown in FIG. 5, but FIG. For simplicity, the two openings 18a having the same length are schematically shown as being visible.
  • Electrolytic plating is performed to form a plating layer 21a in the shape of the opening 18a of the resist pattern 18 as shown in FIG.
  • the plating layer 21a is formed only in the region of the seed layer 2 exposed through the opening 18a.
  • the plating layer 21a may be formed of a material such as Cu, for example.
  • the first conductor portion 21 is arranged in a line so as to cross the first region 4 and protrude to both sides of the first region 4.
  • substrate 1 the process of forming the 1st conductor part 21 in the board
  • substrate 1 is process S1.
  • the first conductor portion 21 forms a lower part of a coil structure that surrounds the magnetic core, and may be referred to as a “lower coil electrode”.
  • a first insulating layer 31 is formed as shown in FIG. A plan view of this state is shown in FIG.
  • the first insulating layer 31 is formed so as to cover the plurality of first conductor portions 21 and to separate the plurality of first conductor portions 21 from each other.
  • the material of the first insulating layer 31 may be polyimide, resist, or the like, for example.
  • a method such as spin coating or laminating may be used to form the first insulating layer 31.
  • Step 3 Planarization is performed.
  • the top surface of the first conductor portion 21 and the top surface of the first insulating layer 31 are collectively planarized while the first conductor portion 21 is exposed.
  • cutting may be used as shown in FIG. In the example shown in FIG. 11, cutting is performed by relatively moving the blade 15 in the direction of the arrow 91.
  • a grinding process may be used in addition to the cutting process.
  • the state after step S3 is shown in FIG.
  • the planarization process the upper surface of the first conductor portion 21 and the upper surface of the first insulating layer 31 are located in the same plane.
  • a plan view of this state is shown in FIG.
  • the plurality of first conductor portions 21 are exposed while the upper surface of the first insulating layer 31 is widened.
  • the second insulating layer 32 is formed along the first region 4 above the upper surfaces of the plurality of first conductor portions 21 as shown in FIG. A plan view of this state is shown in FIG.
  • the second insulating layer 32 is formed so as to expose both ends of each of the plurality of first conductor portions 21.
  • the second insulating layer 32 can be formed by photolithography or the like.
  • the second insulating layer 32 is formed in a region including at least the first region 4.
  • An example of the state after step S4 is shown in FIG.
  • a magnetic core is formed so as to extend into the first region 4 above the second insulating layer 32.
  • FIG. 16 shows an example in which the magnetic core 5 is formed. A plan view of this state is shown in FIG.
  • the number of magnetic layers included in the magnetic core 5 may be one.
  • the magnetic core 5 has a structure including a plurality of magnetic layers.
  • the magnetic core 5 includes a magnetic layer 51 and an insulating layer 52.
  • two magnetic layers 51 have a structure in which one insulating layer 52 is sandwiched.
  • the third insulating layer 33 is formed so as to cover the upper side and the side of the magnetic core 5.
  • the third insulating layer 33 is formed in a desired range by photolithography.
  • the third insulating layer 33 is formed so as to expose both ends of each of the plurality of first conductor portions 21.
  • the 2nd conductor part 22 is formed.
  • the plurality of second conductor portions 22 are formed so as to connect the ends of the plurality of first conductor portions 21 and straddle the upper side of the third insulating layer 33.
  • a plan view of this state is shown in FIG.
  • FIG. 19 when attention is paid to one of the plurality of first conductor portions 21, an end of the first conductor portion 21 and an end of another first conductor portion 21 adjacent to the first conductor portion 21 are Connected by the second conductor 22.
  • the electrode pads 25 a and 25 b are formed simultaneously with the second conductor portion 22.
  • the end of the uppermost first conductor portion 21 and the electrode pad 25 a are connected by the same conductor portion as that of the second conductor portion 22.
  • the lowermost end of the first conductor portion 21 and the electrode pad 25 b are connected by the same conductor portion as the second conductor portion 22.
  • the electrode pads 25a and 25b and the conductor portions connected thereto may also be formed by patterning simultaneously with the second conductor portion 22 using the same material as the second conductor portion 22.
  • the second conductor portion 22 forms an upper part of a coil structure that surrounds the magnetic core later, and may be referred to as an “upper coil electrode”.
  • the first conductor portion 21 and the second conductor portion 22 are alternately connected to form a coil structure.
  • inductor 101 in the present embodiment can be obtained.
  • a sectional view of inductor 101 in the present embodiment is shown in FIG. 18, and a plan view thereof is shown in FIG.
  • inductor 101 in the present embodiment protrudes on both sides of first region across substrate 1 having main surface 1u and a first region set on main surface 1u.
  • the plurality of first conductor portions 21 arranged in this manner, the first insulating layer 31 arranged on the main surface 1u and separating each of the plurality of first conductor portions 21 from each other, and the top surfaces of the plurality of first conductor portions 21
  • a second insulating layer 32 disposed in a region including the first region on the upper side; a magnetic core 5 disposed so as to extend into the first region on the upper side of the second insulating layer 32;
  • a third insulating layer 33 that covers the upper side and the side of the core 5, and a plurality of second conductor portions 22 that are connected to the plurality of first conductor portions 21 and straddle the upper side of the third insulating layer 33.
  • each of the plurality of first conductor portions 21 and the upper surface of the first insulating layer 31 are located in the same plane.
  • the first conductor portion 21 and the second conductor portion 22 are alternately connected to form a coil structure.
  • each of the plurality of first conductor portions 21 may be linear.
  • each of the plurality of second conductor portions 22 may be linear.
  • the magnetic core 5 can be formed on a substantially non-concave surface. . Therefore, since the axis of the magnetic core can be made linear, it is possible to realize an inductor in which the direction of magnetization is aligned and the performance as an inductor can be satisfactorily exhibited according to the original magnetic characteristics of the magnetic film. .
  • a plurality of surfaces are located in the same surface may be a result of performing some flattening process on the plurality of surfaces.
  • the plurality of surfaces are not necessarily in the same plane, and there may be a slight level difference.
  • such a good inductor can be efficiently manufactured.
  • inductor 101 in the present embodiment can also be expressed as follows from another aspect.
  • inductor 101 in the present embodiment protrudes on both sides of first region across substrate 1 having main surface 1u and a first region defined on main surface 1u.
  • the plurality of first conductor portions 21 arranged in this manner, the first insulating layer 22 arranged on the main surface 1u and separating each of the plurality of first conductor portions 21 from each other, and the top surfaces of the plurality of first conductor portions 21
  • a second insulating layer 32 disposed along the first region on the upper side, a magnetic core 5 disposed so as to extend into the first region above the second insulating layer 32, and a magnetic core 5
  • a third insulating layer 33 covering the upper side and the side of the first insulating layer 33, and a plurality of second conductor portions 22 arranged so as to connect ends of the plurality of first conductor portions 21 and straddle the upper side of the third insulating layer 33.
  • the top surfaces of the plurality of first conductor portions 21 and the top surface of the first insulating layer 31 are collectively planar
  • the top surfaces of the plurality of first conductor portions 21 and the top surface of the first insulating layer 31 are collectively planarized, and the magnetic core 5 is a flat surface obtained in this way. Formed on top. Therefore, since the axis of the magnetic core can be made linear, it is possible to realize an inductor in which the direction of magnetization is aligned and the performance as an inductor can be satisfactorily exhibited according to the original magnetic characteristics of the magnetic film. .
  • FIG. 20 shows a flowchart of the inductor manufacturing method according to the present embodiment.
  • Step S6 for forming the third insulating layer as described above, and Step S7 for forming the plurality of second conductor portions so as to be connected to the plurality of first conductor portions and straddle the upper side of the third insulating layer.
  • the first conductor portion and the second conductor portion are alternately connected to form a coil structure.
  • an SiO 2 layer 12 is formed on the Si substrate 11 as an insulating film.
  • a first insulating layer 31 is formed so as to cover main surface 1u.
  • an opening 8 is formed in the first insulating layer 31 as shown in FIG. A plan view of this state is shown in FIG.
  • the opening 8 is formed in a linear shape so as to cross the first region 4 and protrude to both sides of the first region 4.
  • the seed layer 2 is formed.
  • the material of the seed layer 2 may be either Cu or Au.
  • the seed layer 2 covers the upper surface of the first insulating layer 31 and also covers the side surfaces and the bottom surface of the opening 8.
  • a resist layer 16 is formed. The resist layer 16 is once formed on the entire surface and then patterned to cover a region other than the opening 8 as shown in FIG.
  • step S13 a plurality of first conductor portions are formed on the main surface so as to fill the opening 8.
  • electrolytic plating such as Cu may be performed.
  • the structure shown in FIG. 26 is obtained.
  • the plating layer 21 a is formed so as to fill the opening 8. A plan view of this state is shown in FIG.
  • the upper surface of the first conductor portion 21 and the upper surface of the first insulating layer 31 are collectively planarized.
  • the first conductor portion 21 is a combination of the seed layer 2 and the plating layer 21a.
  • cutting may be used as shown in FIG. In the example shown in FIG. 28, cutting is performed by relatively moving the blade 15 in the direction of the arrow 91.
  • the details of the planarization process are as described in the first embodiment.
  • FIG. 29 shows the state after step S3. A plan view of this state is shown in FIG. The plurality of first conductor portions 21 are exposed while the upper surface of the first insulating layer 31 is widened.
  • the second insulating layer 32 is formed along the first region 4 above the upper surfaces of the plurality of first conductor portions 21 as shown in FIG. A plan view of this state is shown in FIG. Details of the second insulating layer 32 are the same as those described in the first embodiment.
  • step S5 a magnetic core is formed so as to extend into the first region 4 above the second insulating layer 32.
  • FIG. 33 shows an example in which the magnetic core 5 is formed. A plan view of this state is shown in FIG.
  • the magnetic core 5 includes a structure in which two magnetic layers 51 and three insulating layers 52 are alternately stacked.
  • the third insulating layer 33 is formed so as to cover the upper side and the side of the magnetic core 5. Details of the third insulating layer 33 are the same as those described in the first embodiment.
  • the 2nd conductor part 22 is formed. Details of the second conductor portion 22 are the same as those described in the first embodiment.
  • FIG. 35 A cross-sectional view of the inductor 102 is shown in FIG. 35, and a plan view thereof is the same as that shown in FIG. 19 in the first embodiment.
  • a good inductor can be efficiently manufactured as in the manufacturing method shown in the first embodiment.
  • the step S3 for performing the flattening process is performed by cutting, grinding, or polishing.
  • high-precision flattening can be performed.
  • the flattening process can be performed with high accuracy by using, for example, a surface planar.
  • the surface planar may be, for example, manufactured by Disco Corporation.
  • a spindle with a diamond tool is rotated, and cutting is performed by the diamond tool.
  • the rotation axis of the spindle is in the vertical direction, and the diamond tool rotates in a certain horizontal plane, and the work piece supported substantially horizontally is relatively below the rotating diamond tool in the horizontal direction. Make it progress. By doing so, the upper surface of the workpiece can be cut and flattened.
  • the magnetic core 5 is formed by alternately laminating magnetic layers 51 and nonmagnetic layers having lower conductivity than the magnetic layers 51. It is preferable that the structure is included. By adopting this configuration, a magnetic core with good characteristics can be obtained.
  • the insulating layer 52 is disposed as an example of the non-magnetic layer having lower conductivity than the magnetic layer 51, but is not limited to the insulating layer 52.
  • the above-described nonmagnetic layer preferably has a conductivity of 1 ⁇ 10 3 S / cm or less.
  • the inductor may include a magnetic core 5i instead of the magnetic core 5.
  • the magnetic core 5 i includes only one magnetic layer 51 above the seed layer 6.
  • the inductor may include a magnetic core 5j instead of the magnetic core 5.
  • the magnetic core 5j includes two or more magnetic layers arranged in a direction parallel to the main surface 1u and electrically or physically separated from each other when viewed in a cross section perpendicular to the coil axis of the coil structure.
  • the coil axis of the coil structure extends in a direction perpendicular to the paper surface in FIG.
  • the magnetic core 5j includes magnetic layers 51a, 51b, 51c, and 51d.
  • the magnetic layer 51a and the magnetic layer 51b are at the same height and are separated from each other by an insulating layer.
  • the magnetic layer 51c and the magnetic layer 51d are at the same height and are separated from each other by an insulating layer.
  • the insulating layer 52 overlaps the magnetic material layers 51a and 51b, and the magnetic material layers 51c and 51d overlap the magnetic material layers 51a and 51b.
  • the inductor may include a magnetic core 5k instead of the magnetic core 5.
  • the magnetic core 5k includes a magnetic layer 51s and an insulating layer 52t.
  • the magnetic core 5k includes a structure in which the magnetic layer 51s and the insulating layer 52t are arranged in a checkered pattern when viewed in a cross section perpendicular to the coil axis of the coil structure. Such a structure may be used.
  • the adjacent magnetic layer 51s is arranged obliquely above or obliquely below one magnetic layer 51s, but these are not in direct contact with each other.
  • the insulating layer 52t is given as an example of a nonmagnetic layer having lower conductivity than the magnetic layer 51s, and is not limited to the insulating layer as long as it is a nonmagnetic layer having lower conductivity than the magnetic layer 51s. Absent. That is, the magnetic core may include a structure in which the magnetic layer and the nonmagnetic layer are arranged in a checkered pattern.
  • FIGS. 36 to 38 show a state in the middle of manufacturing.
  • each layer covering the upper side of the magnetic core does not exist yet, but when actually becoming an inductor, each layer covering the upper side of the magnetic core is formed as described in the first and second embodiments. .
  • the inductor is not limited to the solenoid type, and may be, for example, a toroidal type.
  • the material layer disposed in combination with the magnetic layer inside the magnetic core is referred to as an “insulating layer”, but instead of the insulating layer, a nonmagnetic material having lower conductivity than the magnetic layer. It may be a layer.
  • the nonmagnetic layer preferably has a conductivity of 1 ⁇ 10 3 S / cm or less.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

An inductor (101) is equipped with: a substrate (1) having a main surface (1u); a plurality of arranged first conductors (21); a first insulating layer (31) which is positioned on the main surface (1u) and separates the plurality of first conductors (21) from one another; a second insulating layer (32) which is positioned above the top surfaces of the plurality of first conductors (21); a magnetic core (5) which is positioned above the second insulating layer (32); a third insulating layer (33) which covers the top and sides of the magnetic core (5); and a plurality of second conductors (22) which are positioned so as to straddle the top of the third insulating layer (33) and are connected to the plurality of first conductors (21). Therein, the top surfaces of the plurality of first conductors (21) and the top surface of the first insulating layer (31) are positioned within the same plane, and a coil structure is formed by alternatingly connecting the first conductors (21) and the second conductors (22) with one another.

Description

インダクタおよびその製造方法Inductor and manufacturing method thereof
 本発明は、インダクタおよびその製造方法に関するものである。 The present invention relates to an inductor and a manufacturing method thereof.
 インダクタの第1の例が、特表2002-513511号公報(特許文献1)に記載されている。このインダクタを作製する際には、基板上に第1の導電層のパターンを形成し、これを覆うように第1の隔離層が形成される。第1の隔離層の上側にシード層が形成され、このシード層の露出した部分を覆うように電気めっきにより磁気コアが形成される。 A first example of an inductor is described in JP-T-2002-513511 (Patent Document 1). When manufacturing this inductor, a pattern of a first conductive layer is formed on a substrate, and a first isolation layer is formed so as to cover it. A seed layer is formed on the upper side of the first isolation layer, and a magnetic core is formed by electroplating so as to cover the exposed portion of the seed layer.
 インダクタの第2の例が、特表2004-524696号公報(特許文献2)に記載されている。このインダクタにおいては、基板に形成されたくぼみの中にコイルが形成されている。 A second example of the inductor is described in JP-T-2004-524696 (Patent Document 2). In this inductor, a coil is formed in a recess formed in a substrate.
特表2002-513511号公報JP 2002-513511 A 特表2004-524696号公報JP-T-2004-524696
 特許文献1に記載されたインダクタでは、基板上に第1の導電層のパターンを覆うように第1の隔離層が形成されているが、第1の導電層がある部分とない部分とで第1の隔離層の表面に凹凸が生じる。このような凹凸を有する第1の隔離層の上に磁気コアを形成しているので、凹凸の影響により磁気コアの軸が直線状ではない状態となりうる。このような磁気コアでは、磁化の向きが乱れた状態となり、磁性膜本来の磁気特性が発揮されず、インダクタとして性能が劣ったものとなる。 In the inductor described in Patent Document 1, the first isolation layer is formed on the substrate so as to cover the pattern of the first conductive layer. Irregularities occur on the surface of one isolation layer. Since the magnetic core is formed on the first isolation layer having such irregularities, the axis of the magnetic core can be in a non-linear state due to the irregularities. In such a magnetic core, the magnetization direction is disturbed, the original magnetic characteristics of the magnetic film are not exhibited, and the performance as an inductor is inferior.
 特許文献2に記載されたインダクタでは、誘電体層およびコイル導体層の形成は平坦な基板表面で行なうのではなく、基板に形成されたくぼみの中で行なう必要があるので、プロセスが複雑となる。くぼみを形成するためにドライプロセスを用いる場合にはコストが高くなる。 In the inductor described in Patent Document 2, formation of the dielectric layer and the coil conductor layer is not performed on a flat substrate surface, but needs to be performed in a recess formed in the substrate, so that the process becomes complicated. . The cost increases when a dry process is used to form the depression.
 そこで、本発明は、磁化の向きが整って磁性膜本来の磁気特性に応じてインダクタとしての性能を良好に発揮することができるインダクタおよびその製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide an inductor that can arrange the direction of magnetization and can satisfactorily exhibit the performance as an inductor according to the original magnetic characteristics of the magnetic film, and a method for manufacturing the inductor.
 上記目的を達成するため、本発明に基づくインダクタは、主表面を有する基板と、上記主表面上に設定される第1領域を横切って上記第1領域の両側にはみ出すように配置された複数の第1導体部と、上記主表面上に配置され、上記複数の第1導体部の各々を互いに隔てる第1絶縁層と、上記複数の第1導体部の上面より上側において上記第1領域を包含する領域に配置された第2絶縁層と、上記第2絶縁層の上側で上記第1領域内に延在するように配置された磁気コアと、上記磁気コアの上側および側方を覆う第3絶縁層と、上記複数の第1導体部と接続して上記第3絶縁層の上側をまたぐように配置された複数の第2導体部とを備え、上記複数の第1導体部の上面と上記第1絶縁層の上面とは、同一面内に位置し、上記第1導体部と上記第2導体部とが交互に連なることによって、コイル構造が形成されている。 In order to achieve the above object, an inductor according to the present invention includes a substrate having a main surface and a plurality of portions arranged so as to protrude from both sides of the first region across the first region set on the main surface. A first conductor layer, a first insulating layer disposed on the main surface and separating each of the plurality of first conductor portions from each other; and the first region above the top surfaces of the plurality of first conductor portions. A second insulating layer disposed in the region to be extended, a magnetic core disposed so as to extend into the first region above the second insulating layer, and a third covering the upper side and the side of the magnetic core. An insulating layer; and a plurality of second conductor portions connected to the plurality of first conductor portions and arranged to straddle an upper side of the third insulating layer, and an upper surface of the plurality of first conductor portions and the above The upper surface of the first insulating layer is located in the same plane and is above the first conductor portion. By the second conductor section is alternately connected, the coil structure is formed.
 本発明によれば、複数の第1導体部21の上面と第1絶縁層31の上面とは、同一面内に位置するので、磁気コア5はほぼ凹凸のない面上に形成することができる。したがって、磁気コアの軸を直線状とすることができるので、磁化の向きが整って磁性膜本来の磁気特性に応じてインダクタとしての性能を良好に発揮することができるインダクタを実現することができる。 According to the present invention, since the upper surfaces of the plurality of first conductor portions 21 and the upper surface of the first insulating layer 31 are located in the same plane, the magnetic core 5 can be formed on a substantially non-concave surface. . Therefore, since the axis of the magnetic core can be made linear, it is possible to realize an inductor in which the direction of magnetization is aligned and the performance as an inductor can be satisfactorily exhibited according to the original magnetic characteristics of the magnetic film. .
本発明に基づく実施の形態1におけるインダクタの製造方法のフローチャートである。It is a flowchart of the manufacturing method of the inductor in Embodiment 1 based on this invention. 本発明に基づく実施の形態1におけるインダクタの製造方法の第1の工程の説明図である。It is explanatory drawing of the 1st process of the manufacturing method of the inductor in Embodiment 1 based on this invention. 図2に示したものに対応する平面図である。FIG. 3 is a plan view corresponding to that shown in FIG. 2. 本発明に基づく実施の形態1におけるインダクタの製造方法の第2の工程の説明図である。It is explanatory drawing of the 2nd process of the manufacturing method of the inductor in Embodiment 1 based on this invention. 本発明に基づく実施の形態1におけるインダクタの製造方法の第3の工程の説明図である。It is explanatory drawing of the 3rd process of the manufacturing method of the inductor in Embodiment 1 based on this invention. 図5に示したものに対応する平面図である。It is a top view corresponding to what was shown in FIG. 本発明に基づく実施の形態1におけるインダクタの製造方法の第4の工程の説明図である。It is explanatory drawing of the 4th process of the manufacturing method of the inductor in Embodiment 1 based on this invention. 図7に示したものに対応する平面図である。It is a top view corresponding to what was shown in FIG. 本発明に基づく実施の形態1におけるインダクタの製造方法の第5の工程の説明図である。It is explanatory drawing of the 5th process of the manufacturing method of the inductor in Embodiment 1 based on this invention. 図9に示したものに対応する平面図である。FIG. 10 is a plan view corresponding to that shown in FIG. 9. 本発明に基づく実施の形態1におけるインダクタの製造方法の第6の工程の説明図である。It is explanatory drawing of the 6th process of the manufacturing method of the inductor in Embodiment 1 based on this invention. 本発明に基づく実施の形態1におけるインダクタの製造方法の第7の工程の説明図である。It is explanatory drawing of the 7th process of the manufacturing method of the inductor in Embodiment 1 based on this invention. 図12に示したものに対応する平面図である。It is a top view corresponding to what was shown in FIG. 本発明に基づく実施の形態1におけるインダクタの製造方法の第8の工程の説明図である。It is explanatory drawing of the 8th process of the manufacturing method of the inductor in Embodiment 1 based on this invention. 図14に示したものに対応する平面図である。It is a top view corresponding to what was shown in FIG. 本発明に基づく実施の形態1におけるインダクタの製造方法の第9の工程の説明図である。It is explanatory drawing of the 9th process of the manufacturing method of the inductor in Embodiment 1 based on this invention. 図16に示したものに対応する平面図である。It is a top view corresponding to what was shown in FIG. 本発明に基づく実施の形態1におけるインダクタの製造方法の第10の工程の説明図である。It is explanatory drawing of the 10th process of the manufacturing method of the inductor in Embodiment 1 based on this invention. 図18に示したものに対応する平面図である。It is a top view corresponding to what was shown in FIG. 本発明に基づく実施の形態2におけるインダクタの製造方法のフローチャートである。It is a flowchart of the manufacturing method of the inductor in Embodiment 2 based on this invention. 本発明に基づく実施の形態2におけるインダクタの製造方法の第1の工程の説明図である。It is explanatory drawing of the 1st process of the manufacturing method of the inductor in Embodiment 2 based on this invention. 本発明に基づく実施の形態2におけるインダクタの製造方法の第2の工程の説明図である。It is explanatory drawing of the 2nd process of the manufacturing method of the inductor in Embodiment 2 based on this invention. 図22に示したものに対応する平面図である。It is a top view corresponding to what was shown in FIG. 本発明に基づく実施の形態2におけるインダクタの製造方法の第3の工程の説明図である。It is explanatory drawing of the 3rd process of the manufacturing method of the inductor in Embodiment 2 based on this invention. 本発明に基づく実施の形態2におけるインダクタの製造方法の第4の工程の説明図である。It is explanatory drawing of the 4th process of the manufacturing method of the inductor in Embodiment 2 based on this invention. 本発明に基づく実施の形態2におけるインダクタの製造方法の第5の工程の説明図である。It is explanatory drawing of the 5th process of the manufacturing method of the inductor in Embodiment 2 based on this invention. 図26に示したものに対応する平面図である。It is a top view corresponding to what was shown in FIG. 本発明に基づく実施の形態2におけるインダクタの製造方法の第6の工程の説明図である。It is explanatory drawing of the 6th process of the manufacturing method of the inductor in Embodiment 2 based on this invention. 本発明に基づく実施の形態2におけるインダクタの製造方法の第7の工程の説明図である。It is explanatory drawing of the 7th process of the manufacturing method of the inductor in Embodiment 2 based on this invention. 図29に示したものに対応する平面図である。It is a top view corresponding to what was shown in FIG. 本発明に基づく実施の形態2におけるインダクタの製造方法の第8の工程の説明図である。It is explanatory drawing of the 8th process of the manufacturing method of the inductor in Embodiment 2 based on this invention. 図31に示したものに対応する平面図である。FIG. 32 is a plan view corresponding to that shown in FIG. 31. 本発明に基づく実施の形態2におけるインダクタの製造方法の第9の工程の説明図である。It is explanatory drawing of the 9th process of the manufacturing method of the inductor in Embodiment 2 based on this invention. 図33に示したものに対応する平面図である。It is a top view corresponding to what was shown in FIG. 本発明に基づく実施の形態2におけるインダクタの製造方法の第10の工程の説明図である。It is explanatory drawing of the 10th process of the manufacturing method of the inductor in Embodiment 2 based on this invention. 本発明に基づくインダクタに備わる磁気コアの第1の変形例の説明図である。It is explanatory drawing of the 1st modification of the magnetic core with which the inductor based on this invention is equipped. 本発明に基づくインダクタに備わる磁気コアの第2の変形例の説明図である。It is explanatory drawing of the 2nd modification of the magnetic core with which the inductor based on this invention is equipped. 本発明に基づくインダクタに備わる磁気コアの第3の変形例の説明図である。It is explanatory drawing of the 3rd modification of the magnetic core with which the inductor based on this invention is equipped.
 図面において示す寸法比は、必ずしも忠実に現実のとおりを表しているとは限らず、説明の便宜のために寸法比を誇張して示している場合がある。以下の説明において、上または下の概念に言及する際には、絶対的な上または下を意味するとは限らず、図示された姿勢の中での相対的な上または下を意味する場合がある。 The dimensional ratios shown in the drawings do not always faithfully represent the actual ones, and the dimensional ratios may be exaggerated for convenience of explanation. In the following description, when referring to a concept above or below, it does not necessarily mean absolute above or below, but may mean relative above or below in the illustrated posture. .
 (実施の形態1)
 図1~図19を参照して、本発明に基づく実施の形態1におけるインダクタの製造方法について説明する。本実施の形態におけるインダクタの製造方法のフローチャートを図1に示す。
(Embodiment 1)
A method for manufacturing an inductor according to the first embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows a flowchart of the method for manufacturing an inductor in the present embodiment.
 本実施の形態におけるインダクタの製造方法は、第1領域が設定された主表面を有する基板に対して、前記第1領域を横切って前記第1領域の両側にはみ出すように配置された複数の第1導体部を前記主表面に形成する工程S1と、前記複数の第1導体部を覆い、かつ、前記複数の第1導体部の各々を互いに隔てるように第1絶縁層を形成する工程S2と、前記第1導体部を露出させつつ前記第1導体部の上面および前記第1絶縁層の上面を一括して平坦化処理する工程S3と、前記平坦化処理する工程より後で、前記複数の第1導体部の上面より上側において前記第1領域を包含する領域を覆うように第2絶縁層を形成する工程S4と、前記第2絶縁層の上側で前記第1領域内に延在するように磁気コアを形成する工程S5と、前記磁気コアの上側および側方を覆うように第3絶縁層を形成する工程S6と、前記複数の第1導体部と接続して前記第3絶縁層の上側をまたぐように複数の第2導体部を形成する工程S7とを含む。前記第1導体部と前記第2導体部とが交互に連なることによって、コイル構造が形成される。 In the inductor manufacturing method according to the present embodiment, a plurality of first inductors arranged so as to protrude from both sides of the first region across the first region with respect to the substrate having the main surface in which the first region is set. Step S1 of forming one conductor portion on the main surface, Step S2 of forming a first insulating layer so as to cover the plurality of first conductor portions and to separate the plurality of first conductor portions from each other The step S3 of collectively flattening the upper surface of the first conductor portion and the upper surface of the first insulating layer while exposing the first conductor portion, and after the step of flattening, Step S4 of forming a second insulating layer so as to cover the region including the first region above the upper surface of the first conductor portion, and extending into the first region above the second insulating layer. Forming a magnetic core in the step S5 and the magnetic A step S6 of forming a third insulating layer so as to cover the upper side and the side of the upper side, and a plurality of second conductor portions connected to the plurality of first conductor portions and straddling the upper side of the third insulating layer. Forming step S7. The first conductor portion and the second conductor portion are alternately connected to form a coil structure.
 各工程について、対応する図を参照しつつ以下に詳しく説明する。
 図2に示すように、Si基板11上に絶縁膜としてSiO2層12を形成する。ここでは、Si基板11を用いているが、Si基板11に代えてガラスなどの材料で形成された基板を用いてもよい。ガラス基板を用いる場合、ガラス自体が絶縁性を有するので、上面に絶縁膜を形成することは省略してもよい。また、上面に形成する絶縁膜は、SiO2層12以外に、Al23層などであってもよい。絶縁膜は、絶縁性が確保できる材料の膜であればよい。図2では、Si基板11とSiO2層12とを合わせたものを基板1としている。基板1は主表面1uを有する。図2に示した例では、主表面1uはSiO2層12の上面である。
Each step will be described in detail below with reference to the corresponding drawings.
As shown in FIG. 2, an SiO 2 layer 12 is formed on the Si substrate 11 as an insulating film. Although the Si substrate 11 is used here, a substrate formed of a material such as glass may be used instead of the Si substrate 11. In the case of using a glass substrate, since the glass itself has an insulating property, forming an insulating film on the upper surface may be omitted. In addition to the SiO 2 layer 12, the insulating film formed on the upper surface may be an Al 2 O 3 layer or the like. The insulating film should just be a film | membrane of the material which can ensure insulation. In FIG. 2, the substrate 1 is a combination of the Si substrate 11 and the SiO 2 layer 12. The substrate 1 has a main surface 1u. In the example shown in FIG. 2, the main surface 1 u is the upper surface of the SiO 2 layer 12.
 この状態の平面図を図3に示す。基板1の主表面1uに第1領域4が設定されている。第1領域4は磁気コアを配置する予定の領域である。この時点ではまだ磁気コアは全く形成されていないので、第1領域4は概念的なものであり、想像線を意味する二点鎖線で示されている。 Fig. 3 shows a plan view of this state. A first region 4 is set on the main surface 1 u of the substrate 1. The first region 4 is a region where a magnetic core is to be arranged. At this time, since the magnetic core is not formed at all, the first region 4 is conceptual and is indicated by a two-dot chain line that represents an imaginary line.
 図4に示すように、基板1の主表面1uを覆うようにシード層2を成膜する。シード層2は、SiO2層12の上面を覆う。シード層2は、たとえばCu、Auなどの材料により形成すればよい。シード層2は、たとえばスパッタにより形成することができる。図5に示すように、シード層2上にレジストパターン18を形成する。パターニングするには、シード層2の全体を覆うようにレジスト層を一旦形成して、所望のパターンに対応するようにレジスト層を露光させ、不要な部分のレジスト層を現像により除去する。 As shown in FIG. 4, seed layer 2 is formed so as to cover main surface 1 u of substrate 1. The seed layer 2 covers the upper surface of the SiO 2 layer 12. The seed layer 2 may be formed of a material such as Cu or Au. The seed layer 2 can be formed by sputtering, for example. As shown in FIG. 5, a resist pattern 18 is formed on the seed layer 2. For patterning, a resist layer is once formed so as to cover the entire seed layer 2, the resist layer is exposed so as to correspond to a desired pattern, and unnecessary portions of the resist layer are removed by development.
 図5に示した状態の平面図を図6に示す。図6に示した例では、レジストパターン18の各開口部18aは、第1領域4の長手方向に垂直な方向よりやや傾斜した方向に延在している。のちに形成されるコイル構造のコイル軸は、図6における上下方向に延びることとなる。 FIG. 6 shows a plan view of the state shown in FIG. In the example shown in FIG. 6, each opening 18 a of the resist pattern 18 extends in a direction slightly inclined from the direction perpendicular to the longitudinal direction of the first region 4. The coil axis of the coil structure formed later extends in the vertical direction in FIG.
 図6において第1領域4の長手方向に垂直な方向の適当な直線で切った断面図が図5に相当する。実際には、そのような直線で切った場合、左右にそれぞれ現れるレジストパターン18の開口部18aの長さや比率は図5に示すものとは異なるが、図5では、説明をわかりやすくするために単純化して同じ長さの開口部18aが2つ見えているものとして模式的に表示している。 6, a cross-sectional view taken along an appropriate straight line in a direction perpendicular to the longitudinal direction of the first region 4 corresponds to FIG. 5. Actually, when cut along such a straight line, the length and ratio of the opening 18a of the resist pattern 18 appearing on the left and right respectively are different from those shown in FIG. 5, but FIG. For simplicity, the two openings 18a having the same length are schematically shown as being visible.
 電解めっきを行ない、図7に示すようにレジストパターン18の開口部18aの形状にめっき層21aを形成する。シード層2のうち開口部18aを通じて露出していた領域のみにめっき層21aが形成される。めっき層21aはたとえばCuなどの材料で形成してよい。レジストパターン18を除去した後で、シード層2のうち電解めっきされてない部分をエッチングにより除去する。こうすることで、所望のパターンが得られる。図7に示すように、シード層2とめっき層21aとが合わさったものが第1導体部21となる。この時点で、複数の第1導体部21が形成されている。この状態の平面図を図8に示す。図8に示すように、第1導体部21は、第1領域4を横切って第1領域4の両側にはみ出すように線状に配置される。このようにして基板1に第1導体部21を形成する工程が工程S1である。第1導体部21は、のちに磁気コアを取り巻くコイル構造の下部をなすものであり、「下部コイル電極」と呼んでもよい。 Electrolytic plating is performed to form a plating layer 21a in the shape of the opening 18a of the resist pattern 18 as shown in FIG. The plating layer 21a is formed only in the region of the seed layer 2 exposed through the opening 18a. The plating layer 21a may be formed of a material such as Cu, for example. After the resist pattern 18 is removed, a portion of the seed layer 2 that is not electroplated is removed by etching. In this way, a desired pattern can be obtained. As shown in FIG. 7, a combination of the seed layer 2 and the plating layer 21 a becomes the first conductor portion 21. At this point, a plurality of first conductor portions 21 are formed. A plan view of this state is shown in FIG. As shown in FIG. 8, the first conductor portion 21 is arranged in a line so as to cross the first region 4 and protrude to both sides of the first region 4. Thus, the process of forming the 1st conductor part 21 in the board | substrate 1 is process S1. The first conductor portion 21 forms a lower part of a coil structure that surrounds the magnetic core, and may be referred to as a “lower coil electrode”.
 工程S2として、図9に示すように第1絶縁層31を形成する。この状態の平面図を図10に示す。第1絶縁層31は、複数の第1導体部21を覆い、かつ、複数の第1導体部21の各々を互いに隔てるように形成される。第1絶縁層31の材料は、たとえばポリイミド、レジストなどであってよい。第1絶縁層31の形成には、たとえばスピンコート、ラミネートなどの方法を用いてよい。 As step S2, a first insulating layer 31 is formed as shown in FIG. A plan view of this state is shown in FIG. The first insulating layer 31 is formed so as to cover the plurality of first conductor portions 21 and to separate the plurality of first conductor portions 21 from each other. The material of the first insulating layer 31 may be polyimide, resist, or the like, for example. For example, a method such as spin coating or laminating may be used to form the first insulating layer 31.
 工程3として平坦化処理を行なう。この工程では、第1導体部21を露出させつつ第1導体部21の上面および第1絶縁層31の上面を一括して平坦化処理する。平坦化処理には、たとえば図11に示すように切削加工を用いてよい。図11に示した例では、刃15を矢印91の向きに相対的に進行させることによって切削加工を行なっている。平坦化処理には、切削加工の他にたとえば研削加工を用いてもよい。工程S3を終えた状態を図12に示す。平坦化処理を行なった結果、第1導体部21の上面と第1絶縁層31の上面とが同一面内に位置している。この状態の平面図を図13に示す。第1絶縁層31の上面が広がる中に複数の第1導体部21が露出している。 (Step 3) Planarization is performed. In this step, the top surface of the first conductor portion 21 and the top surface of the first insulating layer 31 are collectively planarized while the first conductor portion 21 is exposed. For the flattening process, for example, cutting may be used as shown in FIG. In the example shown in FIG. 11, cutting is performed by relatively moving the blade 15 in the direction of the arrow 91. For the flattening process, for example, a grinding process may be used in addition to the cutting process. The state after step S3 is shown in FIG. As a result of the planarization process, the upper surface of the first conductor portion 21 and the upper surface of the first insulating layer 31 are located in the same plane. A plan view of this state is shown in FIG. The plurality of first conductor portions 21 are exposed while the upper surface of the first insulating layer 31 is widened.
 平坦化処理する工程S3より後で、工程S4として、図14に示すように複数の第1導体部21の上面より上側において第1領域4に沿って第2絶縁層32を形成する。この状態の平面図を図15に示す。第2絶縁層32は、複数の第1導体部21の各々の両端を露出させるように形成される。第2絶縁層32は、フォトリソグラフィなどによって形成可能である。第2絶縁層32は、少なくとも第1領域4を包含するような領域に形成される。工程S4を終えた状態の一例を図14に示す。 After the flattening step S3, as step S4, the second insulating layer 32 is formed along the first region 4 above the upper surfaces of the plurality of first conductor portions 21 as shown in FIG. A plan view of this state is shown in FIG. The second insulating layer 32 is formed so as to expose both ends of each of the plurality of first conductor portions 21. The second insulating layer 32 can be formed by photolithography or the like. The second insulating layer 32 is formed in a region including at least the first region 4. An example of the state after step S4 is shown in FIG.
 工程S5として、第2絶縁層32の上側で第1領域4内に延在するように磁気コアを形成する。図16に磁気コア5を形成した一例を示す。この状態の平面図を図17に示す。磁気コア5に含まれる磁性体層の数は1であってもよい。図16に示した例では、磁気コア5は複数の磁性体層を含む構造となっている。磁気コア5は、磁性体層51と絶縁層52とを含む。図16に示した例では、2つの磁性体層51が1つの絶縁層52をサンドイッチした構造となっている。 In step S5, a magnetic core is formed so as to extend into the first region 4 above the second insulating layer 32. FIG. 16 shows an example in which the magnetic core 5 is formed. A plan view of this state is shown in FIG. The number of magnetic layers included in the magnetic core 5 may be one. In the example shown in FIG. 16, the magnetic core 5 has a structure including a plurality of magnetic layers. The magnetic core 5 includes a magnetic layer 51 and an insulating layer 52. In the example shown in FIG. 16, two magnetic layers 51 have a structure in which one insulating layer 52 is sandwiched.
 工程S6として、図18に示すように、磁気コア5の上側および側方を覆うように第3絶縁層33を形成する。第3絶縁層33はフォトリソグラフィによって所望の範囲に形成する。第3絶縁層33は、複数の第1導体部21の各々の両端を露出させるように形成される。 As step S6, as shown in FIG. 18, the third insulating layer 33 is formed so as to cover the upper side and the side of the magnetic core 5. The third insulating layer 33 is formed in a desired range by photolithography. The third insulating layer 33 is formed so as to expose both ends of each of the plurality of first conductor portions 21.
 工程S7として、図18に示すように、第2導体部22を形成する。複数の第2導体部22は、複数の第1導体部21の端同士を結び、第3絶縁層33の上側をまたぐように形成される。この状態の平面図を図19に示す。図19に示すように、複数ある第1導体部21のうちの1つに注目すると、この第1導体部21の端と、これに隣接する別の1つの第1導体部21の端とが第2導体部22によって結ばれる。図19に示すように、第2導体部22と同時に電極パッド25a,25bを形成する。図19において最も上側にある第1導体部21の端と電極パッド25aとは、第2導体部22と同様の導体部によって結ばれている。図19において最も下側にある第1導体部21の端と電極パッド25bとは、第2導体部22と同様の導体部によって結ばれている。電極パッド25a,25bおよびこれらにつながる導体部も、第2導体部22と同じ材料によって第2導体部22と同時にパターニングすることによって形成されるものであってよい。第2導体部22は、のちに磁気コアを取り巻くコイル構造の上部をなすものであり、「上部コイル電極」と呼んでもよい。第1導体部21と第2導体部22とが交互に連なることによって、コイル構造が形成される。 As process S7, as shown in FIG. 18, the 2nd conductor part 22 is formed. The plurality of second conductor portions 22 are formed so as to connect the ends of the plurality of first conductor portions 21 and straddle the upper side of the third insulating layer 33. A plan view of this state is shown in FIG. As shown in FIG. 19, when attention is paid to one of the plurality of first conductor portions 21, an end of the first conductor portion 21 and an end of another first conductor portion 21 adjacent to the first conductor portion 21 are Connected by the second conductor 22. As shown in FIG. 19, the electrode pads 25 a and 25 b are formed simultaneously with the second conductor portion 22. In FIG. 19, the end of the uppermost first conductor portion 21 and the electrode pad 25 a are connected by the same conductor portion as that of the second conductor portion 22. In FIG. 19, the lowermost end of the first conductor portion 21 and the electrode pad 25 b are connected by the same conductor portion as the second conductor portion 22. The electrode pads 25a and 25b and the conductor portions connected thereto may also be formed by patterning simultaneously with the second conductor portion 22 using the same material as the second conductor portion 22. The second conductor portion 22 forms an upper part of a coil structure that surrounds the magnetic core later, and may be referred to as an “upper coil electrode”. The first conductor portion 21 and the second conductor portion 22 are alternately connected to form a coil structure.
 こうして、本実施の形態におけるインダクタ101を得ることができる。本実施の形態におけるインダクタ101の断面図は図18に示すものであり、平面図は図19に示すものである。 In this way, the inductor 101 in the present embodiment can be obtained. A sectional view of inductor 101 in the present embodiment is shown in FIG. 18, and a plan view thereof is shown in FIG.
 本実施の形態におけるインダクタ101は、図18および図19に示すように、主表面1uを有する基板1と、主表面1u上に設定される第1領域を横切って前記第1領域の両側にはみ出すように配置された複数の第1導体部21と、主表面1u上に配置され、複数の第1導体部21の各々を互いに隔てる第1絶縁層31と、複数の第1導体部21の上面より上側において前記第1領域を包含する領域に配置された第2絶縁層32と、第2絶縁層32の上側で前記第1領域内に延在するように配置された磁気コア5と、磁気コア5の上側および側方を覆う第3絶縁層33と、複数の第1導体部21と接続して第3絶縁層33の上側をまたぐように配置された複数の第2導体部22とを備える。複数の第1導体部21の上面と第1絶縁層31の上面とは、同一面内に位置する。第1導体部21と第2導体部22とが交互に連なることによって、コイル構造が形成されている。図8に例示したように、複数の第1導体部21の各々は、線状であってもよい。図19に例示したように、複数の第2導体部22の各々は、線状であってもよい。 As shown in FIGS. 18 and 19, inductor 101 in the present embodiment protrudes on both sides of first region across substrate 1 having main surface 1u and a first region set on main surface 1u. The plurality of first conductor portions 21 arranged in this manner, the first insulating layer 31 arranged on the main surface 1u and separating each of the plurality of first conductor portions 21 from each other, and the top surfaces of the plurality of first conductor portions 21 A second insulating layer 32 disposed in a region including the first region on the upper side; a magnetic core 5 disposed so as to extend into the first region on the upper side of the second insulating layer 32; A third insulating layer 33 that covers the upper side and the side of the core 5, and a plurality of second conductor portions 22 that are connected to the plurality of first conductor portions 21 and straddle the upper side of the third insulating layer 33. Prepare. The upper surfaces of the plurality of first conductor portions 21 and the upper surface of the first insulating layer 31 are located in the same plane. The first conductor portion 21 and the second conductor portion 22 are alternately connected to form a coil structure. As illustrated in FIG. 8, each of the plurality of first conductor portions 21 may be linear. As illustrated in FIG. 19, each of the plurality of second conductor portions 22 may be linear.
 本実施の形態では、複数の第1導体部21の上面と第1絶縁層31の上面とは、同一面内に位置するので、磁気コア5はほぼ凹凸のない面上に形成することができる。したがって、磁気コアの軸を直線状とすることができるので、磁化の向きが整って磁性膜本来の磁気特性に応じてインダクタとしての性能を良好に発揮することができるインダクタを実現することができる。 In the present embodiment, since the top surfaces of the plurality of first conductor portions 21 and the top surface of the first insulating layer 31 are located in the same plane, the magnetic core 5 can be formed on a substantially non-concave surface. . Therefore, since the axis of the magnetic core can be made linear, it is possible to realize an inductor in which the direction of magnetization is aligned and the performance as an inductor can be satisfactorily exhibited according to the original magnetic characteristics of the magnetic film. .
 なお、複数の面が「同一面内に位置する」とは、これら複数の面に対して何らかの平坦化処理が行なわれた結果であればよい。これら複数の面が完全な同一平面内にあるとは限らず、若干の段差があってもよい。 It should be noted that “a plurality of surfaces are located in the same surface” may be a result of performing some flattening process on the plurality of surfaces. The plurality of surfaces are not necessarily in the same plane, and there may be a slight level difference.
 本実施の形態で示した製造方法によれば、このような良好なインダクタを効率良く作製することができる。 According to the manufacturing method shown in the present embodiment, such a good inductor can be efficiently manufactured.
 なお、本実施の形態におけるインダクタ101は、別の局面から、以下のように表現することもできる。 Note that the inductor 101 in the present embodiment can also be expressed as follows from another aspect.
 本実施の形態におけるインダクタ101は、図18および図19に示すように、主表面1uを有する基板1と、主表面1u上に規定される第1領域を横切って前記第1領域の両側にはみ出すように配置された複数の第1導体部21と、主表面1u上に配置され、複数の第1導体部21の各々を互いに隔てる第1絶縁層22と、複数の第1導体部21の上面より上側において前記第1領域に沿って配置された第2絶縁層32と、第2絶縁層32の上側で前記第1領域内に延在するように配置された磁気コア5と、磁気コア5の上側および側方を覆う第3絶縁層33と、複数の第1導体部21の端同士を結び、第3絶縁層33の上側をまたぐように配置された複数の第2導体部22とを備える。複数の第1導体部21の上面と第1絶縁層31の上面とは、一括して平坦化処理されている。第1導体部21と第2導体部22とが交互に連なることによって、コイル構造が形成されている。 As shown in FIGS. 18 and 19, inductor 101 in the present embodiment protrudes on both sides of first region across substrate 1 having main surface 1u and a first region defined on main surface 1u. The plurality of first conductor portions 21 arranged in this manner, the first insulating layer 22 arranged on the main surface 1u and separating each of the plurality of first conductor portions 21 from each other, and the top surfaces of the plurality of first conductor portions 21 A second insulating layer 32 disposed along the first region on the upper side, a magnetic core 5 disposed so as to extend into the first region above the second insulating layer 32, and a magnetic core 5 A third insulating layer 33 covering the upper side and the side of the first insulating layer 33, and a plurality of second conductor portions 22 arranged so as to connect ends of the plurality of first conductor portions 21 and straddle the upper side of the third insulating layer 33. Prepare. The top surfaces of the plurality of first conductor portions 21 and the top surface of the first insulating layer 31 are collectively planarized. The first conductor portion 21 and the second conductor portion 22 are alternately connected to form a coil structure.
 本実施の形態では、複数の第1導体部21の上面と第1絶縁層31の上面とは、一括して平坦化処理されており、磁気コア5はこのようにして得られた平坦な面上に形成される。したがって、磁気コアの軸を直線状とすることができるので、磁化の向きが整って磁性膜本来の磁気特性に応じてインダクタとしての性能を良好に発揮することができるインダクタを実現することができる。 In the present embodiment, the top surfaces of the plurality of first conductor portions 21 and the top surface of the first insulating layer 31 are collectively planarized, and the magnetic core 5 is a flat surface obtained in this way. Formed on top. Therefore, since the axis of the magnetic core can be made linear, it is possible to realize an inductor in which the direction of magnetization is aligned and the performance as an inductor can be satisfactorily exhibited according to the original magnetic characteristics of the magnetic film. .
 (実施の形態2)
 図20~図35を参照して、本発明に基づく実施の形態2におけるインダクタの製造方法について説明する。本実施の形態におけるインダクタの製造方法のフローチャートを図20に示す。
(Embodiment 2)
A method for manufacturing an inductor according to the second embodiment of the present invention will be described with reference to FIGS. FIG. 20 shows a flowchart of the inductor manufacturing method according to the present embodiment.
 本実施の形態におけるインダクタの製造方法は、第1領域が設定された主表面を有する基板に対して、前記主表面を覆うように第1絶縁層を形成する工程S11と、前記第1領域を横切って前記第1領域の両側にはみ出すような開口部を前記第1絶縁層に形成する工程S12と、前記開口部を満たすように複数の第1導体部を前記主表面に形成する工程S13と、前記第1導体部の上面および前記第1絶縁層の上面を一括して平坦化処理する工程S3と、前記平坦化処理する工程より後で、前記複数の第1導体部の上面より上側において前記第1領域を包含する領域を覆うように第2絶縁層を形成する工程S4と、前記第2絶縁層の上側で前記第1領域内に延在するように磁気コアを形成する工程S5と、前記磁気コアの上側および側方を覆うように第3絶縁層を形成する工程S6と、前記複数の第1導体部と接続して前記第3絶縁層の上側をまたぐように複数の第2導体部を形成する工程S7とを含む。前記第1導体部と前記第2導体部とが交互に連なることによって、コイル構造が形成される。 In the method for manufacturing an inductor in the present embodiment, a step S11 of forming a first insulating layer so as to cover the main surface on a substrate having a main surface in which the first region is set; A step S12 of forming an opening in the first insulating layer across the first region across the first region; and a step S13 of forming a plurality of first conductor portions on the main surface so as to fill the opening. And after the step of flattening the upper surface of the first conductor portion and the upper surface of the first insulating layer in a lump, and after the step of flattening, on the upper side of the upper surfaces of the plurality of first conductor portions. Forming a second insulating layer so as to cover a region including the first region, and forming a magnetic core so as to extend into the first region above the second insulating layer; and The upper and side of the magnetic core Step S6 for forming the third insulating layer as described above, and Step S7 for forming the plurality of second conductor portions so as to be connected to the plurality of first conductor portions and straddle the upper side of the third insulating layer. . The first conductor portion and the second conductor portion are alternately connected to form a coil structure.
 各工程について、対応する図を参照しつつ以下に詳しく説明する。実施の形態1で図2に示したように、Si基板11上に絶縁膜としてSiO2層12を形成する。工程S11として、図21に示すように、主表面1uを覆うように第1絶縁層31を形成する。 Each step will be described in detail below with reference to the corresponding drawings. As shown in FIG. 2 in the first embodiment, an SiO 2 layer 12 is formed on the Si substrate 11 as an insulating film. As step S11, as shown in FIG. 21, a first insulating layer 31 is formed so as to cover main surface 1u.
 工程S12として、図22に示すように第1絶縁層31に開口部8を形成する。この状態の平面図を図23に示す。開口部8は、第1領域4を横切って第1領域4の両側にはみ出すように線状に形成される。 As step S12, an opening 8 is formed in the first insulating layer 31 as shown in FIG. A plan view of this state is shown in FIG. The opening 8 is formed in a linear shape so as to cross the first region 4 and protrude to both sides of the first region 4.
 図24に示すように、シード層2を形成する。シード層2の材料は、Cu、Auなどのいずれかであってよい。シード層2は、第1絶縁層31の上面を覆い、開口部8の側面および底面も覆う。図25に示すように、レジスト層16を形成する。レジスト層16は一旦全面に形成した後でパターニングすることによって、図25に示すように、開口部8以外の領域を覆うようにする。 As shown in FIG. 24, the seed layer 2 is formed. The material of the seed layer 2 may be either Cu or Au. The seed layer 2 covers the upper surface of the first insulating layer 31 and also covers the side surfaces and the bottom surface of the opening 8. As shown in FIG. 25, a resist layer 16 is formed. The resist layer 16 is once formed on the entire surface and then patterned to cover a region other than the opening 8 as shown in FIG.
 工程S13として、開口部8を満たすように複数の第1導体部を前記主表面に形成する。このためには、Cuなどの電解めっきを行なえばよい。電解めっきを行なうことにより、図26に示す構造が得られる。図26では、開口部8を埋めるようにめっき層21aが形成されている。この状態の平面図を図27に示す。 In step S13, a plurality of first conductor portions are formed on the main surface so as to fill the opening 8. For this purpose, electrolytic plating such as Cu may be performed. By performing electrolytic plating, the structure shown in FIG. 26 is obtained. In FIG. 26, the plating layer 21 a is formed so as to fill the opening 8. A plan view of this state is shown in FIG.
 工程S3として、第1導体部21の上面および第1絶縁層31の上面を一括して平坦化処理する。第1導体部21は、シード層2とめっき層21aとを合わせたものである。平坦化処理には、図28に示すように切削加工を用いてよい。図28に示した例では、刃15を矢印91の向きに相対的に進行させることによって切削加工を行なっている。平坦化処理の詳細については、実施の形態1で述べたとおりである。工程S3を終えた状態を図29に示す。この状態の平面図を図30に示す。第1絶縁層31の上面が広がる中に複数の第1導体部21が露出している。 As step S3, the upper surface of the first conductor portion 21 and the upper surface of the first insulating layer 31 are collectively planarized. The first conductor portion 21 is a combination of the seed layer 2 and the plating layer 21a. For the flattening process, cutting may be used as shown in FIG. In the example shown in FIG. 28, cutting is performed by relatively moving the blade 15 in the direction of the arrow 91. The details of the planarization process are as described in the first embodiment. FIG. 29 shows the state after step S3. A plan view of this state is shown in FIG. The plurality of first conductor portions 21 are exposed while the upper surface of the first insulating layer 31 is widened.
 平坦化処理する工程S3より後で、工程S4として、図31に示すように複数の第1導体部21の上面より上側において第1領域4に沿って第2絶縁層32を形成する。この状態の平面図を図32に示す。第2絶縁層32についての詳細は実施の形態1で説明したものと同様である。 After the flattening step S3, as step S4, the second insulating layer 32 is formed along the first region 4 above the upper surfaces of the plurality of first conductor portions 21 as shown in FIG. A plan view of this state is shown in FIG. Details of the second insulating layer 32 are the same as those described in the first embodiment.
 工程S5として、第2絶縁層32の上側で第1領域4内に延在するように磁気コアを形成する。図33に磁気コア5を形成した一例を示す。この状態の平面図を図34に示す。図33に示した例では、磁気コア5は、2つの磁性体層51と3つの絶縁層52とが交互に積層されたものを含む。 In step S5, a magnetic core is formed so as to extend into the first region 4 above the second insulating layer 32. FIG. 33 shows an example in which the magnetic core 5 is formed. A plan view of this state is shown in FIG. In the example shown in FIG. 33, the magnetic core 5 includes a structure in which two magnetic layers 51 and three insulating layers 52 are alternately stacked.
 工程S6として、図35に示すように、磁気コア5の上側および側方を覆うように第3絶縁層33を形成する。第3絶縁層33についての詳細は実施の形態1で説明したものと同様である。 As Step S6, as shown in FIG. 35, the third insulating layer 33 is formed so as to cover the upper side and the side of the magnetic core 5. Details of the third insulating layer 33 are the same as those described in the first embodiment.
 工程S7として、図35に示すように、第2導体部22を形成する。第2導体部22についての詳細は実施の形態1で説明したものと同様である。 As process S7, as shown in FIG. 35, the 2nd conductor part 22 is formed. Details of the second conductor portion 22 are the same as those described in the first embodiment.
 こうして、本実施の形態におけるインダクタ102を得ることができる。インダクタ102の断面図は図35に示すものであり、平面図は実施の形態1において図19に示したものと同様である。 In this way, the inductor 102 in the present embodiment can be obtained. A cross-sectional view of the inductor 102 is shown in FIG. 35, and a plan view thereof is the same as that shown in FIG. 19 in the first embodiment.
 本実施の形態では、実施の形態1で示した製造方法と同様に、良好なインダクタを効率良く作製することができる。 In the present embodiment, a good inductor can be efficiently manufactured as in the manufacturing method shown in the first embodiment.
 実施の形態1,2のいずれにもあてはまることだが、平坦化処理する工程S3は、切削、研削または研磨加工によって行なわれることが好ましい。この構成を採用することにより、高精度な平坦化を行なうことができる。平坦化処理は、たとえばサーフェスプレーナを用いることによって精度良く行なうことができる。サーフェスプレーナは、たとえばディスコ社製のものであってよい。サーフェスプレーナにおいては、ダイヤモンドバイトを取り付けたスピンドルを回転させ、このダイヤモンドバイトによって、切削が行なわれる。たとえばスピンドルの回転軸は上下方向であって、ダイヤモンドバイトは一定の水平面内で回転する状態とし、この回転するダイヤモンドバイトの下側に、ほぼ水平に支持した被加工物を水平方向に相対的に進行させる。こうすることによって、被加工物の上面を切削加工して平坦化することができる。 As applied to both Embodiments 1 and 2, it is preferable that the step S3 for performing the flattening process is performed by cutting, grinding, or polishing. By adopting this configuration, high-precision flattening can be performed. The flattening process can be performed with high accuracy by using, for example, a surface planar. The surface planar may be, for example, manufactured by Disco Corporation. In the surface planer, a spindle with a diamond tool is rotated, and cutting is performed by the diamond tool. For example, the rotation axis of the spindle is in the vertical direction, and the diamond tool rotates in a certain horizontal plane, and the work piece supported substantially horizontally is relatively below the rotating diamond tool in the horizontal direction. Make it progress. By doing so, the upper surface of the workpiece can be cut and flattened.
 実施の形態1における図18または実施の形態2における図35に示したように、磁気コア5は、磁性体層51と磁性体層51より導電性が低い非磁性体層とが交互に積層された構造を含むことが好ましい。この構成を採用することにより、良好な特性の磁気コアとすることができる。図18または図35では、磁性体層51より導電性が低い非磁性体層の一例として、絶縁層52が配置されているが、絶縁層52に限らない。上述の非磁性体層は、導電率が1×103S/cm以下であることが好ましい。 As shown in FIG. 18 in the first embodiment or FIG. 35 in the second embodiment, the magnetic core 5 is formed by alternately laminating magnetic layers 51 and nonmagnetic layers having lower conductivity than the magnetic layers 51. It is preferable that the structure is included. By adopting this configuration, a magnetic core with good characteristics can be obtained. In FIG. 18 or FIG. 35, the insulating layer 52 is disposed as an example of the non-magnetic layer having lower conductivity than the magnetic layer 51, but is not limited to the insulating layer 52. The above-described nonmagnetic layer preferably has a conductivity of 1 × 10 3 S / cm or less.
 図36に示すように、インダクタは、磁気コア5に代えて磁気コア5iを備えてもよい。磁気コア5iは、シード層6の上側に1つの磁性体層51のみを備える。 As shown in FIG. 36, the inductor may include a magnetic core 5i instead of the magnetic core 5. The magnetic core 5 i includes only one magnetic layer 51 above the seed layer 6.
 図37に示すように、インダクタは、磁気コア5に代えて磁気コア5jを備えてもよい。磁気コア5jは、コイル構造のコイル軸に垂直な断面で見たときに、主表面1uに平行な方向に並べられて互いに電気的または物理的に離隔された2以上の磁性体層を含む。コイル構造のコイル軸は、図37における紙面に垂直な方向に延在する。磁気コア5jは、磁性体層51a,51b,51c,51dを備える。磁性体層51aと磁性体層51bとは同じ高さにあり、絶縁層によって互いに隔てられている。磁性体層51cと磁性体層51dとは同じ高さにあり、絶縁層によって互いに隔てられている。磁性体層51a,51bの上側に絶縁層52が重なっており、さらにその上側に磁性体層51c,51dが重なっている。 37, the inductor may include a magnetic core 5j instead of the magnetic core 5. The magnetic core 5j includes two or more magnetic layers arranged in a direction parallel to the main surface 1u and electrically or physically separated from each other when viewed in a cross section perpendicular to the coil axis of the coil structure. The coil axis of the coil structure extends in a direction perpendicular to the paper surface in FIG. The magnetic core 5j includes magnetic layers 51a, 51b, 51c, and 51d. The magnetic layer 51a and the magnetic layer 51b are at the same height and are separated from each other by an insulating layer. The magnetic layer 51c and the magnetic layer 51d are at the same height and are separated from each other by an insulating layer. The insulating layer 52 overlaps the magnetic material layers 51a and 51b, and the magnetic material layers 51c and 51d overlap the magnetic material layers 51a and 51b.
 図38に示すように、インダクタは、磁気コア5に代えて磁気コア5kを備えてもよい。磁気コア5kは、磁性体層51sと絶縁層52tとを備える。磁気コア5kは、コイル構造のコイル軸に垂直な断面で見たときに、磁性体層51sと絶縁層52tとが市松模様をなすように配置された構造を含む。このような構造であってもよい。1つの磁性体層51sの斜め上または斜め下に隣りの磁性体層51sが配置されているが、これらは直接は接していない。絶縁層52tは、磁性体層51sより導電性が低い非磁性体層の一例として挙げたものであり、磁性体層51sより導電性が低い非磁性体層でありさえすれば、絶縁層に限らない。すなわち、磁気コアは、磁性体層と非磁性体層とが市松模様をなすように配置された構造を含んでいてよい。 As shown in FIG. 38, the inductor may include a magnetic core 5k instead of the magnetic core 5. The magnetic core 5k includes a magnetic layer 51s and an insulating layer 52t. The magnetic core 5k includes a structure in which the magnetic layer 51s and the insulating layer 52t are arranged in a checkered pattern when viewed in a cross section perpendicular to the coil axis of the coil structure. Such a structure may be used. The adjacent magnetic layer 51s is arranged obliquely above or obliquely below one magnetic layer 51s, but these are not in direct contact with each other. The insulating layer 52t is given as an example of a nonmagnetic layer having lower conductivity than the magnetic layer 51s, and is not limited to the insulating layer as long as it is a nonmagnetic layer having lower conductivity than the magnetic layer 51s. Absent. That is, the magnetic core may include a structure in which the magnetic layer and the nonmagnetic layer are arranged in a checkered pattern.
 なお、図36~図38では、製造途中の様子を示している。これらの図では、磁気コアの上側に被さる各層がまだ存在しないが、実際にインダクタとなるときには、実施の形態1,2で説明したのと同様に、磁気コアの上側に被さる各層が形成される。 Note that FIGS. 36 to 38 show a state in the middle of manufacturing. In these figures, each layer covering the upper side of the magnetic core does not exist yet, but when actually becoming an inductor, each layer covering the upper side of the magnetic core is formed as described in the first and second embodiments. .
 なお、ここまでソレノイドタイプのインダクタを例に説明してきたが、インダクタは、ソレノイドタイプに限らず、たとえばトロイダルタイプであってもよい。 In addition, although the solenoid type inductor has been described as an example so far, the inductor is not limited to the solenoid type, and may be, for example, a toroidal type.
 なお、ここまでの説明では、磁気コアの内部で磁性体層と組み合わせて配置される材料層を「絶縁層」としたが、絶縁層に代えて、磁性体層より導電性が低い非磁性体層であってもよい。非磁性体層は、導電率が1×103S/cm以下であることが好ましい。 In the above description, the material layer disposed in combination with the magnetic layer inside the magnetic core is referred to as an “insulating layer”, but instead of the insulating layer, a nonmagnetic material having lower conductivity than the magnetic layer. It may be a layer. The nonmagnetic layer preferably has a conductivity of 1 × 10 3 S / cm or less.
 なお、上記実施の形態のうち複数を適宜組み合わせて採用してもよい。
 なお、今回開示した上記実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更を含むものである。
A plurality of the above embodiments may be combined as appropriate.
In addition, the said embodiment disclosed this time is an illustration in all the points, Comprising: It is not restrictive. The scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 基板、1u 主表面、2,6,7 シード層、4 第1領域、5,5i,5j,5k 磁気コア、8 (第1絶縁層の)開口部、11 Si基板、12 SiO2層、15 刃、16 レジスト層、17 (レジスト層の)開口部、18 レジストパターン、18a 開口部、21 第1導体部、21a,22a めっき層、22 第2導体部、25a,25b 電極パッド、31 第1絶縁層、32 第2絶縁層、33 第3絶縁層、51,51a,51b,51c,51d,51s 磁性体層、52,52t 絶縁層、91 矢印、101,102 インダクタ。 1 substrate, 1u main surface, 2, 6, 7 seed layer, 4 first region, 5, 5i, 5j, 5k magnetic core, 8 opening of (first insulating layer), 11 Si substrate, 12 SiO 2 layer, 15 blade, 16 resist layer, 17 opening (of resist layer), 18 resist pattern, 18a opening, 21 first conductor, 21a, 22a plating layer, 22 second conductor, 25a, 25b electrode pad, 31st 1 insulating layer, 32 second insulating layer, 33 third insulating layer, 51, 51a, 51b, 51c, 51d, 51s magnetic layer, 52, 52t insulating layer, 91 arrow, 101, 102 inductor.

Claims (8)

  1.  主表面を有する基板と、
     前記主表面上に設定される第1領域を横切って前記第1領域の両側にはみ出すように配置された複数の第1導体部と、
     前記主表面上に配置され、前記複数の第1導体部の各々を互いに隔てる第1絶縁層と、
     前記複数の第1導体部の上面より上側において前記第1領域を包含する領域に配置された第2絶縁層と、
     前記第2絶縁層の上側で前記第1領域内に延在するように配置された磁気コアと、
     前記磁気コアの上側および側方を覆う第3絶縁層と、
     前記複数の第1導体部と接続して前記第3絶縁層の上側をまたぐように配置された複数の第2導体部とを備え、
     前記複数の第1導体部の上面と前記第1絶縁層の上面とは、同一面内に位置し、
     前記第1導体部と前記第2導体部とが交互に連なることによって、コイル構造が形成されている、インダクタ。
    A substrate having a main surface;
    A plurality of first conductor portions arranged so as to protrude across both sides of the first region across the first region set on the main surface;
    A first insulating layer disposed on the main surface and separating each of the plurality of first conductor portions from each other;
    A second insulating layer disposed in a region including the first region above the upper surfaces of the plurality of first conductor portions;
    A magnetic core arranged to extend into the first region above the second insulating layer;
    A third insulating layer covering the top and sides of the magnetic core;
    A plurality of second conductor portions connected to the plurality of first conductor portions and arranged to straddle the upper side of the third insulating layer;
    The upper surfaces of the plurality of first conductor portions and the upper surface of the first insulating layer are located in the same plane,
    An inductor in which a coil structure is formed by alternately connecting the first conductor portion and the second conductor portion.
  2.  前記磁気コアは、磁性体層と前記磁性体層より導電性が低い非磁性体層とが交互に積層された構造を含む、請求項1に記載のインダクタ。 The inductor according to claim 1, wherein the magnetic core includes a structure in which a magnetic layer and a nonmagnetic layer having lower conductivity than the magnetic layer are alternately stacked.
  3.  前記磁気コアは、前記コイル構造のコイル軸に垂直な断面で見たときに、前記主表面に平行な方向に並べられて互いに電気的または物理的に離隔された2以上の磁性体層を含む、請求項1に記載のインダクタ。 The magnetic core includes two or more magnetic layers arranged in a direction parallel to the main surface and electrically or physically separated from each other when viewed in a cross section perpendicular to the coil axis of the coil structure. The inductor according to claim 1.
  4.  前記磁気コアは、前記コイル構造のコイル軸に垂直な断面で見たときに、磁性体層と前記磁性体層より導電性が低い非磁性体層とが市松模様をなすように配置された構造を含む、請求項1から3のいずれかに記載のインダクタ。 The magnetic core has a structure in which a magnetic layer and a nonmagnetic layer having lower conductivity than the magnetic layer are arranged in a checkered pattern when viewed in a cross section perpendicular to the coil axis of the coil structure. The inductor according to claim 1, comprising:
  5.  第1領域が設定された主表面を有する基板に対して、前記第1領域を横切って前記第1領域の両側にはみ出すように配置された複数の第1導体部を前記主表面に形成する工程と、
     前記複数の第1導体部を覆い、かつ、前記複数の第1導体部の各々を互いに隔てるように第1絶縁層を形成する工程と、
     前記第1導体部を露出させつつ前記第1導体部の上面および前記第1絶縁層の上面を一括して平坦化処理する工程と、
     前記平坦化処理する工程より後で、前記複数の第1導体部の上面より上側において前記第1領域を包含する領域を覆うように第2絶縁層を形成する工程と、
     前記第2絶縁層の上側で前記第1領域内に延在するように磁気コアを形成する工程と、
     前記磁気コアの上側および側方を覆うように第3絶縁層を形成する工程と、
     前記複数の第1導体部と接続して前記第3絶縁層の上側をまたぐように複数の第2導体部を形成する工程とを含み、
     前記第1導体部と前記第2導体部とが交互に連なることによって、コイル構造が形成される、インダクタの製造方法。
    A step of forming, on the main surface, a plurality of first conductor portions arranged so as to cross over the first region and to protrude from both sides of the first region with respect to a substrate having a main surface in which the first region is set. When,
    Forming a first insulating layer so as to cover the plurality of first conductor portions and to separate the plurality of first conductor portions from each other;
    Flattening the upper surface of the first conductor portion and the upper surface of the first insulating layer together while exposing the first conductor portion;
    A step of forming a second insulating layer so as to cover a region including the first region above the upper surfaces of the plurality of first conductor portions, after the step of performing the planarization process;
    Forming a magnetic core so as to extend into the first region above the second insulating layer;
    Forming a third insulating layer so as to cover an upper side and a side of the magnetic core;
    Forming a plurality of second conductor portions connected to the plurality of first conductor portions and straddling an upper side of the third insulating layer,
    A method of manufacturing an inductor, wherein a coil structure is formed by alternately connecting the first conductor portion and the second conductor portion.
  6.  第1領域が設定された主表面を有する基板に対して、前記主表面を覆うように第1絶縁層を形成する工程と、
     前記第1領域を横切って前記第1領域の両側にはみ出すような開口部を前記第1絶縁層に形成する工程と、
     前記線状の開口部を満たすように複数の第1導体部を前記主表面に形成する工程と、
     前記第1導体部の上面および前記第1絶縁層の上面を一括して平坦化処理する工程と、
     前記平坦化処理する工程より後で、前記複数の第1導体部の上面より上側において前記第1領域を包含する領域を覆うように第2絶縁層を形成する工程と、
     前記第2絶縁層の上側で前記第1領域内に延在するように磁気コアを形成する工程と、
     前記磁気コアの上側および側方を覆うように第3絶縁層を形成する工程と、
     前記複数の第1導体部と接続して前記第3絶縁層の上側をまたぐように複数の第2導体部を形成する工程とを含み、
     前記第1導体部と前記第2導体部とが交互に連なることによって、コイル構造が形成される、インダクタの製造方法。
    Forming a first insulating layer on the substrate having a main surface in which the first region is set so as to cover the main surface;
    Forming an opening in the first insulating layer that extends across the first region and on both sides of the first region;
    Forming a plurality of first conductor portions on the main surface so as to fill the linear openings;
    Flattening the upper surface of the first conductor portion and the upper surface of the first insulating layer together;
    A step of forming a second insulating layer so as to cover a region including the first region on the upper side of the upper surfaces of the plurality of first conductor portions after the step of planarizing;
    Forming a magnetic core so as to extend into the first region above the second insulating layer;
    Forming a third insulating layer so as to cover an upper side and a side of the magnetic core;
    Forming a plurality of second conductor portions connected to the plurality of first conductor portions and straddling an upper side of the third insulating layer,
    A method of manufacturing an inductor, wherein a coil structure is formed by alternately connecting the first conductor portion and the second conductor portion.
  7.  前記平坦化処理する工程は、切削、研削または研磨加工によって行なわれる、請求項5または6に記載のインダクタの製造方法。 The method for manufacturing an inductor according to claim 5 or 6, wherein the flattening step is performed by cutting, grinding, or polishing.
  8.  前記非磁性体層は、導電率が1×103S/cm以下である、請求項2に記載のインダクタ。 The inductor according to claim 2, wherein the nonmagnetic layer has a conductivity of 1 × 10 3 S / cm or less.
PCT/JP2019/016838 2018-05-18 2019-04-19 Inductor and method for producing same WO2019220862A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-096601 2018-05-18
JP2018096601 2018-05-18

Publications (1)

Publication Number Publication Date
WO2019220862A1 true WO2019220862A1 (en) 2019-11-21

Family

ID=68540220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016838 WO2019220862A1 (en) 2018-05-18 2019-04-19 Inductor and method for producing same

Country Status (1)

Country Link
WO (1) WO2019220862A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6473658A (en) * 1987-09-14 1989-03-17 Nec Corp Semiconductor device
JPH04363006A (en) * 1990-05-31 1992-12-15 Toshiba Corp Flat magnetic element
JPH0729732A (en) * 1993-07-09 1995-01-31 Fuji Electric Co Ltd Thin film magnetic element
JP2002100733A (en) * 2000-09-21 2002-04-05 Nec Corp High-frequency ic device
JP2002513511A (en) * 1997-02-03 2002-05-08 ユニバーシティー オブ ユタ リサーチ ファンデーション Via-free integrated inductive devices for electromagnetic applications
JP2002525869A (en) * 1998-09-17 2002-08-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method for manufacturing semiconductor device having semiconductor substrate having surface on which coil having magnetic core is provided
JP2003257739A (en) * 2002-02-28 2003-09-12 Koa Corp High-frequency device
JP2007103686A (en) * 2005-10-05 2007-04-19 Tdk Corp Common mode choke coil and method of manufacturing same
WO2009072423A1 (en) * 2007-12-07 2009-06-11 Murata Manufacturing Co., Ltd. Laminated electronic component

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6473658A (en) * 1987-09-14 1989-03-17 Nec Corp Semiconductor device
JPH04363006A (en) * 1990-05-31 1992-12-15 Toshiba Corp Flat magnetic element
JPH0729732A (en) * 1993-07-09 1995-01-31 Fuji Electric Co Ltd Thin film magnetic element
JP2002513511A (en) * 1997-02-03 2002-05-08 ユニバーシティー オブ ユタ リサーチ ファンデーション Via-free integrated inductive devices for electromagnetic applications
JP2002525869A (en) * 1998-09-17 2002-08-13 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method for manufacturing semiconductor device having semiconductor substrate having surface on which coil having magnetic core is provided
JP2002100733A (en) * 2000-09-21 2002-04-05 Nec Corp High-frequency ic device
JP2003257739A (en) * 2002-02-28 2003-09-12 Koa Corp High-frequency device
JP2007103686A (en) * 2005-10-05 2007-04-19 Tdk Corp Common mode choke coil and method of manufacturing same
WO2009072423A1 (en) * 2007-12-07 2009-06-11 Murata Manufacturing Co., Ltd. Laminated electronic component

Similar Documents

Publication Publication Date Title
CN1914699B (en) Method for manufacturing electronic component, parent board and electronic component
US20060115918A1 (en) Method for manufacturing a magnetic field detecting element
US8325003B2 (en) Common mode filter and method of manufacturing the same
JP5673358B2 (en) Coil component and manufacturing method thereof
CN102222622B (en) Semiconductor device and manufacturing method for semiconductor device
JP5346044B2 (en) LAMINATED SEMICONDUCTOR SUBSTRATE, METHOD FOR MANUFACTURING SAME, AND METHOD FOR PRODUCING LAMINATED CHIP PACKAGE
JP4638322B2 (en) Common mode filter
JP2010219332A (en) Power supply wiring structure of multilayer wiring layer and method for manufacturing the same
TW201507567A (en) Multilayer electronic structure with embedded filter
JP5113025B2 (en) Coil structure and manufacturing method thereof
CN112908611B (en) Coil component
TWI500134B (en) Tsv substrate structure and the stacked assembly thereof
WO2011040953A1 (en) Method of high density memory fabrication
CN103337493B (en) There is the multilayer electronic structure of the planar upwardly extending integration in side through hole
US20080120828A1 (en) High Density Planarized Inductor And Method Of Making The Same
KR20190106243A (en) Coil component
JP4209882B2 (en) Common mode filter
CN103188867B (en) There is the multilayer electronic structure of Novel transmission line
WO2019220862A1 (en) Inductor and method for producing same
KR100668957B1 (en) Method for fabricating MIM capacitor
CN106531882B (en) Electromagnetic impedance sensing element and manufacturing method thereof
JP2006173163A (en) Chip coil
JP7424157B2 (en) Electronic components and their manufacturing methods
TWI538168B (en) Three-dimensional semiconductor device and method of manufacturing the same
JP2009111036A (en) Thin film transformer and its production process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19804430

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19804430

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP