WO2019220633A1 - ミッドソール及び靴 - Google Patents
ミッドソール及び靴 Download PDFInfo
- Publication number
- WO2019220633A1 WO2019220633A1 PCT/JP2018/019349 JP2018019349W WO2019220633A1 WO 2019220633 A1 WO2019220633 A1 WO 2019220633A1 JP 2018019349 W JP2018019349 W JP 2018019349W WO 2019220633 A1 WO2019220633 A1 WO 2019220633A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyolefin resin
- melting point
- midsole
- mass
- resin foam
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/06—Polyethene
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B13/00—Soles; Sole-and-heel integral units
- A43B13/02—Soles; Sole-and-heel integral units characterised by the material
- A43B13/026—Composites, e.g. carbon fibre or aramid fibre; the sole, one or more sole layers or sole part being made of a composite
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B13/00—Soles; Sole-and-heel integral units
- A43B13/02—Soles; Sole-and-heel integral units characterised by the material
- A43B13/04—Plastics, rubber or vulcanised fibre
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B13/00—Soles; Sole-and-heel integral units
- A43B13/02—Soles; Sole-and-heel integral units characterised by the material
- A43B13/12—Soles with several layers of different materials
- A43B13/125—Soles with several layers of different materials characterised by the midsole or middle layer
-
- A—HUMAN NECESSITIES
- A43—FOOTWEAR
- A43B—CHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
- A43B13/00—Soles; Sole-and-heel integral units
- A43B13/14—Soles; Sole-and-heel integral units characterised by the constructive form
- A43B13/18—Resilient soles
- A43B13/187—Resiliency achieved by the features of the material, e.g. foam, non liquid materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D35/00—Producing footwear
- B29D35/0054—Producing footwear by compression moulding, vulcanising or the like; Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D35/00—Producing footwear
- B29D35/12—Producing parts thereof, e.g. soles, heels, uppers, by a moulding technique
- B29D35/122—Soles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D35/00—Producing footwear
- B29D35/12—Producing parts thereof, e.g. soles, heels, uppers, by a moulding technique
- B29D35/128—Moulds or apparatus therefor
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/04—Homopolymers or copolymers of ethene
- C08L23/08—Copolymers of ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L31/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid; Compositions of derivatives of such polymers
- C08L31/02—Homopolymers or copolymers of esters of monocarboxylic acids
- C08L31/04—Homopolymers or copolymers of vinyl acetate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
- C08L2205/035—Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2207/00—Properties characterising the ingredient of the composition
- C08L2207/04—Thermoplastic elastomer
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2207/00—Properties characterising the ingredient of the composition
- C08L2207/06—Properties of polyethylene
- C08L2207/062—HDPE
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2207/00—Properties characterising the ingredient of the composition
- C08L2207/06—Properties of polyethylene
- C08L2207/066—LDPE (radical process)
Definitions
- the present invention relates to a shoe and its midsole.
- foams made by foaming a composition mainly composed of a polymer such as resin or rubber have been used for various applications because of their excellent cushioning properties, and are widely used in sports equipment.
- Sports shoes used in various competitions and the like are composed of many members.
- the shoe sole the shoe is composed of members for a sole such as an outsole, a midsole, and an inner sole.
- the midsole is required to exhibit high durability while exhibiting high strength while having a high expansion ratio. It is composed of bodies.
- Patent Document 1 described below describes that a midsole is formed of a crosslinked resin foam in which fibers are dispersed. And in the following patent document 1, it is described that the midsole containing a fiber exhibits the restoring property excellent with respect to compression deformation.
- the cross-linked resin foam of Patent Document 1 has a function of generating bending stress in the fibers when the internal bubbles are compressively deformed, and restoring the bubbles to the original shape by using a restoring force against the bending stress. doing. If the length of the fibers dispersed in the crosslinked resin foam is not longer than the size of the bubbles to some extent, no bending stress will be generated even if the bubbles are deformed. Therefore, in the invention described in Patent Document 1, fibers having an average length of 0.5 mm to 10 mm are used.
- the present invention for solving the above-mentioned problems is a midsole for shoes, which is composed of a crosslinked polyolefin resin foam, and the crosslinked polyolefin resin foam is one kind of a high-melting-point polyolefin resin having a melting point exceeding 75 ° C.
- the softening agent further contains a softening agent and a reinforcing material, and the softening agent is either a crystalline resin having a melting point of 40 ° C. or higher and 75 ° C. or lower or an amorphous resin having a glass transition temperature of 40 ° C. or higher and 75 ° C. or lower.
- the reinforcing material provides a midsole including either cellulose nanofibers or carbon nanofibers.
- FIG. 1 shows a shoe formed by using the shoe sole member of this embodiment, and the shoe 1 has an upper 2 and shoe sole members 3 and 4.
- the shoe 1 has a midsole 3 and an outsole 4 as members for soles.
- the direction along the shoe center axis CX connecting the center HC of the heel and the center TC of the toe may be referred to as a length direction X.
- the direction X1 from the heel toward the toe may be referred to as the front
- the direction X2 from the toe toward the heel may be referred to as the rear.
- the direction parallel to the horizontal plane HP may be referred to as the width direction Y.
- the direction Y1 toward the first finger side of the foot may be referred to as inward, and the direction Y2 toward the fifth finger side may be referred to as outward.
- the vertical direction Z perpendicular to the horizontal plane HP may be referred to as a thickness direction or a height direction.
- the upward direction Z1 in the vertical direction Z may be referred to as an upward direction
- the downward direction Z2 may be referred to as a downward direction.
- the shoe 1 includes an outsole 4 at the lowest position.
- the outsole 4 constitutes a ground contact surface of the shoe 1.
- the shoe 1 includes a midsole 3 between an upper 2 that covers a wearer's foot from above and the outsole 4.
- the midsole 3 of the present embodiment has a flat shape and is arranged so that the thickness direction thereof is the height direction Z of the shoe.
- the lower surface of the midsole 3 is in contact with the upper surface of the outsole 4, and the upper surface of the midsole 3 is in contact with the upper 2 from below.
- the side portions 31 and 32 of the midsole are exposed without being covered by the upper 2 or the outsole 4. That is, the midsole 3 of this embodiment includes side portions 31 and 32 that constitute the outer surface of the shoe 1.
- the midsole 3 of the present embodiment has a plurality of protrusions and a plurality of recesses on the inner side surface portion 31.
- the side surface portion 31 of the midsole 3 of the present embodiment has a plurality of linear protrusions 3 a on the heel side of the shoe 1.
- the plurality of linear protrusions 3a extend along the length direction X of the shoe, and are arranged in parallel to each other, and are provided on the side surface portion 31 in a hairline shape.
- the side surface 31 of the midsole 3 of the present embodiment has a plurality of square recesses 3 b on the toe side of the shoe 1. In the midsole 3 of the present embodiment, these linear protrusions 3 a and square recesses 3 b are part of the design of the shoe 1.
- the outer side surface portion 32 of the midsole 3 is also provided with projections and depressions similar to those on the inner side.
- the plurality of protrusions and the plurality of dents are formed when the midsole 3 is manufactured, and a detailed manufacturing method thereof will be described later.
- the midsole 3 of the present embodiment preferably has a specific gravity of 0.2 or less in order to exhibit excellent lightness with respect to the shoe 1.
- the specific gravity of 3 of the midsole is more preferably 0.15 or less.
- the specific gravity is preferably 0.05 or more, and more preferably 0.07 or more, in order to exhibit excellent strength in the midsole 3.
- the specific gravity of the midsole means a value measured under a temperature condition of 23 ° C. according to JIS K7112 Method A “submersion method”.
- the specific gravity can be measured using a hydrometer equipped with a mechanism that prevents the sample from rising, for example, by using a hydrometer commercially available as a high-precision electronic hydrometer from Alpha Mirage. Can do.
- the midsole 3 of the present embodiment preferably has an Asker C hardness of 80 or less in order to exhibit excellent cushioning properties.
- the Asker C hardness is more preferably 70 or less.
- the Asker C hardness of the midsole 3 is preferably 10 or more, and more preferably 20 or more.
- the Asker C hardness means an instantaneous value when a spring hardness test according to JIS K7312 type C is performed at 23 ° C.
- the midsole 3 of this embodiment is excellent in cushioning properties when the elastic modulus is lower. If the elastic modulus of the midsole 3 of the present embodiment is excessively low, there is a possibility that the impact force that the foot receives from the ground during walking cannot be completely absorbed. Therefore, the elastic modulus (compression elastic modulus) of the midsole is preferably 0.1 MPa or more, more preferably 0.5 MPa or more, and particularly preferably 1.0 MPa or more. It is particularly preferable that the pressure is 1.5 MPa or more.
- the elastic modulus (compression elastic modulus) of the midsole is preferably 20 MPa or less, more preferably 12 MPa or less, particularly preferably 8 MPa or less, and particularly preferably 4 MPa or less.
- the elastic modulus of the midsole can be obtained from a “stress-strain curve” when compressed at a strain rate of 0.01 s ⁇ 1 . More specifically, the midsole has a modulus of elasticity of a small deformation region when a cylindrical sample having a diameter of about 10 mm and a height of about 10 mm is prepared and the sample is compressed at a strain rate of 0.01 s ⁇ 1. It is obtained from the slope of the “stress-strain curve”. Note that the slope of the micro-deformation region can be obtained as, for example, the slope of a straight line connecting the point at 0.5% compression and the point at 1.5% compression in the “stress-strain curve”.
- the midsole 3 preferably has a compression set in the thickness direction of 70% or less in order to prolong the service life of the shoe 1.
- the compression set is more preferably 65% or less.
- the compression set is a value measured based on the ASTM D395A method (constant load method). A pressure of 0.59 MPa is applied to a measurement sample under a temperature condition of 23 ° C. for 22 hours, and the measurement sample is It means a value obtained by measuring the thickness of the measurement sample 24 hours after release from the pressure.
- the midsole 3 of the present embodiment is composed of a crosslinked polyolefin resin foam in that it is easy to exhibit the above characteristics.
- the crosslinked polyolefin resin foam of the present embodiment is made of a predetermined raw material so that the midsole 3 can exhibit excellent strength and can easily impart a desired shape to the midsole 3.
- the crosslinked polyolefin resin foam contains at least one high melting point polyolefin resin having a melting point exceeding 75 ° C., and further contains a softening agent and a reinforcing material.
- the high-melting-point polyolefin resin is a main component of the crosslinked polyolefin resin foam and greatly affects the properties of the crosslinked polyolefin resin foam.
- the softener exhibits a function that is contrary to the reinforcing material considering only the strength of the crosslinked polyolefin resin foam, but in the present embodiment, the details of the midsole 3 such as the linear protrusions 3a. It is used to make the shape easy to be in a predetermined state.
- the softener in the present embodiment is a crystalline resin having a melting point of 40 ° C. or higher and 75 ° C. or lower, or an amorphous resin having a glass transition temperature of 40 ° C. or higher and 75 ° C. or lower. Includes either.
- the reinforcing material in the present embodiment is effective for improving the tensile strength and compressive strength of the crosslinked polyolefin resin foam.
- the reinforcing material of the present embodiment includes cellulose nanofibers or carbon nanofibers.
- the crosslinked polyolefin resin foam of the present embodiment preferably contains two or more types of high melting point polyolefin resins, and more preferably contains three or more types of high melting point polyolefin resins.
- three types of high melting point polyolefin resins that is, a first high melting point polyolefin resin, a second high melting point polyolefin resin, and a third high melting point polyolefin resin are contained.
- the first high melting point polyolefin resin is contained in the crosslinked polyolefin resin foam in the largest mass ratio, and the second highest content is the second high melting point polyolefin resin. It is a melting point polyolefin resin. Therefore, among the three high melting point polyolefin resins, the third high melting point polyolefin resin contains the smallest amount.
- Examples of the first high melting point polyolefin resin, the second high melting point polyolefin resin, and the third high melting point polyolefin resin include polyethylene, polypropylene, an ethylene-propylene copolymer, a propylene-1-hexene copolymer, and propylene.
- the first high-melting-point polyolefin resin, the second high-melting-point polyolefin resin, and the third high-melting-point polyolefin resin are polyethylene
- these are, for example, high-density polyethylene having a density of 0.94 g / cm 3 or more. a density of 0.925 g / cm 3 or more 0.94 g / cm 3 less than the medium density polyethylene, density of 0.91 g / cm 3 or more 0.925 g / cm 3 less than the low-density polyethylene, and a density of 0.9g Any of ultra-low density polyethylene of / cm 3 or more and less than 0.91 g / cm 3 may be used.
- the first high-melting polyolefin resin, the second high-melting-point polyolefin resin, and the third high-melting-point polyolefin resin are, for example, low-density polyethylene, a low-type having a long chain branch produced by a high-pressure method. It may be a density polyethylene (PE-LD) or a linear low density polyethylene (PE-LLD) having a short chain branch produced by a catalytic method.
- PE-LD density polyethylene
- PE-LLD linear low density polyethylene
- the first high-melting-point polyolefin resin, the second high-melting-point polyolefin resin, and the third high-melting-point polyolefin resin are polypropylene
- these include, for example, a propylene homopolymer (homopolypropylene), propylene and ethylene And a random copolymer of propylene and ethylene (random polypropylene).
- the first high-melting-point polyolefin resin in this embodiment is the most abundant in the cross-linked polyolefin resin foam among the three high-melting-point polyolefin resins as described above, and strongly affects the characteristics of the cross-linked polyolefin resin foam. To give.
- the first high-melting-point polyolefin resin is an ethylene-1-butene copolymer because it can easily give a good cushioning property to the midsole 3 and the workability is improved when the midsole 3 is molded into a predetermined shape.
- An ethylene- ⁇ -olefin copolymer such as a polymer, an ethylene-1-hexene copolymer, and an ethylene-1-octene copolymer is preferable.
- the first high melting point polyolefin resin preferably has a melting point of 95 ° C. or higher and 105 ° C. or lower.
- the second high-melting-point polyolefin resin which is contained in the crosslinked polyolefin resin foam after the first high-melting-point polyolefin resin, is excellent in crosslinking efficiency and the midsole 3 is replaced with other members (upper material 2 and outsole 4).
- an ethylene-vinyl acetate copolymer is preferable.
- the vinyl acetate content of the ethylene-vinyl acetate copolymer is preferably 10% by mass or more, and more preferably 12% by mass or more.
- the vinyl acetate content of the ethylene-vinyl acetate copolymer is preferably 20% by mass or less.
- the ethylene-vinyl acetate copolymer preferably has a melting point of 82 ° C. or higher and 92 ° C. or lower.
- the third high melting point polyolefin resin is preferably a linear low density polyethylene.
- the linear low density polyethylene preferably has a melting point of 105 ° C. or higher and 125 ° C. or lower.
- the melting point of the first high melting point polyolefin resin is preferably within ⁇ 20 ° C. with respect to both the melting point of the second high melting point polyolefin resin and the melting point of the third high melting point polyolefin resin. That is, when the cross-linked polyolefin resin foam constituting the midsole 3 contains a plurality of high-melting-point polyolefin resins, these high-melting-point polyolefin resins are selected so that the maximum difference between the melting points is 40 ° C. or less. It is preferred that
- the total content of the high-melting-point polyolefin resin in the crosslinked polyolefin resin foam is preferably 65% by mass or more and 95% by mass or less.
- the content of the first high melting point polyolefin resin in the crosslinked polyolefin resin foam is preferably 25% by mass or more and 55% by mass or less.
- the content of the second high melting point polyolefin resin in the crosslinked polyolefin resin foam is preferably 5% by mass or more and 35% by mass or less.
- the content of the third high melting point polyolefin resin in the crosslinked polyolefin resin foam is preferably 1% by mass or more and 25% by mass or less.
- the mass ratio (M2 / M1 ⁇ 100%) of the content (M2) of the second high melting point polyolefin resin to the content (M1) of the first high melting point polyolefin resin may be 50% by mass or more and 90% by mass or less. preferable.
- the mass ratio (M3 / M1 ⁇ 100%) of the content (M3) of the third high melting point polyolefin resin to the content (M1) of the first high melting point polyolefin resin may be 45% by mass or more and 80% by mass or less. preferable.
- the softening agent in the present embodiment is a component for obtaining a crosslinked polyolefin resin foam having a lower elastic modulus than that in the case of forming a crosslinked polyolefin resin foam with only the high melting point polyolefin resin as described above.
- a non-foamed plate-like shape by each of the mixed resin containing the softening agent and the high melting point polyolefin resin and the high melting point polyolefin resin alone.
- a sample (for example, a thickness of 0.5 mm) may be prepared and a comparative test using the plate-like sample may be performed. Examples of the comparative test include a test using a viscoelastic spectrometer. More specifically, the effect of the softening agent can be confirmed by measuring the tensile elastic modulus at room temperature (for example, 23 ° C.).
- the softening agent is an effective component for improving workability when the midsole 3 is molded.
- the softening agent in the present embodiment may contain only the crystalline resin, or may contain only the amorphous resin.
- the softening agent in the present embodiment may include both the crystalline resin and the amorphous resin.
- the softener in the present embodiment preferably contains a low melting point polyolefin resin having a melting point of 40 ° C. or higher and 75 ° C. or lower because of excellent compatibility with the high melting point polyolefin resin.
- the melting point of the low-melting polyolefin resin is preferably higher than 45 ° C.
- the melting point of the low-melting polyolefin resin is preferably less than 70 ° C.
- the difference in melting point between the low melting point polyolefin resin and any one of the high melting point polyolefin resins is preferably less than 30 ° C. That is, one high melting point polyolefin resin among the plurality of high melting point polyolefin resins has a melting point difference of 30 ° C. or more with the low melting point polyolefin resin, and another high melting point polyolefin resin has a melting point with the low melting point polyolefin resin.
- the difference is preferably less than 30 ° C.
- the mass ratio of the low melting point polyolefin resin to the total of the low melting point polyolefin resin and the high melting point polyolefin resin is preferably 5% by mass or more, and more preferably 10% by mass or more.
- the mass ratio of the low melting point polyolefin resin in the total of the low melting point polyolefin resin and the high melting point polyolefin resin is preferably 5% by mass or more, and preferably 40% by mass or less, and preferably 30% by mass or less. It is more preferable.
- the proportion of the low melting point polyolefin resin in the softening agent is preferably 80% by mass or more, and more preferably 90% by mass or more.
- the low-melting-point polyolefin resin exhibits excellent compatibility with the high-melting-point polyolefin resin, and exhibits an excellent plasticizing effect on the high-melting-point polyolefin resin in a heated state. And any one of ethylene-vinyl acetate copolymers.
- Two or more types of low melting point polyolefin resins may be contained in the crosslinked polyolefin resin foam.
- the softening agent may contain an amorphous resin having a glass transition temperature of 40 ° C. or higher and 75 ° C. or lower together with the low melting point polyolefin resin. Examples of the amorphous resin having a glass transition temperature of 40 ° C. or higher and 75 ° C. or lower include styrene resins and acrylic resins.
- the low melting point polyolefin resin preferably has a melt flow rate (MFR) measured at a temperature of 190 ° C. and a nominal load of 2.16 kg of 0.5 g / 10 min or more, and 0.6 g / 10 min or more. Is more preferably 0.7 g / 10 min or more.
- the MFR of the low melting point polyolefin resin is preferably 4 g / 10 min or less.
- the MFR of the low-melting-point polyolefin resin is, for example, JIS K 7210: 1999 “Plastics—Test Methods for Melt Mass Flow Rate (MFR) and Melt Volume Flow Rate (MVR) of Thermoplastic Plastics” b)
- the piston is predetermined.
- the melt flow rate of the mixture of the plurality of types of resins is also preferably within the above range.
- the MFR of the low melting point polyolefin resin is preferably lower than the MFR of the high melting point resin.
- the MFR of the low-melting polyolefin resin is preferably 0.1 to 0.7 times the MFR of the high-melting resin most often contained in the crosslinked polyolefin resin foam.
- the MFR (190 ° C., 2.16 kg) of the high melting point resin is preferably 1 g / 10 min or more, and more preferably 1.2 g / 10 min or more.
- the MFR (190 ° C., 2.16 kg) of the high melting point resin is preferably 6 g / 10 min or less, and more preferably 5.5 g / 10 min or less.
- the “melting point” and “glass transition temperature” in the present embodiment can be measured based on JIS K7121-1987 “Method for Measuring Plastic Transition Temperature”. More specifically, for “melting point” and “glass transition temperature”, heat flux differential scanning calorimetry (heat flux DSC) or the like is used, the sample amount is set to about 5 mg, alumina is used as a reference, and nitrogen purge is performed. It can be obtained by carrying out measurement at a temperature rising rate of ° C./min. The melting point can be determined by measuring the temperature of the melting peak in the DCS chart. The glass transition temperature can be obtained by measuring the midpoint glass transition temperature in the DCS chart.
- melting point and glass transition temperature are melting points that appear in a temperature range in which a resin is actually in a molten state when a plurality of melting peaks and a plurality of glass transitions are observed in a DCS chart. It means the value required for peak and glass transition.
- the crosslinked polyolefin resin foam may further contain a fatty acid such as lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid or an organic compound derived from the fatty acid as the softening agent.
- a fatty acid such as lauric acid, myristic acid, palmitic acid, stearic acid, oleic acid or an organic compound derived from the fatty acid as the softening agent.
- fatty acid-derived organic compound examples include fatty acid lithium salts, fatty acid sodium salts, fatty acid potassium salts, fatty acid calcium salts, and the like; glycerin fatty acid esters, polyglycerin fatty acid esters, sorbitan fatty acid esters, propylene glycol fatty acid esters, And fatty acid esters such as sucrose fatty acid ester; fatty acid amides such as monofatty acid amide, bisfatty acid amide, and N, N′-dialkyl fatty acid amide; These fatty acids and organic compounds derived from fatty acids may be in the form of wax or liquid at room temperature.
- the total content of the fatty acid and the fatty acid-derived organic compound in the softener is preferably 1% by mass or more and 10% by mass or less. That is, in this embodiment, 90% by mass or more of the softening agent is a crystalline resin having a melting point of 40 ° C. or higher and 75 ° C. or lower, or an amorphous resin having a glass transition temperature of 40 ° C. or higher and 75 ° C. or lower. Is preferred.
- the reinforcing material in the present embodiment may include only the cellulose nanofiber or may include only the carbon nanofiber.
- the reinforcing material in the present embodiment may include both the cellulose nanofiber and the carbon nanofiber.
- Cellulose nanofibers contained in the crosslinked polyolefin resin foam as the reinforcing material may be those derived from plants, animals, algae, microorganisms, microbial products, and the like.
- the reinforcing material may contain cellulose nanofibers alone or in combination of two or more. It is preferable that the raw material of the cellulose nanofiber is a plant.
- the plant used as the raw material of the cellulose nanofiber may be the plant itself, a processed product obtained by processing the plant, waste that is no longer necessary, or the like.
- a plant used as a raw material of the cellulose nanofiber for example, wood, bamboo, hemp, jute, kenaf, pulp (conifer unbleached kraft pulp (NUKP), conifer bleach kraft pulp (NBKP), Hardwood unbleached kraft pulp (LUKP), hardwood bleached kraft pulp (LBKP), softwood unbleached sulfite pulp (NUSP), softwood bleached sulfite pulp (NBSP), thermomechanical pulp (TMP), recycled pulp, waste paper, etc.), Examples include yarn, cloth and agricultural waste.
- NUKP conifer bleach kraft pulp
- NKP conifer bleach kraft pulp
- LKP Hardwood unbleached kraft pulp
- LKP hardwood bleached kraft pulp
- NUSP softwood unbleached sulfite pulp
- NBSP softwood bleached sulfite pulp
- TMP thermomechanical pulp
- recycled pulp waste paper, etc.
- the cellulose nanofiber is preferably contained in the crosslinked polyolefin resin foam in a proportion of 1% by mass or more, more preferably in a proportion of 2% by mass or more, and in a proportion of 3% by mass or more. More preferably.
- the cellulose nanofiber is preferably contained in the crosslinked polyolefin resin foam in a proportion of 20% by mass or less, more preferably in a proportion of 16% by mass or less, and in a proportion of 12% by mass or less. More preferably.
- a majority of the nanofibers may be nano-sized, and not all of them may be nano-sized. That is, the cellulose nanofibers may not all be nano-sized before being mixed with the high melting point polyolefin resin or the like.
- a plant is composed of a plant fiber having a thickness of 1 ⁇ m or more, and one plant fiber is composed of a bundle of a plurality of cellulose nanofibers.
- distributed in the said crosslinked polyolefin resin foam may be in the state of such a bundle. That is, the cellulose nanofibers may constitute a bundle having a thickness of about 10 to 100 ⁇ m before being dispersed in the crosslinked polyolefin resin foam.
- the cellulose nanofibers in a state dispersed in the crosslinked polyolefin resin foam preferably have an average fiber diameter of 1 nm or more and 400 nm or less.
- the average fiber diameter of the cellulose nanofibers dispersed in the crosslinked polyolefin resin foam is more preferably 200 nm or less.
- the average length of the cellulose nanofibers is 10 to 1000 times the average fiber diameter. It is preferable that it is a grade.
- the thickness and length of the cellulose nanofibers in the crosslinked polyolefin resin foam can be directly measured using a transmission electron microscope (TEM) or an atomic force microscope (AFM).
- TEM transmission electron microscope
- AFM atomic force microscope
- the average fiber diameter of cellulose nanofibers is obtained by performing photography with a plurality of fields of view using the microscope as described above, and obtaining a plurality of (for example, 50) fibers at randomly selected locations in the obtained image. It can be obtained by measuring the thickness of the fiber and arithmetically averaging the obtained measured values.
- the average length of the cellulose nanofibers is an image taken with a transmission electron microscope (TEM) or an atomic force microscope (AFM) in the same way as the average fiber diameter. , 50) can be obtained by selecting and measuring its length. The average length can also be obtained as an arithmetic average value of the measured values in the same manner as the average fiber diameter.
- the cellulose nanofiber may be a modified product or a non-modified product, but is preferably hydrophobized by modification.
- hydrophobically modified cellulose nanofiber for example, one in which one or more of a plurality of hydroxyl groups of cellulose in the molecular structure are substituted with a substituent containing a hydrophobic group can be employed.
- the hydrophobic group include an alkyl group, an alkenyl group, an alkylene group, an alkenylene group, and an arylene group.
- Hydrophobized cellulose nanofibers exhibit excellent affinity for the high-melting-point polyolefin resin, which is the main component of the crosslinked polyolefin resin foam, and thus have a reinforcing effect as compared with non-modified cellulose nanofibers.
- the hydrophobized cellulose nanofiber exhibits an excellent affinity for the high-melting-point polyolefin resin, and thus has an effect of suppressing the formation of coarse bubbles when a crosslinked polyolefin resin foam is produced. doing.
- the crosslinked polyolefin resin foam in this embodiment usually contains the high-melting-point polyolefin resin, the reinforcing material, and the softening agent, and further includes an uncrosslinked resin containing a foaming agent and a crosslinking agent. It is produced by preparing a composition and foaming and crosslinking the uncrosslinked resin composition. Therefore, if the affinity between the cellulose nanofiber and the high melting point polyolefin resin is low, an aggregate of the cellulose nanofiber is easily formed in the uncrosslinked resin composition, and the gas generated from the foaming agent is the aggregate. It becomes easy to concentrate on the location where there is, and it becomes easy to form coarse bubbles. On the other hand, when cellulose nanofibers that have been hydrophobized are used, it is easy to obtain a crosslinked polyolefin resin foam having fine bubbles and low open cell ratio.
- the carbon nanofibers contained in the crosslinked polyolefin resin foam as the reinforcing material are general carbon nanofibers having a thickness of 10 nm to 500 nm, and are referred to as carbon nanotubes having a thickness of less than 10 nm. It may be a thing.
- the carbon nanofiber may be linear or have a coiled structure. That is, the carbon nanofibers may be called carbon nanocoils.
- the carbon nanofibers contained in the crosslinked polyolefin resin foam preferably have an average fiber diameter of 10 nm to 400 nm.
- the average fiber diameter of the carbon nanofibers is more preferably 200 nm or less.
- the average length of the carbon nanofibers is preferably about 10 to 1000 times the average fiber diameter.
- the average fiber diameter and average length of carbon nanofibers can be measured in the same manner as the average fiber diameter and average length of cellulose nanofibers.
- Carbon nanofibers may be chemically modified. That is, the carbon nanofiber may have a hydroxyl group or a carboxyl group formed on the surface with a strong acid or the like. Further, the carbon nanofiber may be subjected to further chemical modification using an organic compound having a functional group capable of binding to the hydroxyl group or the carboxyl group. For example, the carbon nanofiber may have an alkoxy group formed by a condensation reaction of the hydroxyl group or the carboxyl group with an alcohol in order to increase the affinity for the polyolefin resin.
- the crosslinked polyolefin resin foam may further contain an organic filler or an inorganic filler as a reinforcing material in addition to cellulose nanofibers and carbon nanofibers.
- the organic filler include resin powder.
- the inorganic filler include silicon oxide, aluminum oxide, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, talc, clay, mica, graphite, and carbon black.
- crosslinking agent can be, for example, an organic peroxide or an azo compound.
- the cross-linking agent may be a silanol condensation catalyst or the like.
- organic peroxide examples include dicumyl peroxide, di-t-butyl peroxide, 2,5-dimethyl-2,5-di- (t-butylperoxy) hexane, 2,5-dimethyl-2,5.
- azo compound examples include azobisisobutyronitrile and azobis (2,4-dimethylvaleronitrile).
- silanol condensation catalyst examples include dibutyltin diacetate, dibutyltin dilaurate, dibutyltin dioctate, and dioctyltin dilaurate.
- the cross-linking agent in this embodiment is preferably an organic peroxide.
- a crosslinking aid may be adjusted by adding a crosslinking aid together with the crosslinking agent to the uncrosslinked resin composition.
- the crosslinking aid include divinylbenzene, trimethylolpropane trimethacrylate, 1,6-hexanediol methacrylate, 1,9-nonanediol dimethacrylate, 1,10-decanediol dimethacrylate, and trimellitic acid triallyl ester.
- triallyl cyanurate triallyl isocyanurate, neopentyl glycol dimethacrylate, 1,2,4-benzenetricarboxylic acid triallyl ester, tricyclodecane dimethacrylate, polyethylene glycol diacrylate, and the like.
- foaming agent examples include azodicarbonamide (ADCA), 1,1′-azobis (1-acetoxy-1-phenylethane), dimethyl-2,2′-azobisbutyrate, dimethyl-2,2 ′. -Azobisisobutyrate, 2,2'-azobis (2,4,4-trimethylpentane), 1,1'-azobis (cyclohexane-1-carbonitrile), 2,2'-azobis [N- (2 -Carboxyethyl) -2-methyl-propionamidine]; nitroso compounds such as N, N′-dinitrosopentamethylenetetramine (DPT); 4,4′-oxybis (benzenesulfonylhydrazide), diphenylsulfone- Hydrazine derivatives such as 3,3′-disulfonylhydrazide; semicarls such as p-toluenesulfonyl semicarbazide Disilazide compound; it may be employed an
- foaming agent examples include inorganic pyrolytic foaming agents such as bicarbonates such as sodium bicarbonate and ammonium bicarbonate, carbonates such as sodium carbonate and ammonium carbonate; nitrites such as ammonium nitrite and hydrogen compounds. May be.
- inorganic pyrolytic foaming agents such as bicarbonates such as sodium bicarbonate and ammonium bicarbonate, carbonates such as sodium carbonate and ammonium carbonate; nitrites such as ammonium nitrite and hydrogen compounds. May be.
- the crosslinked polyolefin resin foam includes, for example, a metal oxide foaming aid such as zinc oxide, a urea foaming aid, and a salicylic acid foaming aid.
- a metal oxide foaming aid such as zinc oxide
- a urea foaming aid such as a urea foaming aid
- a salicylic acid foaming aid such as a urea foaming aid
- foaming agent examples include organic foaming agents such as various aliphatic hydrocarbons such as methanol, ethanol, propane, butane, pentane, and hexane, and inorganic foaming agents such as air, carbon dioxide, nitrogen, argon, and water. There may be.
- organic foaming agents such as various aliphatic hydrocarbons such as methanol, ethanol, propane, butane, pentane, and hexane
- inorganic foaming agents such as air, carbon dioxide, nitrogen, argon, and water. There may be.
- the crosslinked polyolefin resin foam may further contain various additives.
- the cross-linked polyolefin resin foam may appropriately contain an antifungal agent, a flame retardant, a pigment, a release agent, an antistatic agent, an antibacterial agent, a deodorant, and the like.
- the crosslinked polyolefin resin foam may contain a small amount of a polymer other than the polyolefin resin for the purpose of modification.
- polystyrene-ethylene-butylene copolymer SEB
- SEB styrene-ethylene-butylene copolymer
- SBS styrene-ethylene-butylene-styrene copolymer
- SEBS styrene-ethylene-butylene-styrene copolymer
- SIS styrene-isoprene-styrene copolymer
- SIBS styrene- Ethylene-propylene-styrene copolymer
- SIBS styrene-isobutylene-styrene copolymer
- SIBS styrene-butadiene-styrene-butadiene copolymer
- SBSB styrene-butadiene-styrene-butadiene-styrene Styrene polymers such as copolymer (SBSBS), polystyrene, acrylonitrile styrene resin (AS resin), acrylonitrile butadiene styrene resin (ABS resin
- These polymers preferably have a mass ratio of 5% by mass or less based on the crosslinked polyolefin resin foam.
- the content of these polymers in the crosslinked polyolefin resin foam is more preferably 2% by mass or less, and particularly preferably 1% by mass or less.
- the crosslinked polyolefin resin foam does not contain any polymer other than the polyolefin resin.
- the crosslinked polyolefin resin foam is obtained by kneading an uncrosslinked resin composition containing the above components so that the whole is in a uniform state, and heating the obtained kneaded product to crosslink a high melting point polyolefin resin or the like. It can be produced by causing foaming by a foaming agent.
- a general kneading apparatus such as an open roll or a kneader can be used for kneading the uncrosslinked resin composition.
- a general heating apparatus such as a vacuum hot press can be used for crosslinking and foaming of the uncrosslinked resin composition.
- Crosslinking foaming of the uncrosslinked resin composition is preferably carried out so that an average cell diameter of the produced crosslinked polyolefin resin foam is 10 ⁇ m to 1000 ⁇ m.
- the average cell diameter of the cross-linked polyolefin resin foam is determined by observing the cross section of the foam with a microscope, etc., determining the average cross sectional area of the cells, and calculating the diameter of a circle having the same area as this average cross sectional area. It is done.
- the midsole 3 of the present embodiment can be manufactured using a mold M as shown in FIGS. 2A, 2B, 2C, and 3.
- 2A to 2C are schematic views of the mold, FIG. 2A is a front view, FIG. 2B is a plan view, and FIG. 2C is a side view (right side view).
- FIG. 3 is a view showing a state in which the forming die is mounted on a hot press.
- the mold M is composed of a pair of molds having mold-matching surfaces that come into contact with each other when the mold is closed.
- the mold M is configured so that a molding space CV corresponding to the shape of the midsole 3 can be formed inside when the mold is closed.
- the mold M includes a male mold MM and a female mold MF as a pair of the molds.
- Each of the male mold MM and the female mold MF in the present embodiment has a plate shape.
- the molding die M is configured so that the molding space CV in a sealed state can be formed inside by overlapping the male mold MM and the female mold MF.
- the female mold MF includes a molding recess MFa that is open on the side having the mold matching surface and is recessed in the thickness direction of the female mold MF.
- the molding recess MFa is formed such that the thickness direction of the midsole 3 is the depth direction.
- the male mold MM includes a molding convex portion MMa that protrudes from the mold mating surface and can enter the molding concave portion MFa of the female mold MF. Then, when the molding die M overlaps the female mold MF and the male die MM, the molding convex portion MMa enters the middle of the molding concave portion MFa in the depth direction, and the molding space CV is formed. It is configured to be formed inside.
- the molding die M is configured such that the molding space CV can be defined by the inner wall surface of the bottom portion of the molding recess MFa and the lower surface of the molding projection MMa. And then. On the inner wall surface of the female mold MF that defines the molding space CV, a groove that is opposite to the linear protrusion 3a and a rectangular protrusion that is opposite to the rectangular recess 3b are formed.
- the midsole 3 of the present embodiment includes a preforming step for producing a preformed body FM slightly thicker than the midsole 3 using a crosslinked polyolefin resin foam, and the preformed body FM is heated by the mold M. It is manufactured by a thermoforming step of forming the midsole 3 by molding.
- the preform FM can be produced by a method of cutting a plate-like crosslinked polyolefin resin foam larger than the midsole 3 and thicker than the midsole 3.
- the midsole 3 can be produced by a method in which the preform FM is hot pressed using a mold M.
- thermoforming step for example, as shown in the figure, a male mold MM and a female mold MF are mounted on two hot plates HP of a hot press machine, respectively, and the preform FM is accommodated in the molding recess MFa.
- the male mold MM and the female mold MF can be closed and pressure can be applied, and the preform FM can be heated.
- a side pressure is also generated between the side surface of the preform FM and the molding surface of the female MF by applying pressure to the preform FM in the thickness direction.
- the shape of the groove and the rectangular projection is transferred to the preform FM using the lateral pressure, and the midsole 3 in which the linear projection 3a and the square recess 3b are formed on the side surface portion. Is produced.
- the preform FM of the present embodiment is a foam composed of a crosslinked polyolefin resin. That is, the resin film constituting the bubbles in the foam constituting the preform FM is composed of a crosslinked polyolefin resin. Moreover, the resin film is reinforced by a plurality of cellulose nanofibers present in the film. Therefore, even if a strong pressure is applied to the preformed body FM in the thickness direction, the internal bubbles are not easily crushed. Therefore, the preformed body FM of the present embodiment can convert most of the pressure applied in the thickness direction into the side pressure. Moreover, the preforming body FM of the present embodiment contains a softening agent such as a low melting point polyolefin resin.
- the shape of the female mold MF that is in contact with the side surface portion can be transferred more faithfully.
- mold MF is easy to be transcribe
- the preformed body FM of the present embodiment has a strong repulsive force against the pressure applied in the thermoforming process even when the foaming ratio is high because the resin film constituting each bubble is reinforced with cellulose nanofibers. Can be demonstrated. And since the preforming body FM of this embodiment can make a side part etc. into a desired shape, without applying a high pressure, the high foaming ratio in the preforming body FM is reflected also in the midsole 3 after shaping
- CNF-MB Cellulose nanofiber master batch
- a master batch containing a linear low-density polyethylene (high melting point polyolefin resin) having a melting point of 114 ° C. and hydrophobically modified cellulose nanofibers and a cellulose nanofiber (CNF) content of 40 mass% was prepared.
- (A) high melting point polyolefin resin Apart from the high melting point polyolefin resin contained in the CNF masterbatch, the following high melting point polyolefin resins as shown in (A1) to (A3) were prepared.
- A1: PE-HD Melting point: 134 ° C., MFR: 5.4 g / 10 min high density polyethylene
- A2: PE-LLD Melting point: 117 ° C., MFR: 2.7 g / 10 min linear low density polyethylene
- A3: EVA Melting point: 77 ° C., MFR: 2.4 g / 10 min ethylene-vinyl acetate copolymer
- A4: PE-HD Melting point: 120 ° C., MFR: 0.5 g / 10 min olefin block copolymer (ethylene- ⁇ olefin copolymer containing ethylene and 1-octene as structural units)
- (B) Low melting point polyolefin resin As the low melting point polyolefin resin, the one shown in the following (B1) was prepared.
- (C) Other polymers As other polymers, a styrene-based thermoplastic elastomer shown in the following (C1) and an isoprene rubber shown in (C2) were prepared.
- C1: TPS Styrene content: 18% by mass, MFR (230 ° C., 2.16 kg): SEBS of 4.5 g / 10 min
- C2: IR High cis type (cis 1,4 bond 98%) polyisoprene rubber
- Formation of crosslinked polyolefin resin foam Polyolefin resin and cellulose nanofiber masterbatch (CNF-MB) are blended at the blending ratio shown in the table, and a lubricant, a foaming agent (ADCA), a foaming aid (zinc oxide), and a cross-linking agent ( DCP) and a crosslinking aid (triallyl cyanurate: TAC) were melted by heating and uniformly mixed, and then foamed in a mold to produce a plate-like crosslinked polyolefin resin foam.
- the specific gravity of the crosslinked polyolefin resin foam was adjusted by the content of the foaming agent (ADCA).
- surface represents the mass part.
- the numerical values related to the blending of cellulose nanofiber masterbatch (Cel ⁇ NF-MB) and carbon nanofiber masterbatch (Cbn ⁇ NF-MB) are in parts per 100 parts by mass in total of (A) to (C) above. is there. Furthermore, the numerical values related to the blending of cellulose nanofiber (Cel ⁇ NF) and carbon nanofiber (Cbn ⁇ NF) are as follows: cellulose nanofiber master batch (Cel ⁇ NF-MB) and carbon nanofiber master batch (Cbn ⁇ NF-MB) The number of parts of cellulose nanofibers and carbon nanofibers added to the admixture by addition of (a part to the total of 100 parts by mass of (A) to (C)) is shown.
- the produced crosslinked polyolefin resin foam was measured for Asker C hardness without cutting off the surface film.
- specific gravity The specific gravity of the produced crosslinked polyolefin resin foam was measured by the JIS K7112 A method “in-water replacement method”.
- Tea strength The tear strength of the produced crosslinked polyolefin resin foam was measured based on JIS K6252. Specific measurement conditions are as follows. As a result of the measurement, when the tear strength was 8.0 or more, the strength was considered to be excellent, and “A” was determined. When the tear strength was less than 8.0, “B” was determined.
- Measuring instrument Product name “STROGRAPH-R2” manufactured by Toyo Seiki Seisakusho Co., Ltd.
- Sample shape Angle-shaped test piece specified in JIS K 6252 (no cut)
- Test speed 500 mm / min (Elastic modulus)
- the compression modulus of the produced crosslinked polyolefin resin foam was measured.
- shape The shaping property of the produced crosslinked polyolefin resin foam was visually evaluated. Evaluation was performed as follows. When a thing with a sharp edge was obtained, it was determined as “ ⁇ ”, and when it was not, it was determined as “x”.
- Comparative Example 7 and Comparative Example 11 The evaluation results are shown in the table.
- Comparative Example 7 and Comparative Example 11 An attempt was made to produce a crosslinked foam having a specific gravity equivalent to that of other Comparative Examples and Examples using isoprene rubber, but as a result, an equivalent one was obtained. There wasn't. Therefore, in Comparative Example 7 and Comparative Example 11, evaluation of hardness and tear strength as in other Comparative Examples and Examples was not performed.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
各種競技等に使用されるスポーツシューズは、多くの部材から構成されており、例えば、靴底であれば、アウトソール、ミッドソール、インナーソール等の靴底用部材から構成されている。
このような靴底用部材のなかでもミッドソールには、高い発泡倍率でありながら高い強度を示して優れた耐久性を発揮することが求められているため架橋樹脂を主たる成分とした架橋樹脂発泡体で構成されたりしている。
この点について、例えば、下記特許文献1には、繊維の分散された架橋樹脂発泡体でミッドソールを構成することが記載されている。
そして下記特許文献1には、繊維を含有するミッドソールが圧縮変形に対して優れた復元性を発揮することが記載されている。
この架橋樹脂発泡体中に分散している繊維の長さは、気泡のサイズに比べてある程度長くないと気泡が変形しても曲げ応力を発生させることにならない。
そこで、特許文献1記載の発明では、0.5mm~10mmの平均長さを有する繊維が用いられている。
前記膜を補強できれば、当該気泡膜を薄くして架橋樹脂発泡体に軽量性を発揮させても強度が維持され得る。
即ち、前記膜を補強できれば、ミッドソールに求められる軽量性と強度とを架橋樹脂発泡体に発揮させることができると考えられる。
そこで、本発明は、このような新たな機能を備えた架橋樹脂発泡体を提供し、軽量性と強度とに優れたミッドソールを提供することを課題としている。
図1は、本実施形態の靴底用部材を用いて形成される靴を示したもので、該靴1は、アッパー2と靴底用部材3,4とを有している。
該靴1は、靴底用部材としてミッドソール3、及び、アウトソール4を有している。
尚、以下において図1に示した靴1などについて説明する際に、踵の中心HCと爪先の中心TCとを結ぶシューセンター軸CXに沿った方向のことを長さ方向Xと称することがある。
また、シューセンター軸CXに沿った方向の内、踵から爪先に向けた方向X1を前方などと称し、爪先から踵に向けた方向X2を後方などと称することがある。
シューセンター軸CXに直交する方向の内、水平面HPに平行する方向を幅方向Yと称することがある。
この幅方向Yの内、足の第1指側に向けた方向Y1を内方などと称し、第5指側に向けた方向Y2を外方などと称することがある。
そして、水平面HPに直交する垂直方向Zを厚み方向や高さ方向と称することがある。
さらに、以下においては、この垂直方向Zにおいて上方に向かう方向Z1を上方向と称し、下方に向かう方向Z2を下方向と称することがある。
該アウトソール4は、靴1の接地面を構成するものである。
前記靴1は、着用者の足を上側から覆うアッパー2と前記アウトソール4との間にミッドソール3を備えている。
本実施形態のミッドソール3は、扁平形状を有し、その厚み方向が靴の高さ方向Zとなるように配されている。
該ミッドソール3の下面は、前記アウトソール4の上面に接しており、前記ミッドソール3の上面は、アッパー2に対して下側から接している。
ミッドソールの側面部31,32は、前記アッパー2や前記アウトソール4などによって覆われることなく露出した状態になっている。
即ち、本実施形態のミッドソール3は、靴1の外表面を構成する側面部31,32を備えている。
本実施形態のミッドソール3の側面部31には、靴1の踵側において複数の線状突起3aを有している。
この複数の線状突起3aは、それぞれ靴の長さ方向Xに沿って延在し、互いに並行するように配されて側面部31にヘアライン状となって備えられている。
本実施形態のミッドソール3の側面部31には、靴1の爪先側において複数の四角い凹み3bを有している。
そして、本実施形態のミッドソール3は、これらの線状突起3aや四角い凹み3bが靴1の意匠の一部となっている。
この複数の突起及び複数の凹みは、ミッドソール3を作製する際に形成されたものであり、その詳しい作製方法については、後述する。
ミッドソールの3の比重は、0.15以下であることがより好ましい。
ミッドソール3に優れた強度を発揮させる上において、前記比重は0.05以上であることが好ましく、0.07以上であることがより好ましい。
なお、ミッドソールの比重とは、JIS K7112のA法「水中置換法」によって、23℃の温度条件下において測定される値を意味する。
該比重は、試料の浮上を防止するような機構を備えた比重計を用いて測定することができ、例えば、アルファミラージュ社から高精度電子比重計として市販されている比重計などによって測定することができる。
該アスカーC硬度は、70以下であることがより好ましい。
尚、ミッドソール3に適度は反発弾性を発揮させる上において、ミッドソール3のアスカーC硬度は、10以上であることが好ましく、20以上であることがより好ましい。
ここで前記アスカーC硬度とは、JIS K7312のタイプCによるスプリング硬さ試験を23℃において実施した際の瞬時値を意味する。
本実施形態のミッドソール3は、過度に弾性率が低いと歩行時において足が地面から受ける衝撃力を吸収し切れなくなるおそれがある。
このようなことから、ミッドソールの弾性率(圧縮弾性率)は、0.1MPa以上であることが好ましく、0.5MPa以上であることがより好ましく、1.0MPa以上であることが特に好ましく、1.5MPa以上であることがとりわけ好ましい。
ミッドソールの弾性率(圧縮弾性率)は、20MPa以下であることが好ましく、12MPa以下であることがより好ましく、8MPa以下であることが特に好ましく、4MPa以下であることがとりわけ好ましい。
より詳しくは、ミッドソールの弾性率は、直径10mm、高さ10mm程度の大きさの円柱状試料を用意し、該試料を0.01s-1のひずみ速度で圧縮した際の微小変形領域の「応力-歪み曲線」の傾きから求められる。
尚、微小変形領域の傾きは、例えば、「応力-歪み曲線」の0.5%圧縮時の点と1.5%圧縮時の点とを結ぶ直線の傾きとして求めることができる。
前記圧縮永久歪は、65%以下であることがより好ましい。
なお、前記ミッドソール3を圧縮永久歪が全く生じない状態にさせることは容易ではなく、前記圧縮永久歪は、通常、1%以上となる。
この圧縮永久歪とは、ASTM D395A法(定荷重法)に基づいて測定される値であり、測定試料に対して23℃の温度条件下0.59MPaの圧力を22時間加え、前記測定試料を圧力から開放した24時間後に該測定試料の厚みを測定して求められる値を意味する。
本実施形態の前記架橋ポリオレフィン樹脂発泡体は、ミッドソール3に優れた強度を発揮させ、しかも、ミッドソール3に所望の形状を付与することが容易になるように所定の原材料によって作製されている。
具体的には、前記架橋ポリオレフィン樹脂発泡体は、融点が75℃を超える高融点ポリオレフィン樹脂を1種類以上含有し、さらに軟化剤と補強材とを含有している。
前記軟化剤は、単純に架橋ポリオレフィン樹脂発泡体の強度だけを考えると前記補強材とは相反する機能を発揮するものになるが、本実施形態では線状突起3aなどといったミッドソール3の細部の形状を所定の状態にさせ易くするために用いられている。
このような機能をより顕著に発揮させるべく、本実施形態における前記軟化剤は、融点が40℃以上75℃以下の結晶性樹脂又はガラス転移温度が40℃以上75℃以下の非晶性樹脂の何れかを含んでいる。
本実施形態の前記補強材は、セルロースナノファイバー又はカーボンナノファイバーを含んでいる。
本実施形態においては、第1高融点ポリオレフィン樹脂、第2高融点ポリオレフィン樹脂、及び、第3高融点ポリオレフィン樹脂の3種類の高融点ポリオレフィン樹脂を含有している。
この3つの高融点ポリオレフィン樹脂の内、架橋ポリオレフィン樹脂発泡体に最も大きな質量割合で含まれているのは前記第1高融点ポリオレフィン樹脂であり、次に多く含まれているのが前記第2高融点ポリオレフィン樹脂である。
したがって、3つの高融点ポリオレフィン樹脂の内、前記第3高融点ポリオレフィン樹脂は、最も少量しか含まれていない。
前記第1高融点ポリオレフィン樹脂、前記第2高融点ポリオレフィン樹脂、及び、前記第3高融点ポリオレフィン樹脂が、例えば、低密度ポリエチレンである場合、高圧法によって作製される長鎖分岐を有するタイプの低密度ポリエチレン(PE-LD)であっても、触媒法によって作製される短鎖分岐を有するタイプの直鎖状低密度ポリエチレン(PE-LLD)であってもよい。
前記第1高融点ポリオレフィン樹脂は、ミッドソール3に良好なクッション性を与え易い点、及び、ミッドソール3を所定の形状に成形する際に作業性が良好になる点からエチレン-1-ブテン共重合体、エチレン-1-ヘキセン共重合体、エチレン-1-オクテン共重合体などのエチレン-αオレフィン共重合体であることが好ましい。
そして、該第1高融点ポリオレフィン樹脂は、融点が95℃以上105℃以下であることが好ましい。
該エチレン-酢酸ビニル共重合体の酢酸ビニル含有量は、10質量%以上であることが好ましく、12質量%以上であることがより好ましい。
前記エチレン-酢酸ビニル共重合体の酢酸ビニル含有量は、20質量%以下であることが好ましい。
エチレン-酢酸ビニル共重合体は、融点が82℃以上92℃以下であることが好ましい。
直鎖状低密度ポリエチレンは、融点が105℃以上125℃以下であることが好ましい。
即ち、ミッドソール3を構成する架橋ポリオレフィン樹脂発泡体が複数の高融点ポリオレフィン樹脂を含有する場合、これらの高融点ポリオレフィン樹脂は、互いの融点の差の最大値が40℃以下となるように選択されることが好ましい。
架橋ポリオレフィン樹脂発泡体における第1高融点ポリオレフィン樹脂の含有量は、25質量%以上55質量%以下であることが好ましい。
架橋ポリオレフィン樹脂発泡体における第2高融点ポリオレフィン樹脂の含有量は、5質量%以上35質量%以下であることが好ましい。
架橋ポリオレフィン樹脂発泡体における第3高融点ポリオレフィン樹脂の含有量は、1質量%以上25質量%以下であることが好ましい。
第1高融点ポリオレフィン樹脂の含有量(M1)に対する第3高融点ポリオレフィン樹脂の含有量(M3)の質量割合(M3/M1×100%)は、45質量%以上80質量%以下であることが好ましい。
尚、軟化剤の効果の程度を予め確認する必要がある場合は、例えば、当該軟化剤と前記高融点ポリオレフィン樹脂とを含む混合樹脂と、高融点ポリオレフィン樹脂単体とのそれぞれによって非発泡な板状試料(例えば、厚さ0.5mm)を作製し、該板状試料を使った比較試験を実施すればよい。
該比較試験としては、例えば、粘弾性スペクトロメータを用いた試験などが挙げられる。
より詳しくは、前記軟化剤の効果は、常温(例えば、23℃)での引張弾性率を測定するなどして確かめることができる。
本実施形態における前記軟化剤は、前記結晶性樹脂だけを含んでいてもよく、前記非晶性樹脂だけを含んでいてもよい。
本実施形態における前記軟化剤は、前記結晶性樹脂と前記非晶性樹脂との両方を含んでいてもよい。
本実施形態における前記軟化剤は、前記高融点ポリオレフィン樹脂との相溶性に優れることから融点が40℃以上75℃以下の低融点ポリオレフィン樹脂を含むことが好ましい。
前記低融点ポリオレフィン樹脂の融点は、45℃を超えていることが好ましい。
前記低融点ポリオレフィン樹脂の融点は、70℃未満であることが好ましい。
しかも、前記低融点ポリオレフィン樹脂と前記高融点ポリオレフィン樹脂の何れか一つとの間の融点の差は30℃未満であることが好ましい。
即ち、複数の前記高融点ポリオレフィン樹脂の中の一つの高融点ポリオレフィン樹脂は前記低融点ポリオレフィン樹脂との融点の差が30℃以上で、別の高融点ポリオレフィン樹脂は前記低融点ポリオレフィン樹脂との融点の差が30℃未満であることが好ましい。
前記低融点ポリオレフィン樹脂と前記高融点ポリオレフィン樹脂との合計に占める前記低融点ポリオレフィン樹脂の質量割合は、5質量%以上であることが好ましく10質量%以上であることがより好ましい。
前記低融点ポリオレフィン樹脂と前記高融点ポリオレフィン樹脂との合計に占める前記低融点ポリオレフィン樹脂の質量割合は、5質量%以上であることが好ましく40質量%以下であることが好ましく30質量%以下であることがより好ましい。
尚、前記架橋ポリオレフィン樹脂発泡体に含有される低融点ポリオレフィン樹脂は、2種類以上であってもよい。
また、軟化剤には低融点ポリオレフィン樹脂とともにガラス転移温度が40℃以上75℃以下の非晶性樹脂を含有させてもよい。
ガラス転移温度が40℃以上75℃以下の非晶性樹脂としては、例えば、スチレン系樹脂やアクリル系樹脂などが挙げられる。
前記低融点ポリオレフィン樹脂のMFRは、4g/10min以下あることが好ましい。
前記低融点ポリオレフィン樹脂のMFRは、例えば、JIS K 7210:1999「プラスチック―熱可塑性プラスチックのメルトマスフローレイト(MFR)及びメルトボリュームフローレイト(MVR)の試験方法」B法記載のb)ピストンが所定の距離を移動する時間を測定する方法によって測定することができる。
軟化剤を複数種類の樹脂で構成させる場合、複数種類の樹脂の混合物のメルトフローレイトも上記範囲内であることが好ましい。
低融点ポリオレフィン樹脂のMFRは、高融点樹脂のMFRよりも低いことが好ましい。
低融点ポリオレフィン樹脂のMFRは、架橋ポリオレフィン樹脂発泡体に最も多く含まれている高融点樹脂のMFRに対し、0.1倍以上0.7倍以下であることが好ましい。
高融点樹脂のMFR(190℃、2.16kg)は、1g/10min以上であることが好ましく、1.2g/10min以上であることがより好ましい。
高融点樹脂のMFR(190℃、2.16kg)は、6g/10min以下であることが好ましく、5.5g/10min以下であることがより好ましい。
より詳しくは、「融点」や「ガラス転移温度」は、熱流束示差走査熱量測定(熱流束DSC)などを用い、試料量を約5mgとし、リファレンスとしてアルミナを使い、窒素パージをしつつ、10℃/minの昇温速度での測定を実施して求めることができる。
尚、前記融点は、DCSのチャートにおける融解ピークの温度を測定することで求められる。
前記ガラス転移温度は、DCSのチャートにおける中間点ガラス転移温度を測定することで求められる。
尚、本明細書における「融点」や「ガラス転移温度」とは、DCSのチャートにおいて複数の融解ピークや複数のガラス転移が観測される場合、実際に樹脂が溶融状態となる温度域に現れる融解ピークやガラス転移について求められる値を意味する。
前記脂肪酸由来の有機化合物としては、例えば、脂肪酸リチウム塩、脂肪酸ナトリウム塩、脂肪酸のカリウム塩、脂肪酸カルシウム塩などの脂肪酸塩;グリセリン脂肪酸エステル、ポリグリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、プロピレングリコール脂肪酸エステル、ショ糖脂肪酸エステルなどの脂肪酸エステル類;モノ脂肪酸アミド、ビス脂肪酸アミド、N,N’-ジアルキル脂肪酸アミドなどの脂肪酸アミド類;などが挙げられる。
これらの脂肪酸や脂肪酸由来の有機化合物は、常温においてワックス状となるものであっても液状となるものであってもよい。
前記軟化剤に脂肪酸や脂肪酸由来の有機化合物を含有させる場合、前記軟化剤における脂肪酸と脂肪酸由来の有機化合物との合計含有量は、1質量%以上10質量%以下とされることが好ましい。
即ち、本実施形態では、前記軟化剤の内の90質量%以上は、融点が40℃以上75℃以下の結晶性樹脂やガラス転移温度が40℃以上75℃以下の非晶性樹脂であることが好ましい。
本実施形態における前記補強材は、前記セルロースナノファイバーと前記カーボンナノファイバーとの両方を含んでいてもよい。
前記補強材には、セルロースナノファイバーを一種単独で含有させても2種類以上を含有させてもよい。
前記セルロースナノファイバーは、原料が植物であることが好ましい。
前記セルロースナノファイバーの原料となる、植物は、植物そのものや、植物を加工した加工品、及び、不要となった廃棄物などであってもよい。
より具体的には、前記セルロースナノファイバーの原料となる、植物としては、例えば、木材、竹、麻、ジュート、ケナフ、パルプ(針葉樹未漂白クラフトパルプ(NUKP)、針葉樹漂白クラフトパルプ(NBKP)、広葉樹未漂白クラフトパルプ(LUKP)、広葉樹漂白クラフトパルプ(LBKP)、針葉樹未漂白サルファイトパルプ(NUSP)、針葉樹漂白サルファイトパルプ(NBSP)、サーモメカニカルパルプ(TMP)、再生パルプ、古紙など)、糸、布、農業廃棄物などが挙げられる。
該セルロースナノファイバーは、前記架橋ポリオレフィン樹脂発泡体に20質量%以下の割合で含有されることが好ましく、16質量%以下の割合で含有されることがより好ましく、12質量%以下の割合で含有されることがさらに好ましい。
即ち、セルロースナノファイバーは、高融点ポリオレフィン樹脂などと混合される前において全てがナノサイズになっていなくてもよい。
一般に植物は、1μm以上の太さを有する植物繊維で構成されており、一本の前記植物繊維は、複数本のセルロースナノファイバーの束によって構成されている。
そして、前記架橋ポリオレフィン樹脂発泡体中に分散される前のセルロースナノファイバーは、このような束の状態であってもよい。
即ち、前記セルロースナノファイバーは、前記架橋ポリオレフィン樹脂発泡体中に分散される前の状態において10~100μm程度の太さを有する束を構成していてもよい。
架橋ポリオレフィン樹脂発泡体中に分散された状態でのセルロースナノファイバーの平均繊維径は、200nm以下となっていることがより好ましい
セルロースナノファイバーの平均長さは、平均繊維径の10倍~1000倍程度であることが好ましい。
架橋ポリオレフィン樹脂発泡体中のセルロースナノファイバーの太さや長さは、透過型電子顕微鏡(TEM)や原子間力顕微鏡(AFM)を用いて、直接測定することができる。
より詳しくは、セルロースナノファイバーの平均繊維径は、上記のような顕微鏡を用いて複数視野での写真撮影を行い、得られ画像において無作為に選択した箇所における複数本(例えば、50本)の繊維の太さを測定し、得られた測定値を算術平均することによって求めることができる。
セルロースナノファイバーの平均長さは、平均繊維径と同様に透過型電子顕微鏡(TEM)や原子間力顕微鏡(AFM)で撮影した画像で、全長が測定可能なものを無作為に複数本(例えば、50本)選択してその長さを測定することによって求めることができる。
該平均長さも平均繊維径と同様に測定値の算術平均値として求めることができる。
疎水変性されたセルロースナノファイバーとしては、例えば、セルロースが分子構造中に有する複数の水酸基の内の1以上が、疎水性基を含有する置換基で置換されたものを採用することができる。
前記疎水性基としては、例えば、アルキル基、アルケニル基、アルキレン基、アルケニレン基、及び、アリーレン基などが挙げられる。
しかも、疎水化されたセルロースナノファイバーは、前記高融点ポリオレフィン樹脂に対して優れた親和性を示すため、架橋ポリオレフィン樹脂発泡体を作製する際に粗大気泡が形成されることを抑制する効果も有している。
この点について説明すると、本実施形態における架橋ポリオレフィン樹脂発泡体は、通常、前記高融点ポリオレフィン樹脂、前記補強材、及び、前記軟化剤を含み、さらに、発泡剤と架橋剤とを含む未架橋樹脂組成物を調製し、該未架橋樹脂組成物を発泡させるとともに架橋させることによって作製される。
そのため、セルロースナノファイバーと高融点ポリオレフィン樹脂との間の親和性が低いと未架橋樹脂組成物中にセルロースナノファイバーの凝集物が形成され易く、しかも、発泡剤から発生されるガスがこの凝集物が存在する箇所に集中し易くなって粗大な気泡が形成され易くなる。
一方で疎水化されたセルロースナノファイバーを用いると気泡が細かく連続気泡率の低い架橋ポリオレフィン樹脂発泡体を得易くなる。
カーボンナノファイバーは、直線性を有するものであっても、コイル状の構造を有するものであってもよい。
即ち、カーボンナノファイバーは、カーボンナノコイルなどと称されるものであってもよい。
架橋ポリオレフィン樹脂発泡体中に含有させるカーボンナノファイバーは、平均繊維径が10nm以上400nm以下となっていることが好ましい。
カーボンナノファイバーの平均繊維径は、200nm以下となっていることがより好ましい
カーボンナノファイバーの平均長さは、平均繊維径の10倍~1000倍程度であることが好ましい。
カーボンナノファイバーの平均繊維径や平均長さはセルロースナノファイバーの平均繊維径や平均長さと同様に測定することができる。
即ち、カーボンナノファイバーは、強酸などによって表面に水酸基やカルボキシル基が形成されたものであってもよい。
また、カーボンナノファイバーは、前記水酸基や前記カルボキシル基と結合可能な官能基を有する有機化合物を使って更なる化学修飾が施されたものであってもよい。
例えば、カーボンナノファイバーは、ポリオレフィン樹脂への親和性を高めるべく、前記水酸基や前記カルボキシル基とアルコールとを縮合反応させて形成されたアルコキシ基を有するものであってもよい。
前記有機フィラーとしては、樹脂パウダーなどが挙げられる。
前記無機フィラーとしては、酸化ケイ素、酸化アルミニウム、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、タルク、クレー、マイカ、グラファイト、カーボンブラックなどが挙げられる。
架橋ポリオレフィン樹脂発泡体がセルロースナノファイバーやカーボンナノファイバー以外の補強材を含有する場合、セルロースナノファイバーやカーボンナノファイバー以外の補強材が架橋ポリオレフィン樹脂発泡体に占める質量割合は1質量%以上15質量%以下とされることが好ましい。
前記架橋剤は、例えば、有機過酸化物、アゾ化合物とすることができる。
前記高融点ポリオレフィン樹脂としてシラン架橋型のポリオレフィン樹脂を用いる場合、前記架橋剤は、シラノール縮合触媒等としてもよい。
前記架橋助剤としては、例えば、ジビニルベンゼン、トリメチロールプロパントリメタクリレート、1,6-ヘキサンジオールメタクリレート、1,9-ノナンジオールジメタクリレート、1,10-デカンジオールジメタクリレート、トリメリット酸トリアリルエステル、トリアリルシアヌレート、トリアリルイソシアヌレート、ネオペンチルグリコールジメタクリレート、1,2,4-ベンゼントリカルボン酸トリアリルエステル、トリシクロデカンジメタクリレート、ポリエチレングリコールジアクリレートなどを挙げることができる。
例えば、前記架橋ポリオレフィン樹脂発泡体には、耐侯剤、難燃剤、顔料、離型剤、帯電防止剤、抗菌剤、消臭剤等を適宜含有させてもよい。
さらに前記架橋ポリオレフィン樹脂発泡体には、改質を目的としてポリオレフィン樹脂以外のポリマーを少量含有させてもよい。
架橋ポリオレフィン樹脂発泡体に含有させることができるポリオレフィン樹脂以外のポリマーとしては、例えば、ポリエステル系ポリウレタン、ポリエーテル系ポリウレタン等のポリウレタン系ポリマー;スチレン-エチレン-ブチレン共重合体(SEB)、スチレン-ブタジエン-スチレン共重合体(SBS)、SBSの水素添加物(スチレン-エチレン-ブチレン-スチレン共重合体(SEBS))、スチレン-イソプレン-スチレン共重合体(SIS)、SISの水素添加物(スチレン-エチレン-プロピレン-スチレン共重合体(SEPS))、スチレン-イソブチレン-スチレン共重合体(SIBS)、スチレン-ブタジエン-スチレン-ブタジエン共重合体(SBSB)、スチレン-ブタジエン-スチレン-ブタジエン-スチレン共重合体(SBSBS)、ポリスチレン、アクリロニトリルスチレン樹脂(AS樹脂)、アクリロニトリルブタジエンスチレン樹脂(ABS樹脂)等のスチレン系ポリマー;フッ素樹脂やフッ素ゴムなどのフッ素系ポリマー;ポリアミド6、ポリアミド11、ポリアミド12、ポリアミド6,6、ポリアミド610などのポリアミド系樹脂やポリアミド系エラストマーといったポリアミド系ポリマー;ポリエチレンテレフタレート、ポリブチレンテレフタレートなどのポリエステル系樹脂;シリコーン系エラストマー;ブタジエンゴム(BR);イソプレンゴム(IR);クロロプレン(CR);天然ゴム(NR);スチレンブタジエンゴム(SBR);アクリロニトリルブタジエンゴム(NBR);ブチルゴム(IIR)などが挙げられる。
これらのポリマーは、架橋ポリオレフィン樹脂発泡体に占める質量割合が5質量%以下であることが好ましい。
これらのポリマーの架橋ポリオレフィン樹脂発泡体における含有量は2質量%以下であることがより好ましく、1質量%以下であることが特に好ましい。
架橋ポリオレフィン樹脂発泡体にはポリオレフィン樹脂以外のポリマーが含まれないことが最も好ましい。
未架橋樹脂組成物の混練には、オープンロールやニーダーといった一般的な混練装置を利用できる。
未架橋樹脂組成物の架橋発泡は、真空熱プレスなどの一般的な加熱装置を利用できる。
尚、架橋ポリオレフィン樹脂発泡体の平均気泡径は、発泡体の断面を顕微鏡などで観察し、気泡の平均断面積を求め、この平均断面積と同じ面積を有する円の直径を計算することによって求められる。
このときセルロースナノファイバーによって樹脂に高い溶融粘性が発揮されるため、樹脂の膜が良好な伸びを示す。
そのため、前記架橋発泡では、独立気泡率の高い架橋ポリオレフィン樹脂発泡体を得ることができる。
しかも、前記架橋ポリオレフィン樹脂発泡体は、前記膜が十分薄くなるまで発泡されても、セルロースナノファイバーによって前記膜が補強されるため、軽量性と強度とに優れたものとなり得る。
尚、図2A~図2Cは成形型の概略図で、図2Aが正面図、図2Bが平面図、図2Cが側面図(右側面図)である。
また、図3は、成形型を熱プレスに装着した状態を示した図である。
前記成形型Mは、型閉め時にミッドソール3の形状に対応した成形空間CVを内部に形成し得るように構成されている。
前記成形型Mは、一対の前記型として雄型MMと雌型MFとを有している。
本実施形態における前記雄型MM及び前記雌型MFのそれぞれは、板状である。
前記成形型Mは、前記雄型MMと前記雌型MFとを重ね合わせることで密閉状態の前記成形空間CVを内部に形成し得るように構成されている。
該成形用凹部MFaは、ミッドソール3の厚み方向が深さ方向となるように形成されている。
前記雄型MMは、型合わせ面から突出し、且つ、雌型MFの成形用凹部MFaに突入可能な成形用凸部MMaを備えている。
そして、成形型Mは、雌型MFと雄型MMとを重ね合わせた際に成形用凹部MFaの深さ方向の途中まで前記成形用凸部MMaが入り込んだ状態になって前記成形空間CVを内部に形成し得るように構成されている。
即ち、成形型Mは、成形用凹部MFaの底部分の内壁面と、前記成形用凸部MMaの下面とによって前記成形空間CVが画定され得るように構成されている。
そして。前記成形空間CVを確定する雌型MFの内壁面には、前記線状突起3aの逆形状となる条溝と、前記四角い凹み3bの逆形状となる矩形突起とが形成されている。
前記予備成形工程では、ミッドソール3よりも大きく、ミッドソール3よりも厚い板状の架橋ポリオレフィン樹脂発泡体を切削加工するような方法で前記予備成形体FMを作製することができる。
前記熱成形工程では、成形型Mを使って前記予備成形体FMを熱プレスするような方法でミッドソール3を作製することができる。
該熱成形工程は、例えば、図に示すように熱プレス機の2枚の熱盤HPにそれぞれ雄型MMと雌型MFとを装着し、予備成形体FMを前記成形用凹部MFaに収容させ、雄型MMと雌型MFとを閉じて圧力を加えるとともに予備成形体FMを加熱する方法によって実施することができる。
該熱成形工程では、予備成形体FMに対して厚み方向に圧力が加えられることで予備成形体FMの側面と雌型MFの成形面との間にも側圧が発生する。
そして、前記熱成形工程では、前記側圧を利用して前記条溝及び前記矩形突起の形状が予備成形体FMに転写され、側面部に線状突起3a及び四角い凹み3bが形成されたミッドソール3が作製される。
即ち、予備成形体FMを構成する発泡体中において気泡を構成している樹脂の膜は、架橋されたポリオレフィン樹脂で構成されている。
しかも、この樹脂の膜は、膜中に存在する複数のセルロースナノファイバーによって補強されている。
そのため、予備成形体FMは、厚み方向に強い圧力が加えられても内部の気泡が押し潰され難い。
したがって、本実施形態の予備成形体FMは、厚み方向に加えられる圧力の多くを前記側圧へと転化させることができる。
しかも、本実施形態の予備成形体FMには、低融点ポリオレフィン樹脂などの軟化剤が含まれている。
したがって本実施形態の予備成形体FMは、側面部に当接される雌型MFの形状がより忠実に転写され得る。
そして、本実施形態の予備成形体FMは、軟化剤によって雌型MFの形状が転写され易くなっているため、熱成形工程において高い圧力を加えなくても所望の形状とすることができる。
そして、本実施形態の予備成形体FMは、高い圧力を加えなくても側面部などを所望の形状にすることができるため予備成形体FMにおける高い発泡倍率を成形後のミッドソール3にも反映させ易い。
このようなことから本実施形態のミッドソールには、優れた軽量性と強度とが発揮され得る。
なお、本実施形態においては、本発明のミッドソールを上記のように例示しているが、本発明のミッドソールは、上記例示に何等限定されるものではない。
融点114℃の直鎖状低密度ポリエチレン(高融点ポリオレフィン樹脂)と、疎水変性されたセルロースナノファイバーとを含み、セルロースナノファイバー(CNF)の含有量が40質量%のマスターバッチを用意した。
CNFマスターバッチに含まれている高融点ポリオレフィン樹脂とは別に以下の(A1)~(A3)に示すような高融点ポリオレフィン樹脂を用意した。
(A1:PE-HD)
・融点:134℃、MFR:5.4g/10minの高密度ポリエチレン
(A2:PE-LLD)
・融点:117℃、MFR:2.7g/10minの直鎖状低密度ポリエチレン
(A3:EVA)
・融点:77℃、MFR:2.4g/10minのエチレン-酢酸ビニル共重合体
(A4:PE-HD)
・融点:120℃、MFR:0.5g/10minのオレフィン系ブロック共重合体(エチレンと1-オクテンとを構成単位に含むエチレン-αオレフィン共重合体)
低融点ポリオレフィン樹脂として、下記(B1)に示すようなものを用意した。
(B1:E-AO)
・融点:66℃、MFR:1.2g/10minのエチレン-αオレフィン共重合体
その他のポリマーとして下記(C1)に示すスチレン系熱可塑性エラストマー及び(C2)に示すイソプレンゴムを用意した。
(C1:TPS)
・スチレンコンテント:18質量%、MFR(230℃、2.16kg):4.5g/10minのSEBS
(C2:IR)
・ハイシスタイプ(シス1,4結合98%)のポリイソプレンゴム
表に示したような配合割合でポリオレフィン樹脂やセルロースナノファイバーマスターバッチ(CNF-MB)をブレンドし、これに滑剤と、発泡剤(ADCA)と、発泡助剤(酸化亜鉛)と、架橋剤(DCP)と、架橋助剤(トリアリルシアヌレート:TAC)と、を加えた混和物を加熱溶融させて均一混合した後に型内で発泡させて板状の架橋ポリオレフィン樹脂発泡体を作製した。
そして、架橋ポリオレフィン樹脂発泡体の比重については、発泡剤(ADCA)の含有量によって調整した。
尚、表での配合材料に関する数値は、質量部を表している。
また、セルロースナノファイバーマスターバッチ(Cel・NF-MB)やカーボンナノファイバーマスターバッチ(Cbn・NF-MB)の配合に関する数値は、上記の(A)~(C)の合計100質量部に対する部数である。
さらに、セルロースナノファイバー(Cel・NF)やカーボンナノファイバー(Cbn・NF)の配合に関する数値は、セルロースナノファイバーマスターバッチ(Cel・NF-MB)やカーボンナノファイバーマスターバッチ(Cbn・NF-MB)の添加によって混和物中に添加されたセルロースナノファイバーやカーボンナノファイバーの部数((A)~(C)の合計100質量部に対する部数)を示している。
(硬度)
作製した架橋ポリオレフィン樹脂発泡体は、表面の皮膜を切除することなくアスカーC硬度を測定した。
(比重)
作製した架橋ポリオレフィン樹脂発泡体の比重をJIS K7112のA法「水中置換法」によって測定した。
(引裂き強さ)
作製した架橋ポリオレフィン樹脂発泡体の引裂強さをJIS K 6252に準拠して測定した。
具体的な測定条件は次の通り。
尚、測定の結果、引裂き強さが8.0以上の場合は強度に優れていると考え「A」判定とした。
また、引裂き強さが8.0未満の場合は「B」判定とした。
<引裂強さの測定条件>
測定機器:(株)東洋精機製作所製、製品名「STROGRAPH-R2」
試料形状:JIS K 6252に指定されたアングル形試験片(切込み無し)
試験速度:500mm/min
(弾性率)
作製した架橋ポリオレフィン樹脂発泡体の圧縮弾性率を測定した。
(賦形性)
作製した架橋ポリオレフィン樹脂発泡体の賦形性を目視で評価した。
評価は、次のようにして行った。
エッジがシャープな状態のものが得られている場合は「○」判定とし、そうでないものは「×」判定とした。
なお、比較例7、比較例11では、イソプレンゴムを使ってその他の比較例や実施例と同等の比重を有する架橋発泡体を作製しようとしたが、結果的に同等のものが得られることはなかった。
そのため、比較例7、比較例11では、その他の比較例や実施例のような硬度や引裂き強さの評価は行わなかった。
Claims (6)
- 靴用のミッドソールであって、
架橋ポリオレフィン樹脂発泡体で構成され、
前記架橋ポリオレフィン樹脂発泡体は、
融点が75℃を超える高融点ポリオレフィン樹脂を1種類以上含有し、さらに軟化剤と補強材とを含有し、
前記軟化剤は、融点が40℃以上75℃以下の結晶性樹脂又はガラス転移温度が40℃以上75℃以下の非晶性樹脂の何れかを含み、
前記補強材は、セルロースナノファイバー又はカーボンナノファイバーの何れかを含むミッドソール。 - 前記結晶性樹脂として、融点が40℃以上75℃以下の低融点ポリオレフィン樹脂を含み、
該低融点ポリオレフィン樹脂と前記高融点ポリオレフィン樹脂との合計に占める前記低融点ポリオレフィン樹脂の質量割合が20質量%以上40質量%以下である請求項1記載のミッドソール。 - 前記低融点ポリオレフィン樹脂の融点が45℃を超えており、
前記架橋ポリオレフィン樹脂発泡体に含まれている1種類以上の前記高融点ポリオレフィン樹脂は、前記低融点ポリオレフィン樹脂よりも融点が30℃以上高い請求項2記載のミッドソール。 - 前記架橋ポリオレフィン樹脂発泡体における前記セルロースナノファイバーの質量割合は、3質量%以上10質量%以下である請求項1乃至3の何れか1項に記載のミッドソール。
- 靴の外表面を構成する側面部を有し、
複数の突起又は複数の凹みの何れかを前記側面部に備えている請求項1乃至4の何れか1項に記載のミッドソール。 - 請求項1乃至5の何れか1項に記載されたミッドソールを備えた靴。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880093526.5A CN112165880B (zh) | 2018-05-18 | 2018-05-18 | 中底和鞋 |
EP18919294.1A EP3795022B1 (en) | 2018-05-18 | 2018-05-18 | Midsole and shoe |
AU2018423557A AU2018423557B2 (en) | 2018-05-18 | 2018-05-18 | Midsole and shoe |
US17/056,403 US12049553B2 (en) | 2018-05-18 | 2018-05-18 | Midsole and shoe |
PCT/JP2018/019349 WO2019220633A1 (ja) | 2018-05-18 | 2018-05-18 | ミッドソール及び靴 |
JP2020518933A JP6864785B2 (ja) | 2018-05-18 | 2018-05-18 | ミッドソール及び靴 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/019349 WO2019220633A1 (ja) | 2018-05-18 | 2018-05-18 | ミッドソール及び靴 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019220633A1 true WO2019220633A1 (ja) | 2019-11-21 |
Family
ID=68540330
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/019349 WO2019220633A1 (ja) | 2018-05-18 | 2018-05-18 | ミッドソール及び靴 |
Country Status (6)
Country | Link |
---|---|
US (1) | US12049553B2 (ja) |
EP (1) | EP3795022B1 (ja) |
JP (1) | JP6864785B2 (ja) |
CN (1) | CN112165880B (ja) |
AU (1) | AU2018423557B2 (ja) |
WO (1) | WO2019220633A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112831119A (zh) * | 2020-12-30 | 2021-05-25 | 界首市旭升塑胶制品有限公司 | 一种羧基碳纳米管复合eva雨鞋材料制备方法 |
CN113429645A (zh) * | 2021-07-02 | 2021-09-24 | 晋江市石达塑胶精细有限公司 | 兼具减震功能的温敏响应形状记忆发泡材料及其制备方法和应用 |
US20220410442A1 (en) * | 2019-12-09 | 2022-12-29 | Shinhwan MOON | Method for manufacturing porous midsole, and porous midsole using same |
EP4079792A4 (en) * | 2019-12-18 | 2024-01-10 | DIC Corporation | RESIN COMPOSITION, MOLDED ARTICLE, AND ASSOCIATED MANUFACTURING METHODS |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019147858A2 (en) | 2018-01-24 | 2019-08-01 | Nike Innovate C.V. | Sole structures including polyolefin plates and articles of footwear formed therefrom |
CN114173600B (zh) | 2019-07-19 | 2024-05-14 | 耐克创新有限合伙公司 | 包括鞋底结构和延条的鞋类物品 |
US11503875B2 (en) * | 2019-07-19 | 2022-11-22 | Nike, Inc. | Sole structures including polyolefin plates and articles of footwear formed therefrom |
EP4046517A4 (en) * | 2019-11-20 | 2022-10-12 | ASICS Corporation | ITEM FOR SHOES AND SHOES |
CN113057407B (zh) * | 2021-02-23 | 2022-06-24 | 温州程泓鞋业有限公司 | 一种耐磨女靴及其制备工艺 |
EP4059371A1 (en) * | 2021-03-16 | 2022-09-21 | Puma Se | Systems and methods for manufacturing a portion of an article of footwear from a mold |
EP4342323A3 (en) | 2021-08-30 | 2024-06-26 | Nike Innovate C.V. | Sole structures including polyolefin-based resins, and articles of footwear incorporating said sole structures |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010040019A2 (en) * | 2008-10-03 | 2010-04-08 | Dow Global Technologies Inc. | Compositions for abrasion resistant foams and methods for making the same |
WO2014151379A2 (en) * | 2013-03-15 | 2014-09-25 | Nike Inc. | Sole structures and articles of footwear having lightweight midsole members with protective elements |
WO2014178137A1 (ja) | 2013-05-01 | 2014-11-06 | 株式会社アシックス | 靴底用部材 |
JP2015080899A (ja) * | 2013-10-22 | 2015-04-27 | ユニチカ株式会社 | 三層積層不織布の製造方法 |
JP2017078243A (ja) * | 2015-10-22 | 2017-04-27 | ユニチカ株式会社 | 積層不織布およびその製造方法 |
US20170340054A1 (en) * | 2016-05-24 | 2017-11-30 | Under Armour, Inc. | Footwear Sole Structure with Articulating Plates |
US20170340058A1 (en) * | 2016-05-26 | 2017-11-30 | Nike, Inc. | Sole structure for article of footwear with sensory feedback system |
WO2018051395A1 (ja) * | 2016-09-13 | 2018-03-22 | 東京製綱株式会社 | 動索用ワイヤロープおよびその製造方法 |
JP2018043525A (ja) * | 2016-07-01 | 2018-03-22 | 宇部興産株式会社 | 熱溶解積層型3次元プリンタ用材料及びそれを用いた熱溶解積層型3次元プリンタ用フィラメント |
JP2018069141A (ja) * | 2016-10-27 | 2018-05-10 | Jnc株式会社 | カートリッジフィルター及びその製造方法 |
JP2018069522A (ja) * | 2016-10-27 | 2018-05-10 | セイコーインスツル株式会社 | 成形体及び成形体の製造方法 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62243633A (ja) * | 1986-04-16 | 1987-10-24 | Idemitsu Petrochem Co Ltd | ポリオレフイン樹脂組成物 |
JP2775836B2 (ja) * | 1989-04-21 | 1998-07-16 | 東ソー株式会社 | 熱可塑性樹脂組成物 |
JP3321059B2 (ja) * | 1997-12-18 | 2002-09-03 | 日本ポリケム株式会社 | ガラス繊維強化ポリプロピレン系樹脂組成物 |
JP2012025872A (ja) * | 2010-07-26 | 2012-02-09 | Daimaru Sangyo Kk | 繊維強化熱可塑性樹脂組成物及び繊維強化熱可塑性樹脂組成物の製造方法 |
DE112013007686B3 (de) * | 2012-05-24 | 2019-08-22 | Sunstar Suisse S.A. | Interdentalreinigungswerkzeug |
US9301566B2 (en) * | 2013-03-15 | 2016-04-05 | Nike, Inc. | Sole structures and articles of footwear having a lightweight midsole member with protective elements |
JP5958444B2 (ja) * | 2013-09-30 | 2016-08-02 | キヤノンマーケティングジャパン株式会社 | 情報処理装置、情報処理システム、その制御方法及びプログラム |
CN107815055B (zh) * | 2016-09-12 | 2021-02-12 | 翁秋梅 | 一种动态聚合物热塑性弹性体及其应用 |
-
2018
- 2018-05-18 EP EP18919294.1A patent/EP3795022B1/en active Active
- 2018-05-18 CN CN201880093526.5A patent/CN112165880B/zh active Active
- 2018-05-18 WO PCT/JP2018/019349 patent/WO2019220633A1/ja active Application Filing
- 2018-05-18 US US17/056,403 patent/US12049553B2/en active Active
- 2018-05-18 AU AU2018423557A patent/AU2018423557B2/en active Active
- 2018-05-18 JP JP2020518933A patent/JP6864785B2/ja active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010040019A2 (en) * | 2008-10-03 | 2010-04-08 | Dow Global Technologies Inc. | Compositions for abrasion resistant foams and methods for making the same |
WO2014151379A2 (en) * | 2013-03-15 | 2014-09-25 | Nike Inc. | Sole structures and articles of footwear having lightweight midsole members with protective elements |
WO2014178137A1 (ja) | 2013-05-01 | 2014-11-06 | 株式会社アシックス | 靴底用部材 |
JP2015080899A (ja) * | 2013-10-22 | 2015-04-27 | ユニチカ株式会社 | 三層積層不織布の製造方法 |
JP2017078243A (ja) * | 2015-10-22 | 2017-04-27 | ユニチカ株式会社 | 積層不織布およびその製造方法 |
US20170340054A1 (en) * | 2016-05-24 | 2017-11-30 | Under Armour, Inc. | Footwear Sole Structure with Articulating Plates |
US20170340058A1 (en) * | 2016-05-26 | 2017-11-30 | Nike, Inc. | Sole structure for article of footwear with sensory feedback system |
JP2018043525A (ja) * | 2016-07-01 | 2018-03-22 | 宇部興産株式会社 | 熱溶解積層型3次元プリンタ用材料及びそれを用いた熱溶解積層型3次元プリンタ用フィラメント |
WO2018051395A1 (ja) * | 2016-09-13 | 2018-03-22 | 東京製綱株式会社 | 動索用ワイヤロープおよびその製造方法 |
JP2018069141A (ja) * | 2016-10-27 | 2018-05-10 | Jnc株式会社 | カートリッジフィルター及びその製造方法 |
JP2018069522A (ja) * | 2016-10-27 | 2018-05-10 | セイコーインスツル株式会社 | 成形体及び成形体の製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3795022A4 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220410442A1 (en) * | 2019-12-09 | 2022-12-29 | Shinhwan MOON | Method for manufacturing porous midsole, and porous midsole using same |
EP4079792A4 (en) * | 2019-12-18 | 2024-01-10 | DIC Corporation | RESIN COMPOSITION, MOLDED ARTICLE, AND ASSOCIATED MANUFACTURING METHODS |
CN112831119A (zh) * | 2020-12-30 | 2021-05-25 | 界首市旭升塑胶制品有限公司 | 一种羧基碳纳米管复合eva雨鞋材料制备方法 |
CN113429645A (zh) * | 2021-07-02 | 2021-09-24 | 晋江市石达塑胶精细有限公司 | 兼具减震功能的温敏响应形状记忆发泡材料及其制备方法和应用 |
CN113429645B (zh) * | 2021-07-02 | 2023-09-01 | 晋江市石达塑胶精细有限公司 | 兼具减震功能的温敏响应形状记忆发泡材料及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
EP3795022A1 (en) | 2021-03-24 |
CN112165880A (zh) | 2021-01-01 |
EP3795022A4 (en) | 2021-05-26 |
JPWO2019220633A1 (ja) | 2021-02-18 |
CN112165880B (zh) | 2021-10-15 |
US12049553B2 (en) | 2024-07-30 |
AU2018423557A1 (en) | 2020-12-17 |
AU2018423557B2 (en) | 2024-06-06 |
JP6864785B2 (ja) | 2021-04-28 |
US20210214536A1 (en) | 2021-07-15 |
EP3795022B1 (en) | 2022-09-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019220633A1 (ja) | ミッドソール及び靴 | |
JP4505469B2 (ja) | 靴底用部材 | |
JP5565313B2 (ja) | 靴底用発泡体ゴム組成物及びアウトソール | |
JP6441120B2 (ja) | 架橋ポリエチレン系樹脂発泡粒子、及び発泡粒子成形体 | |
JP5756893B2 (ja) | 靴底用部材 | |
WO2020105089A1 (ja) | 靴底用部材、靴、及び、靴底用部材の製造方法 | |
WO2018066505A1 (ja) | 発泡粒子成形体 | |
EP3540004B1 (en) | Foam particle moulded article and sole member | |
CN113045816B (zh) | 缓冲体和鞋 | |
JP6483534B2 (ja) | 発泡体用組成物及び発泡体 | |
JP7515508B2 (ja) | 靴用部材及び靴 | |
CN113045817B (zh) | 缓冲体和鞋 | |
WO2018088428A1 (ja) | 発泡粒子成形体及びその製造方法 | |
JP6898725B2 (ja) | 発泡粒子成形体及び靴底用クッション |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18919294 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020518933 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018423557 Country of ref document: AU Date of ref document: 20180518 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2018919294 Country of ref document: EP |