WO2019219124A1 - Verfahren zur verbesserung der produktivität von mahlanlagen - Google Patents

Verfahren zur verbesserung der produktivität von mahlanlagen Download PDF

Info

Publication number
WO2019219124A1
WO2019219124A1 PCT/DE2019/100414 DE2019100414W WO2019219124A1 WO 2019219124 A1 WO2019219124 A1 WO 2019219124A1 DE 2019100414 W DE2019100414 W DE 2019100414W WO 2019219124 A1 WO2019219124 A1 WO 2019219124A1
Authority
WO
WIPO (PCT)
Prior art keywords
grinding
wear
geometry
protection layer
wear protection
Prior art date
Application number
PCT/DE2019/100414
Other languages
English (en)
French (fr)
Inventor
Helmut PRIHODA
Original Assignee
Prihoda Helmut
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=66776065&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019219124(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to US17/055,254 priority Critical patent/US11654439B2/en
Priority to EP19728863.2A priority patent/EP3793741B1/de
Priority to BR112020023205-0A priority patent/BR112020023205B1/pt
Priority to MX2020012089A priority patent/MX2020012089A/es
Priority to PL19728863.2T priority patent/PL3793741T3/pl
Application filed by Prihoda Helmut filed Critical Prihoda Helmut
Priority to AU2019269861A priority patent/AU2019269861B2/en
Priority to CN201980031719.2A priority patent/CN112203769B/zh
Priority to ES19728863T priority patent/ES2958194T3/es
Priority to JP2020564475A priority patent/JP7186246B2/ja
Priority to KR1020207033012A priority patent/KR102493521B1/ko
Priority to CA3100098A priority patent/CA3100098C/en
Publication of WO2019219124A1 publication Critical patent/WO2019219124A1/de
Priority to ZA2020/07023A priority patent/ZA202007023B/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • B02C15/003Shape or construction of discs or rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C15/00Disintegrating by milling members in the form of rollers or balls co-operating with rings or discs
    • B02C15/004Shape or construction of rollers or balls
    • B02C15/005Rollers or balls of composite construction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C25/00Control arrangements specially adapted for crushing or disintegrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C4/00Crushing or disintegrating by roller mills
    • B02C4/28Details
    • B02C4/30Shape or construction of rollers
    • B02C4/305Wear resistant rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C2210/00Codes relating to different types of disintegrating devices
    • B02C2210/02Features for generally used wear parts on beaters, knives, rollers, anvils, linings and the like

Definitions

  • the present invention relates to a method for improving the productivity of grinding plants, wherein the optimum wear geometry of grinding plants is preserved by applying a protective layer, thereby reducing the repair liability of the facilities and their productivity is improved.
  • the comminution effect of grinding tools is influenced in particular by signs of wear.
  • the specific energy demand during the grinding process changes depending on the wear. The energy demand goes through a so-called “bathtub curve", the energy demand initially decreases, then goes into a constant phase and finally rises sharply as the wear of the grinding units.
  • grinding parts made of cast iron have proven themselves as standard materials in daily use. These materials have a very good resistance to abrasion, so that one with a continuous hardness of 630 to 800 HV20 one receives uniform predictable wear and can schedule the repair intervals accordingly. The service life of these materials can be additionally increased by build-up welding.
  • cast steel grinding tools can be made more wear-resistant by build-up welding.
  • build-up welding a high-alloy material is applied to highly stressed components as surface protection.
  • the welding materials are chromium- and carbon-containing, and depending on the desired wear resistance further carbide-forming substances, such as. Niobium, vanadium or others.
  • the third group of materials comprises the composite castings. Two or more materials are structurally combined to form a composite material.
  • the grinding tools are preferably made of a metal matrix composite material, wherein ceramic shaped pieces are embedded in a ductile cast iron. In this way one obtains particularly hard and wear-resistant grinding tools.
  • DE 39 21 419 A1 describes a roller mill in which the grinding surfaces of grinding rollers and grinding track are protected by integrated ceramic segments.
  • the grinding media are armored by the application of the segments of a much more wear-resistant material, whereby the service life of the grinding media are increased.
  • the object is achieved by a method for improving the productivity of grinding plants, which initially includes the step to set the optimal wear geometry of the grinding units by conventional operation of the grinding plant.
  • the optimum wear geometry is present when the specific energy requirement of the grinding plant reaches a minimum at a given throughput.
  • the achievement of optimum wear geometry is controlled and determined by continuous measurement and recording of the energy requirement.
  • the optimum wear geometry is then preserved by applying a thin wear protection layer on the surface of the grinding units or grinding media, in particular grinding rollers and grinding plates.
  • the thin wear protection layer is applied by build-up welding or laser cladding.
  • cemented carbides or carbide hard materials e.g. WC, CrC, TiC, VC, TaC and NbC, wherein in a preferred embodiment of the present invention hard metals are applied, which are doped depending on the desired wear resistance with corresponding carbide-forming substances.
  • the process according to the invention is particularly suitable for vertical roller grinding plants, wherein the grinding units or grinding bodies to be coated are grinding rolls and grinding plates.
  • the layer thickness of the applied wear protection layer is preferably 1 to 5 mm.
  • the invention also relates to grinding media which have surface surfaces coated with a thin wear protection layer grinding surfaces.
  • the grinding bodies have an optimal wear geometry, which is determined by continuous measurement and recording of the energy requirement during the milling process and is defined as the geometry at which a minimum of the energy requirement is achieved at a given throughput.
  • the wear protection layer is a job-welded layer.
  • a further advantageous embodiment of the present invention provides that the grinding media are parts of a vertical roller grinding plant and the coated surfaces are the grinding surfaces of grinding rollers and grinding plates.
  • the layer thickness of the thin wear protection layer is advantageously 1 to 5 mm.
  • the present invention is based on the recognition and the idea that the grinding media or grinding units eventually form an optimum wear geometry in most known grinding processes, which is made possible only by the wear of the grinding media and automatically sets after a certain operating time of the grinding system.
  • the energy requirement goes through a so-called “bathtub curve”, whereby the energy demand initially decreases, then changes into a constant phase and finally increases sharply with heavy wear of the grinding units achieved when the energy consumption at a constant throughput is at a minimum.
  • This condition in which also the product quality remains at a constant level, corresponds to the optimum for the grinding process.
  • the geometry of the grinding media changes due to the progressive wear and the energy requirement increases while the productivity decreases. From a certain wear geometry, the wear of the Grinding body so rapidly that the grinding media must be repaired or replaced if a qualitatively and quantitatively balanced grinding operation should be guaranteed.
  • the grinding plant is particularly susceptible to production interruptions, as it comes to vibration peaks during restless grinding process, which require an interruption of continuous production in order to prevent a total failure of the system. The result is lower equipment availability, lower product quality and dramatically reduced product yield. This state is achieved in all current grinding techniques after a certain period of operation and must be remedied by repair or replacement of the grinding media, as further operation of the system at this point economically no longer makes sense.
  • the present invention is based on the idea of preserving the ideal state in which the grinding bodies have their optimal wear geometry and thus improving the productivity (yield, cost and quality) of the product to be ground. Since this condition is reflected in achieving a minimum of energy demand, continuous measurement and recording of energy demand can easily determine the optimum time to conserve the corresponding geometry.
  • a thin wear protection layer is applied to the wear-prone part of the surface of the grinding units or grinding media, so that the geometry of the grinding media is not changed, while the wear resistance of the surface is increased and thereby the geometry is preserved.
  • the geometry will change less quickly compared to a non-conserved geometry, so that the ideal state is maintained longer and the grinding plant can be operated for an extended period without additional standstill.
  • FIG. 1 is a sectional view of a section of a vertical roller grinding plant
  • Figure 2 is a sectional view of a section of a vertical Rollenmahlstrom
  • Figure 3 is a sectional view of a section of a roll of a vertical Rollenmahlstrom
  • Figure 4 is a further sectional view of a section of a roller of a
  • Figure 1 is a sectional view of a section of a vertical Rollenmahlstrom, as used for example in the cement industry.
  • a stationary, rotatable cylindrical grinding roller 1 is resiliently pressed against a rotating grinding bowl or grinding track 4, wherein the grinding path 4 is reinforced in the region against which the grinding rollers 1 are pressed, with refining plates 2.
  • the grinding units or grinding media are in their original state and have a smooth intact profile 5, 6.
  • FIG. 2 shows the same arrangement as FIG. 1 after a longer grinding operation, with the grinding rollers 1 and also the grinding plates 2 now having their typical wear profiles 7, 8.
  • FIG. 3 is a sectional view of a detail of a grinding roller 1, wherein the grinding roller 1 has reached its optimum wear profile 7. The original profile 5 is shown in dashed lines in this illustration.
  • FIG. 4 shows, in the same manner of representation as FIG. 3, the grinding roller 1, whose optimum wear profile 7 is now preserved with a thin wear protection layer 9, which in the present case is shown by dashed lines.
  • the present invention can be advantageously combined with other known methods for increasing the wear resistance of grinding units or to ensure production. If, for example, as described in DE 203 21 584 Ul, grinding rollers can be swung during operation of the plant virtually without production stop, the optimum wear profiles can be preserved on the surfaces of the grinding rolls, without causing a loss of production, which at the same time Repair interval for the plant is extended.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Crushing And Grinding (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Verbesserung der Produktivität von Mahlanlagen, wobei nach dem Einstellen der optimalen Verschleißgeometrie der Mahlaggregate durch konventionelles Betreiben der Mahlanlage die optimale Verschleißgeometrie durch das Aufbringen einer dünnen Verschleißschutzschicht auf die Oberfläche der Mahlaggregate konserviert wird.

Description

Verfahren zur Verbesserung der Produktivität von Mahlanlagen
Die vorliegende Erfindung betrifft ein Verfahren zur Verbesserung der Produktivität von Mahlanlagen, wobei die optimale Verschleißgeometrie von Mahlanlagen durch Aufbringen einer Schutzschicht konserviert wird und damit die Reparaturanfälligkeit der Anlagen reduziert und ihre Produktivität verbessert wird.
HINTERGRUND DER ERFINDUNG
Die Zerkleinerungswirkung von Mahlwerkzeugen wird insbesondere durch Verschleißerscheinungen beeinflusst. Je härter die zu mahlenden Partikel sind, umso größer ist der Materialabtrag bzw. der Verschleiß beim Mahlwerkzeug, wodurch wiederum der Durchsatz und die Produktqualität der Mahlanlage beeinflusst werden. Der spezifische Energiebedarf beim Mahlprozess ändert sich in Abhängigkeit vom Verschleiß. Dabei durchläuft der Energiebedarf eine sogenannte„Badewannen kurve", wobei der Energiebedarf zunächst abnimmt, dann in eine konstante Phase übergeht und schließlich bei fortschreitendem Verschleiß der Mahlaggregate steil ansteigt.
STAND DER TECHNIK
Zurzeit werden unterschiedliche Techniken angewendet, um die Kosten von Mahlprozessen zu reduzieren und die Produktqualität und den Mühlendurchsatz zu stabilisieren. So werden beispielsweise verschlissene Mahlaggregate oder Mahlkörper ausgetauscht oder einer Reparaturschweißung unterzogen, wobei in beiden Fällen die ursprüngliche Geometrie der Mahlaggregate wiederhergestellt wird.
Die Verbesserung des Verschleißschutzes und Minimierung des Verschleißes von Mahlanlagen führt zu einer Steigerung der Verfügbarkeit der Anlage, einer Reduzierung der Ausfallzeiten und einer Verlängerung der Wartungsintervalle. Dabei werden heute insbesondere drei unterschiedliche Werkstoffgruppen eingesetzt, um die Mahlaggregate vor Verschleiß zu schützen.
So haben sich Mahlteile aus Chromgusseisen als Standardwerkstoffe im täglichen Einsatz bewährt. Diese Werkstoffe haben eine sehr gute Beständigkeit gegen Abrasion, so dass man bei einer durchgängigen Härte von 630 bis 800 HV20 einen gleichmäßigen vorhersehbaren Verschleiß erhält und die Reparaturintervalle entsprechend planen kann. Die Standzeit dieser Materialien kann durch Auftragschweißen zusätzlich erhöht werden.
Ganz allgemein können Mahlwerkzeuge aus Stahlguss durch Auftragschweißen verschleißfester gemacht werden. Beim Auftragschweißen wird ein hochlegiertes Material als Oberflächenschutz auf hochbelastete Bauteile aufgebracht. Die Schweißwerkstoffe sind chrom- und kohlenstoffhaltig, wobei je nach angestrebter Verschleißfestigkeit weitere karbidbildende Stoffe, wie z.B. Niob, Vanadium oder andere, eingesetzt werden.
Die dritte Werkstoffgruppe umfasst die Mahlteile aus Verbundguss. Dabei werden zwei oder mehrere Werkstoffe konstruktiv zu einem Verbundwerkstoff kombiniert. Die Mahlwerkzeuge bestehen vorzugsweise aus einem Metallmatrix- Verbundwerkstoff, wobei keramische Formstücke in einem duktilen Gusseisen eingelagert sind. Auf diese Weise erhält man besonders harte und verschleißfeste Mahlwerkzeuge.
So wird in der DE 39 21 419 Al eine Wälzmühle beschrieben, bei der die Mahlflächen von Mahlwalzen und Mahlbahn durch eingebundene Keramiksegmente geschützt werden. Die Mahlkörper werden durch das Aufbringen der Segmente aus einem wesentlich verschleißfesteren Werkstoff gepanzert, wodurch die Standzeiten der Mahlkörper erhöht werden.
In der DE 203 21 584 Ul wird eine Walzenmühle beschrieben, welche einen Mahlraum mit einer rotierenden Mahlbahn und darauf abrollenden Mahlwalzen aufweist. Um eine außerordentlich hohe Betriebssicherheit zu gewährleisten, werden sechs Mahlwalzen zu einer 3 x 2 Walzenmühle angeordnet. Entsprechend dem Modulsystem besteht damit die Möglichkeit, dass bei Betriebsstörungen oder Schadensfällen an den Verschleißteilen der Walzen die Wälzmühle kurz angehalten und ein Walzenpaar ausgeschwenkt wird. Die Wälzmühle kann dann mit vier Mahlwalzen weiterbetrieben werden, während die ausgeschwenkten Mahlwalzen repariert werden. Auf diese Weise kann ein Produktionsstopp vermieden werden.
Die oben beschriebenen Maßnahmen zur Erhöhung der Verschleißfestigkeit von Mahlaggregaten bzw. zur Sicherung der Produktion werden heute erfolgreich eingesetzt. Dennoch ist auch heute immer noch der Verschleiß der Mahlkörper bei den Mahlprozessen qualitäts- und kostenbestimmender Faktor, so dass weiterhin ein Bedarf besteht, Möglichkeiten und Verfahren zu finden, den Verschleiß von Mahlaggregaten bzw. Mahlkörpern zu reduzieren.
AUFGABENSTELLUNG UND BESCHREIBUNG DER ERFINDUNG
Aufgabe der vorliegenden Erfindung besteht nun darin, ein Verfahren anzubieten, das es ermöglicht, die Standzeit von Mahlaggregaten bzw. Mahlkörpern über das aus dem Stand der Technik bekannte Maß hinaus zu erhöhen.
Gelöst wird die Aufgabe durch ein Verfahren zur Verbesserung der Produktivität von Mahlanlagen, das zunächst den Schritt umfasst, die optimale Verschleißgeometrie der Mahlaggregate durch konventionelles Betreiben der Mahlanlage einzustellen. Die optimale Verschleißgeometrie liegt dann vor, wenn der spezifische Energiebedarf der Mahlanlage bei vorgegebenem Durchsatz ein Minimum erreicht. Das Erreichen der optimalen Verschleißgeometrie wird durch kontinuierliche Messung und Aufzeichnung des Energiebedarfs kontrolliert und bestimmt. Die optimale Verschleißgeometrie wird dann durch Aufbringen einer dünnen Verschleißschutzschicht auf die Oberfläche der Mahlaggregate oder Mahlkörper, insbesondere Mahlwalzen und Mahlplatten, konserviert.
Für das Aufbringen der Verschleißschutzschicht kommen alle bekannten Verfahren in Frage. Vorzugsweise wird die dünne Verschleißschutzschicht durch Auftragschweißen oder Laser-Cladding aufgetragen.
Als Material für die Verschleißschutzschicht können Hartmetalle oder karbidische Hartstoffe, wie z.B. WC, CrC, TiC, VC, TaC und NbC, eingesetzt werden, wobei bei einer bevorzugten Ausgestaltung der vorliegenden Erfindung Hartmetalle aufgetragen werden, die je nach angestrebter Verschleißfestigkeit mit entsprechenden karbidbildenden Stoffe gedopt werden.
Das erfindungsgemäße Verfahren ist besonders geeignet für Vertikal- Rollenmahlanlagen, wobei die zu beschichtenden Mahlaggregate oder Mahlkörper Mahlwalzen und Mahlplatten sind. Die Schichtdicke der aufgetragenen Verschleißschutzschicht beträgt vorzugsweise 1 bis 5 mm.
Gegenstand der Erfindung sind auch Mahlkörper, die oberflächig mit einer dünnen Verschleißschutzschicht beschichtete Mahlflächen aufweisen. Erfindungsgemäß besitzen die Mahlkörper eine optimale Verschleißgeometrie, die durch kontinuierliche Messung und Aufzeichnung des Energiebedarfs während des Mahlvorgangs bestimmt wird und dabei als die Geometrie definiert ist, bei der ein Minimum des Energiebedarfs bei vorgegebenem Durchsatz erreicht wird.
Bei einer vorteilhaften Ausführungsform ist die Verschleißschutzschicht eine auftragsgeschweißte Schicht.
Eine weitere vorteilhafte Ausgestaltung der vorliegenden Erfindung sieht vor, dass die Mahlkörper Teile einer Vertikal-Rollenmahlanlage sind und die beschichteten Oberflächen die Mahlflächen von Mahlwalzen und Mahlplatten sind. Vorteilhaft beträgt dabei die Schichtdicke der dünnen Verschleißschutzschicht 1 bis 5 mm.
Der vorliegenden Erfindung liegen die Erkenntnis und die Idee zugrunde, dass die Mahlkörper oder Mahlaggregate bei den meisten bekannten Mahlvorgängen irgendwann eine optimale Verschleißgeometrie ausbilden, die erst durch den Verschleiß der Mahlkörper ermöglicht wird und sich nach einer bestimmten Betriebsdauer der Mahlanlage selbsttätig einstellt. Dabei durchläuft der Energiebedarf eine sogenannte „Badewannenkurve", wobei der Energiebedarf zunächst abnimmt, dann in eine konstante Phase übergeht und schließlich bei stärkerem Verschleiß der Mahlaggregate steil ansteigt. Somit lässt sich das Erreichen der optimalen Verschleißgeometrie aus dem Energieverbrauch ablesen. Die optimale Verschleißgeometrie ist dann erreicht, wenn der Energieverbrauch bei einem konstanten Durchsatz ein Minimum aufweist. Dieser Zustand, bei dem auch die Produktqualität auf einem konstanten Niveau bleibt, entspricht dem Optimum für den Mahl prozess.
Bei längerer Betriebsdauer verändert sich aufgrund des fortschreitenden Verschleißes die Geometrie der Mahlkörper und der Energiebedarf steigt bei gleichzeitig sinkender Produktivität an. Ab einer bestimmten Verschleißgeometrie steigt der Verschleiß der Mahlkörper so rapide an, dass die Mahlkörper ausgebessert oder ausgewechselt werden müssen, wenn ein qualitativ und quantitativ ausgeglichener Mahlbetrieb gewährleistet sein soll. In diesem Stadium ist die Mahlanlage besonders anfällig für Produktionsunterbrechungen, da es bei unruhigem Mahlverlauf zu Vibrationsspitzen kommt, die eine Unterbrechung der kontinuierlichen Produktion erforderlich machen, um einen Totalausfall der Anlage zu verhindern. Das Ergebnis ist, dass die Verfügbarkeit der Anlage sinkt, die Produktqualität abnimmt und die Produktausbeute drastisch zurückgeht. Dieser Zustand wird bei allen derzeitigen Mahltechniken nach einer bestimmten Betriebsdauer erreicht und muss durch eine Reparatur oder den Ersatz der Mahlkörper behoben werden, da eine weiterer Betrieb der Anlage an dieser Stelle ökonomisch nicht mehr sinnvoll ist.
Der vorliegenden Erfindung liegt nun die Idee zugrunde, den Idealzustand, bei dem die Mahlkörper ihre optimale Verschleißgeometrie besitzen, zu konservieren und damit die Produktivität (Ausbeute, Kosten und Qualität) des zu mahlenden Produktes zu verbessern. Da sich dieser Zustand im Erreichen eines Minimums des Energiebedarfs widerspiegelt, kann durch eine kontinuierliche Messung und Aufzeichnung des Energiebedarfs auf einfache Weise der optimale Zeitpunkt für eine Konservierung der entsprechenden Geometrie festgestellt werden. Erfindungsgemäß wird zu diesem Zeitpunkt eine dünne Verschleißschutzschicht auf den verschleißanfälligen Teil der Oberfläche der Mahlaggregate oder Mahlkörper aufgebracht, so dass die Geometrie der Mahlkörper nicht verändert wird, während die Verschleißfestigkeit der Oberfläche heraufgesetzt wird und dadurch die Geometrie konserviert wird. Bei einem weiteren Betrieb der Anlage wird sich nun die Geometrie im Vergleich zu einer nicht konservierten Geometrie weniger schnell verändern, so dass der Idealzustand länger erhalten bleibt und die Mahlanlage über einen längeren Zeitraum ohne zusätzlichen Stillstand betrieben werden kann.
Durch wiederholte Anwendung dieses Verfahrens kann die Anlage über einen langen Zeitraum kontinuierlich im optimalen Geometriebereich betrieben werden. Insbesondere kann der Betrieb zusätzlich durch regelmäßige Verschleißmessungen überwacht werden und in Abhängigkeit vom Verschleißzustand der Mahlkörper können die notwendigen Regenerations- bzw. Konservierungsmaßnahmen unternommen werden, um die optimale Verschleißgeometrie zu erhalten und einen kontinuierlichen Betrieb zu ermöglichen. Im Folgenden soll die Erfindung anhand eines Zahlenbeispiels für eine Mahlanlage für Zement näher erläutert werden. Nach vorsichtigen Schätzungen sollten durch die oben beschriebenen Maßnahmen die Verfügbarkeit der Mahlanlage um mehr als 5 % verbessert werden, was somit einer Produktivitätssteigerung von 5 % entspricht. Bei einer Produktion von 200 t/h entspricht dies einer Mehrproduktion von 86.400 t/a, was bei einem realistischen Gewinn von 12 €/t einem zusätzlichen Ertrag von 1.036.800 € entsprechen würde. Gleichzeitig würde man bei einem typischen Energiebedarf von 28 kWh/t durch den kontinuierlichen Betrieb mit optimaler Verschleißgeometrie schätzungsweise mindestens 3 % an Energiekosten einsparen, was bei Energiekosten von ca. 0.15€/kWh bei einer Jahresproduktion von 1.5 Mio Tonnen (gerechnet wurden 90% Auslastung) 189.000€ entsprechen würde.
KURZBESCHREIBUNG DER ZEICHNUNGEN
Bevorzugte Ausführungsformen der Erfindung werden im Folgenden anhand von Zeichnungen beschrieben, wobei diese lediglich als Erläuterung gedacht und nicht einschränkend auszulegen sind. In den Zeichnungen zeigen:
Figur 1 eine Schnittdarstellung eines Ausschnitts einer Vertikal- Rollenmahlanlage,
Figur 2 eine Schnittdarstellung eines Ausschnitts einer Vertikal- Rollenmahlanlage, Figur 3 eine Schnittdarstellung eines Ausschnitts einer Walze einer Vertikal- Rollenmahlanlage und
Figur 4 eine weitere Schnittdarstellung eines Ausschnitts einer Walze einer
Vertikal-Rollenmahlanlage. BESCHREIBUNG BEVORZUGTER AUSFÜHRUNGSFORMEN
Im Folgenden wird die Erfindung anhand der oben aufgeführten Zeichnungen ausführlich erläutert.
Die Figur 1 ist eine Schnittdarstellung eines Ausschnitts aus einer Vertikal- Rollenmahlanlage, wie sie beispielsweise in der Zementindustrie eingesetzt wird. Eine stationäre, drehbare zylindrische Mahlwalze 1 wird federnd gegen eine rotierend angetriebene Mahlschüssel bzw. Mahlbahn 4 gepresst werden, wobei die Mahlbahn 4 in dem Bereich, gegen den die Mahlwalzen 1 gepresst werden, mit Mahlplatten 2 verstärkt ist. Die Mahlaggregate bzw. Mahlkörper (Mahlwalzen 1 und Mahlplatten 2) befinden sich in ihrem Ursprungszustand und weisen ein glattes unversehrtes Profil 5, 6 auf.
Die Figur 2 zeigt die gleiche Anordnung wie Figur 1 nach längerem Mahlbetrieb, wobei die Mahlwalzen 1 und auch die Mahlplatten 2 nun ihre typischen Verschleißprofile 7, 8 aufweisen. In der Figur 3 ist in einer Schnittdarstellung ein Ausschnitt einer Mahlwalze 1 zu sehen, wobei die Mahlwalze 1 ihr optimales Verschleißprofil 7 erreicht hat. Das ursprüngliche Profil 5 ist bei dieser Darstellung gestrichelt eingezeichnet.
Die Figur 4 schließlich zeigt in der gleichen Darstellungsweise wie Figur 3 die Mahlwalze 1, deren optimales Verschleißprofil 7 nun mit einer dünnen Verschleißschutzschicht 9 konserviert ist, die im vorliegenden Fall gestrichelt gezeichnet ist.
Auch bei den Mahlplatten 2 stellt sich ein optimales Verschleißprofil ein, welches auf die gleiche Weise mit einer dünnen Verschleißschutzschicht konserviert wird. Auf eine zusätzliche zeichnerische Darstellung der Mahlplatten 2, die ein vergleichbares optimales Verschleißprofil wie die Mahlwalzen 1 aufweisen, wurde an dieser Stelle verzichtet.
Wie bereits eingangs erwähnt wurde, sind die oben beschriebenen Zeichnungen lediglich als Erläuterung gedacht und nicht als Einschränkung zu sehen. So kann das Prinzip der erfindungsgemäßen Idee auf jede andere Mahlanlage angewendet werden, bei der sich während des Betriebs an ihren Verschleißteilen ebenfalls eine optimale Verschleißgeometrie einstellt. Auch ist die Ausbildung der Verschleißschutzschicht nicht auf das Auftragschweißen beschränkt, sondern kann durch jede andere bekannte Technik realisiert werden, wobei lediglich gewährleistet sein muss, dass der richtige Zeitpunkt für die Konservierung der optimalen Verschleißgeometrie gewählt wird, um das Optimum der Vorteile der vorliegenden Erfindung auszuschöpfen.
So kann die vorliegende Erfindung vorteilhaft auch mit anderen bekannten Verfahren zur Erhöhung der Verschleißfestigkeit von Mahlaggregaten bzw. zur Sicherung der Produktion kombiniert werden. Wenn beispielsweise, wie in der DE 203 21 584 Ul beschrieben, Mahlwalzen während des Betriebs der Anlage quasi ohne Produktionsstopp ausgeschwenkt werden können, können die optimalen Verschleißprofile auf den Oberflächen der Mahlwalzen konserviert werden, ohne dass es zu einem Produktionsausfall kommt, wobei gleichzeitig dann das Reparaturintervall für die Anlage verlängert wird.
Bezugszeichenliste
1 Mahlwalze
2 Mahlplatte
3 Mahlraum
4 Mahlbahn
5 Ursprungsprofil (Mahlwalze)
6 Ursprungsprofil (Mahlplatte)
7 Verschleißprofil (Mahlwalze)
8 Verschleißprofil (Mahlplatte)
9 Verschleißschutzschicht

Claims

Patentansprüche
1. Verfahren zur Verbesserung der Produktivität von Mahlanlagen, wobei das Verfahren die Schritte umfasst:
Einstellen der optimalen Verschleißgeometrie der Mahlaggregate durch konventionelles Betreiben der Mahlanlage, wobei die optimale
Verschleißgeometrie dann vorliegt, wenn der spezifische Energiebedarf der Mahlanlage bei vorgegebenem Durchsatz ein Minimum erreicht, und Konservieren der optimalen Verschleißgeometrie,
dadurch gekennzeichnet, dass
das Erreichen der optimalen Verschleißgeometrie durch kontinuierliche Messung und Aufzeichnung des Energiebedarfs während des Mahlvorgangs kontrolliert wird und das Konservieren der optimalen Verschleißgeometrie durch Aufbringen einer dünnen Verschleißschutzschicht (9) auf die Oberfläche der Mahlaggregate (1, 2) erfolgt.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass
das Aufbringen der dünnen Verschleißschutzschicht (9) mit Hilfe von Auftragschweißen erfolgt.
3. Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
das Material für die Verschleißschutzschicht (9) ausgewählt ist aus der Gruppe umfassend Hartmetall, WC, CrC, TiC, VC, TaC und NbC.
4. Verfahren nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, dass
als dünne Verschleißschutzschicht (9) eine Hartmetallschicht aufgebracht wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass
die Mahlanlage eine Vertikal-Rollenmahlanlage ist und die zu
beschichtenden Mahlaggregate oder Mahlkörper Mahlwalzen (1) und Mahlplatten (2) sind.
6. Verfahren nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet, dass
die Schichtdicke der dünnen Verschleißschutzschicht (9) 1 bis 5 mm beträgt.
7. Mahlkörper, die oberflächig mit einer dünnen Verschleißschutzschicht (9) beschichtete Mahlflächen aufweisen,
dadurch gekennzeichnet, dass
die Mahlkörper eine optimale Verschleißgeometrie aufweisen, wobei die optimale Verschleißgeometrie der Mahlkörper (1, 2) durch kontinuierliche Messung und Aufzeichnung des Energiebedarfs während des Mahlvorgangs bestimmt ist und als die Geometrie definiert ist, bei der ein Minimum des Energiebedarfs bei vorgegebenem Durchsatz erreicht wird.
8. Mahlkörper nach Anspruch 7,
dadurch gekennzeichnet, dass
die Verschleißschutzschicht (9) eine auftragsgeschweißte Schicht ist.
9. Mahlkörper nach Anspruch 7 oder 8,
dadurch gekennzeichnet, dass
die Mahlkörper Teil einer Vertikal-Rollenmahlanlage sind und die
beschichteten Oberflächen die Mahlflächen von Mahlwalzen (1) und Mahlplatten (2) sind.
10. Mahlkörper nach einem der Ansprüche 7 bis 9,
dadurch gekennzeichnet, dass die Schichtdicke der dünnen Verschleißschutzschicht (9) 1 bis 5 mm beträgt.
PCT/DE2019/100414 2018-05-15 2019-05-07 Verfahren zur verbesserung der produktivität von mahlanlagen WO2019219124A1 (de)

Priority Applications (12)

Application Number Priority Date Filing Date Title
CA3100098A CA3100098C (en) 2018-05-15 2019-05-07 Method for improving the productivity of grinding plants
CN201980031719.2A CN112203769B (zh) 2018-05-15 2019-05-07 用于改进研磨设备的生产率的方法
BR112020023205-0A BR112020023205B1 (pt) 2018-05-15 2019-05-07 Método para melhorar a produtividade de usinas de moagem
MX2020012089A MX2020012089A (es) 2018-05-15 2019-05-07 Metodo para mejorar la productividad de las plantas de trituracion.
PL19728863.2T PL3793741T3 (pl) 2018-05-15 2019-05-07 Sposób poprawy wydajności urządzeń do mielenia
US17/055,254 US11654439B2 (en) 2018-05-15 2019-05-07 Method for improving the productivity of grinding plants
AU2019269861A AU2019269861B2 (en) 2018-05-15 2019-05-07 Method for improving the productivity of grinding plants
EP19728863.2A EP3793741B1 (de) 2018-05-15 2019-05-07 Verfahren zur verbesserung der produktivität von mahlanlagen
ES19728863T ES2958194T3 (es) 2018-05-15 2019-05-07 Procedimiento para mejorar la productividad de sistemas de molienda
JP2020564475A JP7186246B2 (ja) 2018-05-15 2019-05-07 研削装置の生産性を向上させるための方法
KR1020207033012A KR102493521B1 (ko) 2018-05-15 2019-05-07 분쇄 설비의 생산성 향상 방법
ZA2020/07023A ZA202007023B (en) 2018-05-15 2020-11-11 Method for improving the productivity of grinding plants

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018111621.7 2018-05-15
DE102018111621.7A DE102018111621B4 (de) 2018-05-15 2018-05-15 Verfahren zur Verbesserung der Produktivität von Mahlanlagen

Publications (1)

Publication Number Publication Date
WO2019219124A1 true WO2019219124A1 (de) 2019-11-21

Family

ID=66776065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2019/100414 WO2019219124A1 (de) 2018-05-15 2019-05-07 Verfahren zur verbesserung der produktivität von mahlanlagen

Country Status (13)

Country Link
US (1) US11654439B2 (de)
EP (1) EP3793741B1 (de)
JP (1) JP7186246B2 (de)
KR (1) KR102493521B1 (de)
CN (1) CN112203769B (de)
AU (1) AU2019269861B2 (de)
CA (1) CA3100098C (de)
DE (1) DE102018111621B4 (de)
ES (1) ES2958194T3 (de)
MX (1) MX2020012089A (de)
PL (1) PL3793741T3 (de)
WO (1) WO2019219124A1 (de)
ZA (1) ZA202007023B (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3921419A1 (de) 1989-06-29 1991-01-10 Loesche Gmbh Mahlflaeche von waelzmuehlen
JPH11309596A (ja) * 1998-04-23 1999-11-09 Kurimoto Ltd 竪型ロールミルの消耗部材の再生方法
DE20321584U1 (de) 2003-09-12 2008-04-24 Loesche Gmbh Wälzmühle, insbesondere zur Herstellung von Zement
WO2016101952A1 (en) * 2014-12-22 2016-06-30 Flsmidth A/S Wear-resistant roller
GB2559422A (en) * 2017-02-07 2018-08-08 Mec Holding Gmbh A method of repairing a grinding parts used in a roller mill and to grinding parts so repaired

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4389767A (en) * 1980-12-10 1983-06-28 Combustion Engineering, Inc. Method of manufacturing pulverizer rolls
JPS5810143U (ja) 1981-07-06 1983-01-22 日本電気株式会社 中央処理装置
JPS63143949A (ja) * 1986-12-09 1988-06-16 アイエヌジ商事株式会社 粉砕機に使用される破砕面部材
US5050810A (en) * 1990-01-16 1991-09-24 Parham Robert L One-piece pulverizing roller
JP2520729Y2 (ja) * 1991-07-04 1996-12-18 川崎重工業株式会社 竪型ミルの粉砕ローラ
DE4235298A1 (de) * 1992-10-20 1994-04-21 Krupp Polysius Ag Verfahren zum Herstellen einer Mahlwalze
DE4235297A1 (de) * 1992-10-20 1994-04-21 Krupp Polysius Ag Verfahren zum Herstellen einer Mahlwalze sowie Mahlwalze
DE4235499A1 (de) * 1992-10-21 1994-04-28 Krupp Polysius Ag Verfahren zum Aufbringen wenigstens einer harten Verschleißschicht auf eine Mahlwalze sowie Mahlwalze
JP3147136B2 (ja) * 1994-04-08 2001-03-19 宇部興産株式会社 竪型粉砕機
JPH11309696A (ja) * 1998-04-28 1999-11-09 Brother Ind Ltd 切断刃によるカット深さの選択装置
JP2000354778A (ja) * 1999-06-17 2000-12-26 Babcock Hitachi Kk ローラミルの粉砕部構造
DE10137131A1 (de) * 2001-07-30 2003-02-13 Polysius Ag Oberflächenporfilierung für die Walze einer Hochdruck-Gutbettwalzenmühle
DE102004043562B4 (de) * 2004-09-09 2016-09-29 Khd Humboldt Wedag Gmbh Presswalzen-Ringbandage und Verfahren zu ihrer Herstellung
DE102005028568B4 (de) * 2005-06-21 2007-06-06 Verschleiß-Technik Dr.-Ing. Hans Wahl GmbH & Co. Verfahren zur Herstellung eines Verschleißteiles für einen Kegelbrecher und ein Verschleißteil
EP2586313B1 (de) 2006-03-13 2017-02-22 Cargill, Incorporated Fermentationsverfahren unter Verwendung von Hefezellen mit unterbrochenem Weg von Dihydroxyacetonphosphat zu Glycerin
US8281473B2 (en) * 2010-04-23 2012-10-09 Flsmidth A/S Wearable surface for a device configured for material comminution
CN105149049B (zh) * 2010-07-26 2019-02-05 Ing商事株式会社 立式辊碾机
CA2856441C (en) * 2011-12-21 2016-01-26 Flsmidth A/S Insert arrangement for a roller wear surface
EP3154699B1 (de) * 2014-06-10 2018-07-18 FLSmidth A/S Verschleissfeste walze
CN203944423U (zh) * 2014-06-30 2014-11-19 盛金平 具有耐磨金属的齿辊式破碎机的弧形齿板
CN204034783U (zh) * 2014-08-04 2014-12-24 广州市金宇风动钎机有限公司 破碎辊
CN105536957B (zh) * 2016-01-28 2018-03-06 中国科学院上海高等研究院 一种叶轮及超细粉磨机、超细粉磨系统
JP6556349B2 (ja) * 2016-06-03 2019-08-07 トーカロ株式会社 製粉ロールの製造方法
JP7275728B2 (ja) 2018-03-26 2023-05-18 大日本印刷株式会社 無溶剤接着剤を用いた低溶剤臭ガスバリア積層体、及び該積層体からなる低溶剤臭ガスバリア包装材料と包装袋
KR102152721B1 (ko) * 2020-01-30 2020-09-07 주식회사 정원엔지니어링 미분기의 분쇄수단 및 그 제조방법
CN113457793B (zh) * 2021-07-20 2022-05-17 天津水泥工业设计研究院有限公司 一种具有不同研磨区的立磨研磨结构设计方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3921419A1 (de) 1989-06-29 1991-01-10 Loesche Gmbh Mahlflaeche von waelzmuehlen
JPH11309596A (ja) * 1998-04-23 1999-11-09 Kurimoto Ltd 竪型ロールミルの消耗部材の再生方法
DE20321584U1 (de) 2003-09-12 2008-04-24 Loesche Gmbh Wälzmühle, insbesondere zur Herstellung von Zement
WO2016101952A1 (en) * 2014-12-22 2016-06-30 Flsmidth A/S Wear-resistant roller
GB2559422A (en) * 2017-02-07 2018-08-08 Mec Holding Gmbh A method of repairing a grinding parts used in a roller mill and to grinding parts so repaired

Also Published As

Publication number Publication date
KR102493521B1 (ko) 2023-01-30
EP3793741C0 (de) 2023-06-07
KR20210008350A (ko) 2021-01-21
AU2019269861A1 (en) 2020-12-10
CA3100098A1 (en) 2019-11-21
PL3793741T3 (pl) 2024-02-19
DE102018111621A1 (de) 2019-11-21
JP7186246B2 (ja) 2022-12-08
ZA202007023B (en) 2021-07-28
EP3793741A1 (de) 2021-03-24
JP2021523828A (ja) 2021-09-09
CA3100098C (en) 2023-12-12
US20210268511A1 (en) 2021-09-02
AU2019269861B2 (en) 2023-03-16
DE102018111621B4 (de) 2020-01-23
US11654439B2 (en) 2023-05-23
CN112203769B (zh) 2022-05-31
MX2020012089A (es) 2021-03-29
CN112203769A (zh) 2021-01-08
BR112020023205A2 (pt) 2021-02-23
EP3793741B1 (de) 2023-06-07
ES2958194T3 (es) 2024-02-05

Similar Documents

Publication Publication Date Title
EP2708324B1 (de) Tischplatte für Federauflagetisch einer Federendenschleifmaschine sowie Federendenschleifmaschine damit
DE102005048781B3 (de) Verfahren zur Instandsetzung von Wälzlageraufnahmen von Walzen in Baustücken von Walzwerken
WO2008031522A1 (de) Verfahren zur herstellung eines pleuels
WO2006119944A1 (de) Verfahren und anlage zum härten von übergangsradien einer welle
EP1761345A1 (de) Vorrichtung zur beaufschlagung der führungsflächen von in den ständerfenstern von walzgerüsten gerührten lagereinbaustücken
EP2582456A1 (de) Profilierte bandage für eine rollenpresse
DE102018111621B4 (de) Verfahren zur Verbesserung der Produktivität von Mahlanlagen
WO2017198253A1 (de) Lager- und zapfenbuchse
WO2013189759A1 (de) Profilierte bandage für eine rollenpresse
EP0864690B2 (de) Walzenmaschine
DE102012100946A1 (de) Rollenmühle und Verfahren zum Betreiben einer Rollenmühle
DE4402958C2 (de) Verfahren zur Instandsetzung der Befestigungsflächen von Verschleißplatten am Ständer eines Walzgerüstes
EP1752678A2 (de) Verfahren zum Aufarbeiten eines Rotors einer Reibungsbremse und ein damit aufgearbeiteter Rotor
EP1613867B1 (de) Walzenbeschichtungsverfahren und beschichtete walze
WO2011098284A2 (de) Verfahren und vorrichtung zum auftragen einer oberflächenschicht auf eine walze sowie deren anwendung
WO2024121270A1 (de) Mechanisch, insbesondere tribologisch beanspruchtes bauteil sowie verfahren zu dessen herstellung
WO2008000579A1 (de) Führungsschiene sowie verfahren zum herstellen einer führungsschiene
EP0694374A2 (de) Schaber für ein Feinwalzwerk für das Vermahlen von Rohstoffen für keramische Erzeugnisse
DE10327494A1 (de) Maschinenbauteil, insbesondere Pumpenbauteil
WO2003097890A2 (de) Verfahren zur oberflächenbehandlung eines rakelelementes
DE102020108582A1 (de) Strahldüse für ein festes Strahlmedium
DE102019218794A1 (de) Verfahren zur Erhöhung der Tragfähigkeit und Walzvorrichtung zum Hartwalzen einer randschichtgehärteten Wälzlagerlaufbahn
DE102012016428A1 (de) Hochdruckventil
DE102009047853A1 (de) Pelletierpresse und Verfahren zum Betreiben einer Pelletierpresse
WO2018033305A1 (de) Abstreifvorrichtung für ein walzgerüst

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19728863

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020564475

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3100098

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020023205

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2019269861

Country of ref document: AU

Date of ref document: 20190507

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2020136201

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2019728863

Country of ref document: EP

Effective date: 20201215

ENP Entry into the national phase

Ref document number: 112020023205

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201113