WO2019219058A1 - 燃料电池的供气控制方法、装置和系统以及轨道车辆 - Google Patents
燃料电池的供气控制方法、装置和系统以及轨道车辆 Download PDFInfo
- Publication number
- WO2019219058A1 WO2019219058A1 PCT/CN2019/087215 CN2019087215W WO2019219058A1 WO 2019219058 A1 WO2019219058 A1 WO 2019219058A1 CN 2019087215 W CN2019087215 W CN 2019087215W WO 2019219058 A1 WO2019219058 A1 WO 2019219058A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- excess coefficient
- fuel cell
- current
- gas
- standard
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0438—Pressure; Ambient pressure; Flow
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04201—Reactant storage and supply, e.g. means for feeding, pipes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0438—Pressure; Ambient pressure; Flow
- H01M8/04388—Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0438—Pressure; Ambient pressure; Flow
- H01M8/04395—Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04574—Current
- H01M8/04589—Current of fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04604—Power, energy, capacity or load
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04746—Pressure; Flow
- H01M8/04753—Pressure; Flow of fuel cell reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04858—Electric variables
- H01M8/04895—Current
- H01M8/0491—Current of fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04992—Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2250/00—Fuel cells for particular applications; Specific features of fuel cell system
- H01M2250/20—Fuel cells in motive systems, e.g. vehicle, ship, plane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/40—Application of hydrogen technology to transportation, e.g. using fuel cells
Definitions
- the present invention relates to the field of fuel cell control, and in particular to a gas supply control method, apparatus and system for a fuel cell and a rail vehicle.
- a fuel cell is a power generation device that directly converts chemical energy into electrical energy. By feeding fuel and air separately into a fuel cell, electrical energy can be generated. Since the fuel cell does not involve combustion during the reaction, its energy conversion efficiency is not limited by the Carnot cycle, and high power generation efficiency can be achieved. Therefore, as a new energy source with no pollution and high heat conversion rate, the fuel cell is widely used in the power supply system of trams and subways to supply power for air conditioners, lights, and televisions in the cabin.
- the prior art adopts a scheme of calculating the reaction flow rate of hydrogen and air that needs to be delivered to the fuel cell according to the current working power of the electrical appliance, and then according to the current real-time detected flow rate of hydrogen and air.
- the current and the flow of hydrogen and air are input to the fuel cell.
- the airflow adjustment speed is at the second level. Therefore, there is a certain delay in the response of the fuel cell, which results in a slow response of the fuel cell.
- Embodiments of the present invention provide a gas supply control method, apparatus, and system for a fuel cell, and a rail vehicle, to at least solve the technical problem that the existing fuel cell has a relatively slow response speed when the power demand is increased.
- a gas supply control method for a fuel cell comprising: continuously inputting a reaction gas to a fuel cell based on a preset excess coefficient, wherein a preset excess coefficient is greater than a standard excess coefficient When the working power of the target object increases, whether the current excess coefficient is less than or equal to the standard excess coefficient in real time or timing; if the detected excess coefficient is less than or equal to the standard excess coefficient, the current excess coefficient is raised to a preset Excess coefficient.
- a gas supply control device for a fuel cell comprising: an input module configured to continuously input a reaction gas to a fuel cell based on a preset excess coefficient, wherein The excess coefficient is greater than the standard excess coefficient; the first detecting module is configured to detect whether the current excess coefficient is less than or equal to the standard excess coefficient in real time or timing when the working power of the target object increases; the control module is set to if the detected excess If the coefficient is less than or equal to the standard excess coefficient, the current excess coefficient is increased to a preset excess coefficient.
- a fuel supply control system for a fuel cell comprising: a fuel cell configured to supply power to an auxiliary system of a rail vehicle after the rail vehicle is powered on; the gas input device And connecting to the fuel cell, configured to continuously input the reaction gas to the fuel cell based on a preset excess coefficient, wherein the preset excess coefficient is greater than a standard excess coefficient; and the controller is connected to the gas input device to be set as the target object When the operating power is increased, if the detected excess coefficient is less than or equal to the standard excess coefficient, the current excess coefficient is raised to a preset excess coefficient.
- a rail vehicle comprising the air supply control system of the above fuel cell.
- the method further comprises: continuously inputting the reaction gas to the fuel cell based on the preset excess coefficient by using a manner that the gas flow rate of the input fuel cell is greater than the actual demand value, wherein the preset excess coefficient is greater than the standard excess coefficient;
- the working power of the target object increases, whether the current excess coefficient is less than or equal to the standard excess coefficient is detected in real time or timing; if the detected excess coefficient is less than or equal to the standard excess coefficient, the current excess coefficient is raised to a preset excess
- the coefficient achieves the purpose of providing the required power at a faster reaction speed when the power of the electric appliance is increased, thereby achieving the technical effect of improving the response speed of the fuel cell, thereby solving the existing fuel cell. A technical problem of slower response times when power demand increases.
- FIG. 1 is a flow chart of a gas supply control method of a fuel cell according to an embodiment of the present invention
- FIG. 2 is a flow chart of an optional gas supply control method for a fuel cell according to an embodiment of the present invention
- FIG. 3 is a flow chart of an optional gas supply control method for a fuel cell according to an embodiment of the invention.
- FIG. 4 is a flow chart of an optional gas supply control method for a fuel cell according to an embodiment of the present invention.
- FIG. 5 is a flow chart of an optional gas supply control method for a fuel cell according to an embodiment of the present invention.
- FIG. 6 is a flow chart of a preferred gas supply control method for a fuel cell according to an embodiment of the present invention.
- FIG. 7 is a flow chart of a preferred gas supply control method for a fuel cell according to an embodiment of the present invention.
- FIG. 8 is a schematic diagram of a gas supply control device of a fuel cell according to an embodiment of the present invention.
- FIG. 9 is a schematic diagram of a gas supply control system of a fuel cell according to an embodiment of the present invention.
- an embodiment of a gas supply control method for a fuel cell there is provided an embodiment of a gas supply control method for a fuel cell, and it is to be noted that the steps illustrated in the flowchart of the accompanying drawings may be performed in a computer system such as a set of computer executable instructions. Also, although logical sequences are shown in the flowcharts, in some cases the steps shown or described may be performed in a different order than the ones described herein.
- FIG. 1 is a flow chart of a gas supply control method for a fuel cell according to an embodiment of the present invention. As shown in FIG. 1, the method includes the following steps:
- Step S102 continuously inputting the reaction gas to the fuel cell based on the preset excess coefficient, wherein the preset excess coefficient is greater than the standard excess coefficient.
- the excess coefficient may be a ratio of the actual intake air amount of the reaction gas to the theoretical intake air amount; the reaction gas may be a mixed gas of fuel gas and oxygen, or a mixed gas of fuel gas and air; The excess coefficient is a ratio of the theoretical intake air amount calculated according to the power supply power required by the fuel cell to the actual intake air amount, and the predetermined excess coefficient may be one greater than the standard excess coefficient. Value, the reaction gas is continuously input to the fuel cell according to a preset excess coefficient.
- reaction gas may be a mixed gas of hydrogen and air.
- Step S104 when the working power of the target object increases, it is detected in real time or timing whether the current excess coefficient is less than or equal to the standard excess coefficient.
- the target object may be an electrical device powered by a fuel cell, for example, may be an air conditioner, a light, a television, etc.; when the working power of the target object (using electrical equipment) is increased, according to the electrical appliance
- the current working power of the device calculates the theoretical intake air quantity that the fuel cell needs to provide, and can calculate the current excess coefficient according to the theoretical intake air quantity currently provided by the fuel cell, and can determine whether the current excess coefficient is less than or equal to the standard excess in real time or timing. coefficient.
- the reaction gas may be a mixed gas of hydrogen and air, wherein the standard excess coefficient of hydrogen may be 1.5 and the standard excess coefficient of air may be 2.0.
- the target object may be an air conditioner.
- Step S106 if the detected excess coefficient is less than or equal to the standard excess coefficient, the current excess coefficient is raised to a preset excess coefficient.
- the current excess coefficient detected in real time or timing is less than or equal to the standard excess coefficient, indicating that the power of the electric appliance is increased, the current reactive gas input amount is insufficient, and therefore, the current excess coefficient of the reaction gas can be raised to The preset excess coefficient, wherein the preset excess coefficient is greater than the standard excess coefficient.
- the reaction gas may be a mixed gas of hydrogen and air. If the standard excess coefficient of hydrogen is 1.5 and the standard excess coefficient of air is 2.0, the preset excess coefficient of hydrogen may be set to 1.8, the preset excess coefficient of air is set to 2.4.
- the reaction gas is input to the fuel cell by using a preset excess coefficient which is greater than the standard excess coefficient by adopting a method in which the flow rate of the input fuel cell is greater than the actual demand value.
- the current excess coefficient of the reaction gas is detected in real time or at a time, and compared with the standard excess coefficient, the current excess coefficient of the reaction gas is always greater than the standard excess coefficient, and the fuel cell can be reacted at a faster rate when the power of the electric appliance is increased.
- the purpose of providing the required power is to increase the response speed of the fuel cell.
- the method before continuously inputting the reaction gas to the fuel cell based on the preset excess coefficient, the method further includes the following steps:
- Step S202 in an initial state, acquiring a correspondence between a standard excess coefficient of the fuel cell and an output of the current;
- step S204 the standard excess coefficient of the fuel cell is raised to a preset excess coefficient.
- the output of the current may be a current value that allows the fuel cell to output.
- the standard excess coefficient of the obtained fuel cell and the output of the supply current are required.
- the standard excess coefficient of the fuel cell can be adjusted to a preset excess coefficient, and then the reaction gas is input to the fuel cell according to a preset excess coefficient.
- the method further includes:
- Step S302 acquiring a power value that the target object needs to increase
- Step S304 calculating a gas flow rate corresponding to the power value that needs to be increased
- step S306 the reaction gas is input to the fuel cell according to the gas flow rate.
- the target object may be an electrical device powered by a fuel cell, for example, may be an air conditioner, an illumination lamp, a television, etc.; when the power of the target object (electrical appliance) increases, the work of acquiring the target object is increased.
- the power value of the power is calculated according to the power value that the target object needs to increase, and the reaction gas flow rate that the fuel cell needs to increase is calculated, and then the reaction gas is input to the fuel cell according to the flow rate of the reaction gas that needs to be increased.
- the method before acquiring the power value required by the target object, the method further includes:
- Step S402 detecting whether the target object needs to increase the current
- Step S404 if the target object needs to increase the current, a control command is issued, and the control command is used to control the increase of the input amount of the reaction gas, and the preset excess coefficient is lowered.
- the control command is an instruction for the fuel cell to control the flow of the input reaction gas; before the acquisition of the power value required by the target object, the target object needs to be detected in real time or periodically to increase the supply current, and if the power supply needs to be increased
- the current sends an instruction to control the fuel cell to increase the input amount of the reaction gas, and the fuel cell increases the input amount of the reaction gas according to the command, and the excess coefficient decreases.
- the reaction gas includes at least: air and hydrogen, wherein calculating a gas flow rate corresponding to the power value to be increased, as shown in FIG. 5, may include the following steps:
- Step S502 searching for a target demand value of air and hydrogen corresponding to the power value to be increased;
- Step S504 adjusting the flow rate of the air and the hydrogen according to the target demand value; wherein, the real-time flow of the air and the hydrogen is monitored in real time or periodically, and if the real-time flow is detected to reach the target demand value, the current value of the allowable output is recalculated.
- FIG. 6 is a flow chart of a preferred method for adjusting air and hydrogen flow according to target flow, and specifically includes the following steps:
- Step S602 the target current value > the current set value.
- the target current value may be a current value of the current working of the target object, that is, a current value that the fuel cell needs to supply the target object; and whether the target current value required by the fuel cell is greater than the currently set current value, if greater than The current set current value indicates that the fuel cell's supply current is increased, and it is necessary to control the flow rate of the reaction gas input to the fuel cell according to the increased supply current of the fuel cell.
- step S604 a target flow rate value of hydrogen and air is calculated.
- the target flow rate value of hydrogen and air in the reaction gas that is, the gas flow rate corresponding to the power value to be increased, can be calculated.
- step S606a the hydrogen flow rate is adjusted.
- the hydrogen gas flow rate is adjusted according to the target flow rate value of the hydrogen gas.
- step S606b the air flow rate is adjusted.
- the air flow rate is adjusted according to the target flow rate value of the air.
- step S608a it is detected in real time whether the hydrogen flow rate reaches the target flow rate value.
- step S608a if the detection result is YES, step S610a is performed, and if the detection result is no, step S612a is performed.
- step S608b it is detected in real time whether the air flow rate reaches the target flow rate value.
- step S608b if the detection result is YES, step S610b is performed, and if the detection result is no, step S612b is executed.
- step S610a the allowable current value I 1 is calculated.
- the allowable output current value I 1 is recalculated according to the real-time flow rate of the hydrogen gas.
- step S610b the allowable current value I 2 is calculated.
- the allowable output current value I 2 is recalculated according to the real-time flow rate of the air.
- step S612a the hydrogen flow rate is re-detected with a delay of 20 ms.
- step S608a if the real-time flow rate of the hydrogen gas is not detected to reach the target flow rate value (target demand value), the hydrogen flow rate is re-detected after 20 ms, that is, the process returns to step S608a.
- step S612b the air flow rate is re-detected with a delay of 20 ms.
- step S608b if it is detected that the real-time flow rate of the air does not reach the target flow rate value (target demand value), the air flow rate is re-detected after 20 ms, that is, the process returns to step S608b.
- the minimum value MIN(I 1 , I 2 ) among the allowable output current value I 1 calculated from the real-time flow rate of hydrogen gas and the allowable output current value I 2 calculated from the real-time flow meter of the air is used as the fuel cell.
- the current value allowed to be output is used as the fuel cell.
- the flow value provided by the fuel cell in the above embodiment can be verified by the flowchart shown in FIG. 7 to satisfy the electronic load (using electrical equipment).
- Working current As shown in FIG. 7, the allowable current value of the fuel cell is represented by I Alt , and the current of the electronic load (using electrical equipment) is represented by I Act , and specifically includes the following steps:
- step S702 the current value I Alt is allowed.
- the allowable output current value I 1 calculated from the real-time flow rate of hydrogen gas and the allowable output current value I 2 calculated from the real-time flow meter of the air can be used to obtain the fuel cell allowable output current value I Alt .
- Step S704 I Alt - I Act > ⁇ I.
- the allowable current value of the fuel cell is obtained according to whether the difference between the allowable output current value of the fuel cell I Alt and the electronic load current I Act is greater than the preset current difference ⁇ I.
- step S706 the current value is allowed to be I Act + ⁇ I.
- step S708 the current value is allowed to be I Act .
- the allowable current value of the fuel cell is I Act .
- Step S710 the electronic load current I Act .
- step S710 After step S710 is performed, the process returns to step S704.
- the output current allowed by the fuel cell can meet the demand of the electrical appliance in time when the operating current of the target object (electrical appliance) suddenly increases. , thereby improving the response speed of the fuel cell.
- an embodiment of a gas supply control device for a fuel cell is also provided.
- the gas supply control method of the fuel cell in Embodiment 1 of the present invention can be carried out in the apparatus of Embodiment 2 of the present invention.
- FIG. 8 is a schematic diagram of a gas supply control device for a fuel cell according to an embodiment of the present invention. As shown in FIG. 8, the device includes an input module 801, a first detection module 803, and a control module 805.
- the input module 801 is configured to continuously input the reaction gas to the fuel cell based on the preset excess coefficient, wherein the preset excess coefficient is greater than the standard excess coefficient; and the first detecting module 803 is configured to increase the working power of the target object.
- the control module 805 is configured to increase the current excess coefficient to a preset excess coefficient if the detected excess coefficient is less than or equal to the standard excess coefficient.
- the reaction gas is input to the fuel cell by using a preset excess coefficient which is greater than the standard excess coefficient by adopting a method in which the flow rate of the input fuel cell is greater than the actual demand value.
- the current excess coefficient of the reaction gas is detected in real time or at a time, and compared with the standard excess coefficient, the current excess coefficient of the reaction gas is always greater than the standard excess coefficient, and the fuel cell can be reacted at a faster rate when the power of the electric appliance is increased.
- the purpose of providing the required power is to increase the response speed of the fuel cell.
- the apparatus further includes: a first acquiring module, configured to acquire a correspondence between a standard excess coefficient of the fuel cell and an output of the current in an initial state; and an adjustment module configured to set the fuel The standard excess factor of the battery is increased to a preset excess factor.
- the foregoing device method further includes: a second acquiring module, configured to acquire a power value that needs to be added to the target object; and a calculating module configured to calculate a gas flow rate corresponding to the power value that needs to be increased;
- the input module is also used to input a reactive gas to the fuel cell in accordance with the gas flow rate.
- the apparatus further includes: a second detecting module configured to detect whether the target object needs to increase current; and a sending module configured to issue a control command if the target object needs to increase the current, and control The command is used to control the increase of the input amount of the reaction gas, and the preset excess coefficient is lowered at this time.
- the reaction gas comprises at least: air and hydrogen
- the calculation module comprises: a query module configured to find a target demand value of air and hydrogen corresponding to the power value to be added; the adjustment module , set to adjust the flow of air and hydrogen according to the target demand value; wherein, if the real-time flow reaches the target demand value in real time or timing, the current value of the allowable output is recalculated.
- an embodiment of a gas supply control system for a fuel cell is also provided.
- the gas supply control method of the fuel cell in Embodiment 1 of the present invention can be carried out in the system of Embodiment 3 of the present invention.
- FIG. 9 is a schematic diagram of a gas supply control system of a fuel cell according to an embodiment of the present invention. As shown in FIG. 9, the apparatus includes a fuel cell 901, a gas input device 903, and a controller 905.
- the fuel cell 901 is configured to supply power to the auxiliary system of the rail vehicle after the rail vehicle is powered on;
- the gas input device 903 is connected to the fuel cell 901 and is configured to continuously input the reaction gas to the fuel cell based on the preset excess coefficient.
- the preset excess coefficient is greater than the standard excess coefficient;
- the controller 905 is coupled to the gas input device 903, and is configured to, when the operating power of the target object increases, if the detected excess coefficient is less than or equal to the standard excess coefficient, Increase the current excess factor to the preset excess factor.
- controller 905 is further connected to the fuel cell 901.
- the reaction gas is input to the fuel cell by using a preset excess coefficient which is greater than the standard excess coefficient by adopting a method in which the flow rate of the input fuel cell is greater than the actual demand value.
- the current excess coefficient of the reaction gas is detected in real time or at a time, and compared with the standard excess coefficient, the current excess coefficient of the reaction gas is always greater than the standard excess coefficient, and the fuel cell can be reacted at a faster rate when the power of the electric appliance is increased.
- the purpose of providing the required power is to increase the response speed of the fuel cell.
- the controller 905 is further configured to obtain a correspondence between a standard excess coefficient of the fuel cell and an output of the current in an initial state; and increase a standard excess coefficient of the fuel cell to a preset state. Excess coefficient.
- the controller 905 is further configured to acquire a power value that the target object needs to increase; calculate a gas flow rate corresponding to the power value that needs to be increased; and input a reaction gas to the fuel cell according to the gas flow rate.
- the controller 905 is further configured to detect whether the target object needs to increase the current; if the target object needs to increase the current, issue a control command, and the control instruction is used to control the input of increasing the reactive gas. The amount, the preset excess coefficient is reduced at this time.
- the reaction gas includes at least: air and hydrogen
- the controller 905 is further configured to search for a target demand value of air and hydrogen corresponding to the power value to be increased; and adjust the air according to the target demand value. And the flow of hydrogen; wherein the real-time flow of air and hydrogen is monitored in real time or periodically, and if the real-time flow is monitored to reach the target demand value, the current value of the allowable output is recalculated.
- a rail vehicle embodiment comprising an optional or preferred fuel supply control system for any of the above.
- the disclosed technical contents may be implemented in other manners.
- the device embodiments described above are only schematic.
- the division of the unit may be a logical function division.
- there may be another division manner for example, multiple units or components may be combined or may be Integrate into another system, or some features can be ignored or not executed.
- the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, unit or module, and may be electrical or otherwise.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
- each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
- the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
- the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
- a number of instructions are included to cause a computer device (which may be a personal computer, server or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
- the foregoing storage medium includes: a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a removable hard disk, a magnetic disk, or an optical disk, and the like. .
- the gas supply control method, apparatus, system, and rail vehicle of the fuel cell provided by at least some embodiments of the present application have the following beneficial effects: the manner in which the air flow rate of the input fuel cell is greater than the actual demand value is adopted, based on the preset The excess coefficient continuously inputs the reaction gas to the fuel cell, wherein the preset excess coefficient is greater than the standard excess coefficient; when the working power of the target object increases, the current excess coefficient is detected in real time or periodically whether the current excess coefficient is less than or equal to the standard excess coefficient; if detected If the excess coefficient is less than or equal to the standard excess coefficient, the current excess coefficient is increased to a preset excess coefficient, so that when the power of the electrical appliance is increased, the fuel cell can provide the required power at a faster reaction speed. Therefore, the technical effect of improving the response speed of the fuel cell is realized, thereby solving the technical problem that the existing fuel cell has a relatively slow response speed when the power demand is increased.
Landscapes
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Automation & Control Theory (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- Evolutionary Computation (AREA)
- Fuzzy Systems (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Fuel Cell (AREA)
Abstract
本发明公开了一种燃料电池的供气控制方法、装置和系统以及轨道车辆。其中,该方法包括:基于预设的过量系数持续输入反应气体至燃料电池,其中,预设的过量系数大于标准过量系数;当目标对象的工作功率增大时,实时或定时检测当前的过量系数是否小于等于标准过量系数;如果检测到的过量系数小于等于标准过量系数,则将当前的过量系数调高至预设的过量系数。本发明解决了现有的燃料电池在用电量需求增大时响应速度比较慢的技术问题。
Description
本发明涉及燃料电池控制领域,具体而言,涉及一种燃料电池的供气控制方法、装置和系统以及轨道车辆。
燃料电池是一种将化学能直接转换成电能的发电装置,通过将燃料和空气分别送进燃料电池,便可产生电能。由于燃料电池在反应过程中不涉及燃烧,其能量转换效率不受卡诺循环的限制,可以达到很高的发电效率。因此,燃料电池作为一种无污染、热转换率高的新型能源,被广泛应用于有轨电车和地铁的供电系统中,为车厢中的空调、照明灯、电视等设施供电。
在燃料电池供电过程中,当用电器的工作功率增大时,需要提高燃料电池的供电电流。为了提高燃料电池的供电电流,现有技术采用的方案是根据用电器当前的工作功率,计算出需要输给燃料电池的氢气和空气的反应流量,再根据当前实时检测的氢气和空气的流量,来调节输入到燃料电池的氢气和空气流量,从而提升燃料电池的供电功率。由于上述方案在用电器工作功率增大以后,才根据用电器当前的工作功率计算出需要增加的氢气流量和空气流量,来调节输入到燃料电池的氢气和空气流量,这个过程中,电流的变化在微秒级别,而气流调节速度在秒级别,因而,燃料电池的响应存在一定的延时,会造成燃料电池的响应速度较慢的结果。
针对上述的现有的燃料电池在用电量需求增大时响应速度比较慢问题,目前尚未提出有效的解决方案。
发明内容
本发明实施例提供了一种燃料电池的供气控制方法、装置和系统以及轨道车辆,以至少解决现有的燃料电池在用电量需求增大时响应速度比较慢的技术问题。
根据本发明其中一实施例的一个方面,提供了一种燃料电池的供气控制方法,包括:基于预设的过量系数持续输入反应气体至燃料电池,其中,预设的过量系数大于标准过量系数;当目标对象的工作功率增大时,实时或定时检测当前的过量系数是否小 于等于标准过量系数;如果检测到的过量系数小于等于标准过量系数,则将当前的过量系数调高至预设的过量系数。
根据本发明其中一实施例的另一方面,还提供了一种燃料电池的供气控制装置,包括:输入模块,设置为基于预设的过量系数持续输入反应气体至燃料电池,其中,预设的过量系数大于标准过量系数;第一检测模块,设置为当目标对象的工作功率增大时,实时或定时检测当前的过量系数是否小于等于标准过量系数;控制模块,设置为如果检测到的过量系数小于等于标准过量系数,则将当前的过量系数调高至预设的过量系数。
根据本发明其中一实施例的另一方面,还提供了一种燃料电池的供气控制系统,包括:燃料电池,设置为在轨道车辆上电之后,为轨道车辆的辅助系统供电;气体输入装置,与上述燃料电池连接,设置为基于预设的过量系数持续输入反应气体至燃料电池,其中,预设的过量系数大于标准过量系数;控制器,与上述气体输入装置连接,设置为当目标对象的工作功率增大时,如果检测到的过量系数小于等于标准过量系数,则将当前的过量系数调高至预设的过量系数。
根据本发明其中一实施例的另一方面,还提供了一种轨道车辆,包括上述燃料电池的供气控制系统。
在本发明至少部分实施例中,采用输入燃料电池的气流量大于实际需求值的方式,通过基于预设的过量系数持续输入反应气体至燃料电池,其中,预设的过量系数大于标准过量系数;当目标对象的工作功率增大时,实时或定时检测当前的过量系数是否小于等于标准过量系数;如果检测到的过量系数小于等于标准过量系数,则将当前的过量系数调高至预设的过量系数,达到了当用电器功率增大时,燃料电池可以以较快的反应速度提供所需的功率的目的,从而实现了提升燃料电池的响应速度的技术效果,进而解决了现有的燃料电池在用电量需求增大时响应速度比较慢的技术问题。
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的一种燃料电池的供气控制方法流程图;
图2是根据本发明实施例的一种可选的燃料电池的供气控制方法流程图;
图3是根据本发明实施例的一种可选的燃料电池的供气控制方法流程图;
图4是根据本发明实施例的一种可选的燃料电池的供气控制方法流程图;
图5是根据本发明实施例的一种可选的燃料电池的供气控制方法流程图;
图6是根据本发明实施例的一种优选的燃料电池的供气控制方法流程图;
图7是根据本发明实施例的一种优选的燃料电池的供气控制方法流程图;
图8是根据本发明实施例的一种燃料电池的供气控制装置示意图;以及
图9是根据本发明实施例的一种燃料电池的供气控制系统示意图。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
根据本发明实施例,提供了一种燃料电池的供气控制方法实施例,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
图1是根据本发明实施例的一种燃料电池的供气控制方法流程图,如图1所示,该方法包括如下步骤:
步骤S102,基于预设的过量系数持续输入反应气体至燃料电池,其中,预设的过量系数大于标准过量系数。
在上述步骤中,上述过量系数可以是反应气体实际进气量与理论进气量的比值;上述反应气体可以是燃料气体和氧气的混合气体,也可以是燃料气体和空气的混合气 体;上述标准过量系数是可以满足正常用电量的情况下,根据燃料电池需要提供的供电功率计算出的理论进气量与实际进气量的比值;上述预设的过量系数可以为大于标准过量系数的一个值,按照预设的过量系数持续输入反应气体至燃料电池。
在一种可选的实施例中,上述反应气体可以是氢气和空气的混合气体。
步骤S104,当目标对象的工作功率增大时,实时或定时检测当前的过量系数是否小于等于标准过量系数。
在上述步骤中,上述目标对象可以是由燃料电池供电的用电器设备,例如,可以是空调,照明灯、电视等;当上述目标对象(用电器设备)的工作功率增大时,根据用电器设备当前的工作功率计算出燃料电池需要提供的理论进气量,并根据燃料电池当前需要提供的理论进气量可以计算当前的过量系数,可以实时或定时判断当前的过量系数是否小于等于标准过量系数。
在一种可选的实施例中,以反应气体可以是氢气和空气的混合气体为例,其中,氢气的标准过量系数可以是1.5,空气的标准过量系数可以是2.0。
可选地,上述目标对象可以是空调。
步骤S106,如果检测到的过量系数小于等于标准过量系数,则将当前的过量系数调高至预设的过量系数。
在上述步骤中,如果实时或定时检测到的当前的过量系数小于等于标准过量系数,表明用电器功率增大,当前的反应气体输入量不足,因此,可以将反应气体当前的过量系数调高至预设的过量系数,其中预设的过量系数要大于标准过量系数。
一种可选的实施例中,以反应气体可以是氢气和空气的混合气体为例,如果氢气的标准过量系数1.5,空气的标准过量系数是2.0,则可以将氢气的预设过量系数设置为1.8,空气的预设过量系数设置为2.4。
由上可知,在本申请上述实施例中,采用输入燃料电池的气流量大于实际需求值的方式,通过按照大于是标准过量系数的一个预设的过量系数,将反应气体的输入到燃料电池,并且实时或定时检测反应气体当前的过量系数,与标准过量系数比较,调整反应气体当前的过量系数始终大于标准过量系数,达到了当用电器功率增大时,燃料电池可以以较快的反应速度提供所需的功率的目的,实现了提升燃料电池的响应速度。
作为一种可选的实施方式,如图2所示,在基于预设的过量系数持续输入反应气体至燃料电池之前,上述方法还包括如下步骤:
步骤S202,初始状态下,获取燃料电池的标准过量系数与电流的输出量的对应关系;
步骤S204,将燃料电池的标准过量系数调高至预设的过量系数。
在上述步骤中,上述电流的输出量可以是允许燃料电池输出的电流值,在初始状态下,输入反应气体至燃料电池之前,需要根据获取的燃料电池的标准过量系数与供电电流的输出量的对应关系,可以将燃料电池的标准过量系数调高至预设的过量系数,然后按照预设的过量系数将反应气体输入至燃料电池。
作为一种可选的实施方式,如图3所示,在将当前的过量系数调高至预设的过量系数之后,方法还包括:
步骤S302,获取目标对象需要增加的功率值;
步骤S304,计算与需要增加的功率值所对应的气体流量;
步骤S306,按照气体流量向燃料电池输入反应气体。
在上述步骤中,上述目标对象可以是由燃料电池供电的用电器设备,例如,可以是空调,照明灯、电视等;当目标对象(用电器)的功率增大时,获取目标对象增加的工作功率的功率值,根据目标对象需要增加的功率值计算出燃料电池需要增加的反应气体流量,然后,按照需要增加的反应气体流量向燃料电池输入反应气体。
作为一种可选的实施方式,如图4所示,在获取目标对象需要增加的功率值之前,方法还包括:
步骤S402,检测目标对象是否需要增大电流;
步骤S404,如果目标对象需要增大电流,则发出控制指令,控制指令用于控制增大反应气体的输入量,此时预设的过量系数降低。
在上述步骤中,上述控制指令为燃料电池用于控制输入反应气体流量的指令;在获取目标对象需要增加的功率值之前,实时或定时检测目标对象是否需要增大供电电流,如果需要增大供电电流,则发出控制燃料电池增大反应气体的输入量的指令,燃料电池根据指令增大反应气体的输入量,此时过量系数降低。
作为一种可选的实施方式,反应气体至少包括:空气和氢气,其中,计算与需要增加的功率值所对应的气体流量,如图5所示,可以包括如下步骤:
步骤S502,查找与需要增加到功率值所对应的空气和氢气的目标需求值;
步骤S504,按照目标需求值调节空气和氢气的流量;其中,实时或定时监测空气和氢气的实时流量,如果监测到实时流量达到目标需求值,则重新计算允许输出的电流值。
在上述步骤中,在计算与用电器需要增加的功率值所对应的气体流量时,首先查找与需要增加到功率值所对应的空气和氢气的目标需求值,然后按照空气和氢气的目标需求值,来调节燃料电池的输入的空气和氢气的流量,在调节燃料电池的输入的空气和氢气的流量后,实时或定时监测空气和氢气的实时流量,如果监测到实时流量达到目标需求值,则重新计算燃料电池允许输出的电流值。
在一种优选的实施例中,以反应气体为空气和氢气为例,可以结合图6来说明上述实施例。如图6所示为一种优选的根据目标流量来调整空气和氢气流量的方法流程图,具体包括如下步骤:
步骤S602,目标电流值>当前设定值。
在上述步骤中,上述目标电流值可以是目标对象当前的工作的电流值,即燃料电池需要供给目标对象的电流值;判断燃料电池需要的目标电流值是否大于当前设定的电流值,如果大于当前设定的电流值,则说明燃料电池的供电电流增加,需要根据燃料电池增加的供电电流,控制输入给燃料电池的反应气体的流量增大。
步骤S604,计算氢气和空气的目标流量值。
在上述步骤中,根据上述目标电流值,可以计算出反应气体中氢气和空气的目标流量值,即,与需要增加的功率值所对应的气体流量。
步骤S606a,调节氢气流量。
在上述步骤中,在计算出反应气体中氢气目标流量值后,根据氢气的目标流量值来调节氢气流量。
步骤S606b,调节空气流量。
在上述步骤中,在计算出反应气体中空气的目标流量值后,根据空气的目标流量值来调节空气流量。
步骤S608a,实时检测氢气流量是否达到目标流量值。
在上述步骤中,在调节氢气流量后,实时检测氢气流量是否达到目标流量值。
其中,在步骤S608a中,若检测结果为是,则执行步骤S610a,若检测结果为否,则执行步骤S612a。
步骤S608b,实时检测空气流量是否达到目标流量值。
在上述步骤中,在调节空气流量后,实时检测空气流量是否达到目标流量值。
其中,在步骤S608b中,若检测结果为是,则执行步骤S610b,若检测结果为否,则执行步骤S612b。
步骤S610a,计算允许电流值I
1。
在上述步骤中,如果监测到氢气的实时流量达到目标流量值(目标需求值),则根据氢气的实时流量,重新计算允许输出的电流值I
1。
步骤S610b,计算允许电流值I
2。
在上述步骤中,如果监测到空气的实时流量达到目标流量值(目标需求值),则根据空气的实时流量,重新计算允许输出的电流值I
2。
步骤S612a,延时20ms重新检测氢气流量。
在上述步骤中,如果监测到氢气的实时流量未达到目标流量值(目标需求值),则在20ms后重新检测氢气流量,即转回执行步骤S608a。
步骤S612b,延时20ms重新检测空气流量。
在上述步骤中,如果监测到空气的实时流量未达到目标流量值(目标需求值),则在20ms后重新检测空气流量,即转回执行步骤S608b。
步骤S614,MIN(I
1,I
2)。
最后,将根据氢气的实时流量计算出的允许输出的电流值I
1和根据空气的实时流量计算出的允许输出的电流值I
2中最小的值MIN(I
1,I
2),作为燃料电池允许输出的电流值。
基于上述实施例,在得到燃料电池允许输出的电流值后,可选的,可以通过图7所示的流程图来验证上述实施例中燃料电池提供的电流值可以满足电子负载(用电器设备)的工作电流。如图7所示,燃料电池的允许电流值用I
Alt表示,电子负载(用电器设备)电流用I
Act表示,具体包括如下步骤:
步骤S702,允许电流值I
Alt。
在上述步骤中,将根据氢气的实时流量计算出的允许输出的电流值I
1和根据空气的实时流量计算出的允许输出的电流值I
2可以得到燃料电池允许的输出电流值为I
Alt。
步骤S704,I
Alt-I
Act>ΔI。
在上述步骤中,根据燃料电池允许的输出电流值为I
Alt和电子负载电流I
Act的差值是否大于预设电流差ΔI,来得到燃料电池的允许电流值。
步骤S706,允许电流值为I
Act+ΔI。
在上述步骤中,如果燃料电池允许的输出电流值为I
Alt和电子负载电流I
Act的差值大于预设电流差ΔI,则燃料电池的允许电流值为I
Act+ΔI。
步骤S708,允许电流值为I
Act。
在上述步骤中,如果燃料电池允许的输出电流值为I
Alt和电子负载电流I
Act的差值小于等于预设电流差ΔI,则燃料电池的允许电流值为I
Act。
步骤S710,电子负载电流I
Act。
最后,由电子负载电流I
Act可以看出,燃料电池可以提供的输出电流I
Act+ΔI或I
Act都可以满足电子负载的工作电流。
在执行步骤S710之后,返回执行步骤S704。
由此,本发明上述实施例通过将燃料电池的气流供应大于实际需求值,在目标对象(用电器)的工作电流突然增大的情况下,燃料电池允许的输出电流可以及时满足用电器的需求,进而提升了燃料电池的响应速度。
实施例2
根据本发明实施例,还提供了一种燃料电池的供气控制装置实施例。本发明实施例1中的燃料电池的供气控制方法可以在本发明实施例2的装置中执行。
图8是根据本发明实施例的一种燃料电池的供气控制装置示意图,如图8所示,该装置包括:输入模块801、第一检测模块803和控制模块805。
其中,输入模块801,设置为基于预设的过量系数持续输入反应气体至燃料电池,其中,预设的过量系数大于标准过量系数;第一检测模块803,设置为当目标对象的工作功率增大时,实时或定时检测当前的过量系数是否小于等于标准过量系数;控制模块805,设置为如果检测到的过量系数小于等于标准过量系数,则将当前的过量系数调高至预设的过量系数。
由上可知,在本申请上述实施例中,采用输入燃料电池的气流量大于实际需求值的方式,通过按照大于是标准过量系数的一个预设的过量系数,将反应气体的输入到燃料电池,并且实时或定时检测反应气体当前的过量系数,与标准过量系数比较,调整反应气体当前的过量系数始终大于标准过量系数,达到了当用电器功率增大时,燃 料电池可以以较快的反应速度提供所需的功率的目的,实现了提升燃料电池的响应速度。
在一种可选的实施例中,上述装置还包括:第一获取模块,设置为初始状态下,获取燃料电池的标准过量系数与电流的输出量的对应关系;调高模块,设置为将燃料电池的标准过量系数调高至预设的过量系数。
在一种可选的实施例中,上述装置方法还包括:第二获取模块,设置为获取目标对象需要增加的功率值;计算模块,设置为计算与需要增加的功率值所对应的气体流量;输入模块还用于按照气体流量向燃料电池输入反应气体。
在一种可选的实施例中,上述装置还包括:第二检测模块,设置为检测目标对象是否需要增大电流;发送模块,设置为如果目标对象需要增大电流,则发出控制指令,控制指令用于控制增大反应气体的输入量,此时预设的过量系数降低。
在一种可选的实施例中,反应气体至少包括:空气和氢气,其中,计算模块包括:查询模块,设置为查找与需要增加到功率值所对应的空气和氢气的目标需求值;调节模块,设置为按照目标需求值调节空气和氢气的流量;其中,如果实时或定时监测到实时流量达到目标需求值,则重新计算允许输出的电流值。
实施例3
根据本发明实施例,还提供了一种燃料电池的供气控制系统实施例。本发明实施例1中的燃料电池的供气控制方法可以在本发明实施例3的系统中执行。
图9是根据本发明实施例的一种燃料电池的供气控制系统示意图,如图9所示,该装置包括:燃料电池901、气体输入装置903和控制器905。
其中,燃料电池901,设置为在轨道车辆上电之后,为轨道车辆的辅助系统供电;气体输入装置903,与上述燃料电池901连接,设置为基于预设的过量系数持续输入反应气体至燃料电池,其中,预设的过量系数大于标准过量系数;控制器905,与上述气体输入装置903连接,设置为当目标对象的工作功率增大时,如果检测到的过量系数小于等于标准过量系数,则将当前的过量系数调高至预设的过量系数。
可选的,上述控制器905,还可以与上述燃料电池901连接。
由上可知,在本申请上述实施例中,采用输入燃料电池的气流量大于实际需求值的方式,通过按照大于是标准过量系数的一个预设的过量系数,将反应气体的输入到燃料电池,并且实时或定时检测反应气体当前的过量系数,与标准过量系数比较,调整反应气体当前的过量系数始终大于标准过量系数,达到了当用电器功率增大时,燃 料电池可以以较快的反应速度提供所需的功率的目的,实现了提升燃料电池的响应速度。
在一种可选的实施例中,上述控制器905还用于初始状态下,获取燃料电池的标准过量系数与电流的输出量的对应关系;将燃料电池的标准过量系数调高至预设的过量系数。
在一种可选的实施例中,上述控制器905还用于获取目标对象需要增加的功率值;计算与需要增加的功率值所对应的气体流量;按照气体流量向燃料电池输入反应气体。
在一种可选的实施例中,上述控制器905还用于检测目标对象是否需要增大电流;如果目标对象需要增大电流,则发出控制指令,控制指令用于控制增大反应气体的输入量,此时预设的过量系数降低。
在一种可选的实施例中,反应气体至少包括:空气和氢气,上述控制器905还用于查找与需要增加到功率值所对应的空气和氢气的目标需求值;按照目标需求值调节空气和氢气的流量;其中,实时或定时监测空气和氢气的实时流量,如果监测到实时流量达到目标需求值,则重新计算允许输出的电流值。
根据本发明实施例,还提供了一种轨道车辆实施例,包括上述任意一项可选的或优选的燃料电池的供气控制系统。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
在本发明的上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
在本申请所提供的几个实施例中,应该理解到,所揭露的技术内容,可通过其它的方式实现。其中,以上所描述的装置实施例仅仅是示意性的,例如所述单元的划分,可以为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,单元或模块的间接耦合或通信连接,可以是电性或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以 是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可为个人计算机、服务器或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。
如上所述,本申请至少部分实施例提供的燃料电池的供气控制方法、装置、系统以及轨道车辆具有以下有益效果:采用输入燃料电池的气流量大于实际需求值的方式,通过基于预设的过量系数持续输入反应气体至燃料电池,其中,预设的过量系数大于标准过量系数;当目标对象的工作功率增大时,实时或定时检测当前的过量系数是否小于等于标准过量系数;如果检测到的过量系数小于等于标准过量系数,则将当前的过量系数调高至预设的过量系数,达到了当用电器功率增大时,燃料电池可以以较快的反应速度提供所需的功率的目的,从而实现了提升燃料电池的响应速度的技术效果,进而解决了现有的燃料电池在用电量需求增大时响应速度比较慢的技术问题。
Claims (15)
- 一种燃料电池的供气控制方法,包括:基于预设的过量系数持续输入反应气体至燃料电池,其中,所述预设的过量系数大于标准过量系数;当目标对象的工作功率增大时,实时或定时检测当前的过量系数是否小于等于所述标准过量系数;如果检测到的过量系数小于等于所述标准过量系数,则将所述当前的过量系数调高至所述预设的过量系数。
- 根据权利要求1所述的方法,其中,在基于预设的过量系数持续输入反应气体至燃料电池之前,所述方法还包括:初始状态下,获取所述燃料电池的标准过量系数与电流的输出量的对应关系;将所述燃料电池的标准过量系数调高至所述预设的过量系数。
- 根据权利要求1或2所述的方法,其中,在将所述当前的过量系数调高至所述预设的过量系数之后,所述方法还包括:获取所述目标对象需要增加的功率值;计算与所述需要增加的功率值所对应的气体流量;按照所述气体流量向所述燃料电池输入反应气体。
- 根据权利要求3所述的方法,其中,在获取所述目标对象需要增加的功率值之前,所述方法还包括:检测所述目标对象是否需要增大电流;如果所述目标对象需要增大电流,则发出控制指令,所述控制指令用于控制增大反应气体的输入量,此时所述预设的过量系数降低。
- 根据权利要求3所述的方法,其中,所述反应气体是燃料气体和氧气的混合气体。
- 根据权利要求5所述的方法,其中,所述反应气体至少包括:空气和氢气,其中,计算与所述需要增加的功率值所对应的气体流量,包括:查找与所述需要增加到功率值所对应的所述空气和所述氢气的目标需求值;按照所述目标需求值调节所述空气和氢气的流量;其中,实时或定时监测所述空气和所述氢气的实时流量,如果监测到所述实时流量达到所述目标需求值,则重新计算允许输出的电流值。
- 根据权利要求1所述的方法,其中,所述过量系数是反应气体实际进气量与理论进气量的比值。
- 一种燃料电池的供气控制装置,包括:输入模块,设置为基于预设的过量系数持续输入反应气体至燃料电池,其中,所述预设的过量系数大于标准过量系数;第一检测模块,设置为当目标对象的工作功率增大时,实时或定时检测当前的过量系数是否小于等于所述标准过量系数;控制模块,设置为如果检测到的过量系数小于等于所述标准过量系数,则将所述当前的过量系数调高至所述预设的过量系数。
- 根据权利要求8所述的装置,其中,所述装置还包括:第一获取模块,设置为初始状态下,获取所述燃料电池的标准过量系数与电流的输出量的对应关系;调高模块,设置为将所述燃料电池的标准过量系数调高至所述预设的过量系数。
- 根据权利要求8或9所述的装置,其中,所述装置还包括:第二获取模块,设置为获取所述目标对象需要增加的功率值;计算模块,设置为计算与所述需要增加的功率值所对应的气体流量;所述输入模块还用于按照所述气体流量向所述燃料电池输入反应气体。
- 根据权利要求10所述的装置,其中,所述装置还包括:第二检测模块,设置为检测所述目标对象是否需要增大电流;发送模块,设置为如果所述目标对象需要增大电流,则发出控制指令,所述控制指令用于控制增大反应气体的输入量,此时所述预设的过量系数降低。
- 根据权利要求10所述的方法,其中,所述反应气体是燃料气体和氧气的混合气体。
- 根据权利要求12所述的装置,其中,所述反应气体至少包括:空气和氢气,其中, 所述计算模块包括:查询模块,设置为查找与所述需要增加到功率值所对应的所述空气和所述氢气的目标需求值;调节模块,设置为按照所述目标需求值调节所述空气和氢气的流量;其中,如果实时或定时监测到所述空气和所述氢气的实时流量达到所述目标需求值,则重新计算允许输出的电流值。
- 一种燃料电池的供气控制系统,包括:燃料电池,设置为在轨道车辆上电之后,为所述轨道车辆的辅助系统供电;气体输入装置,与所述燃料电池连接,设置为基于预设的过量系数持续输入反应气体至燃料电池,其中,所述预设的过量系数大于标准过量系数;控制器,与所述气体输入装置连接,设置为当目标对象的工作功率增大时,如果检测到的过量系数小于等于所述标准过量系数,则将当前的过量系数调高至所述预设的过量系数。
- 一种轨道车辆,包括所述权利要求13所述的燃料电池的供气控制系统。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19783964.0A EP3611773A4 (en) | 2018-05-17 | 2019-05-16 | GAS SUPPLY CONTROL PROCEDURE, DEVICE AND FUEL CELL SYSTEM, AND RAIL VEHICLE |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810474879.1 | 2018-05-17 | ||
CN201810474879.1A CN108598527B (zh) | 2018-05-17 | 2018-05-17 | 燃料电池的供气控制方法、装置和系统以及轨道车辆 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019219058A1 true WO2019219058A1 (zh) | 2019-11-21 |
Family
ID=63631631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/087215 WO2019219058A1 (zh) | 2018-05-17 | 2019-05-16 | 燃料电池的供气控制方法、装置和系统以及轨道车辆 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP3611773A4 (zh) |
CN (1) | CN108598527B (zh) |
WO (1) | WO2019219058A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114551943A (zh) * | 2022-01-18 | 2022-05-27 | 东风汽车集团股份有限公司 | 燃料电池系统空气气量控制方法及系统 |
CN114824371A (zh) * | 2022-05-05 | 2022-07-29 | 中国第一汽车股份有限公司 | 燃料电池发动机的活化控制方法、活化控制装置 |
CN117673400A (zh) * | 2022-08-24 | 2024-03-08 | 中联重科股份有限公司 | 用于燃料电池系统的控制方法、处理器、装置及系统 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108598527B (zh) * | 2018-05-17 | 2020-08-14 | 中车青岛四方机车车辆股份有限公司 | 燃料电池的供气控制方法、装置和系统以及轨道车辆 |
CN110010931A (zh) * | 2019-03-25 | 2019-07-12 | 嘉兴德燃动力系统有限公司 | 一种燃料电池发动机供氢子系统的控制策略方法及系统 |
CN111982235B (zh) * | 2019-05-21 | 2023-03-17 | 上海汽车集团股份有限公司 | 一种油液检测的方法和装置 |
CN112803045A (zh) * | 2021-04-14 | 2021-05-14 | 北京氢澜科技有限公司 | 燃料电池的氢气系统控制方法、装置及设备 |
CN114520352B (zh) * | 2022-01-10 | 2024-02-23 | 江苏氢导智能装备有限公司 | 气体压力控制装置及电堆测试平台 |
CN116364985B (zh) * | 2023-05-31 | 2023-08-04 | 上海重塑能源科技有限公司 | 一种最优燃料电池系统性能控制方法及系统 |
CN118010104B (zh) * | 2024-04-10 | 2024-07-02 | 南京师范大学 | 一种电气线路老化程度检测方法及系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1381074A (zh) * | 2000-03-28 | 2002-11-20 | 曼哈顿科学公司 | 操作燃料电池系统的方法及可相应地操作的燃料电池系统 |
CN101283474A (zh) * | 2005-10-05 | 2008-10-08 | 丰田自动车株式会社 | 燃料电池系统及其运转方法 |
CN102842727A (zh) * | 2011-06-20 | 2012-12-26 | 本田技研工业株式会社 | 燃料电池系统及搭载了该系统的车辆 |
JP2013197006A (ja) * | 2012-03-22 | 2013-09-30 | Toto Ltd | 固体酸化物型燃料電池 |
CN108598527A (zh) * | 2018-05-17 | 2018-09-28 | 中车青岛四方机车车辆股份有限公司 | 燃料电池的供气控制方法、装置和系统以及轨道车辆 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3979057B2 (ja) * | 2001-10-16 | 2007-09-19 | 日産自動車株式会社 | 燃料電池システムの制御装置 |
JP4696513B2 (ja) * | 2004-09-27 | 2011-06-08 | トヨタ自動車株式会社 | 燃料電池システム |
JP4288625B2 (ja) * | 2007-09-19 | 2009-07-01 | トヨタ自動車株式会社 | 燃料電池システムおよび反応ガスの供給量制御方法 |
CN201112486Y (zh) * | 2007-09-28 | 2008-09-10 | 比亚迪股份有限公司 | 一种用于燃料电池的气体流量控制装置 |
CN101505092B (zh) * | 2009-03-09 | 2011-11-16 | 武汉理工大学 | 一种通信用燃料电池备用电源系统 |
KR101417345B1 (ko) * | 2012-09-19 | 2014-07-08 | 기아자동차주식회사 | 연료전지 시스템의 제어 방법 |
US9563483B2 (en) * | 2012-12-19 | 2017-02-07 | Microsoft Technology Licensing, Llc | Server rack fuel cell |
CN203326036U (zh) * | 2012-12-28 | 2013-12-04 | 清华大学 | 一种用于质子交换膜燃料电池的阴极排气再循环系统 |
CN103900071A (zh) * | 2014-03-10 | 2014-07-02 | 杭州齐曼节能环保技术有限公司 | 一种燃煤锅炉交互式在线监测方法 |
JP2016122629A (ja) * | 2014-12-25 | 2016-07-07 | Jxエネルギー株式会社 | 燃料電池システムおよび燃料電池システムの制御方法 |
US20170077533A1 (en) * | 2015-09-14 | 2017-03-16 | Hyundai Motor Company | Control method and system of fuel cell system |
-
2018
- 2018-05-17 CN CN201810474879.1A patent/CN108598527B/zh active Active
-
2019
- 2019-05-16 EP EP19783964.0A patent/EP3611773A4/en active Pending
- 2019-05-16 WO PCT/CN2019/087215 patent/WO2019219058A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1381074A (zh) * | 2000-03-28 | 2002-11-20 | 曼哈顿科学公司 | 操作燃料电池系统的方法及可相应地操作的燃料电池系统 |
CN101283474A (zh) * | 2005-10-05 | 2008-10-08 | 丰田自动车株式会社 | 燃料电池系统及其运转方法 |
CN102842727A (zh) * | 2011-06-20 | 2012-12-26 | 本田技研工业株式会社 | 燃料电池系统及搭载了该系统的车辆 |
JP2013197006A (ja) * | 2012-03-22 | 2013-09-30 | Toto Ltd | 固体酸化物型燃料電池 |
CN108598527A (zh) * | 2018-05-17 | 2018-09-28 | 中车青岛四方机车车辆股份有限公司 | 燃料电池的供气控制方法、装置和系统以及轨道车辆 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3611773A4 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114551943A (zh) * | 2022-01-18 | 2022-05-27 | 东风汽车集团股份有限公司 | 燃料电池系统空气气量控制方法及系统 |
CN114551943B (zh) * | 2022-01-18 | 2023-09-26 | 东风汽车集团股份有限公司 | 燃料电池系统空气气量控制方法及系统 |
CN114824371A (zh) * | 2022-05-05 | 2022-07-29 | 中国第一汽车股份有限公司 | 燃料电池发动机的活化控制方法、活化控制装置 |
CN117673400A (zh) * | 2022-08-24 | 2024-03-08 | 中联重科股份有限公司 | 用于燃料电池系统的控制方法、处理器、装置及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN108598527B (zh) | 2020-08-14 |
EP3611773A1 (en) | 2020-02-19 |
CN108598527A (zh) | 2018-09-28 |
EP3611773A4 (en) | 2021-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019219058A1 (zh) | 燃料电池的供气控制方法、装置和系统以及轨道车辆 | |
US10714967B2 (en) | Automotive generator control method and device | |
US10148113B2 (en) | Charging method, device and charging device | |
CN101755359B (zh) | 燃料电池系统及其控制方法 | |
CN105553057B (zh) | 一种基于电网保护的电动汽车充电站控制系统 | |
CN102916477B (zh) | 一种兼容多电压等级的多用途智能蓄电池放电装置 | |
WO2023025040A1 (zh) | 换电站 | |
CN110808389A (zh) | 一种燃料电池发动机的多功率电堆控制方法及装置 | |
WO2024060387A1 (zh) | 多电池包并机充电方法、配电设备及可读介质 | |
CN111071092A (zh) | 一种充电桩功率动态分配系统及方法 | |
CN105852228B (zh) | 一种电子烟超声电路控制方法及系统 | |
CN102182573B (zh) | 内燃机车电喷柴油机载荷控制方法 | |
US11262713B2 (en) | Method for calculating control parameters of heating supply power of heating network | |
CN1877954A (zh) | 电子装置的供电控制装置及方法 | |
CN208241345U (zh) | 具有交直流电源的充电桩系统 | |
CN111520841A (zh) | 基于高效低碳排放准则的冷热电三联供系统调控策略 | |
CN216619906U (zh) | 一种用于炉灶风机的调控系统 | |
CN114039391B (zh) | 一种微处理器控制技术的大电流启动蓄电池充电器 | |
CN113067345B (zh) | 光伏交流系统的功率因数补偿方法、控制器及系统 | |
CN103684159A (zh) | 防止内燃机车辅助发电电路过压的控制方法 | |
CN112363560A (zh) | 一种光伏发电系统的控制和分配方法及装置 | |
CN103688039B (zh) | 一种实现发电机组转速控制的方法、装置和系统 | |
CN109995127A (zh) | 一种光储电解电源系统及其控制方法 | |
CN110617678A (zh) | 高效电磁热风发生器 | |
WO2022267369A1 (zh) | 热电联供系统及其孤岛运行控制方法、装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
NENP | Non-entry into the national phase |
Ref country code: DE |