CN101505092B - 一种通信用燃料电池备用电源系统 - Google Patents

一种通信用燃料电池备用电源系统 Download PDF

Info

Publication number
CN101505092B
CN101505092B CN2009100610321A CN200910061032A CN101505092B CN 101505092 B CN101505092 B CN 101505092B CN 2009100610321 A CN2009100610321 A CN 2009100610321A CN 200910061032 A CN200910061032 A CN 200910061032A CN 101505092 B CN101505092 B CN 101505092B
Authority
CN
China
Prior art keywords
hydrogen
output
unit
air
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009100610321A
Other languages
English (en)
Other versions
CN101505092A (zh
Inventor
全书海
全睿
黄亮
谢长君
陈启宏
张立炎
石英
邓坚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amperex Technology Limited of the Wuhan sea
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN2009100610321A priority Critical patent/CN101505092B/zh
Publication of CN101505092A publication Critical patent/CN101505092A/zh
Application granted granted Critical
Publication of CN101505092B publication Critical patent/CN101505092B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

本发明涉及一种通信用燃料电池备用电源系统,包括制氢储氢单元、燃料电池单元、DC/DC单元、输出单元、电控单元、巡检单元、监控单元以及通信单元,其特点是:制氢储氢单元利用太阳能或风能制氢并以固态形式存储,通过吸收燃料电池单元的热量释放氢气;燃料电池单元通过氢氧的电化学反应产生直流电能和热量;DC/DC单元对直流电能调节升压后给输出单元提供电能;输出单元在市电掉电时给负载供电;电控单元采集各种数据以及向各单元发送控制信息;巡检单元采集所有单片电压值进行传输;监控单元显示各种参数和工作状态,实现人机交互;通信单元进行近程和远程通信与监控。该电源系统清洁、高效、可靠,适合各种通信备用电源使用。

Description

一种通信用燃料电池备用电源系统
技术领域
本发明属于一种燃料电池电源装置,具体而言,是一种通信用燃料电池备用电源系统。
背景技术
随着人们生活水平的普遍提高和通信技术的快速发展,通信电源得到了广泛应用。传统的通信电源主要通过市电进行相关转换后输出适合通信设备使用的直流电源,其备用电源通常是体积庞大且笨重的蓄电池组,由于蓄电池效率低、使用寿命短、不可进行二次回收再利用、废弃后严重污染环境等一系列弊端,其使用和推广受到了很大的限制。此外,一旦市电供电系统出现故障其维修时间较长,尤其是当市电供电系统遭受自然灾害(如2008年的雪灾和汶川大地震等)严重破坏时,短期内无法得到快速维修实现正常供电,而蓄电池组持续工作的时间非常有限(一般为几个小时),因此各种通信设备不间断工作很难得到保证,这样带来的通信中断给工农业生产、人们的日常生活甚至是抗灾救援等带来极大的不便,严重影响社会和谐与稳定。
美国的《时代》周刊把燃料电池列为改变人类未来生活的十大高科技之首,目前世界各国都花巨大的人力、物力和财力对燃料电池进行重点研究渴望获得其技术制高点以便抢占产业化的先机,由于以上海神力科技有限公司、中科院大连化学物理研究所和武汉理工大学材料复合新技术国家重点实验室为代表的国内机构已经具备燃料电池大批量生产的能力,燃料电池通信备用电源有着广阔的应用市场,因此研发通信用燃料电池备用电源对突破国外同类产品的市场垄断和技术封锁、实现自主创新有着重大的战略意义。
目前国内尚未有商品化的通信用燃料电池备用电源的相关报道和专利授权,大多样机处于实验室研究阶段,且都是以单模块方式实现输出功率1~2KW,不支持多模块备用和热插拔等通信电源的特殊使用要求,长期低温储存和无间断工作得不到保障,故商品化还有一定的难度;国外已有的通信基站用燃料电池备用电源其氢气来源于已加工好的现存氢气,以高压气瓶方式加注和运输,工作时间受气瓶的容量限制,因此其可持续工作时间非常有限;此外,氢气和氧气电化学反应产生的热量直接让其散失掉而未充分利用,因而氢气利用率和能量转换效率明显偏低;同时燃料电池模块数量偏多、体积庞大且笨重、低温储存能力较差、冷启动时间太长、缺乏良好的保湿能力;其监控功能简单,不利于系统整体的观测与维护,因而燃料电池的使用寿命不高;除此之外,系统不具备远程监控的功能,需要派遣工作人员经常不定期进行现场维护,因此其维护成本过高,加之本身的高成本,不利于系统的推广和产业化。
发明内容
本发明的目的在于提供一种利用大自然取之不尽用之不绝的太阳能和风能制氢,燃料供给不受市电影响,只要给燃料电池提供其反应所需的氢和氧,它就可以提供源源不断的电能,具有高效节能、清洁环保、安全性高、可靠性强、环境适应能力好,实现燃料电池堆模块和DC/DC模块“3+1”方式备份且支持热插拔的通信用燃料电池备用电源系统,以克服上述的不足。
为实现上述目的,本发明由制氢储氢单元、燃料电池单元、DC/DC单元、输出单元、电控单元、巡检单元、监控单元以及通信单元构成,其特点是:
制氢储氢单元:包含制氢装置和固态储氢装置,制氢装置利用太阳能或风能制氢,以固态形式储存在固态储氢装置中;使用时通过吸收热量释放高压氢气,氢气经过高压阀和减压阀后进入燃料电池单元;
燃料电池单元:产生的直流电能由输出端提供给DC/DC单元,产生的热量由空气冷热交换装置的出口供固态储氢装置吸收;
DC/DC单元:将直流电能调节升压后连接至输出单元为负载提供电能;
输出单元:将电能分别供给负载、燃料电池单元、DC/DC单元、电控单元、巡检单元、监控单元以及通信单元等;
电控单元:与各个传感器的数据线相连,采集氢源氢气压力、高压氢气压力、进堆氢气压力、出堆氢气压力、空气流量、出堆空气温度、空气冷热交换装置出口1的空气温度、固态储氢装置的空气出口温度、输出总电压与总电流、辅助启动电池的充放电电流、市电电压、燃料电池单元中各个燃料电池堆的输出电压、电流和温度等数据;通过PWM输出模块、D/A输出模块、I/O控制模块控制各个单元中的执行器;通过CAN1与巡检单元、监控单元、通信单元进行通信;
巡检单元:通过数据线与燃料电池堆模块所有单片电池的正负端相连,采集所有单片电池电压值并通过CAN2进行传输,还通过第二通讯模块2(RS232/485)与上位机进行通信;
监控单元:实时显示该系统相关的电压、电流、压力、流量、温度等参数和工作状态,具备良好的人机交互功能;
通信单元:通过GPRS或Ethernet实现远程无线或有线通信与监控,通过第一通讯模块1(RS232/485)与上位机通信,实现现场调试、监控与故障诊断。
上述制氢储氢单元由制氢装置、固态储氢装置、高压阀、减压阀、压力传感器P1以及温度传感器T7构成;制氢装置连接有压力传感器P1,利用太阳能或风能制氢,其氢气出口通过管道与固态储氢装置的氢气入口相连,氢气以固态形式储存在固态储氢装置中,固态储氢装置的氢气出口通过管道依次与高压阀、减压阀和燃料电池单元中燃料电池堆模块的氢气入口相连,此外,固态储氢装置的空气入口经过温度传感器T6后与燃料电池单元中空气冷热交换装置的出口1相连,固态储氢装置的空气出口连接有温度传感器T7,然后通过管道接入大气,压力传感器P1和温度传感器T7的输出与电控单元的信号调理电路1的输入端相连,分别作为氢源氢气压力和固态储氢装置的空气出口温度的检测信号。
上述燃料电池单元由燃料电池堆模块、氢气阀、调节阀、分配器、尾气处理器、尾气阀、空气过滤器、空气加热装置、空气抽气装置、空气冷热交换装置、压力传感器P2~P4、温度传感器T5和T6、流量传感器Fa构成;在氢气供给回路中,来自制氢储氢单元的氢气通过管道与氢气阀的输入端相连,氢气阀的输出端通过管道依次与压力传感器P2、调节阀和分配器相连,分配器连接有进堆压力传感器P3,其输出端通过4根管道与燃料电池堆模块的氢气入口相连,燃料电池堆模块的氢气出口通过管道与尾气处理器的输入端相连,尾气处理器连接有出堆氢气压力传感器P4,其输出端通过管道与尾气阀的输入端相连,尾气阀的输出端通过管道接入大气;在空气供给回路中(如图1黑色粗线所示),空气过滤器的风门与大气相连,其输出端通过管道与空气加热装置的输入端相连,空气加热装置的输出端与燃料电池堆模块的空气入口连接,燃料电池堆模块的空气出口与空气抽气装置的输入端相连,空气抽气装置的输出端通过管道依次与空气流量传感器Fa、温度传感器T5和空气冷热交换装置的输入端相连,空气冷热交换装置的出口1通过管道依次与温度传感器T6和制氢储氢单元的固态储氢装置的空气入口相连,空气冷热交换装置的出口2通过管道连接至燃料电池单元内部;压力传感器P2~P4、温度传感器T5和T6、流量传感器Fa的输出与电控单元的信号调理电路1的输入端相连,分别作为高压氢气压力、进堆氢气压力和出堆氢气压力、出堆空气温度、空气冷热交换装置出口1的空气温度和空气流量的检测信号。
上述DC/DC单元由DC/DC1~4构成;DC/DC1~4的输入端先并联,然后与燃料电池堆模块的正负极直流母线输出端相连,对燃料电池堆模块的输出电压进行升压调节,DC/DC1~4输出端并联后与输出单元的输入端相连。
上述输出单元由输出模块、内部供电电路、掉电检测电路构成;输出模块一端与负载相连,当市电供电正常时,由220V交流电整流为48V直流电给负载供电,同时对内部辅助启动电池进行充电;当市电掉电时,输出模块内部的辅助启动电池给负载供电,同时与内部供电电路的输入端相连,内部供电电路输出24V的直流电压与空气抽气装置的供电端相连,输出12V的直流电压与高压阀、氢气阀、调节阀、尾气阀、负载开关1~4、空气加热装置、空气冷热交换装置以及DC/DC1~4的供电端相连,输出5V和3.3V的直流电压与温度传感器、电控单元、巡检单元、监控单元以及通信单元的供电端相连,还输出±12V的直流电压与各个电压、电流、压力和流量传感器的供电端相连;掉电检测电路的电压传感器V6的输出与电控单元的信号调理电路1的输入端相连,作为燃料电池单元快速启动或安全停机的检测信号。
上述电控单元由信号调理电路1、A/D采样模块1、微处理器1(MCU1)、PWM输出模块、D/A输出模块、CAN1模块、I/O控制模块和驱动电路构成;信号调理电路1的输入端通过数据线与电压传感器V1~V6、电流传感器A1~A6、温度传感器T1~T7、压力传感器P1~P4和空气流量传感器Fa的输出信号相连,信号调理电路1的输出端与A/D采样单元1相连;PWM输出模块与空气过滤器的风门、空气抽气装置以及调节阀的控制端相连,通过输出PWM信号控制空气过滤器的风门开度、空气抽气装置的转速和调节阀的输出压力;D/A输出模块与DC/DC 1~4的输出电压控制端相连,通过输出不同的数字量转换为模拟量控制DC/DC单元的输出电压值;驱动电路由I/O口控制,其输出端与高压阀、氢气阀、尾气处理器、尾气阀、空气加热装置、空气冷热交换装置、各个燃料电池堆的负载开关K1~K4、输出单元中的保护电路和充放电控制电路的功率开关管的控制端相连,控制其接通或关断;通过CAN1与巡检单元的CAN2、监控单元的CAN3和通信单元的CAN4相连并进行通信,发送控制命令以及接收来自巡检单元、监控单元和通信单元的相关数据和信息。
上述巡检单元由信号调理电路2、A/D采样模块2、微控制器2(MCU2)、第二通讯模块2、CAN2模块构成;信号调理电路2的输入端通过数据线与燃料电池堆模块所有单片电池正负端相连,信号调理电路2的输出端与A/D采样单元2相连;MCU2将所有单片电池电压值通过第二通讯模块2发送到上位机,通过CAN2把重要有关单片电压值发送给电控单元、监控单元、通信单元。
上述监控单元由LCD、微控制器3(MCU3)、声光报警及指示灯电路、按键、CAN3模块构成;通过CAN3与电控单元、巡检单元、通信单元进行通信;LCD显示制氢储氢单元、燃料电池单元、DC/DC单元、输出单元的各种参数与状态,以及电控单元、巡检单元、通信单元的命令字,此外还显示该系统的各种故障码(包括参数故障和工作状态故障);声光报警及指示灯电路对系统正常工作状态进行显示,在故障状态下进行声光报警;通过按下相应的按键,操作人员对燃料电池单元相关参数进行设置和查看,或对其工作状态进行相应的操作和控制。
上述通信单元由微控制器4(MCU4)、GPRS模块、Ethernet模块、第一通讯模块1和CAN4模块构成;GPRS模块和远程监控中心进行无线通信,Ethernet模块与远程监控中心进行以太网或局域网相连实现有线通信;采用通信单元的第一通讯模块1与上位机通信,方便工作人员进行自动或手动调试与控制。
上述燃料电池堆模块由燃料电池堆1~4、进堆氢气热插拔接口I1~I4、出堆氢气热插拔接口01~04、温度传感器T1~T4、电压传感器V1~V4、电流传感器A1~A4、二极管D1~D4、负载开关K1~K4组成;燃料电池堆模块的氢气入口分别通过4根管道与进堆氢气热插拔接口I1~I4相连,然后分别与燃料电池堆1~4的氢气入口相连,燃料电池堆1~4的氢气出口分别通过管道与出堆氢气热插拔接口01~04相连,然后与燃料电池堆模块的氢气出口相连;燃料电池堆1~4的直流电源输出端分别串联有电流传感器A1~A4和并联有电压传感器V1~V4;各自的正极依次与二极管D1~D4和负载开关K1~K4相连,经过K1~K4后的输出端相并联作为燃料电池单元的正负极直流电源母线输出端;温度传感器T1~T4分别嵌入燃料电池堆1~4中与单片电池相连,温度传感器T1~T4、电压传感器V1~V4和电流传感器A1~A4的输出与电控单元的信号调理电路1的输入端相连,分别作为燃料电池堆1~4的温度、输出电压和输出电流的检测信号。
上述输出模块由保险管F1、滤波电路、保护电路、充放电控制电路、辅助启动电池、电压传感器V5、电流传感器A5和A6组成;输出模块的输入端串联有保险管F1,保险管F1的输出端与滤波电路的输入端相连,滤波电路的输出端依次串联有电流传感器A5和并联有电压传感器V5,然后与保护电路的输入端相连,保护电路的输出端一方面与负载相连,另一方面与充放电控制电路的输入端相连,充放电控制电路的双向输出端与充放电电流传感器A6串联,然后与辅助启动电池的正负极相连,辅助启动电池的正负极还通过一个支路与内部供电电路相连;电压传感器V5、电流传感器A5和A6的输出与电控单元的信号调理电路1的输入端相连,分别作为该系统的输出总电压、输出总电流以及辅助启动电池的充放电电流的检测信号。
本发明还提供一种通信用燃料电池备用电源系统智能控制方法,其控制装置由制氢储氢单元、燃料电池单元、DC/DC单元、输出单元、电控单元、巡检单元、监控单元以及通信单元组成,其控制方法是:采用自适应的功率输出控制方法,通过智能启动、低温存储和长期储存控制保证通信基站的供电无间断,同时提高系统的可靠性、耐久性与安全性,其中:
燃料电池单元采用基于PI调节器的空气冷热交换装置和空气加热装置的控制进行空气温度调节,分别实现氢气燃料的快速获取和低温存储。
电控单元实时检测市电供电电压,当市电供电正常时,由220V交流电整流为48V直流电给负载供电,同时对内部辅助启动电池进行充电;当市电掉电时,内部辅助启动电池立即接入给负载供电,同时给该系统各单元供电,快速启动燃料电池;当燃料电池单元启动成功后,由燃料电池输出电能给负载供电,采用模糊控制方法改变PWM信号的占空比,通过控制空气抽气装置的转速调节空气带走的热量将燃料电池堆模块的温度控制在一定范围:当燃料电池堆模块1~4的温度T1~T4都高于设定的最大温度值时,控制空气抽气装置的PWM信号占空比为1,当燃料电池堆模块1~4的温度T1~T4都低于设定的最大温度值时,控制空气抽气装置的PWM信号占空比为满足负载及系统消耗功率所需2倍空气过量系数对应的最小值,当燃料电池堆模块1~4的温度T1~T4部分高于设定的最大温度值时,控制空气抽气装置的PWM信号占空比介于最小值和1之间。
当市电长期给负载供电而燃料电池单元不工作时,通过远程监控中心、或现场按下启动按键、或由电控单元自动唤醒发送启动命令,强制启动燃料电池单元保持其良好的电化学反应活性,提高其可靠性和使用寿命。
上述燃料电池单元快速启动时为迅速获取氢气,电控单元将空气抽气装置调至一定的转速,关闭空气冷热交换装置的出口2同时打开其出口1,采用基于PI调节器的空气冷热交换装置出口1的空气温度控制,设置空气冷热交换装置出口1的空气温度值为T′6,T′6与温度传感器T6的实际检测值比较得到温度偏差ΔT6,通过PI调节器1,改变空气冷热交换装置的加热功率,调节空气冷热交换装置出口1的空气温度值以及制氢储氢单元的固态储氢装置的吸热量。在低温储存时,为保持燃料电池单元内部空气温度在T′5以上(T′5>0℃),也将空气抽气装置调至一定的转速,此时,关闭空气冷热交换装置的出口1同时打开其出口2,采用基于PI调节器的燃料电池单元内部温度控制,T′5与出堆空气温度传感器T5的实际检测值比较得到温度偏差ΔT′5,通过PI调节器2,改变空气加热装置的加热功率,调节燃料电池单元的内部温度;
上述电控单元实时检测市电供电电压,当市电掉电时启动燃料电池单元给负载供电,其中空气过量系数控制在2以上,当燃料电池单元持续工作产生热量而温度升高时,采用模糊控制方法改变PWM输出信号的占空比,通过控制空气抽气装置的转速调节空气带走的热量,将燃料电池堆模块的温度保持在一定范围。
上述燃料电池单元由于燃料电池单元由于长期不工作会导致性能衰减,当检测其持续未工作时间超过设定值时,通过远程监控中心发送启动命令,或由现场操作人员按下启动按键,或由电控单元自动唤醒发送启动命令,强制启动燃料电池单元,通过这种定期与不定期的热身使燃料电池单元保持良好的电化学反应特性。
由于本发明充分利用了燃料电池电化学反应产生的热量供固态储氢装置吸收释放氢气,明显区别于其它通信用燃料电池备用电源以氢气瓶加注氢燃料方式,以及通过风冷或水冷方式直接将热量散失的缺点,因而能量利用率高;所配置的燃料电池堆1~4和DC/DC1~4任意3个的额定输出功率之和大于负载和系统消耗的最大功率,当其中任意一个燃料电池模块或DC/DC模块发生故障时将其取下,其余三个模块的输出仍然可维持负载正常工作,也明显区别于其它通信用燃料电池备用电源样机以单燃料电池模块和单DC/DC模块输出功率的局限性,以及以更多燃料电池模块(大于或等于10个)和更多DC/DC组合实现小功率输出造成结构的复杂性,从而实现了燃料电池单元和DC/DC单元“3+1”备份和热插拔功能,提高了系统的可靠性;采用燃料电池堆模块温度模糊控制方法,提高了系统电化学反应的效率;采用的基于PI调节器1的空气冷热交换装置出口1的空气温度控制,提高了系统的快速启动能力;采用的基于PI调节器2的燃料电池单元内部空气温度控制,提高了系统的低温存储和环境适应能力;采用不定期的强制性启动方法,保持了燃料电池的活性,提高了其使用寿命。本发明突破了输出功率的限制,可通过多个系统并联组合实现大功率输出。该系统氢气利用率高、环境适应能力和可靠性好、启动快、使用寿命长,适合各种通信备用电源使用。
附图说明
为了进一步理解本发明,作为说明书一部分的附图指示了本发明的实施例,而所作的说明用于解释本发明的原理。
图1为本发明的整体结构原理框图。
图2为本发明的燃料电池堆模块原理框图。
图3为本发明的输出模块原理框图。
图4为本发明的内部供电电路原理框图。
图5为本发明的PI调节器1快速启动时温度控制原理框图。
图6为本发明启动后燃料电池堆模块温度模糊控制原理框图。
图7为本发明的PI调节器2低温储存时温度控制原理框图。
具体实施方式
下面结合附图及实施例对本发明作进一步的描述。
本发明的主体部分由制氢储氢单元、燃料电池单元、DC/DC单元、输出单元、电控单元、巡检单元、监控单元以及通信单元组成(图1);制氢储氢单元利用太阳能或风能制氢并以固态存储,通过吸收燃料电池单元的热量释放氢气;燃料电池单元通过氢氧的电化学反应产生直流电能和热量;DC/DC单元对直流电能调节升压后给输出单元提供电能;输出单元在市电掉电时给负载供电;电控单元采集各种数据以及向各单元发送控制信息;巡检单元采集所有单片电压值进行传输;监控单元显示各种参数和状态,实现人机交互;通信单元进行近程和远程通信与监控。
制氢储氢单元由太阳能和风能制氢装置、高压固态储氢装置、高压电磁阀、手动减压阀、氢源氢气压力传感器P1以及固态储氢装置的空气出口温度传感器T7构成;制氢装置连接有氢源氢气压力传感器P1,利用太阳能或风能制氢,其氢气出口通过管道与固态储氢装置的氢气入口相连,氢气以固态形式储存在固态储氢装置中,固态储氢装置的氢气出口通过管道依次与高压电磁阀、手动减压阀和燃料电池单元中燃料电池堆模块的氢气入口相连,此外,固态储氢装置的空气入口经过温度传感器T6后与燃料电池单元中空气冷热交换装置的出口1相连,固态储氢装置的空气出口连接有温度传感器T7,然后通过管道接入大气,氢源氢气压力传感器P1和固态储氢装置的空气出口温度传感器T7的输出与电控单元的信号调理电路1的输入端相连,分别作为氢源氢气压力和固态储氢装置的空气出口温度的检测信号。
燃料电池单元由氢气阀、调节阀、燃料电池堆模块、氢气分配器、尾气处理器、尾气阀、空气过滤器、空气加热装置、空气抽气装置、空气冷热交换装置、高压压力传感器P2、进堆氢气压力传感器P3、出堆氢气压力传感器P4、出堆空气温度传感器T5、空气冷热交换装置出口1的空气温度传感器T6、空气流量传感器Fa构成;在氢气供给回路中,来自制氢储氢单元的氢气通过管道与氢气阀的输入端相连,氢气阀的输出端通过管道依次与压力传感器P2、调节阀和分配器相连,电控单元通过控制氢气阀的开通和调压阀阀门的开度后,使氢气被进一步降压后进入氢气分配器,氢气分配器连接有进堆压力传感器P3,其输出端通过4根管道与燃料电池堆模块的氢气入口相连,使氢气由此进入燃料电池堆模块,燃料电池堆模块的氢气出口通过管道与尾气处理器的输入端相连,尾气处理器连接有出堆氢气压力传感器P4,通过燃烧对未反应完的氢气进行消耗处理,防止其泄露到室内或燃料电池单元内部与空气直接混合造成重大安全事故,其输出端通过管道与尾气阀的输入端相连,尾气阀的输出端通过管道接入大气,通过控制尾气阀的开通,排出部分尾气,保证燃料电池单元电化学反应的效率;在空气供给回路中(如图1黑色粗线所示),空气过滤器的风门与大气相连,其输出端通过管道与空气加热装置的输入端相连,通过控制风门的开度调节进入燃料电池单元内部的新鲜空气量,空气加热装置的输出端与燃料电池堆模块的空气入口连接,燃料电池堆模块的空气出口与空气抽气装置的输入端相连,通过控制空气抽气装置的转速产生压力差,使得空气从空气加热装置的输出端进入燃料电池堆模块进行反应,然后携带反应产生的热量从空气抽气装置的输出端流出,空气抽气装置的输出端通过管道依次与空气流量传感器Fa、出堆空气温度传感器T5和空气冷热交换装置的输入端相连,空气冷热交换装置的出口1通过管道依次与空气温度传感器T6和制氢储氢单元的固态储氢装置的空气入口相连,然后接入大气,空气冷热交换装置的出口2通过管道连接至燃料电池单元内部;燃料电池堆模块的正负极直流母线输出端电压为Uo,与DC/DC单元的输入端相连;压力传感器P2~P4、温度传感器T5和T6、流量传感器Fa的输出与电控单元的信号调理电路1的输入端相连,分别作为高压氢气压力、进堆氢气压力和出堆氢气压力、出堆空气温度、空气冷热交换装置出口1的空气温度和空气流量的检测信号。
DC/DC单元由DC/DC1~4构成;DC/DC1~4的输入与输出端完全隔离,其额定输出功率分别为P1、P2、P3、P4,任意三者之和都大于负载功率和该系统自身消耗功率之和的最大值,DC/DC1~4的所有输入端并联作为DC/DC单元的直流电源总输入端,DC/DC1~4的输出端电压分别为UDC1、UDC2、UDC3、UDC4,并联后作为DC/DC单元的直流电源总输出端与输出单元的输入端相连,稳定工作时满足:UDC1=UDC2=UDC3=UDC4。当DC/DC1~4中任意一个出现故障时将其拔掉,使得余下3个DC/DC的输出仍然维持系统正常工作满足负载及该系统总功率消耗的需求,从而实现DC/DC单元“3+1”备份和热插拔功能。当燃料电池单元启动后给负载供电时,通过电控单元的D/A信号调节DC/DC1~4的输出电压,以方面使燃料电池堆各个模块的输出尽可能均匀和一致,另一方面,当辅助启动电池SOC值较低时,为其充电,从而提高系统的工作效率和使用寿命。
输出单元由输出模块、内部供电电路、掉电检测电路构成;输出模块一端与负载相连,当市电供电正常时,由220V交流电整流为48V直流电给负载供电,同时对内部辅助启动电池进行充电;当市电掉电时,内部辅助启动电池给负载供电,同时与内部供电电路相连,内部供电电路输出24V的直流电压与空气抽气装置的供电端相连,输出12V的直流电压与高压阀、氢气阀、调节阀、尾气阀、负载开关1~4、空气加热装置、空气冷热交换装置以及DC/DC1~4的供电端相连为其供电,输出5V和3.3V的直流电压与温度传感器、电控单元、巡检单元、监控单元以及通信单元的供电端相连为其供电,还输出±12V的直流电压与各个电压、电流、压力和流量传感器的供电端相连为其供电;掉电检测电路含有市电电压检测传感器V6,其输出与电控单元的信号调理电路1的输入端相连,作为燃料电池单元快速启动或安全停机的检测信号。
电控单元由信号调理电路1、A/D采样模块1、微处理器1(MCU1)、PWM输出模块、D/A输出模块、CAN1模块、I/O控制模块和驱动电路构成;信号调理电路1的输入端通过数据线与燃料电池堆1~4的输出电压传感器V1~V4、输出单元中的输出模块的输出总电压传感器V5、市电电压检测传感器V6、燃料电池堆1~4的输出电流传感器A1~A4、输出单元中的输出模块的输出总电流传感器温A5、辅助启动电池的充放电电流A6、燃料电池堆1~4的温度传感器T1~T4、出堆空气温度传感器T5、空气冷热交换装置出口1的空气温度传感器T6、制氢储氢单元的固态储氢装置的空气出口温度传感器T7、氢源氢气压力传感器P1、高压压力传感器P2、进堆氢气压力传感器P3、出堆氢气压力传感器P4以及空气流量传感器Fa的输出信号相连,信号调理电路1的输出端与A/D采样单元1相连,MCU1将各种传感器的模拟信号转换为数字信号进行计算处理;PWM输出模块与空气过滤器的风门、空气抽气装置以及调节阀的控制端相连,通过输出PWM信号控制空气过滤器的风门开度、空气抽气装置的转速和调节阀的输出压力;D/A输出模块与DC/DC 1~4的输出电压控制端相连,通过输出不同的数字量转换为模拟量信号控制DC/DC单元的输出电压值;驱动电路由I/O口控制,其输出端与高压阀、氢气阀、尾气处理器、尾气阀、空气加热装置、空气冷热交换装置、各个燃料电池堆的负载开关K1~K4、输出单元中的保护电路和充放电控制电路的功率开关管的控制端相连,控制其接通或关断;通过CAN1与巡检单元的CAN2、监控单元的CAN3和通信单元的CAN4相连并进行通信,发送控制命令以及接收来自巡检单元、监控单元和通信单元的相关数据和信息。
巡检单元由信号调理电路2、A/D采样模块2、微控制器2(MCU2)、第二通讯模块2(RS232/485)、CAN2模块构成;信号调理电路2的输入端通过数据线与燃料电池堆模块所有单片电池正负端相连,信号调理电路2的输出端与A/D采样单元2相连;MCU2将所有单片电池电压值通过巡检单元的第二通讯模块2(RS232/485)发送到上位机,实现所有单片电池电压值在线监测,方便调试和维修;通过CAN2把重要有关单片电压值发送给电控单元供其调整控制参数和策略、发送给监控单元供其实时显示、发送给通信单元供其进行远程传输与监控。
监控单元由LCD、微控制器3(MCU3)、声光报警及指示灯电路、按键、CAN3模块构成;通过CAN3与电控单元、巡检单元和通信单元通信;LCD与MCU3的数据总线和I/O口相连,通过翻屏、换页和滚动的方式实时显示制氢储氢单元、燃料电池单元、DC/DC单元、输出单元的各种参数与状态,以及电控单元、巡检单元和通信单元的命令字,此外还显示该系统的各种故障码(包括参数故障和工作状态故障);声光报警及指示灯电路对系统正常工作状态进行显示,在故障状态下进行声光报警;通过按下相应的按键,操作人员对该系统相关控制参数(如输出总电压、燃料电池堆1~4的温度、出堆空气温度、空气抽气装置的转速)进行设置以及对相关电压、电流、温度和压力等进行查看,或对其工作状态进行相应的操作和控制(如强制启动或关机、保温等)。
通信单元由微控制器4(MCU4)、GPRS模块、Ethernet模块、第一通讯模块1(RS232/485)和CAN4模块构成;通过CAN4与电控单元、巡检单元和监控单元通信;GPRS模块和Etherne t模块与MCU4的数据总线和I/O口相连,GPRS模块和远程监控中心进行无线通信,Ethernet模块与远程监控中心进行以太网或局域网相连实现有线通信;通讯接口之一采用RS232/485总线(通信单元的第一通讯模块1(RS232/485))与上位机通信,方便工作人员进行自动或手动调试与控制;另一通讯接口采用CAN总线(CAN4模块)与电控单元、巡检单元和监控单元通信,接收相关数据和信息,向其发送远程监控命令。
燃料电池堆模块(图2)由燃料电池堆1~4、进堆氢气热插拔接口I1~I4、出堆氢气热插拔接口01~04、燃料电池堆模块温度传感器T1~T4、燃料电池堆1~4的输出电压传感器V1~V4和输出电流传感器A1~A4、防反二极管D1~D4、负载开关K1~K4组成;燃料电池堆模块的氢气入口分别通过4根管道与进堆氢气热插拔接口I1~I4相连,然后分别与燃料电池堆1~4的氢气入口相连,燃料电池堆1~4的氢气出口分别通过管道与出堆氢气热插拔接口01~04相连,然后与燃料电池堆模块的氢气出口相连;燃料电池堆1~4的直流电源输出端分别为U1o、U2o、U3o、U4o,并分别串联有电流传感器A1~A4和并联有电压传感器V1~V4,各自的正极依次与防反二极管D1~D4和负载开关K1~K4相连,负载开关K1~K4的输出端并联后作为燃料电池单元的正负极直流电源母线输出端,在启动过程中,当控制负载开关K1~K4全部闭合后,燃料电池单元启动完成,此时输出电压满足U1o=U2o=U3o=U4o=Ufc,Ufc为燃料电池堆模块稳定输出总电压值;燃料电池堆1~4的额定输出功率分别为P1net、P2net、P3net、P4net,任意三者之和大于负载功率和该系统自身消耗功率之和的最大值,由于进堆氢气热插拔接口I1~I4和出堆氢气热插拔接口01~04在拔出时快速关闭以及对插时两端迅速连通的特性,当任意一个燃料电池堆出现故障时,将其拔掉进行更换或者维修,从而实现“3+1”备份和氢气气路热插拔功能,保证了系统的可靠性供电;温度传感器T1~T4分别嵌入燃料电池堆1~4中与单片电池相连,温度传感器T1~T4、电压传感器V1~V4和电流传感器A1~A4的输出与电控单元的信号调理电路1的输入端相连,MCU1将模拟信号转换为数字信号进行计算处理,分别作为燃料电池堆1~4的温度T1~T4、输出电压U1o~U4o和输出电流I1~I4的检测信号。
输出模块(图3)由保险管F1、滤波电路、保护电路、充放电控制电路、辅助启动电池、输出总电压传感器V5、输出总电流传感器A5和充放电电流传感器A6组成;输出模块的输入端串联有保险管F1,保险管F1的输出端与滤波电路的输入端相连,滤波电路对输入电压进行滤波,去除高频干扰将其调整为平滑的直流电压UDC,其输出端依次串联和并联有输出总电流传感器A5和输出总电压传感器V5,然后与保护电路的输入端相连;保护电路的输出端作为输出模块的输出端,一方面与负载相连,另一方面与充放电控制电路的输入端相连,当出现欠压、过压、过流、过热时通过关断内部功率开关管切断与负载和充放电控制电路的连接,实现对系统的保护;充放电控制电路的双向输出端与辅助启动电池的充放电电流传感器A6串联,然后与辅助启动电池的正负极相连;辅助启动电池的正负极还通过一个支路与内部供电电路相连;电压传感器V5、电流传感器A5和A6的输出与电控单元的信号调理电路1的输入端相连,分别作为该系统输出总电压、输出总电流以及辅助启动电池的充放电电流的检测信号。
内部供电电路(图4)由DC/DC5~9组成;DC/DC5~9的输入端与输出端完全隔离,辅助启动电池的输出端与DC/DC5与DC/DC6的输入端相连,DC/DC5的输出端电压为12V,一方面与高压阀、氢气阀、调节阀、尾气阀、空气加热装置、空气冷热交换装置以及DC/DC1~4的供电端相连为其供电,另一方面与DC/DC7和DC/DC8的输入端相连实现电压进一步转换;DC/DC6的输出端电压为24V,与空气抽气装置的供电端相连为其供电;DC/DC7的输出端电压为5V,与电控单元、巡检单元、监控单元、通信单元的外围电路、温度传感器T1~T6的供电端相连为其供电,以及与DC/DC9的输入端相连实现电压进一步转换;DC/DC8的输出端电压为±12V,给电压传感器传感器V1~V6、电流传感器A1~A6、压力传感器P1~P4和流量传感器Fa供电;DC/DC9的输出端电压为3.3V,给电控单元、巡检单元、监控单元、通信单元的内核和最小系统供电。
在本发明的实施例中,当检测市电掉电时,燃料电池单元快速智能启动,其过程分为以下几个步骤:
首先,为迅速获取氢气,电控单元将空气抽气装置调至最高的转速,关闭空气冷热交换装置的出口2同时打开其出口1,采用基于PI调节器的空气冷热交换装置出口1的空气温度控制(如图5所示),将空气冷热交换装置出口1的空气温度值设置为T′6及以上(根据环境温度的高低情况适当调高调低),保证制氢储氢单元的固态储氢装置吸收热量释放的氢气进行反应产生的直流电能满足负载输出功率以及系统自身功率消耗的要求,T′6与空气冷热交换装置出口1的空气温度传感器T6的实际检测值比较得到温度偏差ΔT6,通过PI调节器1,改变空气冷热交换装置的加热功率,调节空气冷热交换装置出口1的空气温度值。
其次,当空气冷热交换装置出口1的空气温度值上升到接近设置值T′6时,电控单元开通高压阀、氢气阀,并控制调节阀将氢气调到一定压力范围(通常为一个大气压左右),使其进入燃料电池堆模块参与反应,同时启动尾气处理器并开通尾气阀,在燃烧掉未反应完的氢气的同时通过排尾气使燃料电池堆模块气路畅通。
然后,当燃料电池堆1~4输出电压均大于设定的最小安全启动电压值Umin(0.8*n,n为单片电池片数)时,电控单元控制负载开关K1~K4和充放电控制电路的充电开关闭合,同时控制放电开关断开并关闭尾气阀,然后输出D/A信号逐步提升DC/DC1~4的输出电压值,直至充放电电流传感器A6的输出值为负,此时燃料电池单元启动完成,一方面给负载供电,另一方面给辅助启动电池浮充直至充满。由于此时燃料电池堆模块温度较低,为使其温度保持在一定范围Tmin~Tmax,提高反应效率,通过检测输出电流IO,算出满足反应所需的2倍空气过量系数的空气流量值Fair,由空气流量Fair与空气抽气装置的转速Vair的对应关系(由实验获取)算出PWM信号的最小占空比Dmin,并通过PWM输出模块进行输出。
最后,燃料电池单元启动完成给负载及系统自身供电,当巡检单元发送过来的最低单片电压值Using_low低于设定值Using_min时,控制尾气阀每间隔m秒开通n秒排出部分尾气和生成的水,Using_low越低,设置m的值越小,反之越大。此时,燃料电池堆模块温度采用模糊控制(如图6所示),其具体实施为:将燃料电池堆模块的温度给定与温度传感器T1~T4比较得到误差和误差的变换率,通过模糊推理和去模糊化后,得到PWM信号的占空比,由PWM输出模块输出PWM信号控制空气抽气装置的转速实现风冷,若燃料电池堆1~4的温度T1~T4均低于Tmin时,使得输出PWM信号的占空比为Dmin(Dmin为控制空气抽气装置的最低转速保证空气过量系数为2时的最小占空比);若燃料电池堆1~4的温度T1~T4均高于Tmax时,使得输出PWM信号的占空比为1;若燃料电池堆1~4的温度T1~T4中,有i(1≤i≤3)个值高于Tmax时,使得输出PWM信号的占空比介于Dmin和1之间,i越大越接近1,反之越接近Dmin
若在燃料电池单元工作过程中,当通过电压传感器V6的值检测市电供电正常时,电控单元通过依次断开负载开关K1~K4、开通尾气阀、关闭空气抽气装置、空气加热装置、空气冷热交换装置、氢气阀、调压阀和高压阀,从而实现安全关机使负载的供电重新转由市电提供。
在本发明的实施例中,当环境温度低于0℃时,为实现低温储存将燃料电池单元的温度保持在T′5以上(T′5>0℃),电控单元输出PWM信号将空气抽气装置的转速调至Vsave,同时关闭空气过滤器的风门,此外,还通过I/O控制模块输出开关量信号经过驱动电路后关闭空气冷热交换装置的出口1,然后开通空气冷热交换装置的出口2,使燃料电池单元里面密封的空气在内部循环流动,采用基于PI调节器2的燃料电池单元内部空气温度控制(如图7所示),T′5与出堆空气温度传感器T5的实际检测值比较得到温度偏差ΔT′5,通过PI调节器2,改变空气加热装置的加热功率,从而调节燃料电池单元的内部温度;当环境温度很低燃料电池单元的内部温度上升缓慢时,同时启动空气冷热交换装置至满功率运行进行协助加热使内部空气温度迅速达到T′5及以上,从而提高系统的环境适应性、低温存储能力。
燃料电池单元由于市电长期正常供电而处于闲置状态不工作,会导致性能衰减,当检测其持续未工作时间超过设定值Tstop时,通过远程监控中心发送启动命令,或由现场操作人员按下启动按键,或由电控单元自动唤醒发送启动命令,强制启动燃料电池单元,启动过程如上所述几个步骤所示,此时控制负载开关K1~K4保持断开状态,尾气阀以定时间的方式排出尾气,通过这种空载运行生成的水保持质子交换膜的湿度,同时使燃料电池保持良好的电化学反应活性,从而提高了其使用寿命和长期储存能力。
最后应说明,本发明的实施例仅用于说明技术方案而非限制。本发明说明书中未作详细描述的内容属于本专业领域技术人员公知的现有技术。

Claims (10)

1.一种通信用燃料电池备用电源系统,它包括制氢储氢单元、燃料电池单元、DC/DC单元、输出单元、电控单元、巡检单元、监控单元以及通信单元,其特征在于:
制氢储氢单元包含制氢装置和固态储氢装置,制氢装置利用太阳能或风能制氢,以固态形式储存在固态储氢装置中;固态储氢装置使用时通过吸收热量释放高压氢气,氢气经过高压阀和减压阀后进入燃料电池单元;燃料电池单元产生的直流电能由输出端提供给DC/DC单元,同时产生的热量由空气冷热交换装置的出口1供固态储氢装置吸收;DC/DC单元将直流电能调节升压后连接至输出单元;输出单元将电能分别供给负载、燃料电池单元、DC/DC单元、电控单元、巡检单元、监控单元以及通信单元;电控单元与各个传感器的数据线相连,采集氢源氢气压力、高压氢气压力、进堆氢气压力、出堆氢气压力、空气流量、出堆空气温度、空气冷热交换装置的出口1的空气温度、固态储氢装置的空气出口温度、输出总电压与总电流、辅助启动电池的充放电电流、市电电压、燃料电池单元中各个燃料电池堆的输出电压、电流和温度数据;电控单元通过PWM输出模块、D/A输出模块、I/O控制模块控制各个单元中的执行器;电控单元通过CAN1与巡检单元、监控单元、通信单元进行通信;巡检单元通过数据线与燃料电池单元中的燃料电池堆模块所有单片电池的正负端相连,采集所有单片电池电压值并通过CAN2传输,还通过巡检单元的第二通讯模块(2)与上位机进行通信;监控单元实时显示该系统相关的电压、电流、压力、流量、温度参数和工作状态,具备良好的人机交互功能;通信单元通过GPRS或Ethernet实现远程通信与监控,通过通信单元的第一通讯模块(1)与上位机通信,实现现场调试、监控与故障诊断。
2.如权利要求1所述的通信用燃料电池备用电源系统,其特征在于:制氢储氢单元由制氢装置、固态储氢装置、高压阀、减压阀、压力传感器P1以及温度传感器T7构成;制氢装置连接有压力传感器P1,利用太阳能或风能制氢,其氢气出口通过管道与固态储氢装置的氢气入口相连,氢气以固态形式储存在固态储氢装置中,固态储氢装置的氢气出口通过管道依次与高压阀、减压阀和燃料电池单元中燃料电池堆模块的氢气入口相连,此外,固态储氢装置的空气入口经过温度传感器T6后与燃料电池单元中空气冷热交换装置的出口1相连,固态储氢装置的空气出口连接有温度传感器T7,然后通过管道接入大气,压力传感器P1和温度传感器T7的输出与电控单元的信号调理电路1的输入端相连,分别作为氢源氢气压力和固态储氢装置的空气出口温度的检测信号。
3.如权利要求2所述的通信用燃料电池备用电源系统,其特征在于:燃料电池单元由燃料电池堆模块、氢气阀、调节阀、分配器、尾气处理器、尾气阀、空气过滤器、空气加热装置、空气抽气装置、空气冷热交换装置、压力传感器P2~P4、温度传感器T5和T6、流量传感器Fa构成;在氢气供给回路中,来自制氢储氢单元的氢气通过管道与氢气阀的输入端相连,氢气阀的输出端通过管道依次与压力传感器P2、调节阀和分配器相连,分配器连接有进堆压力传感器P3,其输出端通过4根管道与燃料电池堆模块的氢气入口相连,燃料电池堆模块的氢气出口通过管道与尾气处理器的输入端相连,尾气处理器连接有出堆氢气压力传感器P4,其输出端通过管道与尾气阀的输入端相连,尾气阀的输出端通过管道接入大气;在空气供给回路中,空气过滤器的风门与大气相连,其输出端通过管道与空气加热装置的输入端相连,空气加热装置的输出端与燃料电池堆模块的空气入口相连,燃料电池堆模块的空气出口与空气抽气装置的输入端相连,空气抽气装置的输出端通过管道依次与空气流量传感器Fa、温度传感器T5和空气冷热交换装置的输入端相连,空气冷热交换装置的出口1通过管道依次与温度传感器T6、制氢储氢单元的固态储氢装置的空气入口相连,空气冷热交换装置的出口2通过管道连接至燃料电池单元内部;所述燃料电池堆模块由燃料电池堆1~4、进堆氢气热插拔接口I1~I4、出堆氢气热插拔接口01~04、温度传感器T1~T4、电压传感器V1~V4、电流传感器A1~A4、二极管D1~D4、负载开关K1~K4组成;燃料电池堆模块的氢气入口分别通过4根管道与进堆氢气热插拔接口I1~I4相连,然后分别与燃料电池堆1~4的氢气入口相连,燃料电池堆1~4的氢气出口分别通过管道与出堆氢气热插拔接口01~04相连,然后与燃料电池堆模块的氢气出口相连;燃料电池堆1~4的直流电源输出端分别串联有电流传感器A1~A4和并联有电压传感器V1~V4;燃料电池堆1~4的直流电源输出端的正极依次与二极管D1~D4和负载开关K1~K4相连,经过K1~K4后的输出端相并联作为燃料电池单元的正负极直流电源母线输出端;温度传感器T1~T4分别嵌入燃料电池堆1~4中与单片电池相连;压力传感器P2~P4、温度传感器T5和T6、流量传感器Fa、温度传感器T1~T4、电压传感器V1~V4和电流传感器A1~A4的输出与电控单元的信号调理电路1的输入端相连,分别作为高压氢气压力、进堆氢气压力和出堆氢气压力、出堆空气温度、空气冷热交换装置出口1的空气温度、空气流量、燃料电池堆1~4的温度、输出电压和输出电流的检测信号。
4.如权利要求3所述的通信用燃料电池备用电源系统,其特征在于:DC/DC单元由DC/DC1~4构成;DC/DC1~4的输入端先并联,然后与燃料电池堆模块的正负极直流母线输出端相连,对燃料电池堆模块的输出电压进行调节升压,DC/DC1~4输出端并联后与输出单元的输入端相连。
5.如权利要求4所述的通信用燃料电池备用电源系统,其特征在于:输出单元由输出模块、内部供电电路、掉电检测电路构成;输出模块的输出端与负载相连,当市电供电正常时,由220V交流电整流为48V直流电给负载供电,同时对内部辅助启动电池进行充电;当市电掉电时,输出模块内部的辅助启动电池给负载供电,所述输出模块由保险管F1、滤波电路、保护电路、充放电控制电路、辅助启动电池、电压传感器V5、电流传感器A5和A6组成;输出模块的输入端串联有保险管F1,保险管F1的输出端与滤波电路的输入端相连,滤波电路的输出端依次串联有电流传感器A5和并联有电压传感器V5,然后与保护电路的输入端相连,保护电路的输出端作为输出模块的输出端,一方面与负载相连,另一方面与充放电控制电路的输入端相连,充放电控制电路的双向输出端与辅助启动电池的充放电电流传感器A6串联,然后与辅助启动电池的正负极相连,辅助启动电池的正负极还通过一个支路同时与内部供电电路的输入端相连,内部供电电路输出24V的直流电压与空气抽气装置的供电端相连,输出12V的直流电压与各种阀、负载开关、装置以及DC/DC的供电端相连,输出5V和3.3V的直流电压与温度传感器、电控单元、巡检单元、监控单元以及通信单元的供电端相连,还输出±12V的直流电压与各个电压、电流、压力和流量传感器的供电端相连;掉电检测电路的电压传感器V6、电压传感器V5、电流传感器A5和A6的输出与电控单元的信号调理电路1的输入端相连,分别作为燃料电池单元快速启动或安全停机、该系统输出总电压、输出总电流以及辅助启动电池的充放电电流的检测信号。
6.如权利要求5所述的通信用燃料电池备用电源系统,其特征在于:电控单元由信号调理电路1、A/D采样模块1、微处理器1(MCU1)、PWM输出模块、D/A输出模块、CAN1模块、I/O控制模块和驱动电路构成;信号调理电路1的输入端通过数据线与电压传感器V1~V6、电流传感器A1~A6、温度传感器T1~T7、压力传感器P1~P4和空气流量传感器Fa的输出信号相连,信号调理电路1的输出端与A/D采样模块1相连;PWM输出模块与空气过滤器的风门、空气抽气装置以及调节阀的控制端相连,通过输出PWM信号控制空气过滤器的风门开度、空气抽气装置的转速和调节阀的输出压力;D/A输出模块与DC/DC1~4的输出电压控制端相连,通过输出不同的数字量转换为模拟量控制DC/DC单元的输出电压值;驱动电路由I/O口控制,其输出端与高压阀、氢气阀、尾气处理器、尾气阀、空气加热装置、空气冷热交换装置、各个燃料电池堆的负载开关K1~K4、输出单元中的保护电路和充放电控制电路的功率开关管的控制端相连,控制其接通或关断;通过CAN1与巡检单元的CAN2、监控单元的CAN3、通信单元的CAN4相连并进行通信,发送控制命令以及接收来自巡检单元、监控单元、通信单元的相关数据和信息。
7.如权利要求1所述的通信用燃料电池备用电源系统,其特征在于:巡检单元由信号调理电路2、A/D采样模块2、微控制器2(MCU2)、第二通讯模块(2)、CAN2模块构成;信号调理电路2的输入端通过数据线与燃料电池堆模块所有单片电池正负端相连,信号调理电路2的输出端与A/D采样模块2相连;微控制器2将所有单片电池电压值通过巡检单元的第二通讯模块(2)发送到上位机,通过CAN2把单片电压值发送给电控单元、监控单元、通信单元。
8.如权利要求1所述的通信用燃料电池备用电源系统,其特征在于:监控单元由LCD、微控制器3(MCU3)、声光报警及指示灯电路、按键、CAN3模块构成;通过CAN3与电控单元、巡检单元、通信单元通信;LCD显示制氢储氢单元、燃料电池单元、DC/DC单元、输出单元的各种参数与工作状态,以及电控单元、巡检单元、通信单元的命令字,此外还显示该系统的各种故障码;声光报警及指示灯电路对系统正常工作状态进行显示,在故障状态下进行声光报警;通过按下相应的按键,操作人员对燃料电池单元相关参数进行设置和查看,或对其工作状态进行相应的操作和控制。
9.如权利要求1所述的通信用燃料电池备用电源系统,其特征在于:通信单元由微控制器4(MCU4)、GPRS模块、Ethernet模块、第一通讯模块(1)和CAN4模块构成;通过CAN4与电控单元、巡检单元和监控单元通信;GPRS模块和远程监控中心进行无线通信,Ethernet模块与远程监控中心进行以太网或局域网相连实现有线通信;采用第一通讯模块(1)与上位机通信,方便工作人员进行自动或手动调试与控制。
10.如权利要求3所述的通信用燃料电池备用电源系统,其控制方法是:采用自适应的功率输出控制方法,通过智能启动、低温存储和长期储存控制保证通信基站的供电无间断,同时提高系统的可靠性、耐久性与安全性,其中:
燃料电池单元采用基于PI调节器的空气冷热交换装置和空气加热装置的控制进行空气温度调节,分别实现氢气燃料的快速获取和低温存储;电控单元实时检测市电供电电压,当市电供电正常时,由220V交流电整流为48V直流电给负载供电,同时对内部辅助启动电池进行充电;当市电掉电时,内部辅助启动电池立即接入给负载供电,同时给该系统各单元供电,快速启动燃料电池;当燃料电池单元启动成功后,由燃料电池输出电能给负载供电,采用模糊控制方法改变PWM信号的占空比,通过控制空气抽气装置的转速调节空气带走的热量将燃料电池堆模块的温度控制在一定范围;当市电长期给负载供电而燃料电池单元不工作时,通过远程监控中心、或现场按下启动按键、或由电控单元自动唤醒发送启动命令,强制启动燃料电池单元保持其良好的电化学反应活性,提高其可靠性和使用寿命;所述燃料电池单元快速启动时为迅速获取氢气,电控单元将空气抽气装置调至一定的转速,关闭空气冷热交换装置出口2同时打开其出口1,采用基于PI调节器的空气冷热交换装置出口1的空气温度控制,设置空气冷热交换装置出口1的空气温度值为T′6,T′6与温度传感器T6的实际检测值比较得到温度偏差ΔT6,通过PI调节器1,改变空气冷热交换装置的加热功率,调节空气冷热交换装置出口1的空气温度值以及制氢储氢单元的固态储氢装置的吸热量;在低温储存时,为保持燃料电池单元内部空气温度在T′5以上,T5>0℃,也将空气抽气装置调至一定的转速,此时,关闭空气冷热交换装置的出口1同时打开其出口2,采用基于PI调节器的燃料电池单元内部温度控制,T′5与空气温度传感器T5的实际检测值比较得到温度偏差ΔT′5,通过PI调节器2,改变空气加热装置的加热功率,调节燃料电池单元的内部温度;电控单元实时检测市电供电电压,当市电掉电时启动燃料电池单元给负载供电,其中空气过量系数控制在2以上,当燃料电池单元持续工作产生热量而温度升高时,采用模糊控制方法改变PWM输出信号的占空比,通过控制空气抽气装置的转速调节空气带走的热量,将燃料电池堆模块的温度保持在一定范围。
CN2009100610321A 2009-03-09 2009-03-09 一种通信用燃料电池备用电源系统 Expired - Fee Related CN101505092B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100610321A CN101505092B (zh) 2009-03-09 2009-03-09 一种通信用燃料电池备用电源系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100610321A CN101505092B (zh) 2009-03-09 2009-03-09 一种通信用燃料电池备用电源系统

Publications (2)

Publication Number Publication Date
CN101505092A CN101505092A (zh) 2009-08-12
CN101505092B true CN101505092B (zh) 2011-11-16

Family

ID=40977221

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100610321A Expired - Fee Related CN101505092B (zh) 2009-03-09 2009-03-09 一种通信用燃料电池备用电源系统

Country Status (1)

Country Link
CN (1) CN101505092B (zh)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814768A (zh) * 2010-03-11 2010-08-25 昆山弗尔赛能源有限公司 一种基于燃料电池的备用电源系统
CN102013503B (zh) * 2010-11-04 2012-09-05 北京万瑞讯通科技有限公司 燃料电池备用电源控制系统及其控制方法
CN102097636B (zh) * 2011-01-07 2013-07-17 武汉理工大学 一种燃料电池系统的故障诊断装置及方法
CN102114789A (zh) * 2011-01-24 2011-07-06 昆山弗尔赛能源有限公司 多功能燃料电池汽车系统
CN102361345B (zh) * 2011-10-21 2013-06-26 浙江大学 一种燃料电池不间断电源无缝切换控制方法
CN102386672A (zh) * 2011-11-23 2012-03-21 南京禾浩通信科技有限公司 基于燃料电池的备用电源控制系统
CN102569854B (zh) * 2012-01-30 2014-07-09 中国人民解放军63908部队 一种便携式pemfc燃料电池电源系统
CN102594890A (zh) * 2012-02-17 2012-07-18 昆山弗尔赛能源有限公司 一种多功能的燃料电池备用电源远程监控系统
CN102904444B (zh) * 2012-08-07 2015-01-21 上海交通大学 基于质子交换膜燃料电池的dc/dc变换和控制系统
CN103475066A (zh) * 2013-09-27 2013-12-25 瑞昌哥尔德发电设备(无锡)制造有限公司 一种不间断供电系统
CN104681829A (zh) * 2013-12-02 2015-06-03 陕西荣基实业有限公司 一种用于通信基站的氢气燃料电池
CN104393626A (zh) * 2014-07-16 2015-03-04 苏州华清京昆新能源科技有限公司 一种分布式固体氧化物燃料电池充电站
CN104201403A (zh) * 2014-08-13 2014-12-10 昆山弗尔赛能源有限公司 燃料电池备用电源系统
CN104836319B (zh) * 2015-05-26 2017-10-13 武汉众宇动力系统科技有限公司 一种一体化燃料电池供电系统
CN105024446A (zh) * 2015-07-02 2015-11-04 北京明德微纳技术发展有限公司 供电方法
CN106410947A (zh) * 2016-04-18 2017-02-15 北京航天动力研究所 一种市电补给燃料电池备用电源装置
CN106208370A (zh) * 2016-07-22 2016-12-07 安徽亚辉电气自动化有限公司 一种基于电能优化装置的监测控制系统
CN106159299A (zh) * 2016-08-09 2016-11-23 江苏国泽光电科技有限公司 一种燃料电池系统的供电控制方法
CN106787139A (zh) * 2016-12-27 2017-05-31 北京有色金属研究总院 一种用于通信基站的制氢‑储氢燃料电池备用电源系统
CN107222154B (zh) * 2017-07-13 2023-09-12 天津中德应用技术大学 利用氢燃料电池储能的光伏发电系统及其控制方法
CN109473704A (zh) * 2017-09-08 2019-03-15 徐煜 燃料电池系统
CN107658930A (zh) * 2017-10-12 2018-02-02 东莞博力威新能源有限公司 一种储能电池
CN111682244B (zh) * 2017-11-08 2022-04-29 南京晓庄学院 一种可逆燃料电池堆节能装置的控制方法
CN110015206A (zh) * 2017-12-04 2019-07-16 中国科学院大连化学物理研究所 一种车载甲醇燃料电池管理系统及方法
CN108767295A (zh) * 2018-04-19 2018-11-06 苏州诺登德智能科技有限公司 一种燃料电池控制系统
CN108598527B (zh) * 2018-05-17 2020-08-14 中车青岛四方机车车辆股份有限公司 燃料电池的供气控制方法、装置和系统以及轨道车辆
CN110834568B (zh) * 2018-08-16 2023-04-07 深圳市佳华利道新技术开发有限公司 一种电池供电系统及其控制方法
CN109193723B (zh) * 2018-10-11 2023-12-05 福建星云电子股份有限公司 一种组合式的基站后备储能电源及控制方法
CN111463469A (zh) * 2020-04-27 2020-07-28 浙江高成绿能科技有限公司 一种模块式的燃料电池备用电源
CN111628197B (zh) * 2020-05-29 2021-08-17 湖北工业大学 基于can总线的燃料电池动力系统平台上位机监控方法
CN111725543B (zh) * 2020-06-30 2021-09-24 上海捷氢科技有限公司 一种氢燃料电池及其控制方法
CN112359371B (zh) * 2020-10-12 2023-11-17 艾氢技术(苏州)有限公司 一种应用于固体氢化镁水解生氢发电装置的人工智能综合控制系统
CN112467176B (zh) * 2020-12-04 2022-12-06 上海燃锐新能源汽车技术有限公司 一种燃料电池发动机系统的氢气压力控制方法及装置
CN112803566A (zh) * 2021-01-13 2021-05-14 中车青岛四方机车车辆股份有限公司 一种电池混动控制装置及供电管理系统、轨道车辆
CN113113922B (zh) * 2021-04-08 2023-02-10 国网综合能源服务集团有限公司 一种综合能源供给系统
CN113299348B (zh) * 2021-05-24 2023-01-06 潍柴动力股份有限公司 不间断的供电系统及方法
CN113612310B (zh) * 2021-08-09 2023-06-20 四川帝威能源技术有限公司 一种氢氧反应转化电能的系统
CN114844198A (zh) * 2022-04-19 2022-08-02 海南天宇科技集团有限公司 一种不断电系统与固态储氢瓶组合的电力架构
CN115117402A (zh) * 2022-08-26 2022-09-27 海卓动力(青岛)能源科技有限公司 一种燃料电池系统无辅助启动系统及启动方法
CN117352777B (zh) * 2023-12-05 2024-03-05 大连擎研科技有限公司 一种燃料电池系统及其低温启动方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1632978A (zh) * 2004-12-29 2005-06-29 武汉理工大学 一种车用燃料电池发动机控制方法及装置
US6960400B2 (en) * 2001-12-26 2005-11-01 Toyota Jidosha Kabushiki Kaisha Fuel cell power generation system and control method thereof
CN2914100Y (zh) * 2006-01-25 2007-06-20 武汉理工大学 一种燃料电池堆单片电压检测装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6960400B2 (en) * 2001-12-26 2005-11-01 Toyota Jidosha Kabushiki Kaisha Fuel cell power generation system and control method thereof
CN1632978A (zh) * 2004-12-29 2005-06-29 武汉理工大学 一种车用燃料电池发动机控制方法及装置
CN2914100Y (zh) * 2006-01-25 2007-06-20 武汉理工大学 一种燃料电池堆单片电压检测装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JP特开2003-317761A 2003.11.07
魏金强等.燃料电池发动机风量PID控制器的设计.《武汉理工大学学报.信息与管理工程版》.2007,第29卷(第1期),22-26. *

Also Published As

Publication number Publication date
CN101505092A (zh) 2009-08-12

Similar Documents

Publication Publication Date Title
CN101505092B (zh) 一种通信用燃料电池备用电源系统
CN201466785U (zh) 一种通信用燃料电池备用电源装置
CN102569854B (zh) 一种便携式pemfc燃料电池电源系统
CN103078362A (zh) 一种基于通信用燃料电池备用电源系统
CN106787139A (zh) 一种用于通信基站的制氢‑储氢燃料电池备用电源系统
CN107039667B (zh) 燃料电池堆发电系统的信号控制系统及控制方法
CN207218260U (zh) 一种终端供能系统
CN106981929A (zh) 一种基于gprs通信的节能环保无线远程变电站监控系统
US20230010307A1 (en) Large proton exchange membrane fuel cell power station process system
CN103248082A (zh) 带有氢气循环装置的燃料电池备用电源系统
CN204497336U (zh) 千瓦级燃料电池锂离子电池混合动力装置
CN111082413A (zh) 一种城市社区全直流微电网及其控制系统
CN116667405A (zh) 一种多能源互补调节的低碳节能方法及系统
CN201821261U (zh) 一种基于燃料电池的备用电源系统
CN202444020U (zh) 一种便携式pemfc燃料电池电源系统
CN202817796U (zh) 带有氢气循环装置的燃料电池备用电源系统
CN110762396A (zh) 一种智能燃气调压箱
CN110208710A (zh) 一种燃料电池发动机瞬态响应性能的检测方法和系统
CN211456712U (zh) 一种以海洋能为辅助电源的海上型风力发电系统
CN211010808U (zh) 一种智能燃气调压箱
CN201854065U (zh) 一种利用多种能源互补发电的独立供电系统
CN205959404U (zh) 临时调压撬数据采集监控系统
CN111262274A (zh) 以海洋能为辅助电源的海上型风力发电系统及其控制方法
CN115880865A (zh) 一种燃气报警联动方法及联动系统
CN209642396U (zh) 人防警报用大功率智能电源装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20180207

Address after: 430074 Hubei city of Wuhan province East Lake New Technology Development Zone Wu Da Yuan Road four building a layer of 120-B research

Patentee after: Amperex Technology Limited of the Wuhan sea

Address before: 430070 Hubei city of Wuhan province Wuchang Luoshi Road No. 122

Patentee before: Wuhan University of Technology

TR01 Transfer of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111116

Termination date: 20210309

CF01 Termination of patent right due to non-payment of annual fee