WO2019218768A1 - 一种基于减阻工作液的全封闭瓦斯抽采泵节能系统 - Google Patents

一种基于减阻工作液的全封闭瓦斯抽采泵节能系统 Download PDF

Info

Publication number
WO2019218768A1
WO2019218768A1 PCT/CN2019/078263 CN2019078263W WO2019218768A1 WO 2019218768 A1 WO2019218768 A1 WO 2019218768A1 CN 2019078263 W CN2019078263 W CN 2019078263W WO 2019218768 A1 WO2019218768 A1 WO 2019218768A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
liquid
pump
drag
working fluid
Prior art date
Application number
PCT/CN2019/078263
Other languages
English (en)
French (fr)
Inventor
周福宝
张一帆
刘春�
李金石
潘卓
Original Assignee
中国矿业大学
江苏信创安全技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学, 江苏信创安全技术研究院有限公司 filed Critical 中国矿业大学
Publication of WO2019218768A1 publication Critical patent/WO2019218768A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F7/00Methods or devices for drawing- off gases with or without subsequent use of the gas for any purpose
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C19/00Rotary-piston pumps with fluid ring or the like, specially adapted for elastic fluids
    • F04C19/001General arrangements, plants, flowsheets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C19/00Rotary-piston pumps with fluid ring or the like, specially adapted for elastic fluids
    • F04C19/004Details concerning the operating liquid, e.g. nature, separation, cooling, cleaning, control of the supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0092Removing solid or liquid contaminants from the gas under pumping, e.g. by filtering or deposition; Purging; Scrubbing; Cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • F04C29/042Heating; Cooling; Heat insulation by injecting a fluid

Definitions

  • the invention belongs to the technical field of coal mine gas drainage, and particularly relates to a fully enclosed gas drainage pump energy saving system based on drag reducing working fluid.
  • the gas drainage pumping station is the core part of the coal mine gas drainage system.
  • Existing coal mine ground gas pumping stations generally use low-level pools, high-level pools, cooling towers, gas drainage pumps and necessary fire-proof explosion-proof devices to form a semi-open circulation system, resulting in great waste of water resources. Consume 5 to 120 tons of clean water per day. At the same time, the gas pumping station consumes a large amount of electricity, accounting for more than a quarter of the entire coal mine power system, and the existing gas pumping pump operating efficiency is extremely low.
  • Chinese patent CN107152399A discloses a method for improving the efficiency of gas pumping liquid ring vacuum pump by using polymer drag reducing agent, which greatly improves the operating efficiency of gas drainage pump.
  • the method has been successfully applied to underground coal mine gas drainage pumping stations, and has achieved remarkable economic benefits.
  • the use of existing gas drainage systems is not particularly applicable. The main reasons are twofold: First, large gas drainage pumps consume a lot of water.
  • the cycle utilization rate of the drag reducing working fluid is low, which leads to the need to frequently add drag reducing working fluid; secondly, the circulating pool is huge in volume, even more than one thousand cubic meters, the amount of drag reducing agent is large, the cost is increased, and the net benefit of energy saving is lowered, hindering The application of this technology in coal mine ground pumping stations.
  • the object of the present invention is to provide an energy-saving system for a fully enclosed gas drainage pump based on a drag reducing working fluid, which can save water resources, has high cycle utilization rate of drag reducing working fluid, small dosage, and increases net energy saving efficiency, and has high intelligence level. And can greatly improve the operating efficiency of the gas pump.
  • the energy-saving system of the fully-closed gas drainage pump based on the drag reducing working fluid of the invention comprises a gas purification system, a gas drainage pump working fluid circulation system, a rehydration system and a monitoring system;
  • the gas purification system comprises The cyclone dust collecting device and the dust concentration sensor, the cyclone dust collecting device and the dust concentration sensor are sequentially installed on the gas drainage intake pipeline;
  • the gas drainage pump working fluid circulation system comprises a gas drainage pump, a gas-liquid separator, a liquid-liquid Heat exchanger, drag reducing fluid adding device, temperature sensor I, differential pressure sensor, electromagnetic flowmeter, temperature sensor II and motor parameter monitor, the gas outlet of the gas-liquid separator passes through the gas pumping inlet pipe
  • the gas inlet port of the gas drainage pump is connected, and the temperature sensor I, the liquid-liquid heat exchanger, the drag reducing liquid adding device, the electromagnetic flow meter, and the temperature sensor II are sequentially installed on the gas inlet pipe of the gas drainage pump, and the pressure difference is
  • the sensor
  • a ball valve I is disposed on the pipeline between the temperature sensor I and the liquid-liquid heat exchanger, and the ball valve I is connected to the upper computer signal.
  • a ball valve II is disposed on the pipeline between the fluid replacement port and the liquid return port of the gas-liquid separator, and the ball valve II is connected to the host computer signal.
  • the drag reducing liquid adding device determines the adding amount of the drag reducing liquid according to the operating power change of the gas drainage pump monitored by the motor parameter monitor; when the operating power is increased by 15%, the drag reducing liquid adding device is turned on, and the reducing agent is slowly injected and reduced. Blocking liquid; stop the injection when the operating power is reduced to the lowest power.
  • the gas-liquid separator is equipped with a mist eliminator for initial gas-liquid separation, and then subjected to secondary separation by a low-resistance dehydrator to realize a fully closed cycle of the drag reducing liquid.
  • the invention utilizes the existing low-position pool, high-position pool and cooling tower of the ground gas pumping station to provide circulating cooling water for cooling the high-temperature drag reducing liquid for the liquid-liquid heat exchanger; using a small amount of drag reducing liquid in the gas-liquid separator as the gas
  • the liquid supply source of the pump replaces the extra large volume of the circulating pool, achieving low-cost input of the drag reducing liquid and high return of net benefit; reducing the pulverized coal entering the gas extraction through the cyclone dust collecting device on the gas inlet pipe
  • the number of pumps reduces the wear of pulverized coal on the blades and pump body of the gas pump, and can effectively prevent the blockage of the liquid-liquid heat exchanger and ensure the stable operation of the system; through the gas-liquid separator with the defogger installed In series with the low-resistance dehydrator, it can efficiently recover the drag reducing fluid from the gas pump, save a lot of water resources, and further reduce the cost of the drag reducer; through the temperature sensor
  • the fully enclosed energy-saving system provided by the invention can be used to improve the operating power of the gas drainage pump, realize the high-efficiency circulation and utilization of the drag reducing working fluid, and is especially suitable for the permanent large-scale gas drainage pumping station of the coal mine ground.
  • the system occupies small space, high level of intelligence, convenient operation, remarkable water-saving and energy-saving effect, and has wide practicality.
  • FIG. 1 is a schematic diagram of an energy-saving system of a fully enclosed gas drainage pump based on a drag reducing working fluid of the present invention.
  • gas purification system 101, cyclone dust collector; 102, dust concentration sensor; 2, gas pumping fluid circulation system; 201, gas pump; 202, gas-liquid separator; 203, temperature sensor I; 204, ball valve I; 205, liquid-liquid heat exchanger; 206, differential pressure sensor; 207, drag reducing liquid adding device; 208, electromagnetic flow meter; 209, temperature sensor II; 3, rehydration system; Resistance dehydrator; 302, pulverized coal sedimentation tank; 303, submersible pump; 304, liquid level sensor; 305, rehydration connection port; 306, ball valve II; 4, upper machine; 5, motor parameter monitor; 6, gas extraction Intake pipeline; 7, gas extraction pump inlet pipeline; 8, gas extraction and exhaust pipeline; 9, rehydration pipeline.
  • the energy-saving system of the fully enclosed gas drainage pump based on the drag reducing working fluid comprises a gas purification system 1, a gas drainage pump working fluid circulation system 2, a rehydration system 3 and a monitoring system.
  • the gas purification system includes a cyclone dust collecting device 101 and a dust concentration sensor 102, and the cyclone dust collecting device 101 and the dust concentration sensor 102 are sequentially installed on the gas extraction intake pipe 6.
  • the gas drainage pump working fluid circulation system 2 comprises a gas drainage pump 201, a gas-liquid separator 202, a liquid-liquid heat exchanger 205, a drag reducing liquid adding device 207, a temperature sensor I203, a differential pressure sensor 206, and an electromagnetic system.
  • a ball valve I204 is disposed on the pipeline between the temperature sensor I203 and the liquid-liquid heat exchanger 205.
  • the rehydration system 3 includes a low-resistance dehydrator 301, a pulverized coal sedimentation tank 302, a submersible pump 303, a liquid level sensor 304, and a rehydration connection port 305, and the gas outlet B of the gas-liquid separator 202 is exhausted by gas extraction.
  • the pipeline 8 is connected to the low-resistance dehydrator 301, the pulverized coal sedimentation tank 302 is disposed below the low-resistance dehydrator 301, the submersible pump 303 is disposed in the pulverized coal sedimentation tank 302, and the submersible pump 303 is sequentially connected to the rehydration connection port 305 through the rehydration pipeline 9.
  • a liquid returning port C of the gas-liquid separator 202 the liquid level sensor 304 is disposed in the gas-liquid separator 202, and is located above the liquid return port C, and the liquid level sensor 304 is connected to the submersible pump 303.
  • a ball valve II306 is disposed on the pipeline between the fluid replacement port 305 and the liquid return port C of the gas-liquid separator 202.
  • the monitoring system includes a host computer 4, and the dust concentration sensor 102, the differential pressure sensor 206, the electromagnetic flowmeter 208, the temperature sensor I203, the temperature sensor II209, the liquid level sensor 304, and the motor parameter monitor 5 are respectively associated with the upper position.
  • the machine 4 signal is connected; the dust concentration sensor 102 is used for monitoring the concentration of pulverized coal filtered by the dust reducing device, and the temperature sensor I 203 and the temperature sensor II 209 and the differential pressure sensor 206 are respectively used for monitoring the flow of the drag reducing liquid through the liquid-liquid heat exchange.
  • the temperature and pressure difference before and after the 205, the electromagnetic flowmeter 208 is used to monitor the flow of the drag reducing liquid through the liquid-liquid heat exchanger 205, and the liquid level sensor 304 is used to monitor the liquid level in the gas-liquid separator 202, the motor
  • the parameter monitor 5 is used to monitor the operating parameters of the gas extraction pump 201.
  • the ball valve I204 is signally connected to the upper computer 4, and the upper computer 4 receives the temperature, pressure, and flow signals fed back by the temperature sensor, the differential pressure sensor, and the electromagnetic flowmeter, and controls the opening/closing operation of the ball valve I204.
  • the ball valve II306 is signally connected to the upper computer 4, and the upper computer 4 receives the liquid level signal fed back by the liquid level sensor 304 and controls the opening/closing operation of the ball valve II306.
  • the drag reducing liquid adding device 207 is opened, and a quantitative drag reducing liquid is injected into the gas pumping pump 201 to form a gas drainage pump operating system using the drag reducing liquid as a working medium, and the motor parameter monitor is recorded at this time. 5 collected power value P.
  • the gas in the gas intake pipeline 6 and the part of the pulverized coal carried in the gas extraction pipeline are filtered by the cyclone dust collecting device 101, and the filtered pulverized coal concentration is monitored by the dust concentration sensor 102, and the purified gas is introduced into the gas pumping.
  • the gas and the drag reducing liquid outside the pump simultaneously enter the high-efficiency gas-liquid separator 202, wherein the gas is discharged into the atmosphere through the gas extraction and exhaust pipe 8.
  • the generator set most of the drag reducing liquid is trapped by the high efficiency gas-liquid separator 202 and falls therein, and the drag reducing liquid successfully captured by the high-efficiency gas-liquid separator 202 is secondarily separated by the low-resistance dehydrator 301.
  • the submersible pump 303 in the pulverized coal sedimentation tank 302 After entering the pulverized coal sedimentation tank 302; the submersible pump 303 in the pulverized coal sedimentation tank 302 receives the output signal from the liquid level sensor 304, through the rehydration pipeline 9, the rehydration connection port 305 and the ball valve II 306, to the high efficiency gas-liquid separator 202 Automatic rehydration maintains the stability of the liquid level in the high efficiency gas-liquid separator 202.
  • the high temperature drag reducing liquid in the high efficiency gas-liquid separator 202 is lowered to a suitable temperature by the liquid-liquid heat exchanger 205, and sent to the gas pumping pump 201.
  • the temperature sensor and the pressure difference before and after the flow of the drag liquid through the liquid-liquid heat exchanger 205 are sequentially monitored by the temperature sensor I 203, the temperature sensor II 209, and the differential pressure sensor 206 installed on the gas suction pump inlet line 7.
  • the flow rate of the drag reducing liquid flowing through the liquid-liquid heat exchanger 205 is monitored by the electromagnetic flow meter 208 installed on the gas suction pump inlet line 7, which can reflect the cooling effect and working condition of the liquid-liquid heat exchanger 205.
  • the drag reducing fluid adding device 207 is again turned on, and the quantitative drag reducing is injected. Liquid to ensure that the gas pumping pump 201 is always operating in an energy efficient range.
  • the working fluid in the gas pumping pump 201 is completely replaced once every 3 to 10 days, and the drag reducing liquid is newly added.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Separation Of Particles Using Liquids (AREA)

Abstract

一种基于减阻工作液的全封闭瓦斯抽采泵节能系统,包括瓦斯净化系统(1)、瓦斯抽采泵工作液循环系统(2)、补液系统(3)和上位机(4)监控系统。抽采管路中的瓦斯携带部分煤粉经旋风降尘装置(101)净化,进入以高分子减阻液为工作介质的瓦斯抽采泵(201),并经气液分离器(202)、液-液换热器(205)循环使用减阻工作液,辅以瓦斯排气管路(8)上的低阻力脱水器(301)实现减阻液的全封闭式循环。通过液位传感器(304)监测气液分离器(202)中的液位,由监控系统自动实现气液分离器(202)中的补液,并实时监测减阻液的流量、换热器的压差、管路中的粉尘浓度等,保证地面抽采系统的稳定可靠运行。该系统可大幅提高瓦斯抽采泵站的运行效率和节水能力,显著降低减阻液的成本,节约人力物力,应用广泛。

Description

一种基于减阻工作液的全封闭瓦斯抽采泵节能系统 技术领域
本发明属于煤矿瓦斯抽采技术领域,具体涉及一种基于减阻工作液的全封闭瓦斯抽采泵节能系统。
背景技术
瓦斯抽采泵站是煤矿瓦斯抽采系统中的核心部分。现有煤矿地面瓦斯抽采泵站普遍采用低位水池、高位水池、冷却塔、瓦斯抽采泵及必要防火隔爆装置等组成,形成半开式循环系统,造成了极大的水资源浪费,预计每天消耗5~120吨的清洁水。同时,瓦斯抽采泵站耗电量巨大,约占整个煤矿用电系统的四分之一以上,且现有瓦斯抽采泵运行效率极低。
为解决瓦斯抽采泵能耗高、效率低的现状,中国专利CN107152399A公开了一种采用高分子减阻剂提高瓦斯抽放液环真空泵效率的方法,极大地提高了瓦斯抽采泵的运行效率,该方法已成功应用于煤矿井下移动瓦斯抽采泵站,取得了显著的经济效益。然而,对于地面永久抽采泵站的大型或特大型瓦斯抽采泵,采用现有的瓦斯抽采系统并不特别适用,主要原因有两点:一是,大型瓦斯抽采泵耗水量极大,减阻工作液循环利用率低,导致需要频繁添加减阻工作液;二是,循环水池体积巨大,甚至达一千立方以上,减阻剂用量大,成本上升,节能净效益降低,阻碍了该技术在煤矿地面抽采泵站的应用。
发明内容
本发明的目的是提供一种基于减阻工作液的全封闭瓦斯抽采泵节能系统,可节约水资源,减阻工作液循环利用率高,用量小,增加节能净效益,智能化水平高,并能大幅提高瓦斯抽采泵的运行效率。
为实现上述目的,本发明的基于减阻工作液的全封闭瓦斯抽采泵节能系统,包括瓦斯净化系统、瓦斯抽采泵工作液循环系统、补液系统以及监控系统;所述的瓦斯净化系统包括旋风降尘装置和粉尘浓度传感器,旋风降尘装置和粉尘浓度传感器依次安装在瓦斯抽采进气管路上;所述的瓦斯抽采泵工作液循环系统包括 瓦斯抽采泵、气液分离器、液-液换热器、减阻液添加装置、温度传感器I、压差传感器、电磁流量计、温度传感器II和电机参数监测仪,所述气液分离器的出液口通过瓦斯抽采泵进液管路连接瓦斯抽采泵的进液口,温度传感器I、液-液换热器、减阻液添加装置、电磁流量计、温度传感器II依次安装在所述瓦斯抽采泵进液管路上,压差传感器设置在液-液换热器的两端,瓦斯抽采泵的排放口连接所述气液分离器的入口,瓦斯抽采泵连接电机参数监测仪;所述的补液系统包括低阻力脱水器、煤粉沉淀池、潜水泵、液位传感器和补液连接口,所述气液分离器的出气口通过瓦斯抽采排气管路连接低阻力脱水器,煤粉沉淀池设置在低阻力脱水器下方,潜水泵设置在煤粉沉淀池内,潜水泵通过补液管路依次连接补液连接口和所述气液分离器的回液口,所述液位传感器设置在所述气液分离器中,且位于回液口上方,液位传感器与潜水泵信号连接;所述监控系统包括上位机,所述粉尘浓度传感器、压差传感器、电磁流量计、温度传感器I、温度传感器II、液位传感器以及电机参数监测仪分别与所述上位机信号连接。
所述温度传感器I和所述液-液换热器之间的管路上设有球阀I,所述球阀I与所述上位机信号连接。
所述补液连接口和所述气液分离器的回液口之间的管路上设有球阀II,所述球阀II与所述上位机信号连接。
所述的减阻液添加装置根据电机参数监测仪监测的瓦斯抽采泵的运行功率变化来判断减阻液的添加量;当运行功率提升15%时,开启减阻液添加装置,缓慢注入减阻液;当运行功率降至最低功率时,停止注液。
所述的气液分离器内安装有除雾器,进行初次气液分离,再经过低阻力脱水器进行二次分离,实现减阻液的全封闭循环。
本发明利用地面瓦斯泵站已有的低位水池、高位水池及冷却塔,为液-液换热器提供冷却高温减阻液的循环冷却水;利用气液分离器中的少量减阻液作为瓦斯抽采泵的供液源,取代了特大体积的循环水池,实现了减阻液的低成本投入和净效益的高回报;通过瓦斯进气管路上的旋风降尘装置,减少了煤粉进入瓦斯抽采泵的数量,降低了煤粉对瓦斯抽采泵叶片和泵体的磨损,并可有效防止液-液换热器的堵塞,保证系统的稳定运行;通过安装有除雾器的气液分离器和低阻力脱水器的串联,可高效地回收排出瓦斯抽采泵外的减阻液,节约了大量的水资源, 并进一步降低了减阻剂的成本;通过温度传感器、压差传感器、电磁流量计的实时监测,可直观地反映液-液换热器的工作状况和运行效果。
本发明提供的全封闭式节能系统,可用于提高瓦斯抽采泵的运行功率,实现了减阻工作液的高效循环与利用,尤其适用于煤矿地面永久式大型瓦斯抽采泵站。本系统占地空间小、智能化水平高、操作方便,节水节能效果显著,具有广泛的实用性。
附图说明
图1是本发明的基于减阻工作液的全封闭瓦斯抽采泵节能系统示意图。
图中:1、瓦斯净化系统;101、旋风降尘装置;102、粉尘浓度传感器;2、瓦斯抽采泵工作液循环系统;201、瓦斯抽采泵;202、气液分离器;203、温度传感器I;204、球阀I;205、液-液换热器;206、压差传感器;207、减阻液添加装置;208、电磁流量计;209、温度传感器II;3、补液系统;301、低阻力脱水器;302、煤粉沉淀池;303、潜水泵;304、液位传感器;305、补液连接口;306、球阀II;4、上位机;5、电机参数监测仪;6、瓦斯抽采进气管路;7、瓦斯抽采泵进液管路;8、瓦斯抽采排气管路;9、补液管路。
具体实施方式
下面结合附图及实施例对本发明作进一步的说明。
如图1所示,本基于减阻工作液的全封闭瓦斯抽采泵节能系统,包括瓦斯净化系统1、瓦斯抽采泵工作液循环系统2、补液系统3以及监控系统。
所述的瓦斯净化系统包括旋风降尘装置101和粉尘浓度传感器102,旋风降尘装置101和粉尘浓度传感器102依次安装在瓦斯抽采进气管路6上。
所述的瓦斯抽采泵工作液循环系统2包括瓦斯抽采泵201、气液分离器202、液-液换热器205、减阻液添加装置207、温度传感器I203、压差传感器206、电磁流量计208、温度传感器II209和电机参数监测仪5,所述气液分离器202的出液口D通过瓦斯抽采泵进液管路7连接瓦斯抽采泵201的进液口,温度传感器I203、液-液换热器205、减阻液添加装置207、电磁流量计208、温度传感器II209依次安装在所述瓦斯抽采泵进液管路7上,所述压差传感器206设置在所 述液-液换热器205的两端,所述瓦斯抽采泵201的排放口连接所述气液分离器202的入口A,所述瓦斯抽采泵201连接电机参数监测仪5。所述温度传感器I203和所述液-液换热器205之间的管路上设有球阀I204。
所述的补液系统3包括低阻力脱水器301、煤粉沉淀池302、潜水泵303、液位传感器304和补液连接口305,所述气液分离器202的出气口B通过瓦斯抽采排气管路8连接低阻力脱水器301,煤粉沉淀池302设置在低阻力脱水器301下方,潜水泵303设置在煤粉沉淀池302内,潜水泵303通过补液管路9依次连接补液连接口305和所述气液分离器202的回液口C,所述液位传感器304设置在所述气液分离器202中,且位于回液口C上方,液位传感器304与潜水泵303信号连接。所述补液连接口305和所述气液分离器202的回液口C之间的管路上设有球阀II306。
所述的监控系统包括上位机4,所述粉尘浓度传感器102、压差传感器206、电磁流量计208、温度传感器I203、温度传感器II209、液位传感器304以及电机参数监测仪5分别与所述上位机4信号连接;粉尘浓度传感器102用于监测经降尘装置过滤后的煤粉浓度,温度传感器I 203和温度传感器II 209、压差传感器206分别用于监测减阻液流经液-液换热器205前后的温度和压差,电磁流量计208用于监测减阻液流经液-液换热器205的流量,液位传感器304用于监测气液分离器202内的液位高度,电机参数监测仪5用于监测瓦斯抽采泵201的运行参数。所述球阀I204与所述上位机4信号连接,上位机4接收温度传感器、压差传感器、电磁流量计所反馈的温度、压力、流量信号并控制球阀I204的启/闭运转。所述球阀II306与所述上位机4信号连接,上位机4接收液位传感器304所反馈的液位信号并控制球阀II306的启/闭运转。
工作原理:开启减阻液添加装置207,向瓦斯抽采泵201内注入定量的减阻液,形成以该减阻液为工作介质的瓦斯抽采泵运行系统,并记录此时电机参数监测仪5所采集的功率值P。瓦斯抽采进气管路6中的瓦斯气和携带的部分煤粉经旋风降尘装置101对煤粉进行过滤,并由粉尘浓度传感器102监测过滤后的煤粉浓度,净化后的瓦斯气进入瓦斯抽采泵201内;在瓦斯抽采泵201排气过程中,瓦斯和同时排出泵外的减阻液一同进入高效气液分离器202中,其中瓦斯经瓦斯抽采排气管路8排入大气或发电机组,大部分的减阻液被高效气液分离器202 捕集而落入其中,而未被高效气液分离器202成功捕集的减阻液经低阻力脱水器301的二次分离后进入煤粉沉淀池302;煤粉沉淀池302中的潜水泵303接收来自液位传感器304的输出信号,通过补液管路9、补液连接口305和球阀II 306,对高效气液分离器202自动补液,维持高效气液分离器202内液位的稳定。
由于瓦斯抽采泵201产生的圧缩热传递给减阻液,高效气液分离器202中的高温减阻液经液-液换热器205降低至适宜温度,并送入瓦斯抽采泵201内;通过安装于瓦斯抽采泵进液管路7上的温度传感器I 203、温度传感器II 209、压差传感器206依次监测减阻液流经液-液换热器205前后的温度和压差,通过安装于瓦斯抽采泵进液管路7上的电磁流量计208监测减阻液流经液-液换热器205的流量,可反映液-液换热器205的冷却效果和工作状况,以此判断系统的运行稳定性。瓦斯抽采泵201运行一定时间后,当电机参数监测仪5监测的瓦斯抽采泵201的运行功率较最初的功率P升高15%时,再次开启减阻液添加装置207,注入定量减阻液,以保证瓦斯抽采泵201一直处于高效节能范围内运行。
使用时,每次间隔3~10天,完全置换一次瓦斯抽采泵201内的工作液,重新添加减阻液。

Claims (3)

  1. 一种基于减阻工作液的全封闭瓦斯抽采泵节能系统,其特征在于:包括瓦斯净化系统(1)、瓦斯抽采泵工作液循环系统(2)、补液系统(3)以及监控系统;
    所述的瓦斯净化系统包括旋风降尘装置(101)和粉尘浓度传感器(102),旋风降尘装置(101)和粉尘浓度传感器(102)依次安装在瓦斯抽采进气管路(6)上;
    所述的瓦斯抽采泵工作液循环系统(2)包括瓦斯抽采泵(201)、气液分离器(202)、液-液换热器(205)、减阻液添加装置(207)、温度传感器I(203)、压差传感器(206)、电磁流量计(208)、温度传感器II(209)和电机参数监测仪(5),气液分离器(202)的出液口D通过瓦斯抽采泵进液管路(7)连接瓦斯抽采泵(201)的进液口,温度传感器I(203)、液-液换热器(205)、减阻液添加装置(207)、电磁流量计(208)、温度传感器II(209)依次安装在所述瓦斯抽采泵进液管路(7)上,压差传感器(206)设置在液-液换热器(205)的两端,瓦斯抽采泵(201)的排放口连接所述气液分离器(202)的入口A,瓦斯抽采泵(201)连接电机参数监测仪(5);
    所述的补液系统(3)包括低阻力脱水器(301)、煤粉沉淀池(302)、潜水泵(303)、液位传感器(304)和补液连接口(305),所述气液分离器(202)的出气口B通过瓦斯抽采排气管路(8)连接低阻力脱水器(301),煤粉沉淀池(302)设置在低阻力脱水器(301)下方,潜水泵(303)设置在煤粉沉淀池(302)内,潜水泵(303)通过补液管路(9)依次连接补液连接口(305)和气液分离器(202)的回液口C,液位传感器(304)设置在气液分离器(202)中,且位于回液口C上方,液位传感器(304)与潜水泵(303)信号连接;
    所述的监控系统包括上位机(4),所述的粉尘浓度传感器(102)、压差传感器(206)、电磁流量计(208)、温度传感器I(203)、温度传感器II(209)、液位传感器(304)以及电机参数监测仪(5)分别与所述上位机(4)信号连接。
  2. 根据权利要求1所述的一种基于减阻工作液的全封闭瓦斯抽采泵节能系统,其特征在于:所述温度传感器I(203)和所述液-液换热器(205)之间的管路上设有球阀I(204),所述球阀I(204)与所述上位机(4)信号连接。
  3. 根据权利要求1所述的一种基于减阻工作液的全封闭瓦斯抽采泵节能系 统,其特征在于:所述补液连接口(305)和所述气液分离器(202)的回液口C之间的管路上设有球阀II(306),所述球阀II(306)与所述上位机(4)信号连接。
PCT/CN2019/078263 2018-05-14 2019-03-15 一种基于减阻工作液的全封闭瓦斯抽采泵节能系统 WO2019218768A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810455901.8 2018-05-14
CN201810455901.8A CN108661696B (zh) 2018-05-14 2018-05-14 一种基于减阻工作液的全封闭瓦斯抽采泵节能系统

Publications (1)

Publication Number Publication Date
WO2019218768A1 true WO2019218768A1 (zh) 2019-11-21

Family

ID=63778403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/078263 WO2019218768A1 (zh) 2018-05-14 2019-03-15 一种基于减阻工作液的全封闭瓦斯抽采泵节能系统

Country Status (2)

Country Link
CN (1) CN108661696B (zh)
WO (1) WO2019218768A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108661696B (zh) * 2018-05-14 2019-07-02 中国矿业大学 一种基于减阻工作液的全封闭瓦斯抽采泵节能系统
AU2019368831A1 (en) * 2018-10-24 2021-06-10 Perkinelmer Scientific Canada Ulc Particle filters and systems including them
CN112354264B (zh) * 2020-10-30 2021-09-03 中国矿业大学 一种用于复杂瓦斯抽采工况下的节能型瓦斯泵组联运系统及控制方法
CN112343648B (zh) * 2020-11-05 2021-11-05 中国矿业大学 煤矿瓦斯抽采泵节能稳定运行调控系统及其控制方法
CN113653643B (zh) * 2021-08-19 2022-04-01 中国矿业大学 一种矿用水环真空泵减阻液添加的成本-效益智能调控方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2715694A1 (de) * 1976-04-12 1977-10-20 Ts Osrodek P K Maszyn Gorniczy Verfahren und vorrichtung zur verminderung der gasgefaehrdung im bergbauuntertagebetrieb
CN102913273A (zh) * 2012-10-31 2013-02-06 中国矿业大学 一种煤矿自主式动态封孔瓦斯抽采智能系统
WO2013056597A1 (zh) * 2011-10-19 2013-04-25 中国矿业大学 一种抽压交替的瓦斯抽采方法及装备
CN103758561A (zh) * 2014-02-21 2014-04-30 淄博安益矿用设备有限公司 煤矿瓦斯抽采控制系统及抽采控制方法
CN107152400A (zh) * 2017-07-10 2017-09-12 中国矿业大学 一种提高瓦斯抽放泵运行效率的闭式循环系统
CN108661696A (zh) * 2018-05-14 2018-10-16 中国矿业大学 一种基于减阻工作液的全封闭瓦斯抽采泵节能系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104358514B (zh) * 2014-09-24 2015-12-02 中煤科工集团西安研究院有限公司 一种煤矿井下近水平定向长钻孔控压钻进系统及方法
CN105065057B (zh) * 2015-07-23 2018-01-16 陕西煤业化工技术研究院有限责任公司 一种矿井瓦斯抽采参数自动调控系统及方法
CN107152399B (zh) * 2017-05-31 2018-11-23 中国矿业大学 一种采用高分子减阻剂提高瓦斯抽放液环真空泵的方法
CN107061313A (zh) * 2017-06-19 2017-08-18 高博 一种液环式真空泵
CN107356365A (zh) * 2017-07-10 2017-11-17 中国矿业大学 水环真空泵内减阻剂减阻效应实验装置及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2715694A1 (de) * 1976-04-12 1977-10-20 Ts Osrodek P K Maszyn Gorniczy Verfahren und vorrichtung zur verminderung der gasgefaehrdung im bergbauuntertagebetrieb
WO2013056597A1 (zh) * 2011-10-19 2013-04-25 中国矿业大学 一种抽压交替的瓦斯抽采方法及装备
CN102913273A (zh) * 2012-10-31 2013-02-06 中国矿业大学 一种煤矿自主式动态封孔瓦斯抽采智能系统
CN103758561A (zh) * 2014-02-21 2014-04-30 淄博安益矿用设备有限公司 煤矿瓦斯抽采控制系统及抽采控制方法
CN107152400A (zh) * 2017-07-10 2017-09-12 中国矿业大学 一种提高瓦斯抽放泵运行效率的闭式循环系统
CN108661696A (zh) * 2018-05-14 2018-10-16 中国矿业大学 一种基于减阻工作液的全封闭瓦斯抽采泵节能系统

Also Published As

Publication number Publication date
CN108661696A (zh) 2018-10-16
CN108661696B (zh) 2019-07-02

Similar Documents

Publication Publication Date Title
WO2019218768A1 (zh) 一种基于减阻工作液的全封闭瓦斯抽采泵节能系统
CN201277826Y (zh) 原生污水源智能自清防堵塞热能采集器
CN102980435A (zh) 换热器列管内壁在线清洗方法
CN2867225Y (zh) 冷却塔水蒸汽回收器
CN103866058A (zh) 高炉转鼓法冲渣水余热利用三联供系统
CN111238132B (zh) 一种节能工业循环水系统及其运行方法
CN205361039U (zh) 一种沥青改性工艺用沥青烟气处理装置
CN203768383U (zh) 高炉明特法冲渣水余热利用三联供系统
CN203736974U (zh) 砂岩地热尾水经济回灌系统
CN208349323U (zh) 一种省煤器卸灰装置
CN205784829U (zh) 采用智能定位、定压、变量投球的胶球清洗系统
CN211111535U (zh) Ptmeg废液简易回收装置
CN203797630U (zh) 乏汽热量回收装置
CN203768382U (zh) 高炉转鼓法冲渣水余热利用三联供系统
CN204002956U (zh) 一种驱动引风机的凝汽式小汽轮机排汽余热利用系统
CN204460404U (zh) 一种冲渣水余热综合利用的供暖系统
CN203785523U (zh) 一种外置式水轮机冷却塔上塔管路流量合并再分流结构
CN206419180U (zh) 余热回收系统
CN113237374A (zh) 一种废水余热回收装置及其回收方法
CN208296370U (zh) 一种用于水源热泵的节能装置
CN206570029U (zh) 一种工业废气中的氢气回收装置
CN205746790U (zh) 一种节能型变电站锅炉上水装置
CN201924036U (zh) 一种转炉湿法除尘装置
CN205425879U (zh) 一种用于1000mw湿冷机组高效闭式循环水系统
CN205676151U (zh) 锌焙烧制酸的给水、循环水系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19803466

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19803466

Country of ref document: EP

Kind code of ref document: A1