WO2013056597A1 - 一种抽压交替的瓦斯抽采方法及装备 - Google Patents

一种抽压交替的瓦斯抽采方法及装备 Download PDF

Info

Publication number
WO2013056597A1
WO2013056597A1 PCT/CN2012/080499 CN2012080499W WO2013056597A1 WO 2013056597 A1 WO2013056597 A1 WO 2013056597A1 CN 2012080499 W CN2012080499 W CN 2012080499W WO 2013056597 A1 WO2013056597 A1 WO 2013056597A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
ball valve
extraction
way ball
storage tank
Prior art date
Application number
PCT/CN2012/080499
Other languages
English (en)
French (fr)
Inventor
周福宝
刘应科
刘春�
高峰
王圣程
宋小林
史波波
庞叶青
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Publication of WO2013056597A1 publication Critical patent/WO2013056597A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F7/00Methods or devices for drawing- off gases with or without subsequent use of the gas for any purpose

Definitions

  • the invention relates to a method and a device for extracting gas by alternating pressure, which is particularly suitable for increasing the extraction radius of gas drainage holes and increasing the total gas drainage volume of the drilling holes.
  • Gas drainage is the use of the negative pressure generated by the gas pump to extract the gas present in the coal seam through the gas drainage hole. After long-term extraction, the gas pressure and content of coal seams can be greatly reduced. Therefore, gas drainage is a fundamental measure to prevent coal mine gas disasters. In order to eliminate the threat of gas and ensure the safe production of mines, extensive gas drainage projects have been carried out in China's prominent mines, high gas mines and some low gas mines.
  • the stress of a certain range of coal around it is released and deformed.
  • the coal seam within the fissure development range is large in gas permeability and is the main gas source for extraction. However, this range is small and its radius is generally not more than 5 m.
  • the coal seam outside the fracture development range is the original coal body, and the gas permeability is poor, so that the gas is difficult to be extracted.
  • the negative pressure generated by the gas pump during gas drainage is continuous negative pressure, that is, there is only the extracted gas flow from the coal seam to the gas pump in the gas drainage pipeline and the extraction drilling.
  • the gas drainage volume of the borehole can be increased several times in a short time (up to several days), but it will soon be depleted, and the increase of the total gas drainage volume of the borehole is not Significant.
  • the object of the present invention is to overcome the deficiencies in the prior art, and to provide a gas extraction method and equipment with simple method, compact equipment, large drilling extraction radius, and good extraction effect.
  • the method for alternately pumping gas extraction according to the present invention comprises the following steps:
  • a high-pressure gas storage tank equipped with a one-way intake valve is connected to the pumping main road on the front side of the front three-way ball valve through the front and rear three-way ball valves in parallel on the pumping main road before and after the coal mine gas pump.
  • the front part of the high-pressure gas storage tank is connected with an outlet control ball valve, and the rear part of the high-pressure gas storage tank is connected with the air supply line controlled by the air-filling control ball valve, and the supplementary gas line is connected between the rear three-way ball valve and the gas pump.
  • the gas extraction pipe in the gas drainage hole is connected with the extraction main road for gas drainage;
  • the front and rear three-way ball valves are controlled to connect the rear three-way ball valve passage A and the rear three-way ball valve passage B, the first three-way ball valve passage A and the front three-way ball valve passage B are connected, and the air supply control ball valve and the outlet control ball valve are closed.
  • the gas in the coal seam is collected into the main drainage road through the gas drainage hole and the gas extraction pipe, and then flows into the high-pressure gas storage tank through the rear three-way ball valve, the gas pump and the front three-way ball valve;
  • the outside air enters the high-pressure gas storage tank through the one-way intake valve to meet the gas volume in the gas extraction drilling hole that is reversely pressed into the gas;
  • steps c and d to alternately perform pumping and pressurization, so that the extracted gas flow and the pressurized gas flow alternately appear in the gas extraction drilling hole and the gas extraction pipe until the gas concentration of the extraction is reduced to less than 16%, and the pressure is stopped.
  • the pressure of the pressurized gas stream is 0.03 MPa to 0.2 MPa.
  • the alternately pumping gas extraction device of the present invention comprises a gas drainage pipe, a drainage main pipe connected to the gas drainage pipe, a gas pump disposed on the drainage main pipe, and a drainage main pipe before and after the gas pump
  • the front and rear three-way ball valves are connected with a bypass line connected in parallel with the gas pump.
  • the front of the front three-way ball valve is connected with a high-pressure gas storage tank on the road, high-pressure storage.
  • An outlet control ball valve is arranged at the front of the gas tank, and a gas supply line connected to the main road is connected between the rear three-way ball valve and the gas pump at the rear of the high-pressure gas storage tank, and an air-filling control ball valve is arranged on the gas supply line.
  • a one-way intake valve is provided at the bottom of the high pressure gas storage tank.
  • the invention can effectively increase the extraction radius of the gas drainage hole and increase the total gas drainage volume of the drilling hole.
  • the crack of the coal body around the drill hole is repeatedly subjected to the contraction and expansion (alternating stress), and the local fracture occurs when the coal body reaches the fatigue limit, thereby The cracks are constantly expanding and gradually developing deeper.
  • the permeability of the deep original coal seam is increased, the gas can be gradually desorbed and extracted, thereby increasing the gas extraction radius of the borehole and increasing the total gas drainage of the borehole.
  • the method and the device are simple, the operation is convenient, and the cost is low, which not only increases the gas extraction radius of the drilling hole, but also improves the total gas drainage volume of the drilling hole, and has wide practicality.
  • FIG. 1 is a schematic view showing a method of gas extraction alternately by the present invention.
  • gas drainage hole-1 gas drainage hole-1, extraction air flow-2, pressure air flow-3, fracture-4, gas extraction pipe-5, extraction main pipe-6, rear three-way ball valve-7, gas pump- 8, bypass line -9, front three-way ball valve -10, air supply line -11, qi control ball valve -12, high pressure gas storage tank -13, one-way intake valve -14, outlet control ball valve -1.
  • the bypass main pipe 6 is connected in parallel through the front and rear three-way ball valves 10 and 7 on the pumping main pipe 6 before and after the coal mine gas pump 8, and the high-pressure storage is connected to the pumping main pipe 6 in front of the front three-way ball valve 10.
  • the gas tank 13, the front part of the high pressure gas storage tank 13 is connected to the outlet control ball valve 15, the rear part of the high pressure gas storage tank 13 is connected to the gas supply line 12 controlled by the air supply control ball valve 11, and the supplementary gas line 12 is connected to the rear three-way ball valve.
  • 7 and the gas pumping tube 8 between the pumping main line 6, the lower part of the high-pressure gas tank 13 is installed with a one-way intake valve 14, and is sent to the gas extraction hole 1 into the gas extraction pipe 5 and after sealing.
  • the gas extraction pipe 5 in the gas extraction drilling hole 1 is connected to the extraction main pipe 6, and gas extraction is started by the gas pump 8.
  • the front and rear three-way ball valves 10 and 7 are controlled to connect the rear three-way ball valve passage A and the rear three-way ball valve passage B, the front three-way ball valve passage A and the front three-way ball valve passage B are connected, and the air supply control ball valve 11 is closed. And the outlet control ball valve 15, so that the gas in the coal seam is collected into the extraction main pipe 6 through the gas extraction drilling hole 1 and the gas extraction pipe 5, and then sequentially passes through the rear three-way ball valve 7, the gas pump 8, and the front three-way ball valve.
  • the flow path of the gas in the extraction system is: crack 4 ⁇ gas drainage hole 1 ⁇ gas drainage pipe 5 ⁇ extraction main pipe 6 ⁇ rear three-way ball valve 7 ⁇ gas pump 8 ⁇
  • the front three-way ball valve 10 ⁇ the high-pressure gas storage tank 13 , at this time, the gas extraction pipe 5 and the gas extraction drilling hole 1 are the extracted air flow 2, and the system is in the gas drainage state.
  • the outlet control ball valve 15 is in a closed state, and as the pumping continues, the gas pressure of the high pressure gas storage tank 13 is continuously increased, and when the gas pressure in the high pressure gas storage tank 13 rises to 0.3.
  • the outlet control ball valve 15 is opened, so that the gas in the high pressure gas storage tank 13 is transported outward through the extraction main pipe 6; when the gas pressure of the high pressure gas storage tank 13 is lowered to 0.1 At MPa, the outlet control ball valve 15 is closed.
  • the front and rear three-way ball valves 10, 7 are controlled to make the rear three-way ball valve passage A and the rear three-way ball valve passage C communicate, the front three-way ball valve passage A and the front three-way ball valve passage C communicate with each other, and the air supply control ball valve is opened.
  • the outlet control ball valve 15 is closed, so that the gas in the high pressure gas storage tank 13 enters the extraction main line 6 through the gas supply line 12, and then passes through the gas pump 8, the front three-way ball valve 10, the bypass line 9, and the rear three-way.
  • the ball valve 7, the extraction main pipe 6 and the gas extraction pipe 5 are pressed into the gas drainage hole 1 in reverse, and the flow path of the gas in the extraction system is: high pressure gas storage tank 13 ⁇ gas supply line 12 ⁇ extraction main road 6 ⁇ Gas pump 8 ⁇ Front three-way ball valve ⁇ Bypass line ⁇ 3rd ball valve7 ⁇ Extraction main road6 ⁇ Gas extraction pipe ⁇ Gas extraction drilling 1 ⁇ Fracture 4, Gas pumping at this time
  • the pressure in the production pipe 5 and the gas extraction drilling hole 1 is the inflow air flow 3, and the pressure of the compressed air flow 3 is 0.03 MPa to 0.2. MPa, the time for introducing gas into the borehole 1 of the gas extraction is 3 to 5 minutes.
  • the pressurized gas source is the extracted gas in the high pressure gas storage tank 13, mainly to prevent the gas concentration in the next pumping cycle from being greatly reduced.
  • the gas pressure in the high pressure gas storage tank 13 is less than the outside air pressure, that is, when the negative pressure state occurs, the outside air enters the high pressure gas storage tank 13 through the one-way intake valve 14 to meet the reverse pressure gas drainage hole.
  • the pumping and pressing are repeated, so that the extracted gas stream 2 and the gas inflow gas 3 alternately appear in the gas extraction drilling hole 1 and the gas extraction pipe 5 until the gas concentration of the extraction is reduced to less than 16%, and the pressure is stopped.
  • the alternately pumping gas extraction apparatus of the present invention comprises a gas drainage pipe 5, a drainage main pipe 6 connected to the gas extraction pipe 5, a gas pump 8 provided on the extraction main pipe 6, and a gas pump 8
  • the front and rear extraction main pipes 6 are provided with front and rear three-way ball valves 10 and 7, and the front and rear three-way ball valves 10 and 7 are connected with a bypass pipe 9 connected in parallel with the gas pump 8, and the front three-way ball valve 10
  • a high-pressure gas storage tank 13 is connected to the pumping main pipe 6 of the department, and an outlet control ball valve 15 is disposed at a front portion of the high-pressure gas storage tank 13, and a rear three-way ball valve 7 is provided at a rear portion of the high-pressure gas storage tank 13
  • the gas supply line 12 on the main line 6 is pumped between the gas pump 8, the gas supply line 12 is provided with a supplemental gas control ball valve 11, and a one-way intake valve 14 is arranged at the bottom of the high pressure gas storage tank 13, which can realize the outside world.
  • the rear three-way ball valve 7, the front three-way ball valve 10, the supplemental gas control ball valve 11 and the outlet control ball valve 15 are all electric intelligent regulating valves, which can realize automatic state transition of different time intervals.
  • the state transition of the rear three-way ball valve 7, the front three-way ball valve 10 and the supplemental gas control ball valve 11 can change the direction of the airflow in the extraction main pipe 6, and realize the gas extraction pipe 5 and gas drainage.
  • the extracted air stream 2 and the indented air stream 3 alternately appear in the borehole 1.
  • the rear three-way ball valve 7 includes a rear three-way ball valve passage A, a rear three-way ball valve passage B, and a rear three-way ball valve passage C.
  • the front three-way ball valve 10 includes a front three-way ball valve passage A, a front three-way ball valve passage B, and a front three-way The ball valve passage C; the rear three-way ball valve passage C is connected to the front three-way ball valve passage C to the bypass line 9, and the rear three-way ball valve passage B and the front three-way ball valve passage A are connected to the gas pump 8 through the extraction main pipe 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

提供一种抽压交替的瓦斯抽采方法及装置,适用于增大瓦斯抽采钻孔的抽采半径,提高钻孔的瓦斯抽采总量。在瓦斯泵(8)前后的抽采主管路(6)上通过前、后三通球阀(10,7)并联旁通管路(9),在前三通球阀(10)前部的抽采主管路(6)上连接高压储气罐(13),高压储气罐(13)后部连接由补气控制球阀(11)控制的补气管路(12),补气管路(12)连接在后三通球阀(7)和瓦斯泵(8)之间的抽采主管路(6)上,将瓦斯抽采钻孔中的瓦斯抽采管与抽采主管路相连接进行瓦斯抽采;在瓦斯泵(8)运行过程中,通过控制前、后三通球阀(10,7)、补气控制球阀(11)和出口控制球阀(15)的状态,使瓦斯抽采钻孔交替出现抽出气流和压入气流,钻孔周围煤体裂隙在交变应力作用下不断扩大并向深部逐渐发育,从而提高钻孔的瓦斯抽采总量。

Description

一种抽压交替的瓦斯抽采方法及装备
本申请要求于2011年10月19日提交中国专利局、申请号为201110317591.1、发明名称为“一种抽压交替的瓦斯抽采方法及装备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种抽压交替的瓦斯抽采方法及设备,尤其适用于增大瓦斯抽采钻孔的抽采半径、提高钻孔的瓦斯抽采总量。
发明背景
瓦斯抽采是利用瓦斯泵产生的负压通过瓦斯抽采钻孔抽出赋存在煤层中的瓦斯。经过长时间抽采,煤层瓦斯压力、含量均可大幅度降低,因此瓦斯抽采是防治煤矿瓦斯灾害事故的根本措施。为消除瓦斯威胁,保证矿井安全生产,我国的突出矿井、高瓦斯矿井及部分低瓦斯矿井均开展了广泛的瓦斯抽采工程。
瓦斯抽采钻孔施工后,其周围一定范围煤体的应力得到释放并发生变形,在煤体变形过程中产生大量几何特性各异的裂隙,为瓦斯解吸及流动提供了条件。裂隙发育范围内的煤层透气性大,是抽采的主要瓦斯源,但是这个范围很小,其半径一般不大于5 m。裂隙发育范围之外的煤层为原始煤体,透气性差,其赋存瓦斯很难被抽出。当前,瓦斯抽采过程中瓦斯泵产生的负压为连续性负压,即在瓦斯抽采管路和抽采钻孔中只存在由煤层流向瓦斯泵的抽出气流。单向气流使钻孔周围的裂隙具有收缩趋势,限制了裂隙向煤层深部发育,因此造成距钻孔较远处原始煤层的瓦斯无法大量解吸及抽出,导致钻孔的抽采瓦斯源较少。基于上述分析及工程实践,采用现有的瓦斯抽采方法时,钻孔的抽采半径小,瓦斯抽采流量及浓度衰减速度快,有效抽采时间较短。对于透气性差的煤层,上述问题更加显著。
为提高钻孔周围煤层的透气性,目前主要采用水力压裂、深孔爆破等技术方法,然而都存在一定问题。如采用水力压裂方法时,虽然增大了煤层的裂隙,但煤体吸水饱和后,其透气性降低,不能加速解吸瓦斯的流动,此外煤体遇水后成泥糊状对裂缝起到堵塞作用,因此不能提高瓦斯抽采量。采用深孔爆破方法时,松动爆破后,钻孔瓦斯抽采量在较短时间内(最多几天)可以增加几倍,但很快就下降枯竭,钻孔总瓦斯抽采量的增加并不显著。
发明内容
技术问题:本发明的目的是克服已有技术中的不足之处,提供一种方法简单、设备紧凑、钻孔抽采半径大、抽采效果好的抽压交替的瓦斯抽采方法及设备。
技术方案:本发明的抽压交替的瓦斯抽采方法,包括如下步骤:
a.在煤矿井下瓦斯泵前后的抽采主管路上通过前、后三通球阀并联一旁通管路,在前三通球阀前部的抽采主管路上连接装有单向进气阀的高压储气罐,并在高压储气罐的前部连接一出口控制球阀、高压储气罐的后部连接由补气控制球阀控制的补气管路,补气管路连接在后三通球阀和瓦斯泵之间的抽采主管路上;
b.将瓦斯抽采钻孔中的瓦斯抽采管与抽采主管路相连接进行瓦斯抽采;
c.控制前、后三通球阀,使后三通球阀通路A和后三通球阀通路B相连通、前三通球阀通路A和前三通球阀通路B相连通,关闭补气控制球阀和出口控制球阀,此时,煤层中的瓦斯经瓦斯抽采钻孔和瓦斯抽采管汇集流入抽采主管路中,然后依次经后三通球阀、瓦斯泵和前三通球阀流入高压储气罐内;
当高压储气罐中的气体压力升高到0.3 MPa时,打开出口控制球阀,使高压储气罐中的瓦斯经抽采主管路向外输送;
当高压储气罐的气体压力降低到0.1 MPa时,关闭出口控制球阀;
d. 瓦斯抽采5~10 min后,控制前、后三通球阀,使后三通球阀通路A和后三通球阀通路C相连通、前三通球阀通路A和前三通球阀通路C相连通,打开补气控制球阀,关闭出口控制球阀,使高压储气罐中的瓦斯经补气管路进入抽采主管路,再经瓦斯泵、前三通球阀、旁通管路、后三通球阀、抽采主管路和瓦斯抽采管反向压入瓦斯抽采钻孔内,向瓦斯抽采钻孔内压入气体的时间为3~5min;
当高压储气罐中的气体压力小于外界空气压力时,外界空气通过单向进气阀进入高压储气罐内,以满足反向压入瓦斯抽采钻孔内的气量;
e.重复步骤c、d,交替实施抽气和压气,使瓦斯抽采钻孔和瓦斯抽采管内交替出现抽出气流和压入气流,直至抽采的瓦斯浓度降低到16%以下,停止抽压。
所述压入气流的压力为0.03MPa~0.2 MPa。
本发明的抽压交替的瓦斯抽采设备,包括瓦斯抽采管、与瓦斯抽采管相连的抽采主管路、设在抽采主管路上的瓦斯泵,在所述瓦斯泵的前后抽采主管路上设有前、后三通球阀,经前、后三通球阀连接有与瓦斯泵相并联的旁通管路,前三通球阀前部的抽采主管路上连有高压储气罐,高压储气罐前部安设有出口控制球阀,高压储气罐的后部设有连接在后三通球阀和瓦斯泵之间抽采主管路上的补气管路,补气管路上设有补气控制球阀,高压储气罐的底部设有单向进气阀。
有益效果:本发明能有效增大瓦斯抽采钻孔的抽采半径,提高钻孔的瓦斯抽采总量。通过在瓦斯抽采钻孔中交替出现抽出气流和压入气流,使钻孔周围煤体的裂隙反复承受收缩和膨胀的作用(交变应力),当煤体达到疲劳极限后发生局部断裂,从而使裂隙不断扩大并向深部逐渐发育。当深部原始煤层的透气性增大后,其瓦斯可逐渐解吸并被抽出,从而增大钻孔的瓦斯抽采半径,并提高钻孔的瓦斯抽采总量。此方法及设备简单,操作方便,成本低,不仅增大了钻孔的瓦斯抽采半径,而且提高了钻孔的瓦斯抽采总量,具有广泛的实用性。
附图简要说明
图1是本发明抽压交替的瓦斯抽采方法的示意图。
图中:瓦斯抽采钻孔-1,抽出气流-2,压入气流-3,裂隙-4,瓦斯抽采管-5,抽采主管路-6,后三通球阀-7,瓦斯泵-8,旁通管路-9,前三通球阀-10,补气管路-11,补气控制球阀-12,高压储气罐-13,单向进气阀-14,出口控制球阀-15。
实施本发明的方式
下面结合附图对本发明的一个实施例作进一步的描述:
本发明的抽压交替的瓦斯抽采方法,由于瓦斯抽采钻孔1施工完成后,其周围一定范围内的煤体由于卸压而发生一定变形,同时产生大量裂隙4,为瓦斯解吸及流动提供了条件。首先在煤矿井下瓦斯泵8前后的抽采主管路6上通过前、后三通球阀10、7并联旁通管路9,在前三通球阀10前部的抽采主管路6上连接高压储气罐13,高压储气罐13的前部连接出口控制球阀15,高压储气罐13的后部连接由补气控制球阀11控制的补气管路12,补气管路12连接在后三通球阀7和瓦斯泵8之间的抽采主管路6上,高压储气罐13的下部安装单向进气阀14,向瓦斯抽采钻孔1中送入瓦斯抽采管5并进行封孔后,将瓦斯抽采钻孔1中的瓦斯抽采管5与抽采主管路6相连接,通过瓦斯泵8开始进行瓦斯抽采。
控制前、后三通球阀10、7,使后三通球阀通路A和后三通球阀通路B相连通、前三通球阀通路A和前三通球阀通路B相连通,关闭补气控制球阀11和出口控制球阀15,使煤层中的瓦斯经瓦斯抽采钻孔1和瓦斯抽采管5汇集流入抽采主管路6中,然后依次经后三通球阀7、瓦斯泵8和前三通球阀10流入高压储气罐13内,抽采系统中气体的流动路径为:裂隙4→瓦斯抽采钻孔1→瓦斯抽采管5→抽采主管路6→后三通球阀7→瓦斯泵8→前三通球阀10→高压储气罐13,此时瓦斯抽采管5和瓦斯抽采钻孔1中为抽出气流2,系统处在瓦斯抽采状态。在抽气阶段初期,出口控制球阀15为关闭状态,随着抽采的不断进行,高压储气罐13的气体压力不断升高,当高压储气罐13中的气体压力升高到0.3 MPa时,打开出口控制球阀15,使高压储气罐13中的瓦斯经抽采主管路6向外输送;当高压储气罐13的气体压力降低到0.1 MPa时,关闭出口控制球阀15。
当瓦斯抽采5~10 min后,控制前、后三通球阀10、7,使后三通球阀通路A和后三通球阀通路C相通、前三通球阀通路A和前三通球阀通路C相通,打开补气控制球阀11,关闭出口控制球阀15,使高压储气罐13中的瓦斯经补气管路12进入抽采主管路6,再经瓦斯泵8、前三通球阀10、旁通管路9、后三通球阀7、抽采主管路6和瓦斯抽采管5反向压入瓦斯抽采钻孔1,抽采系统中气体的流动路径为:高压储气罐13→补气管路12→抽采主管路6→瓦斯泵8→前三通球阀10→旁通管路9→后三通球阀7→抽采主管路6→瓦斯抽采管5→瓦斯抽采钻孔1→裂隙4,此时瓦斯抽采管5和瓦斯抽采钻孔1中为压入气流3,压入气流3的压力为0.03MPa~0.2 MPa,向瓦斯抽采钻孔1内压入气体的时间为3~5min。压入气源为高压储气罐13中的已抽采瓦斯,主要为防止下一个抽压周期中的抽采瓦斯浓度大幅度下降。当高压储气罐13中的气体压力小于外界空气压力,即出现负压状态时,外界空气通过单向进气阀14进入高压储气罐13内,以满足反向压入瓦斯抽采钻孔1内的气量。
重复抽气和压气,使瓦斯抽采钻孔1和瓦斯抽采管5内交替出现抽出气流2和压入气流3,直至抽采的瓦斯浓度降低到16%以下,停止抽压。
本发明的抽压交替的瓦斯抽采设备,包括瓦斯抽采管5、与瓦斯抽采管5相连的抽采主管路6、设在抽采主管路6上的瓦斯泵8,瓦斯泵8的前后抽采主管路6上设有前、后三通球阀10、7,经前、后三通球阀10、7连接有与瓦斯泵8相并联的旁通管路9,前三通球阀10前部的抽采主管路6上连有高压储气罐13,高压储气罐13的前部安设有出口控制球阀15,高压储气罐13的后部设有连接在后三通球阀7和瓦斯泵8之间抽采主管路6上的补气管路12,补气管路12上设有补气控制球阀11,在高压储气罐13的底部设有单向进气阀14,可实现外界空气在一定条件下向高压储气罐13的单向流动,而高压储气罐13中的瓦斯在任何条件下都不会流出;出口控制球阀15连接的抽采主管路6为向外输送瓦斯的管路。后三通球阀7、前三通球阀10、补气控制球阀11和出口控制球阀15均为电动智能调节阀门,可实现不同时间间隔的状态自动转换。瓦斯泵8运行过程中,通过后三通球阀7、前三通球阀10和补气控制球阀11的状态转换可改变抽采主管路6中的气流方向,实现瓦斯抽采管5和瓦斯抽采钻孔1中交替出现抽出气流2和压入气流3。后三通球阀7包括后三通球阀通路A、后三通球阀通路B和后三通球阀通路C,前三通球阀10包括前三通球阀通路A、前三通球阀通路B和前三通球阀通路C;后三通球阀通路C与前三通球阀通路C连接旁通管路9,后三通球阀通路B和前三通球阀通路A通过抽采主管路6与瓦斯泵8相连接。

Claims (3)

  1. 一种抽压交替的瓦斯抽采方法,其特征在于包括如下步骤:
    a.在煤矿井下瓦斯泵(8)前后的抽采主管路(6)上通过前、后三通球阀(10、7)并联一旁通管路(9),在前三通球阀(10)前部的抽采主管路(6)上连接装有单向进气阀(14)的高压储气罐(13),并在高压储气罐(13)的前部连接一出口控制球阀(15)、高压储气罐(13)的后部连接由补气控制球阀(11)控制的补气管路(12),补气管路(12)连接在后三通球阀(7)和瓦斯泵(8)之间的抽采主管路(6)上;
    b.将瓦斯抽采钻孔(1)中的瓦斯抽采管(5)与抽采主管路(6)相连接进行瓦斯抽采;
    c.控制前、后三通球阀(10、7),使后三通球阀通路A和后三通球阀通路B相连通、前三通球阀通路A和前三通球阀通路B相连通,关闭补气控制球阀(11)和出口控制球阀(15),此时,煤层中的瓦斯经瓦斯抽采钻孔(1)和瓦斯抽采管(5)汇集流入抽采主管路(6)中,然后依次经后三通球阀(7)、瓦斯泵(8)和前三通球阀(10)流入高压储气罐(13)内;
    当高压储气罐(13)中的气体压力升高到0.3 MPa时,打开出口控制球阀(15),使高压储气罐(13)中的瓦斯经抽采主管路(6)向外输送;
    当高压储气罐(13)的气体压力降低到0.1 MPa时,关闭出口控制球阀(15);
    d. 瓦斯抽采5~10 min后,控制前、后三通球阀(10、7),使后三通球阀通路A和后三通球阀通路C相连通、前三通球阀通路A和前三通球阀通路C相连通,打开补气控制球阀(11),关闭出口控制球阀(15),使高压储气罐(13)中的瓦斯经补气管路(12)进入抽采主管路(6),再经瓦斯泵(8)、前三通球阀(10)、旁通管路(9)、后三通球阀(7)、抽采主管路(6)和瓦斯抽采管(5)反向压入瓦斯抽采钻孔(1)内,向瓦斯抽采钻孔(1)内压入气体的时间为3~5min;
    当高压储气罐(13)中的气体压力小于外界空气压力时,外界空气通过单向进气阀(14)进入高压储气罐(13)内,以满足反向压入瓦斯抽采钻孔(1)内的气量;
    e.重复步骤c、d,交替实施抽气和压气,使瓦斯抽采钻孔(1)和瓦斯抽采管(5)内交替出现抽出气流(2)和压入气流(3),直至抽采的瓦斯浓度降低到16%以下,停止抽压。
  2. 根据权利要求1所述的一种抽压交替的瓦斯抽采方法,其特征在于:所述压入气流(3)的压力为0.03MPa~0.2 MPa。
  3. 一种实现上述权利要求所述方法的抽压交替的瓦斯抽采设备,包括瓦斯抽采管(5)、与瓦斯抽采管(5)相连的抽采主管路(6)、设在抽采主管路(6)上的瓦斯泵(8),其特征在于:在所述瓦斯泵(8)的前后抽采主管路(6)上设有前、后三通球阀(10、7),经前、后三通球阀(10、7)连接有与瓦斯泵(8)相并联的旁通管路(9),前三通球阀(10)前部的抽采主管路(6)上连有高压储气罐(13),高压储气罐(13)前部安设有出口控制球阀(15),高压储气罐(13)的后部设有连接在后三通球阀(7)和瓦斯泵(8)之间抽采主管路(6)上的补气管路(12),补气管路(12)上设有补气控制球阀(11),高压储气罐(13)的底部设有单向进气阀(14)。
PCT/CN2012/080499 2011-10-19 2012-08-23 一种抽压交替的瓦斯抽采方法及装备 WO2013056597A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110317591.1 2011-10-19
CN 201110317591 CN102352768B (zh) 2011-10-19 2011-10-19 一种抽压交替的瓦斯抽采方法及设备

Publications (1)

Publication Number Publication Date
WO2013056597A1 true WO2013056597A1 (zh) 2013-04-25

Family

ID=45576399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080499 WO2013056597A1 (zh) 2011-10-19 2012-08-23 一种抽压交替的瓦斯抽采方法及装备

Country Status (2)

Country Link
CN (1) CN102352768B (zh)
WO (1) WO2013056597A1 (zh)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106645630A (zh) * 2017-02-20 2017-05-10 中国矿业大学(北京) 疏水改变煤层透气性模拟试验装置与增透方法
CN106939766A (zh) * 2017-05-10 2017-07-11 河南理工大学 一种热冷冲击三级破煤装置与实施方法
CN107725006A (zh) * 2017-11-02 2018-02-23 西安科技大学 一种煤层钻孔瓦斯抽采模拟试验装置及方法
CN107859500A (zh) * 2017-10-13 2018-03-30 大连理工大学 矿山岩体钻孔增透型瓦斯封堵单元及测定系统
CN107882586A (zh) * 2017-12-12 2018-04-06 贵州盘江精煤股份有限公司 一种煤矿井下瓦斯抽放吹水结构及其施工方法
CN109026129A (zh) * 2018-08-15 2018-12-18 山东安益矿用设备有限公司 高低负压管路智能转换调控技术
CN109252890A (zh) * 2018-12-06 2019-01-22 贵州大学 一种防泄漏的煤矿开采用瓦斯排放装置
CN109989783A (zh) * 2019-05-14 2019-07-09 河南理工大学 超临界二氧化碳亟正负压强相互作用联合抽采瓦斯系统及瓦斯抽采方法
WO2019218768A1 (zh) * 2018-05-14 2019-11-21 中国矿业大学 一种基于减阻工作液的全封闭瓦斯抽采泵节能系统
CN110630318A (zh) * 2019-10-22 2019-12-31 中煤科工集团重庆研究院有限公司 井下瓦斯钻孔抽采的全生命周期管控方法
CN110685735A (zh) * 2019-11-25 2020-01-14 河南理工大学 瓦斯抽排定向钻具及钻孔方法
CN110907335A (zh) * 2019-12-17 2020-03-24 华北科技学院 一种煤层瓦斯透气率模拟实验装置及其控制方法
CN111219204A (zh) * 2020-03-29 2020-06-02 张海轩 一种提高煤矿巷道内瓦斯抽采浓度的瓦斯抽采装置及方法
CN111396028A (zh) * 2020-03-30 2020-07-10 西安科技大学 基于液态co2致裂增透和相变驱置瓦斯抽采达标等效量化评估方法
CN113107460A (zh) * 2021-04-08 2021-07-13 煤炭科学研究总院 瓦斯抽采钻孔智能监测装置及其使用方法
CN113266415A (zh) * 2021-06-16 2021-08-17 陕西长武亭南煤业有限责任公司 一种抽压交替的瓦斯抽采设备及方法
CN113605866A (zh) * 2021-08-25 2021-11-05 上海大屯能源股份有限公司孔庄煤矿 一种矿井瓦斯抽采动态调控系统及方法
CN113738435A (zh) * 2021-09-10 2021-12-03 湘潭大学 深部低渗透高瓦斯煤层区域强化增透抽采方法
CN114233370A (zh) * 2022-01-18 2022-03-25 山东科技大学 瓦斯抽采钻孔坍塌修复与互联的一体化抽采方法
CN114263449A (zh) * 2021-12-14 2022-04-01 中国矿业大学 一种基于水压致裂的高效瓦斯抽采装置
CN114441216A (zh) * 2021-12-22 2022-05-06 中煤科工集团西安研究院有限公司 一种煤矿井下深孔干式密闭取样方法
CN114515506A (zh) * 2022-01-04 2022-05-20 河南中煤矿业科技发展有限公司 一种瓦斯消化液的组配方法及使用方法
CN114592904A (zh) * 2022-04-01 2022-06-07 安徽理工大学 一种用于高瓦斯煤矿的瓦斯抽采装置
CN114607312A (zh) * 2022-03-11 2022-06-10 中国矿业大学 一种实时多次封孔的装置及方法
CN115110921A (zh) * 2022-07-18 2022-09-27 中煤科工集团重庆研究院有限公司 一种用于渗透各向异性本煤层瓦斯保压驱替抽采方法
CN116122891A (zh) * 2023-03-01 2023-05-16 中国矿业大学(北京) 一种瓦斯抽采钻孔二次智能封孔提高抽采效果的装置及方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102562023B (zh) * 2012-03-06 2014-06-25 中国矿业大学 一种在一定温度和压力条件下氮气增加煤体透气性的系统
CN102704984B (zh) * 2012-04-28 2014-12-17 中国矿业大学 一种钻孔高浓度瓦斯的抽排采方法及其装置
CN102817632B (zh) * 2012-08-20 2014-11-05 山西煤炭运销集团科学技术研究有限公司 一种矿井开采层瓦斯抽放方法
CN102913274B (zh) * 2012-11-07 2015-03-04 中国矿业大学 一种用于瓦斯抽采钻井增产的系统及其方法
CN103352718B (zh) * 2013-07-29 2015-07-15 河南理工大学 全封闭风力排渣抽放瓦斯深孔钻进系统及方法
CN103696800B (zh) * 2013-12-18 2016-03-23 中国矿业大学 一种钻割压抽方法
CN104832209A (zh) * 2015-04-04 2015-08-12 西安科技大学 巷道超前钻孔导流抽采采空区瓦斯技术
CN105041369A (zh) * 2015-07-15 2015-11-11 贵州盘江精煤股份有限公司 一种本煤层瓦斯治理方法
CN107420126B (zh) * 2017-07-26 2024-03-29 柴兆喜 均压循环矿井瓦斯抽采系统
CN107476794B (zh) * 2017-09-28 2019-05-07 徐州工程学院 一种液氮气化循环后注高温氮气增加煤体透气性的方法
CN108561176B (zh) * 2018-04-03 2023-06-23 焦作市美格安矿业科技有限公司 一种瓦斯抽采钻孔自动疏堵增透装置及方法
CN108757008B (zh) * 2018-05-14 2019-11-26 华北科技学院 一种利用磁性流体提高本煤层瓦斯抽放效率的方法
CN109736878B (zh) * 2019-01-11 2020-06-16 微山金源煤矿 一种无人的自动抽采瓦斯的系统
CN111502740B (zh) * 2020-03-30 2024-06-04 北京科技大学 单元循环式压抽一体化瓦斯抽采系统及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5417286A (en) * 1993-12-29 1995-05-23 Amoco Corporation Method for enhancing the recovery of methane from a solid carbonaceous subterranean formation
CN1165908A (zh) * 1996-01-31 1997-11-26 瓦斯塔资源有限公司 通过注射来自碳氢化合物合成过程的尾气从地下煤生成层中增加甲烷回收的方法
CN101012755A (zh) * 2007-02-11 2007-08-08 杜志刚 煤矿煤层钻孔增加抽放瓦斯量的设备
CN101012756A (zh) * 2007-02-11 2007-08-08 杜志刚 煤矿煤层钻孔增加抽放瓦斯量的方法
CN101122222A (zh) * 2007-09-19 2008-02-13 中国科学院武汉岩土力学研究所 井下水平孔混合气体驱替煤层气开采系统及其方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5944104A (en) * 1996-01-31 1999-08-31 Vastar Resources, Inc. Chemically induced stimulation of subterranean carbonaceous formations with gaseous oxidants
CN101280688B (zh) * 2008-05-27 2011-05-04 河南理工大学 突出煤层掘进工作面沿顶钻进大循环区域性消突方法
CN101705836B (zh) * 2009-09-30 2011-08-10 中国矿业大学 喷流控制装置及方法
RU2419723C1 (ru) * 2010-02-02 2011-05-27 Александр Васильевич Булкин Способ дегазации разрабатываемых угольных пластов

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5417286A (en) * 1993-12-29 1995-05-23 Amoco Corporation Method for enhancing the recovery of methane from a solid carbonaceous subterranean formation
CN1165908A (zh) * 1996-01-31 1997-11-26 瓦斯塔资源有限公司 通过注射来自碳氢化合物合成过程的尾气从地下煤生成层中增加甲烷回收的方法
CN101012755A (zh) * 2007-02-11 2007-08-08 杜志刚 煤矿煤层钻孔增加抽放瓦斯量的设备
CN101012756A (zh) * 2007-02-11 2007-08-08 杜志刚 煤矿煤层钻孔增加抽放瓦斯量的方法
CN101122222A (zh) * 2007-09-19 2008-02-13 中国科学院武汉岩土力学研究所 井下水平孔混合气体驱替煤层气开采系统及其方法

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106645630A (zh) * 2017-02-20 2017-05-10 中国矿业大学(北京) 疏水改变煤层透气性模拟试验装置与增透方法
CN106939766A (zh) * 2017-05-10 2017-07-11 河南理工大学 一种热冷冲击三级破煤装置与实施方法
CN107859500A (zh) * 2017-10-13 2018-03-30 大连理工大学 矿山岩体钻孔增透型瓦斯封堵单元及测定系统
CN107725006A (zh) * 2017-11-02 2018-02-23 西安科技大学 一种煤层钻孔瓦斯抽采模拟试验装置及方法
CN107725006B (zh) * 2017-11-02 2023-05-12 西安科技大学 一种煤层钻孔瓦斯抽采模拟试验装置及方法
CN107882586A (zh) * 2017-12-12 2018-04-06 贵州盘江精煤股份有限公司 一种煤矿井下瓦斯抽放吹水结构及其施工方法
WO2019218768A1 (zh) * 2018-05-14 2019-11-21 中国矿业大学 一种基于减阻工作液的全封闭瓦斯抽采泵节能系统
CN109026129A (zh) * 2018-08-15 2018-12-18 山东安益矿用设备有限公司 高低负压管路智能转换调控技术
CN109252890A (zh) * 2018-12-06 2019-01-22 贵州大学 一种防泄漏的煤矿开采用瓦斯排放装置
CN109989783B (zh) * 2019-05-14 2023-08-15 河南理工大学 超临界二氧化碳亟正负压强相互作用联合抽采瓦斯系统及瓦斯抽采方法
CN109989783A (zh) * 2019-05-14 2019-07-09 河南理工大学 超临界二氧化碳亟正负压强相互作用联合抽采瓦斯系统及瓦斯抽采方法
CN110630318A (zh) * 2019-10-22 2019-12-31 中煤科工集团重庆研究院有限公司 井下瓦斯钻孔抽采的全生命周期管控方法
CN110685735A (zh) * 2019-11-25 2020-01-14 河南理工大学 瓦斯抽排定向钻具及钻孔方法
CN110907335A (zh) * 2019-12-17 2020-03-24 华北科技学院 一种煤层瓦斯透气率模拟实验装置及其控制方法
CN111219204A (zh) * 2020-03-29 2020-06-02 张海轩 一种提高煤矿巷道内瓦斯抽采浓度的瓦斯抽采装置及方法
CN111396028B (zh) * 2020-03-30 2023-02-28 西安科技大学 基于液态co2致裂增透和相变驱置瓦斯抽采达标等效量化评估方法
CN111396028A (zh) * 2020-03-30 2020-07-10 西安科技大学 基于液态co2致裂增透和相变驱置瓦斯抽采达标等效量化评估方法
CN113107460A (zh) * 2021-04-08 2021-07-13 煤炭科学研究总院 瓦斯抽采钻孔智能监测装置及其使用方法
CN113107460B (zh) * 2021-04-08 2022-04-29 煤炭科学研究总院有限公司 瓦斯抽采钻孔智能监测装置及其使用方法
CN113266415B (zh) * 2021-06-16 2024-06-11 陕西长武亭南煤业有限责任公司 一种抽压交替的瓦斯抽采设备及方法
CN113266415A (zh) * 2021-06-16 2021-08-17 陕西长武亭南煤业有限责任公司 一种抽压交替的瓦斯抽采设备及方法
CN113605866A (zh) * 2021-08-25 2021-11-05 上海大屯能源股份有限公司孔庄煤矿 一种矿井瓦斯抽采动态调控系统及方法
CN113605866B (zh) * 2021-08-25 2024-04-02 上海大屯能源股份有限公司孔庄煤矿 一种矿井瓦斯抽采动态调控系统及方法
CN113738435A (zh) * 2021-09-10 2021-12-03 湘潭大学 深部低渗透高瓦斯煤层区域强化增透抽采方法
CN114263449B (zh) * 2021-12-14 2022-09-16 中国矿业大学 一种基于水压致裂的高效瓦斯抽采装置
CN114263449A (zh) * 2021-12-14 2022-04-01 中国矿业大学 一种基于水压致裂的高效瓦斯抽采装置
CN114441216A (zh) * 2021-12-22 2022-05-06 中煤科工集团西安研究院有限公司 一种煤矿井下深孔干式密闭取样方法
CN114515506B (zh) * 2022-01-04 2024-02-02 河南中煤矿业科技发展有限公司 一种瓦斯消化液的组配方法及使用方法
CN114515506A (zh) * 2022-01-04 2022-05-20 河南中煤矿业科技发展有限公司 一种瓦斯消化液的组配方法及使用方法
CN114233370B (zh) * 2022-01-18 2023-07-18 山东科技大学 瓦斯抽采钻孔坍塌修复与互联的一体化抽采方法
CN114233370A (zh) * 2022-01-18 2022-03-25 山东科技大学 瓦斯抽采钻孔坍塌修复与互联的一体化抽采方法
CN114607312A (zh) * 2022-03-11 2022-06-10 中国矿业大学 一种实时多次封孔的装置及方法
CN114592904A (zh) * 2022-04-01 2022-06-07 安徽理工大学 一种用于高瓦斯煤矿的瓦斯抽采装置
CN115110921B (zh) * 2022-07-18 2023-07-14 中煤科工集团重庆研究院有限公司 一种用于渗透各向异性本煤层瓦斯保压驱替抽采方法
CN115110921A (zh) * 2022-07-18 2022-09-27 中煤科工集团重庆研究院有限公司 一种用于渗透各向异性本煤层瓦斯保压驱替抽采方法
CN116122891A (zh) * 2023-03-01 2023-05-16 中国矿业大学(北京) 一种瓦斯抽采钻孔二次智能封孔提高抽采效果的装置及方法

Also Published As

Publication number Publication date
CN102352768B (zh) 2013-09-11
CN102352768A (zh) 2012-02-15

Similar Documents

Publication Publication Date Title
WO2013056597A1 (zh) 一种抽压交替的瓦斯抽采方法及装备
CN109505565B (zh) 一种注水与注气交变驱替抽采煤层瓦斯的方法
WO2015054984A1 (zh) 煤矿井下气液两相交替相驱压裂煤体强化瓦斯抽采方法
CN103696800B (zh) 一种钻割压抽方法
CN208184704U (zh) 一种囊袋注浆式瓦斯抽采测压封孔装置
CN105422164B (zh) 水压致裂增透辅助煤层高效注水方法及设备
CN104234740B (zh) 一种低中压空气驱替高压煤层瓦斯系统及其方法
CN105114116B (zh) 一种水热耦合压裂强化区域瓦斯抽采方法
CN104481575B (zh) 一种热蒸汽驱替瓦斯提高瓦斯抽采效率的方法
CN110242256B (zh) 一种钻孔分段高效抽采瓦斯装置
CN105822341A (zh) 一种低渗煤层超临界二氧化碳增透系统及方法
CN203531877U (zh) 煤矿井下压裂连接装置
WO2020151207A1 (zh) 一种高承压水高瓦斯煤层群协调抽采卸压方法
WO2018161470A1 (zh) 钻孔丙酮侵袭与水力压裂相结合的交替式煤层增透方法
CN206957684U (zh) 一种煤层顶板水力压裂系统
CN104373106A (zh) 一种井下封隔器气体密封性能的实验方法及实验系统
CN209261534U (zh) 一种组合式煤层注水及瓦斯抽采封孔装置
CN111268679B (zh) 非常规天然气开采与co2封存一体装置及应用方法
CN107023284A (zh) 一种静态膨胀剂注入系统及注入方法
CN212483223U (zh) 深部含瓦斯煤岩脉动压裂实验装置
CN105003294A (zh) 一种基于水热耦合压裂煤体石门揭煤方法
CN205677660U (zh) 一种低渗煤层超临界二氧化碳增透系统
CN204082201U (zh) 煤层高压脉动水锤注水装置
CN207879373U (zh) 抑制煤与瓦斯突出装置
CN103541679B (zh) 煤矿井下水力压裂钻孔组合式封孔方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12841197

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12841197

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12841197

Country of ref document: EP

Kind code of ref document: A1