WO2019218707A1 - 一种变换器及其控制方法 - Google Patents

一种变换器及其控制方法 Download PDF

Info

Publication number
WO2019218707A1
WO2019218707A1 PCT/CN2019/070647 CN2019070647W WO2019218707A1 WO 2019218707 A1 WO2019218707 A1 WO 2019218707A1 CN 2019070647 W CN2019070647 W CN 2019070647W WO 2019218707 A1 WO2019218707 A1 WO 2019218707A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
transformer
output
diode
cathode
Prior art date
Application number
PCT/CN2019/070647
Other languages
English (en)
French (fr)
Inventor
李永昌
吴辉
王志燊
李斌华
Original Assignee
广州金升阳科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州金升阳科技有限公司 filed Critical 广州金升阳科技有限公司
Publication of WO2019218707A1 publication Critical patent/WO2019218707A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/344Active dissipative snubbers

Definitions

  • the invention relates to a converter and a control method thereof, in particular to a flyback converter and a control method thereof.
  • the secondary side of the transformer also has a leakage inductance
  • the secondary side leakage inductance and the parasitic capacitance of the output rectifier diode resonate, so that the output rectifier diode is subjected to a voltage stress greater than Vin/N+Vo.
  • CCM continuous conduction mode
  • the turn-off loss of the output rectifier diode can be reduced, and the conversion efficiency of the flyback converter can be improved.
  • the flyback circuit including the active clamp flyback circuit, also has the following problems:
  • the secondary rectifier diode When the main switch is turned on, the secondary rectifier diode has a higher reverse voltage value (relative to the steady-state voltage value) due to the leakage inductance, which causes the output rectifier diode to have a large turn-off loss and reduces the converter's turn-off. Conversion efficiency.
  • the present invention provides a converter and a control method thereof.
  • an absorption network is added to make the voltage across the secondary rectifier diode clamped when the main switch is turned on. Equal to Vin/N+Vo (N is the transformer's primary side-to-side ratio, Vin is the input voltage, and Vo is the output voltage), so that the turn-off loss of the secondary rectifier diode is reduced, and the energy in the absorption network is again Utilize to improve the conversion efficiency of the flyback converter.
  • a converter control method when the main switch in the flyback topology is turned off, by opening a switch tube in the absorption network, the capacitor in the absorption network releases a part of the energy to the transformer, so that the voltage across the capacitor is decreased.
  • the tube When the tube is turned on, the primary side voltage senses the secondary side, causing the voltage on the secondary side of the transformer to change rapidly. Due to the leakage inductance on the secondary side, the voltage at the output of the secondary side of the transformer changes rapidly.
  • the body diode on the switch tube in the absorption network is turned on.
  • the capacitance in the absorption network is equivalent to being connected in parallel on the output side of the secondary side, thereby absorbing
  • the resonant voltage caused by the secondary side leakage inductance causes the reverse voltage tolerated by the secondary side rectifier diode to be clamped to the absorption capacitor voltage plus the output voltage.
  • the absorption capacitor voltage fluctuates within a small range of Vin/N, the amplitude of the fluctuation is very small, so it can be seen that the reverse voltage of the output rectifier diode in the turn-off phase of the main switch is Vin/N+Vo, thereby reducing The turn-off loss of the rectifier diode improves the conversion efficiency of the converter.
  • a converter including a flyback topology, an absorption network, and a control and drive circuit, the input terminal of the flyback topology is connected to the input voltage, and the output of the flyback topology is connected.
  • the input of the control and drive circuit is connected to the output of the flyback topology, sampling and feeding back the output voltage of the flyback topology;
  • the first output of the control and drive circuit outputs the drive signal G1 to drive the main switch in the flyback topology Turn-on and turn-off,
  • the second output of the control and drive circuit outputs the drive signal G2 to drive the switching transistor in the absorption network to turn on and off;
  • the absorption network is connected in parallel in the flyback topology of the secondary winding of the transformer .
  • the flyback topology includes a transformer T1, an input capacitor C1, an output filter capacitor C3, a capacitor C4, a resistor R1, a resistor R2, a diode D1, a diode D2, and a main switch transistor Q1;
  • the anode of the input capacitor C1 is connected to the same end of the primary side of the transformer T1, and is connected to one end of the resistor R2 and one end of the capacitor C4 as the anode of the input voltage; the cathode of the input capacitor C1 is connected to the cathode of the input voltage, and the main switch The source of the transistor Q1 is connected; the different end of the transformer T1 is connected to the drain of the main switch Q1 and the anode of the diode D2, and the cathode of the diode D2 is connected to the other end of the resistor R2 and the other end of the capacitor R4; the main switch Q1 The gate is connected to the first output end of the control and driving circuit; the anode of the diode D1 is respectively connected to the cathode of the output filter capacitor C3 and one end of the resistor R1, and serves as an output negative pole of the flyback topology; the cathode of the diode D1 is connected to the transformer The same name end of the secondary
  • the absorption network includes a capacitor C2 and a switch tube Q2.
  • One end of the capacitor C2 is connected to the opposite end of the secondary side of the transformer T1, the other end of the capacitor C2 is connected to the drain of the switch tube Q2, and the source of the switch tube Q2 is connected to the transformer T1.
  • the same name end of the secondary side; the gate of the switching transistor Q2 is connected to the second output end of the control and drive circuit.
  • control and driving circuit further includes a third output terminal, and the third output terminal outputs a driving signal G3.
  • the flyback topology includes a transformer T1, an input capacitor C1, an output filter capacitor C3, a capacitor C4, a resistor R1, a diode D1, a main switch transistor Q1, and a switch transistor Q3;
  • the anode of the input capacitor C1 is connected to the anode of the input voltage, and is connected to the same end of the transformer T1 and the end of the capacitor C4; the cathode of the input capacitor C1 is connected to the cathode of the input voltage and is connected to the source of the main switch Q1.
  • the opposite end of the transformer T1 is connected to the drain of the main switch Q1 and the source of the switch Q3; the gate of the main switch Q1 is connected to the first output of the control and drive circuit; the switch Q3 The gate is connected to the third output end of the control and driving circuit, the drain of the switching transistor Q3 is connected to the other end of the capacitor C4; the anode of the diode D1 is respectively connected to the cathode of the output filter capacitor C3 and one end of the resistor R1, and acts as a flyback
  • the output of the topology is negative; the cathode of the diode D1 is connected to the same end of the secondary side of the transformer T1; the opposite end of the secondary side of the transformer T1 is connected to the positive terminal of the output filter capacitor C3 and the other end of the resistor R1 to form an output positive pole of the flyback topology;
  • the absorption network includes a capacitor C2 and a switch tube Q2.
  • One end of the capacitor C2 is connected to the opposite end of the secondary side of the transformer T1, the other end of the capacitor C2 is connected to the drain of the switch tube Q2, and the source of the switch tube Q2 is connected to the transformer T1.
  • the same name end of the secondary side; the gate of the switching transistor Q2 is connected to the second output end of the control and drive circuit.
  • the flyback topology includes a transformer T1, an input capacitor C1, an output filter capacitor C3, a resistor R1, a diode D1, a diode D2, a diode D3, a main switch tube Q1, and a switch tube Q3;
  • the anode of the input capacitor C1 is connected to the anode of the input voltage, and is connected to the drain of the switch transistor Q3 and the cathode of the diode D2; the cathode of the input capacitor C1 is connected to the cathode of the input voltage, and the source and the diode of the main switch transistor Q1.
  • the anode of D3 is connected; the same name of the transformer T1 is connected to the source of the switch Q3 and the cathode of the diode D3; the original end of the transformer T1 is connected to the drain of the main switch Q1 and the anode of the diode D2;
  • the gate of the switch tube Q1 is connected to the first output end of the control and drive circuit;
  • the gate of the switch tube Q3 is connected to the third output end of the control and drive circuit;
  • the anode of the diode D1 is respectively connected to the cathode of the output filter capacitor C3 And one end of the resistor R1, and as the output negative pole of the flyback topology;
  • the cathode of the diode D1 is connected to the same end of the secondary side of the transformer T1; the opposite end of the secondary side of the transformer T1 and the positive end of the output filter capacitor C3 and the other end of the resistor R1 Connected to form an output positive pole of a flyback topology;
  • the absorption network includes a capacitor C2 and a switch tube Q2.
  • One end of the capacitor C2 is connected to the opposite end of the secondary side of the transformer T1, the other end of the capacitor C2 is connected to the drain of the switch tube Q2, and the source of the switch tube Q2 is connected to the transformer T1.
  • the same name end of the secondary side; the gate of the switching transistor Q2 is connected to the second output end of the control and drive circuit.
  • the flyback topology includes a transformer T1, an input capacitor C1, an output filter capacitor C3, a capacitor C4, a resistor R1, a diode D1, a main switch transistor Q1, and a switch transistor Q3;
  • the anode of the input capacitor C1 is connected to the anode of the input voltage and is connected to the drain of the main switch Q1.
  • the cathode of the input capacitor C1 is connected to the cathode of the input voltage, and is respectively connected to the source of the switch Q3 and one end of the capacitor C4.
  • the source of the main switch Q1 is connected to the drain of the switch Q3 and the same side of the transformer T1, and the other end of the transformer T1 is connected to the other end of the capacitor C4; the gate and control of the main switch Q1
  • the first output end of the driving circuit is connected;
  • the gate of the switching tube Q3 is connected to the third output end of the control and driving circuit;
  • the anode of the diode D1 is respectively connected to the cathode of the output filter capacitor C3 and one end of the resistor R1, and
  • the output of the excitation topology is negative;
  • the cathode of the diode D1 is connected to the same end of the secondary side of the transformer T1;
  • the opposite end of the secondary side of the transformer T1 is connected to the positive terminal of the output filter capacitor C3 and the other end of the resistor R1 to form an output positive pole of the flyback topology. ;
  • the absorption network includes a capacitor C2 and a switch tube Q2.
  • One end of the capacitor C2 is connected to the opposite end of the secondary side of the transformer T1, the other end of the capacitor C2 is connected to the drain of the switch tube Q2, and the source of the switch tube Q2 is connected to the transformer T1.
  • the same name end of the secondary side; the gate of the switching transistor Q2 is connected to the second output end of the control and drive circuit.
  • the absorption network switching transistor Q2 is an N-type MOS transistor or an IGBT.
  • the absorption network capacitor C2 is a ceramic capacitor or a film capacitor.
  • the primary side clamping circuit is an RCD absorbing circuit.
  • the drive signal G2 is a fixed pulse width voltage, and the turn-off timing is consistent with the drive signal G1.
  • the structure is versatile and can be used in applications where all secondary rectifier diodes have large turn-off losses.
  • FIG. 1 is a schematic block diagram of a converter and a control method thereof according to the present invention.
  • FIG. 2 is a circuit schematic diagram of a first embodiment of the present invention
  • FIG. 3 is a schematic diagram showing the working waveforms of a conventional non-absorptive network flyback converter
  • FIG. 4 is a schematic diagram showing the operation waveform of the first embodiment of the present invention.
  • Figure 5 is a schematic view showing the first stage of the working process of the first embodiment of the present invention.
  • Figure 6 is a schematic view showing the stage 2 of the working process of the first embodiment of the present invention.
  • Figure 7 is a schematic view showing the stage 3 of the working process of the first embodiment of the present invention.
  • Figure 8 is a schematic view showing the stage 4 of the working process of the first embodiment of the present invention.
  • Figure 9 is a circuit diagram of a second embodiment of the present invention.
  • Figure 10 is a schematic view showing the operation waveform of the second embodiment of the present invention.
  • Figure 11 is a circuit diagram of a third embodiment of the present invention.
  • Figure 12 is a circuit diagram of a fourth embodiment of the present invention.
  • FIG. 1 is a structural block diagram of a converter for reducing the turn-off loss of an output rectifier diode according to the present invention, which is composed of a flyback topology, an absorption network, a control and a driving unit.
  • the absorption network is connected in parallel with the secondary side of the transformer; the input of the control and drive unit is connected to the output of the converter, and one output of the control and drive unit is connected to the primary switch of the converter, and the other output and absorption network of the control and drive unit
  • the switch tubes are connected.
  • the absorption network is composed of a switching transistor Q2 and a capacitor C2.
  • the anode of the input capacitor C1 is connected to the anode of the input power source and is connected to one end of the primary side of the transformer T1; one end of the capacitor C4 is connected to one end of the resistor R2 and connected to one end of the transformer; the other end of the capacitor C4 is connected to the resistor R2.
  • the other end is connected to the cathode of the diode D2; the cathode of the input capacitor C1 is connected to the cathode of the input power supply and is connected to the source of the switch Q1; the other end of the transformer T1 is connected to the anode of the diode D2, and the switch Q1
  • the drain of the switch Q1 is connected to the output terminal G1 of the control and drive circuit; the anode of the output rectifier diode D1 is connected to the negative pole on the output side, and is connected to the negative pole of the output filter capacitor C3; the output rectifier diode D1 is output
  • the cathode is connected to one end of the secondary side of the transformer T1 and connected to the source of the switch tube Q2; the other end of the secondary side of the transformer T1 is connected to one end of the capacitor C2, and is connected to the anode of the output filter capacitor C3 as the anode on the output side;
  • the other end of the capacitor C2 is connected to the drain of the
  • the working diagram of this stage is shown in Figure 6.
  • the input voltage excites the leakage inductance and excitation inductance of the primary side of the transformer.
  • the excitation current flows from the same end of the transformer, and the opposite end is discharged.
  • the secondary diode D1 is cut off due to the reverse bias. .
  • the energy is transmitted to the primary side, and the current induced to the primary side flows from the different name end of the transformer, and flows out at the same name end. Since the excitation current of the primary side of the transformer remains substantially unchanged, the current flowing through the main switching tube Q1 is reduced.
  • the second embodiment is as shown in FIG. 9, and the connection relationship is as follows:
  • the anode of the input capacitor C1 is connected to the anode of the input power source, and is connected to one end of the primary side of the transformer T1 and one end of the capacitor C4; the cathode of the input capacitor C1 is connected to the cathode of the input power source and connected to the source of the switch tube Q1;
  • the other end of T1 is connected to the drain of the switching transistor Q1 and the source of the switching transistor Q3;
  • the gate of the switching transistor Q1 is connected to the output terminal G1 of the control and driving circuit; the gate of the switching transistor Q3 and the output of the control and driving circuit
  • the terminal G3 is connected, the drain of the switch tube Q3 is connected to the other end of the capacitor C4;
  • the anode of the output rectifier diode D1 is connected to the cathode of the output side, and is connected to the cathode of the output filter capacitor C3;
  • the cathode of the output rectifier diode D1 is connected to the transformer T1 One
  • FIG. 10 The working sequence diagram of the second embodiment is shown in FIG. 10, and the working principle is:
  • the working process of the switching tubes Q1 and Q2 is the same as that of the first embodiment.
  • the switching tube Q1 is turned off, the switching tube Q3 is turned on after a short period of dead time, and the energy on the leakage inductance of the primary side is stored on the capacitor C4.
  • the current on the leakage inductance is zero, the voltage value on the capacitor C4 is maximum at this time, because the switch tube Q3 is still in the on state, the energy stored in the capacitor C4 is released to the primary side of the transformer through the switch tube Q3, and the transformer is passed through the transformer. Transfer, this part of the energy is transferred to the load side. Thereby, the effect of recycling the leakage energy is realized, and the conversion efficiency of the converter is improved.
  • the flyback topology includes a transformer T1, an input capacitor C1, an output filter capacitor C3, a resistor R1, a diode D1, a diode D2, a diode D3, a main switch tube Q1, and a switch tube Q3.
  • the anode of the input capacitor C1 is connected to the anode of the input voltage, and is connected to the drain of the switch transistor Q3 and the cathode of the diode D2; the cathode of the input capacitor C1 is connected to the cathode of the input voltage, and the source and the diode of the main switch transistor Q1.
  • the anode of D3 is connected; the same name of the transformer T1 is connected to the source of the switch Q3 and the cathode of the diode D3; the original end of the transformer T1 is connected to the drain of the main switch Q1 and the anode of the diode D2;
  • the gate of the switch tube Q1 is connected to the first output end of the control and drive circuit; the gate of the switch tube Q3 is connected to the third output end of the control and drive circuit;
  • the anode of the diode D1 is respectively connected to the cathode of the output filter capacitor C3 And one end of the resistor R1, and as the output negative pole of the flyback topology;
  • the cathode of the diode D1 is connected to the same end of the secondary side of the transformer T1; the opposite end of the secondary side of the transformer T1 and the positive end of the output filter capacitor C3 and the other end of the resistor R1 Connected to form the output positive of the flyback topology.
  • the fourth embodiment is shown in FIG. 12, which differs from the first embodiment in that an asymmetric half-bridge flyback topology is used.
  • the flyback topology includes a transformer T1, an input capacitor C1, an output filter capacitor C3, a capacitor C4, and a resistor.
  • the anode of the input capacitor C1 is connected to the anode of the input voltage and is connected to the drain of the main switch Q1.
  • the cathode of the input capacitor C1 is connected to the cathode of the input voltage, and is respectively connected to the source of the switch Q3 and one end of the capacitor C4.
  • the source of the main switch Q1 is connected to the drain of the switch Q3 and the same side of the transformer T1, and the other end of the transformer T1 is connected to the other end of the capacitor C4; the gate and control of the main switch Q1
  • the first output end of the driving circuit is connected; the gate of the switching tube Q3 is connected to the third output end of the control and driving circuit; the anode of the diode D1 is respectively connected to the cathode of the output filter capacitor C3 and one end of the resistor R1, and
  • the output of the excitation topology is negative; the cathode of the diode D1 is connected to the same end of the secondary side of the transformer T1; the opposite end of the secondary side of the transformer T1 is connected to the positive terminal of the output filter capacitor C3 and the other end of the resistor R1 to form an output positive pole of the flyback topology.
  • the specific working principle is not repeated here.

Abstract

一种变换器及其控制方法,在常规反激变换器的基础上增加一个吸收网络,在主开关管开通时,副边整流二极管两端电压被钳位在Vin/N+Vo,其中N为变压器原副边匝比,Vin为输入电压,Vo为输出电压,使得副边整流二极管的关断损耗有所下降,并且吸收网络中的能量会得到再次利用,从而提高反激变换器的转换效率。

Description

一种变换器及其控制方法 技术领域
本发明涉及一种变换器及其控制方法,特别涉及反激变换器及其控制方法。
背景技术
随着技术的进步,功率变换器向着高频、高效率、高功率密度方向发展。在功率变换器中,尤其是反激变换器,在硬开关状态下工作时,开关损耗会随着频率上升而增加。为了提高变换器的效率,需降低变换器的开关损耗。对于反激变换器中的输出整流二极管,当原边开关管导通时,理论上承受的电压应力为Vin/N+Vo(N为变压器原副边匝比N=Np/Ns)。但是,由于变压器副边也存在漏感,实际上副边漏感和输出整流二极管的寄生电容发生谐振,从而使得输出整流二极管所承受的电压应力要大于Vin/N+Vo。对于工作在连续导通模式(CCM)的反激变换器,关断阶段因输出整流二极管的电流和电压存在交叠,并且输出整流二极管所承受的反向电压越高其关断损耗就越大,从而会降低反激变换器的转换效率。
因此,通过减少副边整流二极管关断阶段的谐振电压峰值,这样就可以减少输出整流二极管的关断损耗,提高反激变换器的转换效率。
所以根据传统的依据,反激电路,包含有源钳位反激电路,也存在如下问题:
主开关管开通阶段时,副边整流二极管因存在漏感而导致其所承受的反向电压值较高(相对于稳态电压值),造成输出整流二极管关断损耗大,减低了变换器的转换效率。
发明内容
有鉴于此,本发明提供了一种变换器及其控制方法,在常规反激变换器的基础上增加一个吸收网络,使主开关管开通时,副边整流二极管两端电压被钳位在约等于Vin/N+Vo(N为变压器原副边匝比,Vin为输入电压,Vo为输出电压)处,使得副边整流二极管的关断损耗有所下降,并且吸收网络中的能量会得到再次利用,从而提高反激变换器的转换效率。
本发明解决上述技术问题的技术方案如下:
一种变换器的控制方法,当反激拓扑中的主开关管关断前,通过开通吸收网络中的开关管,使得吸收网络中的电容释放一部分能量到变压器,使得电容两端的电压有所下降,为下一周期吸收反激拓扑中的整流二极管两端的尖峰电压作准备,此尖峰电压是由变压器的漏感能量施加在整流二极管两端而产生的;当下一周期反激拓扑中的主开关管开通时,原边电压感应到副边,使得变压器副边的电压快速变化。由于副边存在漏感,从而会使得 变压器副边输出端的电压快速变化。当变压器副边输出端电压上升到大于钳位电容电压,此时吸收网络中的开关管上的体二极管导通,在这一阶段吸收网络中的电容相当于并联在副边输出侧,从而吸收了由副边漏感引起的谐振电压,使得副边整流二极管所承受的反向电压被钳位为吸收电容电压加上输出电压。又因为吸收电容电压在Vin/N的小范围内波动,波动幅值非常小可忽略,故可知输出整流二极管在主开关管关断阶段所承受的反向电压为Vin/N+Vo,从而减少了整流二极管的关断损耗,提高了变换器的转换效率。
为了达到上述的目的,本发明通过以下技术措施实现的:一种变换器,包含反激拓扑、吸收网络和控制及驱动电路,反激拓扑的输入端连接输入电压,反激拓扑的输出端连接负载;控制及驱动电路的输入端连接反激拓扑的输出端,采样并反馈反激拓扑的输出电压;控制及驱动电路的第一路输出端输出驱动信号G1驱动反激拓扑中的主开关管的开通和关断,控制及驱动电路的第二路输出端输出驱动信号G2驱动吸收网络中的开关管的开通和关断;吸收网络并联在反激拓扑中的变压器的副边绕组的两端。
优选的,所述的反激拓扑包括变压器T1、输入电容C1、输出滤波电容C3、电容C4、电阻R1、电阻R2、二极管D1、二极管D2和主开关管Q1;
输入电容C1的正极连接于变压器T1原边的同名端,并与电阻R2的一端和电容C4的一端相连,作为输入电压的正极;输入电容C1的负极连接于输入电压的负极,并与主开关管Q1的源极相连;变压器T1的异名端分别连接主开关管Q1的漏极和二极管D2的阳极,二极管D2的阴极与电阻R2的另一端和电容R4的另一端相连;主开关管Q1的栅极与控制及驱动电路的第一路输出端相连;二极管D1的阳极分别连接输出滤波电容C3的阴极和电阻R1的一端,并作为反激拓扑的输出负极;二极管D1的阴极连接于变压器T1副边的同名端;变压器T1副边的异名端与输出滤波电容C3的正极和电阻R1的另一端相连,形成反激拓扑的输出正极;
所述的吸收网络包括电容C2和开关管Q2,电容C2的一端连接变压器T1副边的异名端,电容C2的另一端与开关管Q2的漏极相连;开关管Q2的源极连接变压器T1副边的同名端;开关管Q2的栅极与控制及驱动电路的第二路输出端相连。
优选的,所述的控制及驱动电路还包括第三路输出端,所述的第三路输出端输出驱动信号G3。
优选的,所述的反激拓扑包括变压器T1、输入电容C1、输出滤波电容C3、电容C4、电阻R1、二极管D1、主开关管Q1和开关管Q3;
输入电容C1的正极连接于输入电压的正极,并与变压器T1原边的同名端和电容C4的一端相连;输入电容C1的负极连接于输入电压的负极,并与主开关管Q1的源极相连;变压器T1原边的异名端与主开关管Q1的漏极和开关管Q3的源极相连;主开关管Q1的栅极与控制及驱动电路的第一路输出端相连;开关管Q3的栅极与控制及驱动电路的第三路输出端相连,开关管Q3的漏极连接电容C4的另一端;二极管D1的阳极分别连接输出滤波电容C3的阴极和电阻R1的一端,并作为反激拓扑的输出负极;二极管D1的阴极连接于变压器T1副边的同名端;变压器T1副边的异名端与输出滤波电容C3的正极和电阻R1的另一端相连,形成反激拓扑的输出正极;
所述的吸收网络包括电容C2和开关管Q2,电容C2的一端连接变压器T1副边的异名端,电容C2的另一端与开关管Q2的漏极相连;开关管Q2的源极连接变压器T1副边的同名端;开关管Q2的栅极与控制及驱动电路的第二路输出端相连。
优选的,所述的反激拓扑包括变压器T1、输入电容C1、输出滤波电容C3、电阻R1、二极管D1、二极管D2、二极管D3、主开关管Q1和开关管Q3;
输入电容C1的正极连接于输入电压的正极,并与开关管Q3的漏极、二极管D2的阴极相连;输入电容C1的负极连接于输入电压的负极,并与主开关管Q1的源极、二极管D3的阳极相连;变压器T1的原边同名端与开关管Q3的源极和二极管D3的阴极相连;变压器T1的原边异名端与主开关管Q1的漏极、二极管D2的阳极相连;主开关管Q1的栅极与控制及驱动电路的第一路输出端相连;开关管Q3的栅极与控制及驱动电路的第三路输出端相连;二极管D1的阳极分别连接输出滤波电容C3的阴极和电阻R1的一端,并作为反激拓扑的输出负极;二极管D1的阴极连接于变压器T1副边的同名端;变压器T1副边的异名端与输出滤波电容C3的正极和电阻R1的另一端相连,形成反激拓扑的输出正极;
所述的吸收网络包括电容C2和开关管Q2,电容C2的一端连接变压器T1副边的异名端,电容C2的另一端与开关管Q2的漏极相连;开关管Q2的源极连接变压器T1副边的同名端;开关管Q2的栅极与控制及驱动电路的第二路输出端相连。
优选的,所述的反激拓扑包括变压器T1、输入电容C1、输出滤波电容C3、电容C4、电阻R1、二极管D1、主开关管Q1和开关管Q3;
输入电容C1的正极连接于输入电压的正极,并与主开关管Q1的漏极相连,输入电容C1的负极连接于输入电压的负极,并分别与开关管Q3的源极和电容C4的一端相连;主开关管Q1的源极分别连接开关管Q3的漏极和变压器T1的原边同名端,变压器T1的原边异名端连接电容C4的另一端;主开关管Q1的栅极与控制及驱动电路的第一路输出端相连; 开关管Q3的栅极与控制及驱动电路的第三路输出端相连;二极管D1的阳极分别连接输出滤波电容C3的阴极和电阻R1的一端,并作为反激拓扑的输出负极;二极管D1的阴极连接于变压器T1副边的同名端;变压器T1副边的异名端与输出滤波电容C3的正极和电阻R1的另一端相连,形成反激拓扑的输出正极;
所述的吸收网络包括电容C2和开关管Q2,电容C2的一端连接变压器T1副边的异名端,电容C2的另一端与开关管Q2的漏极相连;开关管Q2的源极连接变压器T1副边的同名端;开关管Q2的栅极与控制及驱动电路的第二路输出端相连。
优选地,吸收网络开关管Q2为N型MOS管或IGBT。
优选地,吸收网络电容C2为陶瓷电容或薄膜电容。
优选地,原边钳位电路为RCD吸收电路。
优选地,驱动信号G2为固定脉宽电压,并且关断时刻与驱动信号G1保持一致。
本发明变换器及其控制方法的有益效果为:
(1)降低副边整流二极管的关断损耗;
(2)吸收网络中的电容将所吸收的能量回馈到变压器中,经变压器传递到负载侧,起到能量回收利用的效果;
(3)该结构通用性强,可用于所有副边整流二极管关断损耗大的场合。
附图说明
图1为本发明变换器及其控制方法的原理框图;
图2为本发明第一实施例的电路原理图;
图3为现有无吸收网路反激变换器工作波形示意图;
图4为本发明第一实施例工作波形示意图;
图5为本发明第一实施例工作过程阶段1示意图;
图6为本发明第一实施例工作过程阶段2示意图;
图7为本发明第一实施例工作过程阶段3示意图;
图8为本发明第一实施例工作过程阶段4示意图;
图9为本发明第二实施例的电路原理图。
图10为本发明第二实施例的工作波形示意图。
图11为本发明第三实施例的电路原理图。
图12为本发明第四实施例的电路原理图。
具体实施方式
图1为本发明实现降低输出整流二极管关断损耗功能的变换器结构框图,由反激拓扑、吸收网络、控制及驱动单元组成。
第一实施例
图2为本发明实现降低输出整流二极管关断损耗功能变换器第一实施例的电路原理图。吸收网络与变压器副边并联;控制及驱动单元的输入与变换器的输出相连,控制及驱动单元的一路输出与变换器的原边开关管相连,控制及驱动单元的另一路输出与吸收网络的开关管相连。其中,吸收网络由开关管Q2和电容C2构成。
本发明实现降低输出整流二极管关断损耗功能变换器的第一实施例的连接关系如下:
输入电容C1的正极连接于输入电源的正极,并与变压器T1原边的一端相连;电容C4的一端连接于电阻R2的一端,并与变压器的一端相连;电容C4的另一端连接于电阻R2的另一端,并与二极管D2的阴极相连;输入电容C1的负极连接于输入电源的负极,并与开关管Q1的源极相连;变压器T1的另一端连接于二极管D2的阳极,并与开关管Q1的漏极相连;开关管Q1的栅极与控制及驱动电路的输出端G1相连;输出整流二极管D1的阳极连接于输出侧的负极,并与输出滤波电容C3的负极相连;输出整流二极管D1的阴极连接于变压器T1副边的一端,并与开关管Q2的源极相连;变压器T1副边的另一端与电容C2的一端相连,并与输出滤波电容C3的正极相连,作为输出侧的正极;电容C2的另一端与开关管Q2的漏极相连;开关管Q2的栅极与控制及驱动电路的输出端G2相连。
该实施例的工作过程的工作曲线如图4,工作过程描述如下:
[0,t 1]阶段:驱动电压G1为高电平,主开关管Q1导通,这阶段主功率管Q1的电流上升较快。由于吸收网络中电容的端电压在上一阶段释放了部分能量,导致这阶段电容的电压感应到原边时稍小于输入电压,故有一部分电流经过变压器及功率管Q2的体二极管直接传递到吸收网络中的电容上,一直维持到电容充电完成,该阶段的工作示意图如图5所示;
[t 1,t 2]阶段:驱动电压G1保持为高电平,主开关管Q1保持导通状态,吸收网络电容已充电完成,主开关管上的电流线性上升,其表达式为:i Q1(t)=V in*t/(L m+L r1),其中Lr1为变压器原边漏感,Lm为变压器的励磁电感。该阶段的工作示意图如图6所示,输入电压对变压器原边的漏感和励磁电感进行激磁,激磁电流从变压器的同名端流进,异名端流出,副边二极管D1因反偏而截止。
[t 2,t 3]阶段:驱动电压G2为高电平,副边开关管Q2导通,电容C2释放能量,经变压器传递到原边。由于该阶段的时间较短,可认为励磁电感电流不变。由于副边有电流传递到原边,会使得原边主开关管的电流下降,计算公式为i Q1(t)=I Lm-i C2(t)/N。该阶段一直维持 到t3时刻,其工作示意图如图7所示;吸收网络中的电容C2对副边绕组进行激磁,副边激磁电流从副边的同名端流进,异名端流出,经变压器传递能量到原边,感应到原边的电流从变压器异名端流入,同名端流出,因变压器原边的励磁电流基本保持不变,故会降低流过主开关管Q1的电流。
[t 3,t 4]阶段:驱动电压G1和G2变为低电平,开关管Q1和Q2同时关断。存储在变压器上的能量经输出整流二极管D1给输出侧传递能量。该阶段的工作示意图如图8所示。副边二极管D1正偏,励磁电感上的电流从变压器原边的异名端流进,同名端流出,传递到副边形成输出电流。
最终,通过输入电压3V,输出电压24V、输出电流1.25A DC/DC样机进行实验,样机测试结果如表1所示,有吸收网络的样机的整流二极管所承受的最高电压值为50.7V,比无吸收网络的要小,并且有吸收网络的样机效率比无吸收网络的要高1.6%。表1中无吸收网络的电压峰值体现在图3中0时刻、t4时刻等的VD电压。
表1样机测试结果
  整流二极管电压峰值/V 满载效率/%
无吸收网络 82.1 91.1
有吸收网络 50.7 92.7
第二实施例
第二实施例如图9所示,其连接关系如下:
输入电容C1的正极连接于输入电源的正极,并与变压器T1原边的一端和电容C4的一端相连;输入电容C1的负极连接于输入电源的负极,并与开关管Q1的源极相连;变压器T1的另一端与开关管Q1的漏极和开关管Q3的源极相连;开关管Q1的栅极与控制及驱动电路的输出端G1相连;开关管Q3的栅极与控制及驱动电路的输出端G3相连,开关管Q3的漏极连接电容C4的另一端;输出整流二极管D1的阳极连接于输出侧的负极,并与输出滤波电容C3的阴极相连;输出整流二极管D1的阴极连接于变压器T1副边的一端,并与开关管Q2的源极相连;变压器T1副边的另一端与电容C2的一端相连,并与输出滤波电容C3和输出侧的正极相连;电容C2的另一端与开关管Q2的漏极相连;开关管Q2的栅极与控制及驱动电路的输出端G2相连。
第二实施例的工作时序图如图10所示,工作原理为:
开关管Q1和Q2的工作过程与第一实施例一致,开关管Q3在开关管Q1关断后,经过一小段死区时间后导通,将原边漏感上的能量存储到电容C4上。当漏感上的电流为零时, 此时电容C4上的电压值最大,因开关管Q3还处于导通状态,故存储在电容C4上的能量经开关管Q3释放到变压器原边,经变压器传输,将这部分能量传递到负载侧。从而实现了漏感能量再利用的效果,提高了变换器的转换效率。
第三实施例
第三实施案例如图11所示,所述的反激拓扑包括变压器T1、输入电容C1、输出滤波电容C3、电阻R1、二极管D1、二极管D2、二极管D3、主开关管Q1和开关管Q3;
输入电容C1的正极连接于输入电压的正极,并与开关管Q3的漏极、二极管D2的阴极相连;输入电容C1的负极连接于输入电压的负极,并与主开关管Q1的源极、二极管D3的阳极相连;变压器T1的原边同名端与开关管Q3的源极和二极管D3的阴极相连;变压器T1的原边异名端与主开关管Q1的漏极、二极管D2的阳极相连;主开关管Q1的栅极与控制及驱动电路的第一路输出端相连;开关管Q3的栅极与控制及驱动电路的第三路输出端相连;二极管D1的阳极分别连接输出滤波电容C3的阴极和电阻R1的一端,并作为反激拓扑的输出负极;二极管D1的阴极连接于变压器T1副边的同名端;变压器T1副边的异名端与输出滤波电容C3的正极和电阻R1的另一端相连,形成反激拓扑的输出正极。
与第一实施例的区别在于采用双管反激拓扑,工作原理与第一实施例基本一致,故这里不再赘述。
第四实施例
第四实施案例如图12所示,与第一实施例的区别在于采用不对称半桥反激拓扑,所述的反激拓扑包括变压器T1、输入电容C1、输出滤波电容C3、电容C4、电阻R1、二极管D1、主开关管Q1和开关管Q3;
输入电容C1的正极连接于输入电压的正极,并与主开关管Q1的漏极相连,输入电容C1的负极连接于输入电压的负极,并分别与开关管Q3的源极和电容C4的一端相连;主开关管Q1的源极分别连接开关管Q3的漏极和变压器T1的原边同名端,变压器T1的原边异名端连接电容C4的另一端;主开关管Q1的栅极与控制及驱动电路的第一路输出端相连;开关管Q3的栅极与控制及驱动电路的第三路输出端相连;二极管D1的阳极分别连接输出滤波电容C3的阴极和电阻R1的一端,并作为反激拓扑的输出负极;二极管D1的阴极连接于变压器T1副边的同名端;变压器T1副边的异名端与输出滤波电容C3的正极和电阻R1的另一端相连,形成反激拓扑的输出正极;对其具体工作原理在这里不再赘述。
以上仅是本发明优选的实施方式,本发明所属领域的技术人员还可以对上述具体实施方式进行变更和修改。因此,本发明并不局限于上面揭示和描述的具体控制方式,对本发 明的一些修改和变更也应当落入本发明的权利要求的保护范围内。此外,尽管本说明书中使用了一些特定的术语,但这些术语只是为了方便说明,并不对本发明构成任何限制。

Claims (10)

  1. 一种变换器的控制方法,其特征在于:当反激拓扑中的主开关管关断前,通过开通吸收网络中的开关管,使得吸收网络中的电容释放一部分能量到反激拓扑中的变压器,使得吸收网络中的电容两端的电压有所下降,为下一周期吸收反激拓扑中的整流二极管两端的尖峰电压作准备;当下一周期反激拓扑中的主开关管开通时,反激拓扑中变压器的原边电压感应到副边,使得变压器副边的电压快速变化;当变压器副边输出端电压上升到大于吸收网络中钳位电容电压时,吸收网络中的开关管的体二极管导通,将反激拓扑中的整流二极管两端电压钳位。
  2. 一种变换器,其特征在于:包括反激拓扑、吸收网络和控制及驱动电路,反激拓扑的输入端连接输入电压,反激拓扑的输出端连接负载;控制及驱动电路的输入端连接反激拓扑的输出端,采样并反馈反激拓扑的输出电压;控制及驱动电路的第一路输出端输出驱动信号G1驱动反激拓扑中的主开关管的开通和关断,控制及驱动电路的第二路输出端输出驱动信号G2驱动吸收网络中的开关管的开通和关断;吸收网络并联在反激拓扑中的变压器的副边绕组的两端。
  3. 根据权利要求2所述的一种变换器,其特征在于:所述的反激拓扑包括变压器T1、输入电容C1、输出滤波电容C3、电容C4、电阻R1、电阻R2、二极管D1、二极管D2和主开关管Q1;
    输入电容C1的正极连接于变压器T1原边的同名端,并与电阻R2的一端和电容C4的一端相连,作为输入电压的正极;输入电容C1的负极连接于输入电压的负极,并与主开关管Q1的源极相连;变压器T1的异名端分别连接主开关管Q1的漏极和二极管D2的阳极,二极管D2的阴极与电阻R2的另一端和电容R4的另一端相连;主开关管Q1的栅极与控制及驱动电路的第一路输出端相连;二极管D1的阳极分别连接输出滤波电容C3的阴极和电阻R1的一端,并作为反激拓扑的输出负极;二极管D1的阴极连接于变压器T1副边的同名端;变压器T1副边的异名端与输出滤波电容C3的正极和电阻R1的另一端相连,形成反激拓扑的输出正极;
    所述的吸收网络包括电容C2和开关管Q2,电容C2的一端连接变压器T1副边的异名端,电容C2的另一端与开关管Q2的漏极相连;开关管Q2的源极连接变压器T1副边的同名端;开关管Q2的栅极与控制及驱动电路的第二路输出端相连。
  4. 根据权利要求2所述的一种变换器,其特征在于:所述的控制及驱动电路还包括第三路输出端,所述的第三路输出端输出驱动信号G3。
  5. 根据权利要求4所述的一种变换器,其特征在于:所述的反激拓扑包括变压器T1、输入电容C1、输出滤波电容C3、电容C4、电阻R1、二极管D1、主开关管Q1和开关管Q3;
    输入电容C1的正极连接于输入电压的正极,并与变压器T1原边的同名端和电容C4的一端相连;输入电容C1的负极连接于输入电压的负极,并与主开关管Q1的源极相连;变压器T1原边的异名端与主开关管Q1的漏极和开关管Q3的源极相连;主开关管Q1的栅极与控制及驱动电路的第一路输出端相连;开关管Q3的栅极与控制及驱动电路的第三路输出端相连,开关管Q3的漏极连接电容C4的另一端;二极管D1的阳极分别连接输出滤波电容C3的阴极和电阻R1的一端,并作为反激拓扑的输出负极;二极管D1的阴极连接于变压器T1副边的同名端;变压器T1副边的异名端与输出滤波电容C3的正极和电阻R1的另一端相连,形成反激拓扑的输出正极;
    所述的吸收网络包括电容C2和开关管Q2,电容C2的一端连接变压器T1副边的异名端,电容C2的另一端与开关管Q2的漏极相连;开关管Q2的源极连接变压器T1副边的同名端;开关管Q2的栅极与控制及驱动电路的第二路输出端相连。
  6. 根据权利要求4所述的一种变换器,其特征在于:所述的反激拓扑包括变压器T1、输入电容C1、输出滤波电容C3、电阻R1、二极管D1、二极管D2、二极管D3、主开关管Q1和开关管Q3;
    输入电容C1的正极连接于输入电压的正极,并与开关管Q3的漏极、二极管D2的阴极相连;输入电容C1的负极连接于输入电压的负极,并与主开关管Q1的源极、二极管D3的阳极相连;变压器T1的原边同名端与开关管Q3的源极和二极管D3的阴极相连;变压器T1的原边异名端与主开关管Q1的漏极、二极管D2的阳极相连;主开关管Q1的栅极与控制及驱动电路的第一路输出端相连;开关管Q3的栅极与控制及驱动电路的第三路输出端相连;二极管D1的阳极分别连接输出滤波电容C3的阴极和电阻R1的一端,并作为反激拓扑的输出负极;二极管D1的阴极连接于变压器T1副边的同名端;变压器T1副边的异名端与输出滤波电容C3的正极和电阻R1的另一端相连,形成反激拓扑的输出正极;
    所述的吸收网络包括电容C2和开关管Q2,电容C2的一端连接变压器T1副边的异名端,电容C2的另一端与开关管Q2的漏极相连;开关管Q2的源极连接变压器T1副边的同名端;开关管Q2的栅极与控制及驱动电路的第二路输出端相连。
  7. 根据权利要求4所述的一种变换器,其特征在于:所述的反激拓扑包括变压器T1、输入电容C1、输出滤波电容C3、电容C4、电阻R1、二极管D1、主开关管Q1和开关管Q3;
    输入电容C1的正极连接于输入电压的正极,并与主开关管Q1的漏极相连,输入电容C1的负极连接于输入电压的负极,并分别与开关管Q3的源极和电容C4的一端相连;主开关管Q1的源极分别连接开关管Q3的漏极和变压器T1的原边同名端,变压器T1的原边异名端连接电容C4的另一端;主开关管Q1的栅极与控制及驱动电路的第一路输出端相连;开关管Q3的栅极与控制及驱动电路的第三路输出端相连;二极管D1的阳极分别连接输出滤波电容C3的阴极和电阻R1的一端,并作为反激拓扑的输出负极;二极管D1的阴极连接于变压器T1副边的同名端;变压器T1副边的异名端与输出滤波电容C3的正极和电阻R1的另一端相连,形成反激拓扑的输出正极;
    所述的吸收网络包括电容C2和开关管Q2,电容C2的一端连接变压器T1副边的异名端,电容C2的另一端与开关管Q2的漏极相连;开关管Q2的源极连接变压器T1副边的同名端;开关管Q2的栅极与控制及驱动电路的第二路输出端相连。
  8. 根据权利要求3、权利要求5、权利要求6、权利要求7任一项所述的一种变换器,其特征在于:所述的开关管Q2为N型MOS管或IGBT。
  9. 根据权利要求3、权利要求5、权利要求6、权利要求7任一项所述的一种变换器,其特征在于:所述电容C2为陶瓷电容或薄膜电容。
  10. 根据权利要求2所述的一种变换器,其特征在于:所述驱动信号G2为固定脉宽电压,并且关断时刻与驱动信号G1保持一致。
PCT/CN2019/070647 2018-05-18 2019-01-07 一种变换器及其控制方法 WO2019218707A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810479640.3 2018-05-18
CN201810479640.3A CN108539988A (zh) 2018-05-18 2018-05-18 一种变换器及其控制方法

Publications (1)

Publication Number Publication Date
WO2019218707A1 true WO2019218707A1 (zh) 2019-11-21

Family

ID=63472330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070647 WO2019218707A1 (zh) 2018-05-18 2019-01-07 一种变换器及其控制方法

Country Status (2)

Country Link
CN (1) CN108539988A (zh)
WO (1) WO2019218707A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108539988A (zh) * 2018-05-18 2018-09-14 广州金升阳科技有限公司 一种变换器及其控制方法
CN110719019B (zh) * 2019-09-29 2021-05-18 广州金升阳科技有限公司 一种副边有源箝位控制电路
CN110518787A (zh) * 2019-10-10 2019-11-29 上海源微电子科技有限公司 一种反激钳位保护电路

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1332513A (zh) * 2000-09-28 2002-01-23 深圳市中兴通讯股份有限公司 一种正激电路装置
CN1773824A (zh) * 2004-11-08 2006-05-17 中兴通讯股份有限公司 单端正激电源的复位电路
US20130250457A1 (en) * 2011-07-28 2013-09-26 Power Integrations, Inc. Adjacent terminal fault detection
CN104638931A (zh) * 2014-11-18 2015-05-20 西南交通大学 对称式rcd箝位的正-反激变换器
CN106100352A (zh) * 2016-08-05 2016-11-09 广州金升阳科技有限公司 反激控制电路及控制方法
CN206834988U (zh) * 2017-04-25 2018-01-02 华南理工大学 一种基于数字芯片的反激变换器
CN108539988A (zh) * 2018-05-18 2018-09-14 广州金升阳科技有限公司 一种变换器及其控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572490B (zh) * 2009-06-15 2012-05-30 浙江大学 零电压开关反激式直流-直流电源转换装置
CN101692595B (zh) * 2009-09-21 2011-11-09 山特电子(深圳)有限公司 一种有源箝位正-反激变换器
CN101986544A (zh) * 2010-11-03 2011-03-16 广州金升阳科技有限公司 一种提高高隔离变压器电源转换效率的方法及电路
CN102570891B (zh) * 2012-01-16 2014-08-13 浙江昱能光伏科技集成有限公司 采用交错并联有源箝位技术的反激式光伏并网逆变器
EP2717449B1 (en) * 2012-10-05 2016-12-14 Nxp B.V. Isolated switched-mode power supply
CN107769569A (zh) * 2017-10-13 2018-03-06 深圳市盛弘电气股份有限公司 一种半桥反激谐振电路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1332513A (zh) * 2000-09-28 2002-01-23 深圳市中兴通讯股份有限公司 一种正激电路装置
CN1773824A (zh) * 2004-11-08 2006-05-17 中兴通讯股份有限公司 单端正激电源的复位电路
US20130250457A1 (en) * 2011-07-28 2013-09-26 Power Integrations, Inc. Adjacent terminal fault detection
CN104638931A (zh) * 2014-11-18 2015-05-20 西南交通大学 对称式rcd箝位的正-反激变换器
CN106100352A (zh) * 2016-08-05 2016-11-09 广州金升阳科技有限公司 反激控制电路及控制方法
CN206834988U (zh) * 2017-04-25 2018-01-02 华南理工大学 一种基于数字芯片的反激变换器
CN108539988A (zh) * 2018-05-18 2018-09-14 广州金升阳科技有限公司 一种变换器及其控制方法

Also Published As

Publication number Publication date
CN108539988A (zh) 2018-09-14

Similar Documents

Publication Publication Date Title
CN109217681B (zh) 一种双向谐振变换器
US9467057B2 (en) Resonant converters and methods
US9190911B2 (en) Auxiliary resonant apparatus for LLC converters
US11770076B2 (en) System and method for controlling active clamp flyback converter
CN100416994C (zh) 隔离升压推挽式软开关dc/dc变换器
WO2021051858A1 (zh) 一种有源钳位反激变换器的控制方法
CN101917121A (zh) 一种有源钳位同步整流正激变换器
Chen et al. A high-performance resonant gate-drive circuit for MOSFETs and IGBTs
CN111555626B (zh) 一种有源钳位反激变换器的控制方法及其系统
WO2012009998A1 (zh) Llc串联谐振变换器及其驱动方法
WO2019218707A1 (zh) 一种变换器及其控制方法
CN101924483B (zh) 带能量回收的倍压同步整流电路
WO2020114248A1 (zh) 一种双管正激同步整流电路的自驱驱动电路
CN103441680A (zh) 一种减小环流损耗的软开关全桥直流变换器
Liao et al. A novel current driving scheme for LLC resonant converter with synchronized voltage-doubler rectifier
CN114070090A (zh) 一种串联型有源钳位的反激变换器电路
CN108667304B (zh) 同步整流反激式直流-直流电源转换装置及控制方法
CN112491258B (zh) 一种有源钳位反激变换器的钳位电路及其控制方法
CN113708634A (zh) 一种反激变换器的控制方法及控制装置
WO2020143275A1 (zh) 一种改进型反激变换器
CN110719019B (zh) 一种副边有源箝位控制电路
CN104539177A (zh) 一种开关电源的同步整流驱动电路及同步整流方法
CN111987923A (zh) 一种采用矩阵变压器的大功率高升压比直流变换器
CN113131748B (zh) 一种反激变换器的控制方法及控制装置
CN108418438B (zh) 一种dc-dc变换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19803290

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19803290

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM1205A DATED 08/07/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19803290

Country of ref document: EP

Kind code of ref document: A1