WO2019218619A1 - 触控面板、触控显示面板及触控显示装置 - Google Patents

触控面板、触控显示面板及触控显示装置 Download PDF

Info

Publication number
WO2019218619A1
WO2019218619A1 PCT/CN2018/114835 CN2018114835W WO2019218619A1 WO 2019218619 A1 WO2019218619 A1 WO 2019218619A1 CN 2018114835 W CN2018114835 W CN 2018114835W WO 2019218619 A1 WO2019218619 A1 WO 2019218619A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
mesh pattern
grid
pattern
touch electrode
Prior art date
Application number
PCT/CN2018/114835
Other languages
English (en)
French (fr)
Inventor
刘国冬
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/480,997 priority Critical patent/US11294522B2/en
Priority to EP18900564.8A priority patent/EP3796137A4/en
Publication of WO2019218619A1 publication Critical patent/WO2019218619A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/046Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by electromagnetic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04106Multi-sensing digitiser, i.e. digitiser using at least two different sensing technologies simultaneously or alternatively, e.g. for detecting pen and finger, for saving power or for improving position detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • At least one embodiment of the present disclosure is directed to a touch panel, a touch display panel, and a touch display device.
  • Capacitive touch technology can support finger touch, especially for large-size touch products, enabling users to perform convenient and simple touch operations.
  • capacitive touch technology has been widely used in electronic display products, but the touch precision of such a capacitive touch product does not reach the precision of electromagnetic induction touch, and therefore cannot perform very fine operations.
  • the two can be combined to achieve better touch effects.
  • At least one embodiment of the present disclosure provides a touch panel including: a capacitive touch electrode and an electromagnetic touch electrode.
  • the capacitive touch electrode includes a first grid pattern, the first grid pattern includes a plurality of intersecting first grid lines; the electromagnetic touch electrode is insulated from the capacitive touch electrode and includes a second grid pattern, the first The two grid pattern includes a plurality of second grid lines that intersect.
  • the first mesh pattern and the second mesh pattern are disposed in the same layer and both extend in a first direction; and the first mesh pattern and the The second grid patterns are spaced apart from one another such that the capacitive touch electrodes are insulated from the electromagnetic touch electrodes.
  • the plurality of first grid lines and the plurality of second grid lines are spaced apart by a plurality of first gaps separated from each other such that the first The mesh pattern and the second mesh pattern are spaced apart from each other; and in the first direction, the plurality of first voids are respectively located on a plurality of straight lines parallel to the first direction.
  • the plurality of first gaps located at odd positions are located on a line parallel to the first direction;
  • the plurality of first voids are located on another straight line that is parallel to the first direction.
  • the plurality of first grid lines and the plurality of second grid lines are straight segments, and each of the plurality of second grid lines An extension line spans one of the plurality of first spaces and coincides with one of the plurality of first grid lines.
  • the first mesh pattern and the second mesh pattern are configured to: translate the second network in a second direction intersecting the first direction a grid pattern, wherein the second grid pattern completely overlaps a portion of the first grid pattern.
  • the electromagnetic touch electrode includes a first portion, a second portion, and a connection line, and the first portion and the second portion are electrically connected by the connection line;
  • the first portion and the second portion respectively include the second mesh pattern and extend along the first direction, the first mesh pattern being located at the first portion of the electromagnetic touch electrode and the Between the second part.
  • a touch panel provided by an embodiment of the present disclosure has an outer contour, an extending direction of at least a portion of the plurality of first grid lines or an extending direction of at least a portion of the plurality of second grid lines
  • the outer contours intersect and are not perpendicular.
  • the first mesh pattern includes a plurality of first grid cells that are identical in shape and are periodically arranged, and the first mesh patterns include a plurality of shapes and A second grid unit arranged in a periodic manner.
  • the shapes of the first mesh unit and the second mesh unit are all diamonds, circles, parallelograms, or triangles.
  • a touch panel provided by an embodiment of the present disclosure further includes: another capacitive touch electrode, including a third grid pattern, the third grid pattern includes a plurality of intersecting third grid lines; and another electromagnetic
  • the touch electrode includes a fourth grid pattern, the fourth grid pattern includes a plurality of intersecting fourth grid lines, and the other capacitive touch electrodes and the other electromagnetic touch electrodes are coupled to the capacitor
  • the touch electrode and the electromagnetic touch electrode are insulated.
  • the third mesh pattern is disposed in the same layer as the fourth mesh pattern, extends in a second direction intersecting the first direction, and is spaced apart from each other.
  • a layer in which the first mesh pattern and the second mesh pattern are located and a layer in which the third mesh pattern and the fourth mesh pattern are disposed are stacked; and a plurality of third grid lines and a direction in which a grid pattern and a layer in which the second grid pattern is located and a layer in which the third grid pattern and the fourth grid pattern are located are perpendicular
  • the plurality of fourth grid lines partially overlap the plurality of first grid lines and the plurality of second grid lines.
  • the plurality of third grid lines and the plurality of fourth grid lines are spaced apart by a plurality of second gaps separated from each other such that the third The mesh pattern and the fourth mesh pattern are spaced apart from each other; and in the second direction, the plurality of second voids are respectively located on a plurality of straight lines parallel to the second direction.
  • a touch panel further includes a base substrate and an insulating layer, and the first mesh pattern, the second mesh pattern, the third mesh pattern, and the fourth mesh pattern are disposed in the The same side of the base substrate; and the insulating layer is disposed at a layer where the first mesh pattern and the second mesh pattern are located, and the third mesh pattern and the fourth mesh pattern are located Between the layers.
  • the first mesh pattern and the second mesh pattern are disposed on a first side of the base substrate; and the third mesh pattern and The fourth grid pattern is disposed on a second side of the base substrate, the second side being opposite the first side.
  • a touch panel further includes a first substrate and a second substrate disposed opposite to each other, and the first grid pattern and the second grid pattern are disposed at the first On the base substrate; and the third mesh pattern and the fourth mesh pattern are disposed on the second substrate.
  • the third mesh pattern and the fourth mesh pattern are disposed on a side of the second substrate that is away from the first substrate. .
  • At least one embodiment of the present disclosure further provides a touch display panel, which includes any one of the touch panels provided by the embodiments of the present disclosure.
  • a touch display panel further includes a display layer, the display layer includes a plurality of signal lines crossing each other; at least a portion of the plurality of first grid lines or the second grid An orthographic projection of at least a portion of the line on the display layer intersects the signal line and is not perpendicular.
  • At least one embodiment of the present disclosure further provides a touch display device, which includes any touch display panel provided by an embodiment of the present disclosure.
  • 1 is a schematic view of a touch panel
  • FIG. 2A is a schematic plan view of a first touch electrode layer of a touch panel according to an embodiment of the present disclosure
  • FIG. 2B is a partial enlarged view of FIG. 2A;
  • 2C is another schematic plan view of a first touch electrode layer of a touch panel according to an embodiment of the present disclosure
  • FIG. 2D is another partial enlarged view of FIG. 2A;
  • 2E is a schematic plan view showing another first touch electrode layer of the touch panel according to an embodiment of the present disclosure.
  • FIG. 2F is a partially enlarged schematic view of FIG. 2E;
  • FIG. 2G is another partial enlarged view of FIG. 2E;
  • 2H is a schematic cross-sectional view of a touch panel according to an embodiment of the present disclosure.
  • 3A is a schematic plan view of a second touch electrode layer of a touch panel according to an embodiment of the present disclosure
  • FIG. 3B is another schematic plan view of a second touch electrode layer of the touch panel according to an embodiment of the present disclosure
  • FIG. 3C is a partially enlarged schematic view of FIG. 3B;
  • FIG. 3D is another partial enlarged view of FIG. 3B; FIG.
  • FIG. 4A is a schematic plan view of a touch panel according to an embodiment of the present disclosure.
  • FIG. 4B is a partial enlarged view of FIG. 4A;
  • Figure 5A is a schematic cross-sectional view taken along line I-I' of Figure 4A;
  • Figure 5B is another schematic cross-sectional view taken along line I-I' of Figure 4A;
  • Figure 5C is a schematic cross-sectional view taken along line I-I' of Figure 4A;
  • FIG. 6 is a schematic diagram of a display panel according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic plan view of a display panel according to an embodiment of the present disclosure.
  • Figure 8A is a schematic cross-sectional view taken along line H-H' in Figure 7;
  • Figure 8B is another schematic cross-sectional view along the line H-H' in Figure 7;
  • FIG. 9 is a schematic diagram of a display device according to an embodiment of the present disclosure.
  • FIG. 10A is a process flow diagram of a method for fabricating a touch panel according to an embodiment of the present disclosure
  • FIG. 10B is a process flow diagram of another method for fabricating a touch panel according to an embodiment of the present disclosure.
  • the dimensions of the drawings in the embodiments of the present disclosure are not strictly drawn to the actual scale.
  • the number of the capacitive touch electrodes, the electromagnetic touch electrodes, the other capacitive touch electrodes, and the other electromagnetic touch electrodes in the touch panel is not limited to The number shown in the drawing; the number of the first grid line, the second grid line, the third grid line, and the fourth grid line is not limited to the number shown in the drawing.
  • the specific size and number of each structure can be determined according to actual needs.
  • the drawings described in the embodiments of the present disclosure are merely schematic structural views.
  • FIG. 1 is a schematic diagram of a touch panel.
  • the touch panel shown in FIG. 1 includes a substrate 60 and a touch electrode disposed on the substrate 60.
  • the touch electrode includes a plurality of capacitive drive electrodes 70, a plurality of capacitive sensing electrodes 40, and a plurality of electromagnetic induction coils 50, each of the capacitive drive electrodes 70 including a plurality of sequentially arranged sub-drive electrodes 701, 702, 703, and 704.
  • each of the capacitive sensing electrodes 40 has a stripe pattern
  • each of the capacitive driving electrodes 70 and each of the electromagnetic induction coils 50 also includes a strip structure.
  • the above strip structures of the touch electrodes are horizontally vertical, that is, parallel or perpendicular to the lateral outer contour or longitudinal outer contour of the substrate 60.
  • the electromagnetic induction coil 50 composed of a thin strip structure has a large electric resistance, which is disadvantageous for improving the sensitivity of the electromagnetic touch;
  • the touch panel is applied to the display panel,
  • the opaque signal lines (eg, gate lines, data lines, etc.) or black matrix (eg, in the liquid crystal display panel) of the pixel layer are generally parallel or perpendicular to the lateral outer contour or the longitudinal outer contour of the substrate, and the touch
  • the strip structure of the touch electrode of the panel is also parallel or perpendicular to the lateral outer contour or the longitudinal outer contour of the substrate 60, so that the pattern of the touch electrode is easily visually generated with the signal line or the black matrix pattern of the pixel layer.
  • the moiré effect which seriously affects the display effect of the display panel.
  • At least one embodiment of the present disclosure provides a touch panel including: a capacitive touch electrode and an electromagnetic touch electrode.
  • the capacitive touch electrode includes a first grid pattern, the first grid pattern includes a plurality of intersecting first grid lines; the electromagnetic touch electrode is insulated from the capacitive touch electrode and includes a second grid pattern, the second network
  • the grid pattern includes a plurality of second grid lines that intersect.
  • the touch panel provided by the embodiment of the present disclosure can be used in a display device, a touch panel for controlling a mouse of a notebook computer, a touch electronic lock, and the like.
  • the touch panel can be a self-capacitive touch panel or a self-inductive electromagnetic touch panel.
  • the touch panel includes only one touch electrode layer, and the first mesh pattern is disposed in the same layer as the second mesh pattern in the one touch electrode layer.
  • FIG. 2A is a schematic plan view of a first touch electrode layer of a touch panel according to an embodiment of the present disclosure
  • FIG. 2B is another partial enlarged view of FIG. 2A
  • the first touch electrode layer 10 includes a capacitive touch electrode 17 and an electromagnetic touch electrode 6 disposed in the same layer.
  • the same layer of the capacitive touch electrode 17 and the electromagnetic touch electrode 6 facilitates the thinning of the touch panel, simplifies the structure of the panel, and in the process of manufacturing the touch panel, the capacitive touch electrode 17 can be formed by the same patterning process.
  • the pattern of the electromagnetic touch electrode 6 is advantageous for simplifying the manufacturing process.
  • the touch panel includes a plurality of capacitive touch electrodes 17 and a plurality of electromagnetic touch electrodes 6.
  • the touch panel may also include a capacitive touch electrode 17 and an electromagnetic touch electrode 6 .
  • the number of the capacitive touch electrodes 17 and the electromagnetic touch electrodes are used in the embodiment of the present disclosure.
  • the number of 6 is not limited.
  • each of the capacitive touch electrodes 17 includes a first mesh pattern 1 including a plurality of intersecting first grid lines 101.
  • Each of the electromagnetic touch electrodes 6 is insulated from the capacitive touch electrodes 17 , and the electromagnetic touch electrodes 6 include a second mesh pattern 2 including a plurality of intersecting second grid lines 201 .
  • the touch panel provided by the embodiment of the present disclosure can simultaneously implement capacitive touch and electromagnetic induction touch.
  • the first mesh pattern 1 and the second mesh pattern 2 of the touch panel provided by the embodiment of the present disclosure respectively increase the capacitive touch electrode, compared with the strip touch electrodes that do not have the mesh pattern. 17 and the arrangement density of the electromagnetic touch electrodes 6 can improve the capacitive touch precision and the electromagnetic touch precision of the touch panel while ensuring the transmittance, and can achieve higher even for the large-size touch panel.
  • Capacitive touch accuracy and electromagnetic touch accuracy on the other hand, in the first mesh pattern 1 and the second mesh pattern 2, at least part of the first grid lines 101 are arranged in parallel and/or at least part of the second grid lines 201 is arranged in parallel, which can reduce the resistance of the capacitive touch electrode 17 and the resistance of the electromagnetic touch electrode 6, and improve the sensitivity of the touch.
  • both the first mesh pattern 1 and the second mesh pattern 2 extend in the first direction, and the first mesh pattern 1 and the second mesh pattern 2 are spaced apart from each other to make the capacitive touch
  • the control electrode is insulated from the electromagnetic touch electrode 6.
  • the touch panel has an outer contour 9 that is laterally parallel to the outer contour 9 of the touch panel.
  • the plurality of first grid lines 101 and the plurality of second grid lines 201 are spaced apart by the plurality of first gaps 5 such that the first grid pattern 1 and the second grid pattern 2 are spaced apart from each other, and along the In one direction, the plurality of first voids 5 are located on the same straight line parallel to the first direction to facilitate patterning. That is, as shown in FIG.
  • the strip-shaped voids composed of the plurality of first voids 5 are linear.
  • the strip-shaped voids composed of the plurality of first voids 5 may also be curved, such as zigzag or wavy, etc., which is not limited by the embodiments of the present disclosure.
  • the electromagnetic touch electrode 6 includes a first portion 601, a second portion 602, and a connection line 603, and the first portion 601 and the second portion 602 are electrically connected by a connection line 603 to form an electromagnetic induction coil.
  • the first portion 601 and the second portion 602 respectively include the second mesh pattern 2 and extend in the first direction, and the first mesh pattern 1 is located between the first portion 601 and the second portion 602 of the electromagnetic touch electrode 6. That is, in the embodiment shown in FIG. 2A, between the capacitive touch electrode 17 and the first portion 601 of the electromagnetic touch electrode 6 and between the capacitive touch electrode 17 and the second portion 602 of the electromagnetic touch electrode 6
  • the first gap 5 is present to insulate the capacitive touch electrode 17 from the electromagnetic touch electrode 6.
  • the first mesh pattern 1 and the second mesh pattern 2 are configured to: translate the second mesh pattern 2 in a second direction intersecting the first direction, and then the second mesh pattern 2 and the first mesh pattern 1 Part of it completely overlaps.
  • the second direction is perpendicular to the first direction.
  • the first mesh pattern 1 includes a plurality of first mesh cells 102 of the same shape and arranged in a periodic manner; the extension lines of the second mesh lines 201 of the second mesh pattern 2 intersect A closed structure, that is, a second mesh unit 202, which has the same shape and is periodically arranged, may be formed.
  • the planar shape of the first mesh unit 102 is the same as the planar shape of the second mesh unit 202, and the arrangement period of the first mesh unit 102 is the same as the arrangement period of the second mesh unit 202.
  • the planar shapes of the first mesh unit 102 and the second mesh unit 202 are all diamond shapes.
  • the shapes of the first mesh unit 102 and the second mesh unit 202 may also be other shapes than diamonds.
  • the above configuration of the first mesh pattern 1 and the second mesh pattern 2 facilitates forming the first mesh pattern 1 and the second mesh pattern 2 by a patterning process; on the other hand, provided in an embodiment of the present disclosure
  • the above configuration of the first mesh pattern 1 and the second mesh pattern 2 is advantageous for making the display panel uniform, improving or avoiding the light transmission of the first touch electrode layer 10. Display defects caused by uniformity, such as Mura defects.
  • the plurality of first grid lines 101 and the plurality of second grid lines 201 are both straight segments, and the extension lines of each of the plurality of second grid lines 201 span the first gap 5 It coincides with one of the plurality of first grid lines 101.
  • the plurality of first grid lines 101 and the plurality of second grid lines 201 are not limited to the structure in FIG. 2A.
  • the pattern can make the pattern of the capacitive touch electrode 17 and the electromagnetic touch electrode 6 as uniform as a whole, which is favorable for uniformity of the display panel.
  • a display defect caused by uneven light transmission of the first touch electrode layer 10, such as a Mura defect, is improved or avoided.
  • the sizes of the plurality of first voids 5 are substantially equal, which facilitates forming the first mesh pattern 1 and the second mesh pattern 2 by a patterning process, and in the case where the touch panel is applied to the display panel, Conducive to uniform light output of the display panel.
  • each of the plurality of first voids 5 has a size L of less than 10 ⁇ m.
  • the size L of each of the first voids 5 is less than 10 ⁇ m, which is advantageous for improving such defects.
  • the extending direction of at least a portion of the plurality of first grid lines 101 or the extending direction of at least a portion of the plurality of second grid lines 201 intersects the outer contour 9 of the touch panel and is not perpendicular .
  • an opaque signal line eg, a gate line, a data line, etc.
  • a black matrix eg, in a liquid crystal display panel
  • the second mesh pattern 2 may include a plurality of second mesh cells 202 of the same shape and arranged in a periodic manner, that is, the second mesh cells 202 are instead of the second mesh lines 201
  • the extension lines of the second grid lines 201 are formed to intersect.
  • FIG. 2C is another schematic plan view of a first touch electrode layer of a touch panel according to an embodiment of the present disclosure.
  • the touch electrode layer 10 shown in FIG. 2C is different from the touch electrode layer 10 shown in FIG. 2A in that the second mesh pattern 2 includes a plurality of second grid cells 202 of the same shape and arranged in a periodic manner, and Both the grid unit 102 and the second grid unit 202 are circular in shape.
  • the shapes of the first mesh unit 102 and the second mesh unit 202 are not limited to diamonds and circles, for example, other shapes such as parallelograms or triangles may be used. The disclosed embodiments do not limit this.
  • FIG. 2D is another partially enlarged schematic view of FIG. 2A.
  • the difference between the first touch electrode layer shown in FIG. 2D and the first touch electrode layer shown in FIG. 2B is that the extension line of the second grid line 201 spans the first gap 5 and the first grid line 101. coincide.
  • Other features of the capacitive touch electrode 17 and the electromagnetic touch electrode 6 in FIG. 2D are the same as those in FIG. 2B.
  • FIG. 2 is a schematic plan view showing a first touch electrode layer of the touch panel according to an embodiment of the present disclosure
  • FIG. 2F is an enlarged schematic view of a portion 7 of the first touch electrode layer in FIG. 2E.
  • the plurality of first grid lines 101 and the plurality of second grid lines 201 are spaced apart by a plurality of first gaps 5 separated from each other such that the first grid pattern 1 and the second grid
  • the lattice patterns 2 are spaced apart from each other, and in the first direction, the plurality of first voids 5 are respectively located on a plurality of straight lines parallel to the first direction.
  • the plurality of first gaps 5 are not located on a straight line, as compared with the case where they are spaced apart by a whole slit (the embodiment shown in FIGS. 2A to 2D), thus, the first network of the capacitive touch electrodes 17
  • the area of the second grid line 201 of the electromagnetic touch electrode 6 in the vicinity of the first gap 5 is staggered with each other, so that the area of the area where the capacitive touch electrode 17 and the electromagnetic touch electrode 6 can be controlled or sensed is large, The small blank area without the touch electrode is covered, thereby improving the touch precision.
  • the two adjacent first gaps 5 are not located on a straight line, so that the first grid lines 101 of the capacitive touch electrodes 17 and the second grid lines 201 of the electromagnetic touch electrodes 6 are interlaced with each other, thereby improving the touch. Control accuracy.
  • the points A1, A2, A3, and A4 described below are the endpoints of the four exemplary first gridlines 101, respectively, and B1, B2, B3, and B4 are the endpoints of the four exemplary second gridlines 201, respectively.
  • the first gap 5 between the point A1 and the point B1 and the first gap 5 between the point A3 and the point B3 are located on a straight line along the first direction; between the point A2 and the point B2
  • the first gap 5 between the first gap 5 and the point A4 and the point B4 is located on the other line along the first direction.
  • FIG. 2F the first gap 5 between the point A1 and the point B1 and the first gap 5 between the point A3 and the point B3 are located on a straight line along the first direction; between the point A2 and the point B2
  • the first gap 5 between the first gap 5 and the point A4 and the point B4 is located on the other line along the first direction.
  • all of the first voids 5 are arranged in such a manner that the first gap 5 of the odd position is located on a straight line along the first direction, and the first gap 5 of the even position is located at the other On a straight line along the first direction.
  • the plurality of first grid lines 101 and the plurality of second grid lines 201 are both straight segments, and the extension lines of each of the plurality of second grid lines 201 are excessively crossed.
  • One of the first gaps 5 coincides with one of the plurality of first grid lines 101. That is to say, for example, in FIG. 2F, the point A1 and the point B1 are on the same straight line, the point A2 and the point B2 are on the same straight line, the point A3 and the point B3 are on the same straight line, and the point A4 and the point B4 are located at the same line. On a straight line... and so on.
  • the pattern can make the pattern of the capacitive touch electrode 17 and the electromagnetic touch electrode 6 relatively uniform as a whole, which is beneficial to uniform light emission of the display panel, and improves or avoids display caused by uneven light transmission of the first touch electrode layer 10. Defects such as Mura defects.
  • FIG. 2G is another enlarged schematic view of a portion 7 of the first touch electrode layer of FIG. 2E.
  • the first gap 5 shown in FIG. 2G differs from the first gap 5 shown in FIG. 2F in that the positions of the plurality of first gaps 5 are random.
  • the first gap 5 between the point A1 and the point B1, the first gap 5 between the point A2 and the point B2, the first gap 5 between the point A3 and the point B3, and the point A4 and the point B4 The first gap 5 between them is located on four different straight lines along the first direction.
  • the structure shown in FIG. 2G is more advantageous for making the area of the capacitive touch electrode 17 and the electromagnetic touch electrode 6 capable of controlling or sensing larger, and reducing the blank without the touch electrode coverage. Zone, which improves touch accuracy.
  • the touch panel provided by the embodiment of the present disclosure includes only one touch electrode layer, for example, including any one of the first touch electrode layers shown in FIG. 2A to FIG. 2G.
  • the touch panel Self-capacitive and self-inductive electromagnetic touch panels. 2A-2G are schematic plan views of a touch panel provided by an embodiment of the present disclosure
  • FIG. 2H is a schematic cross-sectional view of the touch panel in this case.
  • the touch panel may further include a base substrate 12.
  • the first touch electrode layer 10 is disposed on the base substrate 12, that is, the capacitive touch electrode 17 and the electromagnetic touch electrode 6 are disposed on the base substrate 12.
  • the touch panel may further include a first protective layer 14 covering the first touch electrode layer 10 to prevent damage to the capacitive touch electrodes 17 and the electromagnetic touch electrodes 6 (eg, abrasion, corrosion, etc.).
  • a first protective layer 14 covering the first touch electrode layer 10 to prevent damage to the capacitive touch electrodes 17 and the electromagnetic touch electrodes 6 (eg, abrasion, corrosion, etc.).
  • the capacitive touch electrodes 17 and the electromagnetic touch electrodes 6 are all disposed in the same layer.
  • the capacitive touch electrodes 17 and the electromagnetic touch electrodes 6 may also be disposed in different layers.
  • the material of the first grid line 101 of the capacitive touch electrode 17 and the second grid line 201 of the electromagnetic touch electrode 6 may be a metal material, such as A metal or alloy such as Al, Cu, Ag, or Mo.
  • the material of the first protective layer 14 may be an insulating material to prevent external electrical signals from interfering with the operation of the capacitive touch electrode 17 and the electromagnetic touch electrode 6.
  • the first protective layer 14 may be a transparent material as needed, for example, when a touch panel is used in a display panel.
  • the material of the first grid line 101 of the capacitive touch electrode 17, the material of the second grid line 201 of the electromagnetic touch electrode 6, and the material of the first protective layer are not limited to the above-listed categories.
  • the touch panel further includes a driving device, a touch detecting device, and a controller.
  • the touch detection device is electrically connected to the capacitive touch electrode and the electromagnetic touch electrode, and can be used for detecting the position of the touch point, and the touch detection device can be electrically connected or independently set with the driving device.
  • the controller is connected (eg, electrically connected) to the touch detection device, and the controller is configured to receive the detection result from the touch detection device.
  • the driving device is configured to emit a capacitive touch scan signal, and the capacitive touch scan signal sent by the driving device is transmitted to the capacitive touch electrode.
  • the capacitive touch scan signal sent by the driving device is transmitted to the capacitive touch electrode.
  • the capacitive touch scan signal sent by the driving device is transmitted to the capacitive touch electrode.
  • the capacitive touch scan signal sent by the driving device is transmitted to the capacitive touch electrode.
  • the capacitive touch scan signal sent by the driving device is transmitted to the capacitive touch electrode.
  • the driving device is configured to emit an electromagnetic touch scan signal, and the electromagnetic touch scan signal emitted by the driving device is transmitted to the electromagnetic touch electrode, and the electromagnetic touch
  • the control electrode emits a first electromagnetic signal under the action of the electromagnetic touch scan signal.
  • the oscillating circuit in the electromagnetic pen can sense the first electromagnetic signal emitted by the electromagnetic touch electrode located at the touch position and resonate to generate the second electromagnetic signal, and the electromagnetic touch electrode receives the second electromagnetic signal.
  • the electromagnetic signal generates an electromagnetic induction signal
  • the touch detection device can detect the electromagnetic induction signal, thereby analyzing and calculating the detected information, converting it into a position coordinate of the contact point, and then transmitting the same to the controller.
  • the driving device includes an electromagnetic induction touch driving circuit
  • the electromagnetic touch scanning signal emitted is an exciting current
  • the touch detection device includes an electromagnetic induction touch detection circuit.
  • the controller may be a processor (such as a CPU or the like) of the touch display device, and the controller may also control the drive device to perform corresponding operations.
  • the touch panel provided by another embodiment of the present disclosure may also be a mutual capacitive and mutual inductance electromagnetic touch panel.
  • the touch panel further includes a second touch electrode layer.
  • FIG. 3A is a schematic plan view of a second touch electrode layer of a touch panel according to an embodiment of the present disclosure.
  • the touch panel provided by another embodiment of the present disclosure further includes another capacitive touch electrode 18 and another electromagnetic touch electrode 8 .
  • another capacitive touch electrode 18 and another electromagnetic touch electrode 8 are disposed in the same layer, and are located on the second touch electrode layer 11 .
  • the touch panel is a mutual capacitance type and a mutual inductance electromagnetic type touch panel.
  • the other capacitive touch electrode 18 includes a third grid pattern 3 including a plurality of intersecting third grid lines 301; the other electromagnetic touch electrode 8 includes a fourth grid pattern 4, The fourth grid pattern 4 includes a plurality of intersecting fourth grid lines 401, the other capacitive touch electrodes 18 and the other electromagnetic touch electrodes 8 are insulated from each other, and the other capacitive touch electrodes 18 and another electromagnetic touch The electrodes 8 are insulated from the capacitive touch electrodes and the electromagnetic touch electrodes 6.
  • the third mesh pattern 3 is disposed in the same layer as the fourth mesh pattern 4, and both the third mesh pattern 3 and the fourth mesh pattern 4 extend in a second direction intersecting the first direction and are spaced apart from each other.
  • the second direction is perpendicular to the first direction to facilitate calculating the coordinates of the touch position when the touch panel is in operation.
  • the plurality of third grid lines 301 and the plurality of fourth grid lines 401 are spaced apart by the plurality of second gaps 501 such that the third grid pattern 3 and the fourth grid pattern 4 are spaced apart from each other, and along the In one direction, the plurality of second voids 501 are located on the same line parallel to the second direction to facilitate patterning. That is, as shown in FIG.
  • the strip-shaped voids composed of the plurality of second voids 501 are linear.
  • the strip-shaped voids composed of the plurality of second voids 501 may also be curved, such as zigzag or wavy, etc., which is not limited by the embodiments of the present disclosure.
  • the other features of the second gap 501 are the same as those of the first gap 5, and the foregoing description may be referred to, and details are not described herein again.
  • another electromagnetic touch electrode 8 includes a first portion 801, a second portion 802, and a connection line 803, and the first portion 801 of the other electromagnetic touch electrode 8 and the second portion 802 of the other electromagnetic touch electrode 8 pass another The connection line 803 of the electromagnetic touch electrode 8 is electrically connected to form another electromagnetic induction coil.
  • the first portion 801 of the other electromagnetic touch electrode 8 and the second portion 802 of the other electromagnetic touch electrode 8 respectively include a fourth mesh pattern 4 and extend in a second direction as shown in FIG. 3A.
  • the grid pattern 3 is located between the first portion 801 of the other electromagnetic touch electrode 8 and the second portion 802 of the other electromagnetic touch electrode 8. That is, in the embodiment shown in FIG.
  • the third mesh pattern 3 and the second mesh pattern 4 are constructed in the same manner as the first mesh pattern 1 and the second mesh pattern 2 shown in FIG. 2A, which can be referred to before.
  • the description of the configuration of the third mesh pattern 3 and the second mesh pattern 4 shown in FIG. 2A will not be repeated herein.
  • the third grid line 301 and the fourth grid line 401 and the first grid line 101 Partially overlapping with the second grid line 201.
  • FIG. 3B is another schematic plan view of a second touch electrode layer of the touch panel according to an embodiment of the present disclosure
  • FIG. 3C is an enlarged schematic view of a portion 701 of the second touch electrode layer in FIG. 3B.
  • the third mesh pattern 3 and the fourth mesh pattern 4 shown in FIGS. 3B and 3C are constructed in the same manner as the first mesh pattern 1 and the second mesh pattern 2 shown in FIGS. 2E and 2F. . It differs from the third mesh pattern 3 and the fourth mesh pattern 4 shown in FIG.
  • the plurality of third grid lines 301 and the plurality of fourth grid lines 401 pass through a plurality of second gaps separated from each other
  • the 501 is spaced apart such that the third mesh pattern 3 and the fourth mesh pattern 4 are spaced apart from each other, and in the second direction, the plurality of second voids 501 are respectively located on a plurality of straight lines parallel to the second direction. That is, the plurality of second gaps 501 are not located on a straight line, and the third grid pattern 3 of the other capacitive touch electrode 18 is compared with the case where it is spaced apart by a whole slit (the embodiment shown in FIG. 3A).
  • the areas of the fourth mesh pattern 4 of the other electromagnetic touch electrode 8 in the vicinity of the second gap 501 are staggered with each other, so that the area of the area where the other capacitive touch electrode 18 and the other electromagnetic touch electrode 8 can be controlled or sensed is compared. Larger, reduce the blank area without the touch electrode cover, thereby improving the touch precision.
  • FIG. 3D is another partially enlarged schematic view of a portion 701 of the second touch electrode layer in FIG. 3B.
  • the third mesh pattern 3 and the fourth mesh pattern 4 shown in FIG. 3D are constructed in the same manner as the first mesh pattern 1 and the second mesh pattern 2 shown in FIG. 2G.
  • the second gap 501 shown in FIG. 3D differs from the second gap 501 shown in FIG. 3C in that the positions of the straight lines along the second direction in which the plurality of second gaps 501 are located are random.
  • the structure shown in FIG. 3D is more advantageous for the area of the area where the capacitive touch electrode and the electromagnetic touch electrode can be controlled or sensed, and the blank area without the touch electrode coverage is reduced. Thereby improving the touch precision.
  • FIG. 4A is a schematic plan view of a touch panel according to an embodiment of the present disclosure
  • FIG. 4B is an enlarged schematic view of a portion 1001 of the touch panel 100 of FIG. 4A.
  • a layer eg, the first touch electrode layer
  • a third mesh pattern where the first mesh pattern 1 and the second mesh pattern 2 are located
  • the layers in which the 3 and fourth mesh patterns 4 are located are disposed in a stacked manner.
  • the third grid line 301 and the The four grid lines 401 partially overlap the first grid lines 101 and the second grid lines 201.
  • as many third grid lines 301 and fourth grid lines 401 as possible may be overlapped with the first grid line 101 and the second grid line 201, and thus, in the touch
  • the touch panel 100 further includes a driving device, a touch detecting device, and a controller.
  • the touch detection device is electrically connected to the capacitive touch electrode and the electromagnetic touch electrode, and can be used for detecting the position of the touch point, and the touch detection device can be electrically connected or independently set with the driving device.
  • the touch detection device (not shown) is electrically connected to the plurality of capacitive touch electrodes of the first touch electrode layer through the ports CX1, CX2, CX3, ..., and through the port CY1. , CY2, CY3, ...
  • the touch detection device passes through the ports MX1a/MX1b, MX2a/MX2b, MX3a/MX3b, ... and the first touch respectively
  • the plurality of electromagnetic touch electrodes of the control electrode layer are electrically connected, and are electrically connected to the plurality of other electromagnetic touch electrodes of the second touch electrode layer through the ports MY1a/MY1b, MY2a/MY2b, MY3a/MY3b, respectively.
  • a controller (not shown) is connected (eg, electrically connected) to the touch detection device, and the controller is configured to receive the detection result from the touch detection device.
  • the driving device is configured to emit a capacitive touch scan signal, and the capacitive touch scan signal sent by the driving device passes through the ports CX1 and CX2. , CX3 ... is transmitted to each capacitive touch electrode, and transmitted to each other capacitive touch electrode through ports CY1, CY2, CY3, ....
  • the plurality of capacitive touch electrodes and the plurality of other capacitive touch electrodes can form mutual capacitance at the overlap.
  • the touch detection device can detect the change of the capacitance before and after the touch, analyze and calculate the received information, convert it into the position coordinates of the contact point, and then send it to the controller. For example, determining a coordinate of the touch position in the first direction by a signal from the capacitive touch electrode extending in the first direction, and determining a touch position in the second direction by a signal from another capacitive touch electrode extending in the second direction The coordinates on the top to determine where the touch occurred.
  • the driving device includes a capacitive touch driving circuit
  • the capacitive touch scanning signal is a driving current signal.
  • the touch detection device includes a capacitive touch detection circuit.
  • the driving device is configured to emit an electromagnetic touch scanning signal, and the electromagnetic touch scanning signal emitted by the driving device passes through the ports MX1a and MX2a.
  • MX3a is transmitted to each of the electromagnetic touch electrodes of the first touch electrode layer, and the electromagnetic touch electrode emits an electromagnetic signal under the action of the electromagnetic touch scan signal; meanwhile, the electromagnetic touch scan signal emitted by the driving device passes
  • the ports MY1a, MY2a, MY3a are transmitted to the other electromagnetic touch electrodes of the second touch electrode layer, and the other electromagnetic touch electrodes emit another driving electromagnetic signal by the electromagnetic touch scan signals.
  • the driving electromagnetic signal and the other driving electromagnetic signal are superimposed on each other to form a first electromagnetic signal.
  • the oscillating circuit in the electromagnetic pen can sense the first electromagnetic signal at the touch position and resonate to generate the second electromagnetic signal, the electromagnetic touch electrode at the touch position and the other electromagnetic touch electrode.
  • the touch detection device can detect the electromagnetic induction signal from the electromagnetic touch electrode and the other electromagnetic touch electrode located at the touch position, thereby analyzing and calculating the detected information. , convert it to the position coordinates of the contact point and send it to the controller.
  • the coordinates of the touch position in the first direction are determined by an electromagnetic induction signal from the electromagnetic touch electrode extending in the first direction
  • the touch position is determined by an electromagnetic induction signal from another electromagnetic touch electrode extending in the second direction.
  • the coordinates in the second direction to determine where the touch occurred.
  • the driving device includes an electromagnetic induction touch driving circuit
  • the electromagnetic touch scanning signal emitted is an exciting current
  • the touch detection device includes an electromagnetic induction touch detection circuit.
  • the controller may be a processor (such as a CPU or the like) of the touch display device, and the controller may also control the drive device to perform corresponding operations.
  • Fig. 5A is a schematic cross-sectional view taken along line I-I' of Fig. 4A.
  • the touch panel further includes a base substrate 12 and an insulating layer 13.
  • the first touch electrode layer 10 and the second touch electrode layer 11 are disposed on the same side of the base substrate 12, that is, the first grid.
  • the pattern, the second mesh pattern, the third mesh pattern, and the fourth mesh pattern are disposed on the same side of the base substrate 12.
  • the insulating layer 13 is disposed on the layer where the first mesh pattern and the second mesh pattern are located (the first touch electrode layer 10) and the layer where the third mesh pattern and the fourth mesh pattern are located (the second touch Between the electrode layers 11).
  • the touch panel may further include a first protective layer 14 covering the first touch electrode layer 10 to prevent damage to the capacitive touch electrodes and the electromagnetic touch electrodes (eg, abrasion, corrosion, etc.). Please refer to the previous description for the material of the first protective layer 14.
  • Fig. 5B is another schematic cross-sectional view taken along line I-I' of Fig. 4A.
  • the first touch electrode layer 10 is disposed on the first side of the base substrate 12, and the second touch electrode layer 11 is disposed on the second side of the base substrate 12, and the second side Contrary to the first side. That is, the first mesh pattern and the second mesh pattern are disposed on the first side of the base substrate 12, and the third mesh pattern and the fourth mesh pattern are disposed on the second side of the base substrate 12.
  • the touch panel may further include a second protective layer 15 covering the second touch electrode layer 11 to prevent damage (eg, abrasion, corrosion, etc.) of the other capacitive touch electrode 18 and the other electromagnetic touch electrode 8.
  • the material of the second protective layer 15 may be the same as that of the first protective layer, please refer to the previous description.
  • Fig. 5C is a schematic cross-sectional view taken along line I-I' of Fig. 4A.
  • the touch panel includes a first substrate 1201 and a second substrate 1202 disposed opposite to each other.
  • the first touch electrode layer 10 is disposed on the first substrate 1201, and the second The touch electrode layer 11 is disposed on the second substrate 1202. That is, the first mesh pattern 1 and the second mesh pattern 2 are disposed on the first base substrate 1201, and the third mesh pattern 3 and the fourth mesh pattern 4 are disposed on the second base substrate 1202.
  • the touch panel further includes an adhesive layer 16 that bonds the first substrate 1201 and the second substrate 1202.
  • the bonding layer 16 can be an adhesive.
  • Other features of the touch panel shown in FIG. 5C are the same as those shown in FIG. 5B, and details are not described herein again.
  • a display layer for example, a liquid crystal layer, an organic light emitting display device layer, a display driving circuit layer, and a substrate
  • a display layer may be disposed between the different layers. Etc., to form different types of touch display panels such as on-cell (in-line type) or in-cell (in-line type) or OGS type as needed.
  • At least one embodiment of the present disclosure further provides a touch display panel, which includes any one of the touch panels provided by the embodiments of the present disclosure.
  • the touch display panel provided by the embodiments of the present disclosure can simultaneously implement capacitive touch and electromagnetic induction touch, and can have higher capacitive touch precision and electromagnetic touch precision while ensuring higher transmittance. High touch sensitivity.
  • FIG. 6 is a schematic diagram of a touch display panel according to an embodiment of the present disclosure.
  • the touch display panel 200 includes any one of the touch panels 100 provided by the embodiments of the present disclosure.
  • Different types of touch display panels such as on-cell (in-line type) or in-cell (in-line type) or OGS type can be formed as needed.
  • the touch display panel 200 may be a liquid crystal display panel, an organic light emitting diode (OLED) display panel, or the like.
  • OLED organic light emitting diode
  • FIG. 7 is a schematic plan view of a touch-sensitive display panel according to an embodiment of the present disclosure
  • FIG. 8A is a cross-sectional view taken along line H-H' of FIG. 7
  • FIG. 8B is a cross-sectional view along line H of FIG. Another cross-sectional view of the -H' line.
  • the touch display panel provided by the embodiment of the present disclosure further includes a display layer 20 including a plurality of signal lines 204 crossing each other and a plurality of display units 203 located between the signal lines 204 .
  • a display layer 20 including a plurality of signal lines 204 crossing each other and a plurality of display units 203 located between the signal lines 204 .
  • At least a portion of the first gridlines 101 or at least a portion of the second gridlines 201 on the display layer 20 intersects the signal lines 204 and are not perpendicular to achieve an effect of improving or avoiding moiré during display. For example, as shown in FIG.
  • the signal line 204 is perpendicular or parallel to the lateral outer contour or the longitudinal outer contour of the base substrate 12, and the extending direction of the plurality of first grid lines 101 of the touch panel or the plurality of second nets
  • the extending direction of the ruled line 201 is intersected with the lateral outer contour or the longitudinal outer contour of the base substrate 12 and is not perpendicular, and the light of the mesh pattern formed through the signal line 204 passes through the first mesh pattern 1 and the second
  • the phase difference of the light of the mesh pattern 2 is relatively large, and the two portions of the light interfere with each other, and the moiré phenomenon is not easy to occur, so that the touch display panel provided by the embodiment of the present disclosure can visually achieve a better display effect.
  • the touch display panel includes a black matrix
  • the first gridlines 101 or at least a portion of the second gridlines 201 on the display layer 20 may also be blacked out.
  • the mating of the matrices and the non-perpendicularity can also achieve the above-mentioned effects of improving or avoiding moiré during display.
  • the signal lines may include various types of lines such as gate lines, data lines, power lines, common electrode lines, reset lines, and the like.
  • the display layer 20 may be located on a side of the first touch electrode layer 10 and the second touch electrode layer 11 away from the substrate 12, that is, the display layer 20 is located in the first mesh pattern 1.
  • the second grid pattern 2, the third grid pattern 3, and the side of the fourth grid pattern 4 away from the substrate 12 are.
  • the display layer 20 may also be located between the first touch electrode layer 10 and the second touch electrode layer 11 , that is, the display layer 20 is located in the first mesh pattern 1 and the second mesh pattern. 2 is between the layer and the layer in which the third grid pattern 3 and the fourth grid pattern 4 are located.
  • FIG. 8A and FIG. 8B there may be other layers between the respective layers, and the drawings of the present disclosure only show the layers in which the first mesh pattern 1 and the second mesh pattern 2 are located. A structure directly related to the layer in which the third mesh pattern 3 and the fourth mesh pattern 4 are located.
  • At least one embodiment of the present disclosure further provides a touch display device, which includes any touch display panel provided by an embodiment of the present disclosure.
  • the touch display device provided by the embodiments of the present invention can simultaneously implement capacitive touch and electromagnetic induction touch, and can have higher capacitive touch precision and electromagnetic touch precision while ensuring higher transmittance. High touch sensitivity.
  • FIG. 9 is a schematic diagram of a touch display device according to an embodiment of the present disclosure.
  • the touch display device 300 includes any of the touch display panels 200 provided by the embodiments of the present disclosure.
  • the touch display device may be an organic light emitting diode display device having a capacitive touch and an electromagnetic induction touch function, a liquid crystal display device, or the like.
  • the display device can be implemented as a product, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, an electronic advertisement screen, or the like.
  • the embodiment of the present disclosure further provides a method for manufacturing a touch panel, and the touch panel provided by the embodiment of the present disclosure can be obtained by using the manufacturing method.
  • the method includes: providing a base substrate, forming a capacitive touch electrode and an electromagnetic touch electrode on the base substrate, the capacitive touch electrode comprising a first mesh pattern, the first mesh pattern comprising a plurality of intersecting first meshes a line; the electromagnetic touch electrode is insulated from the capacitive touch electrode and includes a second grid pattern, and the second grid pattern includes a plurality of intersecting second grid lines.
  • FIG. 10A is a process flow diagram of a method for fabricating a touch panel according to an embodiment of the present disclosure.
  • the touch panel can be formed by the following method.
  • a base substrate is provided, which may be, for example, a quartz substrate, a glass substrate, a plastic substrate, or the like.
  • a pre-first touch electrode layer is formed on the base substrate for forming a capacitive touch electrode and an electromagnetic touch electrode.
  • the material of the pre-first touch electrode layer may be a metal material such as a metal or an alloy such as Al, Cu, Ag, or Mo.
  • the pre-first touch electrode layer can be formed by chemical vapor deposition or magnetron sputtering.
  • the capacitive touch electrode Forming a pre-first touch electrode layer to form a capacitive touch electrode and an electromagnetic touch electrode, the capacitive touch electrode comprising a first grid pattern, the first grid pattern comprising a plurality of intersecting first grid lines;
  • the electromagnetic touch electrode is insulated from the capacitive touch electrode and includes a second grid pattern, and the second grid pattern includes a plurality of intersecting second grid lines.
  • the patterning process can be, for example, a photolithography process.
  • the fabrication method further includes forming a first protective layer covering the first mesh pattern and the second mesh pattern.
  • the material of the first protective layer can be referred to the description in the previous embodiment.
  • a person skilled in the art can select a suitable method according to the material of the first protective layer to form a first protective layer, such as a coating or deposition method. Specific features of the formed first grid pattern and second grid pattern are described in the previous embodiments. In this way, a touch panel as shown in FIG. 2H can be obtained.
  • FIG. 10B is a process flow diagram of another method for fabricating a touch panel according to an embodiment of the present disclosure.
  • the method includes: providing a substrate; forming another capacitive touch electrode and another electromagnetic touch electrode on the substrate; forming an insulating layer on the substrate; forming on the substrate a capacitive touch electrode and an electromagnetic touch electrode, wherein the insulating layer is located at a layer where the capacitive touch electrode and the electromagnetic touch electrode are located, and another capacitive touch electrode and another electromagnetic touch electrode; and the cover capacitive touch electrode and the electromagnetic touch are formed a protective layer of the control electrode, another capacitive touch electrode, and another electromagnetic touch electrode.
  • a pre-second touch electrode layer may be formed on the base substrate for forming another capacitive touch electrode and another electromagnetic touch electrode.
  • the material of the pre-second touch electrode layer and the pre-second touch electrode layer are formed in the same manner as the pre-first touch electrode layer.
  • the pre-second touch electrode layer is patterned to form the other capacitive touch electrode and another electromagnetic touch electrode.
  • an insulating layer covering the other capacitive touch electrode and the other electromagnetic touch electrode is formed on the base substrate.
  • the above-mentioned capacitive touch electrode and electromagnetic touch electrode are formed on the insulating layer, and the specific method can refer to the previous description.
  • a first protective layer covering the capacitive touch electrode and the electromagnetic touch electrode is formed.
  • a touch panel as shown in FIG. 5A can be obtained.
  • the specific structural features of another capacitive touch electrode and another electromagnetic touch electrode are described in the previous embodiments.
  • a capacitive touch electrode and an electromagnetic touch electrode may be formed on the base substrate, and another capacitive touch electrode and another electromagnetic touch electrode may be formed.
  • another capacitive touch electrode and another electromagnetic touch electrode are located on a side of the capacitive touch electrode and the electromagnetic touch electrode away from the substrate.
  • two substrate substrates, a first substrate substrate and a second substrate substrate, respectively may also be provided.
  • the second surface of the first substrate opposite the first surface is bonded to the second surface of the second substrate opposite to the first surface thereof to obtain a touch panel as shown in FIG. 5C.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种触控面板、触控显示面板及触控显示装置。该触控面板包括:电容触控电极(17)和电磁触控电极(6)。电容触控电极(17)包括第一网格图案(1),该第一网格图案(1)包括交叉的多条第一网格线(101);电磁触控电极(6)与电容触控电极(17)绝缘且包括第二网格图案(2),该第二网格图案(2)包括交叉的多条第二网格线(201)。该触控面板能够同时实现电容触控和电磁感应触控。

Description

触控面板、触控显示面板及触控显示装置
本申请要求于2018年5月16日递交的中国专利申请第201810469455.6号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开至少一实施例涉及一种触控面板、触控显示面板及触控显示装置。
背景技术
电容式触控技术可支持用手指进行触控,尤其对于大尺寸触控产品,可使用户进行方便、简单的触控操作。目前,电容式触控技术已在电子显示产品中得到了广泛应用,但这种电容式触控产品的触控精度却达不到电磁感应触控的精度,因此不能进行非常精细的操作。考虑到电容式触控技术和电磁感应触控技术各自的优缺点,可以将这两者结合,以达到更好的触控效果。
发明内容
本公开至少一实施例提供一种触控面板,该触控面板包括:电容触控电极和电磁触控电极。电容触控电极包括第一网格图案,该第一网格图案包括交叉的多条第一网格线;电磁触控电极与所述电容触控电极绝缘且包括第二网格图案,该第二网格图案包括交叉的多条第二网格线。
例如,本公开一实施例提供的触控面板中,所述第一网格图案与所述第二网格图案同层设置且均沿第一方向延伸;并且所述第一网格图案与所述第二网格图案彼此间隔开以使得所述电容触控电极与所述电磁触控电极绝缘。
例如,本公开一实施例提供的触控面板中,所述多条第一网格线与所述多条第二网格线通过彼此分离的多个第一空隙间隔开以使得所述第一网格图案与所述第二网格图案彼此间隔开;并且沿所述第一方向,所述多个第一空隙分别位于与所述第一方向平行的多条直线上。
例如,本公开一实施例提供的触控面板中,沿着所述第一方向,位于奇数位置的所述多个第一空隙位于与所述第一方向平行的一条直线上;位于偶数位置的所述多个第一空隙位于与所述第一方向平行的另一条直线上。
例如,本公开一实施例提供的触控面板中,所述多条第一网格线与所述多条第二网格线均为直线段,所述多条第二网格线的每个的延长线跨过所述多个第一空隙中的一个并与所述多条第一网格线中的一条重合。
例如,本公开一实施例提供的触控面板中,所述第一网格图案和所述第二网格图案构造为:沿与所述第一方向相交的第二方向平移所述第二网格图案,则所述第二网格图案与所述第一网格图案的一部分完全重叠。
例如,本公开一实施例提供的触控面板中,所述电磁触控电极包括第一部分、第二部分和连接线,所述第一部分和所述第二部分通过所述连接线电连接;并且所述第一部分和所述第二部分分别包括所述第二网格图案并沿所述第一方向延伸,所述第一网格图案位于所述电磁触控电极的所述第一部分和所述第二部分之间。
例如,本公开一实施例提供的触控面板具有外轮廓,所述多条第一网格线中的至少部分的延伸方向或所述多条第二网格线的至少部分的延伸方向与所述外轮廓相交且不垂直。
例如,本公开一实施例提供的触控面板中,所述第一网格图案包括多个形状相同且呈周期排列的第一网格单元,所述第一网格图案包括多个形状相同且呈周期排列的第二网格单元。
例如,本公开一实施例提供的触控面板中,所述第一网格单元和所述第二网格单元的形状均为菱形、圆形、平行四边形或者三角形。
例如,本公开一实施例提供的触控面板还包括:另一电容触控电极,包括第三网格图案,该第三网格图案包括交叉的多条第三网格线;以及另一电磁触控电极,包括第四网格图案,该第四网格图案包括交叉的多条第四网格线,所述另一电容触控电极和所述另一电磁触控电极均与所述电容触控电极和所述电磁触控电极绝缘。
例如,本公开一实施例提供的触控面板中,所述第三网格图案与所述第四网格图案同层设置,沿与所述第一方向相交的第二方向延伸并且彼此 间隔开;所述第一网格图案和所述第二网格图案所在的层与所述第三网格图案和所述第四网格图案所在的层以堆叠的方式设置;并且在与所述第一网格图案和所述第二网格图案所在的层以及所述第三网格图案和所述第四网格图案所在的层垂直的方向上,所述多条第三网格线和所述多条第四网格线与所述多条第一网格线和所述多条第二网格线部分重叠。
例如,本公开一实施例提供的触控面板中,所述多条第三网格线与所述多条第四网格线通过彼此分离的多个第二空隙间隔开以使得所述第三网格图案与所述第四网格图案彼此间隔开;并且沿所述第二方向,所述多个第二空隙分别位于与所述第二方向平行的多条直线上。
例如,本公开一实施例提供的触控面板还包括衬底基板和绝缘层,所述第一网格图案、第二网格图案、第三网格图案和第四网格图案设置在所述衬底基板的同一侧;并且所述绝缘层设置在所述第一网格图案和所述第二网格图案所在的层与所述第三网格图案和所述第四网格图案所在的层之间。
例如,本公开一实施例提供的触控面板中,所述第一网格图案和所述第二网格图案设置在所述衬底基板的第一侧;并且所述第三网格图案和所述第四网格图案设置在所述衬底基板的第二侧,所述第二侧与所述第一侧相反。
例如,本公开一实施例提供的触控面板还包括相对设置的第一衬底基板和第二衬底基板,所述第一网格图案和所述第二网格图案设置在所述第一衬底基板上;并且所述第三网格图案和所述第四网格图案设置在所述第二衬底基板上。
例如,本公开一实施例提供的触控面板中,所述第三网格图案和所述第四网格图案设置在所述第二衬底基板的远离所述第一衬底基板的一侧。
本公开至少一实施例还提供一种触控显示面板,该显示面板包括本公开实施例提供的任意一种触控面板。
例如,本公开一实施例提供的触控显示面板还包括显示层,所述显示层包括多条相互交叉的信号线;所述多条第一网格线的至少部分或所述第二网格线的至少部分在所述显示层上的正投影与所述信号线相交且不垂直。
本公开至少一实施例还提供一种触控显示装置,该显示装置包括本公开实施例提供的任意一种触控显示面板。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为一种触控面板示意图;
图2A为本公开一实施例提供的触控面板的第一触控电极层的一种平面示意图;
图2B为图2A的一种局部放大示意图;
图2C为本公开一实施例提供的触控面板的第一触控电极层的另一种平面示意图;
图2D为图2A的另一种局部放大示意图;
图2E为本公开一实施例提供的触控面板的第一触控电极层的又一种平面示意图;
图2F为图2E的一种局部放大示意图;
图2G为图2E的另一种局部放大示意图;
图2H为本公开一实施例提供的一种触控面板的剖面示意图;
图3A为本公开一实施例提供的触控面板的第二触控电极层的一种平面示意图;
图3B为本公开一实施例提供的触控面板的第二触控电极层的另一种平面示意图;
图3C为图3B的一种局部放大示意图;
图3D为图3B的另一种局部放大示意图;
图4A为本公开一实施例提供的一种触控面板的平面示意图;
图4B为图4A的局部放大示意图;
图5A为沿图4A中的I-I’线的一种剖面示意图;
图5B为沿图4A中的I-I’线的另一种剖面示意图;
图5C为沿图4A中的I-I’线的又一种剖面示意图;
图6为本公开一实施例提供的一种显示面板示意图;
图7为本公开一实施例提供的一种显示面板的平面示意图;
图8A为沿图7中的H-H’线的一种剖面示意图;
图8B为沿图7中的H-H’线的另一种剖面示意图;
图9为本公开一实施例提供的一种显示装置示意图;
图10A为本公开一实施例提供的一种触控面板的制作方法的工艺流程图;以及
图10B为本公开一实施例提供的另一种触控面板的制作方法的工艺流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本发明保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本发明专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“内”、“外”、“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
本公开实施例中附图的尺寸并不是严格按实际比例绘制,触控面板中电容触控电极、电磁触控电极、另一电容触控电极和另一电磁触控电极的个数不限定为图中所示的数量;第一网格线、第二网格线、第三网格线和第四网格线的条数也不限定为图中所示的数量。各个结构的具体的尺寸和数量可根据实际需要进行确定。本公开的实施例中所描述的附图仅是结构示意图。
图1是一种触控面板示意图。如图1所示的触控面板包括基板60和 设置于基板60上的触控电极。触控电极包括多个电容驱动电极70、多个电容感应电极40和多个电磁感应线圈50,每一电容驱动电极70包含多个依次排列的子驱动电极701、702、703和704。在图1所示的触控面板中,每个电容感应电极40的图案呈条状结构,每个电容驱动电极70和每个电磁感应线圈50的图案也均包括条状结构。触控电极的上述条状结构都是横平竖直的,即平行于或垂直于基板60的横向外轮廓或者纵向外轮廓。一方面,这种由较细的条状结构组成的电磁感应线圈50的电阻较大,不利于提高电磁触控的灵敏度;另一方面,当将该触控面板应用于显示面板中时,在显示面板中,像素层的不透明的信号线(例如栅线、数据线等)或黑矩阵(例如液晶显示面板中)通常平行于或垂直于基板的横向外轮廓或者纵向外轮廓,而该触控面板的触控电极的上述条状结构也平行于或垂直于基板60的横向外轮廓或者纵向外轮廓,这样,触控电极的图案容易与像素层的信号线或黑矩阵的图案在视觉上产生摩尔纹效应,这样严重影响了显示面板的显示效果。
本公开至少一实施例提供一种触控面板,该触控面板包括:电容触控电极和电磁触控电极。电容触控电极包括第一网格图案,该第一网格图案包括交叉的多条第一网格线;电磁触控电极与电容触控电极绝缘且包括第二网格图案,该第二网格图案包括交叉的多条第二网格线。例如,本公开的实施例提供的触控面板可以用于显示装置、笔记本电脑的用于控制鼠标的触控板、触控电子锁等具备触控功能的产品中。
例如,该触控面板可以为自电容式触控面板或者自感电磁式触控面板。例如,在本公开一实施例提供的触控面板中,触控面板只包括一个触控电极层,在该一个触控电极层中第一网格图案与第二网格图案同层设置。
示范性地,图2A为本公开一实施例提供的一种触控面板的第一触控电极层的一种平面示意图,图2B为图2A的另一种局部放大示意图。如图2A所示,第一触控电极层10包括同层设置的电容触控电极17和电磁触控电极6。电容触控电极17和电磁触控电极6同层设置有利于触控面板的薄化,简化面板的结构,并且在制作触控面板的过程中,可以通过同一构图工艺形成电容触控电极17和电磁触控电极6的图案,有利于简化制作工序。例如,触控面板包括多个电容触控电极17和多个电磁触控电极6。当然,在本公开的其他实施例中,触控面板也可以包括一个电容触控电极17和一 个电磁触控电极6,本公开的实施例对电容触控电极17的个数和电磁触控电极6的个数不作限定。例如,每个电容触控电极17包括第一网格图案1,该第一网格图案1包括交叉的多条第一网格线101。每个电磁触控电极6与电容触控电极17绝缘,并且,电磁触控电极6包括第二网格图案2,该第二网格图案2包括交叉的多条第二网格线201。本公开的实施例提供的触控面板能够同时实现电容触控和电磁感应触控。与不具有网格图案的条状触控电极相比,一方面,本公开的实施例提供的触控面板的第一网格图案1和第二网格图案2分别增大了电容触控电极17和电磁触控电极6的排布密度,从而能够在保证透过率的同时提高触控面板的电容触控精度和电磁触控精度,即使对于大尺寸触控面板,也能够达到较高的电容触控精度和电磁触控精度;另一方面,在第一网格图案1和第二网格图案2中,至少部分第一网格线101并联设置和/或至少部分第二网格线201并联设置,能够减小电容触控电极17的电阻和电磁触控电极6的电阻,提高触控的灵敏度。
例如,如图2A所示,第一网格图案1与第二网格图案2均沿第一方向延伸,并且,第一网格图案1与第二网格图案2彼此间隔开以使得电容触控电极与电磁触控电极6绝缘。例如,触控面板具有外轮廓9,第一方向与触控面板的外轮廓9横向平行。例如,多条第一网格线101与多条第二网格线201通过多个第一空隙5间隔开以使得第一网格图案1与第二网格图案2彼此间隔开,并且沿第一方向,多个第一空隙5位于与第一方向平行的同一条直线上,以便于图案化。也就是如图2A所示,第一网格图案1与第二网格图案2之间存在由多个第一空隙5组成的整体上呈条形的空隙将第一网格图案1与第二网格图案2彼此间隔开以使得电容触控电极3与电磁触控电极6绝缘。在图2A所示的实施例中,由多个第一空隙5组成的条形空隙呈直线型。当然,在本公开的其他实施例中,由多个第一空隙5组成的条形空隙也可以呈曲线型,例如锯齿形或波浪形等,本公开的实施例对此不作限定。
例如,电磁触控电极6包括第一部分601、第二部分602和连接线603,第一部分601和第二部分602通过连接线603电连接,以形成电磁感应线圈。并且,第一部分601和第二部分602分别包括第二网格图案2并沿第一方向延伸,第一网格图案1位于电磁触控电极6的第一部分601和第二 部分602之间。也就是,在图2A所示的实施例中,电容触控电极17与电磁触控电极6的第一部分601之间以及电容触控电极17与电磁触控电极6的第二部分602之间均存在第一空隙5,以使得电容触控电极17与电磁触控电极6绝缘。
例如,第一网格图案1和第二网格图案2构造为:沿与第一方向相交的第二方向平移第二网格图案2,则第二网格图案2与第一网格图案1的一部分完全重叠。例如,在图2A中,第二方向垂直于第一方向。例如,如图2A和2B所示,第一网格图案1包括多个形状相同且呈周期排列的第一网格单元102;第二网格图案2的第二网格线201的延长线相交可以形成封闭的结构即第二网格单元202,该第二网格单元202的形状相同且呈周期排列。第一网格单元102的平面形状与第二网格单元202的平面形状相同,且第一网格单元102的排布周期与第二网格单元202的排布周期相同。例如,如图2A所示,第一网格单元102和第二网格单元202的平面形状均为菱形。当然,第一网格单元102和第二网格单元202的形状也可以是菱形之外的其他形状。一方面,第一网格图案1和第二网格图案2的上述构造便于通过构图工艺形成第一网格图案1和第二网格图案2;另一方面,在本公开的实施例提供的触控面板用于显示面板中的情况下,第一网格图案1和第二网格图案2的上述构造有利于使显示面板出光均匀,改善或避免因第一触控电极层10透光不均匀而造成的显示缺陷,例如Mura缺陷。
例如,如图2A所示,多条第一网格线101与多条第二网格线201均为直线段,多条第二网格线201的每个的延长线跨过第一空隙5与多条第一网格线101中的一条重合。当然,在本公开的其他实施例提供的触控面板中,多条第一网格线101与多条第二网格线201不限于图2A中的结构。在本公开实施例提供的触控面板用于显示面板中的情况下,这种图案能够使得电容触控电极17和电磁触控电极6的图案整体上排布均匀,有利于使显示面板出光均匀,改善或避免因第一触控电极层10透光不均匀而造成的显示缺陷,例如Mura缺陷。
例如,多个第一空隙5的尺寸大致相等,这样便于通过构图工艺形成第一网格图案1和第二网格图案2,在将该触控面板应用于显示面板中的情况下,也有利于使显示面板的出光均匀。
例如,多个第一空隙5的每个的尺寸L小于10μm。在将该触控面板应用于显示面板中的情况下,如果第一空隙5的尺寸过大,容易出现因第一触控电极层10透光不均匀而造成的显示缺陷,例如Mura缺陷。因此,第一空隙5的每个的尺寸L小于10μm有利于改善这种缺陷。
例如,如图2A所示,多条第一网格线101中的至少部分的延伸方向或多条第二网格线201的至少部分的延伸方向与触控面板的外轮廓9相交且不垂直。在显示面板中,像素层的不透明的信号线(例如栅线、数据线等)或黑矩阵(例如液晶显示面板中)通常平行于或垂直于该外轮廓9,在将该触控面板应用于显示面板中的情况下,有利于改善或防止摩尔纹现象,可以在视觉上获得更好的显示效果。
在本公开的其他实施例中,第二网格图案2可以包括多个形状相同且呈周期排列的第二网格单元202,即第二网格单元202是由第二网格线201而非第二网格线201的延长线相交所形成。例如,图2C为本公开一实施例提供的触控面板的第一触控电极层的另一种平面示意图。图2C所示的触控电极层10与图2A所示的触控电极层10的区别在于,第二网格图案2包括多个形状相同且呈周期排列的第二网格单元202,且第一网格单元102和第二网格单元202的形状均为圆形。图2C中的电容触控电极和电磁触控电极的其他特征均与图2A中的相同。当然,本公开实施例提供的触控面板中,第一网格单元102和第二网格单元202的形状不限于是菱形和圆形,例如,也可以是平行四边形或三角形等其他形状,本公开的实施例对此不作限定。
例如,图2D为图2A的另一种局部放大示意图。图2D所示的第一触控电极层与图2B所示的第一触控电极层的区别在于,第二网格线201的延长线跨过第一空隙5与第一网格线101不重合。图2D中的电容触控电极17和电磁触控电极6的其他特征均与图2B中的相同。
图2E为本公开一实施例提供的触控面板的第一触控电极层的又一种平面示意图,图2F为图2E中的第一触控电极层的局部7的一种放大示意图。如图2E和图2F所示,多条第一网格线101与多条第二网格线201通过彼此分离的多个第一空隙5间隔开以使得第一网格图案1与第二网格图案2彼此间隔开,并且沿第一方向,多个第一空隙5分别位于与第一方向平行的多条直线上。也就是,多个第一空隙5不位于一条直线上,与通过 一整条缝隙间隔开的情形相比(图2A-图2D所示实施例),这样,电容触控电极17的第一网格线101与电磁触控电极6的第二网格线201在第一空隙5附近的区域彼此交错,使得电容触控电极17和电磁触控电极6能控制或感应的区域范围较大,减小没有触控电极覆盖的空白区,从而提高了触控精度。例如,相邻的两个第一空隙5不位于一条直线上,以使电容触控电极17的第一网格线101与电磁触控电极6的第二网格线201彼此交错,提高了触控精度。
下述的点A1、A2、A3、A4分别为四条示例性的第一网格线101的端点,B1、B2、B3、B4分别为四条示例性的第二网格线201的端点。例如,在图2F中,点A1和点B1之间的第一空隙5与点A3和点B3之间的第一空隙5位于一条沿第一方向的直线上;点A2和点B2之间的第一空隙5与点A4和点B4之间的第一空隙5位于另一条沿第一方向的直线上。例如,在图2E中,所有第一空隙5均是按这种规律排列的,即奇数位置的第一空隙5位于一条沿第一方向的直线上,而偶数位置的第一空隙5位于另一条沿第一方向的直线上。
例如,如图2E和图2F所示,多条第一网格线101与多条第二网格线201均为直线段,多条第二网格线201的每个的延长线跨过多个第一空隙5中的一个并与多条第一网格线101中的一条重合。也就是说,例如在图2F中,点A1与点B1位于同一条直线上,点A2与点B2位于同一条直线上,点A3与点B3位于同一条直线上,点A4和点B4位于同一条直线上……依次类推。这种图案能够使得电容触控电极17和电磁触控电极6的图案整体上比较均匀,有利于使显示面板出光均匀,改善或避免因第一触控电极层10透光不均匀而造成的显示缺陷,例如Mura缺陷。
当然,在本公开的实施例中,每个第一空隙5的位置不限于是图2F所示的情形。例如,图2G为图2E中的第一触控电极层的局部7的另一种放大示意图。图2G所示的第一空隙5与图2F所示的第一空隙5的区别在于,多个第一空隙5的位置是随机的。例如,点A1和点B1点之间的第一空隙5、点A2和点B2点之间的第一空隙5、点A3和点B3点之间的第一空隙5以及点A4和点B4点之间的第一空隙5位于四条不同的沿第一方向的直线上。与图2F所示的结构相比,图2G所示的结构更加有利于使得电容触控电极17和电磁触控电极6能控制或感应的区域范围较大,减小没有 触控电极覆盖的空白区,从而提高触控精度。
例如,本公开一实施例提供的触控面板只包括一个触控电极层,例如包括一个图2A-图2G所示的任意一种第一触控电极层,这种情况下,该触控面板为自电容式和自感电磁式触控面板。图2A-图2G同时是本公开一实施例提供的触控面板的平面示意图,图2H为这种情况下的触控面板的剖面示意图。如图2H所示,触控面板还可以包括衬底基板12。例如,第一触控电极层10设置于衬底基板12上,即电容触控电极17和电磁触控电极6设置于衬底基板12上。触控面板还可以包括覆盖第一触控电极层10的第一保护层14,以防止电容触控电极17和电磁触控电极6受到损害(例如磨损、腐蚀等)。在图2A-图2H所示的自电容式和自感电磁式触控面板中,电容触控电极17和电磁触控电极6均为同层设置,同层设置的优点请参考之前的描述。当然,在本公开的其他实施例提供的自电容式和自感电磁式触控面板中,电容触控电极17和电磁触控电极6也可以设置在不同的层。
例如,在本公开的实施例提供的触控面板中,电容触控电极17的第一网格线101的材料和电磁触控电极6的第二网格线201的材料可以为金属材料,例如Al、Cu、Ag、Mo等金属或合金。例如,第一保护层14的材料可以为绝缘材料,以防止外界电信号干扰电容触控电极17和电磁触控电极6的工作。例如,根据需要,第一保护层14可以为透明材料,例如当触控面板用于显示面板中时。例如其可以为透明的无机材料(氧化硅、氮化硅或氮氧化硅等),也可以为有机绝缘材料,例如树脂材料。例如透明树脂,例如聚丙烯、聚酰亚胺等。当然,电容触控电极17的第一网格线101的材料、电磁触控电极6的第二网格线201的材料和第一保护层的材料不限于上述列举种类。
例如,触控面板还包括驱动装置、触控检测装置和控制器。触控检测装置与电容触控电极和电磁触控电极电连接,可用于检测触摸点的位置,触控检测装置可以与驱动装置电连接或独立设置。控制器与触控检测装置信号连接(例如电连接),控制器可用于接收来自触控检测装置的检测结果。
当上述自电容式和自感电磁式触控面板执行电容式触控功能时,驱动装置配置为发出电容触控扫描信号,驱动装置发出的电容触控扫描信号传输至电容触控电极。例如,当手指触摸到触控面板时,手指的电容将会叠 加到触控电极的电容上,使触控电极的电容变化,触控检测装置能够检测出触摸前后电容的变化,并对接收到的信息进行分析、计算,将其转换为接触点的位置坐标,然后将其发送至控制器。例如该驱动装置包括电容触控驱动电路,发出的电容触控扫描信号为驱动电流信号。例如该触控检测装置包括电容触控检测电路。
当上述自电容式和自感电磁式触控面板执行电磁感应触控功能时,驱动装置配置为发出电磁触控扫描信号,驱动装置发出的电磁触控扫描信号传输至电磁触控电极,电磁触控电极在该电磁触控扫描信号的作用下发出第一电磁信号。例如,当电磁笔触摸到电容屏时,电磁笔内的震荡电路可以感应位于触摸位置的电磁触控电极所发出的第一电磁信号并谐振产生第二电磁信号,该电磁触控电极接收第二电磁信号并产生电磁感应信号,触控检测装置能够检测到该电磁感应信号,从而对检测到的信息进行分析、计算,将其转换为接触点的位置坐标,然后将其发送至控制器。例如,该驱动装置包括电磁感应触控驱动电路,发出的电磁触控扫描信号为激磁电流。例如,该触控检测装置包括电磁感应触控检测电路。
当将该触控面板用于触控显示装置中时,该控制器可以是触控显示装置的处理器(例如CPU等),该控制器同时还可以控制驱动装置进行相应的操作。
本公开另一实施例提供的触控面板也可以为互电容式和互感电磁式触控面板,除了上述第一触控电极层,该触控面板还包括第二触控电极层。示范性地,图3A为本公开一实施例提供的触控面板的第二触控电极层的一种平面示意图。例如,如图3A所示,本公开另一实施例提供的触控面板还包括另一电容触控电极18和另一电磁触控电极8。例如,另一电容触控电极18和另一电磁触控电极8同层设置,均位于第二触控电极层11。此时,该触控面板为互电容式和互感电磁式触控面板。另一电容触控电极18包括第三网格图案3,该第三网格图案3包括交叉的多条第三网格线301;另一电磁触控电极8包括第四网格图案4,该第四网格图案4包括交叉的多条第四网格线401,另一电容触控电极18和另一电磁触控电极8相互绝缘,且另一电容触控电极18和另一电磁触控电极8均与电容触控电极和电磁触控电极6绝缘。
例如,第三网格图案3与第四网格图案4同层设置,第三网格图案3 与第四网格图案4均沿与第一方向相交的第二方向延伸并且彼此间隔开。例如,第二方向与第一方向垂直,以便于触控面板工作时计算触摸位置的坐标。例如,多条第三网格线301与多条第四网格线401通过多个第二空隙501间隔开以使得第三网格图案3与第四网格图案4彼此间隔开,并且沿第一方向,多个第二空隙501位于与第二方向平行的同一条直线上,以便于图案化。也就是如图3A所示,第三网格图案301与第四网格线401之间存在由多个第二空隙501组成的整体上呈条形的空隙将第三网格图案3与第四网格图案4彼此间隔开以使得另一电容触控电极18与另一电磁触控电极8绝缘。在图3A所示的实施例中,由多个第二空隙501组成的条形空隙呈直线型。当然,在本公开的其他实施例中,由多个第二空隙501组成的条形空隙也可以呈曲线型,例如锯齿形或波浪形等,本公开实施例对此不作限定。第二空隙501的其他特征均与第一空隙5的特征相同,可以参考之前的描述,在此不再赘述。
例如,另一电磁触控电极8包括第一部分801、第二部分802和连接线803,另一电磁触控电极8的第一部分801和另一电磁触控电极8的第二部分802通过另一电磁触控电极8的连接线803电连接,以形成另一电磁感应线圈。并且,另一电磁触控电极8的第一部分801和另一电磁触控电极8的第二部分802分别包括第四网格图案4并沿如图3A所示的第二方向延伸,第三网格图案3位于另一电磁触控电极8的第一部分801和另一电磁触控电极8的第二部分802之间。即,在图3A所示的实施例中,另一电容触控电极18与另一电磁触控电极8的第一部分801之间以及另一电容触控电极18与另一电磁触控电极8的第二部分802之间均存在第二空隙501,使得另一电容触控电极18与另一电磁触控电极8绝缘。
如图3A所示,第三网格图案3和第二网格图案4的构造方式与图2A所示的第一网格图案1和第二网格图案2的构造方式相同,其可以参考之前关于图2A所示的第三网格图案3和第二网格图案4的构造方式的描述,在此不再赘述。如此,当将第一触控电极层20和第二触控电极层以堆叠的方式设置于触控面板中时,第三网格线301和第四网格线401与第一网格线101和第二网格线201部分重叠。
图3B为本公开一实施例提供的触控面板的第二触控电极层的另一种平面示意图,图3C为图3B中的第二触控电极层的局部701的一种放大示 意图。图3B和图3C所示的第三网格图案3和第四网格图案4的构造方式与图2E和图2F所示的第一网格图案1和第二网格图案2的构造方式相同。其与图3A所示的第三网格图案3和第四网格图案4的区别在于,多条第三网格线301与多条第四网格线401通过彼此分离的多个第二空隙501间隔开以使得第三网格图案3与第四网格图案4彼此间隔开,并且沿第二方向,多个第二空隙501分别位于与第二方向平行的多条直线上。也就是,多个第二空隙501不位于一条直线上,与通过一整条缝隙间隔开的情形相比(图3A所示实施例),另一电容触控电极18的第三网格图案3与另一电磁触控电极8的第四网格图案4在第二空隙501附近的区域彼此交错,使得另一电容触控电极18和另一电磁触控电极8能控制或感应的区域范围较大,减小没有触控电极覆盖的空白区,从而提高触控精度。
例如,图3D为图3B中的第二触控电极层的局部701的另一种局部放大示意图。图3D所示的第三网格图案3和第四网格图案4的构造方式与图2G所示的第一网格图案1和第二网格图案2的构造方式相同。图3D所示的第二空隙501与图3C所示的第二空隙501的区别在于,多个第二空隙501所在的沿第二方向的直线的位置是随机的。与图3C所示的结构相比,图3D所示的结构更加有利于使得电容触控电极和电磁触控电极能控制或感应的区域范围较大,减小没有触控电极覆盖的空白区,从而提高触控精度。
示范性地,图4A为本公开一实施例提供的一种触控面板的平面示意图,图4B为图4A中触控面板100的局部1001的放大示意图。例如,如图4A和图4B所示,在触控面板100中,第一网格图案1和第二网格图案2所在的层(例如上述第一触控电极层)与第三网格图案3和第四网格图案4所在的层(例如第二触控电极层)以堆叠的方式设置。并且,在与第一网格图案1和第二网格图案2所在的层以及第三网格图案3和第四网格图案4所在的层垂直的方向上,第三网格线301和第四网格线401与第一网格线101和第二网格线201部分重叠。例如,在本公开实施例中,可以使尽可能多的第三网格线301和第四网格线401与第一网格线101和第二网格线201重叠,如此,在将该触控面板用于显示面板中的情况下,有利于增大触控面板的透光区的面积,提高光的透过率。
需要说明的是,另一电容触控电极和另一电磁触控电极的其他特征, 例如材料、网格图案的最小单元的形状、间隙尺寸等,均与电容触控电极和电磁触控电极的相同,请参考之前的描述。
触控面板100还包括驱动装置、触控检测装置和控制器。触控检测装置与电容触控电极和电磁触控电极电连接,可用于检测触摸点的位置,触控检测装置可以与驱动装置电连接或独立设置。例如,如图4A所示,触控检测装置(图中未示出)通过端口CX1、CX2、CX3……分别与第一触控电极层的多个电容触控电极电连接,并通过端口CY1、CY2、CY3……分别与第二触控电极层的多个另一电容触控电极电连接;触控检测装置通过端口MX1a/MX1b、MX2a/MX2b、MX3a/MX3b……分别与第一触控电极层的多个电磁触控电极电连接,并通过端口MY1a/MY1b、MY2a/MY2b、MY3a/MY3b……分别与第二触控电极层的多个另一电磁触控电极电连接。控制器(图中未示出)与触控检测装置信号连接(例如电连接),控制器可用于接收来自触控检测装置的检测结果。
当本公开实施例提供的互电容式和互感电磁式触控面板执行电容式触控功能时,驱动装置配置为发出电容触控扫描信号,驱动装置发出的电容触控扫描信号通过端口CX1、CX2、CX3……传输至各个电容触控电极,并通过端口CY1、CY2、CY3……传输至各个另一电容触控电极。多个电容触控电极和多个另一电容触控电极在交叠处可形成互电容。当有手指触摸触控面板100时,影响了触摸点附近电容的耦合,从而改变了触摸点附近电容的电容量。触控检测装置能够检测出触摸前后电容的变化,并对接收到的信息进行分析、计算,将其转换为接触点的位置坐标,然后将其发送至控制器。例如,通过来自沿第一方向延伸的电容触控电极的信号确定触摸位置在第一方向上的坐标,通过来自沿第二方向延伸的另一电容触控电极的信号确定触摸位置在第二方向上的坐标,从而确定发生触摸的位置。例如该驱动装置包括电容触控驱动电路,发出的电容触控扫描信号为驱动电流信号。例如该触控检测装置包括电容触控检测电路。
当本公开实施例提供的互电容式和互感电磁式触控面板执行电磁感应触控功能时,驱动装置配置为发出电磁触控扫描信号,驱动装置发出的电磁触控扫描信号通过端口MX1a、MX2a、MX3a……传输至第一触控电极层的各个电磁触控电极,电磁触控电极在该电磁触控扫描信号的作用下发出驱动电磁信号;同时,驱动装置发出的电磁触控扫描信号通过端口 MY1a、MY2a、MY3a……传输至第二触控电极层的各个另一电磁触控电极,另一电磁触控电极在该电磁触控扫描信号的作用下发出另一驱动电磁信号。驱动电磁信号和另一驱动电磁信号会互相叠加而形成第一电磁信号。例如,当电磁笔触摸到电容屏时,电磁笔内的震荡电路可以感应位于触摸位置的第一电磁信号并谐振产生第二电磁信号,位于触摸位置的电磁触控电极和另一电磁触控电极接收第二电磁信号并分别产生电磁感应信号,触控检测装置能够检测到来自位于触摸位置的自电磁触控电极和另一电磁触控电极电磁感应信号,从而对检测到的信息进行分析、计算,将其转换为接触点的位置坐标,然后将其发送至控制器。例如,通过来自沿第一方向延伸的电磁触控电极的电磁感应信号确定触摸位置在第一方向上的坐标,通过来自沿第二方向延伸的另一电磁触控电极的电磁感应信号确定触摸位置在第二方向上的坐标,从而确定发生触摸的位置。例如该驱动装置包括电磁感应触控驱动电路,发出的电磁触控扫描信号为激磁电流。例如该触控检测装置包括电磁感应触控检测电路。
当将该触控面板用于触控显示装置中时,该控制器可以是触控显示装置的处理器(例如CPU等),该控制器同时还可以控制驱动装置进行相应的操作。
图5A为沿图4A中的I-I’线的一种剖面示意图。如图5A所示,触控面板还包括衬底基板12和绝缘层13,第一触控电极层10和第二触控电极层11设置在衬底基板12的同一侧,即第一网格图案、第二网格图案、第三网格图案和第四网格图案设置在衬底基板12的同一侧。绝缘层13设置在第一网格图案和第二网格图案所在的层(第一触控电极层10)与第三网格图案和所述第四网格图案所在的层(第二触控电极层11)之间。触控面板还可以包括覆盖第一触控电极层10的第一保护层14,以防止电容触控电极和电磁触控电极受到损害(例如磨损、腐蚀等)。第一保护层14的材料请参考之前的描述。
图5B为沿图4A中的I-I’线的另一种剖面示意图。在图5B所示的触控面板中,第一触控电极层10设置在衬底基板12的第一侧,第二触控电极层11设置在衬底基板12的第二侧,第二侧与第一侧相反。也就是,第一网格图案和第二网格图案设置在衬底基板12的第一侧,第三网格图案和第四网格图案设置在衬底基板12的第二侧。例如,触控面板还可以包括覆 盖第二触控电极层11的第二保护层15,以防止另一电容触控电极18和另一电磁触控电极8受到损害(例如磨损、腐蚀等)。第二保护层15的材料可以与第一保护层的材料相同,请参考之前的描述。
图5C为沿图4A中的I-I’线的又一种剖面示意图。在图5C所示的实施例中,触控面板包括相对设置的第一衬底基板1201和第二衬底基板1202,第一触控电极层10设置在第一衬底基板1201上,第二触控电极层11设置在第二衬底基板1202上。也就是,第一网格图案1和第二网格图案2设置在第一衬底基板1201上,第三网格图案3和第四网格图案4设置在第二衬底基板1202上。例如,触控面板还包括粘结第一衬底基板1201和第二衬底基板1202的粘结层16。例如,粘结层16可以是粘结胶。图5C所示的触控面板的其他特征均与图5B所示的相同,在此不再赘述。
需要说明的是,根据实际需要,图5A-图5C所示的不同的层之间还可以有其他的层的存在。例如,在将本公开实施例提供的触控面板用于显示装置中的情况下,可以在该不同的层之间设置显示层(例如液晶层、有机发光显示器件层、显示驱动电路层、基板等等),以根据需要形成on-cell(外挂型)或in-cell(内嵌型)或OGS型等不同类型的触控显示面板。
本公开至少一实施例还提供一种触控显示面板,该触控显示面板包括本公开实施例提供的任意一种触控面板。本公开实施例提供的触控显示面板能够同时实现电容触控和电磁感应触控,并且,能够在保证较高的透过率的同时,具有较高电容触控精度和电磁触控精度以及较高的触控的灵敏度。
示范性地,图6为本公开一实施例提供的一种触控显示面板示意图。如图6所示,触控显示面板200包括本公开实施例提供的任意一种触控面板100。可以根据需要形成on-cell(外挂型)或in-cell(内嵌型)或OGS型等不同类型的触控显示面板。例如,该触控显示面板200可以是液晶显示面板、有机发光二极管(OLED)显示面板等。
例如,图7为本公开一实施例提供的一触控种显示面板的平面示意图,图8A为沿图7中的H-H’线的一种剖面示意图,图8B为沿图7中的H-H’线的另一种剖面示意图。
如图7和图8A所示,本公开实施例提供的触控显示面板还包括显示层20,显示层20包括多条相互交叉的信号线204以及多个位于信号线204 之间的显示单元203。第一网格线101的至少部分或第二网格线201的至少部分在显示层20上的正投影与信号线204相交且不垂直,以达到改善或避免显示过程中的摩尔纹的效果。例如,如图7所示,信号线204与衬底基板12的横向外轮廓或者纵向外轮廓垂直或平行,而触控面板的多条第一网格线101的延伸方向或多条第二网格线201的延伸方向均与衬底基板12的横向外轮廓或者纵向外轮廓相交且不垂直,则穿过信号线204形成的网格图案的光和穿过第一网格图案1和第二网格图案2的光的相位差别较大,这两部分光互相干涉后不容易出现明显的摩尔纹现象,从而本公开实施例提供的触控显示面板能够在视觉上达到更好的显示效果。在触控显示面板包括黑矩阵的情况下,例如在液晶显示面板中,第一网格线101的至少部分或第二网格线201的至少部分在显示层20上的正投影也可以与黑矩阵相交且不垂直,同样可以达到上述改善或避免显示过程中的摩尔纹的效果。
例如,信号线可以包括各种类型的线,例如栅线、数据线、电源线、公共电极线、复位线等等。
例如,如图8A所示,显示层20可以位于第一触控电极层10和第二触控电极层11的远离衬底基板12的一侧,即显示层20位于第一网格图案1、第二网格图案2、第三网格图案3和第四网格图案4的远离衬底基板12的一侧。
又例如,如图8B所示,显示层20也可以位于第一触控电极层10和第二触控电极层11之间,即显示层20位于第一网格图案1和第二网格图案2所在的层与第三网格图案3和第四网格图案4所在的层之间。
需要说明的是,在图8A和图8B中,各个层之间也可以有其他的层,本公开的附图只示出了与第一网格图案1和第二网格图案2所在的层与第三网格图案3和第四网格图案4所在的层直接相关的结构。
本公开至少一实施例还提供一种触控显示装置,该触控显示装置包括本公开实施例提供的任意一种触控显示面板。本公开实施例提供的触控显示装置能够同时实现电容触控和电磁感应触控,并且,能够在保证较高的透过率的同时,具有较高电容触控精度和电磁触控精度以及较高的触控的灵敏度。
示范性地,图9为本公开一实施例提供的一种触控显示装置示意图。如图9所示,触控显示装置300包括本公开实施例提供的任意一种触控显 示面板200。例如,该触控显示装置可以为具有电容触控和电磁感应触控功能的有机发光二极管显示装置、液晶显示装置等。例如,该显示装置可以实现为如下的产品:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪、电子广告屏等任何具有显示功能的产品或部件。
本公开实施例还提供一种触控面板的制作方法,采用该制作方法能够得到本公开实施例提供的触控面板。该方法包括:提供衬底基板,在衬底基板上形成电容触控电极和电磁触控电极,电容触控电极包括第一网格图案,第一网格图案包括交叉的多条第一网格线;电磁触控电极与电容触控电极绝缘且包括第二网格图案,第二网格图案包括交叉的多条第二网格线。
示范性地,图10A为本公开一实施例提供的一种触控面板的制作方法的工艺流程图。如图10A所示,可以采用如下方法形成触控面板。提供衬底基板,该衬底基板例如可以是石英基板、玻璃基板或塑料基板等。在衬底基板上形成预第一触控电极层,用于形成电容触控电极和电磁触控电极。例如,预第一触控电极层的材料可以为金属材料,例如Al、Cu、Ag、Mo等金属或合金。例如,可以采用化学气相沉积或磁控溅射法形成预第一触控电极层。对预第一触控电极层进行构图工艺,形成电容触控电极和电磁触控电极,电容触控电极包括第一网格图案,第一网格图案包括交叉的多条第一网格线;电磁触控电极与电容触控电极绝缘且包括第二网格图案,第二网格图案包括交叉的多条第二网格线。例如,该构图工艺例如可以为光刻工艺。
例如,该制作方法还包括形成覆盖第一网格图案和第二网格图案的第一保护层。例如,该第一保护层的材料请参考之前的实施例中的描述。本领域技术人员可以根据第一保护层的材料选择合适的方法来形成第一保护层,例如涂覆或沉积的方法。形成的第一网格图案和第二网格图案的具体特征请见之前的实施例中的描述。如此,可以获得如图2H所示的触控面板。
例如,图10B为本公开一实施例提供的另一种触控面板的制作方法的工艺流程图。如图10B所示,该方法包括:提供衬底基板;在衬底基板上形成另一电容触控电极和另一电磁触控电极;在衬底基板上形成绝缘层;在衬底基板上形成电容触控电极和电磁触控电极,绝缘层位于电容触控电极和电磁触控电极所在的层与另一电容触控电极和另一电磁触控电极;以 及形成覆盖电容触控电极、电磁触控电极、另一电容触控电极和另一电磁触控电极的保护层。
例如,在一个示例中,可以先在衬底基板上形成预第二触控电极层,以用于形成另一电容触控电极和另一电磁触控电极。预第二触控电极层的材料与预第二触控电极层的具体形成方法与预第一触控电极层的相同。对预第二触控电极层进行构图工艺,形成上述另一电容触控电极和另一电磁触控电极。然后,在衬底基板上形成覆盖另一电容触控电极和另一电磁触控电极的绝缘层。在绝缘层上形成上述电容触控电极和电磁触控电极,具体方法可参考之前的描述。再形成覆盖电容触控电极和电磁触控电极的第一保护层,具体方法可参考之前的描述。如此,可得到如图5A所示的触控面板。另一电容触控电极和另一电磁触控电极的具体结构特征请见之前的实施例中的描述。
需要说明的是,在另一个示例中,也可以在衬底基板上先形成电容触控电极和电磁触控电极,后形成另一电容触控电极和另一电磁触控电极。在所得到的触控面板中,另一电容触控电极和另一电磁触控电极位于电容触控电极和电磁触控电极的远离衬底基板的一侧。
在另一个示例中,也可以提供两个衬底基板,分别为第一衬底基板和第二衬底基板。在第一衬底基板的第一表面上形成上述电容触控电极和电磁触控电极以及覆盖电容触控电极和电磁触控电极的第一保护层;在第二衬底基板的第一表面上形成上述另一电容触控电极和另一电磁触控电极以及覆盖另一电容触控电极和另一电磁触控电极的第二保护层。具体形成方法请见之前的描述。再将第一衬底基板的与其第一表面相对的第二表面与第二衬底基板的与其第一表面相对的第二表面粘结在一起,从而得到如图5C所示的触控面板。
以上所述仅是本发明的示范性实施方式,而非用于限制本发明的保护范围,本发明的保护范围由所附的权利要求确定。

Claims (20)

  1. 一种触控面板,包括:
    电容触控电极,包括第一网格图案,所述第一网格图案包括交叉的多条第一网格线;以及
    电磁触控电极,与所述电容触控电极绝缘且包括第二网格图案,所述第二网格图案包括交叉的多条第二网格线。
  2. 根据权利要求1所述的触控面板,其中,
    所述第一网格图案与所述第二网格图案同层设置且均沿第一方向延伸;并且
    所述第一网格图案与所述第二网格图案彼此间隔开以使得所述电容触控电极与所述电磁触控电极绝缘。
  3. 根据权利要求2所述的触控面板,其中,
    所述多条第一网格线与所述多条第二网格线通过彼此分离的多个第一空隙间隔开以使得所述第一网格图案与所述第二网格图案彼此间隔开;并且
    沿所述第一方向,所述多个第一空隙分别位于与所述第一方向平行的多条直线上。
  4. 根据权利要求3所述的触控面板,其中,沿着所述第一方向,位于奇数位置的所述多个第一空隙位于与所述第一方向平行的一条直线上;位于偶数位置的所述多个第一空隙位于与所述第一方向平行的另一条直线上。
  5. 根据权利要求3或4所述的触控面板,其中,所述多条第一网格线与所述多条第二网格线均为直线段,所述多条第二网格线的每个的延长线跨过所述多个第一空隙中的一个并与所述多条第一网格线中的一条重合。
  6. 根据权利要求2-5任一项所述的触控面板,其中,所述第一网格图案和所述第二网格图案构造为:沿与所述第一方向相交的第二方向平移所述第二网格图案,则所述第二网格图案与所述第一网格图案的一部分完全重叠。
  7. 根据权利要求2-6任一项所述的触控面板,其中,
    所述电磁触控电极包括第一部分、第二部分和连接线,所述第一部分和所述第二部分通过所述连接线电连接;并且
    所述第一部分和所述第二部分分别包括所述第二网格图案并沿所述第一方向延伸,所述第一网格图案位于所述电磁触控电极的所述第一部分和所述第二部分之间。
  8. 根据权利要求2-7任一项所述的触控面板,具有外轮廓,其中,所述多条第一网格线中的至少部分的延伸方向或所述多条第二网格线的至少部分的延伸方向与所述外轮廓相交且不垂直。
  9. 根据权利要求1-8任一项所述的触控面板,其中,所述第一网格图案包括多个形状相同且呈周期排列的第一网格单元,所述第一网格图案包括多个形状相同且呈周期排列的第二网格单元。
  10. 根据权利要求9所述的触控面板,其中,所述第一网格单元和所述第二网格单元的形状均为菱形、圆形、平行四边形或者三角形。
  11. 根据权利要求2-4任一项所述的触控面板,还包括:
    另一电容触控电极,包括第三网格图案,所述第三网格图案包括交叉的多条第三网格线;以及
    另一电磁触控电极,包括第四网格图案,所述第四网格图案包括交叉的多条第四网格线,其中,
    所述另一电容触控电极和所述另一电磁触控电极均与所述电容触控电极和所述电磁触控电极绝缘。
  12. 根据权利要求11所述的触控面板,其中,
    所述第三网格图案与所述第四网格图案同层设置,沿与所述第一方向相交的第二方向延伸并且彼此间隔开;
    所述第一网格图案和所述第二网格图案所在的层与所述第三网格图案和所述第四网格图案所在的层以堆叠的方式设置;并且
    在与所述第一网格图案和所述第二网格图案所在的层以及所述第三网格图案和所述第四网格图案所在的层垂直的方向上,所述多条第三网格线和所述多条第四网格线与所述多条第一网格线和所述多条第二网格线部分重叠。
  13. 根据权利要求12所述的触控面板,其中,
    所述多条第三网格线与所述多条第四网格线通过彼此分离的多个第二空隙间隔开以使得所述第三网格图案与所述第四网格图案彼此间隔开;并且
    沿所述第二方向,所述多个第二空隙分别位于与所述第二方向平行的多条直线上。
  14. 根据权利要求11-13任一项所述的触控面板,还包括衬底基板和绝缘层,其中,
    所述第一网格图案、第二网格图案、第三网格图案和第四网格图案设置在所述衬底基板的同一侧;并且
    所述绝缘层设置在所述第一网格图案和所述第二网格图案所在的层与所述第三网格图案和所述第四网格图案所在的层之间。
  15. 根据权利要求11-13任一项所述的触控面板,还包括衬底基板,其中,
    所述第一网格图案和所述第二网格图案设置在所述衬底基板的第一侧;并且
    所述第三网格图案和所述第四网格图案设置在所述衬底基板的第二侧,所述第二侧与所述第一侧相反。
  16. 根据权利要求11-15任一项所述的触控面板,还包括相对设置的第一衬底基板和第二衬底基板,其中,
    所述第一网格图案和所述第二网格图案设置在所述第一衬底基板上;并且
    所述第三网格图案和所述第四网格图案设置在所述第二衬底基板上。
  17. 根据权利要求16所述的触控面板,其中,所述第三网格图案和所述第四网格图案设置在所述第二衬底基板的远离所述第一衬底基板的一侧。
  18. 一种触控显示面板,包括权利要求1-17任一项所述的触控面板。
  19. 根据权利要求18所述的触控显示面板,还包括显示层,其中,所述显示层包括多条相互交叉的信号线;
    所述多条第一网格线的至少部分或所述第二网格线的至少部分在所 述显示层上的正投影与所述信号线相交且不垂直。
  20. 一种触控显示装置,包括权利要求18或19所述的触控显示面板。
PCT/CN2018/114835 2018-05-16 2018-11-09 触控面板、触控显示面板及触控显示装置 WO2019218619A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/480,997 US11294522B2 (en) 2018-05-16 2018-11-09 Touch panel, touch display panel and touch display device
EP18900564.8A EP3796137A4 (en) 2018-05-16 2018-11-09 TOUCH SCREEN, TOUCH DISPLAY PANEL AND TOUCH DISPLAY DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810469455.6 2018-05-16
CN201810469455.6A CN109976568B (zh) 2018-05-16 2018-05-16 触控面板、触控显示面板及触控显示装置

Publications (1)

Publication Number Publication Date
WO2019218619A1 true WO2019218619A1 (zh) 2019-11-21

Family

ID=67075892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/114835 WO2019218619A1 (zh) 2018-05-16 2018-11-09 触控面板、触控显示面板及触控显示装置

Country Status (4)

Country Link
US (1) US11294522B2 (zh)
EP (1) EP3796137A4 (zh)
CN (1) CN109976568B (zh)
WO (1) WO2019218619A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111240523B (zh) * 2020-02-11 2021-10-08 武汉华星光电半导体显示技术有限公司 一种显示装置
CN111427475B (zh) * 2020-03-26 2022-09-02 京东方科技集团股份有限公司 触控模组、触控显示屏及触控显示屏的制造方法
CN112328116B (zh) * 2020-11-16 2024-03-15 京东方科技集团股份有限公司 触控结构及其制作方法、显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040183788A1 (en) * 2003-01-30 2004-09-23 Fujitsu Component Limited Touch panel, and input device and electronic apparatus each equipped with the touch panel
CN103941946A (zh) * 2014-04-09 2014-07-23 京东方科技集团股份有限公司 一种触摸屏及显示装置
CN105487736A (zh) * 2016-01-19 2016-04-13 深圳市华鼎星科技有限公司 金属网双触控感应器、触控模组及触控电子装置
CN206021229U (zh) * 2016-01-19 2017-03-15 深圳市华鼎星科技有限公司 金属网双触控感应器、触控模组及触控电子装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103092446B (zh) * 2013-01-17 2015-09-09 北京京东方光电科技有限公司 一种触摸屏及制备方法、显示装置
US9052766B2 (en) * 2013-02-14 2015-06-09 Synaptics Incorporated Mesh sensor design for reduced visibility in touch screen devices
US9304636B2 (en) * 2013-09-20 2016-04-05 Eastman Kodak Company Micro-wire touch screen with unpatterned conductive layer
JP6329817B2 (ja) * 2014-06-10 2018-05-23 株式会社ジャパンディスプレイ センサ付き表示装置
KR102199340B1 (ko) * 2014-10-08 2021-01-06 엘지이노텍 주식회사 터치 윈도우
CN104298411B (zh) 2014-10-30 2017-11-17 上海天马微电子有限公司 触控基板、触控屏、触控显示面板及触控显示装置
CN104375732B (zh) 2014-11-28 2018-09-14 京东方科技集团股份有限公司 内嵌式触控模组、驱动方法、触控显示面板和显示装置
WO2016178498A1 (en) * 2015-05-04 2016-11-10 Lg Innotek Co., Ltd. Touch panel
JPWO2017056259A1 (ja) * 2015-09-30 2018-07-26 ニューコムテクノ株式会社 指定位置検出ユニット
JP6793323B2 (ja) * 2016-03-28 2020-12-02 パナソニックIpマネジメント株式会社 タッチパネルセンサー用部材及びタッチパネル
CN106020528A (zh) * 2016-05-05 2016-10-12 业成光电(深圳)有限公司 降低断点短路之金属网格结构及制造方法
JP2017227983A (ja) * 2016-06-20 2017-12-28 凸版印刷株式会社 タッチセンサ用電極、タッチパネル、および、表示装置
CN105975141B (zh) * 2016-06-28 2019-03-29 业成光电(深圳)有限公司 触控面板及触控显示屏
CN106293200A (zh) 2016-07-26 2017-01-04 京东方科技集团股份有限公司 一种盖板及其制备方法、显示装置
CN107688414B (zh) * 2016-08-04 2020-12-08 深圳莱宝高科技股份有限公司 电容式触摸屏
KR102561120B1 (ko) * 2016-09-23 2023-07-28 엘지디스플레이 주식회사 터치스크린 내장형 유기발광표시패널 및 유기발광표시장치
CN106940605B (zh) * 2017-05-05 2020-05-22 上海天马微电子有限公司 显示面板

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040183788A1 (en) * 2003-01-30 2004-09-23 Fujitsu Component Limited Touch panel, and input device and electronic apparatus each equipped with the touch panel
CN103941946A (zh) * 2014-04-09 2014-07-23 京东方科技集团股份有限公司 一种触摸屏及显示装置
CN105487736A (zh) * 2016-01-19 2016-04-13 深圳市华鼎星科技有限公司 金属网双触控感应器、触控模组及触控电子装置
CN206021229U (zh) * 2016-01-19 2017-03-15 深圳市华鼎星科技有限公司 金属网双触控感应器、触控模组及触控电子装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3796137A4

Also Published As

Publication number Publication date
US11294522B2 (en) 2022-04-05
EP3796137A1 (en) 2021-03-24
CN109976568B (zh) 2022-01-18
EP3796137A4 (en) 2022-01-26
CN109976568A (zh) 2019-07-05
US20210333940A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
JP5698846B2 (ja) タッチパネルとタッチ入力デバイス、及びマルチタッチポイントの真実座標を判定するための方法
CN102213852B (zh) 触摸显示装置及其制造方法
KR101528695B1 (ko) 다지점 인식 터치 화면
WO2019218619A1 (zh) 触控面板、触控显示面板及触控显示装置
TWI464644B (zh) 觸控面板
TWI537652B (zh) 單層電容式觸控裝置及其面板模組
US20120206379A1 (en) Single-layer and multi-touch projected capacitive apparatus
WO2016106840A1 (zh) 单层电容式触摸屏以及触摸显示装置
JP2012520495A (ja) 静電容量式タッチ装置と一体化された液晶ディスプレイ
TW201248481A (en) Electrode structure of the touch panel, method thereof and touch panel
JP3185436U (ja) タッチ電極装置
TWM423302U (en) Sensor, dual-mode touch module and dual-mode touch type electronic device
CN102314271B (zh) 一种电容式触控图形结构及其制法、触控面板及触控显示装置
CN105308541A (zh) 传感阵列的场线中继器(flr)结构
TWI525488B (zh) 觸控螢幕面板
WO2015021619A1 (zh) 电容触控单元及电容式触摸屏
WO2021016762A1 (zh) 触控电极结构、触摸屏和触控显示装置
JPWO2019021572A1 (ja) 位置検出センサ、位置検出装置および情報処理システム
KR101618221B1 (ko) 터치 스크린 패널 제조 방법
KR101219597B1 (ko) 터치스크린 패널 및 그 제조방법
TW201241711A (en) Touch panel device with single-layer radial electrode layout
TWI638303B (zh) 觸控螢幕面板及其製作方法
TW201619795A (zh) 電容式觸控裝置
TW201005597A (en) Touch panel and touch method thereof
CN202120243U (zh) 平行方块单层电容式触控感测元件

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018900564

Country of ref document: EP

Effective date: 20190724

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18900564

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE