WO2021016762A1 - 触控电极结构、触摸屏和触控显示装置 - Google Patents

触控电极结构、触摸屏和触控显示装置 Download PDF

Info

Publication number
WO2021016762A1
WO2021016762A1 PCT/CN2019/098012 CN2019098012W WO2021016762A1 WO 2021016762 A1 WO2021016762 A1 WO 2021016762A1 CN 2019098012 W CN2019098012 W CN 2019098012W WO 2021016762 A1 WO2021016762 A1 WO 2021016762A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch electrode
touch
protrusion
protrusions
main body
Prior art date
Application number
PCT/CN2019/098012
Other languages
English (en)
French (fr)
Inventor
吴忠山
郭建东
刘艳
Original Assignee
京东方科技集团股份有限公司
重庆京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 重庆京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2019/098012 priority Critical patent/WO2021016762A1/zh
Priority to EP19933214.9A priority patent/EP4006703A4/en
Priority to CN201980001156.2A priority patent/CN112639706B/zh
Priority to US16/765,992 priority patent/US11775125B2/en
Publication of WO2021016762A1 publication Critical patent/WO2021016762A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04164Connections between sensors and controllers, e.g. routing lines between electrodes and connection pads

Definitions

  • the embodiments of the present disclosure relate to a touch electrode structure, a touch screen, and a touch display device.
  • the touch panel can use various technologies to sense touch from a finger or a stylus, for example, capacitive, surface acoustic wave, resistive, and optical touch technologies.
  • Capacitive touch technology has developed rapidly due to its high reliability and durability, and has been widely used in electronic products such as mobile phones, tablets, and notebook computers.
  • Capacitive touch technology can be divided into self-capacitance touch technology and mutual-capacitance touch technology.
  • Capacitive touch panels usually use transparent conductive materials to form touch sensing elements and are formed on the display panel. The pattern and size of the touch sensing elements of the touch panel formed on the display panel will affect the display of the image. quality.
  • a self-capacitive touch screen includes a touch electrode array made of a transparent conductive material on a base substrate, and these touch electrodes respectively form a capacitance with ground.
  • the touch detection chip can determine the touch by detecting the change in capacitance value of each touch electrode during the touch time period. position.
  • the touch electrode structure includes a plurality of touch electrode blocks that are electrically insulated from each other, wherein each of the touch electrode blocks includes a main body and is connected to the main body.
  • the saw-tooth portions electrically connected to the adjacent touch electrode blocks, and the opposite saw-tooth portions in the adjacent touch electrode blocks are nested with each other.
  • the sawtooth portion includes a protrusion extending from the main body in a direction away from the main body, and both the main body and the protrusion are It includes a grid structure that includes grid lines and hollow areas.
  • the grid line includes a plurality of zigzag bars, and each zigzag bar includes an extension portion and a corner portion, and all adjacent zigzag bars are The extension portions are spaced apart from each other, and at least one corner portion of each sawtooth bar is connected to the corner portion of the adjacent sawtooth bar to form the grid line.
  • the extension direction of the saw-tooth bar is consistent with the extension direction of the protrusion; in the main body, the The extending direction of the serrated bar intersects the extending direction of the outer contour of the main body part.
  • the shape of the outer contour of the main body is a rectangle or a parallelogram, and the main body includes two opposite first sides and two opposite first sides. Two sides, the length of the first side is greater than the length of the second side, the sawtooth portion is provided on the first side, and the sawtooth portion provided on the first side is a first sawtooth portion .
  • the first zigzag portion includes a plurality of the protrusions, and on the same first side, the protrusions between adjacent protrusions The minimum distances are equal.
  • one of the protrusions is on one end of the same first side.
  • a first protrusion or two of the protrusions on the two ends of the same first side are first protrusions; those on the same first side except for the first protrusion
  • the protrusion is a second protrusion, and the area of the first protrusion is half of the area of the second protrusion.
  • the extension length of the first protrusion from the first side and the extension length of the second protrusion from the same first side are equal
  • the width of the first protrusion along the extending direction of the first side is half of the width of the second protrusion along the extending direction of the same first side.
  • the shape of the second protrusion is approximately an isosceles triangle, an isosceles trapezoid, or a rectangle
  • the shape of the first protrusion is approximately a right triangle, Right-angled trapezoid or rectangle.
  • a plurality of the touch electrode blocks have the same shape, and each of the touch electrode blocks includes one end of the same first side One of the first protrusions.
  • the sawtooth portion is also provided on the second side of the main body portion, and the sawtooth portion provided on the second side is The second sawtooth part.
  • the second sawtooth portion includes a plurality of the protrusions.
  • the protrusions between the adjacent protrusions The minimum distances are equal.
  • one of the protrusions is on one end of the same second side.
  • a third protrusion or two of the protrusions on the two ends of the same second side are third protrusions; on the same second side except for the third protrusion
  • the protrusion is a fourth protrusion, and the area of the third protrusion is half of the area of the fourth protrusion.
  • the extension length of the third protrusion from the second side and the extension length of the fourth protrusion from the same second side are equal
  • the width of the third protrusion along the extending direction of the second side is half of the width of the fourth protrusion along the extending direction of the same second side.
  • the shapes of the outer contours of the plurality of touch electrode blocks are the same or substantially the same.
  • the shape of the outer contour of each touch electrode block is approximately an axisymmetric pattern.
  • At least one embodiment of the present disclosure also provides a touch screen, including the touch electrode structure described in any one of the above.
  • the touch screen provided by at least one embodiment of the present disclosure further includes a plurality of wires, wherein the wires and the touch electrode blocks are electrically connected in a one-to-one correspondence.
  • the touch screen provided by at least one embodiment of the present disclosure further includes an insulating layer disposed between the wire and the touch electrode structure, wherein the wire and the corresponding touch electrode block pass through the The via structure of the insulating layer is electrically connected.
  • the plurality of wires and the touch electrode blocks are arranged on the same layer, and there are gaps between the touch electrode blocks in two adjacent columns, and the wires Set in the gap, in the same column of the touch electrode blocks, along the extending direction of the wires, the area of the touch electrode blocks gradually decreases or gradually increases.
  • both the main body portion and the protrusion include a mesh.
  • the grid structure includes grid lines and hollow areas, and the grid lines include zigzag bars extending along the column direction in which the touch electrode blocks are arranged, the shape of the zigzag bars and the The shape of the wires is consistent.
  • At least one embodiment of the present disclosure further provides a touch display device, which includes the touch electrode structure described in any one of the above.
  • the touch display device provided by at least one embodiment of the present disclosure further includes a display panel, wherein the touch electrode structure is disposed on the display panel.
  • the touch display device provided by at least one embodiment of the present disclosure further includes a display panel and a touch screen disposed on the display side of the display panel, and the touch screen includes the touch electrode structure.
  • FIG. 1 is a schematic diagram of a planar structure of a touch electrode
  • FIG. 2 is a schematic plan view of a touch electrode structure provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic plan view of another touch electrode structure provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic plan view of another touch electrode structure provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic plan view of another touch electrode structure provided by an embodiment of the present disclosure.
  • 6A is a schematic plan view of a touch electrode structure including a plurality of touch electrode blocks according to an embodiment of the present disclosure
  • 6B is a schematic plan view of a touch electrode structure including a plurality of touch electrode blocks according to an embodiment of the present disclosure
  • Fig. 7 is a schematic diagram showing an exemplary enlarged structure of a part of the main body in Figs. 2-6B;
  • FIGS. 8 is a schematic diagram showing an exemplary enlarged structure of a part of the second protrusion in FIGS. 2 to 4 and FIGS. 6A and 6B;
  • FIG. 9 is a schematic diagram showing an exemplary enlarged structure of the protrusion in FIG. 5 and a part of the first protrusion in FIGS. 2-4, 6A and 6B;
  • FIG. 10 is a grid diagram of a touch electrode block provided by an embodiment of the disclosure.
  • FIGS. 7-10 is a schematic diagram of an exemplary enlarged structure of a part of the grid lines in FIGS. 7-10;
  • FIG. 12 is a schematic plan view of another touch electrode structure provided by an embodiment of the disclosure.
  • FIG. 13 is a schematic cross-sectional structure diagram of a touch screen provided by an embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram of a planar structure of another touch screen provided by an embodiment of the present disclosure.
  • FIG. 15 is a schematic diagram of the planar structure of a row of touch electrode blocks and wires in the touch screen shown in FIG. 14;
  • FIG. 16 is a schematic diagram of an enlarged structure of the dashed frame area in FIG. 15;
  • FIG. 17 is a schematic diagram of a cross-sectional structure of an In-Cell touch display device according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic diagram of a cross-sectional structure of an On-Cell touch display device provided by an embodiment of the present disclosure.
  • FIG. 19 is a schematic cross-sectional structure diagram of an OGS-type touch display device provided by an embodiment of the disclosure.
  • the self-capacitive touch electrode structure usually adopts a single-layer touch electrode pattern to achieve precise touch, which requires a higher pattern design of the touch electrode structure.
  • the planar shape of the touch electrode block included in the touch electrode structure is rectangular or diamond.
  • the touch accuracy is ⁇ 1mm; when the finger touches the edge of the touch electrode structure, the touch accuracy is ⁇ 2mm, which seriously affects the user's experience of touch products.
  • the touch accuracy is required to be ⁇ 0.4mm when touching the middle area of the touch electrode structure, and the touch accuracy is ⁇ 0.6mm when touching the edge of the touch electrode structure.
  • FIG. 1 is a schematic diagram of a planar structure of a touch electrode structure.
  • the planar shape of the touch electrode block is rectangular, and the touch electrode trace 02 is arranged between two adjacent rows of touch electrode blocks 01.
  • the touch electrode trace 02 connects each touch electrode block 01 is connected to a chip on film (COF) or flexible circuit board (FPC), so that there will be a large gap between two adjacent rows of touch electrode blocks 01.
  • COF chip on film
  • FPC flexible circuit board
  • the planar shape of the touch electrode block 01 is rectangular, when the user’s finger or stylus touches the touch electrode structure, if it mainly touches a central touch electrode block with a relatively large area, the center The touch function of the touch electrode block around the touch electrode block is weak, which will result in lower touch accuracy.
  • the finger or stylus touches the edge of the screen (within 3.5mm)
  • the shape of the touch electrode block is rectangular or diamond, there is only one touch electrode block on the edge of the screen and no other touch The electrode block can be touched, resulting in poor linearity at the edge of the screen.
  • the finger or stylus touches very close to the touch sensing layer.
  • the touch electrode block is designed to be rectangular or diamond-shaped, when a finger or a stylus touches the screen, the capacitance value of the touch electrode block that has the main weight (that is, the main touch) will change very greatly, and its The surrounding areas that are not touched or have a relatively small weight, for example, the capacitance value changes of 8 touch electrode blocks will be relatively small, which will lead to inaccurate calculation results of touch coordinates.
  • the planar shape of the touch electrode block as a rectangle or a rhombus is completely unable to meet the user's requirements for touch experience of touch products. Therefore, the pattern design of the touch electrode structure becomes very important.
  • each touch electrode block is designed to have a sawtooth portion, and the opposite sawtooth portions in adjacent touch electrode blocks are nested with each other.
  • the main body of the touch electrode block can be reduced.
  • the multiple touch electrode blocks containing the multiple sawtooth parts touched above will generate detection signals, thereby
  • the touch detection accuracy can be improved to avoid the problems of poor touch detection accuracy, poor linearity and poor uniformity of current touch products, and, for example, when the touch electrode block includes a sawtooth part, it is touched by a finger or a stylus
  • the capacitance value of the touch electrode blocks around the multiple touch electrode blocks will also change relatively large, so that the coordinate position can be calculated accurately; on the other hand, the size of the touch electrode block with the sawtooth part can be relatively large.
  • the extension length of the protrusion in the saw-tooth portion may be 0.75 or higher than the length of the rectangular touch electrode block.
  • the opposite The total length of the two opposite protrusions in the two saw-tooth parts is 1.5 times or higher than the length of the rectangular touch electrode block, which is a rectangular design compared to the current planar shape of the touch electrode block.
  • the number of touch electrode blocks arranged in the range can be reduced, and the number of bonding pins can be reduced at the same time.
  • the touch electrode pattern design does not add new process steps.
  • the touch electrode structure includes: a plurality of touch electrode blocks electrically insulated from each other, each touch electrode block includes a main body and a sawtooth part electrically connected to the main body , The opposite sawtooth portions in adjacent touch electrode blocks are nested with each other.
  • the touch electrode block is configured as a structure with sawtooth parts, and the accuracy of touch detection is improved by nesting the opposite sawtooth parts in adjacent touch electrode blocks.
  • the mutual nesting means that the gap between the protrusions included in a sawtooth portion of a touch electrode block is just covered by the sawtooth opposite to the sawtooth portion in the touch electrode block adjacent to the touch electrode block
  • the protrusions included in the portion are filled, of course, there is a predetermined gap between the protrusions of the adjacent touch electrode blocks to insulate each other.
  • FIG. 2 is a schematic plan view of a touch electrode structure provided by an embodiment of the present disclosure.
  • the touch electrode structure 10 includes a plurality of touch electrode blocks 100 electrically insulated from each other.
  • Each touch electrode block 100 includes a main body portion 101 and a sawtooth portion 102 electrically connected to the main body 101, and the opposite sawtooth portions 102 in adjacent touch electrode blocks 100 are nested with each other.
  • each touch electrode block 100 are in an integrated structure, which facilitates the design of the shape of the touch electrode structure and reduces the manufacturing cost.
  • the main body portion 101 and the sawtooth portion 102 of each touch electrode block 100 may also be a non-integral structure, which is not limited herein.
  • FIG. 2 only shows a complete touch electrode block 100 including a main body 101 and a sawtooth portion 102, and only two touch electrode blocks adjacent to the complete touch electrode block 100 are shown.
  • the serration 102 is shown, and the main body is not shown.
  • the shape of the outer contour of the main body part may be a rectangle or a parallelogram.
  • the shape of the outer contour of the main body 101 is a rectangle as an example for illustration.
  • the main body 101 includes two opposite first sides 1011 and two opposite second sides 1012.
  • the length of the first side 1011 is greater than the length of the second side 1012.
  • the two first sides 1011 are provided with serrations 102
  • the serrations provided on the first side 1011 are the first serrations 102a
  • the two second sides 1012 are not provided with serrations. unit.
  • the ratio of the length of the first side 1011 to the length of the second side 1012 is 5-30.
  • the ratio of the length of the first side 1011 to the length of the second side 1012 is: 5, 10, 15, 20, 25, or 30.
  • the main body 101 needs to have a certain width. Therefore, only the first serrations are provided on the two opposite first sides 1011 of the main body 101.
  • the length of the second side 1012 of the main body 101 can be set very small, that is, the main body 101 can be set very narrow, so that the area occupied by the main body 101 can be relatively smaller, so that the user's fingers or touch The probability of touching multiple touch electrode blocks 100 at the same time when touched by the pen is greater.
  • each saw-tooth portion 102 includes a plurality of protrusions 1021 extending from the main body portion 101 in a direction away from the main body portion 101, and each protrusion 1021 is substantially an axisymmetric figure.
  • FIG. 2 takes an isosceles trapezoid as an example in which the planar shape of the protrusion 1021 is described.
  • the width of the protrusion 1021 gradually decreases from the main body portion 101 toward the direction away from the main body portion 101.
  • the length of the shorter side of the mutually parallel opposite sides of each isosceles trapezoid is the minimum gap width between two adjacent protrusions 1021, and the length of the longer side is between the two adjacent protrusions 1021 The maximum gap width.
  • each first saw-tooth portion 102a included in a complete touch electrode block 100 each have four protrusions 1021.
  • each first saw-tooth portion 102a includes The number of protrusions 1021 is not limited to this, and may also be more protrusions 1021 or less than 4 protrusions 1021, for example, 2, 3, 5, or 6, etc.
  • the minimum distances between adjacent protrusions 1021 are equal, which is conducive to the formation of uniform protrusions 1021, and it is also beneficial to The shape and size of the protrusions nested in the gap between two adjacent protrusions 1021 are uniform. In this way, the shapes and sizes of all the protrusions 1021 included in the two serrations 102 nested with each other are the same, which is more beneficial to improve the touch detection accuracy.
  • each protrusion 1021 has the same shape, and each protrusion 1021 extends from the main body 101 to the direction away from the main body 101 with the same length.
  • the gap between two adjacent protrusions 1021 is equal, and the planar shape of the gap is the same as the planar shape of the protrusion 1021, and the gap can just place the inverted protrusion 1021.
  • each protrusion 1021 is roughly an axisymmetric figure, except that the planar shape of the protrusion 1021 shown in FIG. 2 is an isosceles trapezoid, the protrusion 1021
  • the plane shape can also be an isosceles triangle, an isosceles triangle with jagged edges on both sides, a rectangle, a rectangle with jagged edges on both sides, and an isosceles trapezoid with jagged edges on both sides.
  • FIG. 3 is a schematic plan view of another touch electrode structure according to an embodiment of the present disclosure.
  • the planar shape of the protrusion 1021 is also an isosceles trapezoid as an example.
  • a convex on one end of the same first side 1011 1021 is the first protrusion 1021a (or the two protrusions on the two ends of the same first side are first protrusions), and the protrusions on the same first side 1011 except for the first protrusion 1021a 1021 is a second protrusion 1021b.
  • the extension length of the first protrusion 1021a from the first side 1011 and the extension length of the second protrusion 1021b from the same first side 1011 are equal, and the width of the first protrusion 1021a along the extending direction of the first side 1011 is the first
  • the two protrusions 1021b are half the width of the extending direction of the same first side 1011.
  • the area of the first protrusion 1021a is half of the area of the second protrusion 1021b, that is, the shape of the first protrusion 1021a is a half of the above-mentioned axisymmetric second protrusion 1021b cut along the axis of symmetry, thereby It is possible to make the opposite first saw-tooth portions 102a in adjacent touch electrode blocks 100 nest with each other, and the areas of the first saw-tooth portions 102a nested with each other are equal.
  • first protrusions 1021a are provided on both ends of the same first side 1011.
  • one first serration portion 102a includes three second protrusions 1021b
  • the other first serration portion 102a includes two second protrusions 1021b and two first protrusions.
  • the protrusions 1021a, and the two first protrusions 1021a are respectively arranged at both ends of the main body 101, the area of the first protrusion 1021a is half of the area of the second protrusion 1021b, so that two second protrusions nested in each other
  • the area of a serrated portion 102a is equal.
  • FIG. 4 is a schematic plan view of another touch electrode structure provided by an embodiment of the present disclosure.
  • the first protrusion 1021a is provided only at one end of the main body 101, and at the other end of the main body 101 A first protrusion 1021a of another first sawtooth portion 102a nested with the first sawtooth portion 102a.
  • one first serration 102a includes three second protrusions 1021b and one first protrusion 1021a, and the one first protrusion 1021a is located on the main body 101 One end; the other first serrated portion includes three second protrusions 1021b and a first protrusion 1021a, the first protrusion 1021a is located at the other end of the main body 101. In this way, the areas of the two nested first serrations 102a are equal.
  • the shape of the second protrusion 1021b may also be an isosceles triangle, an isosceles trapezoid or a rectangle.
  • the shape of the first protrusion 1021a is roughly a right triangle, a right trapezoid or a rectangle. It should be noted that the sides of the above-mentioned right-angled triangle, right-angled trapezoid or rectangle may not be completely straight lines.
  • first protrusion 1021a and the second protrusion 1021b may also have other suitable shapes, as long as the two adjacent first serration portions 102a are nested with each other, and the two first serration portions 102a include The shape and size of the second protrusion 1021b only need to be the same, and details are not described herein again.
  • FIG. 5 is a schematic plan view of another touch electrode structure provided by an embodiment of the present disclosure.
  • the planar shape of the protrusion 1021 is a non-axisymmetric figure.
  • FIG. 5 takes the planar shape of the protrusion 1021 as a right-angled trapezoid as an example for illustration, and the protrusion 1021 extends from the main body 101 to the direction away from the main body 101. The width gradually decreases.
  • the length of the shorter side of the opposite sides parallel to each other in each right-angled trapezoid is the minimum gap width between two adjacent protrusions 1021, and the length of the longer side is the length between the two adjacent protrusions 1021 Maximum gap width.
  • all the protrusions 1021 included in the two first serrations 102a nested in each other have the same shape and size, and two first serrations nested in each other are provided at one end of the main body 101
  • One of the protrusions 1021 of the first serrated portion 102a in 102a is provided at the other end of the main body 101 with the protrusions 1021 of the other of the two first serrated portions 102a nested with each other.
  • Each saw-tooth portion 102a includes five protrusions 1021 with the same shape and size, so that the areas of the two nested first saw-tooth portions 102a are approximately the same.
  • planar shape of the protrusion 1021 may also be a right-angled triangle, a right-angled trapezoid with jagged edges on both sides, a right-angled trapezoid with jagged edges on both sides, and other non-axisymmetric figures.
  • the number of protrusions 1021 included in each first sawtooth portion 102a is not limited to 5 in FIG. 5, and can also be other numbers, which is not limited herein.
  • FIG. 6A is a schematic plan view of a touch electrode structure including a plurality of touch electrode blocks according to an embodiment of the present disclosure. As shown in FIG. 6A, the area of each touch electrode block 100 in the plurality of touch electrode blocks is equal. FIG. 6A includes 9 complete touch electrode blocks 100 and 6 touch electrode blocks that only include a part of the first sawtooth portion 102a.
  • the shapes of the outer contours of the plurality of touch electrode blocks 100 are the same or substantially the same.
  • a touch electrode block 100 has no protrusions on both ends of the main body 101, and the touch electrode block 100 adjacent to it in the column direction of the touch electrode block arrangement is provided with both ends of the main body 101.
  • the protrusion 1021 can be considered that the shape of the outer contours of the two adjacent touch electrode blocks 100 in the column direction of the touch electrode block arrangement is substantially the same.
  • each touch electrode block 100 is approximately an axially symmetrical figure, and the outer contour of each touch electrode block 100 is parallel to the first side of its main body 101.
  • the center line is axisymmetric.
  • the shape of the first saw-tooth portion 102a included in one touch electrode block 100 and the first saw-tooth portion 102a included in the adjacent touch electrode block 100 are completely nested.
  • each touch electrode block 100 includes the first sawtooth portion 102a
  • the user's finger Or a stylus usually touches at least two or more touch electrode blocks 100, and in a large-size touch product, for a touch electrode block with a rectangular or diamond shape, it may only touch one Touch electrode block.
  • the principle of capacitive touch positioning is usually that nine touch electrode blocks sense the change in capacitance at the same time, and the touch position of the finger or stylus is determined by the amount of change in capacitance.
  • the user's finger or stylus will touch a plurality of adjacent touch electrode blocks, and the capacitance change of the plurality of touch electrode blocks is obvious, which can improve the touch Control detection accuracy.
  • the user's finger or stylus touches three touch electrode blocks labeled 1, 2 and 5 in FIG. 6A.
  • Table 1 the capacitance value of the touch electrode block labeled 1 is the largest, followed by the capacitance value of the touch electrode blocks labeled 5 and 2, and other touch electrode blocks are also detected to have corresponding
  • the capacitance value of, the accurate position of the touch can be determined through the above-mentioned capacitance value calculation.
  • the shape of the multiple touch electrode blocks 100 may be the same, and the multiple touch electrode blocks 100 all include a first protrusion 1021a at one end of the same first side, FIG. 6B
  • the test values marked as 1,2,3,4,5,6,7,8 and 9 can also refer to the related description in Figure 6A, and other features of Figure 6B can refer to the related description in Figure 6A above. Repeat it again.
  • FIG. 7 is a schematic diagram of an exemplary enlarged structure of a part of the main body in FIGS. 2 to 6B.
  • the main body 101 includes a mesh structure 103, which includes a mesh line 1031 and a hollow area 1032.
  • the overall extension direction of the mesh structure 103 is the same as the extension direction of the outer contour of the main body 101 , Are rectangular.
  • the hollowed-out area 1032 can reduce the area of the main body 101 itself, can also reduce its own resistance, and can also reduce the capacitance between the main body 101 and the pixel electrode formed subsequently, thereby solving the problem of image elimination.
  • FIG. 8 is an exemplary partial enlarged structural diagram of the second protrusion in FIGS. 2 to 4 and FIGS. 6A and 6B.
  • the second protrusion 1021b also includes a grid structure 103
  • the grid structure 103 also includes a grid line 1031 and a hollow area 1032
  • the overall extension direction of the grid line 1031 and the second protrusion 1021b The extension direction is the same, the width of the grid line 1031 gradually narrows, and the overall shape is an isosceles trapezoid.
  • the hollowed-out area 1032 can reduce the area of the second protrusion 1021b itself, can also reduce its own resistance, and can also reduce the capacitance between the second protrusion 1021b and the pixel electrode formed subsequently, thereby solving the problem of elimination. Shadow problem.
  • each grid line 1031 in the second protrusion 1021b is the same as the extension direction of each grid line 1031 in the main body 101, and both are perpendicular to the extension direction of the outer contour of the main body 101.
  • FIG. 9 is an exemplary partial enlarged structure diagram of the protrusion in FIG. 5 and the first protrusion in FIGS. 2 to 4, 6A and 6B.
  • the protrusion 1021 also includes a grid structure 103.
  • the grid structure 103 includes a grid line 1031 and a hollow area 1032.
  • the grid line 1031 is overall The extending direction of is consistent with the extending direction of the protrusion 1021, the width of the grid lines gradually narrows, and the whole is roughly a right-angled trapezoid.
  • the hollow area 1032 can reduce the area of the protrusion 1021 itself, can also reduce its own resistance, and can also reduce the capacitance between the protrusion 1021 and the pixel electrode to be formed subsequently, thereby solving the problem of shadow elimination.
  • the partial enlarged schematic diagrams of the first protrusion 1021a in FIGS. 2 to 4, 6A, and 6B can refer to the related description in FIG. 9, which will not be repeated here.
  • the hollow area 1032 included in the main body 101 and the protrusions 1021 can reduce the area of each touch electrode block and increase the size of each touch electrode.
  • the area occupied by the block 100 can reduce the number of touch electrode blocks and solve the problem of shadow elimination compared with the touch electrode blocks whose planar shape is rectangular or diamond.
  • the extension direction of the grid lines does not refer to the extension of the grid lines in the local area in the horizontal and vertical directions, but the overall direction of the grid lines.
  • the lines along the extending direction of the grid lines can be straight lines. It can also be a broken line.
  • Figure 7, Figure 8 and Figure 9 the grid lines are taken as examples for illustration. When the grid line is a straight line, you only need to change the broken line to a straight line. For others, see Figure 7 above. The related description of Fig. 8 and Fig. 9 will not be repeated here.
  • FIG. 10 is a grid diagram of a touch electrode block provided by an embodiment of the present disclosure.
  • the main body 101 and the sawtooth portion 102 both include grid lines, and the vertical grid lines in the main body 101 The extension direction of is connected with the corresponding vertical grid line in the sawtooth portion 102.
  • FIG. 11 is a schematic diagram of an exemplary enlarged structure of a part of the grid lines in FIGS. 7-10.
  • the grid line 1031 is a broken line.
  • the grid line 1031 includes a plurality of zigzag bars 1031a.
  • Each zigzag bar 1031a includes an extension portion 1031b and a corner portion 1031c.
  • the extension portions 1031b of adjacent zigzag bars 1031a are mutually
  • the adjacent extensions 1031b of the adjacent serrated bars 1031a are all parallel to each other.
  • At least one corner 1031c of each serrated bar 1031a and the adjacent corner 1031c of the adjacent serrated bar 1031a are connected to form the net Grid line 1031.
  • the extending direction of the serrated bar 1031a is the same as the extending direction of the protrusion 1021; in the main body 101, the extending direction of the serrated bar 1031a and the extending direction of the outer contour of the main body 101 intersect.
  • each serrated bar 1031a is 7 ⁇ m ⁇ 80 ⁇ m; the distance between two adjacent serrated bars 1031a is 6 ⁇ m ⁇ 20 ⁇ m; in the same serrated bar 1031a, the adjacent corners 1031c The distance S2 between them is 100 ⁇ m to 400 ⁇ m; the inclination angle ⁇ of the extension 1031 b of the serrated bar 1031 a is 0-40°; the width G of the line connecting two adjacent serrated bars 1031 a is 6 ⁇ m to 20 ⁇ m.
  • the shape and design of the zigzag bar 1031a according to the above-mentioned dimensions are the same as the design of the pixel electrode (not shown in the figure), which can better solve the problem of shadow elimination, and the zigzag bar can be easily realized in the manufacturing process.
  • the broken line becomes a straight line.
  • the grid line 1031 includes a plurality of mutually parallel straight lines, and any two adjacent ones The lines are connected to each other.
  • each serrated bar 1031a needs to be connected to all adjacent serrated bars 1031a, and the connection can be realized at one place or at multiple places.
  • FIG. 12 is a schematic plan view of another touch electrode structure provided by an embodiment of the present disclosure.
  • serrations are provided on the first side 1011 and the second side 1012 of the main body 101. 102, the serrated portion 102 provided on the first side 1011 is the first serrated portion 102a, and the serrated portion 102 provided on the second side 1012 is the second serrated portion 102b.
  • the second sawtooth portion 102b provided on the second side 1012 also includes a plurality of protrusions 1021, and on the same second side 1012, the minimum distance between adjacent protrusions 1021 is equal.
  • the minimum distance between adjacent protrusions 1021 is equal, which is beneficial to improve touch accuracy.
  • a protrusion 1021 at one end of the same second side 1012 is a third protrusion 1021c (or on both ends of the same second side 1012
  • the two protrusions 1021 are the third protrusions 1021c);
  • the protrusions 1021 on the same second side 1012 except the third protrusions 1021c are the fourth protrusions 1021d, and the area of the third protrusions 1021c is the fourth Half the area of the protrusion 1021d.
  • the extension length of the third protrusion 1021c from the second side 1012 and the extension length of the fourth protrusion 1021d from the same second side 1012 are equal, and the width of the third protrusion 1021c along the extending direction of the second side 1012 is the first
  • the four protrusions 1021d are half of the width of the extending direction of the same second side 1012, so that the area of the third protrusion 1021c is half of the area of the fourth protrusion 1021d.
  • the first serrations 102a are provided on the two opposite first sides 1011 of the main body portion 101 of the touch electrode block, and the second serrations are provided on the two opposite second sides 1012. 102b.
  • nested with the first saw-tooth portion 102a is the first saw-tooth portion 102a' in the adjacent touch electrode block, and the first saw-tooth portion 102a'
  • the edge of the protrusion 1021a' parallel to the second side 1012 is provided with a saw-tooth structure.
  • the zigzag structure includes a plurality of first sub-protrusions.
  • the first sub-protrusions extend from the edge of the first protrusion 1021a′ parallel to the second side 1012 and the protrusions 1021 provided on the second side 1012.
  • the extension length from the second side 1012 is the same.
  • the touch electrode structure is designed such that in a direction parallel to the first side 1011, the second sawtooth portion 102b and the sawtooth portion corresponding to the second sawtooth portion 102b in the adjacent touch electrode block nest with each other
  • the first protrusion 1021a' includes a saw-tooth structure and the saw-tooth structure corresponding to the saw-tooth structure in the adjacent touch electrode blocks are nested with each other. Therefore, in the direction parallel to the first side 1011, adjacent touch electrode blocks can be spliced, and in the direction parallel to the second side 1012, adjacent touch electrode blocks can also be spliced to form Structure that covers the entire plane.
  • the mutual nesting between the saw-tooth structure means that the gap between the first sub-protrusions included in a saw-tooth structure of a first protrusion is just cut by the first protrusion adjacent to the first protrusion.
  • the first sub-bumps included in the saw-tooth structure opposite to the saw-tooth structure in the projections are filled.
  • each saw-tooth portion 102 may be the same or different, and the shape of each saw-tooth portion 102 is not limited.
  • the embodiment shown in FIG. 11 is merely illustrative, and the number of touch electrode blocks and the number of sawtooth portions 102 in the touch electrode blocks are not limited to the embodiment shown in FIG. 11. Setting the touch electrode block as an axisymmetric structure can facilitate the layout and production of the touch electrode block.
  • first protrusion 1021a' includes a zigzag structure
  • shape of the outer contour of the touch electrode block including the first protrusion 1021a' and other touch controls that do not include the zigzag structure The shape and area of the electrode blocks are approximately the same because the size of the zigzag structure is very small relative to the entire touch electrode block.
  • the touch electrode block may also be a non-axisymmetric pattern, as long as two adjacent touch electrode blocks have the same shape and area, and have mutually nested sawtooth portions to increase touch detection. The accuracy is fine.
  • the shape of the main body is not limited to a rectangle, as long as the opposite serrations of two adjacent touch electrode blocks can be nested with each other.
  • the size of the touch electrode structure of each embodiment of the present disclosure needs to meet the requirement of touch detection accuracy, and the density and the occupied area of the touch electrode block can be selected according to the required touch density to ensure the required touch detection accuracy.
  • the area of each touch electrode block is greater than or equal to 6 mm 2 and less than or equal to 40 mm 2 .
  • the density of the display screen is usually in the micron level. Therefore, a touch electrode structure generally corresponds to multiple sub-pixels in the display screen.
  • the material of the multiple touch electrode blocks in each touch electrode structure may be a transparent conductive material.
  • transparent metal oxides such as indium tin oxide (ITO) and indium zinc oxide (IZO), but the material of the touch electrode block in the embodiments of the present disclosure is not limited thereto.
  • each touch electrode block can be formed using the same patterning process, but is not limited thereto.
  • the patterning process may only include a photolithography process, or include a photolithography process and an etching step, or may include other processes for forming a predetermined pattern such as printing and inkjet.
  • the photolithography process refers to the process including film formation, exposure, development, etc., using photoresist, mask, exposure machine, etc. to form patterns.
  • the corresponding patterning process can be selected according to the structure formed in the embodiment of the present disclosure.
  • At least one embodiment of the present disclosure further provides a touch screen, including the touch electrode structure in any of the above embodiments.
  • the touch screen provided by at least one embodiment of the present disclosure further includes a plurality of wires, and the plurality of wires are electrically connected to the touch electrode blocks in a one-to-one correspondence.
  • the touch screen includes a substrate, and the touch electrode structure and the wires are arranged on the same side of the substrate.
  • the substrate includes a display area and a frame area surrounding the display area. In the direction perpendicular to the surface of the substrate, the touch electrode blocks and the projections of the wires on the substrate are located in the display area.
  • the touch electrode block and the wire are arranged oppositely in a direction perpendicular to the substrate, and the touch electrode block and the wire are arranged in layers.
  • the touch screen further includes an insulating layer disposed between the wire and the touch electrode structure, and the wire and the corresponding touch electrode block are electrically connected by a via structure penetrating the insulating layer.
  • FIG. 13 is a schematic cross-sectional structure diagram of a touch screen provided by an embodiment of the present disclosure.
  • the touch screen 20 includes the touch electrode structure 10 and a plurality of wires 111 in any of the above embodiments.
  • the touch electrode block 100 included in the electrode structure 10 can be connected to the corresponding wire 111 through the via structure 112, and each touch electrode block 100 in the touch electrode structure 10 is electrically connected to the corresponding wire 111 for use.
  • each touch electrode block 100 can also be provided in the same layer with each wire 111 and directly connected, which is not limited.
  • multiple wires 111 are provided on the base substrate 115, an insulating layer 113 is provided on the layer where the multiple wires 111 are located, and multiple via structures 112 are provided in the insulating layer 113.
  • the via structure 112 penetrates the insulating layer 113.
  • the touch electrode structure 10 is disposed on the insulating layer 113, and each touch electrode block 100 in the touch electrode structure 10 is electrically connected to the corresponding wire 111 through the via structure 112, respectively.
  • the touch screen may further include a touch detection chip 116.
  • each wire 111 is connected to the touch detection chip 116.
  • the touch detection chip 116 detects each touch during the touch time period. The change in the capacitance value of the control electrode block 100 can determine the touch position.
  • FIG. 14 is a schematic diagram of a planar structure of another touch screen provided by an embodiment of the present disclosure.
  • a plurality of wires 111 and the touch electrode block 100 are arranged on the same layer, there is a gap between two adjacent rows of touch electrode blocks 100, the wires 111 are arranged in the gap, and the touch electrode blocks 100 are arranged in the same row.
  • the area of the touch electrode block 100 may be constant or gradually decrease.
  • FIG. 15 is a schematic diagram of the planar structure of a row of touch electrode blocks and wires in the touch screen shown in FIG. 14. As shown in FIG. 15, in the same column of touch electrode blocks 100, along the extending direction of the wire 111, that is, in FIG. 15, from the contact point of the wire 111 with the touch electrode block 100 to the wire 111 away from the touch electrode block In the direction of 100, the area of the touch electrode block 100 gradually decreases.
  • FIG. 16 is a schematic diagram of an enlarged structure of the area in a dashed frame in FIG.
  • the serrated portion 102 includes protrusions 1021 extending from the main portion 101 in a direction away from the main portion 101.
  • Both the main portion 101 and the protrusions 1021 include a grid structure 103.
  • the grid structure 103 includes a grid line 1031 and a hollow area 1032.
  • the grid line 1031 includes a zigzag bar extending along the column direction in which the touch electrode blocks 100 are arranged, and the shape of the zigzag bar is consistent with the shape of the wire 111.
  • the wire 111 and the touch electrode block 100 are arranged on the same layer and are formed in the same process step.
  • the wire 111 is arranged on one side of the touch electrode block 100, and the extension length of the wire 111 is longer than the touch electrode block connected to the wire 111
  • the extension length of the zigzag bar in the grid line in 100 is long.
  • At least one embodiment of the present disclosure further provides a touch display device, which includes the touch electrode structure in any of the above embodiments.
  • the touch display device further includes a display panel, and the touch electrode structure is arranged on the display panel.
  • the touch display device of this structure is, for example, any one of OGS (One Glass Solution) touch display device, In-Cell (in-cell) touch display device or On-Cell (external) touch display device .
  • each touch electrode structure may be located on the surface of the upper substrate facing the lower substrate constituting the display panel, or on the surface of the lower substrate facing the upper substrate.
  • FIG. 17 is a schematic cross-sectional structure diagram of an In-Cell touch display device provided by an embodiment of the present disclosure. As shown in FIG. 17, the touch electrode structure 10 is located on the upper substrate 301 constituting the display panel 30 facing the lower substrate 302 on the surface.
  • the touch display device includes the touch electrode structure 10 and a plurality of wires 111 in any of the above embodiments, and the touch electrode block 100 included in the touch electrode structure 10 can be connected to each wire 111 through the via structure 112.
  • Each touch electrode block 100 in the touch electrode structure 10 is electrically connected to a corresponding wire 111 for input/output signals.
  • a plurality of wires 111 are provided on the upper substrate 301, an insulating layer 113 is provided on the layer where the plurality of wires 111 are located, and a plurality of via structures 112 are provided in the insulating layer 113.
  • the via structure 112 penetrates the insulating layer 113.
  • the touch electrode structure 10 is disposed on the insulating layer 113, and each touch electrode block 100 in the touch electrode structure 10 is electrically connected to each wire 111 through the via structure 112, respectively.
  • each touch electrode structure may be located on a side of the upper substrate away from the lower substrate.
  • FIG. 18 is a schematic cross-sectional structure diagram of an On-Cell touch display device provided by an embodiment of the present disclosure. As shown in FIG. 18, each touch electrode structure 10 is located on a side of the upper substrate away from the lower substrate.
  • the display panel 30 includes an upper substrate 301 and a lower substrate 302 that are aligned with the box.
  • the touch display device includes the touch electrode structure 10 and a plurality of wires 111 in any of the above-mentioned embodiments.
  • the touch electrode block 100 included in the touch electrode structure 10 can be connected to each wire 111 through a via structure 112.
  • Each touch electrode block 100 in the electrode structure 10 is electrically connected to a corresponding wire 111 for input/output signals.
  • a plurality of wires 111 are provided on the upper substrate 301, an insulating layer 113 is provided on the layer where the multiple wires 111 are located, and a plurality of via structures 112 are provided in the insulating layer 113.
  • the via structure 112 penetrates the insulating layer 113.
  • the touch electrode structure 10 is disposed on the insulating layer 113, and each touch electrode block 100 in the touch electrode structure 10 is electrically connected to the corresponding wire 111 through the via structure 112, respectively.
  • a passivation layer may also be formed on the upper substrate 301 to cover the touch electrode structure 10 so as to provide protection for the touch electrode structure 10.
  • the lower substrate 302 is also provided with a pixel array structure
  • the upper substrate 301 may also be provided with a color filter layer and a black matrix, but it is not limited to this.
  • each touch electrode structure can be separately provided, or can be multiplexed as a common electrode in the display panel, which is not limited.
  • FIG. 19 is a schematic cross-sectional structure diagram of an OGS type touch display device provided by an embodiment of the present disclosure.
  • the touch display device further includes a display panel 30 and a touch screen disposed on the display side of the display panel 30. 20.
  • the touch screen 20 includes the touch electrode structure 10 in any of the foregoing embodiments.
  • the related description of the OGS-type touch display device please refer to the related description in FIG. 13 above, which will not be repeated here.
  • the touch display device includes a liquid crystal touch display device or an organic light emitting diode touch display device.
  • the touch display device may be a display device such as a liquid crystal display, an electronic paper, an OLED (Organic Light-Emitting Diode) display, and a TV, a digital camera, a mobile phone, a watch, a tablet computer, and a notebook including these display devices. Any product or component with display function such as computer and navigator.
  • a display device such as a liquid crystal display, an electronic paper, an OLED (Organic Light-Emitting Diode) display, and a TV, a digital camera, a mobile phone, a watch, a tablet computer, and a notebook including these display devices.
  • Any product or component with display function such as computer and navigator.
  • touch electrode structure, touch screen, and touch display device provided by the embodiments of the present disclosure have at least one of the following beneficial effects:
  • each touch electrode block is designed to have a sawtooth portion, and the opposite sawtooth portions in adjacent touch electrode blocks are nested with each other, which can reduce The area ratio of the main body of the small touch electrode block.
  • the probability that multiple sawtooth parts are touched at the same time is greatly increased.
  • the multiple touch electrode blocks including the multiple sawtooth parts touched are all A detection signal is generated, which can improve touch detection accuracy.
  • the touch electrode structure provided by at least one embodiment of the present disclosure can avoid the problems of poor touch detection accuracy, poor linearity, and poor uniformity of current touch products.
  • the touch electrode block when the touch electrode block includes a sawtooth portion, the capacitance value of the touch electrode block around the multiple touch electrode blocks touched by a finger or a stylus The amount of change will also be relatively large, so that accurate calculation of the coordinate position can be achieved.
  • the size of the touch electrode block including the sawtooth portion can be relatively large, so that the number of touch electrode blocks arranged in the same area size range can be reduced. At the same time, the number of bonding pins can be reduced.
  • the hollow area included in the main body can reduce the area of the main body itself, and can also reduce the resistance of the main body itself, and can also reduce the main body and subsequent formation.
  • the capacitance between the pixel electrodes can solve the problem of de-imaging.
  • the hollow area in the protrusion included in the sawtooth portion can reduce the area of the protrusion itself, the resistance of the protrusion itself, and the protrusion
  • the capacitance between the pixel electrode and the subsequent pixel electrode can solve the problem of image cancellation.

Abstract

一种触控电极结构、触摸屏和触控显示装置,该触控电极结构包括:多个相互电绝缘的触控电极块,其中,每个所述触控电极块包括主体部和与所述主体部电连接的锯齿部,相邻的所述触控电极块中相对的所述锯齿部相互嵌套。该触控电极结构可以提高触控检测精度。

Description

触控电极结构、触摸屏和触控显示装置 技术领域
本公开的实施例涉及一种触控电极结构、触摸屏和触控显示装置。
背景技术
触控面板可使用各种技术感测来自手指或触控笔的触碰,例如,电容式、表面声波式、电阻式和光学式触控技术。电容式触控技术因具有可靠性高、耐用性好等优点,从而发展非常迅猛,已经广泛地应用于手机、平板、笔记本电脑等电子产品中。电容式触控技术可以分为自电容触控技术和互电容触控技术。电容式触控面板通常使用透明导电材料形成触控感测元件,并形成在显示面板上,形成在显示面板上的触控面板的触控感测元件的图案、尺寸等因素会影响图像的显示品质。
例如,自电容式触摸屏包括在衬底基板上用透明导电材料制作的触控电极阵列,这些触控电极分别与地构成电容。当手指触摸到自电容式电容屏时,手指的电容将会叠加到对应的触控电极上,触控侦测芯片在触控时间段通过检测各触控电极的电容值变化可以判断出触控位置。
发明内容
本公开至少一实施例提供一种触控电极结构,该触控电极结构包括:多个相互电绝缘的触控电极块,其中,每个所述触控电极块包括主体部和与所述主体部电连接的锯齿部,相邻的所述触控电极块中相对的所述锯齿部相互嵌套。
例如,在本公开至少一实施例提供的触控电极结构中,所述锯齿部包括从所述主体部向远离所述主体部的方向延伸的凸起,所述主体部和所述凸起均包括网格结构,所述网格结构包括网格线和镂空区域。
例如,在本公开至少一实施例提供的触控电极结构中,所述网格线包括多个锯齿条,每个所述锯齿条包括延伸部和拐角部,相邻的所述锯齿条的所述延伸部相互间隔,每个所述锯齿条的至少一个所述拐角部和与之相邻的所述锯齿条的拐角部相连接以构成所述网格线。
例如,在本公开至少一实施例提供的触控电极结构中,在所述锯齿部中, 所述锯齿条的延伸方向和所述凸起的延伸方向一致;在所述主体部中,所述锯齿条的延伸方向和所述主体部的外轮廓的延伸方向相交。
例如,在本公开至少一实施例提供的触控电极结构中,所述主体部的外轮廓的形状为长方形或者平行四边形,所述主体部包括相对的两条第一边和相对的两条第二边,所述第一边的长度大于所述第二边的长度,所述第一边上设置有所述锯齿部,设置在所述第一边上的所述锯齿部为第一锯齿部。
例如,在本公开至少一实施例提供的触控电极结构中,所述第一锯齿部包括多个所述凸起,在同一所述第一边上,相邻的所述凸起之间的最小距离相等。
例如,在本公开至少一实施例提供的触控电极结构中,在所述主体部的远离所述第一边的两侧,在同一所述第一边的一个端部的一个所述凸起为第一凸起,或者在同一所述第一边的两个端部的两个所述凸起为第一凸起;在同一所述第一边的除了所述第一凸起之外的所述凸起为第二凸起,所述第一凸起的面积为所述第二凸起的面积的一半。
例如,在本公开至少一实施例提供的触控电极结构中,所述第一凸起从所述第一边的延伸长度和所述第二凸起从同一所述第一边的延伸长度相等,且所述第一凸起沿着所述第一边延伸方向的宽度为所述第二凸起沿着同一所述第一边延伸方向的宽度的一半。
例如,在本公开至少一实施例提供的触控电极结构中,所述第二凸起的形状大致为等腰三角形、等腰梯形或者矩形,所述第一凸起的形状大致为直角三角形、直角梯形或者矩形。
例如,在本公开至少一实施例提供的触控电极结构中,多个所述触控电极块的形状相同,每个所述触控电极块均包括在同一所述第一边的一个端部的一个所述第一凸起。
例如,在本公开至少一实施例提供的触控电极结构中,所述主体部的所述第二边上也设置有所述锯齿部,设置在所述第二边上的所述锯齿部为第二锯齿部。
例如,在本公开至少一实施例提供的触控电极结构中,所述第二锯齿部包括多个所述凸起,在同一所述第二边上,相邻的所述凸起之间的最小距离相等。
例如,在本公开至少一实施例提供的触控电极结构中,在所述主体部的 远离所述第二边的两侧,在同一所述第二边的一个端部的一个所述凸起为第三凸起,或者在同一所述第二边的两个端部的两个所述凸起为第三凸起;在同一所述第二边的除了所述第三凸起之外的所述凸起为第四凸起,所述第三凸起的面积为所述第四凸起的面积的一半。
例如,在本公开至少一实施例提供的触控电极结构中,所述第三凸起从所述第二边的延伸长度和所述第四凸起从同一所述第二边的延伸长度相等,且所述第三凸起沿着所述第二边延伸方向的宽度为所述第四凸起沿着同一所述第二边延伸方向的宽度的一半。
例如,在本公开至少一实施例提供的触控电极结构中,多个所述触控电极块的外轮廓的形状相同或者大致相同。
例如,在本公开至少一实施例提供的触控电极结构中,每个所述触控电极块的外轮廓的形状大致为轴对称图形。
本公开至少一实施例还提供一种触摸屏,包括上述任一项所述的触控电极结构。
例如,本公开至少一实施例提供的触摸屏还包括多条导线,其中,所述导线和所述触控电极块一一对应地电连接。
例如,本公开至少一实施例提供的触摸屏还包括设置在所述导线和所述触控电极结构之间的绝缘层,其中,所述导线和与之对应的所述触控电极块通过贯穿所述绝缘层的过孔结构电连接。
例如,在本公开至少一实施例提供的触摸屏中,所述多条导线和所述触控电极块设置在同一层,相邻的两列所述触控电极块之间具有间隙,所述导线设置在所述间隙中,在同一列所述触控电极块中,沿着所述导线的延伸方向,所述触控电极块的面积逐渐减小或者逐渐增大。
例如,在本公开至少一实施例提供的触摸屏中,当所述锯齿部包括从所述主体部向远离所述主体部的方向延伸的凸起,所述主体部和所述凸起均包括网格结构,所述网格结构包括网格线和镂空区域,且所述网格线包括沿着所述触控电极块排列的列方向延伸的锯齿条时,所述锯齿条的形状和所述导线的形状一致。
本公开至少一实施例还提供一种触控显示装置,该触控显示装置包括上述任一项所述的触控电极结构。
例如,本公开至少一实施例提供的触控显示装置还包括显示面板,其中, 所述触控电极结构设置在所述显示面板上。
例如,本公开至少一实施例提供的触控显示装置,还包括显示面板和设置在所述显示面板的显示侧的触摸屏,所述触摸屏包括所述触控电极结构。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为一种触控电极的平面结构示意图;
图2为本公开一实施例提供的一种触控电极结构的平面结构示意图;
图3为本公开一实施例提供的再一种触控电极结构的平面结构示意图;
图4为本公开一实施例提供的又一种触控电极结构的平面结构示意图;
图5为本公开一实施例提供的又一种触控电极结构的平面结构示意图;
图6A为本公开一实施例提供的一种触控电极结构包括多个触控电极块的平面结构示意图;
图6B为本公开一实施例提供的一种触控电极结构包括多个触控电极块的平面结构示意图;
图7为图2-图6B中主体部的局部的示例性放大结构示意图;
图8为图2-图4和图6A、图6B中第二凸起的局部的示例性放大结构示意图;
图9为图5中的凸起和图2-图4、图6A和图6B中第一凸起的局部的示例性放大结构示意图;
图10为本公开一实施例提供的一个触控电极块的网格图;
图11为图7-图10中网格线的局部的示例性放大结构示意图;
图12为本公开一实施例提供的另一种触控电极结构的平面结构示意图;
图13为本公开一实施例提供的一种触摸屏的截面结构示意图;
图14为本公开一实施例提供的另一种触摸屏的平面结构示意图;
图15为图14所示触摸屏中一列触控电极块和导线连接的平面结构示意图;
图16为图15中虚线框区域的放大结构示意图;
图17为本公开一实施例提供的一种In-Cell触控显示装置的截面结构示意图;
图18为本公开一实施例提供的一种On-Cell触控显示装置的截面结构示意图;以及
图19为本公开一实施例提供的OGS式触控显示装置的截面结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
自电容式触控电极结构通常采用单层触控电极图案就可以实现精准的触控,这对触控电极结构的图案设计的要求较高。目前,触控电极结构包括的触控电极块的平面形状为矩形或菱形。当手指触摸触控电极结构的中间区域时触控精度为±1mm;当手指触摸触控电极结构的边缘时触控精度为±2mm,这样严重影响了用户对触控产品的体验。当采用触控笔触控时,要求触摸触控电极结构的中间区域时触控精度为±0.4mm,触摸触控电极结构的边缘时触控精度为±0.6mm。
例如,图1为一种触控电极结构的平面结构示意图。如图1所示,触控电极块的平面形状为矩形,触控电极走线02设置在相邻的两列触控电极块 01之间,触控电极走线02将每个触控电极块01连接至覆晶薄膜(COF)或柔性电路板(FPC),这样相邻的两列触控电极块01之间会存在较大的间隙。当用户的手指或者触控笔触控位于相邻的两列触控电极块01之间的空隙部分时触控精度会很差。而且,由于触控电极块01的平面形状呈矩形,当用户的手指或者触控笔触碰触控电极结构时,如果主要触碰到一个面积占比较大的中心触控电极块,则对该中心触控电极块周围的触控电极块的触控作用较弱,这样会导致触控精度较低。
而且,当用户的手指或者触控笔触控屏幕的边缘(3.5mm内)位置时,由于触控电极块的形状为矩形或者菱形,在屏幕的边缘只有一个触控电极块,没有其他的触控电极块可以被触控,导致屏幕的边缘处线性度很差。对于外挂式(On-Cell)设计,手指或触控笔触碰时距离触控感应层很近。如果触控电极块设计成矩形或者菱形,则手指或触控笔触控屏幕时,具有主要权重占比的(即主要被触控的)触控电极块的电容值变化量会非常大,而其周围的未被触控或权重占比较小的例如8个触控电极块的电容值变化量会相对很小,这样会导致计算触控坐标的结果不准确。
因此,目前将触控电极块的平面形状设计成矩形或者菱形已经完全无法满足用户对触控产品触控体验的需求,因此,对触控电极结构的图案设计变得至关重要。
本公开的发明人发现,将每个触控电极块设计成具有锯齿部,且相邻的触控电极块中相对的锯齿部相互嵌套,一方面,可以减小触控电极块的主体部的面积占比,在进行触摸操作时,使得多个锯齿部同时被触控的几率大大提高,这样包含上述被触控的多个锯齿部的多个触控电极块均会生成检测信号,从而可以提高触控检测精度,以避免目前触控产品触控检测精度不佳、线性度差和均一性差的问题,而且,例如,当触控电极块包括锯齿部时,被手指或者触控笔触碰到的多个触控电极块周边的触控电极块的电容值的变化量也会相对较大,从而可以精确地计算坐标位置;另一方面,具有锯齿部的触控电极块的尺寸可以相对较大,例如,锯齿部中的凸起的延伸长度可能是矩形触控电极块的长度的0.75或者更高,在这些实施例中,对于一个大致呈轴对称图形的触控电极块,相对的两个锯齿部中相对的两个凸起的总长度为矩形触控电极块的长度的1.5倍或者更高倍数,这样相对于目前触控电极块的平面形状为矩形的设计,在同样面积大小范围内布设的触控电极块的个 数可以减少,同时还可以减少邦定针脚的个数,此外,该触控电极图案设计不会增加新的工艺步骤。
本公开至少一实施例提供一种触控电极结构,该触控电极结构包括:多个相互电绝缘的触控电极块,每个触控电极块包括主体部和与主体部电连接的锯齿部,相邻的触控电极块中相对的锯齿部相互嵌套。本公开的实施例将触控电极块设置为具有锯齿部的结构,通过相邻的触控电极块中相对的锯齿部相互嵌套提高了触控检测的精度。
需要说明的是,相互嵌套是指一个触控电极块的一个锯齿部包括的凸起之间的间隙刚好被与该触控电极块相邻的触控电极块中和该锯齿部相对的锯齿部包括的凸起填充,当然这些相邻的触控电极块的凸起之间具有预定间隙以彼此绝缘。
例如,图2为本公开一实施例提供的一种触控电极结构的平面结构示意图,如图2所示,该触控电极结构10包括:多个相互电绝缘的触控电极块100,每个触控电极块100包括主体部101和与主体部101电连接的锯齿部102,相邻的触控电极块100中相对的锯齿部102相互嵌套。
例如,每个触控电极块100的主体部101和锯齿部102均为一体的结构,由此可便于设计触控电极结构的形状以及降低制造成本。每个触控电极块100的主体部101和锯齿部102也可以是非一体结构,在此不作限定。
例如,图2中仅示出了一个同时包括主体部101和锯齿部102的完整的触控电极块100,与该完整的触控电极块100相邻的两个触控电极块都只示出了锯齿部102,没有示出主体部。
例如,主体部的外轮廓的形状可以为长方形或者平行四边形,图2中以主体部101的外轮廓的形状为长方形为例加以说明。如图2所示,主体部101包括相对的两条第一边1011和相对的两条第二边1012,第一边1011的长度大于第二边1012的长度。在图示的示例中,该两条第一边1011上均设置有锯齿部102,设置在第一边1011上的锯齿部为第一锯齿部102a,两条第二边1012上均未设置锯齿部。
例如,第一边1011的长度和第二边1012的长度的比值为5~30。例如,第一边1011的长度和第二边1012的长度的比值为:5、10、15、20、25或者30等。
例如,如果在主体部101的两条第二边1012上也设置锯齿部则需要主 体部101具有一定的宽度,因此,仅在主体部101相对的两条第一边1011上设置第一锯齿部102a可以将主体部101的第二边1012的长度设置的很小,即将主体部101设置的很窄,这样可以使得主体部101所占的面积比重相对更小一些,从而用户的手指或者触控笔触碰时同时接触多个触控电极块100的几率会更大一些。
例如,如图2所示,每个锯齿部102包括从主体部101向远离主体部101的方向延伸的多个凸起1021,每个凸起1021均大致为轴对称图形。图2以凸起1021的平面形状为等腰梯形为例加以说明,从主体部101向远离主体部101的方向凸起1021的宽度逐渐减小。各等腰梯形的相互平行的对边中较短的一边的长度为相邻的两个凸起1021之间的最小间隙宽度,较长的一边的长度为相邻的两个凸起1021之间的最大间隙宽度。
例如,图2中一个完整的触控电极块100中包括的两个第一锯齿部102a每个第一锯齿部102a均具有4个凸起1021,很明显,每个第一锯齿部102a包括的凸起1021的个数不限于此,还可以是更多个凸起1021或者少于4个凸起1021,例如,2个、3个、5个或者6个等。
例如,如图2所示,在同一第一边1011上,除了边缘区域外,相邻的凸起1021之间的最小距离相等,这有利于形成大小均一的凸起1021,也有利于在任意相邻的两个凸起1021之间的间隙中嵌套的凸起的形状和大小均一。这样相互嵌套的两个锯齿部102包括的所有凸起1021的形状和尺寸均相同,从而更有利于提高触控检测精度。
例如,如图2所示,在一个完整的触控电极块100中,每个凸起1021的形状相同,每个凸起1021从主体部101向远离主体部101的方向延伸的长度相同,任意相邻的两个凸起1021之间的间隙相等,且该间隙的平面形状和凸起1021的平面形状相同,该间隙刚好可以放置倒置的凸起1021。
例如,在一个完整的触控电极块100中,每个凸起1021的平面形状大致为轴对称图形,除了图2中示出的凸起1021的平面形状为等腰梯形外,该凸起1021的平面形状还可以是等腰三角形、两侧边缘成锯齿状的等腰三角形、矩形、两侧边缘成锯齿状的矩形以及两侧边缘成锯齿状的等腰梯形等。
例如,如图2所示,对于该完整的触控电极块100,在主体部101的两端均没有设置凸起,与该完整的触控电极块100相邻的触控电极块在对应主体部101两端的位置均设置有凸起。
例如,图3为本公开一实施例提供的再一种触控电极结构的平面结构示意图。如图3所示,同样以凸起1021的平面形状为等腰梯形为例加以说明,在主体部101的远离第一边1011的两侧,在同一第一边1011的一个端部的一个凸起1021为第一凸起1021a(或者,在同一第一边的两个端部的两个凸起为第一凸起),在同一第一边1011的除了第一凸起1021a之外的凸起1021为第二凸起1021b。例如,第一凸起1021a从第一边1011的延伸长度和第二凸起1021b从同一第一边1011的延伸长度相等,且第一凸起1021a沿着第一边1011延伸方向的宽度为第二凸起1021b沿着同一第一边1011延伸方向的宽度的一半。这样,第一凸起1021a的面积为第二凸起1021b的面积的一半,即第一凸起1021a的形状为上述轴对称的第二凸起1021b沿着对称轴切下的一半的图形,从而可以使得相邻的触控电极块100中相对的第一锯齿部102a相互嵌套,且相互嵌套的第一锯齿部102a的面积相等。
在图3中,在同一第一边1011的两个端部均设置第一凸起1021a。这样在相互嵌套的两个第一锯齿部102a中,一个第一锯齿部102a包括三个第二凸起1021b,另一个第一锯齿部102a包括两个第二凸起1021b和两个第一凸起1021a,且两个第一凸起1021a分别设置在主体部101的两端,第一凸起1021a的面积为第二凸起1021b的面积的一半,这样两个相互嵌套的两个第一锯齿部102a的面积相等。
例如,图4为本公开一实施例提供的又一种触控电极结构的平面结构示意图。如图4所示,对于相互嵌套的两个第一锯齿部102a中的一个第一锯齿部102a,只在主体部101的一端设置第一凸起1021a,且在主体部101的另一端设置与该第一锯齿部102a相互嵌套的另一个第一锯齿部102a的第一凸起1021a。这样,在相互嵌套的两个第一锯齿部102a中,一个第一锯齿部102a包括三个第二凸起1021b和一个第一凸起1021a,该一个第一凸起1021a位于主体部101的一端;另一个第一锯齿部包括三个第二凸起1021b和一个第一凸起1021a,该一个第一凸起1021a位于主体部101的另一端。这样,两个相互嵌套的第一锯齿部102a的面积相等。
例如,第二凸起1021b的形状还可以为等腰三角形、等腰梯形或者矩形,对应地,第一凸起1021a的形状大致为直角三角形、直角梯形或者矩形。需要说明的是,上述直角三角形、直角梯形或者矩形的边也可以不完全是直线。
需要说明的是,第一凸起1021a和第二凸起1021b还可以是其他合适的 形状,只要能够满足相邻的两个第一锯齿部102a相互嵌套,两个第一锯齿部102a包括的第二凸起1021b的形状和尺寸相同即可,在此不再赘述。
例如,图5为本公开一实施例提供的又一种触控电极结构的平面结构示意图。如图5所示,凸起1021的平面形状为非轴对称图形,图5以凸起1021的平面形状为直角梯形为例进行说明,且从主体部101向远离主体部101的方向凸起1021的宽度逐渐减小。各直角梯形中相互平行的对边中较短的一边的长度为相邻的两个凸起1021之间的最小间隙宽度,较长的一边的长度为相邻的两个凸起1021之间的最大间隙宽度。
例如,如图5所示,相互嵌套的两个第一锯齿部102a所包含的所有凸起1021的形状和尺寸均相同,在主体部101的一端设置相互嵌套的两个第一锯齿部102a中的一个第一锯齿部102a的凸起1021,在主体部101的另一端设置相互嵌套的两个第一锯齿部102a中的另一个第一锯齿部102a的凸起1021,两个第一锯齿部102a均包括5个形状和尺寸均相同的凸起1021,这样相互嵌套的两个第一锯齿部102a的面积大致相等。
需要说明的是,凸起1021的平面形状还可以为直角三角形、两侧边缘成锯齿状的直角梯形、两侧边缘成锯齿状的直角梯形等非轴对称图形。每个第一锯齿部102a包括的凸起1021的个数不限于图5中的5个,还可以是其他个数,在此不作限定。
例如,图6A为本公开一实施例提供的一种触控电极结构包括多个触控电极块的平面结构示意图。如图6A所示,多个触控电极块中每个触控电极块100的面积相等。在图6A中包括9个完整的触控电极块100,以及6个仅包含一部分第一锯齿部102a的触控电极块。
例如,如图6A所示,多个触控电极块100的外轮廓的形状相同或者大致相同。例如,一个触控电极块100在主体部101的两端均没有设置凸起,在触控电极块排列的列方向上与其相邻的触控电极块100在主体部101的两端均设置有凸起1021,可以认为这两个在触控电极块排列的列方向上相邻的触控电极块100的外轮廓的形状是大致相同的。
例如,如图6A所示,每个触控电极块100的外轮廓的形状均大致为轴对称图形,每个触控电极块100的外轮廓均关于其主体部101的平行于第一边的中心线呈轴对称。
例如,如图6A所示,一个触控电极块100包括的第一锯齿部102a和与 其相邻的触控电极块100包括的第一锯齿部102a完全嵌套之后的形状为矩形。
例如,如图6A所示,当用户用手指或触控笔触摸到包含有图6A的触控电极结构的触摸屏时,由于每个触控电极块100均包含第一锯齿部102a,用户的手指或触控笔通常至少会触控到两个及以上触控电极块100,而在大尺寸的触控产品中,对于平面形状为矩形或者菱形的触控电极块,可能只能触控到一个触控电极块。电容式的触控定位原理通常为九个触控电极块同时感应电容的变化量,通过电容变化量的多少来判断手指或触控笔的触控位置。当采用具有锯齿部的触控电极块时,用户的手指或者触控笔会触控到多个相邻的触控电极块,该多个触控电极块的电容变化量很明显,从而能够提升触控检测精度。
如图6A所示,当用户的手指或者触控笔触控到图6A中示出的位置时,分别测试图6A中标注为1、2、3、4、5、6、7、8和9的触控电极块所得到的电容值如下表一所示。
表一
行/列 第一列 第二列 第三列
第一行 1.05(6) 2.76(5) 1.84(4)
第二行 1.98(3) 3.35(1) 2.69(2)
第三行 0.43(9) 1.06(8) 0.71(7)
从图6A可以看出,用户的手指或触控笔触控到图6A中标注为1、2和5三个触控电极块。从表一可以看出,测试到的标注为1的触控电极块的电容值最大,标注为5和2的触控电极块的电容值次之,其他的触控电极块也检测到有对应的电容值,通过上述电容值计算即可确定出触控的准确位置。
例如,如图6B所示,也可以是多个触控电极块100的形状相同,多个触控电极块100均包括在同一第一边的一个端部的一个第一凸起1021a,图6B中标注为1,2,3,4,5,6,7,8和9的测试数值也可以参见图6A中的相关描述,图6B的其他特征可以参考上述图6A的相关描述,在此不再赘述。
例如,图7为图2-图6B中主体部的局部的示例性放大结构示意图。如图7所示,主体部101包括网格结构103,该网格结构103包括网格线1031和镂空区域1032,该网格结构103整体的延伸方向和主体部101的外轮廓的 延伸方向相同,均呈矩形。
例如,镂空区域1032可以减小主体部101自身的面积,也可以减小其自身的电阻,还可以减小主体部101与后续形成的像素电极之间的电容,进而可以解决消影的问题。
例如,图8为图2-图4和图6A和图6B中第二凸起的示例性局部放大结构示意图。如图8所示,第二凸起1021b也包括网格结构103,该网格结构103也包括网格线1031和镂空区域1032,该网格线1031整体的延伸方向和第二凸起1021b的延伸方向一致,网格线1031的宽度逐渐变窄,整体呈等腰梯形。例如,镂空区域1032可以减小第二凸起1021b自身的面积,也可以减小其自身的电阻,还可以减小第二凸起1021b与后续形成的像素电极之间的电容,进而可以解决消影的问题。
例如,第二凸起1021b中每条网格线1031的延伸方向和主体部101中每条网格线1031的延伸方向相同,均垂直于主体部101的外轮廓的延伸方向。
例如,图9为图5中的凸起和图2-图4、图6A和图6B中第一凸起的示例性局部放大结构示意图。以图5中的凸起1021为例进行说明,如图9所示,凸起1021也包括网格结构103,该网格结构103包括网格线1031和镂空区域1032,该网格线1031整体的延伸方向和凸起1021的延伸方向一致,网格线的宽度逐渐变窄,整体大致呈直角梯形。例如,镂空区域1032可以减小凸起1021自身的面积,也可以减小其自身的电阻,还可以减小凸起1021与后续形成的像素电极之间的电容,进而可以解决消影的问题。
例如,图2-图4、图6A和图6B中第一凸起1021a的局部放大结构示意图可以参见图9中的相关描述,在此不再赘述。
例如,主体部101和凸起1021(包括第一凸起1021a和第二凸起1021b)包括的镂空区域1032可以减小每个触控电极块自身的面积,还能增大每个触控电极块100所占用的面积,从而相对于平面形状为矩形或者菱形的触控电极块,可以减少触控电极块的个数,同时还可以解决消影的问题。
需要说明的是,网格线的延伸方向不是指局部区域的网格线在横向和纵向上的延伸,而是网格线构成的整体的走向,沿着网格线延伸方向的线可以是直线也可以是折线,在图7、图8和图9中均是以网格线为折线为例进行说明的,网格线为直线时,只需要将折线改变成直线,其他可以参见上述图 7、图8和图9的相关描述,在此不再赘述。
例如,图10为本公开一实施例提供的一个触控电极块的网格图,如图10所示,主体部101和锯齿部102均包括网格线,主体部101中竖向网格线的延伸方向和锯齿部102中对应的竖向网格线相连接。
例如,图11为图7-图10中网格线的局部的示例性放大结构示意图。如图11所示,网格线1031为折线,网格线1031包括多个锯齿条1031a,每个锯齿条1031a均包括延伸部1031b和拐角部1031c,相邻的锯齿条1031a的延伸部1031b相互间隔,且相邻的锯齿条1031a中相邻的延伸部1031b均相互平行,每个锯齿条1031a的至少一个拐角部1031c和与之相邻的锯齿条1031a的拐角部1031c相连接以构成该网格线1031。
例如,在锯齿部102中,锯齿条1031a的延伸方向和凸起1021的延伸方向一致;在主体部101中,锯齿条1031a的延伸方向和主体部101的外轮廓的延伸方向相交。
例如,如图11所示,每个锯齿条1031a的宽度为7μm~80μm;相邻的两个锯齿条1031a之间的距离为6μm~20μm;在同一锯齿条1031a中,相邻的拐角部1031c之间的距离S2为100μm~400μm;锯齿条1031a的延伸部1031b的倾斜角β为0~40°;连接相邻的两个锯齿条1031a的线的宽度G为6μm~20μm。
例如,锯齿条1031a的形状以及按照上述尺寸的设计和像素电极(图中未示出)的设计一样,这样可以更好地解决消影的问题,且该锯齿条在制备工艺上很容易实现。
需要说明的是,当锯齿条1031a的延伸部1031b的倾斜角β为0°时,折线变成直线,在一些实施例中,网格线1031包括多条相互平行的直线,任意相邻的两条直线相互连接。
需要说明的是,每个锯齿条1031a需要和与之相邻的所有锯齿条1031a相连接,可以是在一处实现连接,也可以是在多处实现连接。
例如,图12为本公开一实施例提供的另一种触控电极结构的平面结构示意图,如图12所示,在主体部101的第一边1011和第二边1012上均设置有锯齿部102,设置在第一边1011上的锯齿部102为第一锯齿部102a,设置在第二边1012上的锯齿部102为第二锯齿部102b。
例如,设置在第二边1012上的第二锯齿部102b也包括多个凸起1021, 在同一第二边1012上,相邻的凸起1021之间的最小距离相等。例如,在同一第二边1012上,相邻的凸起1021之间的最小距离相等有利于提高触摸精度。
例如,在主体部101的远离第二边1012的两侧,在同一第二边1012的一个端部的一个凸起1021为第三凸起1021c(或者在同一第二边1012的两个端部的两个凸起1021为第三凸起1021c);在同一第二边1012的除了第三凸起1021c之外的凸起1021为第四凸起1021d,第三凸起1021c的面积为第四凸起1021d的面积的一半。
例如,第三凸起1021c从第二边1012的延伸长度和第四凸起1021d从同一第二边1012的延伸长度相等,且第三凸起1021c沿着第二边1012延伸方向的宽度为第四凸起1021d沿着同一第二边1012延伸方向的宽度的一半,这样可以实现第三凸起1021c的面积为第四凸起1021d的面积的一半。
例如,如图12所示,触控电极块的主体部101的相对的两条第一边1011上均设置第一锯齿部102a,且相对的两条第二边1012上均设置第二锯齿部102b。在平行于该第二边1012的方向上,与该第一锯齿部102a相互嵌套的是相邻的触控电极块中的第一锯齿部102a’,该第一锯齿部102a’的第一凸起1021a’的平行于该第二边1012的边缘上设置有锯齿状结构。该锯齿状结构包括多个第一子凸起,该第一子凸起从第一凸起1021a’的平行于第二边1012的边缘的延伸长度和设置在第二边1012上的凸起1021从该第二边1012的延伸长度一致。该触控电极结构的设计可以使得在平行于该第一边1011的方向上,第二锯齿部102b和相邻的触控电极块中与该第二锯齿部102b相对应的锯齿部相互嵌套,同时使得第一凸起1021a’包括锯齿状结构和相邻的触控电极块中与该锯齿状结构相对应的锯齿状结构相互嵌套。从而,在平行于该第一边1011的方向上,相邻的触控电极块正好可以拼接,在平行于该第二边1012的方向上,相邻的触控电极块也正好可以拼接以形成覆盖整个平面的结构。
需要说明的是,锯齿状结构之间的相互嵌套是指一个第一凸起的一个锯齿状结构包括的第一子凸起之间的间隙刚好被与该第一凸起相邻的第一凸起中和该锯齿状结构相对的锯齿状结构包括的第一子凸起填充,当然这些相邻的第一凸起的第一子凸起之间具有预定间隙以彼此绝缘。
需要说明的是,在同一触控电极块中,各个锯齿部102的结构可以相同 或是不同,各个锯齿部102的形状也不限。图11所示实施方式仅为示意说明,触控电极块的个数以及触控电极块中锯齿部102的个数不仅限于图11所示实施方式。设置触控电极块为轴对称结构,可以便于触控电极块的布局以及制作。
还需要说明的是,尽管第一凸起1021a’包括锯齿状结构,也可以认为包括该第一凸起1021a’的触控电极块的外轮廓的形状和其他不包括该锯齿状结构的触控电极块的形状和面积大致相同,因为该锯齿状结构的尺寸相对于整个触控电极块来说是非常小的。
例如,在其他实施方式中,触控电极块也可以为非轴对称的图形,只要相邻两个触控电极块的形状和面积相同,且具有相互嵌套的锯齿部以增加触控检测的精度即可。
需要说明的是,主体部的形状也并不局限于矩形,只要能够使相邻两个触控电极块中相对的锯齿部相互嵌套即可。
本公开各实施例的触控电极结构的大小需满足触控检测精度的要求,可以根据所需的触控密度选择触控电极块的密度和所占面积以保证所需的触控检测精度。例如,每个触控电极块的面积大于等于6mm 2,小于等于40mm 2。而显示屏的密度通常在微米级,因此,一般一个触控电极结构会对应显示屏中的多个子像素。
例如,在本公开至少一个实施例中,各触控电极结构中的多个触控电极块的材质可以为透明导电材料。例如,铟锡氧化物(ITO)和铟锌氧化物(IZO)等透明金属氧化物,但本公开的实施例中触控电极块的材料不限于此。
例如,本公开至少一个实施例提供的触控电极结构中,各个触控电极块可以采用同一构图工艺形成,但不限于此。
应该理解,在本公开的实施例中,构图工艺可只包括光刻工艺,或包括光刻工艺以及刻蚀步骤,或者可以包括打印、喷墨等其他用于形成预定图形的工艺。光刻工艺是指包括成膜、曝光、显影等工艺过程,利用光刻胶、掩模板、曝光机等形成图形。可根据本公开的实施例中所形成的结构选择相应的构图工艺。
本公开至少一实施例还提供一种触摸屏,包括上述任一实施例中的触控电极结构。
例如,本公开至少一实施例提供的触摸屏还包括多条导线,该多条导线 和触控电极块一一对应地电连接。
例如,在一个示例中,该触摸屏包括基板,该触控电极结构和导线设置在基板的同一侧。基板包括显示区以及包围显示区的边框区,在垂直于基板板面的方向上,触控电极块和导线在基板上的投影均位于显示区。
例如,在一个示例中,触控电极块与导线在垂直于基板的方向相对设置,触控电极块与导线分层设置。
例如,在一个示例中,触摸屏还包括设置在导线和触控电极结构之间的绝缘层,该导线和与之对应的触控电极块通过贯穿绝缘层的过孔结构电连接。
例如,图13为本公开一实施例提供的一种触摸屏的截面结构示意图,如图13所示,该触摸屏20包括上述任一实施例中的触控电极结构10和多条导线111,触控电极结构10包括的触控电极块100可以通过过孔结构112和与之对应的导线111相连,触控电极结构10中的各触控电极块100分别和与之对应的导线111电连接以用于输入/输出信号。需要说明的是,各触控电极块100也可以与各导线111同层设置且直接相连,对此不作限定。
例如,如图13所示,衬底基板115上设置多条导线111,多条导线111所在的层上设置绝缘层113,绝缘层113中设置多个过孔结构112。例如,过孔结构112贯穿绝缘层113。触控电极结构10设置在绝缘层113上,且触控电极结构10中的各触控电极块100分别通过过孔结构112和与之对应的导线111电连接。
例如,如图13所示,该触摸屏还可包括触控侦测芯片116。在本公开的实施例提供的触摸屏中,各导线111连接至触控侦测芯片116。当用户的手指或者触控笔触摸到自电容式触摸屏时,手指或者触控笔的电容将会叠加到对应的触控电极块上,触控侦测芯片116在触控时间段通过检测各触控电极块100的电容值变化可以判断出触控位置。
例如,图14为本公开一实施例提供的另一种触摸屏的平面结构示意图。如图14所示,多条导线111和触控电极块100设置在同一层,相邻的两列触控电极块100之间具有间隙,导线111设置在间隙中,在同一列触控电极块100中,沿着导线111的延伸方向,触控电极块100的面积可以不变或者逐渐减小。
例如,图15为图14所示触摸屏中一列触控电极块和导线连接的平面结 构示意图。如图15所示,在同一列触控电极块100中,沿着导线111的延伸方向,即在图15中,从导线111与触控电极块100的接触点至导线111远离触控电极块100的方向,触控电极块100的面积逐渐减小。
例如,图16为图15中虚线框区域的放大结构示意图。如图16所示,包括两个触控电极块100,每个触控电极块的一侧设置有导线111。锯齿部102包括从主体部101向远离主体部101的方向延伸的凸起1021,主体部101和凸起1021均包括网格结构103,网格结构103包括网格线1031和镂空区域1032,网格线1031包括沿着触控电极块100排列的列方向延伸的锯齿条,锯齿条的形状和导线111的形状一致。导线111和触控电极块100设置在同一层,且在同一工艺步骤中形成,导线111设置在触控电极块100的一侧,导线111的延伸长度比与该导线111相连的触控电极块100中网格线中的锯齿条的延伸长度长。
例如,本公开至少一实施例还提供一种触控显示装置,其包括上述任一实施例中的触控电极结构。
例如,该触控显示装置还包括显示面板,触控电极结构设置在显示面板上。此结构的触控显示装置例如为OGS(One Glass Solution)式触控显示装置,In-Cell(内嵌式)触控显示装置或者On-Cell(外置式)触控显示装置中的任意一种。
例如,在In-Cell触控显示装置中,各触控电极结构可位于构成显示面板的上基板面向下基板的表面上,或者下基板面向上基板的表面上。例如,图17为本公开一实施例提供的一种In-Cell触控显示装置的截面结构示意图,如图17所示,触控电极结构10位于构成显示面板30的上基板301面向下基板302的表面上。
例如,该触控显示装置包括上述任一实施例中的触控电极结构10和多条导线111,触控电极结构10包括的触控电极块100可以通过过孔结构112与各导线111相连,触控电极结构10中的各触控电极块100分别和与之对应的导线111电连接以用于输入/输出信号。上基板301上设置多条导线111,多条导线111所在的层上设置有绝缘层113,绝缘层113中设置多个过孔结构112。例如,过孔结构112贯穿绝缘层113。触控电极结构10设置在绝缘层113上,且触控电极结构10中的各触控电极块100分别通过过孔结构112 与各导线111电连接。
例如,在On-Cell触控显示装置中,各触控电极结构可位于上基板远离下基板的一侧。例如,图18为本公开一实施例提供的一种On-Cell触控显示装置的截面结构示意图,如图18所示,各触控电极结构10位于上基板的远离下基板的一侧。
如图18所示,显示面板30包括对盒的上基板301和下基板302。该触控显示装置包括上述任一实施例中的触控电极结构10和多条导线111,触控电极结构10包括的触控电极块100可以通过过孔结构112与各导线111相连,触控电极结构10中的各触控电极块100分别和与之对应的导线111电连接以用于输入/输出信号。上基板301上设置多条导线111,多条导线111所在的层上设置绝缘层113,绝缘层113中设置多个过孔结构112。例如,过孔结构112贯穿绝缘层113。触控电极结构10设置在绝缘层113上,且触控电极结构10中的各触控电极块100分别通过过孔结构112和与之对应的导线111电连接。上基板301上还可以形成钝化层以覆盖触控电极结构10,从而对触控电极结构10提供保护。
例如,在下基板302上还设置有像素阵列结构,在上基板301上还可设置有彩膜层和黑矩阵等,但不限于此。例如,在该显示面板中,各触控电极结构可单独设置,也可复用为显示面板中的公共电极,对此不作限定。
例如,图19为本公开一实施例提供的OGS式触控显示装置的截面结构示意图,如图19所示,该触控显示装置还包括显示面板30和设置在显示面板30的显示侧的触摸屏20,该触摸屏20包括上述任一实施例中的触控电极结构10。例如,关于OGS式触控显示装置的相关描述可以参见上述关于图13中的相关描述,在此不再赘述。
例如,该触控显示装置包括液晶触控显示装置或有机发光二级管触控显示装置。
例如,该触控显示装置可以为液晶显示器、电子纸、OLED(Organic Light-Emitting Diode,有机发光二极管)显示器等显示器件以及包括这些显示器件的电视、数码相机、手机、手表、平板电脑、笔记本电脑、导航仪等任何具有显示功能的产品或者部件。
需要说明的是,为表示清楚,并没有给出该触摸屏、显示面板和触控显示装置的全部结构。为实现触摸屏、显示面板和触控显示装置的必要功能, 本领域技术人员可以根据具体应用场景进行设置其他未示出的结构,本公开的实施例对此不做限制。本公开的实施例提供的触摸屏、显示面板和触控显示装置的技术效果参见上述各实施例描述的触控电极结构的技术效果,在此不再赘述。
本公开的实施例提供的一种触控电极结构、触摸屏和触控显示装置,具有以下至少一项有益效果:
(1)在本公开至少一实施例提供的触控电极结构中,将每个触控电极块设计成具有锯齿部,且相邻的触控电极块中相对的锯齿部相互嵌套,可以减小触控电极块的主体部的面积占比,在进行触摸操作时,多个锯齿部同时被触控的几率大大提高,这样包含上述被触摸的多个锯齿部的多个触控电极块均会生成检测信号,从而可以提高触控检测精度。
(2)本公开至少一实施例提供的触控电极结构,可以避免目前触控产品触控检测精度不佳、线性度差和均一性差的问题。
(3)本公开至少一实施例提供的触控电极结构,当触控电极块包括锯齿部时,被手指或者触控笔触碰到的多个触控电极块周边的触控电极块电容值的变化量也会相对较大,从而可以实现精确的计算坐标位置。
(4)本公开至少一实施例提供的触控电极结构,包括锯齿部的触控电极块的尺寸可以相对较大,这样在同样面积大小范围内布设的触控电极块的个数可以减少,同时还可以减少邦定针脚的个数。
(5)本公开至少一实施例提供的触控电极结构,其制备过程不会增加新的工艺步骤。
(6)本公开至少一实施例提供的触控电极结构,主体部包括的镂空区域可以减小主体部自身的面积,也可以减小主体部自身的电阻,还可以减小主体部与后续形成的像素电极之间的电容,进而可以解决消影的问题。
(7)本公开至少一实施例提供的触控电极结构,锯齿部包括的凸起中的镂空区域可以减小凸起自身的面积,也可以减小凸起自身的电阻,还可以减小凸起与后续形成的像素电极之间的电容,进而可以解决消影的问题。
有以下几点需要说明:
(1)本发明实施例附图只涉及到与本发明实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本发明的实施例的附图中,层或区域 的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。可以理解,当诸如层、膜、区域或基板之类的元件被称作位于另一元件“上”或“下”时,该元件可以“直接”位于另一元件“上”或“下”,或者可以存在中间元件。
(3)在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种触控电极结构,包括:
    多个相互电绝缘的触控电极块,
    其中,每个所述触控电极块包括主体部和与所述主体部电连接的锯齿部,相邻的所述触控电极块中相对的所述锯齿部相互嵌套。
  2. 根据权利要求1所述的触控电极结构,其中,所述锯齿部包括从所述主体部向远离所述主体部的方向延伸的凸起,
    所述主体部和所述凸起均包括网格结构,所述网格结构包括网格线和镂空区域。
  3. 根据权利要求1或2所述的触控电极结构,其中,所述网格线包括多个锯齿条,每个所述锯齿条包括延伸部和拐角部,相邻的所述锯齿条的所述延伸部相互间隔,每个所述锯齿条的至少一个所述拐角部和与之相邻的所述锯齿条的拐角部相连接以构成所述网格线。
  4. 根据权利要求3所述的触控电极结构,其中,在所述锯齿部中,所述锯齿条的延伸方向和所述凸起的延伸方向一致;
    在所述主体部中,所述锯齿条的延伸方向和所述主体部的外轮廓的延伸方向相交。
  5. 根据权利要求1-4中任一项所述的触控电极结构,其中,所述主体部的外轮廓的形状为长方形或者平行四边形,
    所述主体部包括相对的两条第一边和相对的两条第二边,所述第一边的长度大于所述第二边的长度,所述第一边上设置有所述锯齿部,设置在所述第一边上的所述锯齿部为第一锯齿部。
  6. 根据权利要求5所述的触控电极结构,其中,所述第一锯齿部包括多个所述凸起,在同一所述第一边上,相邻的所述凸起之间的最小距离相等。
  7. 根据权利要求6所述的触控电极结构,其中,在所述主体部的远离所述第一边的两侧,在同一所述第一边的一个端部的一个所述凸起为第一凸起,或者在同一所述第一边的两个端部的两个所述凸起为第一凸起;在同一所述第一边的除了所述第一凸起之外的所述凸起为第二凸起,所述第一凸起的面积为所述第二凸起的面积的一半。
  8. 根据权利要求7所述的触控电极结构,其中,所述第一凸起从所述第一边的延伸长度和所述第二凸起从同一所述第一边的延伸长度相等,且所述第一凸起沿着所述第一边延伸方向的宽度为所述第二凸起沿着同一所述第一边延伸方向的宽度的一半。
  9. 根据权利要求8所述的触控电极结构,其中,所述第二凸起的形状大致为等腰三角形、等腰梯形或者矩形,
    所述第一凸起的形状大致为直角三角形、直角梯形或者矩形。
  10. 根据权利要求7-9中任一项所述的触控电极结构,其中,多个所述触控电极块的形状相同,每个所述触控电极块均包括在同一所述第一边的一个端部的一个所述第一凸起。
  11. 根据权利要求5或6所述的触控电极结构,其中,所述主体部的所述第二边上也设置有所述锯齿部,设置在所述第二边上的所述锯齿部为第二锯齿部。
  12. 根据权利要求11所述的触控电极结构,其中,所述第二锯齿部包括多个所述凸起,在同一所述第二边上,相邻的所述凸起之间的最小距离相等。
  13. 根据权利要求12所述的触控电极结构,其中,在所述主体部的远离所述第二边的两侧,在同一所述第二边的一个端部的一个所述凸起为第三凸起,或者在同一所述第二边的两个端部的两个所述凸起为第三凸起;在同一所述第二边的除了所述第三凸起之外的所述凸起为第四凸起,所述第三凸 起的面积为所述第四凸起的面积的一半。
  14. 根据权利要求13所述的触控电极结构,其中,所述第三凸起从所述第二边的延伸长度和所述第四凸起从同一所述第二边的延伸长度相等,且所述第三凸起沿着所述第二边延伸方向的宽度为所述第四凸起沿着同一所述第二边延伸方向的宽度的一半。
  15. 根据权利要求1-14中任一项所述的触控电极结构,其中,多个所述触控电极块的外轮廓的形状相同或者大致相同。
  16. 根据权利要求1-15中任一项所述的触控电极结构,其中,每个所述触控电极块的外轮廓的形状大致为轴对称图形。
  17. 一种触摸屏,包括权利要求1-16中任一项所述的触控电极结构。
  18. 根据权利要求17所述的触摸屏,还包括多条导线,其中,所述导线和所述触控电极块一一对应地电连接。
  19. 根据权利要求18所述的触摸屏,还包括设置在所述导线和所述触控电极结构之间的绝缘层,
    其中,所述导线和与之对应的所述触控电极块通过贯穿所述绝缘层的过孔结构电连接。
  20. 根据权利要求18所述的触摸屏,其中,所述多条导线和所述触控电极块设置在同一层,相邻的两列所述触控电极块之间具有间隙,所述导线设置在所述间隙中,在同一列所述触控电极块中,沿着所述导线的延伸方向,所述触控电极块的面积逐渐减小或者逐渐增大。
  21. 根据权利要求20所述的触摸屏,其中,当所述锯齿部包括从所述主体部向远离所述主体部的方向延伸的凸起,所述主体部和所述凸起均包括网格结构,所述网格结构包括网格线和镂空区域,且所述网格线包括沿着所 述触控电极块排列的列方向延伸的锯齿条时,所述锯齿条的形状和所述导线的形状一致。
  22. 一种触控显示装置,包括权利要求1-16中任一项所述的触控电极结构。
  23. 根据权利要求22所述的触控显示装置,还包括显示面板,其中,所述触控电极结构设置在所述显示面板上。
  24. 根据权利要求22所述的触控显示装置,还包括显示面板和设置在所述显示面板的显示侧的触摸屏,所述触摸屏包括所述触控电极结构。
PCT/CN2019/098012 2019-07-26 2019-07-26 触控电极结构、触摸屏和触控显示装置 WO2021016762A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2019/098012 WO2021016762A1 (zh) 2019-07-26 2019-07-26 触控电极结构、触摸屏和触控显示装置
EP19933214.9A EP4006703A4 (en) 2019-07-26 2019-07-26 TOUCH CONTROL ELECTRODE STRUCTURE, TOUCH SCREEN AND TOUCH CONTROL DISPLAY DEVICE
CN201980001156.2A CN112639706B (zh) 2019-07-26 2019-07-26 触控电极结构、触摸屏和触控显示装置
US16/765,992 US11775125B2 (en) 2019-07-26 2019-07-26 Touch electrode structure, touch screen and touch display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/098012 WO2021016762A1 (zh) 2019-07-26 2019-07-26 触控电极结构、触摸屏和触控显示装置

Publications (1)

Publication Number Publication Date
WO2021016762A1 true WO2021016762A1 (zh) 2021-02-04

Family

ID=74229061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098012 WO2021016762A1 (zh) 2019-07-26 2019-07-26 触控电极结构、触摸屏和触控显示装置

Country Status (4)

Country Link
US (1) US11775125B2 (zh)
EP (1) EP4006703A4 (zh)
CN (1) CN112639706B (zh)
WO (1) WO2021016762A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111506218B (zh) * 2020-04-10 2023-07-14 京东方科技集团股份有限公司 一种触控基板、显示面板及触控显示装置
CN113050838B (zh) * 2021-04-26 2023-11-28 武汉天马微电子有限公司 触控显示面板及触控显示装置
CN113157142B (zh) * 2021-05-25 2024-04-19 京东方科技集团股份有限公司 一种触控显示面板和显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103164091A (zh) * 2012-08-31 2013-06-19 敦泰科技有限公司 单层电极互电容触摸屏
CN103309500A (zh) * 2012-03-08 2013-09-18 矽创电子股份有限公司 一种触控面板的感测结构
CN204790951U (zh) * 2015-06-16 2015-11-18 敦泰电子有限公司 一种单层互电容触控电极结构及触控装置
CN105786256A (zh) * 2016-03-21 2016-07-20 京东方科技集团股份有限公司 触控基板及显示装置
CN108803945A (zh) * 2018-09-05 2018-11-13 京东方科技集团股份有限公司 一种触摸屏及显示设备

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8593413B2 (en) * 2010-03-01 2013-11-26 Cando Corporation Sensory structure of capacitive touch panel and capacitive touch panel having the same
TW201234242A (en) * 2011-02-01 2012-08-16 Weltrend Semiconductor Inc Method for detecting a touch point on a touch sensing device and device thereof
TWI451307B (zh) * 2011-12-05 2014-09-01 Innolux Corp 影像顯示系統
US10299377B2 (en) * 2011-12-22 2019-05-21 Fujifilm Corporation Conductive sheet and touch panel
CN103336609B (zh) * 2013-06-17 2016-05-18 业成光电(深圳)有限公司 触控面板及触控显示装置
TW201525788A (zh) * 2013-12-17 2015-07-01 Wintek Corp 觸控面板
CN104035640B (zh) * 2014-05-30 2017-10-27 京东方科技集团股份有限公司 一种内嵌式触摸屏及显示装置
KR101740269B1 (ko) * 2015-07-06 2017-06-08 주식회사 지2터치 고 분해능을 갖는 터치 패널
CN105094497B (zh) * 2015-09-30 2017-12-05 京东方科技集团股份有限公司 一种触控电极结构、触摸屏及显示装置
US10534481B2 (en) * 2015-09-30 2020-01-14 Apple Inc. High aspect ratio capacitive sensor panel
CN105760033B (zh) * 2016-02-05 2018-10-09 上海天马微电子有限公司 一种触控屏以及触控显示电子设备
JP6511127B2 (ja) * 2017-01-05 2019-05-15 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. タッチセンシング電極構造物及びそれを含むタッチセンサー
KR102310733B1 (ko) * 2017-05-19 2021-10-07 동우 화인켐 주식회사 터치 센싱 전극 구조물 및 이를 포함하는 터치 센서
US10331253B2 (en) * 2017-06-30 2019-06-25 Wuhan China Star Optoelectronics Technology Co., Ltd. In-cell touch screen
CN108089760B (zh) * 2018-01-02 2022-03-04 武汉天马微电子有限公司 一种触控显示面板及触控显示装置
CN108196736B (zh) * 2018-01-03 2021-10-26 上海天马有机发光显示技术有限公司 一种触控显示面板及触控显示装置
CN109240533A (zh) * 2018-08-06 2019-01-18 武汉华星光电半导体显示技术有限公司 一种触摸屏及oled显示面板
CN110045874B (zh) * 2019-04-28 2022-08-05 武汉天马微电子有限公司 一种触控显示面板和触控显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103309500A (zh) * 2012-03-08 2013-09-18 矽创电子股份有限公司 一种触控面板的感测结构
CN103164091A (zh) * 2012-08-31 2013-06-19 敦泰科技有限公司 单层电极互电容触摸屏
CN204790951U (zh) * 2015-06-16 2015-11-18 敦泰电子有限公司 一种单层互电容触控电极结构及触控装置
CN105786256A (zh) * 2016-03-21 2016-07-20 京东方科技集团股份有限公司 触控基板及显示装置
CN108803945A (zh) * 2018-09-05 2018-11-13 京东方科技集团股份有限公司 一种触摸屏及显示设备

Also Published As

Publication number Publication date
US20210405823A1 (en) 2021-12-30
EP4006703A1 (en) 2022-06-01
CN112639706B (zh) 2024-04-05
US11775125B2 (en) 2023-10-03
CN112639706A (zh) 2021-04-09
EP4006703A4 (en) 2022-07-27

Similar Documents

Publication Publication Date Title
CN109189265B (zh) 一种可拉伸面板和柔性显示装置
JP6430536B2 (ja) インセルタッチパネル及び表示装置
US9104254B2 (en) Touch screen panel
KR102222652B1 (ko) 터치 패널 및 그것의 제조 방법, 및 터치 디스플레이 디바이스
US20140333555A1 (en) Touch sensor and electronic device having the same
US20130063371A1 (en) Touch panel
US11907456B2 (en) Touch substrate, display panel, and touch display device
US9830028B2 (en) In-cell touch panel with self-capacitive electrodes and display device
WO2021016762A1 (zh) 触控电极结构、触摸屏和触控显示装置
WO2016065782A1 (zh) 触摸屏及其制作方法和显示装置
TW201516779A (zh) 觸控面板
US11237676B2 (en) Touch substrate, touch display panel, touch display device and touch driving method
US20150062468A1 (en) Touch screen structure
EP2713249B1 (en) Touch display module and handheld electronic apparatus
TW201519031A (zh) 觸控面板與觸控顯示面板
US20160253026A1 (en) Touch Panel, Method of Fabricating the Same and Touch Display Device
US20100039407A1 (en) Sensory structure of capacitive touch panel with predetermined sensing areas
WO2020010881A1 (zh) 触控模组、其制备方法及触控显示装置
CN101706702A (zh) 电容式触控面板、电容式触控显示装置及其制造方法
JP2019527860A (ja) タッチ基板、タッチパネル及びタッチパネルを有するタッチ装置、並びにタッチパネルの製造方法
JPWO2019021572A1 (ja) 位置検出センサ、位置検出装置および情報処理システム
US10310691B2 (en) Self-capacitance touch structure having touch electrodes with side wing portions and display device thereof
TWM510495U (zh) 電容式觸控裝置
TW202042046A (zh) 窄邊框觸控面板
WO2021168607A1 (zh) 触控结构、触控面板及触控驱动方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19933214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019933214

Country of ref document: EP

Effective date: 20220228