WO2019218607A1 - Pickering 乳液中利用 pH 值调控合成麦羟硅钠石 /PMMA 纳米复合微球的方法 - Google Patents

Pickering 乳液中利用 pH 值调控合成麦羟硅钠石 /PMMA 纳米复合微球的方法 Download PDF

Info

Publication number
WO2019218607A1
WO2019218607A1 PCT/CN2018/113222 CN2018113222W WO2019218607A1 WO 2019218607 A1 WO2019218607 A1 WO 2019218607A1 CN 2018113222 W CN2018113222 W CN 2018113222W WO 2019218607 A1 WO2019218607 A1 WO 2019218607A1
Authority
WO
WIPO (PCT)
Prior art keywords
magadiite
pickering emulsion
pmma
water
nano composite
Prior art date
Application number
PCT/CN2018/113222
Other languages
English (en)
French (fr)
Inventor
戈明亮
王旭斌
曹罗香
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to US17/055,613 priority Critical patent/US20210220793A1/en
Publication of WO2019218607A1 publication Critical patent/WO2019218607A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/12Esters of monohydric alcohols or phenols
    • C08F120/14Methyl esters, e.g. methyl (meth)acrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • B01J13/14Polymerisation; cross-linking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • C08F2/28Emulsion polymerisation with the aid of emulsifying agents cationic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/346Clay

Definitions

  • the invention relates to the technical field of preparation of sodium hydroxysilicate/PMMA nano composite microspheres, in particular to a utilization of Pickering emulsion A method for pH-regulating synthesis of hydroxymethicone/PMMA nanocomposite microspheres.
  • Emulsion polymerization is a common polymerization method for polymerizing monomers to form polymer materials, specifically water as the water phase, monomer as the oil phase, emulsifier and mechanical agitation, water phase and oil phase dispersed uniformly to form an emulsion, in oil solubility or Under the action of a water-soluble initiator, the polymerization of the monomer is initiated to form a high molecular polymer.
  • emulsions such as buffers, activators, conditioners and antioxidants are often added to modify the properties of the polymer.
  • Emulsifiers are a class of substances that form micelles in emulsion polymerization and do not participate in the reaction during the polymerization.
  • the emulsion formed by the traditional emulsifier has poor stability, and the micelle is easily broken during polymerization, so that the polymerization reaction rate is limited, and the molecular weight distribution of the polymer is wide.
  • the emulsifier remains in the product, and the performance of the product is affected, so After the end of the conventional emulsion polymerization, the product needs to be post-treated, so that the processing cost rises.
  • Nanocomposite microspheres with different particle sizes have a wide range of applications. They can be used both as nanomaterials and in nanotechnology. For example, they can be used as carriers for clinical diagnostic and immunoassay reagents in medicine to form colloids.
  • the crystal lattice is used as an optical component such as a filter, a light-emitting, a grating, an optical waveguide, and a sensor; it can be used as a standard for size in atomic force microscopy, electron microscopy, and the electronics industry, and can also be used as an efficient and durable in the aqueous phase. Catalyst carrier.
  • magadiite Sodium hydroxysilicate
  • mineral clay As a kind of mineral clay, it has good biocompatibility, non-toxic and harmless, and the polymer nanocomposite microspheres formed by mixing together with polymer have narrow particle size distribution, no pollution to the environment and no post-treatment.
  • the magadiite solid particle emulsifier forms an oil-in-water Picking emulsion that effectively enhances the stability of the emulsion in different acid and alkali environments. Based on this, by changing the different pH of the emulsion polymerization The value of the particle size of the freely regulated polymer nanocomposite microspheres is achieved.
  • the object of the present invention is to provide a pH-regulated synthesis of sulphite in a Pickering emulsion in view of the deficiencies of the prior art. / Polymethyl methacrylate (MMadiite/PMMA) nanocomposite microspheres.
  • the method is specifically regulated by pH.
  • Pickering The size of the emulsion droplets, thereby regulating the particle size of the organically modified magadiite/PMMA nanocomposite microspheres, and realizing the synthesis of different particle size magadiite/PMMA nanocomposite microspheres.
  • a method for pH-regulating synthesis of sulphite/PMMA nanocomposite microspheres in a Pickering emulsion Using organically modified magadiite as emulsifier, buffer to adjust pH deionized water as solvent, methyl methacrylate monomer as Pickering
  • the oil phase of the emulsion is stirred to form a stable Pickering emulsion, and then a water-soluble free radical initiator is added to initiate emulsion polymerization to synthesize magadiite/PMMA nanocomposite microspheres.
  • the quality of the deionized water accounts for 50-90% by weight of the total mass of the Pickering emulsion. .
  • the buffer is a HCl solution or a sodium hydrogencarbonate solution.
  • the pH adjustment is adjusted to a pH between 3.0 and 11.0.
  • the organically modified hydroxyapatite comprises a quaternary ammonium salt and a quaternary phosphorus One of a salt or a silane-modified hydroxyapatite.
  • the amount of the organically modified magnesite is 0.01-1% by weight based on the mass of the methyl methacrylate monomer. .
  • the water-soluble free radical initiator comprises a persulfate.
  • the persulfate comprises potassium persulfate, sodium persulfate or ammonium persulfate.
  • the water-soluble radical initiator is used in an amount of 0.1-0.5 wt% of the mass of the methyl methacrylate monomer. .
  • the synthetic micronite/PMMA nanocomposite microspheres have a particle size between 200 and 1000 nm.
  • the present invention has the following advantages and benefits:
  • Organic modified magadiite used in the present invention The solid particles of emulsifier greatly improve the stability of the emulsion under different acid and alkali, and provide convenience for realizing the particle size of the nano-composite microspheres, and also greatly reduce the amount of emulsifier used, and regulate the nano-composite microspheres.
  • the diameter of the process is simple and easy to operate, the effect is obvious, synthetic
  • the magadiite/PMMA nanocomposite microspheres are uniform in particle size and environmentally friendly.
  • Figure 1 is an infrared spectrum of the dodecyltrimethylammonium bromide modified magadiite in Example 1;
  • Example 2 is an infrared spectrum of the magadiite/PMMA nanocomposite microspheres synthesized in Example 1;
  • Example 3 is an SEM image of the magadiite/PMMA nanocomposite microspheres synthesized in Example 1;
  • Example 4 is an SEM image of the magadiite/PMMA nanocomposite microspheres synthesized in Example 2;
  • Figure 5 is a SEM image of the magadiite/PMMA nanocomposite microspheres synthesized in Example 3.
  • Electron microscopy (SEM) of the synthesized magadiite/PMMA nanocomposite microspheres is shown in Figure 3. It can be seen that the synthesized magadiite/PMMA nanocomposite microspheres have uniform particle size and the microspheres have a particle diameter of 200-210 nm.
  • the SEM image of the synthesized magadiite/PMMA nanocomposite microspheres is shown in Figure 4. It can be seen that the synthesized magadiite/PMMA nanocomposite microspheres have a uniform particle size and a microsphere diameter of 410 to 420 nm.
  • the SEM image of the synthesized magadiite/PMMA nanocomposite microspheres is shown in Fig. 5. It can be seen that the synthesized magadiite/PMMA nanocomposite microspheres have a particle size distribution of 900 to 1000 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Polymerisation Methods In General (AREA)
  • Cosmetics (AREA)

Abstract

本发明公开了一种 Pickering 乳液中利用 pH 值调控合成麦羟硅钠石/PMMA纳米复合微球的方法。该方法以有机改性的麦羟硅钠石作为乳化剂,缓冲液调节 pH 值的去离子水作为溶剂,甲基丙烯酸甲酯单体作为Pickering乳液的油相,搅拌形成稳定的 Pickering 乳液,然后加入水溶性自由基引发剂,引发乳液聚合,合成麦羟硅钠石 /PMMA纳米复合微球。本发明采用有机改性的麦羟硅钠石乳化剂固体颗粒极大地提高了乳液在不同酸碱下的稳定性,实现自由调控纳米复合微球粒径大小,大幅降低了乳化剂的使用量,调控纳米复合微球粒径的工艺简单易操作,效果明显,合成的麦羟硅钠石/PMMA 纳米复合微球粒径均匀,绿色环保。

Description

Pickering 乳液中利用 pH 值调控合成 麦羟硅钠石 /PMMA 纳米复合微球的方法
技术领域
本发明涉及 麦羟硅钠石 /PMMA 纳米复合微球制备技术领域,具体涉及一种 Pickering 乳液中利用 pH 值调控合成 麦羟硅钠石 /PMMA 纳米复合微球的方法。
背景技术
乳液聚合是单体聚合形成高分子材料的常用聚合方法,具体是以水作为水相,单体作为油相,借助乳化剂和机械搅拌,水相和油相分散均匀形成乳液,在油溶性或水溶性引发剂的作用下,引发单体聚合形成高分子聚合物。除了加入单体、水、乳化剂和引发剂四种主要成分外,还经常加入缓冲剂、活化剂、调节剂和防老剂等乳剂来改性聚合物的性能。
乳化剂是在乳液聚合中形成胶束的一类物质,在聚合反应过程中不参加反应。但是传统乳化剂所形成的乳液稳定性差,在聚合时胶束易破裂,使得聚合反应速率有限,聚合物分子量分布宽,在聚合完成后,乳化剂残留在制品中,制品的性能受到影响,所以传统乳液聚合反应结束后需对产物进行后处理,使得加工成本上升。在 Picking 乳液聚合法中,使用固体颗粒作为乳液稳定剂,因为固体颗粒状的乳化剂可以使水油两相形成稳定的水包油或者油包水乳液,使得表面活性剂的使用量减少,进而减少了最终产物里的杂质,使得乳液聚合更加稳定。并且 Picking 乳液在可操作性以及易调控性等方面具有优势。
不同粒径的纳米复合微球有着广泛的应用领域,它既可以用作纳米材料,也可以应用在纳米技术之中,如在医学中可用作临床诊断和免疫分析试剂的载体,可形成胶体晶格用作滤光器、光开光、光栅、光波导及传感器等光学部件;在原子力显微技术、电子显微技术及电子工业中可作为大小的标准,也可以作为水相中高效持久的催化剂载体。
麦羟硅钠石( magadiite ) 作为一种矿物粘土,具有很好的生物相容性,无毒无害,和高分子混合在一起形成的聚合物纳米复合微球粒径分布窄,对环境不会造成污染,无需后处理。使用有机改性 magadiite 固体颗粒乳化剂形成水包油的 Picking 乳液,能有效地提升乳液在不同酸碱环境下的稳定性。基于此,通过改变乳液聚合不同的 pH 值,实现了自由调控聚合物纳米复合微球粒径的大小。
发明内容
本发明的目的在于针对现有技术的不足,提供了一种 Pickering 乳液中利用 pH 值调控合成 麦羟硅钠石 / 聚甲基丙烯酸甲酯 ( magadiite/PMMA ) 纳米复合微球的方法。该方法具体通过 pH 值来调控 Pickering 乳液液滴的尺寸,从而调控有机改性 magadiite/PMMA 纳米复合微球粒径,实现不同粒径 magadiite/PMMA 纳米复合微球的合成。
本发明的目的通过如下技术方案实现。
一种 Pickering 乳液中利用 pH 值 调控合成 麦羟硅钠石 /PMMA 纳米复合微球的方法, 以有机改性的麦羟硅钠石 ( magadiite ) 作为乳化剂,缓冲液调节 pH 值的去离子水作为溶剂,甲基丙烯酸甲酯单体作为 Pickering 乳液的油相,搅拌形成稳定的 Pickering 乳液,然后加入水溶性自由基引发剂,引发乳液聚合,合成 magadiite/PMMA 纳米复合微球。
一种 Pickering 乳液中利用 pH 值 调控合成 麦羟硅钠石 /PMMA 纳米复合微球的方法,具体 包括以下步骤:
( 1 )往反应容器中加入去离子水,并加入缓冲液调节 pH 值后,再加入有机改性的麦羟硅钠石,搅拌并升温至 50-80 ℃,使有机改性的麦羟硅钠石均匀分散在水中;
( 2 )降温至 30-40 ℃,加入甲基丙烯酸甲酯单体,不断搅拌,形成均匀稳定的 Pickering 乳液;
( 3 )将 Pickering 乳液加热至 60-90 ℃ ,再加入水溶性自由基引发剂,升温并保持温度在 80-90 ℃ , 反应 3-5h 后,降温至 50 ℃以下,停止搅拌,真空干燥、研磨,得到所述麦羟硅钠石 /PMMA 纳米复合微球。
优选的,步骤( 1 )中,所述去离子水的质量占 Pickering 乳液总质量的 50-90wt% 。
优选的,步骤( 1 )中,所述缓冲液为 HCl 溶液或碳酸氢钠溶液。
优选的,步骤( 1 )中,所述调节 pH 值是调节 pH 值在 3.0-11.0 之间。
优选的,步骤( 1 )中,所述有机改性的麦羟硅钠石包括 季铵盐、季磷 盐或硅烷改性的麦羟硅钠石中的一种。
优选的,步骤( 1 )中,所述有机改性的麦羟硅钠石的用量为甲基丙烯酸甲酯单体 质量的 0.01-1wt% 。
优选的,步骤( 3 )中,所述 水溶性自由基引发剂包括过硫酸盐。
更优选的,步骤( 3 )中, 所述过硫酸盐包括过硫酸钾、过硫酸钠或过硫酸铵。
优选的,步骤( 3 )中,所述水溶性自由基引发剂的用量为甲基丙烯酸甲酯单体质量的 0.1-0.5wt% 。
优选的,合成的 麦羟硅钠石 /PMMA 纳米复合微球的粒径在 200-1000nm 之间。
与现有技术相比,本发明具有如下优点和有益效果:
本发明采用的有机改性 magadiite 乳化剂固体颗粒极大地提高了乳液在不同酸碱下的稳定性,为实现自由调控纳米复合微球粒径大小提供了便利,也大幅度降低了乳化剂的使用量,调控纳米复合微球粒径的工艺简单易操作,效果明显,合成的 magadiite/PMMA 纳米复合微球粒径均匀,绿色环保。
附图说明
图 1 为实施例 1 中十二烷基三甲基溴化铵改性的 magadiite 的红外光谱图;
图 2 为实施例 1 合成的 magadiite/PMMA 纳米复合微球的红外光谱图;
图 3 为实施例 1 合成的 magadiite/PMMA 纳米复合微球的 SEM 图;
图 4 为实施例 2 合成的 magadiite/PMMA 纳米复合微球的 SEM 图;
图 5 为实施例 3 合成的 magadiite/PMMA 纳米复合微球的 SEM 图。
具体实施方式
以下结合具体实施例及附图对本发明技术方案作进一步详细的描述,但本发明的保护范围及实施方式不限于此。
实施例 1
Pickering 乳液中利用 pH 值 调控合成 magadiite/PMMA 纳米复合微球,具体步骤如下:
( 1 )往三口烧瓶中加入占乳液总质量 50% 的 去离子水,并用浓度为 0.01mol/L 的稀盐酸缓冲液调节到 pH 值为 3.0 ,再加入占甲基丙烯酸甲酯单体质量百分比为 0.01% 用 十二烷基三甲基溴化铵 改性的 magadiite (红外光谱图如图 1 所示) ,开动搅拌, 升温至 50 ℃ ,使有机改性 magadiite 均匀分散在水中;
( 2 )降温至 30 ℃ ,然后加入甲基丙烯酸甲酯单体 50g ,用机械桨不断搅拌混合溶液,使混合溶液形成均匀稳定的 Pickering 乳液 ,呈现白色乳状,无沉淀;
( 3 )加热 Pickering 乳液至 60 ℃ ,称取 0.05 g 的过硫酸铵通过恒压滴液漏斗加入到烧瓶中,滴加完毕后用去离子水洗涤盛装的容器,并加入到烧瓶中;升温到 80 ℃ 继续反应 3h ,之后开始降温;当反应物料温度降至 50 ℃ 以下时,停止搅拌,出料; 产物的红外光谱图如图 2 所示, 其中波峰 在 3400 cm-1 处为 magadiite 中 Si-OH 的特征峰 ,在 3003cm-1 、 2953 cm-1 、 2839 cm-1 处为甲基和亚甲基的伸缩振动峰; 1734 cm-1 为 C=O 的伸缩振动特征峰;在 1488 cm-1 和 1447 cm-1 处为 C-H 的弯曲振动峰;在 1281 cm-1 、 1244 cm-1 、 1197 cm-1 、 1150 cm-1 为 C-O-C 的伸缩振动吸收峰且峰形宽覆盖了 magadiite 在 1000 cm-1 处的吸收峰 ,在 1067 cm-1 和 844 cm-1 处分别为 Si-O-Si 的反对称和对称伸缩振动峰 , 478 cm-1 为 Si-O 的弯曲振动吸收峰,综上所述, 证实得到了麦羟硅钠石 /PMMA 复合微球;将物料真空干燥、研磨,得到 magadiite/PMMA 纳米复合微球。
合成的 magadiite/PMMA 纳米复合微球的电镜扫描( SEM )图 如图 3 所示, 由 图 3 可知,合成的 magadiite/PMMA 纳米复合微球粒径均匀,微球粒径为 200 ~210 nm 。
实施例 2
Pickering 乳液中利用 pH 值 调控合成 magadiite/PMMA 纳米复合微球,具体步骤如下:
( 1 )往三口烧瓶中加入占乳液总质量 70% 的去离子水,并用浓度为 0.01mol/L 的碳酸氢钠缓冲液和 0.01mol/L 的稀盐酸缓冲液调节到 pH 值为 6.0 ,再加入占甲基丙烯酸甲酯单体质量百分比为 0.5% 用 十六烷基三苯基溴化磷 改性的 magadiite ,开动搅拌,升温至 65 ℃ ,使有机改性 magadiite 均匀分散在水中;
( 2 )降温至 35 ℃ ,然后加入甲基丙烯酸甲酯单体 50g ,用机械桨不断搅拌混合溶液,使混合溶液形成均匀稳定的 Pickering 乳液, 呈现白色乳状,无沉淀;
( 3 )加热 Pickering 乳液至 75 ℃ ,称取 0.15 g 的过硫酸铵通过恒压滴液漏斗加入到烧瓶中,滴加完毕后用去离子水洗涤盛装的容器,并加入到烧瓶中;升温到 85 ℃ 继续反应 3h ,之后开始降温;当反应物料温度降至 50 ℃ 以下时,停止搅拌,出料,将物料 真空干燥、研磨,得到 magadiite/PMMA 纳米复合微球。
合成的 magadiite/PMMA 纳米复合微球的 SEM 图 如图 4 所示, 由 图 4 可知,合成的 magadiite/PMMA 纳米复合微球粒径均匀,微球粒径为 410 ~ 420nm 。
实施例 3
Pickering 乳液中利用 pH 值 调控合成 magadiite/PMMA 纳米复合微球,具体步骤如下:
( 1 )往三口烧瓶中加入占乳液总质量 90 % 的去离子水,并用浓度为 0.01 mol/L 的碳酸氢钠缓冲液调节到 pH 值为 11.0 ,再加入占甲基丙烯酸甲酯单体质量百分比为 1% 用 γ- 氨丙基三乙氧基硅烷 改性的 magadiite , 开动搅拌,升温至 80 ℃ ,使有机改性 magadiite 均匀分散在水中;
( 2 )降温至 40 ℃ ,然后加入甲基丙烯酸甲酯单体 50g ,用机械桨不断搅拌混合溶液,使混合溶液形成均匀稳定的 Pickering 乳液,呈现白色乳状,无沉淀;
( 3 )加热 Pickering 乳液至 90 ℃ ,称取 0.25 g 的过硫酸铵通过恒压滴液漏斗加入到烧瓶中,滴加完毕后用去离子水洗涤盛装的容器,并加入到烧瓶中;升温到 90 ℃ 继续反应 3h ,之后开始降温;当反应物料温度降至 50 ℃ 以下时,停止搅拌,出料,真空干燥后研磨,得到 magadiite/PMMA 纳米复合微球
合成的 magadiite/PMMA 纳米复合微球的 SEM 图 如图 5 所示, 由 图 5 可知,合成的 magadiite/PMMA 纳米复合微球粒径分布在 900~ 1000nm 。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

  1. 一种 Pickering 乳液中利用 pH 值 调控合成 麦羟硅钠石 /PMMA 纳米复合微球的方法, 其特征在于,包括以下步骤:
    ( 1 )往反应容器中加入去离子水,并加入缓冲液调节 pH 值后,再加入有机改性的麦羟硅钠石,搅拌并升温至 50-80 ℃,使有机改性的麦羟硅钠石均匀分散在水中;
    ( 2 )降温至 30-40 ℃,加入甲基丙烯酸甲酯单体,不断搅拌,形成均匀稳定的 Pickering 乳液;
    ( 3 )将 Pickering 乳液加热至 60-90 ℃ ,再加入水溶性自由基引发剂,升温并保持温度在 80-90 ℃ , 反应 3-5h 后,降温至 50 ℃以下,停止搅拌,真空干燥、研磨,得到所述麦羟硅钠石 /PMMA 纳米复合微球。
  2. 根据权利要求 1 所述的方法,其特征在于,步骤( 1 )中,所述去离子水的质量占 Pickering 乳液总质量的 50-90wt% 。
  3. 根据权利要求 1 所述的方法,其特征在于,步骤( 1 )中,所述缓冲液为 HCl 溶液或碳酸氢钠溶液。
  4. 根据权利要求 1 所述的方法,其特征在于,步骤( 1 )中,所述调节 pH 值是调节 pH 值在 3.0-11.0 之间。
  5. 根据权利要求 1 所述的方法,其特征在于,步骤( 1 )中,所述有机改性的麦羟硅钠石包括季铵盐、季磷盐或硅烷改性的麦羟硅钠石中的一种。
  6. 根据权利要求 1 所述的方法,其特征在于,步骤( 1 )中,所述有机改性的麦羟硅钠石的用量为甲基丙烯酸甲酯单体质量的 0.01-1wt% 。
  7. 根据权利要求 1 所述的方法,其特征在于,步骤( 3 )中,所述水溶性自由基引发剂包括过硫酸盐;所述过硫酸盐包括过硫酸钾、过硫酸钠或过硫酸铵。
  8. 根据权利要求 1 所述的方法,其特征在于,步骤( 3 )中,所述水溶性自由基引发剂的用量为甲基丙烯酸甲酯单体质量的 0.1-0.5wt% 。
  9. 根据权利要求 1 所述的方法,其特征在于,合成的麦羟硅钠石/PMMA 纳米复合微球的粒径在200-1000nm之间。
PCT/CN2018/113222 2018-05-15 2018-10-31 Pickering 乳液中利用 pH 值调控合成麦羟硅钠石 /PMMA 纳米复合微球的方法 WO2019218607A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/055,613 US20210220793A1 (en) 2018-05-15 2018-10-31 Method for synthesizing magadiite/pmma nano composite microspheres by using ph value regulation in pickering emulsion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810460601.9 2018-05-15
CN201810460601.9A CN108641024B (zh) 2018-05-15 2018-05-15 Pickering乳液中利用pH值调控合成麦羟硅钠石/PMMA纳米复合微球的方法

Publications (1)

Publication Number Publication Date
WO2019218607A1 true WO2019218607A1 (zh) 2019-11-21

Family

ID=63755579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113222 WO2019218607A1 (zh) 2018-05-15 2018-10-31 Pickering 乳液中利用 pH 值调控合成麦羟硅钠石 /PMMA 纳米复合微球的方法

Country Status (3)

Country Link
US (1) US20210220793A1 (zh)
CN (1) CN108641024B (zh)
WO (1) WO2019218607A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113443634A (zh) * 2021-07-15 2021-09-28 辽宁大学 一种皮克林超级乳化剂二氧化硅纳米网及其制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108641024B (zh) * 2018-05-15 2021-03-30 华南理工大学 Pickering乳液中利用pH值调控合成麦羟硅钠石/PMMA纳米复合微球的方法
CN114133591A (zh) * 2021-11-15 2022-03-04 陕西科技大学 双重自修复型纤维素纳米晶/含氟聚丙烯酸酯复合乳液的制备方法
CN114702722B (zh) * 2022-03-29 2023-04-07 中海石油(中国)有限公司 一种高温形状记忆泡沫复合材料及其制备方法与堵漏应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104001437A (zh) * 2014-05-09 2014-08-27 中国科学院过程工程研究所 一种粒径均一的Pickering乳液、制备方法及其应用
CN106519092A (zh) * 2016-11-21 2017-03-22 华南理工大学 以有机改性麦羟硅钠石为乳化剂的Pickering乳液制备聚合物纳米复合材料的方法
CN107412193A (zh) * 2017-03-29 2017-12-01 华南理工大学 以麦羟硅钠石为乳化剂的Pickering乳液模板法制备的纳米杂化药物载体及其制法
CN108641024A (zh) * 2018-05-15 2018-10-12 华南理工大学 Pickering乳液中利用pH值调控合成麦羟硅钠石/PMMA纳米复合微球的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102430372B (zh) * 2011-08-29 2013-08-28 浙江理工大学 一种草莓状有机-无机纳米复合微球的制备方法
US9388335B2 (en) * 2013-07-25 2016-07-12 Schlumberger Technology Corporation Pickering emulsion treatment fluid
CN106010380B (zh) * 2015-11-16 2017-11-10 江苏景宏新材料科技有限公司 一种pickering乳液聚合法制备耐水白化丙烯酸乳液压敏胶的方法
CN105504182B (zh) * 2016-01-04 2018-01-02 中国石油天然气股份有限公司 一种纳米级皮克林乳液型压裂液及其制备方法
CN106589366B (zh) * 2016-12-09 2018-09-11 中南大学 基于疏水羟基磷灰石纳米稳定粒子的皮克林乳液聚合制备表面分子印迹微球的方法及应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104001437A (zh) * 2014-05-09 2014-08-27 中国科学院过程工程研究所 一种粒径均一的Pickering乳液、制备方法及其应用
CN106519092A (zh) * 2016-11-21 2017-03-22 华南理工大学 以有机改性麦羟硅钠石为乳化剂的Pickering乳液制备聚合物纳米复合材料的方法
CN107412193A (zh) * 2017-03-29 2017-12-01 华南理工大学 以麦羟硅钠石为乳化剂的Pickering乳液模板法制备的纳米杂化药物载体及其制法
CN108641024A (zh) * 2018-05-15 2018-10-12 华南理工大学 Pickering乳液中利用pH值调控合成麦羟硅钠石/PMMA纳米复合微球的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHENGWEN ZOU: "Controllable porous microspheres and monoliths fabricated from pickering emulsion template", CHINA DOCTORAL DISSERTATIONS FULL-TEXT DATABASE, 9 April 2014 (2014-04-09), pages 6 - 9 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113443634A (zh) * 2021-07-15 2021-09-28 辽宁大学 一种皮克林超级乳化剂二氧化硅纳米网及其制备方法

Also Published As

Publication number Publication date
CN108641024A (zh) 2018-10-12
US20210220793A1 (en) 2021-07-22
CN108641024B (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
WO2019218607A1 (zh) Pickering 乳液中利用 pH 值调控合成麦羟硅钠石 /PMMA 纳米复合微球的方法
CN101720335A (zh) 复合材料颗粒及其制备方法
Zhang et al. Polystyrene/nano-SiO 2 composite microspheres fabricated by Pickering emulsion polymerization: Preparation, mechanisms and thermal properties.
CN105037646A (zh) 一种聚合物纳米/微米粒子外加剂及其制备方法
CN1300179C (zh) 聚苯乙烯包覆纳米二氧化硅微球制备单分散性核/壳复合颗粒乳液的方法
JPH07103205B2 (ja) 水性分散液組成物
CN111675784A (zh) 聚甲基丙烯酸甲酯/二氧化钛纳米复合材料及其制备方法
CN103467678B (zh) 一种石榴状有机-无机纳米复合微球的制备方法
CN103483601B (zh) 一种聚合物纳米微球的制备方法
CN104262531A (zh) 未改性硅溶胶/聚丙烯酸酯核壳乳液及其制备方法
CN110387008B (zh) 一种二氧化硅包覆pmma微球消光剂的制备方法
Sheng et al. Synthesis and characterization of core/shell titanium dioxide nanoparticle/polyacrylate nanocomposite colloidal microspheres
CN113213489A (zh) 一种中空二氧化硅微球及其制备方法
KR100913272B1 (ko) 초임계 이산화탄소를 이용한 중심-껍질 구조의나노컴포지트 입자 제조방법
JPS62213839A (ja) 均一に被覆された複合体粒子の製造方法
CN114873948B (zh) 一种分散剂的制备及应用方法
CN108003272B (zh) 纳米纤维素/含氟聚丙烯酸酯无皂乳液的制备方法
CN107715112B (zh) 一种改性聚丙烯酸酯药物包衣材料及其制备方法
CN111825926A (zh) 有机/无机杂化三组分Janus颗粒及制备方法
CN109851965B (zh) 一种纳米复合高吸水性材料及其制备方法
JPS61241310A (ja) 架橋重合体エマルジヨンの製造法
Chen et al. Preparation of raspberry-like PMMA/SiO 2 nanocomposite particles
JPH0791348B2 (ja) 架橋ポリマー粒子の製造方法
US11015006B2 (en) Coated polymer particles comprising a water-swellable polymer core and a sol-gel coating
JPS62243607A (ja) 塩基性窒素原子含有ビニルモノマ−のソ−プフリ−乳化重合法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18919168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 24/03/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18919168

Country of ref document: EP

Kind code of ref document: A1