WO2019216379A1 - Substrate processing method, substrate processing device, and computer program - Google Patents

Substrate processing method, substrate processing device, and computer program Download PDF

Info

Publication number
WO2019216379A1
WO2019216379A1 PCT/JP2019/018577 JP2019018577W WO2019216379A1 WO 2019216379 A1 WO2019216379 A1 WO 2019216379A1 JP 2019018577 W JP2019018577 W JP 2019018577W WO 2019216379 A1 WO2019216379 A1 WO 2019216379A1
Authority
WO
WIPO (PCT)
Prior art keywords
processing
substrate
unit
time
partition
Prior art date
Application number
PCT/JP2019/018577
Other languages
French (fr)
Japanese (ja)
Inventor
俊樹 森井
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Priority to KR1020207031316A priority Critical patent/KR102398820B1/en
Priority to CN201980031493.6A priority patent/CN112106175B/en
Publication of WO2019216379A1 publication Critical patent/WO2019216379A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67276Production flow monitoring, e.g. for increasing throughput
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67028Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
    • H01L21/6704Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
    • H01L21/67051Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67167Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers surrounding a central transfer chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67178Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers vertical arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67196Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the transfer chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67742Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67745Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber characterized by movements or sequence of movements of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67766Mechanical parts of transfer devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67775Docking arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67763Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
    • H01L21/67778Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading involving loading and unloading of wafers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to a substrate processing method and a substrate processing apparatus for processing a substrate, and a computer program executed by a control device provided in the substrate processing apparatus.
  • substrates to be processed include semiconductor wafers, optical disk substrates, magnetic disk substrates, magneto-optical disk substrates, photomask substrates, ceramic substrates, solar cell substrates, liquid crystal display devices, and organic EL (electroluminescence) displays.
  • FPD Fluorescence
  • Patent Document 1 discloses scheduling for a substrate processing apparatus including a plurality of processing units.
  • a plurality of processing units are classified into a plurality of processing sections based on the transport path length or transport time.
  • one processing section is selected from a plurality of processing sections.
  • one processing unit is selected from a plurality of processing units belonging to the selected processing section.
  • the schedule is created so that the substrate is processed in the selected processing unit. By executing this schedule, the substrate is actually transported and processed.
  • the processing partition is based on the partition final use time.
  • the partition usage rate is a value obtained by dividing the time required for processing a substrate by the number of effective (available) processing units in the processing partition for processing the substrate.
  • paragraph 0059 of Patent Document 1 there is a description that “the latest one of the unit last use times of the processing units MPC belonging to the processing section PZ is registered in the storage unit 63 as the section last use time”.
  • paragraph 00099 of Patent Document 1 “the first priority is given to the section usage rate, the second priority is given to the last use time of the section, and the third priority is given to the section number (transport distance or transport time).
  • the priority order of the partition last use time and the partition usage rate may be reversed.
  • the sixth substrate W6 has a process belonging to the third processing section PZ3 even though there are processing units MPC free in the first processing section PZ1 and the second processing section PZ1. It is processed by the unit MPC17. In this case, it is necessary to delay the conveyance of the substrate W6 until the processing unit MPC17 becomes empty, and the operation rate of the substrate processing apparatus is lowered. Therefore, the invention described in Patent Document 1 has room for improvement.
  • one of the objects of the present invention is to provide a substrate processing method, a substrate processing apparatus, and a computer program that can uniformly use all the processing units provided in the substrate processing apparatus and increase the operating rate of the substrate processing apparatus. Is to provide.
  • One embodiment of the present invention is a substrate processing method that is executed by a substrate processing apparatus that transfers a substrate to a substrate transfer system from a carrier on a load port to a plurality of processing units that process the substrate.
  • a substrate processing apparatus that transfers a substrate to a substrate transfer system from a carrier on a load port to a plurality of processing units that process the substrate.
  • Each of the units was classified based on a transport time required to transport the substrate from the carrier on the load port to the processing unit, or a transport distance representing a distance from the load port to the processing unit.
  • An affiliation confirmation step for confirming which of the plurality of processing sections belongs, and a unit last use time representing a time at which the processing unit is last used for processing the substrate, for each of the plurality of processing units Unit last use time acquisition step to be acquired, and unit last use time acquisition step Based on the acquired plurality of unit final use times and the transfer times for the plurality of processing units, the corrected unit final use representing the time obtained by subtracting the transfer time from the unit final use time in the same processing unit Based on the correction unit final use time calculation step for calculating the time for each of the plurality of processing units and the plurality of correction unit final use times obtained in the correction unit final use time calculation step, the same processing section A partition final use time specifying step for specifying a partition final use time representing the oldest time among the correction unit final use times of the plurality of processing units belonging to the plurality of processing partitions; and the partition final use At the time of the last use of a plurality of the sections specified in the time specifying step Based on the partition selection step of selecting the one processing partition having the oldest partition last
  • one processing partition is selected from a plurality of processing partitions based on the partition last use time. Then, one processing unit is selected from a plurality of processing units belonging to the selected processing section. Thereafter, the substrate is transferred from the carrier on the load port to the selected processing unit by the substrate transfer system. Therefore, not only when the processing time of the substrate does not change but also when the processing time of the substrate decreases, a plurality of processing sections can be selected equally, and all the processing units provided in the substrate processing apparatus should be used evenly. Can do. Thereby, the operation rate of a substrate processing apparatus can be raised.
  • the partition last use time is specified based on the oldest modified unit last use time, not the oldest unit last use time.
  • the correction unit last use time is obtained by subtracting the transport time required to transport the substrate from the carrier on the load port to the processing unit from the unit last use time, which represents the time when the processing unit is last used for substrate processing. Time. Therefore, it is possible to reduce the difference in transport time between the plurality of processing sections, and to avoid selecting only the processing section closer to the load port. Thereby, a plurality of processing sections can be selected more evenly.
  • Another embodiment of the present invention is a substrate processing method executed by a substrate processing apparatus that transfers a substrate to a substrate transfer system from a carrier on a load port to a plurality of processing units that process the substrate.
  • Each of the processing units is classified based on a transport time required to transport the substrate from the carrier on the load port to the processing unit or a transport distance representing a distance from the load port to the processing unit.
  • An affiliation confirmation step for confirming which one of the plurality of processing sections belongs, and a unit last use time indicating a time when the processing unit is used for the last processing of the substrate,
  • a unit last use time acquisition step to acquire the unit last use time acquisition step.
  • the partition final use time representing the oldest time among the unit final use times of the plurality of processing units belonging to the same processing partition is determined as the plurality of processes.
  • the partition final use time specifying step specified for each of the partitions and the plurality of partition final use times specified in the partition final use time specifying step the one processing partition having the oldest partition final use time is determined.
  • one processing partition is selected from a plurality of processing partitions based on the partition last use time. Then, one processing unit is selected from a plurality of processing units belonging to the selected processing section. Thereafter, the substrate is transferred from the carrier on the load port to the selected processing unit by the substrate transfer system. Therefore, not only when the processing time of the substrate does not change but also when the processing time of the substrate decreases, a plurality of processing sections can be selected equally, and all the processing units provided in the substrate processing apparatus should be used evenly. Can do. Thereby, the operation rate of a substrate processing apparatus can be raised.
  • the start time of the substrate processing may be a time when the substrate is carried into the processing unit, may be a time when the substrate starts to rotate, or may be other than these.
  • the end time of the substrate processing that is, the unit last use time may be a time when the substrate is carried out of the processing unit, may be a time when the rotation of the substrate is stopped, or may be other than these times. Good.
  • the time when the substrate is carried into the processing unit and the time when the substrate is carried out from the processing unit is, for example, that the shutter that opens and closes the opening provided in the processing chamber of the processing unit is moved to the open position (the position where the opening is opened). It may be a start time.
  • the substrate processing method further includes a transfer time registration step of registering the same value as the transfer time for the plurality of processing units belonging to the same processing section before the correction unit final use time calculating step.
  • the same value is registered as the transport time for a plurality of processing units belonging to the same processing section. Even for a plurality of processing units belonging to the same processing section, since the transport distance is strictly different, the transport time is also strictly different. However, if the processing sections to which they belong are the same, the difference in transport time is small and the transport time is approximately equal between these processing units. Therefore, if the same value is registered as the transport time for a plurality of processing units belonging to the same processing section, it is possible to simplify the setting of the transport time while reducing the difference in transport time between these processing sections.
  • the partition selection step includes a first search step for searching the processing partition having the oldest partition last use time in the plurality of processing partitions, and a plurality of the processing partitions are found as candidate partitions in the first search step.
  • the processing partition having the largest number of processing units having the oldest unit last use time is selected from those processing partitions.
  • the processing section having the minimum transport time or transport distance is selected as the plurality of processing sections found in the second search step.
  • a third search step for searching in may be further included.
  • the selecting step may be a step of selecting one processing section from at least one processing section found in the third search step.
  • the substrate processing method further includes a final use time initialization step of changing the unit final use times of all the processing units to the same value (for example, 0) before the unit final use time acquisition step. Also good.
  • the substrate is transferred to the processing unit selected in the unit selection step after the substrate transfer step with a processing time shorter than the processing time of the latest substrate transferred to one of the plurality of processing units.
  • a substrate processing step is further included.
  • the processing time of the substrate is shorter than that of the latest substrate. Even in such a case, since one processing partition is selected from a plurality of processing partitions based on the partition last use time, a plurality of processes are performed as compared with the case where a processing partition is selected based on the size relationship of the partition usage rate. Partitions can be selected evenly. Therefore, even when the substrate transport path and processing time are different, all the processing units can be used evenly, and the operating rate of the substrate processing apparatus can be further increased.
  • Still another embodiment of the present invention includes a load port on which a carrier that accommodates a substrate is placed, a plurality of processing units that process the substrate transported from the carrier on the load port, and the load port
  • a substrate processing apparatus comprising: a substrate transport system that transports the substrate between the carrier and the plurality of processing units; and a control device that controls the substrate transport system.
  • the control device determines a transfer time required for each of the plurality of processing units to transfer the substrate from the carrier on the load port to the processing unit, or a distance from the load port to the processing unit.
  • An affiliation confirmation step for confirming which of the plurality of processing sections classified based on the transport distance represented, and a unit final use time indicating a time at which the processing unit is last used for processing the substrate
  • a unit final use time acquisition step acquired for each of the plurality of processing units, a plurality of unit final use times acquired in the unit final use time acquisition step, and a transport time for the plurality of processing units.
  • the correction unit final use time calculation step for calculating the correction unit final use time representing the time obtained by subtracting the conveyance time for each of the plurality of processing units, and the plurality of corrections obtained in the correction unit final use time calculation step.
  • a section last use time representing the oldest time among the correction unit last use times of the plurality of processing units belonging to the same processing section is specified for each of the plurality of processing sections.
  • the one processing partition having the oldest partition final use time is designated as the plurality of processing partitions.
  • a section selection step to select from among the processing sections selected in the section selection step A unit selection step of selecting one of the processing units from among the plurality of processing units belonging to the substrate, and the substrate transport system from the carrier on the load port to the processing unit selected in the unit selection step A substrate carrying step for carrying.
  • Still another embodiment of the present invention includes a load port on which a carrier that accommodates a substrate is placed, a plurality of processing units that process the substrate transported from the carrier on the load port, and the load port
  • a substrate processing apparatus comprising: a substrate transport system that transports the substrate between the carrier and the plurality of processing units; and a control device that controls the substrate transport system.
  • the control device determines a transfer time required for each of the plurality of processing units to transfer the substrate from the carrier on the load port to the processing unit, or a distance from the load port to the processing unit.
  • An affiliation confirmation step for confirming which of the plurality of processing sections classified based on the transport distance represented, and a unit final use time indicating a time at which the processing unit is last used for processing the substrate
  • a unit final use time acquisition step acquired for each of the plurality of processing units, and a plurality of the unit final use times acquired in the unit final use time acquisition step.
  • the last section representing the oldest time among the unit last use times of the processing unit The partition final use time is determined based on the partition final use time specifying step for specifying the use time for each of the plurality of processing partitions and the plurality of partition final use times specified in the partition final use time specifying step.
  • a unit selection step for selecting and a substrate transfer step for causing the substrate transfer system to transfer the substrate from the carrier on the load port to the processing unit selected in the unit selection step. According to this configuration, the same effect as described above can be obtained.
  • the control device further executes a transport time registration step of registering the same value as the transport time for the plurality of processing units belonging to the same processing section before the correction unit final use time calculating step. According to this configuration, the same effect as described above can be obtained.
  • the partition selection step includes a first search step for searching the processing partition having the oldest partition last use time in the plurality of processing partitions, and a plurality of the processing partitions are found as candidate partitions in the first search step.
  • the control device transfers the substrate after the substrate transport step to the processing unit selected in the unit selection step with a processing time shorter than the processing time of the latest substrate transported to any of the plurality of processing units.
  • a substrate processing step to be processed is further executed. According to this configuration, the same effect as described above can be obtained.
  • Yet another embodiment of the present invention is a computer program executed by a control device provided in a substrate processing apparatus that transfers a substrate to a substrate transfer system from a carrier on a load port to a plurality of processing units that process the substrate.
  • a computer program in which steps are incorporated so as to cause a computer as the control device to execute at least one of the above-described substrate processing methods is provided.
  • the computer program may be recorded on a computer-readable recording medium.
  • the recording medium may be an optical disk such as a compact disk or a semiconductor memory such as a memory card.
  • FIG. 1 is a schematic plan view of a substrate processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the substrate processing apparatus showing a vertical cross section along the cutting line II-II shown in FIG. 1. It is typical sectional drawing for demonstrating the structural example of a processing unit. It is typical sectional drawing for demonstrating the other structural example of a processing unit. It is a block diagram for demonstrating the electrical structure of a substrate processing apparatus. It is a flowchart for demonstrating the process example performed by the computer with which the substrate processing apparatus was equipped. It is a time chart which shows the temporary time table produced in the case of scheduling. It is a time chart which shows the temporary time table produced in the case of scheduling.
  • An example of an input possibility rate, a section last use time, the oldest number of chambers, and the number of effective chambers when creating a schedule for the first substrate in a state where four processing units belonging to the first processing section are invalid is shown.
  • An example of an input possibility rate, a section last use time, the oldest number of chambers, and the number of effective chambers when creating a schedule for the second substrate in a state where four processing units belonging to the first processing section are invalid is shown. It is a table.
  • An example of an input possibility rate, a section last use time, an oldest chamber number, and an effective chamber number when creating a schedule for the third substrate in a state where four processing units belonging to the first processing section are invalid is shown. It is a table. An example of an input possibility rate, a section last use time, the oldest number of chambers, and the number of effective chambers when creating a schedule for the fourth substrate in a state where four processing units belonging to the first processing section are invalid is shown. It is a table. An example of an input possibility rate, a section last use time, the oldest number of chambers, and the number of effective chambers when creating a schedule for the fifth substrate in a state where four processing units belonging to the first processing section are invalid is shown. It is a table.
  • An example of an input possibility rate, a section last use time, the oldest number of chambers, and the number of effective chambers when creating a schedule for the sixth substrate in a state where four processing units belonging to the first processing section are invalid is shown. It is a table. It is a table
  • the table showing an example of the input possibility rate, the last use time of the section, the oldest number of chambers, and the number of effective chambers when creating the schedule for the first substrate after the schedule for using all the processing units is created is there.
  • the table showing an example of the input possibility rate, the last use time of the section, the oldest number of chambers, and the number of effective chambers when creating the schedule for the second substrate after the schedule for using all the processing units is created is there.
  • the table showing an example of the input possibility rate, the last use time of the section, the oldest number of chambers, and the number of effective chambers when creating the schedule for the third substrate after the schedule for using all the processing units is created is there.
  • a table showing an example of the input possibility rate, the last use time of the section, the oldest number of chambers, and the number of effective chambers when creating the schedule for the fourth substrate after the schedule for using all the processing units is created is there.
  • the table showing an example of the input possibility ratio, the last use time of the section, the oldest number of chambers, and the number of effective chambers when creating the schedule for the fifth substrate after the schedule for using all the processing units is created is there. It is a table
  • FIG. 4 is a time chart showing a schedule according to the first embodiment, showing an example of a schedule after performing the scheduling of the first and second substrates to which the first recipe for processing the substrate for the first processing time is applied. .
  • FIG. 4 is a time chart showing a schedule according to the first embodiment, showing an example of a schedule after performing the scheduling of the first and second substrates to which the first recipe for processing the substrate for the first processing time is applied. .
  • FIG. 6 is a time chart showing a schedule according to the first embodiment, showing an example of a schedule after performing scheduling of the third to sixth substrates to which the second recipe for processing the substrate for the second processing time is applied.
  • surface which shows an example of the division
  • surface which shows an example of the division use rate which concerns on a 1st comparative example, division final use time, and the number of effective chambers, and has shown the state before producing the schedule of the 2nd board
  • FIG. 10 is a time chart showing a schedule according to a second embodiment, showing an example of a schedule after performing scheduling of the first to eleventh substrates to which the first recipe for processing the substrate for the first processing time is applied.
  • FIG. 10 is a time chart showing a schedule according to a second embodiment, showing an example of a schedule after performing scheduling of the first to eleventh substrates to which the first recipe for processing the substrate for the first processing time is applied.
  • 10 is a time chart showing a schedule according to a second embodiment, showing an example of a schedule after scheduling of the 13th to 15th substrates to which the second recipe for processing the substrate for the second processing time is applied. . It is a time chart which shows the schedule which concerns on a 2nd comparative example, and shows an example of the schedule after selecting a process partition with priority on a partition usage rate and scheduling the 12th to 15th substrates. .
  • FIG. 1 is a schematic plan view of a substrate processing apparatus 1 according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the substrate processing apparatus 1 showing a vertical cross section along the cutting line II-II shown in FIG.
  • the substrate processing apparatus 1 is a single-wafer type apparatus that processes a disk-shaped substrate W such as a semiconductor wafer one by one.
  • the substrate processing apparatus 1 includes a carrier holding unit 2, an indexer unit 3, and a processing unit 4.
  • the carrier holding unit 2 includes a plurality of load ports LP each holding a carrier C which is a substrate container capable of accommodating a plurality of substrates W.
  • the load port LP is a carrier holding unit that holds the carrier C.
  • the load port LP is a position where the carrier C is inserted into the substrate processing apparatus 1.
  • the carrier C is opened and closed by the load port LP.
  • the indexer unit 3 includes an indexer robot IR.
  • the indexer robot IR takes out an unprocessed substrate W from the carrier C placed on the carrier holding unit 2 and delivers it to the processing unit 4, and receives the processed substrate W from the processing unit 4 to receive the carrier holding unit.
  • the storing operation of storing in the carrier C held in 2 is executed.
  • the processing unit 4 includes a plurality of processing units MPC1 to MPC24 (hereinafter collectively referred to as “processing unit MPC”), a first main transfer robot CR1, a second main transfer robot CR2, a first delivery unit PASS1, A second delivery unit PASS2.
  • processing unit MPC processing unit
  • the indexer robot IR, the first main transfer robot CR1, and the second main transfer robot CR2 constitute a substrate transfer system TS1 that transfers the substrate W between the carrier holding unit 2 and the processing unit MPC.
  • a conveyance path 5 extending linearly from the indexer unit 3 is formed in plan view.
  • a first delivery unit PASS1, a first main transport robot CR1, a second delivery unit PASS2, and a second main transport robot CR2 are arranged in this transport path 5 in order from the indexer unit 3 side.
  • the first delivery unit PASS1 is a unit that mediates delivery of the substrate W between the indexer robot IR and the first main transfer robot CR1.
  • the second delivery unit PASS2 is a unit that mediates delivery of the substrate W between the first main transport robot CR1 and the second main transport robot CR2.
  • the first and second transfer units PASS1 and PASS2 include a plurality of substrate platforms 15 that temporarily hold the substrate W.
  • the plurality of processing units MPC form a plurality of towers TW1 to TW6 (hereinafter collectively referred to as “tower TW”).
  • Each tower TW includes a plurality of processing units MPC (for example, four processing units MPC) stacked one above the other.
  • the plurality of towers TW are arranged along the transport path 5.
  • the three towers TW1, TW3, TW5 are arranged on one side of the transport path 5.
  • the remaining three towers TW2, TW4, TW6 are arranged on the other side of the transport path 5.
  • the plurality of processing units MPC form three pairs of towers TW that are opposed to each other with the conveyance path 5 interposed therebetween. Specifically, the tower TW1 and the tower TW2 are opposed to each other with the conveyance path 5 interposed therebetween. Similarly, the tower TW3 and the tower TW4 are opposed to each other with the conveyance path 5 interposed therebetween, and the tower TW5 and the tower TW6 are opposed to each other with the conveyance path 5 interposed therebetween.
  • the distance from the indexer unit 3 to the tower TW1 is equal to or approximately equal to the distance from the indexer unit 3 to the tower TW2. Accordingly, the transfer time required to transfer the substrate W from the indexer unit 3 to the tower TW1 is equal to or substantially equal to the transfer time required to transfer the substrate W from the indexer unit 3 to the tower TW2. That is, each pair of towers (TW1 and TW2, TW3 and TW4, TW5 and TW6) is disposed at a position where the distance from the indexer unit 3 is equal or substantially equal, and the substrate is placed from the indexer unit 3 to each pair of towers TW. The transport time required to transport W is equal or approximately equal.
  • processing section PZ The three pairs of towers (TW1 and TW2, TW3 and TW4, TW5 and TW6) form three processing sections PZ1, PZ2, and PZ3 (hereinafter collectively referred to as “processing section PZ”). That is, the pair of towers TW1 and TW2 that are opposed to each other with the conveyance path 5 interposed therebetween at the position closest to the indexer unit 3 form the first processing section PZ1. Next, a pair of towers TW3 and TW4 facing each other across the transport path 5 at a position close to the indexer unit 3 forms a second processing section PZ2. Next, a pair of towers TW5 and TW6 facing each other across the transport path 5 at a position close to the indexer unit 3 form a third processing section PZ3.
  • the first delivery unit PASS1 is arranged between the first processing section PZ1 and the indexer unit 3.
  • a first main transfer robot CR1 is arranged on the opposite side of the indexer unit 3 with respect to the first delivery unit PASS1.
  • the first main transfer robot CR1 is disposed between the pair of towers TW1 and TW2 in plan view.
  • a second delivery unit PASS2 is disposed on the opposite side of the first delivery robot CR1 from the first delivery unit PASS1.
  • the first main transfer robot CR1 is arranged to face the first delivery unit PASS1, the towers TW1 and TW2 of the first processing section PZ1, and the second delivery unit PASS2.
  • the second main transfer robot CR2 is disposed on the opposite side of the second delivery unit PASS2 from the first main transfer robot CR1.
  • the second main transfer robot CR2 is disposed between the pair of towers TW3 and TW4 in a plan view, and is disposed between the pair of towers TW5 and TW6 in a plan view.
  • the second main transfer robot CR2 is arranged to face the second delivery unit PASS2 and the towers TW3 to TW6.
  • the indexer robot IR is a horizontal articulated arm type robot in this embodiment.
  • the indexer robot IR includes a hand 11 that holds the substrate W, an articulated arm 12 coupled to the hand 11, an arm rotation mechanism (not shown) that rotates the articulated arm 12 about a vertical rotation axis 13, And an arm lifting mechanism (not shown) for moving the articulated arm 12 up and down.
  • the indexer robot IR makes the hand 11 access the carrier C and the first delivery unit PASS1 held in an arbitrary load port LP, and loads / unloads the substrate W to / from the access destination. Accordingly, the indexer robot IR transports the substrate W between the processing unit 4 (more precisely, the first delivery unit PASS1) and the arbitrary carrier C.
  • the first main transfer robot CR1 and the second main transfer robot CR2 can be substrate transfer robots having substantially the same configuration.
  • a substrate transfer robot preferably has a pair of hands 21 and 22 holding the substrate W, a pair of hand advancing and retracting mechanisms 23 and 24 for moving the pair of hands 21 and 22 back and forth in the horizontal direction, and a pair of hands.
  • a hand rotation mechanism (not shown) that rotates the advance / retreat mechanisms 23, 24 around a vertical rotation axis 25 and a hand elevating mechanism (not shown) that moves the hand advance / retreat mechanisms 23, 24 up and down are included.
  • the first main transfer robot CR1 and the second main transfer robot CR2 take out the substrate W from the access destination with one hand 21, 22 and the substrate W with respect to the access destination with the other hand 21, 22. Can be carried in.
  • the first main transfer robot CR1 includes the first transfer unit PASS1, the plurality of processing units MPC that form the towers TW and TW2, and the first transfer unit MPC. 2.
  • the hands 21 and 22 can be directly accessed to the delivery unit PASS2, and the substrate W can be loaded / unloaded to / from the access destination.
  • the second main transport robot CR2 has a plurality of processing units forming the second delivery unit PASS2 and the towers TW3 to TW6.
  • the hands 21 and 22 can be directly accessed to the MPC, and the substrate W can be loaded / unloaded to / from the access destination.
  • FIG. 2 shows an example in which the indexer robot IR includes one hand 11, but the indexer robot IR may include two hands 11.
  • the first main transport robot CR1 may include four hands 21 and 22.
  • the second main transport robot CR2 may include four hands 21 and 22.
  • the indexer robot IR can hold the two substrates W at the same time using the two hands 11. Accordingly, the indexer robot IR performs a simultaneous unloading operation for simultaneously unloading two substrates W and a simultaneous unloading operation for simultaneously loading two substrates W with respect to the carrier C on the load port LP and the first delivery unit PASS1. It can be carried out.
  • FIG. 3 is a schematic cross-sectional view for explaining a configuration example of the processing unit MPC.
  • the processing unit MPC shown in FIG. 3 is a surface cleaning unit that cleans the surface of a substrate with a chemical solution.
  • the processing unit MPC includes a processing chamber 31 provided with an opening 31a through which the substrate W passes, a processing cup 32 disposed in the processing chamber 31, and a spin chuck 33 disposed in the processing cup 32.
  • the processing chamber 31 includes a partition wall 31b provided with an opening 31a and a shutter 31c that opens and closes the opening 31a.
  • the processing unit MPC further includes a chemical liquid nozzle 34 for supplying a chemical liquid to the substrate W and a rinsing liquid nozzle 35 for supplying a rinsing liquid (pure water or the like) to the substrate W.
  • the spin chuck 33 rotates around a vertical rotation axis 36 passing through the central portion of the substrate W while holding one substrate W horizontally.
  • the chemical liquid nozzle 34 and the rinsing liquid nozzle 35 are arranged in the processing chamber 31 and discharge the chemical liquid and the rinsing liquid toward the upper surface of the substrate W held by the spin chuck 33, respectively.
  • a chemical solution process in which a chemical solution is supplied to the upper surface of the substrate W and the upper surface of the substrate W is processed with the chemical solution
  • a rinse treatment that rinses the chemical solution on the upper surface of the substrate W with the rinse solution Processing step
  • a spin drying process in which droplets on the substrate W are shaken off by centrifugal force.
  • FIG. 4 is a schematic cross-sectional view for explaining another configuration example of the processing unit MPC.
  • the processing unit MPC shown in FIG. 4 is an end surface cleaning unit that scrubs and cleans the peripheral end surface of the substrate W.
  • the processing unit MPC includes a processing chamber 31, a spin chuck 33 arranged in the processing chamber 31, a chemical nozzle 34, and a scrub member 37 that scrubs and cleans the end surface of the substrate W.
  • the spin chuck 33 rotates around a vertical rotation axis 36 passing through the central portion of the substrate W while holding one substrate W horizontally.
  • the chemical nozzle 34 supplies a chemical to the surface of the substrate W held on the spin chuck 33.
  • the scrub member 37 is pressed against the peripheral end surface of the substrate W while the spin chuck 33 rotates the substrate W, the scrub member 37 is rubbed against the entire periphery of the peripheral end surface of the substrate W. As a result, the entire periphery of the peripheral end surface of the substrate W is scrubbed (substrate processing step).
  • FIG. 5 is a block diagram for explaining the electrical configuration of the substrate processing apparatus 1.
  • the substrate processing apparatus 1 includes a computer 60 as a control device.
  • the computer 60 controls the processing units MPC1 to MPC24, the main transfer robots CR1 and CR2, and the indexer robot IR.
  • the computer 60 may be a personal computer (FA personal computer).
  • the computer 60 includes a control unit 61, an input / output unit 62, and a storage unit 63.
  • the control unit 61 includes an arithmetic unit such as a CPU.
  • the input / output unit 62 includes an output device such as a display unit and an input device such as a keyboard, a pointing device, and a touch panel. Further, the input / output unit 62 includes a communication module for communication with a host computer 64 which is an external computer.
  • the storage unit 63 includes a storage device such as a solid-state memory device or a hard disk drive.
  • the control unit 61 includes a scheduling function unit 65 and a process execution instruction unit 66.
  • the scheduling function unit 65 unloads the substrate W from the carrier C, processes the substrate W in one or more of the processing units MPC1 to MPC24, and stores the processed substrate W in the carrier C.
  • a plan (schedule) for operating the resources of the substrate processing apparatus 1 in time series is created.
  • the processing execution instruction unit 66 operates the resources of the substrate processing apparatus 1 according to the schedule created by the scheduling function unit 65.
  • the resources are various units provided in the substrate processing apparatus 1 and used for processing the substrate. Specifically, the processing units MPC1 to MPC24, the indexer robot IR, the main transfer robots CR1 and CR2, and their components are included in the resources of the substrate processing apparatus 1.
  • the storage unit 63 stores various data.
  • the data stored in the storage unit 63 includes a program 70 executed by the control unit 61, process job data (process job information) 80 received from the host computer 64, and schedule data 81 created by the scheduling function unit 65. , Usage history data 82 for each processing unit MPC and each processing section PZ, and transport time data 83 for each processing section PZ are included.
  • the program 70 stored in the storage unit 63 includes a schedule creation program 71 for operating the control unit 61 as the scheduling function unit 65, and a process execution program 72 for operating the control unit 61 as the process execution instruction unit 66. Including.
  • the program 70 may be preinstalled in the computer 60, may be sent from the recording medium M to the storage unit 63, or is stored in the storage unit 63 through the communication module of the input / output unit 62. It may be sent.
  • the recording medium M is, for example, an optical disk such as a compact disk or a semiconductor memory such as a memory card.
  • the recording medium M is an example of a tangible medium that is not temporary (non-transitory tangible media).
  • the process job data 80 includes a process job (PJ) code assigned to each substrate W and a recipe associated with the process job code.
  • the recipe is data defining the contents of substrate processing, and includes substrate processing conditions and substrate processing procedures. More specifically, it includes substrate type information, parallel processing unit information, used processing liquid information, processing time information, and the like.
  • the substrate type information is information indicating the type of the substrate W to be processed. Specific examples of the type of the substrate W include a product substrate used for manufacturing a product, a non-product substrate that is used for maintenance of the processing unit MPC and is not used for manufacturing a product.
  • the parallel processing unit information is processing unit designation information that designates an available processing unit MPC, and represents that parallel processing by the designated processing unit MPC is possible.
  • the used processing liquid information is information that designates the type of processing liquid used for substrate processing.
  • a specific example is information specifying the type of chemical and the temperature of the chemical.
  • the processing time information is a continuation time for supplying the processing liquid.
  • the used processing liquid information and the processing time information are examples of processing condition information.
  • Process job refers to a process performed on one or a plurality of substrates W to be subjected to a common process.
  • the process job code is identification information (substrate group identification information) for identifying a process job.
  • a plurality of substrates W to which a common process job code is assigned are subjected to a common process using a recipe associated with the process job code. For example, when a common process is performed on a plurality of substrates W in which the processing order (dispensing order from the carrier C) is continuous, a common process job code is assigned to the plurality of substrates W. Is granted.
  • the substrate processing content (recipe) corresponding to different process job codes may be the same.
  • the control unit 61 acquires process job data for each substrate W from the host computer 64 via the input / output unit 62 and stores it in the storage unit 63.
  • the acquisition and storage of the process job data may be performed before the scheduling for each substrate W is executed. For example, immediately after the carrier C is held in the load ports LP1 to LP4, the process job data corresponding to the substrate W accommodated in the carrier C may be given from the host computer 64 to the control unit 61.
  • the scheduling function unit 65 plans each process job based on the process job data 80 stored in the storage unit 63, and stores schedule data 81 representing the plan in the storage unit 63.
  • the process execution instructing unit 66 controls the indexer robot IR, the main transfer robots CR1 and CR2, and the processing units MPC1 to MPC24 based on the schedule data 81 stored in the storage unit 63, thereby allowing the substrate processing apparatus 1 to perform a process. Run the job.
  • FIG. 6 is a flowchart for explaining an example of processing executed by the scheduling function unit 65. More specifically, a process that is repeatedly performed at a predetermined control period when the control unit 61 of the computer 60 executes the schedule creation program 71 is shown. In other words, the schedule creation program 71 incorporates a group of steps so as to cause the computer 60 to execute the processing shown in FIG.
  • the host computer 64 gives process job data to the control unit 61 and instructs the control unit 61 to start a process job defined by the process job data, that is, start substrate processing (step S1).
  • the control unit 61 receives the process job data and stores it in the storage unit 63.
  • the scheduling function unit 65 uses the process job data to perform scheduling for executing the process job.
  • the start of the process job can be instructed by the operator by operating the operation unit of the input / output unit 62.
  • the scheduling function unit 65 sequentially executes the scheduling for each of the one or more substrates W to which the process job (PJ) code included in the process job data is assigned.
  • the scheduling function unit 65 refers to a recipe corresponding to the process job data, and specifies one or more processing units MPC that can be used for processing the substrate W based on the parallel processing unit information of the recipe. (Step S2).
  • the scheduling function unit 65 executes a processing section selection process for selecting one processing section PZ to be used for the substrate processing (step S3). Details of the processing partition selection processing will be described later.
  • the scheduling function unit 65 creates a temporary time table for processing one substrate W (step S4).
  • the first processing section PZ1 is selected in the processing section selection process, and the parallel processing unit information of the recipe corresponding to the process job data includes all the processing units MPC1 to MPC8 of the first processing section PZ1. That is, consider a case where the substrate processing according to the recipe can be executed in any of the eight processing units MPC1 to MPC8. In this case, there are eight paths through which the substrate W passes. That is, the paths that can be selected for processing the substrate W are eight paths that pass through any of the processing units MPC1 to MPC8. Therefore, the scheduling function unit 65 creates a temporary time table corresponding to the eight routes for the one substrate W.
  • FIG. 7A A temporary time table corresponding to the route passing through the processing unit MPC1 is shown in FIG. 7A.
  • This temporary time table includes a block representing the unloading (Get) of the substrate W from the carrier C by the indexer robot IR, a block representing the unloading (Put) of the substrate W to the first delivery unit PASS1 by the indexer robot IR, and A block representing unloading (Get) of the substrate W from the first delivery unit PASS1 by the first main transport robot CR1, and a block representing unloading (Put) of the substrate W to the processing unit MPC1 by the first main transport robot CR1.
  • the scheduling function unit 65 creates a temporary time table by arranging these blocks in order so as not to overlap each other on the time axis.
  • the scheduling function unit 65 causes the same seven temporary time tables (same for the same substrate W to correspond to the seven routes respectively passing through the processing units MPC2 to MPC8).
  • the created temporary time table is stored in the storage unit 63 as a part of the schedule data 81. In the stage of creating the temporary timetable, interference with the block relating to another substrate W (overlap on the time axis) is not considered.
  • the scheduling function unit 65 finishes creating all temporary timetables corresponding to one substrate W (step S5), it executes the main scheduling (steps S6 to S9).
  • This scheduling is to arrange the created temporary time table blocks on the time axis so as not to overlap with other blocks of each resource.
  • the schedule data created by this scheduling is stored in the storage unit 63.
  • the scheduling function unit 65 selects one of a plurality of provisional time tables that have been created, and acquires one block constituting the provisional time table (step S6).
  • the block acquired at this time is the block arranged at the earliest position on the time axis of the temporary time table among the unallocated blocks.
  • the scheduling function unit 65 searches for a position where the acquired block can be arranged (step S7), and arranges the block at the searched position (step S8).
  • Each block is arranged at the earliest position on the time axis while preventing the same resource from being used repeatedly at the same time.
  • a similar operation is repeatedly executed for all the blocks constituting the selected temporary time table (step S9).
  • step S10 the main scheduling corresponding to the temporary time table is completed.
  • This main scheduling is executed for all the created temporary time tables (step S10). That is, when there is a possibility that the substrate W is processed by any of the eight processing units MPC1 to MPC8, eight kinds of main scheduling are executed.
  • step S11 unit selection processing is performed (step S11).
  • one main scheduling that is, main scheduling that passes through one processing unit MPC is selected, and thereby a processing unit MPC that processes one substrate W is selected.
  • one main scheduling that selects the earliest time for processing the substrate W and returning it to the carrier C is selected (step S11, unit selection step).
  • step S12 If there are a plurality of main schedulings with the same time for returning the substrate W to the carrier C (step S12: YES), the processing unit MPC with the longest elapsed time from the previous use, that is, the process with the oldest unit last use time.
  • the main scheduling using the unit MPC is selected (step S13, unit selection step). Thereby, the processing units MPC can be selected so that the processing units MPC in one processing section PZ are used evenly.
  • Step S14 When there are a plurality of main schedulings using the processing unit MPC having the oldest unit last use time (step S14: YES), the main scheduling using the processing unit MPC having a smaller number (that is, a higher priority order assigned in advance) is selected. (Step S15, unit selection step). For example, when the main scheduling using the processing unit MPC1 and the main scheduling using the processing unit MPC2 remain as candidates, the processing unit MPC1 has a lower end number than the processing unit MPC2, and thus the main scheduling using the processing unit MPC1. Is selected.
  • step S16 when one main scheduling corresponding to one temporary time table is selected, the scheduling for the one substrate W is completed (step S16).
  • the scheduling data representing the selected main scheduling is stored in the storage unit 63.
  • the process execution instructing unit 66 actually starts the process on the substrate W at an arbitrary timing thereafter (step S17, substrate transfer step and substrate process step). That is, the substrate transport operation is started in which the substrate W is unloaded from the carrier C by the indexer robot IR and the main transport robots CR1 and CR2 transport the substrate W to the processing unit MPC.
  • the scheduling function unit 65 registers the unit last use time of the processing unit MPC that processes the substrate W in the storage unit 63 (step S18). Furthermore, the scheduling function unit 65 obtains the input possibility rate of the processing section PZ to which the processing unit MPC belongs and registers it in the storage unit 63 (step S19). Details of the input possibility rate will be described later.
  • the unit last use time and the possible insertion rate are examples of use history data 82 (see FIG. 5). Then, a series of operations from step S3 to step S20 are sequentially executed for all the substrates W constituting the process job (step S20).
  • the scheduling function unit 65 corresponds to eight paths that respectively pass through the processing units MPC9 to MPC16 for one substrate W.
  • Eight temporary time tables temporary time tables in which processing blocks are arranged in the processing units MPC9 to MPC16, respectively) are created. As a result, a total of eight temporary time tables are created for one substrate W.
  • FIG. 7B shows a temporary time table corresponding to the route passing through the processing unit MPC9.
  • This temporary time table includes a block representing the unloading (Get) of the substrate W from the carrier C by the indexer robot IR, a block representing the unloading (Put) of the substrate W to the first delivery unit PASS1 by the indexer robot IR, and A block representing unloading (Get) of the substrate W from the first delivery unit PASS1 by the first main transport robot CR1, and a block representing unloading (Put) to the second delivery unit PASS2 by the first main transport robot CR1; A block representing unloading (Get) of the substrate W from the second delivery unit PASS2 by the second main transfer robot CR2, and a block representing unloading (Put) of the substrate W to the processing unit MPC9 by the second main transfer robot CR2.
  • a block representing loading (Put) into the PASS2 a block representing unloading (Get) of the substrate from the second delivery unit PASS2 by the first main transport robot CR1, and a first of the substrate W by the first main transport robot CR1.
  • the scheduling function unit 65 creates a temporary time table by arranging these blocks in order so as not to overlap each other on the time axis.
  • the scheduling function unit 65 corresponds to eight routes passing through the processing units MPC17 to MPC24 for one substrate W.
  • Eight temporary time tables temporary time tables in which processing blocks are arranged in the processing units MPC17 to MPC24
  • FIG. 7C shows a temporary time table corresponding to a route passing through the processing unit MPC17. This temporary time table is almost the same as the temporary time table of FIG. 7B.
  • FIG. 8 is a flowchart for explaining an example of the processing partition selection processing (step S3 in FIG. 6).
  • 9A and 9B show an example of processing partition data stored in the storage unit 63 (see FIG. 5).
  • FIG. 10A to FIG. 10E show an example of the possible loading rate, the partition last use time, the oldest chamber number, and the effective chamber number stored in the storage unit 63.
  • the number of effective chambers is the number of processing units MPC that can be used (effective) among a plurality of processing units MPC belonging to the same processing section PZ.
  • the oldest chamber number is the number of effective processing units MPC having the oldest unit last use time among the plurality of processing units MPC belonging to the same processing section PZ.
  • the chargeable rate is a percentage indicating the ratio of the oldest chamber number to the effective chamber number in the same processing section PZ ((oldest chamber number / effective chamber number) ⁇ 100).
  • the processing partition data, the input possible rate, the partition last use time, the oldest chamber number, and the effective chamber number are stored as the use history data 82 for each processing partition.
  • processing section data representing the setting of the processing section PZ is registered for all processing units MPC.
  • processing section data “1” indicating that it belongs to the first processing section PZ1 is registered.
  • processing section data “2” indicating that it belongs to the second processing section PZ2 is registered.
  • processing section data “3” indicating that it belongs to the third processing section PZ3 is registered.
  • each processing unit MPC When the scheduling function unit 65 selects a processing section PZ to be processed for each substrate W, each processing unit MPC performs any processing based on the processing section data stored in the storage unit 63 (see FIG. 5). It is determined whether it belongs to the section PZ and whether there is an invalid processing unit MPC (step S31 in FIG. 8, belonging confirmation step). Then, the scheduling function unit 65 reads out the unit last use times of all the processing units MPC1 to MPC24 from the storage unit 63 (step S32 in FIG. 8, unit last use time acquisition step).
  • the scheduling function unit 65 reads the transfer time required to transfer the substrate W from the carrier C on the load port LP to the processing unit MPC from the storage unit 63 for all the processing units MPC1 to MPC24. Thereafter, the scheduling function unit 65 subtracts the transport time from the unit last use time for each processing unit MPC, and registers the obtained value (time) in the storage unit 63 as the corrected unit last use time (step in FIG. 8).
  • S33 Correction unit final use time calculation step).
  • the modification unit last use time is included in the use history data 82. Details of the correction unit last use time will be described later.
  • FIGS. 10A to 10E show the contents of the storage unit 63 when scheduling a plurality of substrates W to which the same recipe is applied in a state where all the processing units MPC1 to MPC24 are usable (valid) and initialized.
  • 2 shows an example of the transition of the usage history data 82.
  • the possible loading rate (the oldest number of chambers / the number of effective chambers ⁇ 100) of each processing section PZ is 100%.
  • the section last use time is an initial value (0 in FIG. 10), and the oldest chamber number of each processing section PZ is eight.
  • the number of effective chambers in each processing section PZ is eight.
  • all the processing units MPC1 to MPC24 are designated as parallel processing units.
  • all unit last use times are also initialized, and initial values (for example, 0) are registered as unit last use times for all the processing units MPC1 to MPC24. If the unit last use time is a value other than the initial value, the unit last use time is corrected using the transport time. However, if the unit last use time is the initial value, the initial value is the corrected unit last use time. Registered as In the example shown in FIG. 10A, the correction unit final use times of all the processing units MPC1 to MPC24 are initial values, and therefore all the partition final use times are initial values (0 in FIG. 10A).
  • the scheduling function unit 65 searches for the processing section PZ having the oldest partition last use time among all the processing sections PZ1 to PZ3, and performs a plurality of processing. It is confirmed whether or not the section PZ is included in the candidate sections (step S34 in FIG. 8, first search step). When there is one candidate section, that is, when only one processing section PZ having the oldest section last use time is found (step S34: NO in FIG. 8), the processing section PZ is designated as the first substrate. Select for W (step S35 in FIG. 8, section selection step). In the example shown in FIG. 10A, since all the partition last use times are initial values, all the process partitions PZ1 to PZ3 correspond to the process partition PZ with the oldest partition last use time.
  • the scheduling function unit 65 has the highest possible input rate ((oldest chamber number / effective chamber number) ⁇ 100).
  • This processing section PZ is searched among the plurality of processing sections PZ included in the candidate section, and it is confirmed whether or not the plurality of processing sections PZ corresponding to this search condition are included in the candidate section (step S36 in FIG. 8).
  • Second search step When one processing section PZ is found, that is, when there is one processing section PZ having the maximum possible loading rate (step S36: NO in FIG. 8), the processing section PZ is designated as the first substrate W. (Step S37 in FIG. 8, section selection step and selection step). In the example shown in FIG. 10A, since all the unit last use times are initial values, all the processing sections PZ1 to PZ3 correspond to the processing section PZ having the maximum possible input rate.
  • the scheduling function unit 65 has the smallest partition number among the plurality of processing partitions PZ included in the candidate partition (that is, The processing section PZ having the highest priority assigned in advance is selected for the first substrate W (step S38 in FIG. 8. Section selection step, third search step, and selection step).
  • the first processing section PZ1 having the smallest section number is selected as the processing section PZ for processing the first substrate W. Therefore, as shown in FIG. 10B, the number of oldest chambers in the first processing section PZ1 is reduced from 8 to 7, and the input possibility rate of the first processing section PZ1 is 87.5% ((7/8) ⁇ 100). To decrease.
  • the scheduling function unit 65 estimates the time when the first substrate W ends, and the estimated time of the processing unit MPC that processes the first substrate W is estimated.
  • the unit last use time is registered in the storage unit 63.
  • the scheduling function unit 65 subtracts the transport time from the unit last use time of the processing unit MPC that processes the first substrate W to the processing unit MPC, and uses the obtained value (time) as the corrected unit last use time. Is registered in the storage unit 63. That is, for the processing unit MPC that processes the first substrate W, the new unit final use time and the corrected unit final use time are registered in the storage unit 63. For the second and subsequent substrates W, when the scheduling is completed, the new unit final use time and the corrected unit final use time are registered in the storage unit 63 for the processing unit MPC selected for processing the substrate W. .
  • the unit last use time and the correction unit last use time of the processing unit MPC that processes the first substrate W are changed to values other than the initial values.
  • the partition last use time is the oldest time among the correction unit last use times of all the processing units MPC belonging to the same processing partition PZ. Even if the correction unit final use time of the processing unit MPC for processing the first substrate W is changed, the correction unit final use time of another processing unit MPC belonging to the same processing section PZ as this processing unit MPC is the initial value. Remains. Therefore, the section last use time of the processing section PZ to which the processing unit MPC that processes the first substrate W belongs remains the initial value.
  • the processing section PZ for processing the second substrate W When selecting the processing section PZ for processing the second substrate W, one of the three processing sections PZ is selected as described above.
  • the final use time of each processing partition PZ is an initial value
  • the second processing partition PZ2 and the third processing partition PZ3 correspond to the processing partition PZ with the maximum input rate
  • the second processing section PZ2 having the smallest number is selected for the second substrate W. Therefore, as shown in FIG. 10C, the number of oldest chambers in the second processing section PZ2 is reduced from 8 to 7, and the input possibility rate of the second processing section PZ2 is 87.5% ((7/8) ⁇ 100). To decrease.
  • the processing section PZ for processing the third substrate W When selecting the processing section PZ for processing the third substrate W, one of the three processing sections PZ is selected as described above.
  • the third processing section PZ3 Although the final use time of each processing section PZ is the initial value, the third processing section PZ3 has the highest input possibility rate, so the third processing section PZ3 is the third substrate W. Selected for. Therefore, as shown in FIG. 10D, the number of the oldest chambers in the third processing section PZ3 is reduced from 8 to 7, and the charging rate of the third processing section PZ3 is 87.5% ((7/8) ⁇ 100). To decrease.
  • the processing section PZ for processing the fourth substrate W When selecting the processing section PZ for processing the fourth substrate W, one of the three processing sections PZ is selected as described above.
  • the section last use time of each processing section PZ is the initial value, and the input possibility rate is the same among the three processing sections PZ. Therefore, there are four first processing sections PZ1 having the smallest section number. Selected for eye substrate W. Therefore, as shown in FIG. 10E, the number of oldest chambers in the first processing section PZ1 is reduced from 7 to 6, and the input possibility rate of the first processing section PZ1 is reduced to 75% ((6/8) ⁇ 100). To do.
  • the processing section PZ for processing the fifth and subsequent substrates W one of the three processing sections PZ is selected as described above.
  • the unit final use time and the corrected unit final use time are values other than the initial values.
  • the scheduling function unit 65 registers the oldest time among the corrected unit final use times of all the processing units MPC belonging to the processing partition PZ in the storage unit 63 as the partition final use time. Thereby, the partition last use time is changed to a value other than the initial value.
  • FIG. 11A to FIG. 11E as shown in FIG. 9B, the four processing units MPC5 to MPC8 belonging to the first processing section PZ1 are disabled (unusable) for maintenance, and all other processing units MPC1 to MPC1 Example of transition of usage history data 82 in the storage unit 63 when scheduling a plurality of substrates W to which the same recipe is applied in a state where the MPC 4 and MPC 9 to MPC 24 are usable (valid) and initialized. Is shown.
  • the input possibility rate of each processing section PZ is 100%, and the section last use time of each processing section PZ is an initial value (in FIG. 11).
  • the oldest chamber number of the first processing section PZ1 is 4, and the oldest chamber number of the second processing section PZ2 and the third processing section PZ3 is eight.
  • the number of effective chambers in the first processing section PZ1 is 4, and the number of effective chambers in the second processing section PZ2 and the third processing section PZ3 is eight.
  • all the processing units MPC1 to MPC24 are designated as parallel processing units.
  • the scheduling function unit 65 selects the first processing section PZ1 having the smallest section number as the processing section PZ for processing the first substrate W, and the first substrate W in the first processing section PZ1. Scheduling to process Therefore, as shown in FIG. 11B, the oldest chamber number of the first processing section PZ1 is decreased from 4 to 3, and the input possibility rate of the first processing section PZ1 is decreased to 75% ((3/4) ⁇ 100). To do.
  • the processing end PZ is the initial value for any processing section PZ, and the second processing section PZ2 and the third processing section
  • the scheduling function unit 65 selects the second processing section PZ2 having the smallest section number for the second substrate W because the PZ3 insertion possibility rate is the highest. Therefore, as shown in FIG. 11C, the oldest number of chambers in the second processing section PZ2 is reduced from 8 to 7, and the charging rate of the second processing section PZ2 is 87.5% ((7/8) ⁇ 100). To decrease.
  • the scheduling function unit 65 selects the third processing section PZ3 for the third substrate W. Therefore, as shown in FIG. 11D, the number of oldest chambers in the third processing section PZ3 is reduced from 8 to 7, and the charging rate of the third processing section PZ3 is 87.5% ((7/8) ⁇ 100). To decrease.
  • the processing end PZ is the initial value for all processing sections PZ, and the second processing section PZ2 and the third processing section
  • the scheduling function unit 65 selects the second processing section PZ2 having the smallest section number for the fourth substrate W because the PZ3 input possibility rate is the highest. Therefore, as shown in FIG. 11E, the number of oldest chambers in the second processing section PZ2 is decreased from 7 to 6, and the input possibility rate of the second processing section PZ2 is decreased to 75% ((6/8) ⁇ 100). To do.
  • the scheduling function unit 65 selects the third processing section PZ3 for the fourth substrate W. Therefore, as shown in FIG. 11F, the number of oldest chambers in the third processing section PZ3 is reduced from 7 to 6, and the input possibility rate of the third processing section PZ3 is reduced to 75% ((6/8) ⁇ 100). To do.
  • FIG. 12 shows an example of the unit last use time, the transport time, and the corrected unit last use time after all the unit last use times have been changed to values other than the initial values.
  • FIG. 12 shows an example in which the first to third substrates W are carried into the processing units MPC1, MPC9, and MPC17 in the order of the processing unit MPC1, the processing unit MPC9, and the processing unit MPC17.
  • the unit last use time of the processing unit MPC1 is 12:00:00
  • the unit last use time of the processing unit MPC9 is 12:00:15
  • the unit of the processing unit MPC17 The last use time is 12:00:30.
  • FIG. 12 shows an example in which the transport time of the first processing section PZ1 is 10 seconds, the transport time of the second processing section PZ2 is 15 seconds, and the transport time of the third processing section PZ3 is 15 seconds. ing.
  • the transfer time of each processing section PZ is registered in the transfer time data 83 (see FIG. 5) (transfer time registration step).
  • the processing unit MPC1 and the processing unit MPC2 belong to the first processing section PZ1
  • the distance from the load port LP to the processing unit MPC1 is strictly different from the distance from the load port LP to the processing unit MPC2. Therefore, strictly speaking, the transport time of the substrate W to the processing unit MPC1 is different from the transport time of the substrate W to the processing unit MPC2.
  • the transport times are regarded as being substantially equal, and one transport time is registered in all the processing units MPC belonging to the same processing section PZ. Yes.
  • the scheduling function unit 65 subtracts the transport time of the first processing section PZ1 from the unit last use time of the processing unit MPC1, and registers the obtained value (time) as the correction unit last use time of the processing unit MPC1. Specifically, the scheduling function unit 65 registers 11:59:50 (12: 00: 00-10 seconds) as the correction unit last use time of the processing unit MPC1. Similarly, the scheduling function unit 65 registers 12:00:15 (12: 00: 15-15 seconds) as the correction unit last use time of the processing unit MPC9, and sets the correction unit last use time of the processing unit MPC17. Register 12:00:15 (12: 00: 30-15 seconds).
  • the scheduling function unit 65 stores the oldest time among the corrected unit final use times of all valid processing units MPC belonging to the same processing partition PZ as the partition final use time of the processing partition PZ in the storage unit 63.
  • Register partition last use time specifying step.
  • the correction unit last use time of the processing unit MPC1 is the oldest among the correction unit last use times of the processing units MPC1 to MPC8.
  • the correction unit final use time of the processing unit MPC9 is the oldest among the correction unit final use times of the processing units MPC9 to MPC16
  • the correction unit final use time of the processing unit MPC17 is the processing unit.
  • the scheduling function unit 65 registers the correction unit last use time of the processing unit MPC1 as the partition last use time of the first processing section PZ1, and sets the correction unit last use time of the processing unit MPC9 as the section last use of the second processing section PZ2.
  • the use time is registered, and the correction unit last use time of the processing unit MPC17 is registered as the section last use time of the first processing section PZ1.
  • 13A to 13E show the use history in the storage unit 63 when scheduling of a plurality of substrates W to which the same recipe is applied after all the unit last use times have been changed to values other than the initial values.
  • An example of the transition of the data 82 is shown.
  • the loading rate of each processing section PZ is 12.5% ((1/8) ⁇ 100), and the section of each processing section PZ
  • the last use time is a different value other than the initial value, and the number of oldest chambers in each processing section PZ is 1.
  • the number of effective chambers in each processing section PZ is eight.
  • all the processing units MPC1 to MPC24 are designated as parallel processing units.
  • FIG. 13A shows that the last use time of the first processing section PZ1 is 12:00:00, the last use time of the second processing section PZ2 is 12:00:30, and the third processing section PZ3. In this example, the last use time of the partition is 12:01:00.
  • the scheduling function unit 65 sets the first processing section PZ1. Is selected as the processing section PZ for processing the first substrate W.
  • FIG. 13B shows an example in which the first substrate W is processed by the processing unit MPC having the oldest modified unit last use time among all the processing units MPC1 to MPC8 belonging to the first processing section PZ1. Therefore, the section last use time of the first processing section PZ1 is changed to a time different from the time before scheduling of the first substrate W.
  • FIG. 13B shows an example in which the partition last use time of the first processing partition PZ1 is updated from 12:00:00 to 12: 1: 30.
  • the scheduling function unit 65 selects the second processing section PZ2 as the processing section PZ for processing the second substrate W, and the correction unit last use time is the oldest among all the processing units MPC9 to MPC16 belonging to the second processing section PZ2.
  • a schedule for causing the processing unit MPC to process the substrate W is created. Therefore, as shown in FIG. 13C, the section last use time of the second processing section PZ2 is updated from 12:00:30 to 12:02:00.
  • the scheduling function unit 65 selects the third processing section PZ3 as the processing section PZ for processing the third substrate W, and the correction unit final use time is the oldest among all the processing units MPC17 to MPC24 belonging to the third processing section PZ3.
  • a schedule for causing the processing unit MPC to process the substrate W is created. Therefore, as shown in FIG. 13D, the section last use time of the third processing section PZ3 is updated from 12:01:00 to 12:02:00.
  • the scheduling function unit 65 selects the first processing section PZ1 as the processing section PZ for processing the fourth substrate W, and the correction unit last use time is the oldest among all the processing units MPC1 to MPC8 belonging to the first processing section PZ1.
  • a schedule for causing the processing unit MPC to process the substrate W is created. Therefore, as shown in FIG. 13E, the section last use time of the first processing section PZ1 is updated from 12:01:30 to 12:03:00.
  • the processing section PZ having the oldest section last use time is selected from the three processing sections PZ as described above. If there are a plurality of processing sections PZ having the oldest section last use time, the processing section PZ having the maximum possible input rate is selected from them. If a plurality of processing sections PZ still remain, the processing section PZ having the smallest section number among the plurality of remaining processing sections PZ is selected.
  • scheduling according to the first embodiment will be described with reference to FIGS. 14A to 14F and FIGS. 15A to 15B, and then scheduling according to the first comparative example will be described with reference to FIGS. 16A to 16F and FIG. Will be described.
  • FIG. 14A to FIG. 14F are tables showing examples of the input possibility rate, the partition last use time, the oldest chamber number, and the effective chamber number according to the first embodiment. 14A to 14F, after scheduling a plurality of substrates W to which the first recipe for processing the substrate W for the first processing time is applied, the substrate W is subjected to a second processing time shorter than the first processing time.
  • An example of the transition of the usage history data 82 in the storage unit 63 when scheduling a plurality of substrates W to which the second recipe is applied is shown.
  • the input rate of each processing section PZ is 100% ((8/8) ⁇ 100), and the final use of each processing section PZ
  • the time is an initial value (0 in FIG. 14A), and the oldest chamber number of each processing section PZ is eight.
  • the number of effective chambers in each processing section PZ is eight.
  • Each unit last use time is an initial value.
  • all the processing units MPC1 to MPC24 are designated as parallel processing units.
  • the first processing time specified in the first recipe is, for example, 240 seconds
  • the second processing time specified in the second recipe is, for example, 60 seconds.
  • the scheduling function unit 65 selects the first processing section PZ1 having the smallest section number as the processing section PZ for processing the first substrate W. Therefore, as shown in FIG. 14B, the number of oldest chambers of the first processing section PZ1 is reduced from 8 to 7, and the input possibility rate of the first processing section PZ1 is 87.5% ((7/8) ⁇ 100). To decrease.
  • the section final use time is the initial value for any processing section PZ, and the second processing is performed. Since the input possibility ratio of the section PZ2 and the third processing section PZ3 is the highest, the scheduling function unit 65 selects the second processing section PZ2 having the smallest section number for the second substrate W. Therefore, as shown in FIG. 14C, the number of oldest chambers in the second processing section PZ2 is reduced from 8 to 7, and the input possibility rate of the second processing section PZ2 is 87.5% ((7/8) ⁇ 100). To decrease.
  • the scheduling function unit 65 selects the third process section PZ3 for the third substrate W. Therefore, as shown in FIG. 14D, the number of oldest chambers in the third processing section PZ3 is reduced from 8 to 7, and the charging rate of the third processing section PZ3 is 87.5% ((7/8) ⁇ 100). To decrease.
  • the scheduling function unit 65 selects the first processing section PZ1 having the smallest section number as the processing section PZ for processing the fourth substrate W. Therefore, as shown in FIG. 14E, the number of oldest chambers in the first processing section PZ1 is decreased from 6 to 7, and the input possibility rate of the first processing section PZ1 is decreased to 75% ((6/8) ⁇ 100). To do.
  • the section final use time is the initial value for any processing section PZ, and the second processing is performed. Since the input possibility ratio of the section PZ2 and the third processing section PZ3 is the highest, the scheduling function unit 65 selects the second processing section PZ2 having the smallest section number for the fifth substrate W. Therefore, as shown in FIG. 14F, the number of oldest chambers in the second processing section PZ2 is reduced from 7 to 6, and the input possibility rate of the second processing section PZ2 is reduced to 75% ((6/8) ⁇ 100). To do.
  • FIG. 15A and 15B are time charts showing a schedule according to the first embodiment.
  • FIG. 15A shows an example of a schedule after scheduling of the first and second substrates W1 and W2 to which the first recipe for processing the substrate W for the first processing time is applied.
  • the first substrate W1 is processed by the processing unit MPC1 in the first processing section PZ1
  • the second substrate W2 is processed by the processing unit MPC9 in the second processing section PZ2.
  • a schedule has been created.
  • FIG. 15B shows an example of a schedule after scheduling the third to sixth substrates W3 to W6 to which the second recipe for processing the substrate W for the second processing time is applied.
  • the third substrate W3 is processed by the processing unit MPC17 of the third processing section PZ3
  • the fourth substrate W4 is processed by the processing unit MPC2 of the first processing section PZ1.
  • a schedule has been created.
  • the fifth substrate W5 is processed by the processing unit MPC10 in the second processing section PZ2
  • the sixth substrate W6 is processed by the processing unit MPC18 in the third processing section PZ3.
  • a schedule has been created.
  • the processing partition PZ is selected with priority given first to the partition last use time representing the oldest time among the correction unit final use times of all the processing units MPC belonging to the same processing partition PZ, Not only when the processing time of the substrate W does not change, but also when the processing time of the substrate W decreases, all the processing sections PZ1 to PZ3 can be selected equally, and an empty processing unit MPC can be selected efficiently. Therefore, the operating rate of the substrate processing apparatus 1 can be increased as compared with the case where the processing section PZ is selected by giving priority to the section usage rate as described later.
  • 16A to 16F are not the oldest time among the correction unit final use times of all the processing units MPC belonging to a certain processing partition PZ, but all the processing units MPC belonging to a certain processing partition PZ. It means the latest time of the unit last use time. Therefore, when a schedule for processing the substrate W by one processing unit MPC belonging to a certain processing section PZ is created, even if the unit final use time of another processing unit MPC belonging to the processing section PZ is an initial value, The section last use time of the processing section PZ is changed to the unit last use time of the processing unit MPC that processes the substrate W.
  • FIGS. 16A to 16F are tables showing an example of the partition usage rate, the partition final use time, and the number of effective chambers according to the first comparative example.
  • 16A to 16F after scheduling a plurality of substrates W to which the first recipe for processing the substrate W for the first processing time is applied, the substrate W is subjected to a second processing time shorter than the first processing time.
  • An example of the transition of the usage history data 82 in the storage unit 63 when scheduling a plurality of substrates W to which the second recipe is applied is shown.
  • the partition usage rate of each processing partition PZ is 0, and the final partition use time is an initial value (0 in FIG. 16A).
  • the number of effective chambers in each processing section PZ is three.
  • all the processing units MPC1 to MPC24 are designated as parallel processing units.
  • the first processing time specified in the first recipe is, for example, 240 seconds
  • the second processing time specified in the second recipe is, for example, 60 seconds.
  • the scheduling function unit 65 selects the first processing section PZ1 having the smallest section number as the processing section PZ for processing the first substrate W. Therefore, as shown in FIG. 16B, the partition usage rate of the first processing partition PZ1 increases.
  • the section usage rates of the second processing section PZ2 and the third processing section PZ3 are zero. Since the last use time of the second processing section PZ2 and the third processing section PZ3 is an initial value, the scheduling function unit 65 processes the second substrate W in the second processing section PZ2 having the smallest section number. Select as processing section PZ. Therefore, as shown in FIG. 16C, the partition usage rate of the second processing partition PZ2 increases.
  • FIG. 16D When the processing section PZ for processing the fourth substrate W to which the second recipe is applied is selected, as shown in FIG. 16D, the partition usage rate of the third processing section PZ3 is still the smallest, so the scheduling function unit 65 Selects the third processing section PZ3 as the processing section PZ for processing the fourth substrate W. Therefore, as shown in FIG. 16E, the partition usage rate of the third processing partition PZ3 increases.
  • FIG. 16E When the processing section PZ for processing the fifth substrate W to which the second recipe is applied is selected, as shown in FIG. 16E, the partition usage rate of the third processing section PZ3 is still the smallest, so the scheduling function unit 65 Selects the third processing section PZ3 as the processing section PZ for processing the fifth substrate W. Therefore, as shown in FIG. 16F, the partition usage rate of the third processing partition PZ3 increases.
  • FIG. 17 is a time chart showing a schedule after the processing section PZ is selected with priority given to the section usage rate, and the third to sixth substrates W3 to W6 are scheduled.
  • the third processing section PZ3 is selected for the sixth substrate W6. Therefore, as shown in FIG. 17, the sixth substrate W6 belongs to the third processing section PZ3 even though there are processing units MPC free in the first processing section PZ1 and the second processing section PZ2. A schedule is created to be processed by the MPC 17. Therefore, when the sixth substrate W6 is processed in the first processing section PZ1 or the second processing section PZ2, the sixth substrate W6 can be immediately transferred to the third substrate W6. When processing is performed in the processing section PZ3, it is necessary to delay the start of conveyance until the processing unit MPC17 finishes processing the third substrate W3.
  • the third substrate W3 is scheduled to be processed by the processing unit MPC17.
  • the substrate W4 is processed by the processing unit MPC2, and a schedule is created so that the fifth substrate W5 is processed by the processing unit MPC10.
  • a schedule is created so that the sixth substrate W6 is processed by the processing unit MPC17. Accordingly, in the example shown in FIG. 15B, an empty processing unit MPC is efficiently selected, so that the conveyance delay as shown in FIG. 17 can be prevented and the operating rate of the substrate processing apparatus 1 can be increased.
  • FIG. 18 is a table showing an example of the unit last use time, the transport time, and the modified unit last use time according to the second embodiment.
  • 19A to 19D are time charts showing schedules according to the second embodiment.
  • FIGS. 19A to 19B show an example of a schedule after performing scheduling of the first to eleventh substrates W1 to W11 to which the first recipe for processing the substrate W for the first processing time is applied.
  • FIG. 19A shows a schedule up to the time when processing of the first substrate W1 ends
  • FIG. 19B shows a continuation of FIG. 19A.
  • FIG. 19C shows an example of a schedule after scheduling the 12th substrate W12 to which the second recipe for processing the substrate W for the second processing time is applied.
  • FIG. 19D shows an example of a schedule after scheduling the 13th to 15th substrates W13 to W15 to which the second recipe for processing the substrate W for the second processing time is applied.
  • 19A to 19D show examples in which the processing units MPC1, MPC2, MPC3, MPC9, MPC10, MPC11, MPC17, MPC18, and MPC19 are effective processing units MPC. Therefore, the number of effective chambers in each processing section PZ is three.
  • all the processing units MPC1 to MPC24 are designated as parallel processing units.
  • the first processing time specified in the first recipe is, for example, 240 seconds
  • the second processing time specified in the second recipe is, for example, 60 seconds.
  • the input possibility rate of each processing section PZ is 100% ((3/3) ⁇ 100), and the last use time of each processing section PZ is an initial value.
  • the oldest number of chambers in each processing section PZ is three.
  • the situation before scheduling the first substrate W is substantially the same as the example described with reference to FIGS. 10A to 10E. Therefore, the scheduling of the first to eleventh substrates W1 to W11 is performed in the same manner as the example described with reference to FIGS. 10A to 10E.
  • the first substrate W1 is processed by the processing unit MPC1
  • the second substrate W2 is processed by the processing unit MPC9
  • the third substrate W3 is processed by the processing unit MPC17.
  • a schedule is created to be processed in Also, a schedule is created so that the fourth substrate W4 is processed by the processing unit MPC2, the fifth substrate W5 is processed by the processing unit MPC10, and the sixth substrate W6 is processed by the processing unit MPC18. Is done. Further, a schedule is created so that the seventh substrate W7 is processed by the processing unit MPC1, the eighth substrate W8 is processed by the processing unit MPC9, and the ninth substrate W9 is processed by the processing unit MPC17. Is done.
  • a schedule is created so that the tenth substrate W10 is processed by the processing unit MPC1 and the eleventh substrate W11 is processed by the processing unit MPC9. That is, the tenth substrate W10 is processed by the processing unit MPC1 after the first substrate W1 is processed by the processing unit MPC1. The eleventh substrate W11 is processed by the processing unit MPC9 after the second substrate W2 is processed by the processing unit MPC9. In this way, a schedule for processing the first to eleventh substrates W1 to W11 is created.
  • the unit last use time (time T1 to T7) of each processing unit MPC after the schedule for processing the eleventh substrate W11 is created is shown.
  • the unit final use time of the processing unit MPC1 at the time when the schedule for processing the eleventh substrate W11 is created is the time T6, and the unit final use time of the processing unit MPC2 at this time is the time T1.
  • the unit last use time of the processing unit MPC3 is time T3. The earliest time among these is time T1.
  • FIG. 18 shows the unit last use time, transfer time, and correction unit last use time of all effective processing units MPC at the time when the schedule for processing the 11th substrate W11 is created.
  • the transfer time of the first processing section PZ1 to which the processing units MPC1, MPC2, and MPC3 belong is the transfer time t1. Therefore, the correction unit final use time of the processing unit MPC1 is time T6 ⁇ transport time t1, the correction unit final use time of the processing unit MPC2 is time T1—transport time t1, and the correction unit final use time of the processing unit MPC3 is Time T3 ⁇ transport time t1. The earliest time among these is time T1 ⁇ transport time t1.
  • the unit final use time of the processing unit MPC9 is time T7
  • the unit final use time of the processing unit MPC10 is time T2
  • the unit final use time of the processing unit MPC11 is time T4.
  • the earliest time among these is time T2.
  • the transport time of the second processing section PZ2 to which the processing unit MPC9, the processing unit MPC10, and the processing unit MPC11 belong is a transport time t2. Therefore, the correction unit final use time of the processing unit MPC9 is time T7-transport time t2, the correction unit final use time of the processing unit MPC10 is time T2-transport time t2, and the correction unit final use time of the processing unit MPC11 is Time T4 ⁇ transport time t2. The earliest time among these is time T2 ⁇ transport time t2.
  • the unit final use time of the processing unit MPC17 is time T1
  • the unit final use time of the processing unit MPC18 is time T3
  • the unit final use time of the processing unit MPC19 is time T5.
  • the earliest time among these is time T2.
  • the transfer time of the second processing section PZ2 to which the processing unit MPC17, the processing unit MPC18, and the processing unit MPC19 belong is the transfer time t2.
  • the correction unit final use time of the processing unit MPC17 is time T1 ⁇ transport time t2
  • the correction unit final use time of the processing unit MPC18 is time T3 ⁇ transport time t2
  • the correction unit final use time of the processing unit MPC19 is Time T5—transport time t2.
  • the earliest time among these is time T1 ⁇ transport time t2.
  • the final use time of the first processing section PZ1 at the time when the schedule for processing the eleventh substrate W11 is created is time T1 ⁇ transport time t1.
  • the section last use time of the second processing section PZ2 at this time is time T2 ⁇ transport time t2.
  • the section last use time of the third processing section PZ3 at this time is time T1 ⁇ transport time t2.
  • the transport time t1 is shorter than the transport time t2. Therefore, the partition last use time (T1-S2) of the third processing partition PZ3 is the oldest among the partition last use times of the three processing partitions PZ.
  • the scheduling function unit 65 sets the third process partition PZ3 for the 12th substrate W. select.
  • FIG. 19C shows an example in which the twelfth substrate W12 is scheduled to be processed by the processing unit MPC17 belonging to the third processing section PZ3.
  • the unit last use time and the correction unit last use time of the processing unit MPC17 are updated, and the section last use time of the third processing section PZ3 is updated. Updated.
  • the processing time (second processing time) of the twelfth substrate W12 is shorter than the processing times (first processing time) of the first to eleventh substrates W1 to W11. That is, the second recipe that applies the second processing time shorter than the first processing time to the substrate W12 is applied to the twelfth substrate W12. Similarly, the second recipe is applied to the 13th to 15th substrates W13 to W15.
  • FIG. 19D shows a schedule in which the thirteenth substrate W13 is processed by the processing unit MPC2, the fourteenth substrate W14 is processed by the processing unit MPC10, and the fifteenth substrate W15 is processed by the processing unit MPC18. An example is shown.
  • FIG. 20 is a time chart showing a schedule according to the second comparative example. After the processing section PZ is selected by giving priority to the section usage rate, the 12th to 15th substrates W12 to W15 are scheduled. An example of the schedule is shown.
  • the number of effective chambers and parallel processing units in each processing section PZ are the same as in the second embodiment.
  • the first recipe is applied to the first to eleventh substrates W1 to W11, and the second recipe is applied to the twelfth to fifteenth substrates W12 to W15.
  • the schedule up to the eleventh substrate W11 is the same as in the second embodiment.
  • the twelfth substrate W12 becomes the third processing section PZ3 as in the second embodiment.
  • a schedule is created so that it can be processed.
  • FIG. 20 shows an example in which the twelfth substrate W12 is scheduled to be processed by the processing unit MPC17.
  • the processing units MPC that are vacant (for example, the processing unit MPC2 and the processing unit MPC10) become the first processing section PZ1 and the second processing section.
  • the thirteenth substrate W13 is scheduled to be processed by the processing unit MPC18 belonging to the third processing section PZ3.
  • the fourteenth substrate W14 is processed by the processing unit MPC19 belonging to the third processing section PZ3, and the fifteenth substrate W15 is scheduled to be processed by the processing unit MPC17 belonging to the third processing section PZ3.
  • the indexer robot IR (see FIG. 1) simultaneously carries the 14th to 15th substrates W14 to W15 from the carrier C on the load port LP, and the 14th to 15th substrates W14 to W15 to the load port LP.
  • the example which carries in to the upper carrier C simultaneously is shown.
  • FIGS. 19A to 19D the 14th to 15th substrates W14 to W15 are unloaded from the carrier C at the unloading time X1, and are loaded into the carrier C at the loading time Y1.
  • the 14th to 15th substrates W14 to W15 are unloaded from the carrier C at the unloading time X2, and are loaded into the carrier C at the loading time Y2.
  • the 12th to 15th substrates W12 to W15 are processed by a plurality of processing units MPC under the same conditions, as shown in FIG.
  • the unloading time X1 is earlier by the time Z1 than the unloading time X2 according to the second comparative example
  • the unloading time Y1 according to the second embodiment is earlier by the time Z1 than the loading time Y2 according to the second comparative example. Therefore, in the second embodiment, the three processing sections PZ can be selected equally, and not only can the operating rate of the substrate processing apparatus 1 be increased, but also the number of processed substrates W per unit time compared to the second comparative example. Can be increased. Thereby, the throughput of the substrate processing apparatus 1 can be increased.
  • one processing partition PZ is selected from the plurality of processing partitions PZ based on the partition final use time. To do. Then, one processing unit MPC is selected from the plurality of processing units MPC belonging to the selected processing section PZ. Thereafter, the substrate W is transported from the carrier C on the load port LP to the selected processing unit MPC by the indexer robot IR, the first main transport robot CR1, and the second main transport robot CR2 included in the substrate transport system TS1.
  • a plurality of processing sections PZ can be selected equally, and all the processing units MPC1 provided in the substrate processing apparatus 1 MPC 24 can be used evenly. Thereby, the operation rate of the substrate processing apparatus 1 can be increased.
  • the partition last use time is specified based on the oldest modified unit last use time, not the oldest unit last use time.
  • the correction unit last use time is the time when the substrate W is transferred from the carrier C on the load port LP to the processing unit MPC from the unit last use time indicating the time when the processing unit MPC is used last for processing the substrate W. This is the time obtained by subtracting the transport time required for. Therefore, the difference in transport time among the plurality of processing sections PZ can be reduced, and it is possible to avoid selecting only the processing section PZ closer to the load port LP. Thereby, the plurality of processing sections PZ can be selected more evenly.
  • the same value is registered as the transport time for a plurality of processing units MPC belonging to the same processing section PZ. Even for a plurality of processing units MPC belonging to the same processing section PZ, the transport distances are strictly different, so the transport times are also strictly different. However, if the processing sections PZ to which they belong are the same, the difference in transport time is small, and the transport time is approximately equal between these processing units MPC. Therefore, if the same value is registered as the transport time for a plurality of processing units MPC belonging to the same processing section PZ, the setting of the transport time can be simplified while reducing the difference in transport time between these processing sections PZ.
  • the processing section PZ having the maximum possible input rate is selected from among the processing sections PZ. In many cases, this means that the processing section PZ having the largest number of processing units MPC with the oldest unit last use time is selected. If an abnormality occurs in the processing unit MPC before the substrate W is transferred to the selected processing unit MPC or when the substrate W is transferred to the selected processing unit MPC, another processing unit MPC is selected. It is necessary to redo. In such a case, if there is another processing unit MPC having the oldest unit last use time in the same processing section PZ, that processing unit MPC can be selected as a new processing unit MPC. Therefore, a new transport path for the substrate W can be set with a relatively simple change.
  • the processing unit MPC such as a device that is provided in the processing unit MPC such as the spin chuck 33 and the scrub member 37 or a pump that sends the chemical liquid to the chemical nozzle 34 is used.
  • Related devices can be used equally. Therefore, the degree of wear of these consumables can be leveled, and the frequency of maintenance can be reduced. Thereby, the operation rate of the substrate processing apparatus 1 can be further increased.
  • the example in which the processing time of the substrate W is reduced from the first processing time to the second processing time has been described.
  • one processing partition PZ is selected from among the plurality of processing partitions PZ based on the partition last use time, compared to the case where the processing partition PZ is selected based on the size relationship of the partition usage rate.
  • a plurality of processing sections PZ can be selected equally. Therefore, even when the transport path and processing time of the substrate W are different, all the processing units MPC can be used evenly, and the operating rate of the substrate processing apparatus 1 can be further increased.
  • the processing section PZ may be classified based on the transport distance instead of the transport time.
  • the number of processing units MPC belonging to the same processing section PZ may be different among the three processing sections PZ.
  • the number of processing sections PZ provided in the substrate processing apparatus 1 may be two or five or more.
  • the second processing section PZ2 and the third processing section PZ3 may be handled as one processing section PZ.
  • the third processing section PZ3 may be omitted.
  • the first main transfer robot CR1 may carry in and out the substrates W with respect to all the processing units MPC belonging to the first processing section PZ1 and the second processing section PZ2. .
  • the second main transfer robot CR2 and the second delivery unit PASS2 are unnecessary.
  • the transport time of the second processing section PZ2 may be different from the transport time of the third processing section PZ3, or may be equal to the transport time of the first processing section PZ1.
  • the same value is not registered as the transport time for a plurality of processing units MPC belonging to the same processing section PZ, but the transport time may be registered for each processing unit MPC. That is, the transfer times registered for a plurality of processing units MPC belonging to the same processing section PZ may be different from each other.
  • the scheduling function unit is not the processing partition PZ with the highest possible input rate but the processing partition with the maximum oldest chamber number.
  • the PZ may be searched among a plurality of processing sections included in the candidate section.
  • the processing section PZ is selected based on the section number instead of selecting the processing section PZ based on the input possibility rate. May be.
  • an arbitrary processing section PZ may be selected from among a plurality of processing sections PZ having the oldest section last use time.
  • the unit last use time may be used instead of the modified unit last use time.
  • the modified unit last use time may be used instead of the unit last use time.
  • the partition last use time may be specified based on the oldest unit last use time, not the oldest modified unit last use time. When selecting the processing unit MPC for processing the substrate W, the oldest partition last use time may be given priority first, but the oldest modification unit last use time may be given priority first.
  • the processing unit MPC is not limited to the front surface cleaning unit shown in FIG. 3 and the end surface cleaning unit shown in FIG. 4, but a front surface scrub cleaning unit that cleans the surface of the substrate W with a scrub member, a back surface cleaning unit that cleans the back surface of the substrate W, and the like. Other types of processing units may be used. A plurality of types of processing units may be provided in one substrate processing apparatus 1.
  • Substrate processing device 60 Computer (control device) 71: Schedule creation program 72: Processing execution program C: Carrier CR1: First main transfer robot CR2: Second main transfer robot IR: Indexer robot LP: Load port MPC: Processing unit TS1: Substrate transfer system W: Substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Robotics (AREA)
  • Automation & Control Theory (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Materials For Photolithography (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

In the present invention, one processing section is selected from among a plurality of processing sections on the basis of the final section usage time. The final section usage time is the latest of the final unit usage times for a plurality of processing units belonging to the same processing section, or the corrected final unit usage times. The corrected unit final use time is the time obtained by substracting the transport time from the final unit usage time. Also, one processing unit is selected from among the plurality of processing units belonging to a selected processing section. Thereafter, a substrate is transported by a substrate transport system from a carrier on a load port to the selected processing unit.

Description

基板処理方法、基板処理装置、およびコンピュータプログラムSubstrate processing method, substrate processing apparatus, and computer program
 この出願は、2018年5月11日提出の日本国特許出願2018-092485号に基づく優先権を主張しており、この出願の全内容はここに引用により組み込まれるものとする。 This application claims priority based on Japanese Patent Application No. 2018-092485 filed on May 11, 2018, the entire contents of which are incorporated herein by reference.
 本発明は、基板を処理する基板処理方法および基板処理装置と、基板処理装置に備えられた制御装置によって実行されるコンピュータプログラムとに関する。処理対象の基板には、たとえば、半導体ウエハ、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板、液晶表示装置や有機EL(electroluminescence)表示装置などのFPD(Flat Panel Display)用基板などが含まれる。 The present invention relates to a substrate processing method and a substrate processing apparatus for processing a substrate, and a computer program executed by a control device provided in the substrate processing apparatus. Examples of substrates to be processed include semiconductor wafers, optical disk substrates, magnetic disk substrates, magneto-optical disk substrates, photomask substrates, ceramic substrates, solar cell substrates, liquid crystal display devices, and organic EL (electroluminescence) displays. FPD (Flat Panel Display) substrates such as devices are included.
 半導体装置や液晶表示装置などの製造工程では、半導体ウエハや液晶表示装置用ガラス基板などの基板を処理する基板処理装置が用いられる。特許文献1には、複数の処理ユニットを備える基板処理装置のためのスケジューリングが開示されている。 In a manufacturing process of a semiconductor device or a liquid crystal display device, a substrate processing apparatus for processing a substrate such as a semiconductor wafer or a glass substrate for a liquid crystal display device is used. Patent Document 1 discloses scheduling for a substrate processing apparatus including a plurality of processing units.
 特許文献1に記載のスケジューリングでは、複数の処理ユニットが搬送経路長または搬送時間に基づいて複数の処理区画に分類されている。基板を処理するスケジュールを作成するときは、複数の処理区画の中から1つの処理区画が選択される。その後、選択された処理区画に属する複数の処理ユニットの中から1つの処理ユニットが選択される。スケジュールは、選択された処理ユニットで基板が処理されるように作成される。このスケジュールが実行されることで、基板が実際に搬送および処理される。 In the scheduling described in Patent Document 1, a plurality of processing units are classified into a plurality of processing sections based on the transport path length or transport time. When creating a schedule for processing a substrate, one processing section is selected from a plurality of processing sections. Thereafter, one processing unit is selected from a plurality of processing units belonging to the selected processing section. The schedule is created so that the substrate is processed in the selected processing unit. By executing this schedule, the substrate is actually transported and processed.
 また、特許文献1に記載のスケジューリングでは、区画使用率の大小関係に基づいて処理区画を選択し、区画使用率が等しい複数の処理区画が存在する場合は、区画最終使用時刻に基づいて処理区画を選択することが開示されている。区画使用率は、基板の処理のために要する時間を当該基板を処理する処理区画における有効な(利用可能な)処理ユニットの数で除した値である。 In the scheduling described in Patent Document 1, when a processing partition is selected based on the size relationship of the partition usage rate and there are a plurality of processing partitions having the same partition usage rate, the processing partition is based on the partition final use time. Is disclosed. The partition usage rate is a value obtained by dividing the time required for processing a substrate by the number of effective (available) processing units in the processing partition for processing the substrate.
 特許文献1の段落0059には、「当該処理区画PZに属する処理ユニットMPCのユニット最終使用時刻のうちで最も遅いものを区画最終使用時刻として記憶部63に登録する。」との記載がある。特許文献1の段落0099には、「区画使用率に第1優先順位が与えられ、区画最終使用時刻に第2優先順位が与えられ、区画番号(搬送距離または搬送時間)に対して第3優先順位が与えられている。しかし、区画最終使用時刻と区画使用率の優先順位を反転してもよい。」との記載がある。 In paragraph 0059 of Patent Document 1, there is a description that “the latest one of the unit last use times of the processing units MPC belonging to the processing section PZ is registered in the storage unit 63 as the section last use time”. In paragraph 00099 of Patent Document 1, “the first priority is given to the section usage rate, the second priority is given to the last use time of the section, and the third priority is given to the section number (transport distance or transport time). However, there is a description that the priority order of the partition last use time and the partition usage rate may be reversed.
特開2017-183545号公報JP 2017-183545 A
 特許文献1に記載のスケジューリングは、区画使用率の大小関係に基づいて処理区画を選択することで複数の処理区画を均等に選択し、基板処理装置に備えられた全ての処理ユニットが満遍なく使用されるようにスケジュールを作成している。 In the scheduling described in Patent Document 1, a plurality of processing sections are selected equally by selecting processing sections based on the size relationship of the section usage rates, and all processing units provided in the substrate processing apparatus are used evenly. A schedule is created so that
 しかしながら、本発明者の研究によると、特許文献1に記載のスケジューリングでは、各処理区画における基板の投入状況を判断することができず、そのため、空いている処理ユニットが他の処理区画に存在するにもかかわらず、全ての処理ユニットが使用中の処理区画が選択される場合があることが分かった。 However, according to the research of the present inventor, in the scheduling described in Patent Document 1, it is not possible to determine the loading state of the substrate in each processing section, and therefore there are vacant processing units in other processing sections. Nevertheless, it has been found that the processing compartment in use by all processing units may be selected.
 具体的には、基板の処理時間が減少する場合にこのような処理区画が選択されることが分かった。たとえば、図17に示すように、6枚目の基板W6は、第1処理区画PZ1および第2処理区画PZ1に空いている処理ユニットMPCがあるにもかかわらず、第3処理区画PZ3に属する処理ユニットMPC17で処理される。この場合、処理ユニットMPC17が空くまで基板W6の搬送を遅らせる必要があり、基板処理装置の稼働率が低下してしまう。したがって、特許文献1に記載の発明には改善の余地がある。 Specifically, it has been found that such a processing section is selected when the processing time of the substrate decreases. For example, as shown in FIG. 17, the sixth substrate W6 has a process belonging to the third processing section PZ3 even though there are processing units MPC free in the first processing section PZ1 and the second processing section PZ1. It is processed by the unit MPC17. In this case, it is necessary to delay the conveyance of the substrate W6 until the processing unit MPC17 becomes empty, and the operation rate of the substrate processing apparatus is lowered. Therefore, the invention described in Patent Document 1 has room for improvement.
 そこで、本発明の目的の一つは、基板処理装置に備えられた全ての処理ユニットを満遍なく使用するとともに、基板処理装置の稼働率を高めることができる基板処理方法、基板処理装置、およびコンピュータプログラムを提供することである。 Accordingly, one of the objects of the present invention is to provide a substrate processing method, a substrate processing apparatus, and a computer program that can uniformly use all the processing units provided in the substrate processing apparatus and increase the operating rate of the substrate processing apparatus. Is to provide.
 本発明の一実施形態は、ロードポート上のキャリアから基板を処理する複数の処理ユニットまで基板搬送システムに前記基板を搬送させる基板処理装置によって実行される基板処理方法であって、前記複数の処理ユニットのそれぞれが、前記ロードポート上の前記キャリアから前記処理ユニットに前記基板を搬送するのに要する搬送時間、または、前記ロードポートから前記処理ユニットまでの距離を表す搬送距離に基づいて分類された複数の処理区画のいずれに属するかを確認する所属確認ステップと、前記処理ユニットが前記基板の処理のために最後に使用される時刻を表すユニット最終使用時刻を、前記複数の処理ユニットのそれぞれについて取得するユニット最終使用時刻取得ステップと、前記ユニット最終使用時刻取得ステップで取得された複数の前記ユニット最終使用時刻と前記複数の処理ユニットについての前記搬送時間とに基づいて、同じ前記処理ユニットにおいて前記ユニット最終使用時刻から前記搬送時間を引いた時刻を表す修正ユニット最終使用時刻を、前記複数の処理ユニットのそれぞれについて計算する修正ユニット最終使用時刻計算ステップと、前記修正ユニット最終使用時刻計算ステップで得られた複数の前記修正ユニット最終使用時刻に基づいて、同じ前記処理区画に属する複数の前記処理ユニットの前記修正ユニット最終使用時刻のうちで最も古い時刻を表す区画最終使用時刻を、前記複数の処理区画のそれぞれについて特定する区画最終使用時刻特定ステップと、前記区画最終使用時刻特定ステップで特定された複数の前記区画最終使用時刻に基づいて、前記区画最終使用時刻が最も古い1つの前記処理区画を、前記複数の処理区画の中から選択する区画選択ステップと、前記区画選択ステップで選択した前記処理区画に属する複数の前記処理ユニットの中から1つの前記処理ユニットを選択するユニット選択ステップと、前記基板搬送システムに前記基板を前記ロードポート上の前記キャリアから前記ユニット選択ステップで選択した前記処理ユニットまで搬送させる基板搬送ステップと、を含む、基板処理方法を提供する。 One embodiment of the present invention is a substrate processing method that is executed by a substrate processing apparatus that transfers a substrate to a substrate transfer system from a carrier on a load port to a plurality of processing units that process the substrate. Each of the units was classified based on a transport time required to transport the substrate from the carrier on the load port to the processing unit, or a transport distance representing a distance from the load port to the processing unit. An affiliation confirmation step for confirming which of the plurality of processing sections belongs, and a unit last use time representing a time at which the processing unit is last used for processing the substrate, for each of the plurality of processing units Unit last use time acquisition step to be acquired, and unit last use time acquisition step Based on the acquired plurality of unit final use times and the transfer times for the plurality of processing units, the corrected unit final use representing the time obtained by subtracting the transfer time from the unit final use time in the same processing unit Based on the correction unit final use time calculation step for calculating the time for each of the plurality of processing units and the plurality of correction unit final use times obtained in the correction unit final use time calculation step, the same processing section A partition final use time specifying step for specifying a partition final use time representing the oldest time among the correction unit final use times of the plurality of processing units belonging to the plurality of processing partitions; and the partition final use At the time of the last use of a plurality of the sections specified in the time specifying step Based on the partition selection step of selecting the one processing partition having the oldest partition last use time from among the plurality of processing partitions, and the plurality of processes belonging to the processing partition selected in the partition selection step A unit selection step for selecting one of the processing units from among the units, and a substrate transfer step for causing the substrate transfer system to transfer the substrate from the carrier on the load port to the processing unit selected in the unit selection step; A substrate processing method is provided.
 この構成によれば、区画使用率の大小関係に基づいて処理区画を選択するのではなく、区画最終使用時刻に基づいて複数の処理区画の中から1つの処理区画を選択する。そして、選択された処理区画に属する複数の処理ユニットの中から1つの処理ユニットを選択する。その後、基板が、基板搬送システムによって、ロードポート上のキャリアから、選択された処理ユニットに搬送される。したがって、基板の処理時間が変化しない場合だけでなく、基板の処理時間が減少する場合も、複数の処理区画を均等に選択でき、基板処理装置に備えられた全ての処理ユニットを満遍なく使用することができる。これにより、基板処理装置の稼働率を高めることができる。 According to this configuration, instead of selecting a processing partition based on the size relationship of the partition usage rate, one processing partition is selected from a plurality of processing partitions based on the partition last use time. Then, one processing unit is selected from a plurality of processing units belonging to the selected processing section. Thereafter, the substrate is transferred from the carrier on the load port to the selected processing unit by the substrate transfer system. Therefore, not only when the processing time of the substrate does not change but also when the processing time of the substrate decreases, a plurality of processing sections can be selected equally, and all the processing units provided in the substrate processing apparatus should be used evenly. Can do. Thereby, the operation rate of a substrate processing apparatus can be raised.
 しかも、区画最終使用時刻は、最も古いユニット最終使用時刻ではなく、最も古い修正ユニット最終使用時刻に基づいて特定される。修正ユニット最終使用時刻は、処理ユニットが基板の処理のために最後に使用される時刻を表すユニット最終使用時刻から、ロードポート上のキャリアから処理ユニットに基板を搬送するのに要する搬送時間を引いた時刻である。したがって、複数の処理区画の間での搬送時間の差を減らすことができ、ロードポートに近い方の処理区画ばかりが選択されることを回避できる。これにより、複数の処理区画をさらに均等に選択できる。 Moreover, the partition last use time is specified based on the oldest modified unit last use time, not the oldest unit last use time. The correction unit last use time is obtained by subtracting the transport time required to transport the substrate from the carrier on the load port to the processing unit from the unit last use time, which represents the time when the processing unit is last used for substrate processing. Time. Therefore, it is possible to reduce the difference in transport time between the plurality of processing sections, and to avoid selecting only the processing section closer to the load port. Thereby, a plurality of processing sections can be selected more evenly.
 本発明の他の実施形態は、ロードポート上のキャリアから基板を処理する複数の処理ユニットまで基板搬送システムに前記基板を搬送させる基板処理装置によって実行される基板処理方法であって、前記複数の処理ユニットのそれぞれが、前記ロードポート上の前記キャリアから前記処理ユニットに前記基板を搬送するのに要する搬送時間、または、前記ロードポートから前記処理ユニットまでの距離を表す搬送距離に基づいて分類された複数の処理区画のいずれに属するかを確認する所属確認ステップと、前記処理ユニットが前記基板の処理のために最後に使用される時刻を表すユニット最終使用時刻を、前記複数の処理ユニットのそれぞれについて取得するユニット最終使用時刻取得ステップと、前記ユニット最終使用時刻取得ステップで取得された複数の前記ユニット最終使用時刻に基づいて、同じ前記処理区画に属する複数の前記処理ユニットの前記ユニット最終使用時刻のうちで最も古い時刻を表す区画最終使用時刻を、前記複数の処理区画のそれぞれについて特定する区画最終使用時刻特定ステップと、前記区画最終使用時刻特定ステップで特定された複数の前記区画最終使用時刻に基づいて、前記区画最終使用時刻が最も古い1つの前記処理区画を、前記複数の処理区画の中から選択する区画選択ステップと、前記区画選択ステップで選択した前記処理区画に属する複数の前記処理ユニットの中から1つの前記処理ユニットを選択するユニット選択ステップと、前記基板搬送システムに前記基板を前記ロードポート上の前記キャリアから前記ユニット選択ステップで選択した前記処理ユニットまで搬送させる基板搬送ステップと、を含む、基板処理方法を提供する。 Another embodiment of the present invention is a substrate processing method executed by a substrate processing apparatus that transfers a substrate to a substrate transfer system from a carrier on a load port to a plurality of processing units that process the substrate. Each of the processing units is classified based on a transport time required to transport the substrate from the carrier on the load port to the processing unit or a transport distance representing a distance from the load port to the processing unit. An affiliation confirmation step for confirming which one of the plurality of processing sections belongs, and a unit last use time indicating a time when the processing unit is used for the last processing of the substrate, A unit last use time acquisition step to acquire the unit last use time acquisition step. Based on the plurality of unit final use times acquired in step (2), the partition final use time representing the oldest time among the unit final use times of the plurality of processing units belonging to the same processing partition is determined as the plurality of processes. Based on the partition final use time specifying step specified for each of the partitions and the plurality of partition final use times specified in the partition final use time specifying step, the one processing partition having the oldest partition final use time is determined. A section selecting step for selecting from among the plurality of processing sections; a unit selecting step for selecting one processing unit from among the plurality of processing units belonging to the processing section selected in the section selecting step; The unit selection step from the carrier on the load port to the substrate to the substrate transfer system Including a substrate transfer step of conveying to a selected said processing unit, and to provide a substrate processing method.
 この構成によれば、区画使用率の大小関係に基づいて処理区画を選択するのではなく、区画最終使用時刻に基づいて複数の処理区画の中から1つの処理区画を選択する。そして、選択された処理区画に属する複数の処理ユニットの中から1つの処理ユニットを選択する。その後、基板が、基板搬送システムによって、ロードポート上のキャリアから、選択された処理ユニットに搬送される。したがって、基板の処理時間が変化しない場合だけでなく、基板の処理時間が減少する場合も、複数の処理区画を均等に選択でき、基板処理装置に備えられた全ての処理ユニットを満遍なく使用することができる。これにより、基板処理装置の稼働率を高めることができる。 According to this configuration, instead of selecting a processing partition based on the size relationship of the partition usage rate, one processing partition is selected from a plurality of processing partitions based on the partition last use time. Then, one processing unit is selected from a plurality of processing units belonging to the selected processing section. Thereafter, the substrate is transferred from the carrier on the load port to the selected processing unit by the substrate transfer system. Therefore, not only when the processing time of the substrate does not change but also when the processing time of the substrate decreases, a plurality of processing sections can be selected equally, and all the processing units provided in the substrate processing apparatus should be used evenly. Can do. Thereby, the operation rate of a substrate processing apparatus can be raised.
 基板処理の開始時刻は、基板が処理ユニット内に搬入される時刻であってもよいし、基板の回転を開始する時刻であってもよいし、これら以外であってもよい。基板処理の終了時刻、つまり、ユニット最終使用時刻は、基板が処理ユニットから搬出される時刻であってもよいし、基板の回転を停止する時刻であってもよいし、これら以外であってもよい。基板が処理ユニット内に搬入される時刻および処理ユニットから搬出される時刻は、たとえば、処理ユニットの処理チャンバに設けられた開口を開閉するシャッターが開位置(開口が開かれる位置)への移動を開始する時刻であってもよい。 The start time of the substrate processing may be a time when the substrate is carried into the processing unit, may be a time when the substrate starts to rotate, or may be other than these. The end time of the substrate processing, that is, the unit last use time may be a time when the substrate is carried out of the processing unit, may be a time when the rotation of the substrate is stopped, or may be other than these times. Good. The time when the substrate is carried into the processing unit and the time when the substrate is carried out from the processing unit is, for example, that the shutter that opens and closes the opening provided in the processing chamber of the processing unit is moved to the open position (the position where the opening is opened). It may be a start time.
 前述の2つの実施形態において、以下の特徴の少なくとも一つが、前記基板処理方法に加えられてもよい。 In the two embodiments described above, at least one of the following features may be added to the substrate processing method.
 前記基板処理方法は、前記修正ユニット最終使用時刻計算ステップの前に、同じ前記処理区画に属する複数の前記処理ユニットのための前記搬送時間として同じ値を登録する搬送時間登録ステップをさらに含む。 The substrate processing method further includes a transfer time registration step of registering the same value as the transfer time for the plurality of processing units belonging to the same processing section before the correction unit final use time calculating step.
 この構成によれば、同じ処理区画に属する複数の処理ユニットについては、同じ値が搬送時間として登録される。同じ処理区画に属する複数の処理ユニットであっても、搬送距離が厳密には異なるので、搬送時間も厳密には異なる。しかしながら、属する処理区画が同じであれば、搬送時間の差は僅かであり、搬送時間はこれらの処理ユニットの間で概ね等しい。したがって、同じ処理区画に属する複数の処理ユニットについて同じ値を搬送時間として登録すれば、これらの処理区画の間での搬送時間の差を減らしながら、搬送時間の設定を単純化できる。 According to this configuration, the same value is registered as the transport time for a plurality of processing units belonging to the same processing section. Even for a plurality of processing units belonging to the same processing section, since the transport distance is strictly different, the transport time is also strictly different. However, if the processing sections to which they belong are the same, the difference in transport time is small and the transport time is approximately equal between these processing units. Therefore, if the same value is registered as the transport time for a plurality of processing units belonging to the same processing section, it is possible to simplify the setting of the transport time while reducing the difference in transport time between these processing sections.
 前記区画選択ステップは、前記区画最終使用時刻が最も古い前記処理区画を前記複数の処理区画の中で検索する第1検索ステップと、前記第1検索ステップで複数の前記処理区画が候補区画として見つかった場合、前記ユニット最終使用時刻が最も古い前記処理ユニットの数が最大の前記処理区画を、前記候補区画に含まれる複数の前記処理区画の中で検索する第2検索ステップと、前記第2検索ステップで見つかった少なくとも1つの前記処理区画の中から1つの前記処理区画を選択する選択ステップと、を含む。 The partition selection step includes a first search step for searching the processing partition having the oldest partition last use time in the plurality of processing partitions, and a plurality of the processing partitions are found as candidate partitions in the first search step. A second search step of searching for the processing partition having the largest number of the processing units with the oldest unit last use time among the plurality of processing partitions included in the candidate partition, and the second search Selecting one of the processing partitions from at least one of the processing partitions found in the step.
 この構成によれば、区画最終使用時刻が最も古い複数の処理区画があった場合は、ユニット最終使用時刻が最も古い処理ユニットの数が最大の処理区画が、それらの処理区画の中から選択される。選択された処理ユニットに基板を搬送する前や選択された処理ユニットに基板を搬送しているときに、その処理ユニットに異常が発生した場合は、別の処理ユニットを選択し直す必要がある。このような場合、同じ処理区画の中にユニット最終使用時刻が最も古い別の処理ユニットがあれば、その処理ユニットを新たな処理ユニットとして選択できる。したがって、比較的簡単な変更で基板の新たな搬送経路を設定できる。 According to this configuration, when there are a plurality of processing partitions having the oldest partition last use time, the processing partition having the largest number of processing units having the oldest unit last use time is selected from those processing partitions. The Before the substrate is transported to the selected processing unit or when the substrate is transported to the selected processing unit, if an abnormality occurs in that processing unit, it is necessary to reselect another processing unit. In such a case, if there is another processing unit with the oldest unit last use time in the same processing section, that processing unit can be selected as a new processing unit. Therefore, a new transport path for the substrate can be set with a relatively simple change.
 前記区画選択ステップは、前記第2検索ステップで複数の前記処理区画が見つかった場合、前記搬送時間または搬送距離が最小の前記処理区画を、前記第2検索ステップで見つかった複数の前記処理区画の中で検索する第3検索ステップをさらに含んでいてもよい。この場合、前記選択ステップは、前記第3検索ステップで見つかった少なくとも1つの前記処理区画の中から1つの前記処理区画を選択するステップであってもよい。 In the section selection step, when a plurality of the processing sections are found in the second search step, the processing section having the minimum transport time or transport distance is selected as the plurality of processing sections found in the second search step. A third search step for searching in may be further included. In this case, the selecting step may be a step of selecting one processing section from at least one processing section found in the third search step.
 前記基板処理方法は、前記ユニット最終使用時刻取得ステップの前に、全ての前記処理ユニットの前記ユニット最終使用時刻を同じ値(たとえば、0)に変更する最終使用時刻初期化ステップをさらに含んでいてもよい。 The substrate processing method further includes a final use time initialization step of changing the unit final use times of all the processing units to the same value (for example, 0) before the unit final use time acquisition step. Also good.
 前記基板処理方法は、前記複数の処理ユニットのいずれかに搬送された直近の基板の処理時間よりも短い処理時間で、前記ユニット選択ステップで選択した前記処理ユニットに前記基板搬送ステップの後に前記基板を処理させる基板処理ステップをさらに含む。 In the substrate processing method, the substrate is transferred to the processing unit selected in the unit selection step after the substrate transfer step with a processing time shorter than the processing time of the latest substrate transferred to one of the plurality of processing units. A substrate processing step is further included.
 この構成によれば、基板の処理時間が直近の基板よりも減少している。このような場合でも、区画最終使用時刻に基づいて複数の処理区画の中から1つの処理区画を選択するので、区画使用率の大小関係に基づいて処理区画を選択する場合に比べて複数の処理区画を均等に選択できる。したがって、基板の搬送経路や処理時間が異なる場合でも、全ての処理ユニットを満遍なく使用することができ、基板処理装置の稼働率をさらに高めることができる。 According to this configuration, the processing time of the substrate is shorter than that of the latest substrate. Even in such a case, since one processing partition is selected from a plurality of processing partitions based on the partition last use time, a plurality of processes are performed as compared with the case where a processing partition is selected based on the size relationship of the partition usage rate. Partitions can be selected evenly. Therefore, even when the substrate transport path and processing time are different, all the processing units can be used evenly, and the operating rate of the substrate processing apparatus can be further increased.
 本発明のさらに他の実施形態は、基板を収容するキャリアが載置されるロードポートと、前記ロードポート上の前記キャリアから搬送された前記基板を処理する複数の処理ユニットと、前記ロードポート上の前記キャリアと前記複数の処理ユニットとの間で前記基板を搬送する基板搬送システムと、前記基板搬送システムを制御する制御装置と、を備える、基板処理装置を提供する。 Still another embodiment of the present invention includes a load port on which a carrier that accommodates a substrate is placed, a plurality of processing units that process the substrate transported from the carrier on the load port, and the load port A substrate processing apparatus comprising: a substrate transport system that transports the substrate between the carrier and the plurality of processing units; and a control device that controls the substrate transport system.
 前記制御装置は、前記複数の処理ユニットのそれぞれが、前記ロードポート上の前記キャリアから前記処理ユニットに前記基板を搬送するのに要する搬送時間、または、前記ロードポートから前記処理ユニットまでの距離を表す搬送距離に基づいて分類された複数の処理区画のいずれに属するかを確認する所属確認ステップと、前記処理ユニットが前記基板の処理のために最後に使用される時刻を表すユニット最終使用時刻を、前記複数の処理ユニットのそれぞれについて取得するユニット最終使用時刻取得ステップと、前記ユニット最終使用時刻取得ステップで取得された複数の前記ユニット最終使用時刻と前記複数の処理ユニットについての前記搬送時間とに基づいて、同じ前記処理ユニットにおいて前記ユニット最終使用時刻から前記搬送時間を引いた時刻を表す修正ユニット最終使用時刻を、前記複数の処理ユニットのそれぞれについて計算する修正ユニット最終使用時刻計算ステップと、前記修正ユニット最終使用時刻計算ステップで得られた複数の前記修正ユニット最終使用時刻に基づいて、同じ前記処理区画に属する複数の前記処理ユニットの前記修正ユニット最終使用時刻のうちで最も古い時刻を表す区画最終使用時刻を、前記複数の処理区画のそれぞれについて特定する区画最終使用時刻特定ステップと、前記区画最終使用時刻特定ステップで特定された複数の前記区画最終使用時刻に基づいて、前記区画最終使用時刻が最も古い1つの前記処理区画を、前記複数の処理区画の中から選択する区画選択ステップと、前記区画選択ステップで選択した前記処理区画に属する複数の前記処理ユニットの中から1つの前記処理ユニットを選択するユニット選択ステップと、前記基板搬送システムに前記基板を前記ロードポート上の前記キャリアから前記ユニット選択ステップで選択した前記処理ユニットまで搬送させる基板搬送ステップと、を実行する。この構成によれば、前述の効果と同様な効果を奏することができる。 The control device determines a transfer time required for each of the plurality of processing units to transfer the substrate from the carrier on the load port to the processing unit, or a distance from the load port to the processing unit. An affiliation confirmation step for confirming which of the plurality of processing sections classified based on the transport distance represented, and a unit final use time indicating a time at which the processing unit is last used for processing the substrate A unit final use time acquisition step acquired for each of the plurality of processing units, a plurality of unit final use times acquired in the unit final use time acquisition step, and a transport time for the plurality of processing units. Based on the unit last use time in the same processing unit The correction unit final use time calculation step for calculating the correction unit final use time representing the time obtained by subtracting the conveyance time for each of the plurality of processing units, and the plurality of corrections obtained in the correction unit final use time calculation step. Based on the unit last use time, a section last use time representing the oldest time among the correction unit last use times of the plurality of processing units belonging to the same processing section is specified for each of the plurality of processing sections. Based on the partition final use time specifying step and the plurality of partition final use times specified in the partition final use time specifying step, the one processing partition having the oldest partition final use time is designated as the plurality of processing partitions. A section selection step to select from among the processing sections selected in the section selection step A unit selection step of selecting one of the processing units from among the plurality of processing units belonging to the substrate, and the substrate transport system from the carrier on the load port to the processing unit selected in the unit selection step A substrate carrying step for carrying. According to this configuration, the same effect as described above can be obtained.
 本発明のさらに他の実施形態は、基板を収容するキャリアが載置されるロードポートと、前記ロードポート上の前記キャリアから搬送された前記基板を処理する複数の処理ユニットと、前記ロードポート上の前記キャリアと前記複数の処理ユニットとの間で前記基板を搬送する基板搬送システムと、前記基板搬送システムを制御する制御装置と、を備える、基板処理装置を提供する。 Still another embodiment of the present invention includes a load port on which a carrier that accommodates a substrate is placed, a plurality of processing units that process the substrate transported from the carrier on the load port, and the load port A substrate processing apparatus comprising: a substrate transport system that transports the substrate between the carrier and the plurality of processing units; and a control device that controls the substrate transport system.
 前記制御装置は、前記複数の処理ユニットのそれぞれが、前記ロードポート上の前記キャリアから前記処理ユニットに前記基板を搬送するのに要する搬送時間、または、前記ロードポートから前記処理ユニットまでの距離を表す搬送距離に基づいて分類された複数の処理区画のいずれに属するかを確認する所属確認ステップと、前記処理ユニットが前記基板の処理のために最後に使用される時刻を表すユニット最終使用時刻を、前記複数の処理ユニットのそれぞれについて取得するユニット最終使用時刻取得ステップと、前記ユニット最終使用時刻取得ステップで取得された複数の前記ユニット最終使用時刻に基づいて、同じ前記処理区画に属する複数の前記処理ユニットの前記ユニット最終使用時刻のうちで最も古い時刻を表す区画最終使用時刻を、前記複数の処理区画のそれぞれについて特定する区画最終使用時刻特定ステップと、前記区画最終使用時刻特定ステップで特定された複数の前記区画最終使用時刻に基づいて、前記区画最終使用時刻が最も古い1つの前記処理区画を、前記複数の処理区画の中から選択する区画選択ステップと、前記区画選択ステップで選択した前記処理区画に属する複数の前記処理ユニットの中から1つの前記処理ユニットを選択するユニット選択ステップと、前記基板搬送システムに前記基板を前記ロードポート上の前記キャリアから前記ユニット選択ステップで選択した前記処理ユニットまで搬送させる基板搬送ステップと、を実行する。この構成によれば、前述の効果と同様な効果を奏することができる。 The control device determines a transfer time required for each of the plurality of processing units to transfer the substrate from the carrier on the load port to the processing unit, or a distance from the load port to the processing unit. An affiliation confirmation step for confirming which of the plurality of processing sections classified based on the transport distance represented, and a unit final use time indicating a time at which the processing unit is last used for processing the substrate A unit final use time acquisition step acquired for each of the plurality of processing units, and a plurality of the unit final use times acquired in the unit final use time acquisition step. The last section representing the oldest time among the unit last use times of the processing unit The partition final use time is determined based on the partition final use time specifying step for specifying the use time for each of the plurality of processing partitions and the plurality of partition final use times specified in the partition final use time specifying step. A section selection step for selecting the oldest one processing section from among the plurality of processing sections, and one processing unit from among the plurality of processing units belonging to the processing section selected in the section selection step. A unit selection step for selecting and a substrate transfer step for causing the substrate transfer system to transfer the substrate from the carrier on the load port to the processing unit selected in the unit selection step. According to this configuration, the same effect as described above can be obtained.
 前述の2つの実施形態において、以下の特徴の少なくとも一つが、前記基板処理装置に加えられてもよい。 In the above-described two embodiments, at least one of the following features may be added to the substrate processing apparatus.
 前記制御装置は、前記修正ユニット最終使用時刻計算ステップの前に、同じ前記処理区画に属する複数の前記処理ユニットのための前記搬送時間として同じ値を登録する搬送時間登録ステップをさらに実行する。この構成によれば、前述の効果と同様な効果を奏することができる。 The control device further executes a transport time registration step of registering the same value as the transport time for the plurality of processing units belonging to the same processing section before the correction unit final use time calculating step. According to this configuration, the same effect as described above can be obtained.
 前記区画選択ステップは、前記区画最終使用時刻が最も古い前記処理区画を前記複数の処理区画の中で検索する第1検索ステップと、前記第1検索ステップで複数の前記処理区画が候補区画として見つかった場合、前記ユニット最終使用時刻が最も古い前記処理ユニットの数が最大の前記処理区画を、前記候補区画に含まれる複数の前記処理区画の中で検索する第2検索ステップと、前記第2検索ステップで見つかった少なくとも1つの前記処理区画の中から1つの前記処理区画を選択する選択ステップと、を含む。この構成によれば、前述の効果と同様な効果を奏することができる。 The partition selection step includes a first search step for searching the processing partition having the oldest partition last use time in the plurality of processing partitions, and a plurality of the processing partitions are found as candidate partitions in the first search step. A second search step of searching for the processing partition having the largest number of the processing units with the oldest unit last use time among the plurality of processing partitions included in the candidate partition, and the second search Selecting one of the processing partitions from at least one of the processing partitions found in the step. According to this configuration, the same effect as described above can be obtained.
 前記制御装置は、前記複数の処理ユニットのいずれかに搬送された直近の基板の処理時間よりも短い処理時間で、前記ユニット選択ステップで選択した前記処理ユニットに前記基板搬送ステップの後に前記基板を処理させる基板処理ステップをさらに実行する。この構成によれば、前述の効果と同様な効果を奏することができる。 The control device transfers the substrate after the substrate transport step to the processing unit selected in the unit selection step with a processing time shorter than the processing time of the latest substrate transported to any of the plurality of processing units. A substrate processing step to be processed is further executed. According to this configuration, the same effect as described above can be obtained.
 本発明のさらに他の実施形態は、ロードポート上のキャリアから基板を処理する複数の処理ユニットまで基板搬送システムに前記基板を搬送させる基板処理装置に備えられた制御装置によって実行されるコンピュータプログラムであって、前述の基板処理方法の少なくとも一つを前記制御装置としてのコンピュータに実行させるようにステップ群が組み込まれたコンピュータプログラムを提供する。前記コンピュータプログラムは、コンピュータ読取可能な記録媒体に記録されていてもよい。記録媒体は、コンパクトディスクなどの光ディスクであってもよいし、メモリーカードなどの半導体メモリーであってもよい。 Yet another embodiment of the present invention is a computer program executed by a control device provided in a substrate processing apparatus that transfers a substrate to a substrate transfer system from a carrier on a load port to a plurality of processing units that process the substrate. A computer program in which steps are incorporated so as to cause a computer as the control device to execute at least one of the above-described substrate processing methods is provided. The computer program may be recorded on a computer-readable recording medium. The recording medium may be an optical disk such as a compact disk or a semiconductor memory such as a memory card.
 本発明における前述の、またはさらに他の目的、特徴および効果は、添付図面を参照して次に述べる実施形態の説明により明らかにされる。 The above-described or other objects, features, and effects of the present invention will be clarified by the following description of embodiments with reference to the accompanying drawings.
本発明の一実施形態に係る基板処理装置の模式的な平面図である。1 is a schematic plan view of a substrate processing apparatus according to an embodiment of the present invention. 図1に示す切断線II-II線に沿う鉛直断面を示す基板処理装置の模式的な断面図である。FIG. 2 is a schematic cross-sectional view of the substrate processing apparatus showing a vertical cross section along the cutting line II-II shown in FIG. 1. 処理ユニットの構成例を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the structural example of a processing unit. 処理ユニットの他の構成例を説明するための模式的な断面図である。It is typical sectional drawing for demonstrating the other structural example of a processing unit. 基板処理装置の電気的構成を説明するためのブロック図である。It is a block diagram for demonstrating the electrical structure of a substrate processing apparatus. 基板処理装置に備えられたコンピュータによって実行される処理例を説明するためのフローチャートである。It is a flowchart for demonstrating the process example performed by the computer with which the substrate processing apparatus was equipped. スケジューリングに際して作成される仮タイムテーブルを示すタイムチャートである。It is a time chart which shows the temporary time table produced in the case of scheduling. スケジューリングに際して作成される仮タイムテーブルを示すタイムチャートである。It is a time chart which shows the temporary time table produced in the case of scheduling. スケジューリングに際して作成される仮タイムテーブルを示すタイムチャートである。It is a time chart which shows the temporary time table produced in the case of scheduling. 処理区画選択処理(図6のステップS3)の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of a process division selection process (step S3 of FIG. 6). コンピュータの記憶部に記憶された処理区画データの一例を示す表である。It is a table | surface which shows an example of the process division data memorize | stored in the memory | storage part of the computer. コンピュータの記憶部に記憶された処理区画データの他の例を示す表である。It is a table | surface which shows the other example of the process division data memorize | stored in the memory | storage part of the computer. 1枚目の基板のスケジュールを作成するときの投入可能率、区画最終使用時刻、最古チャンバ数、および有効チャンバ数の一例を示す表である。It is a table | surface which shows an example of the injection | pouring possible rate at the time of creating the schedule of the 1st board | substrate, the division last use time, the oldest chamber number, and the number of effective chambers. 2枚目の基板のスケジュールを作成するときの投入可能率、区画最終使用時刻、最古チャンバ数、および有効チャンバ数の一例を示す表である。It is a table | surface which shows an example of the injection | pouring possible rate at the time of creating the schedule of the 2nd board | substrate, division last use time, the oldest number of chambers, and the number of effective chambers. 3枚目の基板のスケジュールを作成するときの投入可能率、区画最終使用時刻、最古チャンバ数、および有効チャンバ数の一例を示す表である。It is a table | surface which shows an example of the injection | pouring possible rate at the time of creating the schedule of the 3rd board | substrate, the division last use time, the oldest chamber number, and the number of effective chambers. 4枚目の基板のスケジュールを作成するときの投入可能率、区画最終使用時刻、最古チャンバ数、および有効チャンバ数の一例を示す表である。It is a table | surface which shows an example of the injection | pouring possible rate at the time of creating the schedule of the 4th board | substrate, the division last use time, the oldest chamber number, and the number of effective chambers. 5枚目の基板のスケジュールを作成するときの投入可能率、区画最終使用時刻、最古チャンバ数、および有効チャンバ数の一例を示す表である。It is a table | surface which shows an example of the injection | pouring possible rate at the time of creating the schedule of the 5th board | substrate, division last use time, the oldest number of chambers, and the number of effective chambers. 第1処理区画に属する4つの処理ユニットが無効な状態において、1枚目の基板のスケジュールを作成するときの投入可能率、区画最終使用時刻、最古チャンバ数、および有効チャンバ数の一例を示す表である。An example of an input possibility rate, a section last use time, the oldest number of chambers, and the number of effective chambers when creating a schedule for the first substrate in a state where four processing units belonging to the first processing section are invalid is shown. It is a table. 第1処理区画に属する4つの処理ユニットが無効な状態において、2枚目の基板のスケジュールを作成するときの投入可能率、区画最終使用時刻、最古チャンバ数、および有効チャンバ数の一例を示す表である。An example of an input possibility rate, a section last use time, the oldest number of chambers, and the number of effective chambers when creating a schedule for the second substrate in a state where four processing units belonging to the first processing section are invalid is shown. It is a table. 第1処理区画に属する4つの処理ユニットが無効な状態において、3枚目の基板のスケジュールを作成するときの投入可能率、区画最終使用時刻、最古チャンバ数、および有効チャンバ数の一例を示す表である。An example of an input possibility rate, a section last use time, an oldest chamber number, and an effective chamber number when creating a schedule for the third substrate in a state where four processing units belonging to the first processing section are invalid is shown. It is a table. 第1処理区画に属する4つの処理ユニットが無効な状態において、4枚目の基板のスケジュールを作成するときの投入可能率、区画最終使用時刻、最古チャンバ数、および有効チャンバ数の一例を示す表である。An example of an input possibility rate, a section last use time, the oldest number of chambers, and the number of effective chambers when creating a schedule for the fourth substrate in a state where four processing units belonging to the first processing section are invalid is shown. It is a table. 第1処理区画に属する4つの処理ユニットが無効な状態において、5枚目の基板のスケジュールを作成するときの投入可能率、区画最終使用時刻、最古チャンバ数、および有効チャンバ数の一例を示す表である。An example of an input possibility rate, a section last use time, the oldest number of chambers, and the number of effective chambers when creating a schedule for the fifth substrate in a state where four processing units belonging to the first processing section are invalid is shown. It is a table. 第1処理区画に属する4つの処理ユニットが無効な状態において、6枚目の基板のスケジュールを作成するときの投入可能率、区画最終使用時刻、最古チャンバ数、および有効チャンバ数の一例を示す表である。An example of an input possibility rate, a section last use time, the oldest number of chambers, and the number of effective chambers when creating a schedule for the sixth substrate in a state where four processing units belonging to the first processing section are invalid is shown. It is a table. 全ての処理ユニットを使用するスケジュールが作成された後のユニット最終使用時刻、搬送時間、および修正ユニット最終使用時刻の一例を示す表である。It is a table | surface which shows an example of the unit last use time after the schedule which uses all the processing units was created, conveyance time, and correction unit last use time. 全ての処理ユニットを使用するスケジュールが作成された後に、1枚目の基板のスケジュールを作成するときの投入可能率、区画最終使用時刻、最古チャンバ数、および有効チャンバ数の一例を示す表である。The table showing an example of the input possibility rate, the last use time of the section, the oldest number of chambers, and the number of effective chambers when creating the schedule for the first substrate after the schedule for using all the processing units is created is there. 全ての処理ユニットを使用するスケジュールが作成された後に、2枚目の基板のスケジュールを作成するときの投入可能率、区画最終使用時刻、最古チャンバ数、および有効チャンバ数の一例を示す表である。The table showing an example of the input possibility rate, the last use time of the section, the oldest number of chambers, and the number of effective chambers when creating the schedule for the second substrate after the schedule for using all the processing units is created is there. 全ての処理ユニットを使用するスケジュールが作成された後に、3枚目の基板のスケジュールを作成するときの投入可能率、区画最終使用時刻、最古チャンバ数、および有効チャンバ数の一例を示す表である。The table showing an example of the input possibility rate, the last use time of the section, the oldest number of chambers, and the number of effective chambers when creating the schedule for the third substrate after the schedule for using all the processing units is created is there. 全ての処理ユニットを使用するスケジュールが作成された後に、4枚目の基板のスケジュールを作成するときの投入可能率、区画最終使用時刻、最古チャンバ数、および有効チャンバ数の一例を示す表である。A table showing an example of the input possibility rate, the last use time of the section, the oldest number of chambers, and the number of effective chambers when creating the schedule for the fourth substrate after the schedule for using all the processing units is created is there. 全ての処理ユニットを使用するスケジュールが作成された後に、5枚目の基板のスケジュールを作成するときの投入可能率、区画最終使用時刻、最古チャンバ数、および有効チャンバ数の一例を示す表である。The table showing an example of the input possibility ratio, the last use time of the section, the oldest number of chambers, and the number of effective chambers when creating the schedule for the fifth substrate after the schedule for using all the processing units is created is there. 第1実施例に係る投入可能率、区画最終使用時刻、最古チャンバ数、および有効チャンバ数の一例を示す表であり、1枚目の基板のスケジュールを作成する前の状態を示している。It is a table | surface which shows an example of the input possibility rate, division last use time, the oldest chamber number, and effective chamber number which concern on 1st Example, and has shown the state before producing the schedule of the 1st board | substrate. 第1実施例に係る投入可能率、区画最終使用時刻、最古チャンバ数、および有効チャンバ数の一例を示す表であり、2枚目の基板のスケジュールを作成する前の状態を示している。It is a table | surface which shows an example of the input possibility rate, division last use time, the oldest number of chambers, and the number of effective chambers which concern on 1st Example, and has shown the state before producing the schedule of the 2nd board | substrate. 第1実施例に係る投入可能率、区画最終使用時刻、最古チャンバ数、および有効チャンバ数の一例を示す表であり、3枚目の基板のスケジュールを作成する前の状態を示している。It is a table | surface which shows an example of the injection | throwing-in possible ratio which concerns on 1st Example, the division last use time, the oldest number of chambers, and the number of effective chambers, and has shown the state before producing the schedule of the 3rd board | substrate. 第1実施例に係る投入可能率、区画最終使用時刻、最古チャンバ数、および有効チャンバ数の一例を示す表であり、4枚目の基板のスケジュールを作成する前の状態を示している。It is a table | surface which shows an example of the injection | throwing-in possible ratio which concerns on 1st Example, division last use time, the oldest chamber number, and the number of effective chambers, and has shown the state before producing the schedule of the 4th board | substrate. 第1実施例に係る投入可能率、区画最終使用時刻、最古チャンバ数、および有効チャンバ数の一例を示す表であり、5枚目の基板のスケジュールを作成する前の状態を示している。It is a table | surface which shows an example of the injection | throwing-in possible ratio which concerns on 1st Example, the division last use time, the oldest number of chambers, and the number of effective chambers, and has shown the state before producing the schedule of the 5th board | substrate. 第1実施例に係る投入可能率、区画最終使用時刻、最古チャンバ数、および有効チャンバ数の一例を示す表であり、6枚目の基板のスケジュールを作成する前の状態を示している。It is a table | surface which shows an example of the injection | throwing possibility rate which concerns on 1st Example, the division last use time, the oldest chamber number, and the number of effective chambers, and has shown the state before producing the schedule of the 6th board | substrate. 第1実施例に係るスケジュールを示すタイムチャートであり、基板を第1処理時間処理する第1レシピが適用された1~2枚目の基板のスケジューリングを行った後のスケジュールの一例を示している。FIG. 4 is a time chart showing a schedule according to the first embodiment, showing an example of a schedule after performing the scheduling of the first and second substrates to which the first recipe for processing the substrate for the first processing time is applied. . 第1実施例に係るスケジュールを示すタイムチャートであり、基板を第2処理時間処理する第2レシピが適用された3~6枚目の基板のスケジューリングを行った後のスケジュールの一例を示している。FIG. 6 is a time chart showing a schedule according to the first embodiment, showing an example of a schedule after performing scheduling of the third to sixth substrates to which the second recipe for processing the substrate for the second processing time is applied. . 第1比較例に係る区画使用率、区画最終使用時刻、有効チャンバ数の一例を示す表であり、1枚目の基板のスケジュールを作成する前の状態を示している。It is a table | surface which shows an example of the division | segmentation usage rate which concerns on a 1st comparative example, division | segmentation last use time, and the number of effective chambers, and has shown the state before producing the schedule of the 1st board | substrate. 第1比較例に係る区画使用率、区画最終使用時刻、有効チャンバ数の一例を示す表であり、2枚目の基板のスケジュールを作成する前の状態を示している。It is a table | surface which shows an example of the division use rate which concerns on a 1st comparative example, division final use time, and the number of effective chambers, and has shown the state before producing the schedule of the 2nd board | substrate. 第1比較例に係る区画使用率、区画最終使用時刻、有効チャンバ数の一例を示す表であり、3枚目の基板のスケジュールを作成する前の状態を示している。It is a table | surface which shows an example of the division | segmentation usage rate which concerns on a 1st comparative example, division | segmentation last use time, and the number of effective chambers, and has shown the state before producing the schedule of the 3rd board | substrate. 第1比較例に係る区画使用率、区画最終使用時刻、有効チャンバ数の一例を示す表であり、4枚目の基板のスケジュールを作成する前の状態を示している。It is a table | surface which shows an example of the division | segmentation usage rate which concerns on a 1st comparative example, division | segmentation last use time, and the number of effective chambers, and has shown the state before producing the schedule of the 4th board | substrate. 第1比較例に係る区画使用率、区画最終使用時刻、有効チャンバ数の一例を示す表であり、5枚目の基板のスケジュールを作成する前の状態を示している。It is a table | surface which shows an example of the division | segmentation usage rate which concerns on a 1st comparative example, division | segmentation last use time, and the number of effective chambers, and has shown the state before producing the schedule of the 5th board | substrate. 第1比較例に係る区画使用率、区画最終使用時刻、有効チャンバ数の一例を示す表であり、6枚目の基板のスケジュールを作成する前の状態を示している。It is a table | surface which shows an example of the division usage rate which concerns on a 1st comparative example, division final use time, and the number of effective chambers, and has shown the state before producing the schedule of the 6th board | substrate. 第1比較例に係るスケジュールを示すタイムチャートであり、区画使用率を最初に優先して処理区画を選択し、3~6枚目の基板のスケジューリングを行った後のスケジュールの一例を示している。It is a time chart which shows the schedule which concerns on a 1st comparative example, and shows an example of the schedule after performing the scheduling of the 3rd-6th board | substrates by selecting a process partition first with priority on a partition usage rate. . 第2実施例に係るユニット最終使用時刻、搬送時間、および修正ユニット最終使用時刻の一例を示す表である。It is a table | surface which shows an example of the unit last use time, conveyance time, and correction unit last use time which concern on 2nd Example. 第2実施例に係るスケジュールを示すタイムチャートであり、基板を第1処理時間処理する第1レシピが適用された1~11枚目の基板のスケジューリングを行った後のスケジュールの一例を示している。FIG. 10 is a time chart showing a schedule according to a second embodiment, showing an example of a schedule after performing scheduling of the first to eleventh substrates to which the first recipe for processing the substrate for the first processing time is applied. . 第2実施例に係るスケジュールを示すタイムチャートであり、図19Aの続きを示している。It is a time chart which shows the schedule which concerns on 2nd Example, and has shown the continuation of FIG. 19A. 第2実施例に係るスケジュールを示すタイムチャートであり、基板を第2処理時間処理する第2レシピが適用された12枚目の基板のスケジューリングを行った後のスケジュールの一例を示している。It is a time chart which shows the schedule which concerns on 2nd Example, and shows an example of the schedule after performing the scheduling of the 12th board | substrate to which the 2nd recipe which processes a board | substrate for the 2nd processing time was applied. 第2実施例に係るスケジュールを示すタイムチャートであり、基板を第2処理時間処理する第2レシピが適用された13~15枚目の基板のスケジューリングを行った後のスケジュールの一例を示している。FIG. 10 is a time chart showing a schedule according to a second embodiment, showing an example of a schedule after scheduling of the 13th to 15th substrates to which the second recipe for processing the substrate for the second processing time is applied. . 第2比較例に係るスケジュールを示すタイムチャートであり、区画使用率を最初に優先して処理区画を選択し、12~15枚目の基板のスケジューリングを行った後のスケジュールの一例を示している。It is a time chart which shows the schedule which concerns on a 2nd comparative example, and shows an example of the schedule after selecting a process partition with priority on a partition usage rate and scheduling the 12th to 15th substrates. .
 図1は、本発明の一実施形態に係る基板処理装置1の模式的な平面図である。図2は、図1に示す切断線II-II線に沿う鉛直断面を示す基板処理装置1の模式的な断面図である。 FIG. 1 is a schematic plan view of a substrate processing apparatus 1 according to an embodiment of the present invention. FIG. 2 is a schematic cross-sectional view of the substrate processing apparatus 1 showing a vertical cross section along the cutting line II-II shown in FIG.
 基板処理装置1は、半導体ウエハなどの円板状の基板Wを1枚ずつ処理する枚葉式の装置である。基板処理装置1は、キャリア保持部2と、インデクサ部3と、処理部4とを含む。 The substrate processing apparatus 1 is a single-wafer type apparatus that processes a disk-shaped substrate W such as a semiconductor wafer one by one. The substrate processing apparatus 1 includes a carrier holding unit 2, an indexer unit 3, and a processing unit 4.
 キャリア保持部2は、複数枚の基板Wを収容可能な基板収容器であるキャリアCをそれぞれ保持する複数のロードポートLPを含む。ロードポートLPは、キャリアCを保持するキャリア保持ユニットである。ロードポートLPは、キャリアCが基板処理装置1に投入される位置である。キャリアCは、ロードポートLPによって開閉される。 The carrier holding unit 2 includes a plurality of load ports LP each holding a carrier C which is a substrate container capable of accommodating a plurality of substrates W. The load port LP is a carrier holding unit that holds the carrier C. The load port LP is a position where the carrier C is inserted into the substrate processing apparatus 1. The carrier C is opened and closed by the load port LP.
 インデクサ部3は、インデクサロボットIRを含む。インデクサロボットIRは、キャリア保持部2上に載置されたキャリアCから未処理の基板Wを取り出して処理部4に渡す搬入動作と、処理部4から処理済みの基板Wを受け取ってキャリア保持部2に保持されたキャリアCに収納する収納動作とを実行する。 The indexer unit 3 includes an indexer robot IR. The indexer robot IR takes out an unprocessed substrate W from the carrier C placed on the carrier holding unit 2 and delivers it to the processing unit 4, and receives the processed substrate W from the processing unit 4 to receive the carrier holding unit. The storing operation of storing in the carrier C held in 2 is executed.
 処理部4は、複数の処理ユニットMPC1~MPC24(以下総称するときには「処理ユニットMPC」という。)と、第1主搬送ロボットCR1と、第2主搬送ロボットCR2と、第1受け渡しユニットPASS1と、第2受け渡しユニットPASS2とを含む。インデクサロボットIR、第1主搬送ロボットCR1および第2主搬送ロボットCR2は、キャリア保持部2と処理ユニットMPCとの間で基板Wを搬送する基板搬送システムTS1を構成している。 The processing unit 4 includes a plurality of processing units MPC1 to MPC24 (hereinafter collectively referred to as “processing unit MPC”), a first main transfer robot CR1, a second main transfer robot CR2, a first delivery unit PASS1, A second delivery unit PASS2. The indexer robot IR, the first main transfer robot CR1, and the second main transfer robot CR2 constitute a substrate transfer system TS1 that transfers the substrate W between the carrier holding unit 2 and the processing unit MPC.
 処理部4内には、平面視において、インデクサ部3から直線状に延びた搬送路5が形成されている。この搬送路5内に、インデクサ部3側から順に、第1受け渡しユニットPASS1、第1主搬送ロボットCR1、第2受け渡しユニットPASS2および第2主搬送ロボットCR2が配置されている。第1受け渡しユニットPASS1は、インデクサロボットIRと第1主搬送ロボットCR1との間での基板Wの受け渡しを仲介するユニットである。第2受け渡しユニットPASS2は、第1主搬送ロボットCR1と第2主搬送ロボットCR2との間での基板Wの受け渡しを仲介するユニットである。第1および第2受け渡しユニットPASS1,PASS2は、基板Wを一時的に保持する複数の基板載置台15を備えている。 In the processing unit 4, a conveyance path 5 extending linearly from the indexer unit 3 is formed in plan view. A first delivery unit PASS1, a first main transport robot CR1, a second delivery unit PASS2, and a second main transport robot CR2 are arranged in this transport path 5 in order from the indexer unit 3 side. The first delivery unit PASS1 is a unit that mediates delivery of the substrate W between the indexer robot IR and the first main transfer robot CR1. The second delivery unit PASS2 is a unit that mediates delivery of the substrate W between the first main transport robot CR1 and the second main transport robot CR2. The first and second transfer units PASS1 and PASS2 include a plurality of substrate platforms 15 that temporarily hold the substrate W.
 複数の処理ユニットMPCは、複数のタワーTW1~TW6(以下総称するときには「タワーTW」という。)を形成している。各タワーTWは、上下に積層された複数の処理ユニットMPC(たとえば、4つの処理ユニットMPC)を含む。複数のタワーTWは、搬送路5に沿って配列されている。3個のタワーTW1,TW3,TW5は、搬送路5の一方側に配置されている。残り3個のタワーTW2,TW4,TW6は、搬送路5の他方側に配置されている。 The plurality of processing units MPC form a plurality of towers TW1 to TW6 (hereinafter collectively referred to as “tower TW”). Each tower TW includes a plurality of processing units MPC (for example, four processing units MPC) stacked one above the other. The plurality of towers TW are arranged along the transport path 5. The three towers TW1, TW3, TW5 are arranged on one side of the transport path 5. The remaining three towers TW2, TW4, TW6 are arranged on the other side of the transport path 5.
 複数の処理ユニットMPCは、搬送路5を挟んで対向する3対のタワーTWを形成している。具体的には、タワーTW1とタワーTW2は、搬送路5を挟んで対向している。同様に、タワーTW3とタワーTW4は、搬送路5を挟んで対向しており、タワーTW5とタワーTW6は、搬送路5を挟んで対向している。 The plurality of processing units MPC form three pairs of towers TW that are opposed to each other with the conveyance path 5 interposed therebetween. Specifically, the tower TW1 and the tower TW2 are opposed to each other with the conveyance path 5 interposed therebetween. Similarly, the tower TW3 and the tower TW4 are opposed to each other with the conveyance path 5 interposed therebetween, and the tower TW5 and the tower TW6 are opposed to each other with the conveyance path 5 interposed therebetween.
 インデクサ部3からタワーTW1までの距離は、インデクサ部3からタワーTW2までの距離と等しいまたは概ね等しい。したがって、インデクサ部3からタワーTW1に基板Wを搬送するのに要する搬送時間は、インデクサ部3からタワーTW2に基板Wを搬送するのに要する搬送時間と等しいまたは概ね等しい。つまり、各対のタワー(TW1とTW2、TW3とTW4、TW5とTW6)は、インデクサ部3からの距離が等しいまたは概ね等しい位置に配置されており、インデクサ部3から各対のタワーTWに基板Wを搬送するのに要する搬送時間は、等しいまたは概ね等しい。 The distance from the indexer unit 3 to the tower TW1 is equal to or approximately equal to the distance from the indexer unit 3 to the tower TW2. Accordingly, the transfer time required to transfer the substrate W from the indexer unit 3 to the tower TW1 is equal to or substantially equal to the transfer time required to transfer the substrate W from the indexer unit 3 to the tower TW2. That is, each pair of towers (TW1 and TW2, TW3 and TW4, TW5 and TW6) is disposed at a position where the distance from the indexer unit 3 is equal or substantially equal, and the substrate is placed from the indexer unit 3 to each pair of towers TW. The transport time required to transport W is equal or approximately equal.
 3対のタワー(TW1とTW2、TW3とTW4、TW5とTW6)は、それぞれ、3つの処理区画PZ1,PZ2,PZ3(以下総称するときには「処理区画PZ」という。)を形成している。すなわち、インデクサ部3に最も近い位置で搬送路5を挟んで対向する一対のタワーTW1,TW2は、第1処理区画PZ1を形成している。次にインデクサ部3に近い位置で搬送路5を挟んで対向する一対のタワーTW3,TW4は、第2処理区画PZ2を形成している。次にインデクサ部3に近い位置で搬送路5を挟んで対向する一対のタワーTW5,TW6は、第3処理区画PZ3を形成している。 The three pairs of towers (TW1 and TW2, TW3 and TW4, TW5 and TW6) form three processing sections PZ1, PZ2, and PZ3 (hereinafter collectively referred to as “processing section PZ”). That is, the pair of towers TW1 and TW2 that are opposed to each other with the conveyance path 5 interposed therebetween at the position closest to the indexer unit 3 form the first processing section PZ1. Next, a pair of towers TW3 and TW4 facing each other across the transport path 5 at a position close to the indexer unit 3 forms a second processing section PZ2. Next, a pair of towers TW5 and TW6 facing each other across the transport path 5 at a position close to the indexer unit 3 form a third processing section PZ3.
 第1処理区画PZ1とインデクサ部3との間に第1受け渡しユニットPASS1が配置されている。第1受け渡しユニットPASS1に対してインデクサ部3とは反対側に第1主搬送ロボットCR1が配置されている。第1主搬送ロボットCR1は、平面視で一対のタワーTW1,TW2の間に配置されている。第1主搬送ロボットCR1に対して第1受け渡しユニットPASS1とは反対側に第2受け渡しユニットPASS2が配置されている。第1主搬送ロボットCR1は、第1受け渡しユニットPASS1、第1処理区画PZ1のタワーTW1,TW2、および第2受け渡しユニットPASS2に対向するように配置されている。 The first delivery unit PASS1 is arranged between the first processing section PZ1 and the indexer unit 3. A first main transfer robot CR1 is arranged on the opposite side of the indexer unit 3 with respect to the first delivery unit PASS1. The first main transfer robot CR1 is disposed between the pair of towers TW1 and TW2 in plan view. A second delivery unit PASS2 is disposed on the opposite side of the first delivery robot CR1 from the first delivery unit PASS1. The first main transfer robot CR1 is arranged to face the first delivery unit PASS1, the towers TW1 and TW2 of the first processing section PZ1, and the second delivery unit PASS2.
 第2受け渡しユニットPASS2に対して第1主搬送ロボットCR1とは反対側に第2主搬送ロボットCR2が配置されている。第2主搬送ロボットCR2は、平面視で一対のタワーTW3,TW4の間に配置されており、平面視で一対のタワーTW5,TW6の間に配置されている。第2主搬送ロボットCR2は、第2受け渡しユニットPASS2、およびタワーTW3~TW6に対向するように配置されている。 The second main transfer robot CR2 is disposed on the opposite side of the second delivery unit PASS2 from the first main transfer robot CR1. The second main transfer robot CR2 is disposed between the pair of towers TW3 and TW4 in a plan view, and is disposed between the pair of towers TW5 and TW6 in a plan view. The second main transfer robot CR2 is arranged to face the second delivery unit PASS2 and the towers TW3 to TW6.
 インデクサロボットIRは、この実施形態では水平多関節アーム型のロボットである。インデクサロボットIRは、基板Wを保持するハンド11と、ハンド11に結合された多関節アーム12と、多関節アーム12を鉛直な回転軸線13まわりに回転させるアーム回転機構(図示せず)と、多関節アーム12を上下動させるアーム昇降機構(図示せず)とを含む。このような構成によって、インデクサロボットIRは、任意のロードポートLPに保持されたキャリアCおよび第1受け渡しユニットPASS1にハンド11をアクセスさせ、そのアクセス先に対して基板Wを搬入/搬出する。それにより、インデクサロボットIRは、処理部4(より正確には第1受け渡しユニットPASS1)と任意のキャリアCとの間で基板Wを搬送する。 The indexer robot IR is a horizontal articulated arm type robot in this embodiment. The indexer robot IR includes a hand 11 that holds the substrate W, an articulated arm 12 coupled to the hand 11, an arm rotation mechanism (not shown) that rotates the articulated arm 12 about a vertical rotation axis 13, And an arm lifting mechanism (not shown) for moving the articulated arm 12 up and down. With such a configuration, the indexer robot IR makes the hand 11 access the carrier C and the first delivery unit PASS1 held in an arbitrary load port LP, and loads / unloads the substrate W to / from the access destination. Accordingly, the indexer robot IR transports the substrate W between the processing unit 4 (more precisely, the first delivery unit PASS1) and the arbitrary carrier C.
 第1主搬送ロボットCR1および第2主搬送ロボットCR2には、ほぼ同様の構成を有する基板搬送ロボットを用いることができる。このような基板搬送ロボットは、好ましくは、基板Wを保持する一対のハンド21,22と、一対のハンド21,22を水平方向にそれぞれ進退させる一対のハンド進退機構23,24と、一対のハンド進退機構23,24を鉛直な回転軸線25まわりに回転させるハンド回転機構(図示せず)と、ハンド進退機構23,24を上下動させるハンド昇降機構(図示せず)とを含む。 The first main transfer robot CR1 and the second main transfer robot CR2 can be substrate transfer robots having substantially the same configuration. Such a substrate transfer robot preferably has a pair of hands 21 and 22 holding the substrate W, a pair of hand advancing and retracting mechanisms 23 and 24 for moving the pair of hands 21 and 22 back and forth in the horizontal direction, and a pair of hands. A hand rotation mechanism (not shown) that rotates the advance / retreat mechanisms 23, 24 around a vertical rotation axis 25 and a hand elevating mechanism (not shown) that moves the hand advance / retreat mechanisms 23, 24 up and down are included.
 このような構成によって、第1主搬送ロボットCR1および第2主搬送ロボットCR2は、一方のハンド21,22でアクセス先から基板Wを取り出し、他方のハンド21,22でアクセス先に対して基板Wを搬入できる。このような構成の基板搬送ロボットを第1主搬送ロボットCR1に適用することにより、第1主搬送ロボットCR1は、第1受け渡しユニットPASS1、タワーTW,TW2を形成する複数の処理ユニットMPC、および第2受け渡しユニットPASS2に対して、ハンド21,22を直接アクセスさせ、そのアクセス先に対して基板Wを搬入/搬出することができる。また、上記のような構成の基板搬送ロボットを第2主搬送ロボットCR2に適用することにより、第2主搬送ロボットCR2は、第2受け渡しユニットPASS2、ならびにタワーTW3~TW6を形成する複数の処理ユニットMPCに対してハンド21,22を直接アクセスさせ、そのアクセス先に対して基板Wを搬入/搬出することができる。 With such a configuration, the first main transfer robot CR1 and the second main transfer robot CR2 take out the substrate W from the access destination with one hand 21, 22 and the substrate W with respect to the access destination with the other hand 21, 22. Can be carried in. By applying the substrate transfer robot having such a configuration to the first main transfer robot CR1, the first main transfer robot CR1 includes the first transfer unit PASS1, the plurality of processing units MPC that form the towers TW and TW2, and the first transfer unit MPC. 2. The hands 21 and 22 can be directly accessed to the delivery unit PASS2, and the substrate W can be loaded / unloaded to / from the access destination. Further, by applying the substrate transport robot having the above-described configuration to the second main transport robot CR2, the second main transport robot CR2 has a plurality of processing units forming the second delivery unit PASS2 and the towers TW3 to TW6. The hands 21 and 22 can be directly accessed to the MPC, and the substrate W can be loaded / unloaded to / from the access destination.
 なお、図2は、インデクサロボットIRが1つのハンド11を備えている例を示しているが、インデクサロボットIRは、2つのハンド11を備えていてもよい。この場合、第1主搬送ロボットCR1は、4つのハンド21,22を備えていてもよい。同様に、第2主搬送ロボットCR2は、4つのハンド21,22を備えていてもよい。インデクサロボットIRが2つのハンド11を備える場合、インデクサロボットIRは、2つのハンド11を用いて2枚の基板Wを同時に保持することができる。したがって、インデクサロボットIRは、2枚の基板Wを同時に搬出する同時搬出動作と2枚の基板Wを同時に搬入する同時搬入動作を、ロードポートLP上のキャリアCや第1受け渡しユニットPASS1に対して行うことができる。 FIG. 2 shows an example in which the indexer robot IR includes one hand 11, but the indexer robot IR may include two hands 11. In this case, the first main transport robot CR1 may include four hands 21 and 22. Similarly, the second main transport robot CR2 may include four hands 21 and 22. When the indexer robot IR includes two hands 11, the indexer robot IR can hold the two substrates W at the same time using the two hands 11. Accordingly, the indexer robot IR performs a simultaneous unloading operation for simultaneously unloading two substrates W and a simultaneous unloading operation for simultaneously loading two substrates W with respect to the carrier C on the load port LP and the first delivery unit PASS1. It can be carried out.
 図3は、処理ユニットMPCの構成例を説明するための模式的な断面図である。図3に示す処理ユニットMPCは、基板の表面を薬液で洗浄する表面洗浄ユニットである。処理ユニットMPCは、基板Wが通過する開口31aが設けられた処理チャンバ31と、処理チャンバ31内に配置された処理カップ32と、処理カップ32内に配置されたスピンチャック33とを含む。処理チャンバ31は、開口31aが設けられた隔壁31bと、開口31aを開閉するシャッター31cとを含む。 FIG. 3 is a schematic cross-sectional view for explaining a configuration example of the processing unit MPC. The processing unit MPC shown in FIG. 3 is a surface cleaning unit that cleans the surface of a substrate with a chemical solution. The processing unit MPC includes a processing chamber 31 provided with an opening 31a through which the substrate W passes, a processing cup 32 disposed in the processing chamber 31, and a spin chuck 33 disposed in the processing cup 32. The processing chamber 31 includes a partition wall 31b provided with an opening 31a and a shutter 31c that opens and closes the opening 31a.
 処理ユニットMPCは、さらに、基板Wに薬液を供給する薬液ノズル34と、基板Wにリンス液(純水等)を供給するリンス液ノズル35とを含む。スピンチャック33は、1枚の基板Wを水平に保持しながら基板Wの中央部を通る鉛直な回転軸線36まわりに回転させる。薬液ノズル34およびリンス液ノズル35は、処理チャンバ31内に配置されており、スピンチャック33に保持されている基板Wの上面に向けて薬液およびリンス液をそれぞれ吐出する。このような構成により、基板Wの上面に薬液を供給して当該薬液で基板Wの上面を処理する薬液処理(基板処理ステップ)と、基板Wの上面の薬液をリンス液で洗い流すリンス処理(基板処理ステップ)と、基板W上の液滴を遠心力で振り切るスピン乾燥処理(基板処理ステップ)とを実行することができる。 The processing unit MPC further includes a chemical liquid nozzle 34 for supplying a chemical liquid to the substrate W and a rinsing liquid nozzle 35 for supplying a rinsing liquid (pure water or the like) to the substrate W. The spin chuck 33 rotates around a vertical rotation axis 36 passing through the central portion of the substrate W while holding one substrate W horizontally. The chemical liquid nozzle 34 and the rinsing liquid nozzle 35 are arranged in the processing chamber 31 and discharge the chemical liquid and the rinsing liquid toward the upper surface of the substrate W held by the spin chuck 33, respectively. With such a configuration, a chemical solution process (substrate processing step) in which a chemical solution is supplied to the upper surface of the substrate W and the upper surface of the substrate W is processed with the chemical solution, and a rinse treatment (substrate) that rinses the chemical solution on the upper surface of the substrate W with the rinse solution Processing step) and a spin drying process (substrate processing step) in which droplets on the substrate W are shaken off by centrifugal force.
 図4は、処理ユニットMPCの他の構成例を説明するための模式的な断面図である。図4に示す処理ユニットMPCは、基板Wの周端面をスクラブ洗浄する端面洗浄ユニットである。処理ユニットMPCは、処理チャンバ31と、処理チャンバ31内に配置されたスピンチャック33と、薬液ノズル34と、基板Wの端面をスクラブ洗浄するスクラブ部材37とを含む。 FIG. 4 is a schematic cross-sectional view for explaining another configuration example of the processing unit MPC. The processing unit MPC shown in FIG. 4 is an end surface cleaning unit that scrubs and cleans the peripheral end surface of the substrate W. The processing unit MPC includes a processing chamber 31, a spin chuck 33 arranged in the processing chamber 31, a chemical nozzle 34, and a scrub member 37 that scrubs and cleans the end surface of the substrate W.
 スピンチャック33は、1枚の基板Wを水平に保持しながら基板Wの中央部を通る鉛直な回転軸線36まわりに回転させる。薬液ノズル34は、スピンチャック33に保持された基板Wの表面に薬液を供給する。スピンチャック33が基板Wを回転させている状態でスクラブ部材37を基板Wの周端面に押し付けると、スクラブ部材37が基板Wの周端面の全周に擦り付けられる。これにより、基板Wの周端面の全周がスクラブ洗浄される(基板処理ステップ)。 The spin chuck 33 rotates around a vertical rotation axis 36 passing through the central portion of the substrate W while holding one substrate W horizontally. The chemical nozzle 34 supplies a chemical to the surface of the substrate W held on the spin chuck 33. When the scrub member 37 is pressed against the peripheral end surface of the substrate W while the spin chuck 33 rotates the substrate W, the scrub member 37 is rubbed against the entire periphery of the peripheral end surface of the substrate W. As a result, the entire periphery of the peripheral end surface of the substrate W is scrubbed (substrate processing step).
 図5は、基板処理装置1の電気的構成を説明するためのブロック図である。基板処理装置1は、制御装置としてのコンピュータ60を備えている。コンピュータ60は、処理ユニットMPC1~MPC24、主搬送ロボットCR1,CR2およびインデクサロボットIRを制御する。コンピュータ60は、パーソナルコンピュータ(FAパソコン)であってもよい。 FIG. 5 is a block diagram for explaining the electrical configuration of the substrate processing apparatus 1. The substrate processing apparatus 1 includes a computer 60 as a control device. The computer 60 controls the processing units MPC1 to MPC24, the main transfer robots CR1 and CR2, and the indexer robot IR. The computer 60 may be a personal computer (FA personal computer).
 コンピュータ60は、制御部61と、出入力部62と、記憶部63とを備えている。制御部61は、CPU等の演算ユニットを含む。出入力部62は、表示ユニット等の出力機器と、キーボード、ポインティングデバイス、タッチパネル等の入力機器とを含む。さらに、出入力部62は、外部コンピュータであるホストコンピュータ64との通信のための通信モジュールを含む。記憶部63は、固体メモリデバイス、ハードディスクドライブ等の記憶装置を含む。 The computer 60 includes a control unit 61, an input / output unit 62, and a storage unit 63. The control unit 61 includes an arithmetic unit such as a CPU. The input / output unit 62 includes an output device such as a display unit and an input device such as a keyboard, a pointing device, and a touch panel. Further, the input / output unit 62 includes a communication module for communication with a host computer 64 which is an external computer. The storage unit 63 includes a storage device such as a solid-state memory device or a hard disk drive.
 制御部61は、スケジューリング機能部65と、処理実行指示部66とを含む。スケジューリング機能部65は、基板WをキャリアCから搬出し、処理ユニットMPC1~MPC24のうちの一つ以上でその基板Wを処理した後、その処理後の基板WをキャリアCに収容するために、基板処理装置1のリソースを時系列に従って作動させるための計画(スケジュール)を作成する。処理実行指示部66は、スケジューリング機能部65によって作成されたスケジュールに従って、基板処理装置1のリソースを作動させる。リソースとは、基板処理装置1に備えられ、基板の処理のために用いられる各種のユニットである。具体的には、処理ユニットMPC1~MPC24、インデクサロボットIR、主搬送ロボットCR1,CR2、およびそれらの構成要素が、基板処理装置1のリソースに含まれる。 The control unit 61 includes a scheduling function unit 65 and a process execution instruction unit 66. The scheduling function unit 65 unloads the substrate W from the carrier C, processes the substrate W in one or more of the processing units MPC1 to MPC24, and stores the processed substrate W in the carrier C. A plan (schedule) for operating the resources of the substrate processing apparatus 1 in time series is created. The processing execution instruction unit 66 operates the resources of the substrate processing apparatus 1 according to the schedule created by the scheduling function unit 65. The resources are various units provided in the substrate processing apparatus 1 and used for processing the substrate. Specifically, the processing units MPC1 to MPC24, the indexer robot IR, the main transfer robots CR1 and CR2, and their components are included in the resources of the substrate processing apparatus 1.
 記憶部63は、各種データ等を記憶している。記憶部63に記憶されたデータには、制御部61が実行するプログラム70と、ホストコンピュータ64から受信したプロセスジョブデータ(プロセスジョブ情報)80と、スケジューリング機能部65によって作成されたスケジュールデータ81と、各処理ユニットMPCおよび各処理区画PZの使用履歴データ82と、各処理区画PZの搬送時間データ83とが含まれる。 The storage unit 63 stores various data. The data stored in the storage unit 63 includes a program 70 executed by the control unit 61, process job data (process job information) 80 received from the host computer 64, and schedule data 81 created by the scheduling function unit 65. , Usage history data 82 for each processing unit MPC and each processing section PZ, and transport time data 83 for each processing section PZ are included.
 記憶部63に記憶されたプログラム70は、制御部61をスケジューリング機能部65として作動させるためのスケジュール作成プログラム71と、制御部61を処理実行指示部66として作動させるための処理実行プログラム72とを含む。プログラム70は、コンピュータ60に予めインストールされたものであってもよいし、記録媒体Mから記憶部63に送られたものであってもよいし、出入力部62の通信モジュールを通じて記憶部63に送られたものであってもよい。記録媒体Mは、たとえば、コンパクトディスクなどの光ディスクまたはメモリーカードなどの半導体メモリーである。記録媒体Mは、一時的ではない有形の媒体(non-transitory tangible media)の一例である。 The program 70 stored in the storage unit 63 includes a schedule creation program 71 for operating the control unit 61 as the scheduling function unit 65, and a process execution program 72 for operating the control unit 61 as the process execution instruction unit 66. Including. The program 70 may be preinstalled in the computer 60, may be sent from the recording medium M to the storage unit 63, or is stored in the storage unit 63 through the communication module of the input / output unit 62. It may be sent. The recording medium M is, for example, an optical disk such as a compact disk or a semiconductor memory such as a memory card. The recording medium M is an example of a tangible medium that is not temporary (non-transitory tangible media).
 プロセスジョブデータ80は、各基板Wに付与されたプロセスジョブ(PJ)符号と、プロセスジョブ符号に対応付けられたレシピとを含む。レシピは、基板処理内容を定義したデータであり、基板処理条件および基板処理手順を含む。より具体的には、基板種情報、並行処理ユニット情報、使用処理液情報、処理時間情報等を含む。基板種情報は、処理対象の基板Wの種類を表す情報である。基板Wの種類の具体例は、製品を作り込むために使用される製品基板、処理ユニットMPCのメンテナンス等のために使用され、製品の製造には使用されない非製品基板などである。並行処理ユニット情報とは、使用可能な処理ユニットMPCを指定する処理ユニット指定情報であり、指定された処理ユニットMPCによる並行処理が可能であることを表す。すなわち、指定処理ユニットのうちのいずれかで基板Wを処理すればよい。使用処理液情報とは、基板処理のために用いる処理液の種類を指定する情報である。具体例は、薬液の種類および薬液の温度を指定する情報である。処理時間情報とは、処理液を供給する継続時間などである。使用処理液情報および処理時間情報は、処理条件情報の一例である。 The process job data 80 includes a process job (PJ) code assigned to each substrate W and a recipe associated with the process job code. The recipe is data defining the contents of substrate processing, and includes substrate processing conditions and substrate processing procedures. More specifically, it includes substrate type information, parallel processing unit information, used processing liquid information, processing time information, and the like. The substrate type information is information indicating the type of the substrate W to be processed. Specific examples of the type of the substrate W include a product substrate used for manufacturing a product, a non-product substrate that is used for maintenance of the processing unit MPC and is not used for manufacturing a product. The parallel processing unit information is processing unit designation information that designates an available processing unit MPC, and represents that parallel processing by the designated processing unit MPC is possible. That is, the substrate W may be processed in any of the designated processing units. The used processing liquid information is information that designates the type of processing liquid used for substrate processing. A specific example is information specifying the type of chemical and the temperature of the chemical. The processing time information is a continuation time for supplying the processing liquid. The used processing liquid information and the processing time information are examples of processing condition information.
 プロセスジョブとは、共通の処理が施されるべき1枚または複数枚の基板Wに対して行われる当該処理をいう。プロセスジョブ符号とは、プロセスジョブを識別するための識別情報(基板群識別情報)である。すなわち、共通のプロセスジョブ符号が付与された複数枚の基板Wには、当該プロセスジョブ符号に対応付けられたレシピによる共通の処理が施される。たとえば、処理順序(キャリアCからの払い出し順序)が連続している複数枚の基板Wに対して共通の処理が施されるとき、それらの複数枚の基板Wに対して共通のプロセスジョブ符号が付与される。ただし、異なるプロセスジョブ符号に対応する基板処理内容(レシピ)が同じである場合もあり得る。 “Process job” refers to a process performed on one or a plurality of substrates W to be subjected to a common process. The process job code is identification information (substrate group identification information) for identifying a process job. In other words, a plurality of substrates W to which a common process job code is assigned are subjected to a common process using a recipe associated with the process job code. For example, when a common process is performed on a plurality of substrates W in which the processing order (dispensing order from the carrier C) is continuous, a common process job code is assigned to the plurality of substrates W. Is granted. However, the substrate processing content (recipe) corresponding to different process job codes may be the same.
 制御部61は、各基板Wに対するプロセスジョブデータを、ホストコンピュータ64から出入力部62を介して取得し、記憶部63に記憶させる。プロセスジョブデータの取得および記憶は、各基板Wに対するスケジューリングが実行されるよりも前に行われればよい。たとえば、キャリアCがロードポートLP1~LP4に保持された直後に、ホストコンピュータ64から制御部61に当該キャリアCに収容された基板Wに対応するプロセスジョブデータが与えられてもよい。 The control unit 61 acquires process job data for each substrate W from the host computer 64 via the input / output unit 62 and stores it in the storage unit 63. The acquisition and storage of the process job data may be performed before the scheduling for each substrate W is executed. For example, immediately after the carrier C is held in the load ports LP1 to LP4, the process job data corresponding to the substrate W accommodated in the carrier C may be given from the host computer 64 to the control unit 61.
 スケジューリング機能部65は、記憶部63に格納されたプロセスジョブデータ80に基づいて各プロセスジョブを計画し、その計画を表すスケジュールデータ81を記憶部63に格納する。処理実行指示部66は、記憶部63に格納されたスケジュールデータ81に基づいて、インデクサロボットIR、主搬送ロボットCR1,CR2、および処理ユニットMPC1~MPC24を制御することにより、基板処理装置1にプロセスジョブを実行させる。 The scheduling function unit 65 plans each process job based on the process job data 80 stored in the storage unit 63, and stores schedule data 81 representing the plan in the storage unit 63. The process execution instructing unit 66 controls the indexer robot IR, the main transfer robots CR1 and CR2, and the processing units MPC1 to MPC24 based on the schedule data 81 stored in the storage unit 63, thereby allowing the substrate processing apparatus 1 to perform a process. Run the job.
 図6は、スケジューリング機能部65によって実行される処理例を説明するためのフローチャートである。より具体的には、コンピュータ60の制御部61がスケジュール作成プログラム71を実行することによって、所定の制御周期で繰り返し行われる処理が表されている。換言すれば、スケジュール作成プログラム71には、図6に示す処理をコンピュータ60に実行させるようにステップ群が組み込まれている。 FIG. 6 is a flowchart for explaining an example of processing executed by the scheduling function unit 65. More specifically, a process that is repeatedly performed at a predetermined control period when the control unit 61 of the computer 60 executes the schedule creation program 71 is shown. In other words, the schedule creation program 71 incorporates a group of steps so as to cause the computer 60 to execute the processing shown in FIG.
 ホストコンピュータ64は、プロセスジョブデータを制御部61に与えて、そのプロセスジョブデータによって定義されるプロセスジョブの開始、すなわち基板処理の開始を制御部61に指示する(ステップS1)。制御部61は、そのプロセスジョブデータを受信して記憶部63に格納する。そのプロセスジョブデータを用いて、スケジューリング機能部65は、プロセスジョブを実行するためのスケジューリングを行う。プロセスジョブの開始は、作業者が、出入力部62の操作部を操作して指示することもできる。 The host computer 64 gives process job data to the control unit 61 and instructs the control unit 61 to start a process job defined by the process job data, that is, start substrate processing (step S1). The control unit 61 receives the process job data and stores it in the storage unit 63. Using the process job data, the scheduling function unit 65 performs scheduling for executing the process job. The start of the process job can be instructed by the operator by operating the operation unit of the input / output unit 62.
 スケジューリング機能部65は、プロセスジョブデータに含まれるプロセスジョブ(PJ)符号が付与された1枚以上の基板Wについて、1枚ずつ順にスケジューリングを実行する。まず、スケジューリング機能部65は、プロセスジョブデータに対応するレシピを参照し、そのレシピの並行処理ユニット情報に基づいて、基板Wの処理のために使用可能な1つ以上の処理ユニットMPCを特定する(ステップS2)。次いで、スケジューリング機能部65は、基板処理に用いるべき1つの処理区画PZを選択するための処理区画選択処理を実行する(ステップS3)。処理区画選択処理の詳細は、後述する。 The scheduling function unit 65 sequentially executes the scheduling for each of the one or more substrates W to which the process job (PJ) code included in the process job data is assigned. First, the scheduling function unit 65 refers to a recipe corresponding to the process job data, and specifies one or more processing units MPC that can be used for processing the substrate W based on the parallel processing unit information of the recipe. (Step S2). Next, the scheduling function unit 65 executes a processing section selection process for selecting one processing section PZ to be used for the substrate processing (step S3). Details of the processing partition selection processing will be described later.
 次に、スケジューリング機能部65は、1枚の基板Wを処理するための仮タイムテーブルを作成する(ステップS4)。たとえば、処理区画選択処理において第1処理区画PZ1が選択され、プロセスジョブデータに対応するレシピの並行処理ユニット情報に第1処理区画PZ1の全ての処理ユニットMPC1~MPC8が含まれているとする。すなわち、当該レシピに従う基板処理が、8個の処理ユニットMPC1~MPC8のいずれにおいても実行可能である場合を考える。この場合、当該基板Wが通る経路は、8通りである。すなわち、その基板Wの処理のために選択し得る経路は、処理ユニットMPC1~MPC8のいずれかを通る8個の経路である。そこで、スケジューリング機能部65は、その8個の経路に対応した仮タイムテーブルを当該1枚の基板Wに対して作成する。 Next, the scheduling function unit 65 creates a temporary time table for processing one substrate W (step S4). For example, it is assumed that the first processing section PZ1 is selected in the processing section selection process, and the parallel processing unit information of the recipe corresponding to the process job data includes all the processing units MPC1 to MPC8 of the first processing section PZ1. That is, consider a case where the substrate processing according to the recipe can be executed in any of the eight processing units MPC1 to MPC8. In this case, there are eight paths through which the substrate W passes. That is, the paths that can be selected for processing the substrate W are eight paths that pass through any of the processing units MPC1 to MPC8. Therefore, the scheduling function unit 65 creates a temporary time table corresponding to the eight routes for the one substrate W.
 処理ユニットMPC1を通る経路に対応した仮タイムテーブルを図7Aに示す。この仮タイムテーブルは、インデクサロボットIRによるキャリアCからの基板Wの搬出(Get)を表すブロックと、インデクサロボットIRによる当該基板Wの第1受け渡しユニットPASS1への搬入(Put)を表すブロックと、第1主搬送ロボットCR1による第1受け渡しユニットPASS1からの当該基板Wの搬出(Get)を表すブロックと、第1主搬送ロボットCR1による当該基板Wの処理ユニットMPC1への搬入(Put)を表すブロックと、処理ユニットMPC1による当該基板Wに対する処理を表す処理ブロックと、第1主搬送ロボットCR1による処理ユニットMPC1からの処理済みの基板Wの搬出(Get)を表すブロックと、第1主搬送ロボットCR1による当該基板Wの第1受け渡しユニットPASS1への搬入(Put)を表すブロックと、インデクサロボットIRによる当該基板Wの第1受け渡しユニットPASS1からの搬出(Get)を表すブロックと、インデクサロボットIRによる当該基板WのキャリアCへの搬入(Put)を表すブロックとを含む。スケジューリング機能部65は、これらのブロックを時間軸上で重なり合いのないように順番に配置することによって、仮タイムテーブルを作成する。 A temporary time table corresponding to the route passing through the processing unit MPC1 is shown in FIG. 7A. This temporary time table includes a block representing the unloading (Get) of the substrate W from the carrier C by the indexer robot IR, a block representing the unloading (Put) of the substrate W to the first delivery unit PASS1 by the indexer robot IR, and A block representing unloading (Get) of the substrate W from the first delivery unit PASS1 by the first main transport robot CR1, and a block representing unloading (Put) of the substrate W to the processing unit MPC1 by the first main transport robot CR1. A processing block representing processing of the substrate W by the processing unit MPC1, a block representing unloading (Get) of the processed substrate W from the processing unit MPC1 by the first main transport robot CR1, and a first main transport robot CR1. The first delivery unit PAS of the substrate W by 1, a block representing loading (Put) to 1, a block representing unloading (Get) of the substrate W from the first delivery unit PASS 1 by the indexer robot IR, and loading of the substrate W to the carrier C by the indexer robot IR ( And a block representing (Put). The scheduling function unit 65 creates a temporary time table by arranging these blocks in order so as not to overlap each other on the time axis.
 処理ユニットMPC1を使用する仮タイムテーブルが作成されると、スケジューリング機能部65は、同じ基板Wに対して、処理ユニットMPC2~MPC8をそれぞれ通る7つの経路に対応した同様の7つの仮タイムテーブル(処理ブロックを処理ユニットMPC2~MPC8にそれぞれ配置した仮タイムテーブル)を作成する。こうして、1枚の基板Wに対して合計8つの仮タイムテーブルが作成される。そして、作成された仮タイムテーブルは、スケジュールデータ81の一部として記憶部63に格納される。仮タイムテーブルの作成段階では、別の基板Wに関するブロックとの干渉(時間軸上での重なり合い)は考慮されない。 When a temporary time table using the processing unit MPC1 is created, the scheduling function unit 65 causes the same seven temporary time tables (same for the same substrate W to correspond to the seven routes respectively passing through the processing units MPC2 to MPC8). A temporary time table in which processing blocks are arranged in the processing units MPC2 to MPC8, respectively. In this way, a total of eight temporary time tables are created for one substrate W. The created temporary time table is stored in the storage unit 63 as a part of the schedule data 81. In the stage of creating the temporary timetable, interference with the block relating to another substrate W (overlap on the time axis) is not considered.
 スケジューリング機能部65は、1枚の基板Wに対応した全ての仮タイムテーブルを作成し終えると(ステップS5)、本スケジューリングを実行する(ステップS6~S9)。本スケジューリングとは、作成された仮タイムテーブルのブロックを、各リソースの他のブロックと重複しないように、時間軸上に配置することである。本スケジューリングによって作成されたスケジュールデータは記憶部63に格納される。 When the scheduling function unit 65 finishes creating all temporary timetables corresponding to one substrate W (step S5), it executes the main scheduling (steps S6 to S9). This scheduling is to arrange the created temporary time table blocks on the time axis so as not to overlap with other blocks of each resource. The schedule data created by this scheduling is stored in the storage unit 63.
 さらに具体的に説明すると、スケジューリング機能部65は、作成済みの複数の仮タイムテーブルのうちの一つを選択し、当該仮タイムテーブルを構成するブロックを一つ取得する(ステップS6)。このとき取得されるブロックは、未配置のブロックのうち仮タイムテーブルの時間軸上で最も早い位置に配置されているブロックである。さらに、スケジューリング機能部65は、当該取得したブロックを配置できる位置を検索し(ステップS7)、その検索された位置に当該ブロックを配置する(ステップS8)。各ブロックは、同一リソースが同じ時間に重複して使用されないようにしながら、時間軸上で最も早い位置に配置される。同様の動作が、選択した仮タイムテーブルを構成する全てのブロックに関して繰り返し実行される(ステップS9)。こうして、選択した仮タイムテーブルを構成する全てのブロックが配置されることにより、その仮タイムテーブルに対応した本スケジューリングが完了する。この本スケジューリングが、作成された全ての仮タイムテーブルについて実行される(ステップS10)。すなわち、8つの処理ユニットMPC1~MPC8のいずれかで基板Wを処理する可能性がある場合、8通りの本スケジューリングが実行される。 More specifically, the scheduling function unit 65 selects one of a plurality of provisional time tables that have been created, and acquires one block constituting the provisional time table (step S6). The block acquired at this time is the block arranged at the earliest position on the time axis of the temporary time table among the unallocated blocks. Further, the scheduling function unit 65 searches for a position where the acquired block can be arranged (step S7), and arranges the block at the searched position (step S8). Each block is arranged at the earliest position on the time axis while preventing the same resource from being used repeatedly at the same time. A similar operation is repeatedly executed for all the blocks constituting the selected temporary time table (step S9). Thus, by arranging all the blocks constituting the selected temporary time table, the main scheduling corresponding to the temporary time table is completed. This main scheduling is executed for all the created temporary time tables (step S10). That is, when there is a possibility that the substrate W is processed by any of the eight processing units MPC1 to MPC8, eight kinds of main scheduling are executed.
 この8通りの本スケジューリングを終えると、ユニット選択処理が行われる(ステップS11)。ユニット選択処理では、1つの本スケジューリング、すなわち、1つの処理ユニットMPCを通る本スケジューリングが選択され、それによって1枚の基板Wを処理する処理ユニットMPCが選択される。ユニット選択処理では、その基板Wを処理してキャリアCに戻す時刻が最も早い1つの本スケジューリングが選択される(ステップS11。ユニット選択ステップ)。 When the eight main schedulings are finished, unit selection processing is performed (step S11). In the unit selection process, one main scheduling, that is, main scheduling that passes through one processing unit MPC is selected, and thereby a processing unit MPC that processes one substrate W is selected. In the unit selection process, one main scheduling that selects the earliest time for processing the substrate W and returning it to the carrier C is selected (step S11, unit selection step).
 もしも、キャリアCに基板Wが戻る時刻が等しい複数の本スケジューリングが存在するときには(ステップS12:YES)、前回の使用からの経過時間が最も長い処理ユニットMPC、すなわちユニット最終使用時刻が最も古い処理ユニットMPCを用いる本スケジューリングが選択される(ステップS13。ユニット選択ステップ)。これにより、1つの処理区画PZ内の処理ユニットMPCが均等に使用されるように、処理ユニットMPCを選択できる。 If there are a plurality of main schedulings with the same time for returning the substrate W to the carrier C (step S12: YES), the processing unit MPC with the longest elapsed time from the previous use, that is, the process with the oldest unit last use time. The main scheduling using the unit MPC is selected (step S13, unit selection step). Thereby, the processing units MPC can be selected so that the processing units MPC in one processing section PZ are used evenly.
 ユニット最終使用時刻が最も古い処理ユニットMPCを使う本スケジューリングが複数存在するときには(ステップS14:YES)、番号の小さい(すなわち、予め付した優先順の高い)処理ユニットMPCを使う本スケジューリングが選択される(ステップS15。ユニット選択ステップ)。たとえば、処理ユニットMPC1を使う本スケジューリングと処理ユニットMPC2を使う本スケジューリングとが候補として残る場合は、処理ユニットMPC1の方が処理ユニットMPC2よりも末尾の番号が小さいので、処理ユニットMPC1を使う本スケジューリングが選択される。 When there are a plurality of main schedulings using the processing unit MPC having the oldest unit last use time (step S14: YES), the main scheduling using the processing unit MPC having a smaller number (that is, a higher priority order assigned in advance) is selected. (Step S15, unit selection step). For example, when the main scheduling using the processing unit MPC1 and the main scheduling using the processing unit MPC2 remain as candidates, the processing unit MPC1 has a lower end number than the processing unit MPC2, and thus the main scheduling using the processing unit MPC1. Is selected.
 こうして、1つの仮タイムテーブルに対応した1つの本スケジューリングが選択されると、当該1枚の基板Wに対するスケジューリングが完了する(ステップS16)。そして、選択された本スケジューリングを表すスケジューリングデータは、記憶部63に格納される。処理実行指示部66は、その後の任意のタイミングで、当該基板Wに対する処理を実際に開始する(ステップS17。基板搬送ステップおよび基板処理ステップ)。すなわち、インデクサロボットIRによってキャリアCから基板Wを搬出し、主搬送ロボットCR1,CR2によって処理ユニットMPCへと基板Wを搬送する基板搬送動作が開始される。 Thus, when one main scheduling corresponding to one temporary time table is selected, the scheduling for the one substrate W is completed (step S16). The scheduling data representing the selected main scheduling is stored in the storage unit 63. The process execution instructing unit 66 actually starts the process on the substrate W at an arbitrary timing thereafter (step S17, substrate transfer step and substrate process step). That is, the substrate transport operation is started in which the substrate W is unloaded from the carrier C by the indexer robot IR and the main transport robots CR1 and CR2 transport the substrate W to the processing unit MPC.
 スケジューリング機能部65は、1枚の基板Wに対するスケジューリングが完了すると、当該基板Wを処理する処理ユニットMPCのユニット最終使用時刻を記憶部63に登録する(ステップS18)。さらに、スケジューリング機能部65は、当該処理ユニットMPCが属する処理区画PZの投入可能率を求めて、記憶部63に登録する(ステップS19)。投入可能率の詳細は後述する。ユニット最終使用時刻および投入可能率は、使用履歴データ82(図5参照)の一例である。そして、ステップS3からステップS20までの一連の動作が、プロセスジョブを構成する全ての基板Wに対して、順に実行される(ステップS20)。 When the scheduling for one substrate W is completed, the scheduling function unit 65 registers the unit last use time of the processing unit MPC that processes the substrate W in the storage unit 63 (step S18). Furthermore, the scheduling function unit 65 obtains the input possibility rate of the processing section PZ to which the processing unit MPC belongs and registers it in the storage unit 63 (step S19). Details of the input possibility rate will be described later. The unit last use time and the possible insertion rate are examples of use history data 82 (see FIG. 5). Then, a series of operations from step S3 to step S20 are sequentially executed for all the substrates W constituting the process job (step S20).
 処理区画選択処理(ステップS3)において、第2処理区画PZ2が選択されると、スケジューリング機能部65は、1枚の基板Wに対して、処理ユニットMPC9~MPC16をそれぞれ通る8つの経路に対応した8つの仮タイムテーブル(処理ブロックを処理ユニットMPC9~MPC16にそれぞれ配置した仮タイムテーブル)を作成する。それにより、1枚の基板Wに対して合計8つの仮タイムテーブルが作成される。 When the second processing section PZ2 is selected in the processing section selection process (step S3), the scheduling function unit 65 corresponds to eight paths that respectively pass through the processing units MPC9 to MPC16 for one substrate W. Eight temporary time tables (temporary time tables in which processing blocks are arranged in the processing units MPC9 to MPC16, respectively) are created. As a result, a total of eight temporary time tables are created for one substrate W.
 処理ユニットMPC9を通る経路に対応した仮タイムテーブルを図7Bに示す。この仮タイムテーブルは、インデクサロボットIRによるキャリアCからの基板Wの搬出(Get)を表すブロックと、インデクサロボットIRによる当該基板Wの第1受け渡しユニットPASS1への搬入(Put)を表すブロックと、第1主搬送ロボットCR1による第1受け渡しユニットPASS1からの当該基板Wの搬出(Get)を表すブロックと、第1主搬送ロボットCR1による第2受け渡しユニットPASS2への搬入(Put)を表すブロックと、第2主搬送ロボットCR2による第2受け渡しユニットPASS2からの当該基板Wの搬出(Get)を表すブロックと、第2主搬送ロボットCR2による当該基板Wの処理ユニットMPC9への搬入(Put)を表すブロックと、処理ユニットMPC9による当該基板Wに対する処理を表す処理ブロックと、第2主搬送ロボットCR2による処理ユニットMPC9からの処理済みの基板Wの搬出(Get)を表すブロックと、第2主搬送ロボットCR2による当該基板Wの第2受け渡しユニットPASS2への搬入(Put)を表すブロックと、第1主搬送ロボットCR1による第2受け渡しユニットPASS2からの当該基板の搬出(Get)を表すブロックと、第1主搬送ロボットCR1による当該基板Wの第1受け渡しユニットPASS1への搬入(Put)を表すブロックと、インデクサロボットIRによる当該基板Wの第1受け渡しユニットPASS1からの搬出(Get)を表すブロックと、インデクサロボットIRによる当該基板WのキャリアCへの搬入(Put)を表すブロックとを含む。スケジューリング機能部65は、これらのブロックを時間軸上で重なり合いのないように順番に配置することによって、仮タイムテーブルを作成する。 FIG. 7B shows a temporary time table corresponding to the route passing through the processing unit MPC9. This temporary time table includes a block representing the unloading (Get) of the substrate W from the carrier C by the indexer robot IR, a block representing the unloading (Put) of the substrate W to the first delivery unit PASS1 by the indexer robot IR, and A block representing unloading (Get) of the substrate W from the first delivery unit PASS1 by the first main transport robot CR1, and a block representing unloading (Put) to the second delivery unit PASS2 by the first main transport robot CR1; A block representing unloading (Get) of the substrate W from the second delivery unit PASS2 by the second main transfer robot CR2, and a block representing unloading (Put) of the substrate W to the processing unit MPC9 by the second main transfer robot CR2. And the substrate W by the processing unit MPC9 A processing block representing processing to be performed, a block representing unloading (Get) of the processed substrate W from the processing unit MPC9 by the second main transport robot CR2, and a second delivery unit of the substrate W by the second main transport robot CR2. A block representing loading (Put) into the PASS2, a block representing unloading (Get) of the substrate from the second delivery unit PASS2 by the first main transport robot CR1, and a first of the substrate W by the first main transport robot CR1. A block representing the delivery (Put) to one delivery unit PASS1, a block representing the delivery (Get) of the substrate W from the first delivery unit PASS1 by the indexer robot IR, and the carrier C of the substrate W by the indexer robot IR And a block representing the loading (put). The scheduling function unit 65 creates a temporary time table by arranging these blocks in order so as not to overlap each other on the time axis.
 処理区画選択処理(ステップS3)において、第3処理区画PZ3が選択されると、スケジューリング機能部65は、1枚の基板Wに対して、処理ユニットMPC17~MPC24をそれぞれ通る8つの経路に対応した8つの仮タイムテーブル(処理ブロックを処理ユニットMPC17~MPC24にそれぞれ配置した仮タイムテーブル)を作成する。それにより、1枚の基板Wに対して合計8つの仮タイムテーブルが作成される。処理ユニットMPC17を通る経路に対応した仮タイムテーブルを図7Cに示す。この仮タイムテーブルは、図7Bの仮タイムテーブルとほぼ同様である。 When the third processing section PZ3 is selected in the processing section selection process (step S3), the scheduling function unit 65 corresponds to eight routes passing through the processing units MPC17 to MPC24 for one substrate W. Eight temporary time tables (temporary time tables in which processing blocks are arranged in the processing units MPC17 to MPC24) are created. As a result, a total of eight temporary time tables are created for one substrate W. FIG. 7C shows a temporary time table corresponding to a route passing through the processing unit MPC17. This temporary time table is almost the same as the temporary time table of FIG. 7B.
 図8は、処理区画選択処理(図6のステップS3)の一例を説明するためのフローチャートである。図9Aおよび図9Bは、記憶部63(図5参照)に記憶された処理区画データの一例を示す。図10A~図10Eは、記憶部63に記憶された投入可能率、区画最終使用時刻、最古チャンバ数、および有効チャンバ数の一例を示す。 FIG. 8 is a flowchart for explaining an example of the processing partition selection processing (step S3 in FIG. 6). 9A and 9B show an example of processing partition data stored in the storage unit 63 (see FIG. 5). FIG. 10A to FIG. 10E show an example of the possible loading rate, the partition last use time, the oldest chamber number, and the effective chamber number stored in the storage unit 63.
 有効チャンバ数は、同じ処理区画PZに属する複数の処理ユニットMPCの中で使用可能(有効)な処理ユニットMPCの数である。最古チャンバ数は、同じ処理区画PZに属する複数の処理ユニットMPCの中でユニット最終使用時刻が最も古い有効な処理ユニットMPCの数である。投入可能率は、同一の処理区画PZにおける有効チャンバ数に対する最古チャンバ数の割合を示す百分率である((最古チャンバ数/有効チャンバ数)×100)。処理区画データ、投入可能率、区画最終使用時刻、最古チャンバ数、および有効チャンバ数は、使用履歴データ82として処理区画ごとに記憶されている。 The number of effective chambers is the number of processing units MPC that can be used (effective) among a plurality of processing units MPC belonging to the same processing section PZ. The oldest chamber number is the number of effective processing units MPC having the oldest unit last use time among the plurality of processing units MPC belonging to the same processing section PZ. The chargeable rate is a percentage indicating the ratio of the oldest chamber number to the effective chamber number in the same processing section PZ ((oldest chamber number / effective chamber number) × 100). The processing partition data, the input possible rate, the partition last use time, the oldest chamber number, and the effective chamber number are stored as the use history data 82 for each processing partition.
 記憶部63には、図9Aに示すように、全ての処理ユニットMPCについて、処理区画PZの設定を表す処理区画データが登録されている。この例では、処理ユニットMPC1~MPC8については、第1処理区画PZ1に属することを表す処理区画データ「1」が登録されている。また、処理ユニットMPC9~MPC16については、第2処理区画PZ2に属することを表す処理区画データ「2」が登録されている。さらに、処理ユニットMPC17~MPC24については、第3処理区画PZ3に属することを表す処理区画データ「3」が登録されている。 In the storage unit 63, as shown in FIG. 9A, processing section data representing the setting of the processing section PZ is registered for all processing units MPC. In this example, for the processing units MPC1 to MPC8, processing section data “1” indicating that it belongs to the first processing section PZ1 is registered. Further, for the processing units MPC9 to MPC16, processing section data “2” indicating that it belongs to the second processing section PZ2 is registered. Further, for the processing units MPC17 to MPC24, processing section data “3” indicating that it belongs to the third processing section PZ3 is registered.
 いずれかの処理ユニットMPCがメンテナンス等のために基板処理に利用できないときは、図9Bに示すように、処理区画PZを識別するデータ(番号)の代わりに、無効であることを表すデータ(たとえば「メンテナンス中」を表すデータなど)が登録される。メンテナンスとは、たとえば、定期的に計画される処理ユニットMPCの洗浄等である。 When any of the processing units MPC cannot be used for substrate processing due to maintenance or the like, as shown in FIG. 9B, instead of data (number) identifying the processing section PZ, data indicating invalidity (for example, Data indicating “in maintenance” is registered. The maintenance is, for example, regularly cleaning the processing unit MPC.
 スケジューリング機能部65は、各基板Wの処理をすべき処理区画PZを選択するときに、記憶部63(図5参照)に記憶された処理区画データに基づいて、各処理ユニットMPCがいずれの処理区画PZに属するのか、および無効な処理ユニットMPCが存在するかを判断する(図8のステップS31。所属確認ステップ)。そして、スケジューリング機能部65は、全ての処理ユニットMPC1~MPC24のユニット最終使用時刻を記憶部63から読み出す(図8のステップS32。ユニット最終使用時刻取得ステップ)。 When the scheduling function unit 65 selects a processing section PZ to be processed for each substrate W, each processing unit MPC performs any processing based on the processing section data stored in the storage unit 63 (see FIG. 5). It is determined whether it belongs to the section PZ and whether there is an invalid processing unit MPC (step S31 in FIG. 8, belonging confirmation step). Then, the scheduling function unit 65 reads out the unit last use times of all the processing units MPC1 to MPC24 from the storage unit 63 (step S32 in FIG. 8, unit last use time acquisition step).
 さらに、スケジューリング機能部65は、ロードポートLP上のキャリアCから処理ユニットMPCに基板Wを搬送するのに要する搬送時間を、全ての処理ユニットMPC1~MPC24について記憶部63から読み出す。その後、スケジューリング機能部65は、それぞれの処理ユニットMPCについてユニット最終使用時刻から搬送時間を引いて、得られた値(時刻)を修正ユニット最終使用時刻として記憶部63に登録する(図8のステップS33。修正ユニット最終使用時刻計算ステップ)。修正ユニット最終使用時刻は、使用履歴データ82に含まれる。修正ユニット最終使用時刻の詳細は後述する。 Furthermore, the scheduling function unit 65 reads the transfer time required to transfer the substrate W from the carrier C on the load port LP to the processing unit MPC from the storage unit 63 for all the processing units MPC1 to MPC24. Thereafter, the scheduling function unit 65 subtracts the transport time from the unit last use time for each processing unit MPC, and registers the obtained value (time) in the storage unit 63 as the corrected unit last use time (step in FIG. 8). S33: Correction unit final use time calculation step). The modification unit last use time is included in the use history data 82. Details of the correction unit last use time will be described later.
 図10A~図10Eは、全ての処理ユニットMPC1~MPC24が使用可能(有効)かつ初期化された状態で、同じレシピが適用された複数枚の基板Wのスケジューリングを行った場合における記憶部63内の使用履歴データ82の変遷の一例を示している。 FIGS. 10A to 10E show the contents of the storage unit 63 when scheduling a plurality of substrates W to which the same recipe is applied in a state where all the processing units MPC1 to MPC24 are usable (valid) and initialized. 2 shows an example of the transition of the usage history data 82.
 図10Aに示すように、1枚目の基板Wのスケジューリングを行う前、各処理区画PZの投入可能率(最古チャンバ数/有効チャンバ数×100)は100%であり、各処理区画PZの区画最終使用時刻は、初期値(図10では、0)であり、各処理区画PZの最古チャンバ数は、8である。各処理区画PZの有効チャンバ数は、8である。複数枚の基板Wに適用されたレシピでは、全ての処理ユニットMPC1~MPC24が並行処理ユニットとして指定されている。 As shown in FIG. 10A, before the scheduling of the first substrate W, the possible loading rate (the oldest number of chambers / the number of effective chambers × 100) of each processing section PZ is 100%. The section last use time is an initial value (0 in FIG. 10), and the oldest chamber number of each processing section PZ is eight. The number of effective chambers in each processing section PZ is eight. In the recipe applied to a plurality of substrates W, all the processing units MPC1 to MPC24 are designated as parallel processing units.
 基板処理装置1が初期化されると、全てのユニット最終使用時刻も初期化され、初期値(たとえば、0)が全ての処理ユニットMPC1~MPC24のユニット最終使用時刻として登録される。ユニット最終使用時刻が初期値以外の値である場合は、搬送時間を用いてユニット最終使用時刻が修正されるものの、ユニット最終使用時刻が初期値である場合は、初期値が修正ユニット最終使用時刻として登録される。図10Aに示す例では、全ての処理ユニットMPC1~MPC24の修正ユニット最終使用時刻が初期値であるため、全ての区画最終使用時刻が初期値(図10Aでは、0)である。 When the substrate processing apparatus 1 is initialized, all unit last use times are also initialized, and initial values (for example, 0) are registered as unit last use times for all the processing units MPC1 to MPC24. If the unit last use time is a value other than the initial value, the unit last use time is corrected using the transport time. However, if the unit last use time is the initial value, the initial value is the corrected unit last use time. Registered as In the example shown in FIG. 10A, the correction unit final use times of all the processing units MPC1 to MPC24 are initial values, and therefore all the partition final use times are initial values (0 in FIG. 10A).
 1枚目の基板Wを処理する処理区画PZを選択するとき、スケジューリング機能部65は、全ての処理区画PZ1~PZ3の中で区画最終使用時刻が最も古い処理区画PZを検索し、複数の処理区画PZが候補区画に含まれるかを確認する(図8のステップS34。第1検索ステップ)。候補区画が1つである場合、つまり、区画最終使用時刻が最も古い処理区画PZが1つしか見つからなかった場合(図8のステップS34:NO)は、その処理区画PZを1枚目の基板Wのために選択する(図8のステップS35。区画選択ステップ)。図10Aに示す例では、全ての区画最終使用時刻が初期値であるため、全ての処理区画PZ1~PZ3が、区画最終使用時刻が最も古い処理区画PZに該当する。 When the processing section PZ for processing the first substrate W is selected, the scheduling function unit 65 searches for the processing section PZ having the oldest partition last use time among all the processing sections PZ1 to PZ3, and performs a plurality of processing. It is confirmed whether or not the section PZ is included in the candidate sections (step S34 in FIG. 8, first search step). When there is one candidate section, that is, when only one processing section PZ having the oldest section last use time is found (step S34: NO in FIG. 8), the processing section PZ is designated as the first substrate. Select for W (step S35 in FIG. 8, section selection step). In the example shown in FIG. 10A, since all the partition last use times are initial values, all the process partitions PZ1 to PZ3 correspond to the process partition PZ with the oldest partition last use time.
 区画最終使用時刻が最も古い処理区画PZが複数見つかった場合(図8のステップS34:YES)、スケジューリング機能部65は、投入可能率((最古チャンバ数/有効チャンバ数)×100)が最大の処理区画PZを、候補区画に含まれる複数の処理区画PZの中で検索し、この検索条件に該当する複数の処理区画PZが候補区画に含まれるかを確認する(図8のステップS36。第2検索ステップ)。見つかった処理区画PZが1つである場合、つまり、投入可能率が最大の処理区画PZが1つである場合(図8のステップS36:NO)、その処理区画PZを1枚目の基板Wのために選択する(図8のステップS37。区画選択ステップおよび選択ステップ)。図10Aに示す例では、全てのユニット最終使用時刻が初期値であるため、全ての処理区画PZ1~PZ3が、投入可能率が最大の処理区画PZに該当する。 When a plurality of processing partitions PZ having the oldest partition last use time are found (step S34 in FIG. 8: YES), the scheduling function unit 65 has the highest possible input rate ((oldest chamber number / effective chamber number) × 100). This processing section PZ is searched among the plurality of processing sections PZ included in the candidate section, and it is confirmed whether or not the plurality of processing sections PZ corresponding to this search condition are included in the candidate section (step S36 in FIG. 8). Second search step). When one processing section PZ is found, that is, when there is one processing section PZ having the maximum possible loading rate (step S36: NO in FIG. 8), the processing section PZ is designated as the first substrate W. (Step S37 in FIG. 8, section selection step and selection step). In the example shown in FIG. 10A, since all the unit last use times are initial values, all the processing sections PZ1 to PZ3 correspond to the processing section PZ having the maximum possible input rate.
 投入可能率が最大の処理区画PZが複数見つかった場合(図8のステップS36:YES)、スケジューリング機能部65は、候補区画に含まれる複数の処理区画PZの中で区画番号が最も小さい(すなわち、予め付した優先順位が最も高い)処理区画PZを1枚目の基板Wのために選択する(図8のステップS38。区画選択ステップ、第3検索ステップ、および選択ステップ)。図10Aに示す例では、区画番号が最も小さい第1処理区画PZ1が1枚目の基板Wを処理する処理区画PZとして選択される。そのため、図10Bに示すように、第1処理区画PZ1の最古チャンバ数が8から7に減少し、第1処理区画PZ1の投入可能率が87.5%((7/8)×100)に減少する。 When a plurality of processing partitions PZ having the maximum input rate are found (step S36 in FIG. 8: YES), the scheduling function unit 65 has the smallest partition number among the plurality of processing partitions PZ included in the candidate partition (that is, The processing section PZ having the highest priority assigned in advance is selected for the first substrate W (step S38 in FIG. 8. Section selection step, third search step, and selection step). In the example shown in FIG. 10A, the first processing section PZ1 having the smallest section number is selected as the processing section PZ for processing the first substrate W. Therefore, as shown in FIG. 10B, the number of oldest chambers in the first processing section PZ1 is reduced from 8 to 7, and the input possibility rate of the first processing section PZ1 is 87.5% ((7/8) × 100). To decrease.
 1枚目の基板Wに対するスケジューリングが完了すると、スケジューリング機能部65は、1枚目の基板Wが終了する時刻を推定し、推定される時刻を1枚目の基板Wを処理する処理ユニットMPCのユニット最終使用時刻として記憶部63に登録する。その後、スケジューリング機能部65は、1枚目の基板Wを処理する処理ユニットMPCのユニット最終使用時刻から当該処理ユニットMPCまでの搬送時間を引き、得られた値(時刻)を修正ユニット最終使用時刻として記憶部63に登録する。つまり、1枚目の基板Wを処理する処理ユニットMPCについて、新たなユニット最終使用時刻および修正ユニット最終使用時刻が記憶部63に登録される。2枚目以降の基板Wについても、スケジューリングが完了すると、基板Wの処理のために選択された処理ユニットMPCについて、新たなユニット最終使用時刻および修正ユニット最終使用時刻が記憶部63に登録される。 When the scheduling for the first substrate W is completed, the scheduling function unit 65 estimates the time when the first substrate W ends, and the estimated time of the processing unit MPC that processes the first substrate W is estimated. The unit last use time is registered in the storage unit 63. Thereafter, the scheduling function unit 65 subtracts the transport time from the unit last use time of the processing unit MPC that processes the first substrate W to the processing unit MPC, and uses the obtained value (time) as the corrected unit last use time. Is registered in the storage unit 63. That is, for the processing unit MPC that processes the first substrate W, the new unit final use time and the corrected unit final use time are registered in the storage unit 63. For the second and subsequent substrates W, when the scheduling is completed, the new unit final use time and the corrected unit final use time are registered in the storage unit 63 for the processing unit MPC selected for processing the substrate W. .
 1枚目の基板Wに対するスケジューリングが完了すると、1枚目の基板Wを処理する処理ユニットMPCのユニット最終使用時刻および修正ユニット最終使用時刻が初期値以外に値に変更される。区画最終使用時刻は、同じ処理区画PZに属する全ての処理ユニットMPCの修正ユニット最終使用時刻の中で最も古い時刻である。1枚目の基板Wを処理する処理ユニットMPCの修正ユニット最終使用時刻が変更されても、この処理ユニットMPCと同じ処理区画PZに属する他の処理ユニットMPCの修正ユニット最終使用時刻は、初期値のままである。そのため、1枚目の基板Wを処理する処理ユニットMPCが属する処理区画PZの区画最終使用時刻は、初期値のまま変わらない。 When the scheduling for the first substrate W is completed, the unit last use time and the correction unit last use time of the processing unit MPC that processes the first substrate W are changed to values other than the initial values. The partition last use time is the oldest time among the correction unit last use times of all the processing units MPC belonging to the same processing partition PZ. Even if the correction unit final use time of the processing unit MPC for processing the first substrate W is changed, the correction unit final use time of another processing unit MPC belonging to the same processing section PZ as this processing unit MPC is the initial value. Remains. Therefore, the section last use time of the processing section PZ to which the processing unit MPC that processes the first substrate W belongs remains the initial value.
 2枚目の基板Wを処理する処理区画PZを選択するときは、前述と同様に、3つの処理区画PZのうちのいずれかが選択される。図10Bに示す例では、各処理区画PZの区画最終使用時刻が初期値であるものの、第2処理区画PZ2と第3処理区画PZ3が投入可能率が最大の処理区画PZに該当するため、区画番号が最も小さい第2処理区画PZ2が2枚目の基板Wのために選択される。そのため、図10Cに示すように、第2処理区画PZ2の最古チャンバ数が8から7に減少し、第2処理区画PZ2の投入可能率が87.5%((7/8)×100)に減少する。 When selecting the processing section PZ for processing the second substrate W, one of the three processing sections PZ is selected as described above. In the example shown in FIG. 10B, although the final use time of each processing partition PZ is an initial value, the second processing partition PZ2 and the third processing partition PZ3 correspond to the processing partition PZ with the maximum input rate, The second processing section PZ2 having the smallest number is selected for the second substrate W. Therefore, as shown in FIG. 10C, the number of oldest chambers in the second processing section PZ2 is reduced from 8 to 7, and the input possibility rate of the second processing section PZ2 is 87.5% ((7/8) × 100). To decrease.
 3枚目の基板Wを処理する処理区画PZを選択するときも、前述と同様に、3つの処理区画PZのうちのいずれかが選択される。図10Cに示す例では、各処理区画PZの区画最終使用時刻が初期値であるものの、第3処理区画PZ3の投入可能率が最も高いので、第3処理区画PZ3が3枚目の基板Wのために選択される。そのため、図10Dに示すように、第3処理区画PZ3の最古チャンバ数が8から7に減少し、第3処理区画PZ3の投入可能率が87.5%((7/8)×100)に減少する。 When selecting the processing section PZ for processing the third substrate W, one of the three processing sections PZ is selected as described above. In the example shown in FIG. 10C, although the final use time of each processing section PZ is the initial value, the third processing section PZ3 has the highest input possibility rate, so the third processing section PZ3 is the third substrate W. Selected for. Therefore, as shown in FIG. 10D, the number of the oldest chambers in the third processing section PZ3 is reduced from 8 to 7, and the charging rate of the third processing section PZ3 is 87.5% ((7/8) × 100). To decrease.
 4枚目の基板Wを処理する処理区画PZを選択するときも、前述と同様に、3つの処理区画PZのうちのいずれかが選択される。図10Dに示す例では、各処理区画PZの区画最終使用時刻が初期値であり、投入可能率が3つの処理区画PZの間で等しいので、区画番号が最も小さい第1処理区画PZ1が4枚目の基板Wのために選択される。そのため、図10Eに示すように、第1処理区画PZ1の最古チャンバ数が7から6に減少し、第1処理区画PZ1の投入可能率が75%((6/8)×100)に減少する。 When selecting the processing section PZ for processing the fourth substrate W, one of the three processing sections PZ is selected as described above. In the example shown in FIG. 10D, the section last use time of each processing section PZ is the initial value, and the input possibility rate is the same among the three processing sections PZ. Therefore, there are four first processing sections PZ1 having the smallest section number. Selected for eye substrate W. Therefore, as shown in FIG. 10E, the number of oldest chambers in the first processing section PZ1 is reduced from 7 to 6, and the input possibility rate of the first processing section PZ1 is reduced to 75% ((6/8) × 100). To do.
 5枚目以降の基板Wを処理する処理区画PZも、前述と同様に、3つの処理区画PZのうちのいずれかが選択される。同じ処理区画PZに属する全ての処理ユニットMPCを使用するスケジュールが作成されると、その処理区画PZに属するそれぞれの処理ユニットMPCについて、ユニット最終使用時刻および修正ユニット最終使用時刻が初期値以外の値に変更される。この場合、スケジューリング機能部65は、その処理区画PZに属する全ての処理ユニットMPCの修正ユニット最終使用時刻の中で最も古い時刻を区画最終使用時刻として記憶部63に登録する。これにより、区画最終使用時刻が初期値以外の値に変更される。 As for the processing section PZ for processing the fifth and subsequent substrates W, one of the three processing sections PZ is selected as described above. When a schedule for using all the processing units MPC belonging to the same processing partition PZ is created, for each processing unit MPC belonging to the processing partition PZ, the unit final use time and the corrected unit final use time are values other than the initial values. Changed to In this case, the scheduling function unit 65 registers the oldest time among the corrected unit final use times of all the processing units MPC belonging to the processing partition PZ in the storage unit 63 as the partition final use time. Thereby, the partition last use time is changed to a value other than the initial value.
 図11A~図11Eは、図9Bに示すように第1処理区画PZ1に属する4つの処理ユニットMPC5~MPC8がメンテナンスのために無効(使用不可)とされており、他の全ての処理ユニットMPC1~MPC4およびMPC9~MPC24が使用可能(有効)かつ初期化された状態で、同じレシピが適用された複数枚の基板Wのスケジューリングを行った場合における記憶部63内の使用履歴データ82の変遷の一例を示している。 In FIG. 11A to FIG. 11E, as shown in FIG. 9B, the four processing units MPC5 to MPC8 belonging to the first processing section PZ1 are disabled (unusable) for maintenance, and all other processing units MPC1 to MPC1 Example of transition of usage history data 82 in the storage unit 63 when scheduling a plurality of substrates W to which the same recipe is applied in a state where the MPC 4 and MPC 9 to MPC 24 are usable (valid) and initialized. Is shown.
 図11Aに示すように、1枚目の基板Wのスケジューリングを行う前、各処理区画PZの投入可能率は100%であり、各処理区画PZの区画最終使用時刻は、初期値(図11では、0)であり、第1処理区画PZ1の最古チャンバ数は、4であり、第2処理区画PZ2および第3処理区画PZ3の最古チャンバ数は、8である。第1処理区画PZ1の有効チャンバ数は、4であり、第2処理区画PZ2および第3処理区画PZ3の有効チャンバ数は、8である。複数枚の基板Wに適用されたレシピでは、全ての処理ユニットMPC1~MPC24が並行処理ユニットとして指定されている。 As shown in FIG. 11A, before performing scheduling of the first substrate W, the input possibility rate of each processing section PZ is 100%, and the section last use time of each processing section PZ is an initial value (in FIG. 11). , 0), the oldest chamber number of the first processing section PZ1 is 4, and the oldest chamber number of the second processing section PZ2 and the third processing section PZ3 is eight. The number of effective chambers in the first processing section PZ1 is 4, and the number of effective chambers in the second processing section PZ2 and the third processing section PZ3 is eight. In the recipe applied to a plurality of substrates W, all the processing units MPC1 to MPC24 are designated as parallel processing units.
 1枚目の基板Wを処理する処理区画PZを選択するとき、図11Aに示すように、区画最終使用時刻がいずれの処理区画PZも初期値であり、投入可能率が3つの処理区画PZの間で等しいので、スケジューリング機能部65は、区画番号が最も小さい第1処理区画PZ1を1枚目の基板Wを処理する処理区画PZとして選択し、第1処理区画PZ1で1枚目の基板Wを処理するスケジューリングを行う。そのため、図11Bに示すように、第1処理区画PZ1の最古チャンバ数が4から3に減少し、第1処理区画PZ1の投入可能率が75%((3/4)×100)に減少する。 When the processing section PZ for processing the first substrate W is selected, as shown in FIG. 11A, the section final use time is the initial value for all the processing sections PZ, and the input possibility rate is three processing sections PZ. Therefore, the scheduling function unit 65 selects the first processing section PZ1 having the smallest section number as the processing section PZ for processing the first substrate W, and the first substrate W in the first processing section PZ1. Scheduling to process Therefore, as shown in FIG. 11B, the oldest chamber number of the first processing section PZ1 is decreased from 4 to 3, and the input possibility rate of the first processing section PZ1 is decreased to 75% ((3/4) × 100). To do.
 2枚目の基板Wを処理する処理区画PZを選択するとき、図11Bに示すように、区画最終使用時刻がいずれの処理区画PZも初期値であり、第2処理区画PZ2および第3処理区画PZ3の投入可能率が最も高いので、スケジューリング機能部65は、区画番号が最も小さい第2処理区画PZ2を2枚目の基板Wのために選択する。そのため、図11Cに示すように、第2処理区画PZ2の最古チャンバ数が8から7に減少し、第2処理区画PZ2の投入可能率が87.5%((7/8)×100)に減少する。 When the processing section PZ for processing the second substrate W is selected, as shown in FIG. 11B, the processing end PZ is the initial value for any processing section PZ, and the second processing section PZ2 and the third processing section The scheduling function unit 65 selects the second processing section PZ2 having the smallest section number for the second substrate W because the PZ3 insertion possibility rate is the highest. Therefore, as shown in FIG. 11C, the oldest number of chambers in the second processing section PZ2 is reduced from 8 to 7, and the charging rate of the second processing section PZ2 is 87.5% ((7/8) × 100). To decrease.
 3枚目の基板Wを処理する処理区画PZを選択するとき、図11Cに示すように、区画最終使用時刻がいずれの処理区画PZも初期値であり、第3処理区画PZ3の投入可能率が最も高いので、スケジューリング機能部65は、第3処理区画PZ3を3枚目の基板Wのために選択する。そのため、図11Dに示すように、第3処理区画PZ3の最古チャンバ数が8から7に減少し、第3処理区画PZ3の投入可能率が87.5%((7/8)×100)に減少する。 When selecting the processing section PZ for processing the third substrate W, as shown in FIG. 11C, the section final use time is the initial value for any processing section PZ, and the input possibility rate of the third processing section PZ3 is Since it is the highest, the scheduling function unit 65 selects the third processing section PZ3 for the third substrate W. Therefore, as shown in FIG. 11D, the number of oldest chambers in the third processing section PZ3 is reduced from 8 to 7, and the charging rate of the third processing section PZ3 is 87.5% ((7/8) × 100). To decrease.
 4枚目の基板Wを処理する処理区画PZを選択するとき、図11Dに示すように、区画最終使用時刻がいずれの処理区画PZも初期値であり、第2処理区画PZ2および第3処理区画PZ3の投入可能率が最も高いので、スケジューリング機能部65は、区画番号が最も小さい第2処理区画PZ2を4枚目の基板Wのために選択する。そのため、図11Eに示すように、第2処理区画PZ2の最古チャンバ数が7から6に減少し、第2処理区画PZ2の投入可能率が75%((6/8)×100)に減少する。 When the processing section PZ for processing the fourth substrate W is selected, as shown in FIG. 11D, the processing end PZ is the initial value for all processing sections PZ, and the second processing section PZ2 and the third processing section The scheduling function unit 65 selects the second processing section PZ2 having the smallest section number for the fourth substrate W because the PZ3 input possibility rate is the highest. Therefore, as shown in FIG. 11E, the number of oldest chambers in the second processing section PZ2 is decreased from 7 to 6, and the input possibility rate of the second processing section PZ2 is decreased to 75% ((6/8) × 100). To do.
 5枚目の基板Wを処理する処理区画PZを選択するとき、図11Eに示すように、区画最終使用時刻がいずれの処理区画PZも初期値であり、第3処理区画PZ3の投入可能率が最も高いので、スケジューリング機能部65は、第3処理区画PZ3を4枚目の基板Wのために選択する。そのため、図11Fに示すように、第3処理区画PZ3の最古チャンバ数が7から6に減少し、第3処理区画PZ3の投入可能率が75%((6/8)×100)に減少する。 When the processing section PZ for processing the fifth substrate W is selected, as shown in FIG. 11E, the section final use time is the initial value for any processing section PZ, and the input possibility rate of the third processing section PZ3 is Since it is the highest, the scheduling function unit 65 selects the third processing section PZ3 for the fourth substrate W. Therefore, as shown in FIG. 11F, the number of oldest chambers in the third processing section PZ3 is reduced from 7 to 6, and the input possibility rate of the third processing section PZ3 is reduced to 75% ((6/8) × 100). To do.
 図12は、全てのユニット最終使用時刻が初期値以外の値に変更された後のユニット最終使用時刻、搬送時間、および修正ユニット最終使用時刻の一例を示している。 FIG. 12 shows an example of the unit last use time, the transport time, and the corrected unit last use time after all the unit last use times have been changed to values other than the initial values.
 図12は、1~3枚目の基板Wが、処理ユニットMPC1、処理ユニットMPC9、処理ユニットMPC17の順番で、これらの処理ユニットMPC1、MPC9、およびMPC17に搬入される例を示している。図12に示す例では、処理ユニットMPC1のユニット最終使用時刻は、12時00分00秒であり、処理ユニットMPC9のユニット最終使用時刻は、12時00分15秒であり、処理ユニットMPC17のユニット最終使用時刻は、12時00分30秒である。 FIG. 12 shows an example in which the first to third substrates W are carried into the processing units MPC1, MPC9, and MPC17 in the order of the processing unit MPC1, the processing unit MPC9, and the processing unit MPC17. In the example shown in FIG. 12, the unit last use time of the processing unit MPC1 is 12:00:00, the unit last use time of the processing unit MPC9 is 12:00:15, and the unit of the processing unit MPC17 The last use time is 12:00:30.
 また、図12は、第1処理区画PZ1の搬送時間は10秒であり、第2処理区画PZ2の搬送時間は15秒であり、第3処理区画PZ3の搬送時間は15秒である例を示している。各処理区画PZの搬送時間は、搬送時間データ83(図5参照)に登録されている(搬送時間登録ステップ)。処理ユニットMPC1および処理ユニットMPC2は、第1処理区画PZ1に属しているものの、ロードポートLPから処理ユニットMPC1までの距離は、厳密には、ロードポートLPから処理ユニットMPC2までの距離とは異なる。そのため、処理ユニットMPC1までの基板Wの搬送時間は、厳密には、処理ユニットMPC2までの基板Wの搬送時間とは異なる。しかしながら、図12に示す例では、同じ処理区画PZに属する処理ユニットMPCであれば搬送時間が概ね等しいと見なして、1つの搬送時間を同じ処理区画PZに属する全ての処理ユニットMPCに登録している。 FIG. 12 shows an example in which the transport time of the first processing section PZ1 is 10 seconds, the transport time of the second processing section PZ2 is 15 seconds, and the transport time of the third processing section PZ3 is 15 seconds. ing. The transfer time of each processing section PZ is registered in the transfer time data 83 (see FIG. 5) (transfer time registration step). Although the processing unit MPC1 and the processing unit MPC2 belong to the first processing section PZ1, the distance from the load port LP to the processing unit MPC1 is strictly different from the distance from the load port LP to the processing unit MPC2. Therefore, strictly speaking, the transport time of the substrate W to the processing unit MPC1 is different from the transport time of the substrate W to the processing unit MPC2. However, in the example shown in FIG. 12, if the processing units MPC belong to the same processing section PZ, the transport times are regarded as being substantially equal, and one transport time is registered in all the processing units MPC belonging to the same processing section PZ. Yes.
 スケジューリング機能部65は、処理ユニットMPC1のユニット最終使用時刻から第1処理区画PZ1の搬送時間を引き、得られた値(時刻)を処理ユニットMPC1の修正ユニット最終使用時刻として登録する。具体的には、スケジューリング機能部65は、処理ユニットMPC1の修正ユニット最終使用時刻に11時59分50秒(12時00分00秒-10秒)を登録する。同様に、スケジューリング機能部65は、処理ユニットMPC9の修正ユニット最終使用時刻に12時00分00秒(12時00分15秒-15秒)を登録し、処理ユニットMPC17の修正ユニット最終使用時刻に12時00分15秒(12時00分30秒-15秒)を登録する。 The scheduling function unit 65 subtracts the transport time of the first processing section PZ1 from the unit last use time of the processing unit MPC1, and registers the obtained value (time) as the correction unit last use time of the processing unit MPC1. Specifically, the scheduling function unit 65 registers 11:59:50 (12: 00: 00-10 seconds) as the correction unit last use time of the processing unit MPC1. Similarly, the scheduling function unit 65 registers 12:00:15 (12: 00: 15-15 seconds) as the correction unit last use time of the processing unit MPC9, and sets the correction unit last use time of the processing unit MPC17. Register 12:00:15 (12: 00: 30-15 seconds).
 次に、スケジューリング機能部65は、同じ処理区画PZに属する全ての有効な処理ユニットMPCの修正ユニット最終使用時刻の中で最も古い時刻を、その処理区画PZの区画最終使用時刻として記憶部63に登録する(区画最終使用時刻特定ステップ)。図12に示す例の場合、処理ユニットMPC1の修正ユニット最終使用時刻が、処理ユニットMPC1~MPC8の修正ユニット最終使用時刻の中で最も古い。また、図12に示す例の場合、処理ユニットMPC9の修正ユニット最終使用時刻が、処理ユニットMPC9~MPC16の修正ユニット最終使用時刻の中で最も古く、処理ユニットMPC17の修正ユニット最終使用時刻が、処理ユニットMPC17~MPC24の修正ユニット最終使用時刻の中で最も古い。したがって、スケジューリング機能部65は、処理ユニットMPC1の修正ユニット最終使用時刻を第1処理区画PZ1の区画最終使用時刻として登録し、処理ユニットMPC9の修正ユニット最終使用時刻を第2処理区画PZ2の区画最終使用時刻として登録し、処理ユニットMPC17の修正ユニット最終使用時刻を第1処理区画PZ1の区画最終使用時刻として登録する。 Next, the scheduling function unit 65 stores the oldest time among the corrected unit final use times of all valid processing units MPC belonging to the same processing partition PZ as the partition final use time of the processing partition PZ in the storage unit 63. Register (partition last use time specifying step). In the example shown in FIG. 12, the correction unit last use time of the processing unit MPC1 is the oldest among the correction unit last use times of the processing units MPC1 to MPC8. In the example shown in FIG. 12, the correction unit final use time of the processing unit MPC9 is the oldest among the correction unit final use times of the processing units MPC9 to MPC16, and the correction unit final use time of the processing unit MPC17 is the processing unit. The oldest correction unit last use time of units MPC17 to MPC24. Accordingly, the scheduling function unit 65 registers the correction unit last use time of the processing unit MPC1 as the partition last use time of the first processing section PZ1, and sets the correction unit last use time of the processing unit MPC9 as the section last use of the second processing section PZ2. The use time is registered, and the correction unit last use time of the processing unit MPC17 is registered as the section last use time of the first processing section PZ1.
 図13A~図13Eは、全てのユニット最終使用時刻が初期値以外の値に変更された後に、同じレシピが適用された複数枚の基板Wのスケジューリングを行った場合における記憶部63内の使用履歴データ82の変遷の一例を示している。 13A to 13E show the use history in the storage unit 63 when scheduling of a plurality of substrates W to which the same recipe is applied after all the unit last use times have been changed to values other than the initial values. An example of the transition of the data 82 is shown.
 図13Aに示すように、1枚目の基板Wのスケジューリングを行う前、各処理区画PZの投入可能率は12.5%((1/8)×100)であり、各処理区画PZの区画最終使用時刻は、初期値以外のそれぞれ異なる値であり、各処理区画PZの最古チャンバ数は、1である。各処理区画PZの有効チャンバ数は、8である。複数枚の基板Wに適用されたレシピでは、全ての処理ユニットMPC1~MPC24が並行処理ユニットとして指定されている。 As shown in FIG. 13A, before performing scheduling of the first substrate W, the loading rate of each processing section PZ is 12.5% ((1/8) × 100), and the section of each processing section PZ The last use time is a different value other than the initial value, and the number of oldest chambers in each processing section PZ is 1. The number of effective chambers in each processing section PZ is eight. In the recipe applied to a plurality of substrates W, all the processing units MPC1 to MPC24 are designated as parallel processing units.
 図13Aは、第1処理区画PZ1の区画最終使用時刻が12時00分00秒であり、第2処理区画PZ2の区画最終使用時刻は、12時00分30秒であり、第3処理区画PZ3の区画最終使用時刻は、12時01分00秒である例を示している。1枚目の基板Wを処理する処理区画PZを選択するとき、図13Aに示すように、第1処理区画PZ1の区画最終使用時刻が最も古いので、スケジューリング機能部65は、第1処理区画PZ1を1枚目の基板Wを処理する処理区画PZとして選択する。 FIG. 13A shows that the last use time of the first processing section PZ1 is 12:00:00, the last use time of the second processing section PZ2 is 12:00:30, and the third processing section PZ3. In this example, the last use time of the partition is 12:01:00. When selecting the processing section PZ for processing the first substrate W, as shown in FIG. 13A, since the section last use time of the first processing section PZ1 is the oldest, the scheduling function unit 65 sets the first processing section PZ1. Is selected as the processing section PZ for processing the first substrate W.
 図13Bは、第1処理区画PZ1に属する全ての処理ユニットMPC1~MPC8の中で修正ユニット最終使用時刻が最も古い処理ユニットMPCに1枚目の基板Wを処理させる例を示している。そのため、第1処理区画PZ1の区画最終使用時刻は、1枚目の基板Wのスケジューリングを行う前の時刻とは異なる時刻に変更される。図13Bは、第1処理区画PZ1の区画最終使用時刻が、12時00分00秒から12時01分30秒に更新された例を示している。 FIG. 13B shows an example in which the first substrate W is processed by the processing unit MPC having the oldest modified unit last use time among all the processing units MPC1 to MPC8 belonging to the first processing section PZ1. Therefore, the section last use time of the first processing section PZ1 is changed to a time different from the time before scheduling of the first substrate W. FIG. 13B shows an example in which the partition last use time of the first processing partition PZ1 is updated from 12:00:00 to 12: 1: 30.
 2枚目の基板Wを処理する処理区画PZを選択するとき、図13Bに示すように、第2処理区画PZ2の区画最終使用時刻(12時00分30秒)が最も古いので、スケジューリング機能部65は、第2処理区画PZ2を2枚目の基板Wを処理する処理区画PZとして選択し、第2処理区画PZ2に属する全ての処理ユニットMPC9~MPC16の中で修正ユニット最終使用時刻が最も古い処理ユニットMPCに基板Wを処理させるスケジュールを作成する。そのため、図13Cに示すように、第2処理区画PZ2の区画最終使用時刻が、12時00分30秒から12時02分00秒に更新される。 When selecting the processing section PZ for processing the second substrate W, as shown in FIG. 13B, since the section last use time (12:00:30) of the second processing section PZ2 is the oldest, the scheduling function unit 65 selects the second processing section PZ2 as the processing section PZ for processing the second substrate W, and the correction unit last use time is the oldest among all the processing units MPC9 to MPC16 belonging to the second processing section PZ2. A schedule for causing the processing unit MPC to process the substrate W is created. Therefore, as shown in FIG. 13C, the section last use time of the second processing section PZ2 is updated from 12:00:30 to 12:02:00.
 3枚目の基板Wを処理する処理区画PZを選択するとき、図13Cに示すように、第3処理区画PZ3の区画最終使用時刻(12時01分00秒)が最も古いので、スケジューリング機能部65は、第3処理区画PZ3を3枚目の基板Wを処理する処理区画PZとして選択し、第3処理区画PZ3に属する全ての処理ユニットMPC17~MPC24の中で修正ユニット最終使用時刻が最も古い処理ユニットMPCに基板Wを処理させるスケジュールを作成する。そのため、図13Dに示すように、第3処理区画PZ3の区画最終使用時刻が、12時01分00秒から12時02分30秒に更新される。 When selecting the processing section PZ for processing the third substrate W, as shown in FIG. 13C, since the section last use time (12:01:00) of the third processing section PZ3 is the oldest, the scheduling function unit 65 selects the third processing section PZ3 as the processing section PZ for processing the third substrate W, and the correction unit final use time is the oldest among all the processing units MPC17 to MPC24 belonging to the third processing section PZ3. A schedule for causing the processing unit MPC to process the substrate W is created. Therefore, as shown in FIG. 13D, the section last use time of the third processing section PZ3 is updated from 12:01:00 to 12:02:00.
 4枚目の基板Wを処理する処理区画PZを選択するとき、図13Dに示すように、第1処理区画PZ1の区画最終使用時刻(12時01分30秒)が最も古いので、スケジューリング機能部65は、第1処理区画PZ1を4枚目の基板Wを処理する処理区画PZとして選択し、第1処理区画PZ1に属する全ての処理ユニットMPC1~MPC8の中で修正ユニット最終使用時刻が最も古い処理ユニットMPCに基板Wを処理させるスケジュールを作成する。そのため、図13Eに示すように、第1処理区画PZ1の区画最終使用時刻が、12時01分30秒から12時03分00秒に更新される。 When selecting the processing section PZ for processing the fourth substrate W, as shown in FIG. 13D, since the section last use time (12:01:30) of the first processing section PZ1 is the oldest, the scheduling function unit 65 selects the first processing section PZ1 as the processing section PZ for processing the fourth substrate W, and the correction unit last use time is the oldest among all the processing units MPC1 to MPC8 belonging to the first processing section PZ1. A schedule for causing the processing unit MPC to process the substrate W is created. Therefore, as shown in FIG. 13E, the section last use time of the first processing section PZ1 is updated from 12:01:30 to 12:03:00.
 5枚目以降の基板Wを処理する処理区画PZも、前述と同様に、区画最終使用時刻が最も古い処理区画PZが3つの処理区画PZの中から選択される。もしも区画最終使用時刻が最も古い処理区画PZが複数あった場合は、投入可能率が最大の処理区画PZがその中から選択される。それでも、複数の処理区画PZが残る場合は、残った複数の処理区画PZの中で区画番号が最も小さい処理区画PZが選択される。 As for the processing section PZ for processing the fifth and subsequent substrates W, the processing section PZ having the oldest section last use time is selected from the three processing sections PZ as described above. If there are a plurality of processing sections PZ having the oldest section last use time, the processing section PZ having the maximum possible input rate is selected from them. If a plurality of processing sections PZ still remain, the processing section PZ having the smallest section number among the plurality of remaining processing sections PZ is selected.
 次に、基板Wの処理時間が減少する場合のスケジューリングについて説明する。 Next, scheduling when the processing time of the substrate W is reduced will be described.
 最初に、図14A~図14Fおよび図15A~図15Bを参照して第1実施例に係るスケジューリングについて説明し、その後、図16A~図16Fおよび図17を参照して第1比較例に係るスケジューリングについて説明する。 First, scheduling according to the first embodiment will be described with reference to FIGS. 14A to 14F and FIGS. 15A to 15B, and then scheduling according to the first comparative example will be described with reference to FIGS. 16A to 16F and FIG. Will be described.
 図14A~図14Fは、第1実施例に係る投入可能率、区画最終使用時刻、最古チャンバ数、および有効チャンバ数の一例を示す表である。図14A~図14Fは、基板Wを第1処理時間処理する第1レシピが適用された複数枚の基板Wのスケジューリングを行った後に、基板Wを第1処理時間よりも短い第2処理時間する第2レシピが適用された複数枚の基板Wのスケジューリングを行った場合における記憶部63内の使用履歴データ82の変遷の一例を示している。 FIG. 14A to FIG. 14F are tables showing examples of the input possibility rate, the partition last use time, the oldest chamber number, and the effective chamber number according to the first embodiment. 14A to 14F, after scheduling a plurality of substrates W to which the first recipe for processing the substrate W for the first processing time is applied, the substrate W is subjected to a second processing time shorter than the first processing time. An example of the transition of the usage history data 82 in the storage unit 63 when scheduling a plurality of substrates W to which the second recipe is applied is shown.
 図14Aに示すように、1枚目の基板Wのスケジューリングを行う前、各処理区画PZの投入可能率は100%((8/8)×100)であり、各処理区画PZの区画最終使用時刻は、初期値(図14Aでは、0)であり、各処理区画PZの最古チャンバ数は、8である。各処理区画PZの有効チャンバ数は、8である。各ユニット最終使用時刻は、初期値である。第1レシピおよび第2レシピでは、全ての処理ユニットMPC1~MPC24が並行処理ユニットとして指定されている。第1レシピで指定された第1処理時間は、たとえば240秒であり、第2レシピで指定された第2処理時間は、たとえば60秒である。 As shown in FIG. 14A, before performing scheduling of the first substrate W, the input rate of each processing section PZ is 100% ((8/8) × 100), and the final use of each processing section PZ The time is an initial value (0 in FIG. 14A), and the oldest chamber number of each processing section PZ is eight. The number of effective chambers in each processing section PZ is eight. Each unit last use time is an initial value. In the first recipe and the second recipe, all the processing units MPC1 to MPC24 are designated as parallel processing units. The first processing time specified in the first recipe is, for example, 240 seconds, and the second processing time specified in the second recipe is, for example, 60 seconds.
 第1レシピが適用された1枚目の基板Wを処理する処理区画PZを選択するとき、図14Aに示すように、区画最終使用時刻がいずれの処理区画PZも初期値であり、投入可能率が3つの処理区画PZの間で等しいので、スケジューリング機能部65は、区画番号が最も小さい第1処理区画PZ1を1枚目の基板Wを処理する処理区画PZとして選択する。そのため、図14Bに示すように、第1処理区画PZ1の最古チャンバ数が8から7に減少し、第1処理区画PZ1の投入可能率が87.5%((7/8)×100)に減少する。 When the processing section PZ for processing the first substrate W to which the first recipe is applied is selected, as shown in FIG. 14A, the section final use time is the initial value for any processing section PZ, and the input possibility rate Are equal among the three processing sections PZ, the scheduling function unit 65 selects the first processing section PZ1 having the smallest section number as the processing section PZ for processing the first substrate W. Therefore, as shown in FIG. 14B, the number of oldest chambers of the first processing section PZ1 is reduced from 8 to 7, and the input possibility rate of the first processing section PZ1 is 87.5% ((7/8) × 100). To decrease.
 第1レシピが適用された2枚目の基板Wを処理する処理区画PZを選択するとき、図14Bに示すように、区画最終使用時刻がいずれの処理区画PZも初期値であり、第2処理区画PZ2および第3処理区画PZ3の投入可能率が最も高いので、スケジューリング機能部65は、区画番号が最も小さい第2処理区画PZ2を2枚目の基板Wのために選択する。そのため、図14Cに示すように、第2処理区画PZ2の最古チャンバ数が8から7に減少し、第2処理区画PZ2の投入可能率が87.5%((7/8)×100)に減少する。 When the processing section PZ for processing the second substrate W to which the first recipe is applied is selected, as shown in FIG. 14B, the section final use time is the initial value for any processing section PZ, and the second processing is performed. Since the input possibility ratio of the section PZ2 and the third processing section PZ3 is the highest, the scheduling function unit 65 selects the second processing section PZ2 having the smallest section number for the second substrate W. Therefore, as shown in FIG. 14C, the number of oldest chambers in the second processing section PZ2 is reduced from 8 to 7, and the input possibility rate of the second processing section PZ2 is 87.5% ((7/8) × 100). To decrease.
 第1レシピとは処理時間が異なる第2レシピが適用された3枚目の基板Wを処理する処理区画PZを選択するとき、図14Cに示すように、区画最終使用時刻がいずれの処理区画PZも初期値であり、第3処理区画PZ3の投入可能率が最も高いので、スケジューリング機能部65は、第3処理区画PZ3を3枚目の基板Wのために選択する。そのため、図14Dに示すように、第3処理区画PZ3の最古チャンバ数が8から7に減少し、第3処理区画PZ3の投入可能率が87.5%((7/8)×100)に減少する。 When selecting the processing section PZ for processing the third substrate W to which the second recipe having a processing time different from that of the first recipe is selected, as shown in FIG. Is also an initial value, and the third process section PZ3 has the highest input possibility rate, so the scheduling function unit 65 selects the third process section PZ3 for the third substrate W. Therefore, as shown in FIG. 14D, the number of oldest chambers in the third processing section PZ3 is reduced from 8 to 7, and the charging rate of the third processing section PZ3 is 87.5% ((7/8) × 100). To decrease.
 第2レシピが適用された4枚目の基板Wを処理する処理区画PZを選択するとき、図14Dに示すように、区画最終使用時刻がいずれの処理区画PZも初期値であり、投入可能率が3つの処理区画PZの間で等しいので、スケジューリング機能部65は、区画番号が最も小さい第1処理区画PZ1を4枚目の基板Wを処理する処理区画PZとして選択する。そのため、図14Eに示すように、第1処理区画PZ1の最古チャンバ数が6から7に減少し、第1処理区画PZ1の投入可能率が75%((6/8)×100)に減少する。 When the processing section PZ for processing the fourth substrate W to which the second recipe is applied is selected, as shown in FIG. 14D, the section final use time is the initial value for any processing section PZ, and the input possibility rate Are equal among the three processing sections PZ, the scheduling function unit 65 selects the first processing section PZ1 having the smallest section number as the processing section PZ for processing the fourth substrate W. Therefore, as shown in FIG. 14E, the number of oldest chambers in the first processing section PZ1 is decreased from 6 to 7, and the input possibility rate of the first processing section PZ1 is decreased to 75% ((6/8) × 100). To do.
 第2レシピが適用された5枚目の基板Wを処理する処理区画PZを選択するとき、図14Eに示すように、区画最終使用時刻がいずれの処理区画PZも初期値であり、第2処理区画PZ2および第3処理区画PZ3の投入可能率が最も高いので、スケジューリング機能部65は、区画番号が最も小さい第2処理区画PZ2を5枚目の基板Wのために選択する。そのため、図14Fに示すように、第2処理区画PZ2の最古チャンバ数が7から6に減少し、第2処理区画PZ2の投入可能率が75%((6/8)×100)に減少する。 When the processing section PZ for processing the fifth substrate W to which the second recipe is applied is selected, as shown in FIG. 14E, the section final use time is the initial value for any processing section PZ, and the second processing is performed. Since the input possibility ratio of the section PZ2 and the third processing section PZ3 is the highest, the scheduling function unit 65 selects the second processing section PZ2 having the smallest section number for the fifth substrate W. Therefore, as shown in FIG. 14F, the number of oldest chambers in the second processing section PZ2 is reduced from 7 to 6, and the input possibility rate of the second processing section PZ2 is reduced to 75% ((6/8) × 100). To do.
 図15Aおよび図15Bは、第1実施例に係るスケジュールを示すタイムチャートである。図15Aは、基板Wを第1処理時間処理する第1レシピが適用された1~2枚目の基板W1~W2のスケジューリングを行った後のスケジュールの一例を示している。図15Aに示す例では、1枚目の基板W1が第1処理区画PZ1の処理ユニットMPC1で処理され、2枚目の基板W2が第2処理区画PZ2の処理ユニットMPC9で処理されるように、スケジュールが作成されている。 15A and 15B are time charts showing a schedule according to the first embodiment. FIG. 15A shows an example of a schedule after scheduling of the first and second substrates W1 and W2 to which the first recipe for processing the substrate W for the first processing time is applied. In the example shown in FIG. 15A, the first substrate W1 is processed by the processing unit MPC1 in the first processing section PZ1, and the second substrate W2 is processed by the processing unit MPC9 in the second processing section PZ2. A schedule has been created.
 図15Bは、基板Wを第2処理時間処理する第2レシピが適用された3~6枚目の基板W3~W6のスケジューリングを行った後のスケジュールの一例を示している。図15Bに示す例では、3枚目の基板W3が第3処理区画PZ3の処理ユニットMPC17で処理され、4枚目の基板W4が第1処理区画PZ1の処理ユニットMPC2で処理されるように、スケジュールが作成されている。また、図15Bに示す例では、5枚目の基板W5が第2処理区画PZ2の処理ユニットMPC10で処理され、6枚目の基板W6が第3処理区画PZ3の処理ユニットMPC18で処理されるように、スケジュールが作成されている。 FIG. 15B shows an example of a schedule after scheduling the third to sixth substrates W3 to W6 to which the second recipe for processing the substrate W for the second processing time is applied. In the example shown in FIG. 15B, the third substrate W3 is processed by the processing unit MPC17 of the third processing section PZ3, and the fourth substrate W4 is processed by the processing unit MPC2 of the first processing section PZ1. A schedule has been created. In the example shown in FIG. 15B, the fifth substrate W5 is processed by the processing unit MPC10 in the second processing section PZ2, and the sixth substrate W6 is processed by the processing unit MPC18 in the third processing section PZ3. A schedule has been created.
 図15Bに示すように、同じ処理区画PZに属する全ての処理ユニットMPCの修正ユニット最終使用時刻の中で最も古い時刻を表す区画最終使用時刻を最初に優先して処理区画PZを選択すれば、基板Wの処理時間が変化しない場合だけでなく、基板Wの処理時間が減少する場合も、全ての処理区画PZ1~PZ3を均等に選択でき、空いている処理ユニットMPCを効率的に選択できる。したがって、後述するような区画使用率を最初に優先して処理区画PZを選択する場合に比べて、基板処理装置1の稼働率を高めることができる。 As shown in FIG. 15B, if the processing partition PZ is selected with priority given first to the partition last use time representing the oldest time among the correction unit final use times of all the processing units MPC belonging to the same processing partition PZ, Not only when the processing time of the substrate W does not change, but also when the processing time of the substrate W decreases, all the processing sections PZ1 to PZ3 can be selected equally, and an empty processing unit MPC can be selected efficiently. Therefore, the operating rate of the substrate processing apparatus 1 can be increased as compared with the case where the processing section PZ is selected by giving priority to the section usage rate as described later.
 次に、図16A~図16Fおよび図17を参照して、第1比較例に係るスケジューリングについて説明する。 Next, scheduling according to the first comparative example will be described with reference to FIGS. 16A to 16F and FIG.
 以下では、基板Wを処理する処理区画PZを、区画最終使用時刻ではなく、区画使用率を基準に選択する例について説明する。区画使用率は、基板Wの処理のために要する時間を当該基板Wを処理する処理区画PZにおける有効な(利用可能な)処理ユニットMPCの数で除した値である。基板Wの処理のために要する時間が240秒であり、当該基板Wを処理する処理区画PZに属する有効な処理ユニットMPCの数が3であれば、区画使用率は、80(=240/3)である。 Hereinafter, an example will be described in which the processing section PZ for processing the substrate W is selected based on the section usage rate instead of the section last use time. The partition usage rate is a value obtained by dividing the time required for processing the substrate W by the number of effective (available) processing units MPC in the processing partition PZ that processes the substrate W. If the time required for processing the substrate W is 240 seconds and the number of effective processing units MPC belonging to the processing partition PZ for processing the substrate W is 3, the partition usage rate is 80 (= 240/3). ).
 図16A~図16Fに示す区画最終使用時刻は、ある処理区画PZに属する全ての処理ユニットMPCの修正ユニット最終使用時刻の中で最も古い時刻ではなく、ある処理区画PZに属する全ての処理ユニットMPCのユニット最終使用時刻の中で最も遅い時刻を意味している。したがって、ある処理区画PZに属する1つの処理ユニットMPCで基板Wを処理させるスケジュールが作成されると、その処理区画PZに属する他の処理ユニットMPCのユニット最終使用時刻が初期値であっても、その処理区画PZの区画最終使用時刻は、基板Wを処理する処理ユニットMPCのユニット最終使用時刻に変更される。 16A to 16F are not the oldest time among the correction unit final use times of all the processing units MPC belonging to a certain processing partition PZ, but all the processing units MPC belonging to a certain processing partition PZ. It means the latest time of the unit last use time. Therefore, when a schedule for processing the substrate W by one processing unit MPC belonging to a certain processing section PZ is created, even if the unit final use time of another processing unit MPC belonging to the processing section PZ is an initial value, The section last use time of the processing section PZ is changed to the unit last use time of the processing unit MPC that processes the substrate W.
 図16A~図16Fは、第1比較例に係る区画使用率、区画最終使用時刻、有効チャンバ数の一例を示す表である。図16A~図16Fは、基板Wを第1処理時間処理する第1レシピが適用された複数枚の基板Wのスケジューリングを行った後に、基板Wを第1処理時間よりも短い第2処理時間する第2レシピが適用された複数枚の基板Wのスケジューリングを行った場合における記憶部63内の使用履歴データ82の変遷の一例を示している。 FIGS. 16A to 16F are tables showing an example of the partition usage rate, the partition final use time, and the number of effective chambers according to the first comparative example. 16A to 16F, after scheduling a plurality of substrates W to which the first recipe for processing the substrate W for the first processing time is applied, the substrate W is subjected to a second processing time shorter than the first processing time. An example of the transition of the usage history data 82 in the storage unit 63 when scheduling a plurality of substrates W to which the second recipe is applied is shown.
 図16Aに示すように、1枚目の基板Wのスケジューリングを行う前、各処理区画PZの区画使用率は、0であり、区画最終使用時刻は、初期値(図16Aでは、0)であり、各処理区画PZの有効チャンバ数は、3である。第1レシピおよび第2レシピでは、全ての処理ユニットMPC1~MPC24が並行処理ユニットとして指定されている。第1レシピで指定された第1処理時間は、たとえば240秒であり、第2レシピで指定された第2処理時間は、たとえば60秒である。 As shown in FIG. 16A, before the scheduling of the first substrate W, the partition usage rate of each processing partition PZ is 0, and the final partition use time is an initial value (0 in FIG. 16A). The number of effective chambers in each processing section PZ is three. In the first recipe and the second recipe, all the processing units MPC1 to MPC24 are designated as parallel processing units. The first processing time specified in the first recipe is, for example, 240 seconds, and the second processing time specified in the second recipe is, for example, 60 seconds.
 第1レシピが適用された1枚目の基板Wを処理する処理区画PZを選択するとき、図16Aに示すように、区画使用率がいずれの処理区画PZも0であり、区画最終使用時刻がいずれの処理区画PZも初期値であるので、スケジューリング機能部65は、区画番号が最も小さい第1処理区画PZ1を1枚目の基板Wを処理する処理区画PZとして選択する。そのため、図16Bに示すように、第1処理区画PZ1の区画使用率が増加する。図16Bでは、第1処理時間が240秒であり、第1処理区画PZ1の区画使用率が0から80(=240/3)に増加した例を示している。 When the processing section PZ for processing the first substrate W to which the first recipe is applied is selected, as shown in FIG. 16A, the section usage rate is 0 for any processing section PZ, and the section final use time is Since all the processing sections PZ are initial values, the scheduling function unit 65 selects the first processing section PZ1 having the smallest section number as the processing section PZ for processing the first substrate W. Therefore, as shown in FIG. 16B, the partition usage rate of the first processing partition PZ1 increases. FIG. 16B shows an example in which the first processing time is 240 seconds and the partition usage rate of the first processing partition PZ1 is increased from 0 to 80 (= 240/3).
 第1レシピが適用された2枚目の基板Wを処理する処理区画PZを選択するとき、図16Bに示すように、第2処理区画PZ2および第3処理区画PZ3の区画使用率が0であり、第2処理区画PZ2および第3処理区画PZ3の区画最終使用時刻が初期値であるので、スケジューリング機能部65は、区画番号が最も小さい第2処理区画PZ2を2枚目の基板Wを処理する処理区画PZとして選択する。そのため、図16Cに示すように、第2処理区画PZ2の区画使用率が増加する。図16Cでは、第1処理時間が240秒であり、第2処理区画PZ2の区画使用率が0から80(=240/3)に増加した例を示している。 When the processing section PZ for processing the second substrate W to which the first recipe is applied is selected, as shown in FIG. 16B, the section usage rates of the second processing section PZ2 and the third processing section PZ3 are zero. Since the last use time of the second processing section PZ2 and the third processing section PZ3 is an initial value, the scheduling function unit 65 processes the second substrate W in the second processing section PZ2 having the smallest section number. Select as processing section PZ. Therefore, as shown in FIG. 16C, the partition usage rate of the second processing partition PZ2 increases. FIG. 16C shows an example in which the first processing time is 240 seconds and the partition usage rate of the second processing partition PZ2 is increased from 0 to 80 (= 240/3).
 第1レシピとは処理時間が異なる第2レシピが適用された3枚目の基板Wを処理する処理区画PZを選択するとき、図16Cに示すように、第3処理区画PZ3の区画使用率が最も小さいので、スケジューリング機能部65は、第3処理区画PZ3を3枚目の基板Wを処理する処理区画PZとして選択する。そのため、図16Dに示すように、第3処理区画PZ3の区画使用率が増加する。図16Dでは、第2処理時間が60秒であり、第2処理区画PZ2の区画使用率が0から20(=60/3)に増加した例を示している。 When the processing section PZ for processing the third substrate W to which the second recipe having a processing time different from that of the first recipe is applied is selected, as shown in FIG. 16C, the section usage rate of the third processing section PZ3 is Since it is the smallest, the scheduling function unit 65 selects the third processing section PZ3 as the processing section PZ for processing the third substrate W. Therefore, as shown in FIG. 16D, the partition usage rate of the third processing partition PZ3 increases. FIG. 16D shows an example in which the second processing time is 60 seconds and the partition usage rate of the second processing partition PZ2 is increased from 0 to 20 (= 60/3).
 第2レシピが適用された4枚目の基板Wを処理する処理区画PZを選択するとき、図16Dに示すように、依然として第3処理区画PZ3の区画使用率が最も小さいので、スケジューリング機能部65は、第3処理区画PZ3を4枚目の基板Wを処理する処理区画PZとして選択する。そのため、図16Eに示すように、第3処理区画PZ3の区画使用率が増加する。図16Eでは、第2処理区画PZ2の区画使用率が40(=120/3)に増加した例を示している。 When the processing section PZ for processing the fourth substrate W to which the second recipe is applied is selected, as shown in FIG. 16D, the partition usage rate of the third processing section PZ3 is still the smallest, so the scheduling function unit 65 Selects the third processing section PZ3 as the processing section PZ for processing the fourth substrate W. Therefore, as shown in FIG. 16E, the partition usage rate of the third processing partition PZ3 increases. FIG. 16E shows an example in which the partition usage rate of the second processing partition PZ2 is increased to 40 (= 120/3).
 第2レシピが適用された5枚目の基板Wを処理する処理区画PZを選択するとき、図16Eに示すように、依然として第3処理区画PZ3の区画使用率が最も小さいので、スケジューリング機能部65は、第3処理区画PZ3を5枚目の基板Wを処理する処理区画PZとして選択する。そのため、図16Fに示すように、第3処理区画PZ3の区画使用率が増加する。図16Fでは、第2処理区画PZ2の区画使用率が60(=180/3)に増加した例を示している。 When the processing section PZ for processing the fifth substrate W to which the second recipe is applied is selected, as shown in FIG. 16E, the partition usage rate of the third processing section PZ3 is still the smallest, so the scheduling function unit 65 Selects the third processing section PZ3 as the processing section PZ for processing the fifth substrate W. Therefore, as shown in FIG. 16F, the partition usage rate of the third processing partition PZ3 increases. FIG. 16F shows an example in which the partition usage rate of the second processing partition PZ2 is increased to 60 (= 180/3).
 第2レシピが適用された6枚目の基板Wを処理する処理区画PZを選択するとき、図16Fに示すように、依然として第3処理区画PZ3の区画使用率が最も小さいので、スケジューリング機能部65は、第3処理区画PZ3を6枚目の基板Wを処理する処理区画PZとして選択する。そのため、第3処理区画PZ3の区画使用率が増加する。具体的には、第2処理区画PZ2の区画使用率は、80(=240/3)に増加する。これにより、第3処理区画PZ3の区画使用率が、第1処理区画PZ1および第2処理区画PZ2の区画使用率と等しくなる。 When the processing section PZ for processing the sixth substrate W to which the second recipe is applied is selected, the partition usage rate of the third processing section PZ3 is still the smallest as shown in FIG. Selects the third processing section PZ3 as the processing section PZ for processing the sixth substrate W. Therefore, the partition usage rate of the third processing partition PZ3 increases. Specifically, the partition usage rate of the second processing partition PZ2 increases to 80 (= 240/3). Thereby, the partition usage rate of the third processing partition PZ3 becomes equal to the partition usage rates of the first processing partition PZ1 and the second processing partition PZ2.
 図17は、区画使用率を最初に優先して処理区画PZを選択し、3~6枚目の基板W3~W6のスケジューリングを行った後のスケジュールを示すタイムチャートである。 FIG. 17 is a time chart showing a schedule after the processing section PZ is selected with priority given to the section usage rate, and the third to sixth substrates W3 to W6 are scheduled.
 前述のように、区画使用率を基準に処理区画PZを選択する場合、第3処理区画PZ3が6枚目の基板W6のために選択される。したがって、図17に示すように、第1処理区画PZ1および第2処理区画PZ2に空いている処理ユニットMPCがあるにもかかわらず、6枚目の基板W6は第3処理区画PZ3に属する処理ユニットMPC17で処理されるようにスケジュールが作成される。そのため、6枚目の基板W6を第1処理区画PZ1または第2処理区画PZ2で処理する場合は、6枚目の基板W6の搬送を直ぐに開始できるのに、6枚目の基板W6を第3処理区画PZ3で処理する場合は、処理ユニットMPC17が3枚目の基板W3を処理し終えるまで搬送の開始を遅らせる必要がある。 As described above, when the processing section PZ is selected based on the section usage rate, the third processing section PZ3 is selected for the sixth substrate W6. Therefore, as shown in FIG. 17, the sixth substrate W6 belongs to the third processing section PZ3 even though there are processing units MPC free in the first processing section PZ1 and the second processing section PZ2. A schedule is created to be processed by the MPC 17. Therefore, when the sixth substrate W6 is processed in the first processing section PZ1 or the second processing section PZ2, the sixth substrate W6 can be immediately transferred to the third substrate W6. When processing is performed in the processing section PZ3, it is necessary to delay the start of conveyance until the processing unit MPC17 finishes processing the third substrate W3.
 図17と図15Bとを比較すると分かるように、いずれの場合も、3枚目の基板W3は、処理ユニットMPC17で処理されるようにスケジューリングされるものの、図15Bに示す例では、4枚目の基板W4が処理ユニットMPC2で処理され、5枚目の基板W5が処理ユニットMPC10で処理されるようにスケジュールが作成される。さらに、図15Bに示す例では、6枚目の基板W6が処理ユニットMPC17で処理されるようにスケジュールが作成される。したがって、図15Bに示す例では、空いている処理ユニットMPCが効率的に選択されるので、図17に示すような搬送の遅延を防止でき、基板処理装置1の稼働率を高めることができる。 As can be seen from a comparison between FIG. 17 and FIG. 15B, in each case, the third substrate W3 is scheduled to be processed by the processing unit MPC17. However, in the example shown in FIG. The substrate W4 is processed by the processing unit MPC2, and a schedule is created so that the fifth substrate W5 is processed by the processing unit MPC10. Further, in the example shown in FIG. 15B, a schedule is created so that the sixth substrate W6 is processed by the processing unit MPC17. Accordingly, in the example shown in FIG. 15B, an empty processing unit MPC is efficiently selected, so that the conveyance delay as shown in FIG. 17 can be prevented and the operating rate of the substrate processing apparatus 1 can be increased.
 次に、全ての有効な処理ユニットMPCで基板Wの処理がスケジュールされた後に、基板Wの処理時間が減少する場合のスケジューリングについて説明する。 Next, scheduling when the processing time of the substrate W is reduced after the processing of the substrate W is scheduled in all the effective processing units MPC will be described.
 最初に、第2実施例に係るスケジューリングについて説明し、その後、第2比較例に係るスケジューリングについて説明する。 First, scheduling according to the second embodiment will be described, and then scheduling according to the second comparative example will be described.
 図18は、第2実施例に係るユニット最終使用時刻、搬送時間、および修正ユニット最終使用時刻の一例を示す表である。図19A~図19Dは、第2実施例に係るスケジュールを示すタイムチャートである。 FIG. 18 is a table showing an example of the unit last use time, the transport time, and the modified unit last use time according to the second embodiment. 19A to 19D are time charts showing schedules according to the second embodiment.
 図19A~図19Bは、基板Wを第1処理時間処理する第1レシピが適用された1~11枚目の基板W1~W11のスケジューリングを行った後のスケジュールの一例を示している。図19Aは、1枚目の基板W1の処理が終了する時刻までのスケジュールを示しており、図19Bは、図19Aの続きを示している。 FIGS. 19A to 19B show an example of a schedule after performing scheduling of the first to eleventh substrates W1 to W11 to which the first recipe for processing the substrate W for the first processing time is applied. FIG. 19A shows a schedule up to the time when processing of the first substrate W1 ends, and FIG. 19B shows a continuation of FIG. 19A.
 図19Cは、基板Wを第2処理時間処理する第2レシピが適用された12枚目の基板W12のスケジューリングを行った後のスケジュールの一例を示している。図19Dは、基板Wを第2処理時間処理する第2レシピが適用された13~15枚目の基板W13~W15のスケジューリングを行った後のスケジュールの一例を示している。 FIG. 19C shows an example of a schedule after scheduling the 12th substrate W12 to which the second recipe for processing the substrate W for the second processing time is applied. FIG. 19D shows an example of a schedule after scheduling the 13th to 15th substrates W13 to W15 to which the second recipe for processing the substrate W for the second processing time is applied.
 図19A~図19Dは、処理ユニットMPC1、MPC2、MPC3、MPC9、MPC10、MPC11、MPC17、MPC18、およびMPC19が、有効な処理ユニットMPCである例を示している。したがって、各処理区画PZの有効チャンバ数は、3である。第1レシピおよび第2レシピでは、全ての処理ユニットMPC1~MPC24が並行処理ユニットとして指定されている。第1レシピで指定された第1処理時間は、たとえば240秒であり、第2レシピで指定された第2処理時間は、たとえば60秒である。 19A to 19D show examples in which the processing units MPC1, MPC2, MPC3, MPC9, MPC10, MPC11, MPC17, MPC18, and MPC19 are effective processing units MPC. Therefore, the number of effective chambers in each processing section PZ is three. In the first recipe and the second recipe, all the processing units MPC1 to MPC24 are designated as parallel processing units. The first processing time specified in the first recipe is, for example, 240 seconds, and the second processing time specified in the second recipe is, for example, 60 seconds.
 1枚目の基板Wのスケジューリングを行う前、各処理区画PZの投入可能率は100%((3/3)×100)であり、各処理区画PZの区画最終使用時刻は、初期値であり、各処理区画PZの最古チャンバ数は、3である。1枚目の基板Wのスケジューリングを行う前の状況は、図10A~図10Eを参照して説明した例と概ね同じである。したがって、1~11枚目の基板W1~W11のスケジューリングは、図10A~図10Eを参照して説明した例と同様に行われる。 Before scheduling the first substrate W, the input possibility rate of each processing section PZ is 100% ((3/3) × 100), and the last use time of each processing section PZ is an initial value. The oldest number of chambers in each processing section PZ is three. The situation before scheduling the first substrate W is substantially the same as the example described with reference to FIGS. 10A to 10E. Therefore, the scheduling of the first to eleventh substrates W1 to W11 is performed in the same manner as the example described with reference to FIGS. 10A to 10E.
 具体的には、図19Aに示すように、1枚目の基板W1が処理ユニットMPC1で処理され、2枚目の基板W2が処理ユニットMPC9で処理され、3枚目の基板W3が処理ユニットMPC17で処理されるように、スケジュールが作成される。また、4枚目の基板W4が処理ユニットMPC2で処理され、5枚目の基板W5が処理ユニットMPC10で処理され、6枚目の基板W6が処理ユニットMPC18で処理されるように、スケジュールが作成される。また、7枚目の基板W7が処理ユニットMPC1で処理され、8枚目の基板W8が処理ユニットMPC9で処理され、9枚目の基板W9が処理ユニットMPC17で処理されるように、スケジュールが作成される。 Specifically, as shown in FIG. 19A, the first substrate W1 is processed by the processing unit MPC1, the second substrate W2 is processed by the processing unit MPC9, and the third substrate W3 is processed by the processing unit MPC17. A schedule is created to be processed in Also, a schedule is created so that the fourth substrate W4 is processed by the processing unit MPC2, the fifth substrate W5 is processed by the processing unit MPC10, and the sixth substrate W6 is processed by the processing unit MPC18. Is done. Further, a schedule is created so that the seventh substrate W7 is processed by the processing unit MPC1, the eighth substrate W8 is processed by the processing unit MPC9, and the ninth substrate W9 is processed by the processing unit MPC17. Is done.
 また、図19Bに示すように、10枚目の基板W10が処理ユニットMPC1で処理され、11枚目の基板W11が処理ユニットMPC9で処理されるように、スケジュールが作成される。つまり、10枚目の基板W10は、1枚目の基板W1が処理ユニットMPC1で処理された後に、処理ユニットMPC1で処理される。11枚目の基板W11は、2枚目の基板W2が処理ユニットMPC9で処理された後に、処理ユニットMPC9で処理される。このようにして、1~11枚目の基板W1~W11を処理するスケジュールが作成される。 Further, as shown in FIG. 19B, a schedule is created so that the tenth substrate W10 is processed by the processing unit MPC1 and the eleventh substrate W11 is processed by the processing unit MPC9. That is, the tenth substrate W10 is processed by the processing unit MPC1 after the first substrate W1 is processed by the processing unit MPC1. The eleventh substrate W11 is processed by the processing unit MPC9 after the second substrate W2 is processed by the processing unit MPC9. In this way, a schedule for processing the first to eleventh substrates W1 to W11 is created.
 図19Bの下部には、11枚目の基板W11を処理するスケジュールが作成された後の各処理ユニットMPCのユニット最終使用時刻(時刻T1~T7)が示されている。11枚目の基板W11を処理するスケジュールが作成された時点の処理ユニットMPC1のユニット最終使用時刻は時刻T6であり、この時点の処理ユニットMPC2のユニット最終使用時刻は時刻T1であり、この時点の処理ユニットMPC3のユニット最終使用時刻は時刻T3である。これらのうちで最も前の時刻は、時刻T1である。 In the lower part of FIG. 19B, the unit last use time (time T1 to T7) of each processing unit MPC after the schedule for processing the eleventh substrate W11 is created is shown. The unit final use time of the processing unit MPC1 at the time when the schedule for processing the eleventh substrate W11 is created is the time T6, and the unit final use time of the processing unit MPC2 at this time is the time T1. The unit last use time of the processing unit MPC3 is time T3. The earliest time among these is time T1.
 図18は、11枚目の基板W11を処理するスケジュールが作成された時点の全ての有効な処理ユニットMPCのユニット最終使用時刻、搬送時間、および修正ユニット最終使用時刻を示している。処理ユニットMPC1、MPC2、およびMPC3が属する第1処理区画PZ1の搬送時間は、搬送時間t1である。したがって、処理ユニットMPC1の修正ユニット最終使用時刻は時刻T6-搬送時間t1であり、処理ユニットMPC2の修正ユニット最終使用時刻は時刻T1-搬送時間t1であり、処理ユニットMPC3の修正ユニット最終使用時刻は時刻T3-搬送時間t1である。これらのうちで最も前の時刻は、時刻T1-搬送時間t1である。 FIG. 18 shows the unit last use time, transfer time, and correction unit last use time of all effective processing units MPC at the time when the schedule for processing the 11th substrate W11 is created. The transfer time of the first processing section PZ1 to which the processing units MPC1, MPC2, and MPC3 belong is the transfer time t1. Therefore, the correction unit final use time of the processing unit MPC1 is time T6−transport time t1, the correction unit final use time of the processing unit MPC2 is time T1—transport time t1, and the correction unit final use time of the processing unit MPC3 is Time T3−transport time t1. The earliest time among these is time T1−transport time t1.
 処理ユニットMPC9のユニット最終使用時刻は時刻T7であり、処理ユニットMPC10のユニット最終使用時刻は時刻T2であり、処理ユニットMPC11のユニット最終使用時刻は時刻T4である。図19Bに示すように、これらのうちで最も前の時刻は、時刻T2である。処理ユニットMPC9、処理ユニットMPC10、および処理ユニットMPC11が属する第2処理区画PZ2の搬送時間は、搬送時間t2である。したがって、処理ユニットMPC9の修正ユニット最終使用時刻は時刻T7-搬送時間t2であり、処理ユニットMPC10の修正ユニット最終使用時刻は時刻T2-搬送時間t2であり、処理ユニットMPC11の修正ユニット最終使用時刻は時刻T4-搬送時間t2である。これらのうちで最も前の時刻は、時刻T2-搬送時間t2である。 The unit final use time of the processing unit MPC9 is time T7, the unit final use time of the processing unit MPC10 is time T2, and the unit final use time of the processing unit MPC11 is time T4. As shown in FIG. 19B, the earliest time among these is time T2. The transport time of the second processing section PZ2 to which the processing unit MPC9, the processing unit MPC10, and the processing unit MPC11 belong is a transport time t2. Therefore, the correction unit final use time of the processing unit MPC9 is time T7-transport time t2, the correction unit final use time of the processing unit MPC10 is time T2-transport time t2, and the correction unit final use time of the processing unit MPC11 is Time T4−transport time t2. The earliest time among these is time T2−transport time t2.
 処理ユニットMPC17のユニット最終使用時刻は時刻T1であり、処理ユニットMPC18のユニット最終使用時刻は時刻T3であり、処理ユニットMPC19のユニット最終使用時刻は時刻T5である。図19Bに示すように、これらのうちで最も前の時刻は、時刻T2である。処理ユニットMPC17、処理ユニットMPC18、および処理ユニットMPC19が属する第2処理区画PZ2の搬送時間は、搬送時間t2である。したがって、処理ユニットMPC17の修正ユニット最終使用時刻は時刻T1-搬送時間t2であり、処理ユニットMPC18の修正ユニット最終使用時刻は時刻T3-搬送時間t2であり、処理ユニットMPC19の修正ユニット最終使用時刻は時刻T5-搬送時間t2である。これらのうちで最も前の時刻は、時刻T1-搬送時間t2である。 The unit final use time of the processing unit MPC17 is time T1, the unit final use time of the processing unit MPC18 is time T3, and the unit final use time of the processing unit MPC19 is time T5. As shown in FIG. 19B, the earliest time among these is time T2. The transfer time of the second processing section PZ2 to which the processing unit MPC17, the processing unit MPC18, and the processing unit MPC19 belong is the transfer time t2. Accordingly, the correction unit final use time of the processing unit MPC17 is time T1−transport time t2, the correction unit final use time of the processing unit MPC18 is time T3−transport time t2, and the correction unit final use time of the processing unit MPC19 is Time T5—transport time t2. The earliest time among these is time T1−transport time t2.
 図18に示すように、11枚目の基板W11を処理するスケジュールが作成された時点の第1処理区画PZ1の区画最終使用時刻は、時刻T1-搬送時間t1である。この時点の第2処理区画PZ2の区画最終使用時刻は、時刻T2-搬送時間t2である。この時点の第3処理区画PZ3の区画最終使用時刻は、時刻T1-搬送時間t2である。図19Aの左端付近に示すように、搬送時間t1は、搬送時間t2よりも短い。したがって、第3処理区画PZ3の区画最終使用時刻(T1-S2)が、3つの処理区画PZの区画最終使用時刻の中で最も古い。 As shown in FIG. 18, the final use time of the first processing section PZ1 at the time when the schedule for processing the eleventh substrate W11 is created is time T1−transport time t1. The section last use time of the second processing section PZ2 at this time is time T2−transport time t2. The section last use time of the third processing section PZ3 at this time is time T1−transport time t2. As shown in the vicinity of the left end of FIG. 19A, the transport time t1 is shorter than the transport time t2. Therefore, the partition last use time (T1-S2) of the third processing partition PZ3 is the oldest among the partition last use times of the three processing partitions PZ.
 第3処理区画PZ3の区画最終使用時刻が、3つの処理区画PZの区画最終使用時刻の中で最も古いので、スケジューリング機能部65は、12枚目の基板Wのために第3処理区画PZ3を選択する。図19Cは、12枚目の基板W12が第3処理区画PZ3に属する処理ユニットMPC17で処理されるように、スケジュールされた例を示している。この例の場合、12枚目の基板W12を処理するスケジュールが作成されると、処理ユニットMPC17のユニット最終使用時刻および修正ユニット最終使用時刻が更新され、第3処理区画PZ3の区画最終使用時刻が更新される。 Since the partition last use time of the third process partition PZ3 is the oldest among the partition last use times of the three process partitions PZ, the scheduling function unit 65 sets the third process partition PZ3 for the 12th substrate W. select. FIG. 19C shows an example in which the twelfth substrate W12 is scheduled to be processed by the processing unit MPC17 belonging to the third processing section PZ3. In this example, when a schedule for processing the 12th substrate W12 is created, the unit last use time and the correction unit last use time of the processing unit MPC17 are updated, and the section last use time of the third processing section PZ3 is updated. Updated.
 図19Cを見ると分かるように、12枚目の基板W12の処理時間(第2処理時間)は、1~11枚目の基板W1~W11の処理時間(第1処理時間)よりも短い。つまり、12枚目の基板W12には、基板Wを第1処理時間よりも短い第2処理時間する第2レシピが適用されている。同様に、13~15枚目の基板W13~W15にも第2レシピが適用されている。図19Dは、13枚目の基板W13が処理ユニットMPC2で処理され、14枚目の基板W14が処理ユニットMPC10で処理され、15枚目の基板W15が処理ユニットMPC18で処理されるように、スケジュールされた例を示している。 As can be seen from FIG. 19C, the processing time (second processing time) of the twelfth substrate W12 is shorter than the processing times (first processing time) of the first to eleventh substrates W1 to W11. That is, the second recipe that applies the second processing time shorter than the first processing time to the substrate W12 is applied to the twelfth substrate W12. Similarly, the second recipe is applied to the 13th to 15th substrates W13 to W15. FIG. 19D shows a schedule in which the thirteenth substrate W13 is processed by the processing unit MPC2, the fourteenth substrate W14 is processed by the processing unit MPC10, and the fifteenth substrate W15 is processed by the processing unit MPC18. An example is shown.
 次に、図20を参照して、第2比較例に係るスケジューリングについて説明する。 Next, scheduling according to the second comparative example will be described with reference to FIG.
 図20は、第2比較例に係るスケジュールを示すタイムチャートであり、区画使用率を最初に優先して処理区画PZを選択し、12~15枚目の基板W12~W15のスケジューリングを行った後のスケジュールの一例を示している。 FIG. 20 is a time chart showing a schedule according to the second comparative example. After the processing section PZ is selected by giving priority to the section usage rate, the 12th to 15th substrates W12 to W15 are scheduled. An example of the schedule is shown.
 第2比較例において、各処理区画PZの有効チャンバ数や並行処理ユニットは、第2実施例と同様である。1~11枚目の基板W1~W11には、第1レシピが適用されており、12~15枚目の基板W12~W15には、第2レシピが適用されている。11枚目の基板W11までのスケジュールは、第2実施例と同様である。 In the second comparative example, the number of effective chambers and parallel processing units in each processing section PZ are the same as in the second embodiment. The first recipe is applied to the first to eleventh substrates W1 to W11, and the second recipe is applied to the twelfth to fifteenth substrates W12 to W15. The schedule up to the eleventh substrate W11 is the same as in the second embodiment.
 図20に示すように、区画最終使用時刻ではなく、区画使用率を基準に選択する処理区画PZを選択すると、12枚目の基板W12は、第2実施例と同様に、第3処理区画PZ3で処理されるようにスケジュールが作成される。図20は、12枚目の基板W12が処理ユニットMPC17で処理されるように、スケジュールされた例を示している。 As shown in FIG. 20, when the processing section PZ to be selected based on the section usage rate is selected instead of the section last use time, the twelfth substrate W12 becomes the third processing section PZ3 as in the second embodiment. A schedule is created so that it can be processed. FIG. 20 shows an example in which the twelfth substrate W12 is scheduled to be processed by the processing unit MPC17.
 その一方で、13枚目の基板W13のための処理区画PZの選択を開始する時点で空いている処理ユニットMPC(たとえば、処理ユニットMPC2および処理ユニットMPC10)が第1処理区画PZ1および第2処理区画PZ2に存在するのに、13枚目の基板W13は、第3処理区画PZ3に属する処理ユニットMPC18で処理されるようにスケジュールされる。同様に、14枚目の基板W14は第3処理区画PZ3に属する処理ユニットMPC19で処理され、15枚目の基板W15は第3処理区画PZ3に属する処理ユニットMPC17で処理されるようにスケジュールされる。 On the other hand, when the selection of the processing section PZ for the thirteenth substrate W13 is started, the processing units MPC that are vacant (for example, the processing unit MPC2 and the processing unit MPC10) become the first processing section PZ1 and the second processing section. Although present in the section PZ2, the thirteenth substrate W13 is scheduled to be processed by the processing unit MPC18 belonging to the third processing section PZ3. Similarly, the fourteenth substrate W14 is processed by the processing unit MPC19 belonging to the third processing section PZ3, and the fifteenth substrate W15 is scheduled to be processed by the processing unit MPC17 belonging to the third processing section PZ3. .
 図20は、インデクサロボットIR(図1参照)が14~15枚目の基板W14~W15をロードポートLP上のキャリアCから同時に搬出し、14~15枚目の基板W14~W15をロードポートLP上のキャリアCに同時に搬入する例を示している。図19A~図19Dについても同様である。図19Dに示す例では、14~15枚目の基板W14~W15は、搬出時刻X1にキャリアCから搬出され、搬入時刻Y1にキャリアCに搬入される。図20に示す例では、14~15枚目の基板W14~W15は、搬出時刻X2にキャリアCから搬出され、搬入時刻Y2にキャリアCに搬入される。 In FIG. 20, the indexer robot IR (see FIG. 1) simultaneously carries the 14th to 15th substrates W14 to W15 from the carrier C on the load port LP, and the 14th to 15th substrates W14 to W15 to the load port LP. The example which carries in to the upper carrier C simultaneously is shown. The same applies to FIGS. 19A to 19D. In the example shown in FIG. 19D, the 14th to 15th substrates W14 to W15 are unloaded from the carrier C at the unloading time X1, and are loaded into the carrier C at the loading time Y1. In the example shown in FIG. 20, the 14th to 15th substrates W14 to W15 are unloaded from the carrier C at the unloading time X2, and are loaded into the carrier C at the loading time Y2.
 第2実施例および第2比較例では、12~15枚目の基板W12~W15を同じ条件で複数の処理ユニットMPCに処理させるにもかかわらず、図19Dに示すように、第2実施例に係る搬出時刻X1は、第2比較例に係る搬出時刻X2よりも時間Z1だけ早く、第2実施例に係る搬入時刻Y1は、第2比較例に係る搬入時刻Y2よりも時間Z1だけ早い。したがって、第2実施例では、3つの処理区画PZを均等に選択でき、基板処理装置1の稼働率を高めることができるだけでなく、第2比較例に比べて単位時間当たりの基板Wの処理枚数を増やすことができる。これにより、基板処理装置1のスループットを高めることができる。 In the second example and the second comparative example, although the 12th to 15th substrates W12 to W15 are processed by a plurality of processing units MPC under the same conditions, as shown in FIG. The unloading time X1 is earlier by the time Z1 than the unloading time X2 according to the second comparative example, and the unloading time Y1 according to the second embodiment is earlier by the time Z1 than the loading time Y2 according to the second comparative example. Therefore, in the second embodiment, the three processing sections PZ can be selected equally, and not only can the operating rate of the substrate processing apparatus 1 be increased, but also the number of processed substrates W per unit time compared to the second comparative example. Can be increased. Thereby, the throughput of the substrate processing apparatus 1 can be increased.
 以上のように本実施形態では、区画使用率の大小関係に基づいて処理区画PZを選択するのではなく、区画最終使用時刻に基づいて複数の処理区画PZの中から1つの処理区画PZを選択する。そして、選択された処理区画PZに属する複数の処理ユニットMPCの中から1つの処理ユニットMPCを選択する。その後、基板Wが、基板搬送システムTS1に含まれるインデクサロボットIR、第1主搬送ロボットCR1および第2主搬送ロボットCR2によって、ロードポートLP上のキャリアCから、選択された処理ユニットMPCに搬送される。したがって、基板Wの処理時間が変化しない場合だけでなく、基板Wの処理時間が減少する場合も、複数の処理区画PZを均等に選択でき、基板処理装置1に備えられた全ての処理ユニットMPC1~MPC24を満遍なく使用することができる。これにより、基板処理装置1の稼働率を高めることができる。 As described above, in the present embodiment, instead of selecting the processing partition PZ based on the size relationship of the partition usage rate, one processing partition PZ is selected from the plurality of processing partitions PZ based on the partition final use time. To do. Then, one processing unit MPC is selected from the plurality of processing units MPC belonging to the selected processing section PZ. Thereafter, the substrate W is transported from the carrier C on the load port LP to the selected processing unit MPC by the indexer robot IR, the first main transport robot CR1, and the second main transport robot CR2 included in the substrate transport system TS1. The Therefore, not only when the processing time of the substrate W does not change, but also when the processing time of the substrate W decreases, a plurality of processing sections PZ can be selected equally, and all the processing units MPC1 provided in the substrate processing apparatus 1 MPC 24 can be used evenly. Thereby, the operation rate of the substrate processing apparatus 1 can be increased.
 しかも、区画最終使用時刻は、最も古いユニット最終使用時刻ではなく、最も古い修正ユニット最終使用時刻に基づいて特定される。修正ユニット最終使用時刻は、処理ユニットMPCが基板Wの処理のために最後に使用される時刻を表すユニット最終使用時刻から、ロードポートLP上のキャリアCから処理ユニットMPCに基板Wを搬送するのに要する搬送時間を引いた時刻である。したがって、複数の処理区画PZの間での搬送時間の差を減らすことができ、ロードポートLPに近い方の処理区画PZばかりが選択されることを回避できる。これにより、複数の処理区画PZをさらに均等に選択できる。 Moreover, the partition last use time is specified based on the oldest modified unit last use time, not the oldest unit last use time. The correction unit last use time is the time when the substrate W is transferred from the carrier C on the load port LP to the processing unit MPC from the unit last use time indicating the time when the processing unit MPC is used last for processing the substrate W. This is the time obtained by subtracting the transport time required for. Therefore, the difference in transport time among the plurality of processing sections PZ can be reduced, and it is possible to avoid selecting only the processing section PZ closer to the load port LP. Thereby, the plurality of processing sections PZ can be selected more evenly.
 本実施形態では、同じ処理区画PZに属する複数の処理ユニットMPCについては、同じ値が搬送時間として登録される。同じ処理区画PZに属する複数の処理ユニットMPCであっても、搬送距離が厳密には異なるので、搬送時間も厳密には異なる。しかしながら、属する処理区画PZが同じであれば、搬送時間の差は僅かであり、搬送時間はこれらの処理ユニットMPCの間で概ね等しい。したがって、同じ処理区画PZに属する複数の処理ユニットMPCについて同じ値を搬送時間として登録すれば、これらの処理区画PZの間での搬送時間の差を減らしながら、搬送時間の設定を単純化できる。 In the present embodiment, the same value is registered as the transport time for a plurality of processing units MPC belonging to the same processing section PZ. Even for a plurality of processing units MPC belonging to the same processing section PZ, the transport distances are strictly different, so the transport times are also strictly different. However, if the processing sections PZ to which they belong are the same, the difference in transport time is small, and the transport time is approximately equal between these processing units MPC. Therefore, if the same value is registered as the transport time for a plurality of processing units MPC belonging to the same processing section PZ, the setting of the transport time can be simplified while reducing the difference in transport time between these processing sections PZ.
 本実施形態では、区画最終使用時刻が最も古い複数の処理区画PZがあった場合は、投入可能率が最大の処理区画PZが、それらの処理区画PZの中から選択される。これは、多くの場合で、ユニット最終使用時刻が最も古い処理ユニットMPCの数が最大の処理区画PZを選択することを意味する。選択された処理ユニットMPCに基板Wを搬送する前や選択された処理ユニットMPCに基板Wを搬送しているときに、その処理ユニットMPCに異常が発生した場合は、別の処理ユニットMPCを選択し直す必要がある。このような場合、同じ処理区画PZの中にユニット最終使用時刻が最も古い別の処理ユニットMPCがあれば、その処理ユニットMPCを新たな処理ユニットMPCとして選択できる。したがって、比較的簡単な変更で基板Wの新たな搬送経路を設定できる。 In the present embodiment, when there are a plurality of processing sections PZ having the oldest section last use time, the processing section PZ having the maximum possible input rate is selected from among the processing sections PZ. In many cases, this means that the processing section PZ having the largest number of processing units MPC with the oldest unit last use time is selected. If an abnormality occurs in the processing unit MPC before the substrate W is transferred to the selected processing unit MPC or when the substrate W is transferred to the selected processing unit MPC, another processing unit MPC is selected. It is necessary to redo. In such a case, if there is another processing unit MPC having the oldest unit last use time in the same processing section PZ, that processing unit MPC can be selected as a new processing unit MPC. Therefore, a new transport path for the substrate W can be set with a relatively simple change.
 本実施形態では、全ての処理ユニットMPCを満遍なく使用できるので、スピンチャック33やスクラブ部材37などの処理ユニットMPCに備えられた装置等や、薬液ノズル34に薬液を送るポンプなどの処理ユニットMPCに関連する装置等を均等に使用できる。したがって、これらの消耗品の消耗度合いを平準化でき、メンテナンスの頻度を減らすことができる。これにより、基板処理装置1の稼働率をさらに高めることができる。 In this embodiment, since all the processing units MPC can be used evenly, the processing unit MPC such as a device that is provided in the processing unit MPC such as the spin chuck 33 and the scrub member 37 or a pump that sends the chemical liquid to the chemical nozzle 34 is used. Related devices can be used equally. Therefore, the degree of wear of these consumables can be leveled, and the frequency of maintenance can be reduced. Thereby, the operation rate of the substrate processing apparatus 1 can be further increased.
 第1および第2実施例では、基板Wの処理時間が第1処理時間から第2処理時間に減少する例について説明した。このような場合でも、区画最終使用時刻に基づいて複数の処理区画PZの中から1つの処理区画PZを選択するので、区画使用率の大小関係に基づいて処理区画PZを選択する場合に比べて複数の処理区画PZを均等に選択できる。したがって、基板Wの搬送経路や処理時間が異なる場合でも、全ての処理ユニットMPCを満遍なく使用することができ、基板処理装置1の稼働率をさらに高めることができる。 In the first and second embodiments, the example in which the processing time of the substrate W is reduced from the first processing time to the second processing time has been described. Even in such a case, since one processing partition PZ is selected from among the plurality of processing partitions PZ based on the partition last use time, compared to the case where the processing partition PZ is selected based on the size relationship of the partition usage rate. A plurality of processing sections PZ can be selected equally. Therefore, even when the transport path and processing time of the substrate W are different, all the processing units MPC can be used evenly, and the operating rate of the substrate processing apparatus 1 can be further increased.
 他の実施形態
 本発明は、前述の実施形態の内容に限定されるものではなく、種々の変更が可能である。
Other Embodiments The present invention is not limited to the contents of the above-described embodiments, and various modifications can be made.
 たとえば、処理区画PZは、搬送時間ではなく搬送距離に基づいて分類されてもよい。 For example, the processing section PZ may be classified based on the transport distance instead of the transport time.
 同じ処理区画PZに属する処理ユニットMPCの数は、3つの処理区画PZの間で異なっていてもよい。 The number of processing units MPC belonging to the same processing section PZ may be different among the three processing sections PZ.
 基板処理装置1に設けられる処理区画PZの数は、2つまたは5つ以上であってもよい。たとえば、第2処理区画PZ2および第3処理区画PZ3を1つの処理区画PZとして扱ってもよい。もしくは、第3処理区画PZ3を省略してもよい。 The number of processing sections PZ provided in the substrate processing apparatus 1 may be two or five or more. For example, the second processing section PZ2 and the third processing section PZ3 may be handled as one processing section PZ. Alternatively, the third processing section PZ3 may be omitted.
 第3処理区画PZ3を省略する場合、第1主搬送ロボットCR1が、第1処理区画PZ1および第2処理区画PZ2に属する全ての処理ユニットMPCに対して基板Wの搬入および搬出を行ってもよい。この場合、第2主搬送ロボットCR2および第2受け渡しユニットPASS2は不要である。 When the third processing section PZ3 is omitted, the first main transfer robot CR1 may carry in and out the substrates W with respect to all the processing units MPC belonging to the first processing section PZ1 and the second processing section PZ2. . In this case, the second main transfer robot CR2 and the second delivery unit PASS2 are unnecessary.
 第2処理区画PZ2の搬送時間は、第3処理区画PZ3の搬送時間と異なっていてもよいし、第1処理区画PZ1の搬送時間と等しくてもよい。 The transport time of the second processing section PZ2 may be different from the transport time of the third processing section PZ3, or may be equal to the transport time of the first processing section PZ1.
 同じ処理区画PZに属する複数の処理ユニットMPCに対して同じ値が搬送時間として登録されるのではなく、処理ユニットMPCごとに搬送時間が登録されてもよい。すなわち、同じ処理区画PZに属する複数の処理ユニットMPCに対して登録された搬送時間が互いに異なっていてもよい。 The same value is not registered as the transport time for a plurality of processing units MPC belonging to the same processing section PZ, but the transport time may be registered for each processing unit MPC. That is, the transfer times registered for a plurality of processing units MPC belonging to the same processing section PZ may be different from each other.
 区画最終使用時刻が最も古い処理区画が複数見つかった場合(図8のステップS34:YES)、スケジューリング機能部は、投入可能率が最大の処理区画PZではなく、最古チャンバ数が最大の処理区画PZを、候補区画に含まれる複数の処理区画の中で検索してもよい。 When a plurality of processing partitions with the oldest partition last use time are found (step S34 in FIG. 8: YES), the scheduling function unit is not the processing partition PZ with the highest possible input rate but the processing partition with the maximum oldest chamber number. The PZ may be searched among a plurality of processing sections included in the candidate section.
 区画最終使用時刻が最も古い処理区画が複数見つかった場合(図8のステップS34:YES)、投入可能率に基づいて処理区画PZを選択するのではなく、区画番号に基づいて処理区画PZを選択してもよい。もしくは、区画最終使用時刻が最も古い複数の処理区画PZの中から任意の処理区画PZを選択してもよい。 When a plurality of processing sections having the oldest section last use time are found (step S34 in FIG. 8: YES), the processing section PZ is selected based on the section number instead of selecting the processing section PZ based on the input possibility rate. May be. Alternatively, an arbitrary processing section PZ may be selected from among a plurality of processing sections PZ having the oldest section last use time.
 修正ユニット最終使用時刻の代わりに、ユニット最終使用時刻を用いてもよい。もしくは、ユニット最終使用時刻の代わりに、修正ユニット最終使用時刻を用いてもよい。たとえば、区画最終使用時刻は、最も古い修正ユニット最終使用時刻ではなく、最も古いユニット最終使用時刻に基づいて特定されてもよい。基板Wを処理する処理ユニットMPCを選択する際に、最も古い区画最終使用時刻を最初に優先するのではなく、最も古い修正ユニット最終使用時刻を最初に優先してもよい。 The unit last use time may be used instead of the modified unit last use time. Alternatively, the modified unit last use time may be used instead of the unit last use time. For example, the partition last use time may be specified based on the oldest unit last use time, not the oldest modified unit last use time. When selecting the processing unit MPC for processing the substrate W, the oldest partition last use time may be given priority first, but the oldest modification unit last use time may be given priority first.
 処理ユニットMPCは、図3に示す表面洗浄ユニットおよび図4に示す端面洗浄ユニットに限らず、基板Wの表面をスクラブ部材で洗浄する表面スクラブ洗浄ユニット、基板Wの裏面を洗浄する裏面洗浄ユニットなどの他の種類の処理ユニットであってもよい。複数種類の処理ユニットが1つの基板処理装置1に備えられていてもよい。 The processing unit MPC is not limited to the front surface cleaning unit shown in FIG. 3 and the end surface cleaning unit shown in FIG. 4, but a front surface scrub cleaning unit that cleans the surface of the substrate W with a scrub member, a back surface cleaning unit that cleans the back surface of the substrate W, and the like. Other types of processing units may be used. A plurality of types of processing units may be provided in one substrate processing apparatus 1.
 前述の全ての構成のうちの2つ以上が組み合わされてもよい。前述の全てのステップのうちの2つ以上が組み合わされてもよい。 Two or more of all the above-described configurations may be combined. Two or more of all the above steps may be combined.
 本発明の実施形態について詳細に説明してきたが、これらは本発明の技術的内容を明らかにするために用いられた具体例に過ぎず、本発明はこれらの具体例に限定して解釈されるべきではなく、本発明の精神および範囲は添付の請求の範囲によってのみ限定される。 Although the embodiments of the present invention have been described in detail, these are only specific examples used to clarify the technical contents of the present invention, and the present invention is construed to be limited to these specific examples. The spirit and scope of the present invention should not be limited only by the appended claims.
1   :基板処理装置
60  :コンピュータ(制御装置)
71  :スケジュール作成プログラム
72  :処理実行プログラム
C   :キャリア
CR1 :第1主搬送ロボット
CR2 :第2主搬送ロボット
IR  :インデクサロボット
LP  :ロードポート
MPC :処理ユニット
TS1 :基板搬送システム
W   :基板
1: Substrate processing device 60: Computer (control device)
71: Schedule creation program 72: Processing execution program C: Carrier CR1: First main transfer robot CR2: Second main transfer robot IR: Indexer robot LP: Load port MPC: Processing unit TS1: Substrate transfer system W: Substrate

Claims (11)

  1.  ロードポート上のキャリアから基板を処理する複数の処理ユニットまで基板搬送システムに前記基板を搬送させる基板処理装置によって実行される基板処理方法であって、
     前記複数の処理ユニットのそれぞれが、前記ロードポート上の前記キャリアから前記処理ユニットに前記基板を搬送するのに要する搬送時間、または、前記ロードポートから前記処理ユニットまでの距離を表す搬送距離に基づいて分類された複数の処理区画のいずれに属するかを確認する所属確認ステップと、
     前記処理ユニットが前記基板の処理のために最後に使用される時刻を表すユニット最終使用時刻を、前記複数の処理ユニットのそれぞれについて取得するユニット最終使用時刻取得ステップと、
     前記ユニット最終使用時刻取得ステップで取得された複数の前記ユニット最終使用時刻と前記複数の処理ユニットについての前記搬送時間とに基づいて、同じ前記処理ユニットにおいて前記ユニット最終使用時刻から前記搬送時間を引いた時刻を表す修正ユニット最終使用時刻を、前記複数の処理ユニットのそれぞれについて計算する修正ユニット最終使用時刻計算ステップと、
     前記修正ユニット最終使用時刻計算ステップで得られた複数の前記修正ユニット最終使用時刻に基づいて、同じ前記処理区画に属する複数の前記処理ユニットの前記修正ユニット最終使用時刻のうちで最も古い時刻を表す区画最終使用時刻を、前記複数の処理区画のそれぞれについて特定する区画最終使用時刻特定ステップと、
     前記区画最終使用時刻特定ステップで特定された複数の前記区画最終使用時刻に基づいて、前記区画最終使用時刻が最も古い1つの前記処理区画を、前記複数の処理区画の中から選択する区画選択ステップと、
     前記区画選択ステップで選択した前記処理区画に属する複数の前記処理ユニットの中から1つの前記処理ユニットを選択するユニット選択ステップと、
     前記基板搬送システムに前記基板を前記ロードポート上の前記キャリアから前記ユニット選択ステップで選択した前記処理ユニットまで搬送させる基板搬送ステップと、を含む、基板処理方法。
    A substrate processing method executed by a substrate processing apparatus that transfers a substrate to a substrate transfer system from a carrier on a load port to a plurality of processing units that process the substrate,
    Each of the plurality of processing units is based on a transport time required to transport the substrate from the carrier on the load port to the processing unit, or a transport distance representing a distance from the load port to the processing unit. An affiliation confirmation step for confirming which of the plurality of processing sections classified by
    A unit final use time acquisition step of acquiring, for each of the plurality of processing units, a unit final use time representing a time at which the processing unit is last used for processing the substrate;
    Based on the plurality of unit final use times acquired in the unit final use time acquisition step and the transfer times for the plurality of processing units, the transfer time is subtracted from the unit final use time in the same processing unit. A correction unit final use time calculation step for calculating a correction unit final use time representing each of the plurality of processing units;
    Based on the plurality of correction unit final use times obtained in the correction unit final use time calculation step, represents the oldest time among the correction unit final use times of the plurality of processing units belonging to the same processing section. A partition last use time specifying step for specifying a partition last use time for each of the plurality of processing partitions;
    A partition selection step of selecting, from the plurality of processing partitions, the one processing partition having the oldest partition final use time based on the plurality of partition final use times specified in the partition final use time specifying step. When,
    A unit selection step of selecting one processing unit from among the plurality of processing units belonging to the processing section selected in the section selection step;
    A substrate processing method comprising: transferring a substrate from the carrier on the load port to the processing unit selected in the unit selection step in the substrate transport system.
  2.  ロードポート上のキャリアから基板を処理する複数の処理ユニットまで基板搬送システムに前記基板を搬送させる基板処理装置によって実行される基板処理方法であって、
     前記複数の処理ユニットのそれぞれが、前記ロードポート上の前記キャリアから前記処理ユニットに前記基板を搬送するのに要する搬送時間、または、前記ロードポートから前記処理ユニットまでの距離を表す搬送距離に基づいて分類された複数の処理区画のいずれに属するかを確認する所属確認ステップと、
     前記処理ユニットが前記基板の処理のために最後に使用される時刻を表すユニット最終使用時刻を、前記複数の処理ユニットのそれぞれについて取得するユニット最終使用時刻取得ステップと、
     前記ユニット最終使用時刻取得ステップで取得された複数の前記ユニット最終使用時刻に基づいて、同じ前記処理区画に属する複数の前記処理ユニットの前記ユニット最終使用時刻のうちで最も古い時刻を表す区画最終使用時刻を、前記複数の処理区画のそれぞれについて特定する区画最終使用時刻特定ステップと、
     前記区画最終使用時刻特定ステップで特定された複数の前記区画最終使用時刻に基づいて、前記区画最終使用時刻が最も古い1つの前記処理区画を、前記複数の処理区画の中から選択する区画選択ステップと、
     前記区画選択ステップで選択した前記処理区画に属する複数の前記処理ユニットの中から1つの前記処理ユニットを選択するユニット選択ステップと、
     前記基板搬送システムに前記基板を前記ロードポート上の前記キャリアから前記ユニット選択ステップで選択した前記処理ユニットまで搬送させる基板搬送ステップと、を含む、基板処理方法。
    A substrate processing method executed by a substrate processing apparatus that transfers a substrate to a substrate transfer system from a carrier on a load port to a plurality of processing units that process the substrate,
    Each of the plurality of processing units is based on a transport time required to transport the substrate from the carrier on the load port to the processing unit, or a transport distance representing a distance from the load port to the processing unit. An affiliation confirmation step for confirming which of the plurality of processing sections classified by
    A unit final use time acquisition step of acquiring, for each of the plurality of processing units, a unit final use time representing a time at which the processing unit is last used for processing the substrate;
    Based on the plurality of unit final use times acquired in the unit final use time acquisition step, the section final use representing the oldest time among the unit final use times of the plurality of processing units belonging to the same processing section. A partition last use time specifying step of specifying a time for each of the plurality of processing partitions;
    A partition selection step of selecting, from the plurality of processing partitions, the one processing partition having the oldest partition final use time based on the plurality of partition final use times specified in the partition final use time specifying step. When,
    A unit selection step of selecting one processing unit from among the plurality of processing units belonging to the processing section selected in the section selection step;
    A substrate processing method comprising: transferring a substrate from the carrier on the load port to the processing unit selected in the unit selection step in the substrate transport system.
  3.  前記修正ユニット最終使用時刻計算ステップの前に、同じ前記処理区画に属する複数の前記処理ユニットのための前記搬送時間として同じ値を登録する搬送時間登録ステップをさらに含む、請求項1に記載の基板処理方法。 The substrate according to claim 1, further comprising a transfer time registration step of registering the same value as the transfer time for a plurality of the processing units belonging to the same processing section before the correction unit final use time calculating step. Processing method.
  4.  前記区画選択ステップは、前記区画最終使用時刻が最も古い前記処理区画を前記複数の処理区画の中で検索する第1検索ステップと、前記第1検索ステップで複数の前記処理区画が候補区画として見つかった場合、前記ユニット最終使用時刻が最も古い前記処理ユニットの数が最大の前記処理区画を、前記候補区画に含まれる複数の前記処理区画の中で検索する第2検索ステップと、前記第2検索ステップで見つかった少なくとも1つの前記処理区画の中から1つの前記処理区画を選択する選択ステップと、を含む、請求項1~3のいずれか一項に記載の基板処理方法。 The partition selection step includes a first search step for searching the processing partition having the oldest partition last use time in the plurality of processing partitions, and a plurality of the processing partitions are found as candidate partitions in the first search step. A second search step of searching for the processing partition having the largest number of the processing units with the oldest unit last use time among the plurality of processing partitions included in the candidate partition, and the second search The substrate processing method according to any one of claims 1 to 3, further comprising a selection step of selecting one of the processing sections from at least one of the processing sections found in the step.
  5.  前記複数の処理ユニットのいずれかに搬送された直近の基板の処理時間よりも短い処理時間で、前記ユニット選択ステップで選択した前記処理ユニットに前記基板搬送ステップの後に前記基板を処理させる基板処理ステップをさらに含む、請求項1~4のいずれか一項に記載の基板処理方法。 A substrate processing step of causing the processing unit selected in the unit selection step to process the substrate after the substrate transporting step in a processing time shorter than the processing time of the latest substrate transported to any of the plurality of processing units. The substrate processing method according to any one of claims 1 to 4, further comprising:
  6.  基板を収容するキャリアが載置されるロードポートと、
     前記ロードポート上の前記キャリアから搬送された前記基板を処理する複数の処理ユニットと、
     前記ロードポート上の前記キャリアと前記複数の処理ユニットとの間で前記基板を搬送する基板搬送システムと、
     前記基板搬送システムを制御する制御装置と、を備え、
     前記制御装置は、
     前記複数の処理ユニットのそれぞれが、前記ロードポート上の前記キャリアから前記処理ユニットに前記基板を搬送するのに要する搬送時間、または、前記ロードポートから前記処理ユニットまでの距離を表す搬送距離に基づいて分類された複数の処理区画のいずれに属するかを確認する所属確認ステップと、
     前記処理ユニットが前記基板の処理のために最後に使用される時刻を表すユニット最終使用時刻を、前記複数の処理ユニットのそれぞれについて取得するユニット最終使用時刻取得ステップと、
     前記ユニット最終使用時刻取得ステップで取得された複数の前記ユニット最終使用時刻と前記複数の処理ユニットについての前記搬送時間とに基づいて、同じ前記処理ユニットにおいて前記ユニット最終使用時刻から前記搬送時間を引いた時刻を表す修正ユニット最終使用時刻を、前記複数の処理ユニットのそれぞれについて計算する修正ユニット最終使用時刻計算ステップと、
     前記修正ユニット最終使用時刻計算ステップで得られた複数の前記修正ユニット最終使用時刻に基づいて、同じ前記処理区画に属する複数の前記処理ユニットの前記修正ユニット最終使用時刻のうちで最も古い時刻を表す区画最終使用時刻を、前記複数の処理区画のそれぞれについて特定する区画最終使用時刻特定ステップと、
     前記区画最終使用時刻特定ステップで特定された複数の前記区画最終使用時刻に基づいて、前記区画最終使用時刻が最も古い1つの前記処理区画を、前記複数の処理区画の中から選択する区画選択ステップと、
     前記区画選択ステップで選択した前記処理区画に属する複数の前記処理ユニットの中から1つの前記処理ユニットを選択するユニット選択ステップと、
     前記基板搬送システムに前記基板を前記ロードポート上の前記キャリアから前記ユニット選択ステップで選択した前記処理ユニットまで搬送させる基板搬送ステップと、を実行する、基板処理装置。
    A load port on which a carrier for housing a substrate is placed;
    A plurality of processing units for processing the substrate transported from the carrier on the load port;
    A substrate transfer system for transferring the substrate between the carrier on the load port and the plurality of processing units;
    A control device for controlling the substrate transfer system,
    The controller is
    Each of the plurality of processing units is based on a transport time required to transport the substrate from the carrier on the load port to the processing unit, or a transport distance representing a distance from the load port to the processing unit. An affiliation confirmation step for confirming which of the plurality of processing sections classified by
    A unit final use time acquisition step of acquiring, for each of the plurality of processing units, a unit final use time representing a time at which the processing unit is last used for processing the substrate;
    Based on the plurality of unit final use times acquired in the unit final use time acquisition step and the transfer times for the plurality of processing units, the transfer time is subtracted from the unit final use time in the same processing unit. A correction unit final use time calculation step for calculating a correction unit final use time representing each of the plurality of processing units;
    Based on the plurality of correction unit final use times obtained in the correction unit final use time calculation step, represents the oldest time among the correction unit final use times of the plurality of processing units belonging to the same processing section. A partition last use time specifying step for specifying a partition last use time for each of the plurality of processing partitions;
    A partition selection step of selecting, from the plurality of processing partitions, the one processing partition having the oldest partition final use time based on the plurality of partition final use times specified in the partition final use time specifying step. When,
    A unit selection step of selecting one processing unit from among the plurality of processing units belonging to the processing section selected in the section selection step;
    A substrate processing apparatus that executes a substrate transfer step of causing the substrate transfer system to transfer the substrate from the carrier on the load port to the processing unit selected in the unit selection step.
  7.  基板を収容するキャリアが載置されるロードポートと、
     前記ロードポート上の前記キャリアから搬送された前記基板を処理する複数の処理ユニットと、
     前記ロードポート上の前記キャリアと前記複数の処理ユニットとの間で前記基板を搬送する基板搬送システムと、
     前記基板搬送システムを制御する制御装置と、を備え、
     前記制御装置は、
     前記複数の処理ユニットのそれぞれが、前記ロードポート上の前記キャリアから前記処理ユニットに前記基板を搬送するのに要する搬送時間、または、前記ロードポートから前記処理ユニットまでの距離を表す搬送距離に基づいて分類された複数の処理区画のいずれに属するかを確認する所属確認ステップと、
     前記処理ユニットが前記基板の処理のために最後に使用される時刻を表すユニット最終使用時刻を、前記複数の処理ユニットのそれぞれについて取得するユニット最終使用時刻取得ステップと、
     前記ユニット最終使用時刻取得ステップで取得された複数の前記ユニット最終使用時刻に基づいて、同じ前記処理区画に属する複数の前記処理ユニットの前記ユニット最終使用時刻のうちで最も古い時刻を表す区画最終使用時刻を、前記複数の処理区画のそれぞれについて特定する区画最終使用時刻特定ステップと、
     前記区画最終使用時刻特定ステップで特定された複数の前記区画最終使用時刻に基づいて、前記区画最終使用時刻が最も古い1つの前記処理区画を、前記複数の処理区画の中から選択する区画選択ステップと、
     前記区画選択ステップで選択した前記処理区画に属する複数の前記処理ユニットの中から1つの前記処理ユニットを選択するユニット選択ステップと、
     前記基板搬送システムに前記基板を前記ロードポート上の前記キャリアから前記ユニット選択ステップで選択した前記処理ユニットまで搬送させる基板搬送ステップと、を実行する、基板処理装置。
    A load port on which a carrier for housing a substrate is placed;
    A plurality of processing units for processing the substrate transported from the carrier on the load port;
    A substrate transfer system for transferring the substrate between the carrier on the load port and the plurality of processing units;
    A control device for controlling the substrate transfer system,
    The controller is
    Each of the plurality of processing units is based on a transport time required to transport the substrate from the carrier on the load port to the processing unit, or a transport distance representing a distance from the load port to the processing unit. An affiliation confirmation step for confirming which of the plurality of processing sections classified by
    A unit final use time acquisition step of acquiring, for each of the plurality of processing units, a unit final use time representing a time at which the processing unit is last used for processing the substrate;
    Based on the plurality of unit final use times acquired in the unit final use time acquisition step, the section final use representing the oldest time among the unit final use times of the plurality of processing units belonging to the same processing section. A partition last use time specifying step of specifying a time for each of the plurality of processing partitions;
    A partition selection step of selecting, from the plurality of processing partitions, the one processing partition having the oldest partition final use time based on the plurality of partition final use times specified in the partition final use time specifying step. When,
    A unit selection step of selecting one processing unit from among the plurality of processing units belonging to the processing section selected in the section selection step;
    A substrate processing apparatus that executes a substrate transfer step of causing the substrate transfer system to transfer the substrate from the carrier on the load port to the processing unit selected in the unit selection step.
  8.  前記制御装置は、前記修正ユニット最終使用時刻計算ステップの前に、同じ前記処理区画に属する複数の前記処理ユニットのための前記搬送時間として同じ値を登録する搬送時間登録ステップをさらに実行する、請求項6に記載の基板処理装置。 The control device further executes a transfer time registration step of registering the same value as the transfer time for a plurality of the processing units belonging to the same processing section before the correction unit final use time calculating step. Item 7. The substrate processing apparatus according to Item 6.
  9.  前記区画選択ステップは、前記区画最終使用時刻が最も古い前記処理区画を前記複数の処理区画の中で検索する第1検索ステップと、前記第1検索ステップで複数の前記処理区画が候補区画として見つかった場合、前記ユニット最終使用時刻が最も古い前記処理ユニットの数が最大の前記処理区画を、前記候補区画に含まれる複数の前記処理区画の中で検索する第2検索ステップと、前記第2検索ステップで見つかった少なくとも1つの前記処理区画の中から1つの前記処理区画を選択する選択ステップと、を含む、請求項6~8のいずれか一項に記載の基板処理装置。 The partition selection step includes a first search step for searching the processing partition having the oldest partition last use time in the plurality of processing partitions, and a plurality of the processing partitions are found as candidate partitions in the first search step. A second search step of searching for the processing partition having the largest number of the processing units with the oldest unit last use time among the plurality of processing partitions included in the candidate partition, and the second search 9. The substrate processing apparatus according to claim 6, further comprising a selection step of selecting one of the processing sections found from at least one of the processing sections found in the step.
  10.  前記制御装置は、前記複数の処理ユニットのいずれかに搬送された直近の基板の処理時間よりも短い処理時間で、前記ユニット選択ステップで選択した前記処理ユニットに前記基板搬送ステップの後に前記基板を処理させる基板処理ステップをさらに実行する、請求項6~9のいずれか一項に記載の基板処理装置。 The control device transfers the substrate after the substrate transport step to the processing unit selected in the unit selection step with a processing time shorter than the processing time of the latest substrate transported to any of the plurality of processing units. The substrate processing apparatus according to any one of claims 6 to 9, further executing a substrate processing step to be processed.
  11.  ロードポート上のキャリアから基板を処理する複数の処理ユニットまで基板搬送システムに前記基板を搬送させる基板処理装置に備えられた制御装置によって実行されるコンピュータプログラムであって、
     請求項1~5のいずれか一項に記載の基板処理方法を前記制御装置としてのコンピュータに実行させるようにステップ群が組み込まれたコンピュータプログラム。
    A computer program executed by a control device provided in a substrate processing apparatus for transporting the substrate to a substrate transport system from a carrier on a load port to a plurality of processing units for processing the substrate,
    A computer program in which a group of steps is incorporated so as to cause a computer as the control apparatus to execute the substrate processing method according to any one of claims 1 to 5.
PCT/JP2019/018577 2018-05-11 2019-05-09 Substrate processing method, substrate processing device, and computer program WO2019216379A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207031316A KR102398820B1 (en) 2018-05-11 2019-05-09 Substrate processing method, substrate processing device, and computer readable recording medium
CN201980031493.6A CN112106175B (en) 2018-05-11 2019-05-09 Substrate processing method, substrate processing apparatus, and recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-092485 2018-05-11
JP2018092485A JP6981918B2 (en) 2018-05-11 2018-05-11 Board processing methods, board processing equipment, and computer programs

Publications (1)

Publication Number Publication Date
WO2019216379A1 true WO2019216379A1 (en) 2019-11-14

Family

ID=68467030

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018577 WO2019216379A1 (en) 2018-05-11 2019-05-09 Substrate processing method, substrate processing device, and computer program

Country Status (5)

Country Link
JP (1) JP6981918B2 (en)
KR (1) KR102398820B1 (en)
CN (1) CN112106175B (en)
TW (2) TWI706458B (en)
WO (1) WO2019216379A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117556A1 (en) * 2019-12-13 2021-06-17 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7311553B2 (en) * 2021-03-29 2023-07-19 株式会社Kokusai Electric SUBSTRATE PROCESSING APPARATUS, SEMICONDUCTOR DEVICE MANUFACTURING METHOD AND PROGRAM
CN113299587B (en) * 2021-05-21 2022-04-26 无锡亚电智能装备有限公司 Wafer cleaning process task arrangement method and device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283093A (en) * 1994-04-01 1995-10-27 Tokyo Electron Ltd Method and system for scheduling processing of object
JPH10335415A (en) * 1997-05-30 1998-12-18 Dainippon Screen Mfg Co Ltd Method for setting treating time
JP2001351848A (en) * 2000-06-07 2001-12-21 Tokyo Electron Ltd Substrate treatment system and substrate treatment method
JP2011253897A (en) * 2010-06-01 2011-12-15 Tokyo Electron Ltd Substrate processing system and substrate processing method
JP2014078676A (en) * 2012-09-21 2014-05-01 Dainippon Screen Mfg Co Ltd Schedule creation apparatus, substrate processing device, schedule creation program, schedule creation method and substrate processing method
JP2017011023A (en) * 2015-06-18 2017-01-12 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
JP2017183545A (en) * 2016-03-30 2017-10-05 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11163087A (en) * 1997-12-01 1999-06-18 Toshiba Microelectronics Corp Substrate processing device and transportation scheduling method
JP3995478B2 (en) * 2000-01-17 2007-10-24 株式会社荏原製作所 Substrate transfer control device and substrate transfer method
JP2003224174A (en) * 2002-01-30 2003-08-08 Seiko Epson Corp Semiconductor manufacturing apparatus and control method
JP4428717B2 (en) * 2006-11-14 2010-03-10 東京エレクトロン株式会社 Substrate processing method and substrate processing system
JP5282021B2 (en) * 2009-12-14 2013-09-04 株式会社日立ハイテクノロジーズ Semiconductor processing system and semiconductor processing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283093A (en) * 1994-04-01 1995-10-27 Tokyo Electron Ltd Method and system for scheduling processing of object
JPH10335415A (en) * 1997-05-30 1998-12-18 Dainippon Screen Mfg Co Ltd Method for setting treating time
JP2001351848A (en) * 2000-06-07 2001-12-21 Tokyo Electron Ltd Substrate treatment system and substrate treatment method
JP2011253897A (en) * 2010-06-01 2011-12-15 Tokyo Electron Ltd Substrate processing system and substrate processing method
JP2014078676A (en) * 2012-09-21 2014-05-01 Dainippon Screen Mfg Co Ltd Schedule creation apparatus, substrate processing device, schedule creation program, schedule creation method and substrate processing method
JP2017011023A (en) * 2015-06-18 2017-01-12 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
JP2017183545A (en) * 2016-03-30 2017-10-05 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117556A1 (en) * 2019-12-13 2021-06-17 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method
JP7472916B2 (en) 2019-12-13 2024-04-23 東京エレクトロン株式会社 SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD

Also Published As

Publication number Publication date
KR102398820B1 (en) 2022-05-16
TW201947654A (en) 2019-12-16
CN112106175A (en) 2020-12-18
JP6981918B2 (en) 2021-12-17
TW202046399A (en) 2020-12-16
TWI706458B (en) 2020-10-01
CN112106175B (en) 2024-04-19
JP2019197871A (en) 2019-11-14
KR20200138354A (en) 2020-12-09
TWI770598B (en) 2022-07-11

Similar Documents

Publication Publication Date Title
KR101944609B1 (en) Substrate processing apparatus and substrate processing method
WO2019216379A1 (en) Substrate processing method, substrate processing device, and computer program
JP5852908B2 (en) Schedule creation method and schedule creation program for substrate processing apparatus
KR101553417B1 (en) Substrate processing apparatus and substrate processing method
KR102285183B1 (en) Scheduling method and recording medium recording scheduling program for substrate processing apparatus
JP6313671B2 (en) Method for creating schedule for substrate processing apparatus and substrate processing apparatus
JP5223778B2 (en) Substrate processing apparatus, substrate processing method, and storage medium
KR20120120051A (en) Substrate processing apparatus, substrate processing method and storage medium
JP6723110B2 (en) Substrate processing apparatus and substrate processing method
JP6481977B2 (en) Substrate processing method and substrate processing apparatus
JP5987796B2 (en) Substrate processing apparatus, substrate processing method, and storage medium
KR20140043024A (en) Substrate processing apparatus, substrate transfer method and storage medium
JP5847515B2 (en) Schedule creation method and schedule creation program for substrate processing apparatus
JP7471173B2 (en) SCHEDULE CREATION METHOD AND SCHEDULE CREATION DEVICE
JP6435388B2 (en) Substrate processing method and substrate processing apparatus
JP6773497B2 (en) Board processing management device, board processing management method and board processing management program
KR20150087108A (en) Substrate processing apparatus, its operation method, and storage medium
JP2012209591A (en) Substrate processing apparatus, substrate processing method, and storage medium
JP6573693B2 (en) Method for creating schedule for substrate processing apparatus and substrate processing apparatus
JP3960761B2 (en) Substrate processing apparatus schedule creation method and program thereof
JP5189534B2 (en) Substrate processing apparatus schedule creation method and program thereof
JP2018195145A (en) Substrate processing method and substrate processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800287

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207031316

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19800287

Country of ref document: EP

Kind code of ref document: A1