WO2019216362A1 - 検査装置及び検査方法 - Google Patents
検査装置及び検査方法 Download PDFInfo
- Publication number
- WO2019216362A1 WO2019216362A1 PCT/JP2019/018467 JP2019018467W WO2019216362A1 WO 2019216362 A1 WO2019216362 A1 WO 2019216362A1 JP 2019018467 W JP2019018467 W JP 2019018467W WO 2019216362 A1 WO2019216362 A1 WO 2019216362A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- inspection
- inspection object
- curved surface
- image
- artificial intelligence
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/25—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/95—Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
- G06T7/521—Depth or shape recovery from laser ranging, e.g. using interferometry; from the projection of structured light
Definitions
- the present invention relates to a surface shape of a curved surface of an inspection object formed by melting a material with heat, an inspection object manufactured by polishing the surface, or an inspection object manufactured by cutting.
- the present invention relates to an inspection apparatus and an inspection method for inspection.
- parts Inspection of products with complicated curved surfaces such as impellers of large pumps and their parts (hereinafter, parts) is one of the tasks that are difficult to quantify, require skill, and require a large number of man-hours.
- these parts and the like are often manufactured by casting or the like, but the parts and the like manufactured by casting or the like can be polished with a grinder or the like in order to remove surface roughness and undulation (unevenness). It is common. Even in the case of manufacturing by machining or the like, polishing may be performed to remove so-called cutting marks after processing. Alternatively, parts such as “sledge” and “swell” may occur due to thermal deformation during processing.
- Patent Literature 1 a step of imaging the front of the impeller from the direction of the rotational axis of the impeller placed at the installation location, and a front of the impeller from the direction of the rotational axis of the impeller imaged in the imaging step A binarization process of the captured image related to the above, obtaining a binarized image, and on the tip-corresponding bright part of all the vane-corresponding bright parts provided around the impeller-corresponding bright part based on the binarized image A step of detecting a position, a step of calculating a positional relationship between each of the detected tip-corresponding bright portions and a predetermined reference portion in the impeller-corresponding bright portion, and the calculation A blade shape inspection method for an impeller is disclosed, which includes a step of comparing the determined positional relationship with a predetermined specified value to determine the quality of the blade shape of the impeller.
- casting surface the surface shape during casting (so-called “casting surface”) is rough because the surface is rough for fluid machinery parts such as pumps. Since it is necessary to do so, the surface may sometimes be shaved excessively, resulting in unevenness. Or, even in machining, etc., undulation or warping may occur due to unevenness caused by polishing the surface to remove the cutting traces that occur after machining, or thermal deformation during machining. Unevenness may occur. For such irregularities, it is difficult to set allowable values.
- the dimensions of the product are precisely measured by various dimension measuring instruments or so-called three-dimensional measuring instruments, and whether or not the dimensions are within an allowable value is inspected. There is a way to do it.
- FIG. 1 is a first schematic diagram of a design shape (reference shape), upper and lower limits of allowable values, and product shape.
- FIG. 1 shows an alternate long and short dash line L1 representing the design shape (reference shape), a broken line L2 representing the lower limit of the allowable dimension value, a broken line L3 representing the upper limit of the allowable dimension value, and a solid line L4 representing the product shape.
- L1 representing the design shape (reference shape)
- L2 representing the lower limit of the allowable dimension value
- L3 representing the upper limit of the allowable dimension value
- a solid line L4 representing the product shape.
- FIG. 2 is a second schematic diagram of the design shape (reference shape), the upper and lower limits of the allowable value, and the product shape.
- FIG. 2 shows an alternate long and short dash line L11 representing the design shape (reference shape), a broken line L12 representing the lower limit of the allowable dimension value, a broken line L13 representing the upper limit of the allowable dimension value, and a solid line L14 representing the product shape.
- L11 representing the design shape (reference shape)
- L12 representing the lower limit of the allowable dimension value
- a broken line L13 representing the upper limit of the allowable dimension value
- a solid line L14 representing the product shape.
- the product shape (measured value at each point) is between the upper limit and the lower limit of the allowable value (that is, within the allowable range).
- the allowable value that is, within the allowable range.
- Impeller ⁇ Diffuser including pressure recovery flow path, spiral casing, guide blade, etc.
- Suction pipe / discharge pipe ⁇ Bearing / shaft seal underwater casing, especially its wetted surface
- Suction bell ⁇ and the components
- FIG. 3 is a schematic diagram showing an inspection method according to a comparative example.
- FIG. 3 shows a one-dot chain line L21 representing the design shape (reference shape), a broken line L22 representing the lower limit of the allowable dimension value, a broken line L23 representing the upper limit of the allowable dimension value, a solid line L24 representing the product shape, and the sampling data.
- a stepwise solid line L25 is shown.
- shape data is sampled at regular intervals, a difference between adjacent measurement values (sampling data) is calculated, and quality is determined based on the difference.
- the difference is determined to be defective when the difference is larger than a certain value or smaller than the difference between the design shapes.
- the shape of the impeller is optimized according to the customer's specifications, so the standard shape differs from product to product. It is necessary to create data for use in This also hinders automation.
- the present invention has been made in view of the above problems, and provides an inspection apparatus and an inspection method capable of objectively and automatically inspecting the surface shape of a curved surface of an object that is difficult to determine only with dimensional tolerances. For the purpose.
- the inspection apparatus relates to an inspection object formed by melting a material with heat, an inspection object manufactured by polishing the surface, or an inspection object manufactured by cutting.
- An inspection apparatus for inspecting the surface shape of a curved surface of an inspection object, the projection apparatus for projecting a specific pattern onto the inspection object, the imaging apparatus for imaging the inspection object on which the pattern is projected, and the inspection A learning object that is the same kind as the object and whose learning surface has a known curved surface shape is photographed in a state where the same specific pattern as the specific pattern projected onto the inspection object is projected.
- It has an artificial intelligence that has learned a set of images and sensory test results of the surface shape of the curved surface of the learning object as teacher data, and the captured image captured by the imaging device has been learned. Said person It applied to intelligence, and a determination circuit for determining acceptability of the surface shape of the curved surface of the inspection object.
- the surface shape of the curved surface of the inspection object that is difficult to determine only by dimensional tolerance is objective and Can be inspected automatically. That is, it is possible to mechanically determine a defect such as “rippling”, which is difficult to determine by the conventional numerical method. Further, the inspection can be performed unattended, and the determination result can be recorded as a numerical value, so that it is possible to prevent the determination from being varied by the inspector as in the conventional case.
- the inspection apparatus according to the second aspect of the present invention is the inspection apparatus according to the first aspect, wherein the specific pattern is a striped pattern or a lattice pattern.
- the striped pattern or part of the lattice pattern will be wavy, corners may be created, or part of the pattern may disappear.
- the artificial intelligence learns the change, it is possible to determine defects such as undulations, steps, and cracks in the surface shape.
- An inspection apparatus is the inspection apparatus according to the first or second aspect, wherein there are two projection apparatuses, each of the projection apparatuses from two directions in which the projection directions are substantially orthogonal to each other. By projecting a striped pattern, a lattice pattern is projected as the specific pattern.
- the artificial intelligence learns the change in the lattice pattern, so that defects such as undulations, steps, cracks, etc. in the surface shape can be determined.
- An inspection apparatus is the inspection apparatus according to any one of the first to third aspects, wherein the artificial intelligence has a known curved surface shape.
- the inspector can grasp not only the quality of the object to be inspected but also the cause of the defect in the case of a defect.
- An inspection apparatus is the inspection apparatus according to any one of the first to third aspects, wherein the determination circuit is provided with artificial intelligence for each cause of failure,
- Each of the artificial intelligence is the same type as the inspection object and the set of the learning object image and the identification information for identifying the non-defective product for the learning object known to have a good curved surface shape
- the Identifying the image of the learning object and the target failure factor for the learning object that is the same type as the inspection object and the surface shape of the curved surface is known to have a failure factor targeted by the artificial intelligence Learning to output the confidence level of the non-defective product and the confidence factor of the cause of the defect as the target with the pair of identification information to be trained
- each of the artificial intelligence uses a captured image of the inspection object
- the inspection object Output the certainty factor for the non-defective product and the factor for the different defects
- the determination circuit uses each of the certainty factors for the non-defective product output from each of the artificial intelligence and each of the certainty factors for the defect
- the inspector can grasp not only the quality of the object to be inspected but also the cause of the defect in the case of a defect.
- An inspection apparatus is the inspection apparatus according to any one of the first to fifth aspects, wherein the projection apparatus is configured to switch between projection and non-projection,
- the imaging device captures the inspection object in a state where the pattern is unprojected to acquire a first image, and captures the inspection object in a state where the pattern is projected to acquire a second image.
- the determination circuit applies the difference image between the first image and the second image to the learned artificial intelligence learned using the teacher data of the difference image created in the same manner, The quality of the curved surface shape of the inspection object is determined.
- the inspection apparatus according to the seventh aspect of the present invention is the inspection apparatus according to any one of the first to sixth aspects, and is a part manufactured by polishing the surface.
- the curved surface shape of the part manufactured by polishing the surface by applying it to the learned artificial intelligence in order to determine the quality of the curved surface shape of the part manufactured by polishing the surface by applying it to the learned artificial intelligence, the curved surface shape of the part that is difficult to determine only by dimensional tolerance is used. Objective and automatic inspection can be performed.
- the inspection apparatus is the inspection apparatus according to any one of the first to seventh aspects, wherein the inspection object is a component of a fluid machine.
- the surface shape of the curved surface of the fluid machine component which is difficult to determine by dimensional tolerance alone, is objectively applied to determine the quality of the curved surface shape of the fluid machine component by applying it to the learned artificial intelligence. Can be automatically and automatically inspected.
- the inspection apparatus is the inspection apparatus according to any one of the first to eighth aspects, wherein the inspection object is a part manufactured by a molten metal lamination method or polishing.
- the curved surface of a component that is difficult to determine by dimensional tolerance alone is applied to the learned artificial intelligence to determine the quality of the curved surface of the component manufactured by the molten metal lamination method or polishing.
- the shape can be objectively and automatically inspected.
- the inspection method inspects the surface shape of the curved surface of the inspection object on the inspection object manufactured by melting the material with heat or the inspection object manufactured by polishing the surface.
- An inspection method comprising: applying a procedure for projecting a specific pattern onto the inspection object; a procedure for imaging the inspection object on which the pattern is projected; and the captured image applied to a learned artificial intelligence. Determining the quality of the surface shape of the curved surface, and the artificial intelligence is the same kind as the inspection object and the learning object having a known quality of the surface shape of the curved surface.
- Teacher data is a set of an image of the learning object captured in a state where the same specific pattern as the specific pattern to be projected is projected, and a sensory test result of the surface shape of the curved surface of the learning object. As a test It is a method.
- the surface shape of the curved surface of the inspection object that is difficult to determine only by dimensional tolerance is objective and Can be inspected automatically. That is, it is possible to mechanically determine a defect such as “rippling”, which is difficult to determine by the conventional numerical method. Further, the inspection can be performed unattended, and the determination result can be recorded as a numerical value, so that it is possible to prevent the determination from being varied by the inspector as in the conventional case.
- the surface shape of the curved surface of the inspection object which is difficult to determine only by dimensional tolerance, is applied to the learned artificial intelligence to determine the quality of the surface shape of the curved surface of the inspection object.
- Objective and automatic inspection can be performed. That is, it is possible to mechanically determine a defect such as “rippling”, which is difficult to determine by the conventional numerical method. Further, the inspection can be performed unattended, and the determination result can be recorded as a numerical value, so that it is possible to prevent the determination from being varied by the inspector as in the conventional case.
- the inspection apparatus and inspection method according to the present embodiment are applicable to an inspection object formed by melting a material with heat, an inspection object manufactured by polishing the surface, or an inspection object manufactured by cutting.
- the surface shape of the curved surface of the object is inspected.
- it is suitable for surface inspection of fluid machine parts such as large pumps and compressors, and among fluid machine parts, it is suitable for inspection of products having complicated three-dimensional shapes such as impellers.
- the components of the fluid machine include, for example, an impeller, a diffuser (including a pressure recovery flow path, a spiral casing / guide vane, etc.), a suction pipe / discharge pipe, a bearing / shaft-sealed underwater casing, in particular a liquid contact surface thereof, Suction bells and parts constituting them.
- Examples of what is formed by melting the material with heat include casting, powder metallurgy, and lamination of molten metal. In this way, the inspection object formed by melting the material with heat is contracted in the course of cooling, so the curved surface shape may not be as designed, so inspection is necessary. .
- irregularities may occur due to occasional excessive grinding of the surface. In this case as well, an inspection is necessary.
- FIG. 4 is a schematic configuration diagram showing the configuration of the inspection apparatus according to the present embodiment.
- the inspection device includes a projection device that projects a specific pattern onto an inspection object (here, the impeller 2 as an example).
- the pattern is desirably a striped pattern or a lattice pattern.
- the inspection apparatus 1 according to the present embodiment includes a projection apparatus 11 and a projection apparatus 12.
- the inspection apparatus 1 includes two projection apparatuses whose projection directions are substantially orthogonal, that is, the projection apparatus 11 and the projection apparatus 12. By projecting a striped pattern, a lattice pattern may be projected onto the impeller 2 that is the inspection object.
- the inspection apparatus 1 applies an artificial intelligence that has learned an imaging apparatus 13 that captures an impeller 2 that is an inspection target on which a pattern is projected, and an image captured by the imaging apparatus 13. And a determination circuit 14 that determines the quality of the surface shape of the curved surface.
- FIG. 5A is a schematic diagram when a lattice pattern is projected onto a non-defective impeller.
- FIG. 5A is a schematic diagram when a lattice pattern is projected onto a defective impeller. For example, if it is a non-defective product, a smooth curve appears on the impeller as shown in FIG. 5A. On the other hand, if there is a “ripple” as described above, the projected pattern also ripples as shown in FIG. 5B. Further, if the “step” has an obtuse angle on the surface, the “corner” is generated in the projected pattern. Further, if a “crack” or the like is generated on the surface, a part of the projected pattern disappears or a corner is generated.
- the classification of the impeller having the first failure factor and the first failure factor is set as the first failure class.
- the classification of the impeller having the second failure factor and the second failure factor is set as the second failure class.
- the classification of the impeller having the third failure factor and the third failure factor is set as the third failure class.
- FIG. 6 is a schematic diagram illustrating the configuration of the determination circuit according to the present embodiment.
- a person determines in advance, for example, a non-defective product, a first defect, a second defect, and a third defect as the quality of a known impeller.
- a set of a known impeller image captured by the imaging device 13 in a state in which the same specific pattern as the specific pattern projected onto the inspection target is projected and its quality is teacher data.
- the artificial intelligence in the circuit 14 is learned using this teacher data.
- the determination circuit 14 using artificial intelligence is made to learn in advance using a predetermined number of pairs of imaging data of non-defective products and defective products and the quality determined by humans. deep. At that time, in the case of a defective product, it is divided into several defect factors and learning of the imaging data makes it possible to identify the defect factor at the same time as the quality determination.
- the artificial intelligence 32 is the same kind as the inspection object and the set of the image of the inspection object and the identification information for identifying the non-defective product for the learning object known to have a good surface shape of the curved surface, and the curved surface
- a set of identification information for identifying a factor here, for example, a first defect, a second defect, or a third defect
- the artificial intelligence 32 outputs a certainty factor for a non-defective product and a certainty factor for each factor of the defect with respect to the inspection object, using a captured image of the inspection object. Then, the determination circuit 14 uses, for example, the reliability of the non-defective product and the certainty of the cause of the failure to identify the non-defective product or the cause of the failure with respect to the inspection target (here, for example, the first failure). , Second defect, or third defect). With this configuration, the inspector can specify not only whether the inspection object is a non-defective product or a defective product, but also the cause of the failure in the case of a defective product.
- the artificial intelligence used in the decision circuit is described.
- the artificial intelligence used in this embodiment is similar to so-called “image recognition”, and a neural network, in particular, a deep neural network (hereinafter also referred to as DNN) is suitable. Will be described as an example.
- DNN deep neural network
- DNN prepares a necessary number of “good” and multiple “defective” images in advance, and learns them using a technique called “deep learning”. If it is this embodiment, while acquiring the image of a product by the method demonstrated so far, performing the sensory test as before on the same product, judging pass / fail, and a non-defective product and a plurality of defective products The necessary number of images (for example, about several tens to several hundreds) is prepared, and the DNN is made to learn. As a result, DNN generally does not appear in “non-defective products” but shows a strong response to “features” that appear in the respective “defective products” and highly evaluates the “score” of the corresponding “class”. Become.
- the determination circuit 14 is photographed in a state in which the same specific pattern as the specific pattern projected onto the inspection target is projected on the learning target that is the same type as the inspection target and has a known curved surface shape. It has the artificial intelligence which learned as a teacher data the set of the said image of the said learning object, and the sensory test result of the quality of the surface shape of the curved surface of the said learning object.
- the DNN can learn that the change in the image due to these differences is irrelevant to the quality of the product, so that the DNN can determine the quality of the product without having a reference shape.
- a threshold value as a dimensional numerical value is not necessary, and the quality of the product can be determined even if the design (reference) shape is not known. Is possible. For this reason, once learning is completed, it is easy to automate inspections and the like.
- a neural network (particularly a deep neural network) is used as an example in the present embodiment, but in some cases, other artificial intelligence algorithms are used (for example, the KNN method, the decision tree) Or MT method).
- the output of the artificial intelligence 32 in FIG. 6 is a matrix of a plurality of output items (classes) including “non-defective products” and their certainty (scores).
- the output items (classes) are a non-defective product class and a failure class corresponding to one or more failure factors. In the following description, it is assumed that the failure class has a plurality of factors (two or more).
- a captured image obtained by capturing an inspection target is input as an input image 31 to the artificial intelligence 32 of the determination circuit 14.
- the output matrix 33 output from the artificial intelligence 32 includes a non-defective class and its certainty (score), a first defective class and its certainty (score), a second defective class and its certainty (score), a third Class of failure and its certainty (score).
- the certainty factor (score) indicates the certainty factor for the corresponding class, and the greater the score value, the higher the certainty factor.
- This output matrix 33 is input to the final determination unit 34 of the determination circuit 14.
- Step S101 the final determination unit 34 confirms the score of the “good” class. For example, if the reference score of a non-defective product is 0.8, the final determination unit 34 determines whether the score of the “non-defective” class is 0.8 or more.
- Step S102 When the score of the non-defective product class is 0.8 or more in Step S101, the final determination unit 34 determines that the inspection object is a non-defective product.
- Step S103 When the score of the non-defective product class is less than 0.8 in Step S101, the final determination unit 34 next confirms the scores of a plurality of defective items (defective classes) sequentially.
- the score with the highest score among the scores of the respective defective items is highly likely to be a failure factor. Therefore, the final determination unit 34 determines the class having the highest score among the first to third defective classes, and the identification information for identifying the failure factor corresponding to the class having the highest score (for example, the first defect). May be output.
- the final determination unit 34 first determines whether or not the score of the first defective class among the first to third defective classes is the maximum.
- Step S104 When the score of the first defect class is the maximum among the first to third defect classes in Step S103, the final determination unit 34 determines that the defect is the first defect.
- Step S105 If the score of the first defect class among the first to third defect classes is not the maximum in step S103, the final determination unit 34 determines the score of the second defect class among the first to third defect classes. Is determined to be the maximum.
- Step S106 When the score of the second defect class is the maximum among the first to third defect classes in Step S105, the final determination unit 34 determines that the defect is the second defect.
- Step S107 When the score of the second defect class is the maximum among the first to third defect classes in Step S105, the final determination unit 34 determines that the defect is the third defect.
- the final determination part 34 is identification information (specifically 1st defect, 2nd defect, or 3rd) which identifies the factor of a non-defective product or a defect as a quality determination result about the inspection object. Defective) is output. Thereby, the quality of the inspection object can be grasped, and in the case of a defect, the cause of the defect can be grasped.
- identification information specifically 1st defect, 2nd defect, or 3rd
- the artificial intelligence 32 outputs a certainty factor for a non-defective product and a certainty factor for each factor of failure.
- the determination circuit 14 determines whether the surface shape of the curved surface is good or bad using the certainty factors for the non-defective products and the certainty factors for the causes of defects. Thereby, the inspector can grasp not only the quality of the inspection object but also the cause of the defect in the case of a defect.
- the determination circuit 14 may output one of the non-defective product, the first failure, and the second failure.
- the determination circuit 14 may output either a non-defective product or each failure.
- the imaging device 13 images the inspection object (in this case, an impeller) on which the pattern is projected in this way. Since the imaging device 13 ultimately requires digital data, a so-called digital camera or the like is desirable.
- the projection device 11 and the projection device 12 may be switched between pattern projection and non-projection.
- the imaging device 13 first captures the inspection object in a state where the pattern is unprojected to obtain a first image, and then captures the inspection object in a state where the pattern is projected. To obtain a second image. Then, the imaging device 13 may obtain a difference between the first image and the second image and output the difference image as image data to the determination circuit 14.
- the determination circuit 14 applies the learned artificial intelligence learned using the teacher data of the difference image created in the same manner to the difference image between the first image and the second image, and the surface shape of the curved surface Judge the quality of the.
- the determination accuracy by learning can be improved, and the accuracy of the determination result can be improved.
- the joint surface (lamination “step”) at the time of lamination tends to remain in a striped pattern.
- a striped pattern is confused with a lattice pattern or the like projected for inspection, and affects the determination.
- the inspection apparatus 1 inspects the surface shape of the curved surface of the inspection object with respect to the inspection object formed by melting the material with heat or the inspection object manufactured by polishing the surface.
- the inspection apparatus 1 includes projection apparatuses 11 and 12 that project a specific pattern onto the inspection object, and an imaging apparatus 13 that images the inspection object on which the pattern is projected. Furthermore, the inspection apparatus 1 was photographed in a state in which the same specific pattern as the specific pattern projected onto the inspection target was projected on the learning target that was the same type as the inspection target and had a known curved surface shape.
- Imaging having an artificial intelligence learned by using a set of an image of the learning object and a sensory test result of the surface shape of the curved surface of the learning object as teacher data, and imaged by the imaging device 13
- a determination circuit 14 is provided that determines whether the surface shape of the curved surface of the inspection object is good or not by applying the image to the learned artificial intelligence.
- the surface shape of the curved surface of the inspection object that is difficult to determine only by dimensional tolerance is objective and Can be inspected automatically. That is, it is possible to mechanically determine a defect such as “rippling”, which is difficult to determine by the conventional numerical method. Further, the inspection can be performed unattended, and the determination result can be recorded as a numerical value, so that it is possible to prevent the determination from being varied by the inspector as in the conventional case.
- a determination circuit using artificial intelligence that determines pass or fail individually for a plurality of failure factors may be used, and the captured image may be determined simultaneously or sequentially.
- FIG. 8 is a schematic diagram illustrating a configuration of a determination circuit according to a modification.
- the determination circuit 14b according to the modification includes an artificial intelligence 41 for the first failure factor, an artificial intelligence 42 for the second failure factor, and an artificial intelligence 43 for the third failure factor.
- the artificial intelligence 41 for the first failure factor is an image of the learning object with respect to the learning object that is known to have the same kind as the inspection object and a good curved surface shape.
- the identification information for identifying the non-defective product, and the inspection object for the learning object that is the same type as the inspection object and the surface shape of the curved surface is known to have the first failure factor (here, as an example, undulation)
- An image of the learning object captured in a state in which the same specific pattern as the specific pattern to be projected is projected, and identification information (for example, the first defect) for identifying the first defect factor Are previously learned as teacher data.
- the artificial intelligence 42 for the second failure factor is similar to the inspection object and the learning object whose surface shape is well known is known.
- the object to be inspected for the learning object that is the same type as the object to be inspected and the identification information that identifies the non-defective product, and the surface shape of the curved surface is known to have a second defect factor (here, a step).
- Identification information here, for example, second defect
- Identification information for identifying the image of the learning object and the second defect factor, which are photographed in a state where the same specific pattern as the specific pattern projected onto the object is projected Are previously learned as teacher data.
- the artificial intelligence 43 for the third failure factor is similar to the inspection object and the learning object is known to have a good curved surface shape.
- the object to be inspected for the learning object that is the same type as the object to be inspected and the identification information that identifies the non-defective product, and that the surface shape of the curved surface is known to have a third defect factor (in this case, crack)
- Identification information in this case, for example, a third defect
- Identification information (in this case, for example, a third defect) that identifies the image of the learning object and the third defect factor that are captured in a state where the same specific pattern as the specific pattern projected onto the object is projected Are previously learned as teacher data.
- a captured image of the inspection object is input as an input image to the first artificial intelligence 41 for the failure factor, and a set of a non-defective class and its score, a set of the first defective class and its score Is output.
- a captured image of the inspection object is input as an input image to the second artificial intelligence 42 for the cause of failure, and a combination of a non-defective class and its score, and a second defective class and its score.
- An output matrix 52 including the set is output.
- the captured image of the inspection object is input as an input image to the third artificial intelligence 43 for the cause of failure, and a combination of a non-defective class and its score, and a third defective class and its score.
- An output matrix 53 including the set is output.
- the final output unit 61 receives these three output matrices 51 to 53.
- the final determination unit 61 has a non-defective class score in the output matrix 51 higher than the score of the first defective class, a non-defective class score in the output matrix 52 is higher than the score of the second defective class, and the output matrix 53
- the score of the non-defective product class is higher than the score of the third defective class, the product is determined to be non-defective.
- the final determining unit 61 determines that the first defective class is the first defective.
- the final determining unit 61 determines that the second defective class is the second defective. Further, for example, when the score of the third defective class is higher than the score of the non-defective class in the output matrix 53, the final determining unit 61 determines that the third defective is the third defective. In this case, when the score of the first defective class is higher than the score of the non-defective class in the output matrix 51 and the score of the second defective class is higher than the score of the non-defective class in the output matrix 52, the final determination unit 61 It is determined that the object is a first defect and a second defect. Thus, it can be determined that there are a plurality of defects for the inspection object.
- the determination circuit 14b is provided with artificial intelligence for each cause of failure.
- Each of the artificial intelligence 41 to 43 is a set of an image of the learning object and identification information for identifying the non-defective product for the learning object that is the same kind as the inspection object and has a known curved surface shape.
- the same specific pattern as the specific pattern projected on the inspection target is projected on the learning target that is the same kind as the inspection target and the surface shape of the curved surface is known to have a cause of the defect targeted by the artificial intelligence.
- a set of non-defective items and a certain factor of the target defect are output using, as teacher data, a set of an image of the learning object photographed in the recorded state and identification information for identifying the target defect factor. I'm learning so.
- Each of the artificial intelligences 41 to 43 uses the captured image of the inspection object, and outputs the reliability of the non-defective product and the certainty of the causes of different defects for the inspection object.
- the determination circuit 14b outputs identification information for identifying whether the inspection target is a non-defective product or a cause of failure using the certainty factor for the non-defective product output from each of the artificial intelligence and the certainty factor for the factor of failure. Thereby, the inspector can grasp not only the quality of the inspection object but also the cause of the defect in the case of a defect.
- this embodiment when this embodiment is compared with the modification, this embodiment has an advantage in that determination can be made in a short time without consuming much computer resources.
- this embodiment even when a plurality of failure factors are generated in combination, it is an advantage that individual failure factors can be appropriately determined. In most cases, a plurality of failure factors rarely occur at the same time, and even if they occur, the method of the present embodiment can make a determination to a certain degree based on the score. In addition, there is no particular inconvenience if only the pass / fail judgment is made. For this reason, although the convenience by this embodiment is high compared with a modification, it is preferable to use properly according to a use.
- the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage.
- various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment.
- constituent elements over different embodiments may be appropriately combined.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Theoretical Computer Science (AREA)
- Optics & Photonics (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Image Analysis (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
材料を熱で溶融して造形された検査対象物、あるいは表面を研磨して製造した検査対象物、あるいは切削加工により製造した検査対象物について当該検査対象物の曲面の表面形状を検査する検査装置であって、検査対象物に特定の模様を投影する投影装置と、模様が投影された検査対象物を撮像する撮像装置と、検査対象物と同種で且つ曲面の表面形状の良否が既知の学習用対象物について検査対象物に投影する特定の模様と同じ特定の模様が投影された状態で撮影された当該学習用対象物の画像と、当該学習用対象物の曲面の表面形状の良否の官能検査結果との組を教師データとして学習した人工知能を有しており、撮像装置により撮像された撮像画像を、学習済みの人工知能に適用して、曲面の表面形状の良否を判定する判定回路と、を有する。
Description
本発明は、材料を熱で溶融して造形された検査対象物、あるいは表面を研磨して製造した検査対象物、あるいは切削加工により製造した検査対象物について当該検査対象物の曲面の表面形状を検査する検査装置及び検査方法に関する。
大型ポンプの羽根車等、複雑な曲面形状をもつ製品およびその部品(以下、部品等)の検査は、数値化が難しく、熟練を必要とし、且つ大きな工数を必要とする作業のひとつである。特に、こういった部品等は鋳造等により製造することが多いが、鋳造等により製造された部品等は、表面の粗さや、うねり(凹凸)を取るために、グラインダ等で研磨を行うことが一般的である。また、機械加工等により製造する場合でも、加工後にいわゆる切削痕を消すため、研磨を行うことがある。あるいは、加工中の熱変形等により、部品等の「そり」や「うねり」が生じることもある。また、近年では金属ワイヤ等を溶融して積層し、部品等を成型する技法(溶融金属積層法等)もあるが、この場合もやはり積層により生じる「段」を、成型後に研磨して除去することがある。このように、溶融による成型、あるいは研磨を行った後の形状の検査は、後述するように数値化が難しく、判断に熟練を要する。
従来、羽根車の検査方法が開発されている。例えば、特許文献1では、設置場所に置かれる羽根車の回転軸心方向から羽根車の正面を撮像する工程と、上記撮像工程で撮像された羽根車の回転軸心方向からの羽根車の正面に係わる撮像画像を二値化処理し、二値化画像を得る工程と、上記二値化画像に基づいて羽根車対応明部の周囲に備える全ての羽根対応明部の先端部対応明部の位置を検出する工程と、上記検出された全ての先端部対応明部について、各先端部対応明部と羽根車対応明部における予め定められる基準部との位置関係を算出する工程と、上記算出された位置関係と所定の規定値とを比較して羽根車の羽根形状の良否を判定する工程とを備える、羽根車の羽根形状検査方法が開示されている。
しかしながら、鋳造時に曲面上に意図しない凹凸が発生したり、鋳造時の表面形状(いわゆる「鋳肌」)は、ポンプ等の流体機械の部品としては表面が荒いために表面を研磨して滑らかにすることが必要なため、時に表面を削りすぎるなどして凹凸が生じたりすることがある。あるいは、機械加工等であっても、加工後に生じる切削痕を消すために表面の研磨を行うことで凹凸が生じることや、加工中の熱変形などが原因で「うねり」や「そり」などの凹凸を生じることがある。こういった凹凸などについては、許容値の設定等が難しい。
具体的には、こういった製品の検査方法としては、各種の寸法測定器、あるいは、いわゆる三次元測定器により製品の寸法を精密に測定し、その寸法が許容値内にあるかどうかを検査する方法がある。
図1は、設計形状(基準形状)と、許容値の上限及び下限と、製品形状の第1の模式図である。図1には、設計形状(基準形状)を表す一点鎖線L1、寸法の許容値の下限を表す破線L2、寸法の許容値の上限を表す破線L3、及び製品形状を表す実線L4が示されている。例えば図1のように、製品の性能に影響のない範囲で、設計形状(基準形状)に対して寸法の許容値の上限と下限とを定めた場合、製品形状がこの許容値の上限と下限の間(すなわち許容範囲内)にあれば、合格とみなすことができる。
一方で、ポンプの羽根車のような流体機械の部品の場合、これだけでは製品を合格とみなせない場合がある。図2は、設計形状(基準形状)と、許容値の上限及び下限と、製品形状の第2の模式図である。図2には、設計形状(基準形状)を表す一点鎖線L11、寸法の許容値の下限を表す破線L12、寸法の許容値の上限を表す破線L13、及び製品形状を表す実線L14が示されている。例えば、図2の製品形状のように、製品の表面に「波打ち」がある場合、製品形状(各点での測定値)は、許容値の上限と下限の間(すなわち許容範囲内)にあるが、このような「波打ち」は検査装置の性能に大きな影響を与えるため、合格とすることはできない。このような流体機械の部品としては、流路中にある部品は多くが対象となるが、特に、下記のような部品が挙げられる。
○羽根車
○ディフューザー(圧力回復流路、渦巻きケーシング・案内羽根等を含む)
○吸込管/吐出管
○軸受・軸封の水中ケーシング、特にその接液面
○吸い込みベル
○および、これらを構成する部品
○羽根車
○ディフューザー(圧力回復流路、渦巻きケーシング・案内羽根等を含む)
○吸込管/吐出管
○軸受・軸封の水中ケーシング、特にその接液面
○吸い込みベル
○および、これらを構成する部品
このような不良を、数値測定により判定しようとすると、このような「波打ち」を数値化することが必要になる。その方法は多数考えられるが、いずれにせよ、多数の点を測定し、記録した上で統計処理するなど、複雑な処理が必要となる上、基準値の設定が難しい。
図3は、比較例に係る検査方法を示す模式図である。図3には、設計形状(基準形状)を表す一点鎖線L21、寸法の許容値の下限を表す破線L22、寸法の許容値の上限を表す破線L23、製品形状を表す実線L24、及びサンプリングデータを表す階段状の実線L25が示されている。一方、例えば、図3に示すように、形状データを一定間隔でサンプリングし、その隣り合う計測値(サンプリングデータ)の差分を計算し、これに基づいて良否を判定する方法が考えられる。この場合、この差分が、設計形状の差分に比して一定以上大きい、あるいは一定以上小さい場合に不良とする、などの方法がある。しかし、この場合、多数の点を測定する必要があり、また、波打ちの周期(波長)や大きさは、都度異なるため、その閾値を決めることは難しい。
そのため、実務的にはこのような「波打ち」などは、寸法(数値)の測定ではなく、検査員の目視検査や、手などの触覚による、いわゆる「官能検査」により行なうことが多い。官能検査であれば、都度基準値を定めなくても、検査員の感覚により製品の良否を判定することができる。また、「波打ち」のような状態は、比較的、人間(検査員)の感性により良し悪しを判断するほうが、基準値等を定めるより、不良品を良品と判定するリスクは小さくできる。
しかしながら、官能検査には、(1)測定者により判断がばらつく(合格/不合格の判定が測定者により異なる)こと、(2)人間にしか測定ができないため、自動化できないこと、(3)数値化が難しく、記録等がしにくいこと、(4)数値化が難しいため「許容範囲」を決めることが難しく、得てして「過剰品質」を求める傾向がある(必要以上の修正工数をかけてしまう)ことといった問題がある。特に、昨今は検査員の高齢化と、技術伝承の難しさなどもあり、熟練した検査員の確保が難しくなってきており、これらを客観的且つ自動的に検査できる検査装置や検査方法の開発は急務となっている。
また、流体機械の部品等の中でも大型ポンプ等の、いわゆるカスタム製品では、たとえば羽根車の形状は客先の仕様に合わせて最適化されているため、製品ごとに基準形状が異なり、都度、検査に用いるデータを作成する必要がある。これも、自動化の妨げとなる。
本発明は、上記問題に鑑みてなされたものであり、寸法公差だけでは判定しにくい物体の曲面の表面形状を客観的且つ自動的に検査することを可能とする検査装置及び検査方法を提供することを目的とする。
本発明の第1の態様に係る検査装置は、材料を熱で溶融して造形された検査対象物、あるいは表面を研磨して製造した検査対象物、あるいは切削加工により製造した検査対象物について当該検査対象物の曲面の表面形状を検査する検査装置であって、前記検査対象物に特定の模様を投影する投影装置と、前記模様が投影された検査対象物を撮像する撮像装置と、前記検査対象物と同種で且つ曲面の表面形状の良否が既知の学習用対象物について前記検査対象物に投影する特定の模様と同じ特定の模様が投影された状態で撮影された当該学習用対象物の画像と、当該学習用対象物の曲面の表面形状の良否の官能検査結果との組を教師データとして学習した人工知能を有しており、前記撮像装置により撮像された撮像画像を、学習済みの前記人工知能に適用して、前記検査対象物の曲面の表面形状の良否を判定する判定回路と、を備える。
この構成によれば、学習済みの人工知能に適用して、検査対象物の曲面の表面形状の良否を判定するため、寸法公差だけでは判定しにくい検査対象物の曲面の表面形状を客観的且つ自動的に検査することができる。すなわち、従来の数値による方法では判定の難しかった「波打ち」のような不良を、機械的に判定することができる。更に、検査を無人で行うことができ、判定結果を数値で記録することができ、従来のように検査員により判定がばらつくことをなくすことができる。
本発明の第2の態様に係る検査装置は、第1の態様に係る検査装置であって、前記特定の模様は、縞模様、もしくは格子模様である。
この構成によれば、表面形状における波打ち、段差、割れがあると、縞模様、もしくは格子模様の一部に波打ち、角が生じたり、模様の一部が消えたりするので、このような模様の変化を人工知能が学習することにより、表面形状における波打ち、段差、割れなどの不良を判定することができる。
本発明の第3の態様に係る検査装置は、第1または2の態様に係る検査装置であって、前記投影装置は2台あり、それぞれの投影装置は、投影方向が略直交する2方向から縞模様を投影することにより、格子模様を前記特定の模様として投影する。
この構成によれば、格子模様の変化を人工知能が学習することにより、表面形状における波打ち、段差、割れなどの不良を判定することができる。
本発明の第4の態様に係る検査装置は、第1から3のいずれかの態様に係る検査装置であって、前記人工知能は、曲面の表面形状が良好であることが既知の検査対象物について当該検査対象物の画像と良品を識別する識別情報との組、及び曲面の表面形状が不良であることが既知の検査対象物について当該検査対象物の画像と当該不良の要因を識別する識別情報との組を教師データとして良品の確信度及び不良の要因毎の確信度を出力するよう学習しており、前記判定回路は、良品の確信度及び不良の要因の確信度を用いて、良品か、または不良の要因を識別する識別情報を出力する。
この構成によれば、検査者は、検査対象物の良否だけでなく、不良の場合には、不良の要因を把握することができる。
本発明の第5の態様に係る検査装置は、第1から3のいずれかの態様に係る検査装置であって、前記判定回路には、不良の要因毎に人工知能が設けられており、前記人工知能それぞれは、前記検査対象物と同種で且つ曲面の表面形状が良好であることが既知の学習用対象物について当該学習用対象物の画像と良品を識別する識別情報との組、及び前記検査対象物と同種で且つ曲面の表面形状に当該人工知能が対象とする不良の要因があることが既知の学習用対象物について当該学習用対象物の画像と前記対象とする不良の要因を識別する識別情報との組を教師データとして良品の確信度及び前記対象とする不良の要因の確信度を出力するよう学習しており、前記人工知能それぞれは、前記検査対象物の撮像画像を用いて、前記検査対象物について良品の確信度及び互いに異なる不良の要因に対する確信度を出力し、前記判定回路は、前記人工知能それぞれから出力された前記良品に対する確信度それぞれ及び前記不良の要因の確信度それぞれを用いて、前記検査対象物について良品か、または不良の要因を識別する識別情報を出力する。
この構成によれば、検査者は、検査対象物の良否だけでなく、不良の場合には、不良の要因を把握することができる。
本発明の第6の態様に係る検査装置は、第1から5のいずれかの態様に係る検査装置であって、前記投影装置は、投影と非投影とを切り替えられるようになっており、前記撮像装置は、前記模様が非投影の状態で前記検査対象物を撮像して第1の画像を取得し、当該模様が投影された状態で検査対象物を撮像して第2の画像を取得し、前記判定回路は、前記第1の画像と前記第2の画像との差分画像を、同様にして作成された差分画像の教師データを用いて学習した前記学習済みの人工知能に適用して、前記検査対象物の曲面の表面形状の良否を判定する。
この構成によれば、差分画像は投影された模様のみが強調されるので、学習による判定精度を向上し、判定結果の精度を向上させることができる。特に、溶融金属の積層により造形された部品等の場合、積層により生じる縞模様等による影響を低減することができる。
本発明の第7の態様に係る検査装置は、第1から6のいずれかの態様に係る検査装置であって、表面を研磨して製造した部品である。
この構成によれば、学習済みの人工知能に適用して、表面を研磨して製造した部品の曲面の表面形状の良否を判定するため、寸法公差だけでは判定しにくい部品の曲面の表面形状を客観的且つ自動的に検査することができる。
本発明の第8の態様に係る検査装置は、第1から7のいずれかの態様に係る検査装置であって、前記検査対象物は、流体機械の部品である。
この構成によれば、学習済みの人工知能に適用して、流体機械の部品の曲面の表面形状の良否を判定するため、寸法公差だけでは判定しにくい流体機械の部品の曲面の表面形状を客観的且つ自動的に検査することができる。
本発明の第9の態様に係る検査装置は、第1から8のいずれかの態様に係る検査装置であって、前記検査対象物は、溶融金属積層法または研磨により製造した部品である。
この構成によれば、学習済みの人工知能に適用して、溶融金属積層法または研磨により製造した部品の曲面の表面形状の良否を判定するため、寸法公差だけでは判定しにくい部品の曲面の表面形状を客観的且つ自動的に検査することができる。
本発明の第10の態様に係る検査方法は、材料を熱で溶融して造形された検査対象物あるいは表面を研磨して製造した検査対象物について当該検査対象物の曲面の表面形状を検査する検査方法であって、前記検査対象物に特定の模様を投影する手順と、前記模様が投影された検査対象物を撮像する手順と前記撮像された画像を、学習済みの人工知能に適用して、前記曲面の表面形状の良否を判定する手順と、を有し、前記人工知能は、前記検査対象物と同種で且つ曲面の表面形状の良否が既知の学習用対象物について前記検査対象物に投影する特定の模様と同じ特定の模様が投影された状態で撮影された当該学習用対象物の画像と、当該学習用対象物の曲面の表面形状の良否の官能検査結果との組を教師データとして学習したものである検査方法である。
この構成によれば、学習済みの人工知能に適用して、検査対象物の曲面の表面形状の良否を判定するため、寸法公差だけでは判定しにくい検査対象物の曲面の表面形状を客観的且つ自動的に検査することができる。すなわち、従来の数値による方法では判定の難しかった「波打ち」のような不良を、機械的に判定することができる。更に、検査を無人で行うことができ、判定結果を数値で記録することができ、従来のように検査員により判定がばらつくことをなくすことができる。
本発明の一態様によれば、学習済みの人工知能に適用して、検査対象物の曲面の表面形状の良否を判定するため、寸法公差だけでは判定しにくい検査対象物の曲面の表面形状を客観的且つ自動的に検査することができる。すなわち、従来の数値による方法では判定の難しかった「波打ち」のような不良を、機械的に判定することができる。更に、検査を無人で行うことができ、判定結果を数値で記録することができ、従来のように検査員により判定がばらつくことをなくすことができる。
以下、各実施形態について、図面を参照しながら説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
本実施形態に係る検査装置及び検査方法は、材料を熱で溶融して造形された検査対象物、あるいは表面を研磨して製造した検査対象物、あるいは切削加工により製造した検査対象物について当該検査対象物の曲面の表面形状を検査するものである。特に、大型ポンプやコンプレッサーのような流体機械の部品等の表面検査に適し、流体機械の部品の中でも羽根車のような複雑な三次元形状を有する製品の検査に適する。ここで流体機械の部品は、例えば、羽根車、ディフューザー(圧力回復流路、渦巻きケーシング・案内羽根等を含む)、吸込管/吐出管、軸受・軸封の水中ケーシング、特にその接液面、吸い込みベルおよび、これらを構成する部品などである。また材料を熱で溶融して造形されるものとしては、例えば鋳造、粉末冶金、溶融金属の積層などがある。このように、材料を熱で溶融して造形された検査対象物は、冷却の過程で材料が収縮するため、曲面の表面形状が設計どおりの寸法にならないことがあるので、検査が必要である。また、表面を研磨して製造した場合、時に表面を削りすぎるなどして凹凸が生じたりすることがある。この場合も、同様に検査が必要である。
図4は、本実施形態に係る検査装置の構成を示す模式的構成図である。検査装置は、検査対象物(ここでは一例として羽根車2)に特定の模様を投影する投影装置を備える。模様は、縞模様、あるいは格子模様であることが望ましい。図4に示すように、本実施形態に係る検査装置1は、投影装置11及び投影装置12を備え、一例として、投影方向が略直交する2つの投影装置、すなわち投影装置11および投影装置12から縞模様を投影することで、検査対象物である羽根車2に格子状の模様を投影してもよい。
これにより、製品の表面にはその曲面により、複数の曲線W1~W10が現れる。このとき、前述のような波打ち等があると、投影された模様にも波打ちによるゆがみが生じる。
ここで本実施形態に係る検査装置1は、模様が投影された検査対象物である羽根車2を撮像する撮像装置13と、撮像装置13により撮像された画像を、学習済みの人工知能を適用して、曲面の表面形状の良否を判定する判定回路14とを備える。
図5Aは、良品の羽根車に格子模様が投影された場合の模式図である。図5Aは、不良品の羽根車に格子模様が投影された場合の模式図である。例えば、良品であれば図5Aのように、羽根車上には滑らかな曲線が現れる。一方、前述のような「波打ち」があれば、図5Bに示したように、投影された模様も波打つ。また、表面に鈍角が生じるような「段差」であれば、投影された模様に「角」が生じる。また、表面に「割れ」等が生じていれば、投影された模様の一部が消えたり、角が生じたりする。
例えばこの「波打ち」を第1の不良要因として、第1の不良要因を有する場合、第1の不良であり、第1の不良要因を有する羽根車の分類が第1の不良クラスに設定されている。例えばこの「段差」を第2の不良要因として、第2の不良要因を有する場合、第2の不良であり、第2の不良要因を有する羽根車の分類が第2の不良クラスに設定されている。例えばこの「割れ」を第3の不良要因として、第3の不良要因を有する場合、第3の不良であり、第3の不良要因を有する羽根車の分類が第3の不良クラスに設定されている。
図6は、本実施形態に係る判定回路の構成を説明する模式図である。予め人(例えば、熟練した検査担当者)が、既知の羽根車について、良否として例えば、良品、第1の不良、第2の不良、第3の不良に判別している。そして、検査対象物に投影する特定の模様と同じ特定の模様が投影された状態で撮像装置13により撮像されて取得された既知の羽根車の画像とその良否との組が教師データとなり、判定回路14における人工知能は、この教師データを用いて学習する。
このように、人工知能を用いた判定回路14には、良品と不良品との撮像データと、人によって判別された良否との組を、予め決められた必要な数用いて、予め学習させておく。その際、不良品の場合についてはいくつかの不良要因に分けて、撮像データを学習させておくことで、良否の判定と同時に、不良要因の特定もできる。
このように、人工知能を用いた判定回路14には、良品と不良品との撮像データと、人によって判別された良否との組を、予め決められた必要な数用いて、予め学習させておく。その際、不良品の場合についてはいくつかの不良要因に分けて、撮像データを学習させておくことで、良否の判定と同時に、不良要因の特定もできる。
要するに、人工知能32は、検査対象物と同種で且つ曲面の表面形状が良好であることが既知の学習用対象物について当該検査対象物の画像と良品を識別する識別情報との組、及び曲面の表面形状が不良であることが既知の学習用対象物について検査対象物に投影する特定の模様と同じ特定の模様が投影された状態で撮影された当該学習用対象物の画像と当該不良の要因を識別する識別情報(ここでは例えば、第1の不良、第2の不良、または第3の不良)との組を教師データとして学習している。人工知能32は、検査対象物の撮像画像を用いて、検査対象物について良品の確信度及び不良の要因毎の確信度を出力する。そして、判定回路14は例えば、この良品の確信度及びこの不良の要因の確信度を用いて、検査対象物について良品か、または不良の要因を識別する識別情報(ここでは例えば、第1の不良、第2の不良、または第3の不良)を出力する。この構成により、検査者は、検査対象物の良品か不良品かだけでなく、不良品の場合、その不良の要因を特定することができる。
ここで、判定回路で用いる人工知能について述べる。本実施形態で使用する人工知能は、いわゆる「画像認識」に類するものであり、ニューラルネットワーク、特にディープニューラルネットワーク(以下、DNNともいう)を用いたものが好適であるため、ここではディープニューラルネットワークを例として説明する。
一般にDNNでは、事前に「良品」と、複数の「不良品」の画像を、必要数用意し、これらを「深層学習(ディープラーニング)」と呼ばれる手法で学習する。本実施形態であれば、ここまで説明してきた方法により、製品の画像を取得するとともに、同じ製品に対して従来どおりの官能検査を実施して良否の判定を行い、良品、および複数の不良品の画像を、それぞれ必要枚数(例えば、数十枚から数百枚程度)用意し、DNNに学習させる。これにより、DNNは一般に、「良品」には現れず、それぞれの「不良品」に現れる「特徴」に対して、強い反応を示し、該当する「クラス」の「スコア」を高く評価するようになる。このように判定回路14は、検査対象物と同種で且つ曲面の表面形状の良否が既知の学習用対象物について検査対象物に投影する特定の模様と同じ特定の模様が投影された状態で撮影された当該学習用対象物の画像と、当該学習用対象物の曲面の表面形状の良否の官能検査結果との組を教師データとして学習した人工知能を有している。
ここで重要なのは、これらの「特徴」については何らかの基準値が存在するわけではなく、DNN内の論理素子である「ニューロン」のうち、それらの特徴に対応するものが、「学習」により強い反応を返すようになることである。一般に、画像処理に使用されるDNNでは、さまざまな状態の「不良」を学習させることにより、それらの特徴が現れる位置や大きさによらず、強い反応を得ることができる。
また、学習させる場合は、使用する製品について、多くのバリエーション(種類)を有する製品を用いて学習データを作成することが重要である。例えば、ポンプの羽根車であれば、大きなものや小さなもの、異なるNs値(軸流ポンプと斜流ポンプなど)、羽根車の枚数、二次元羽根車と三次元羽根車などである。これにより、これらの違いによる画像の変化は、製品の良否と「関係ない」ことを、DNNは学習することができ、これにより、DNNは規準形状がなくとも製品の良否が判断できるようになる。
したがって、本実施形態のような場合、従来の形状測定を行う場合などと異なり、寸法数値などとしての閾値は不要となるし、設計(基準)形状がわからなくても製品の良否を判定することが可能となる。このため、いったん学習が完了すれば、検査等を自動化することも容易である。
なお、判定回路に用いる人工知能としては、本実施形態では一例としてニューラルネットワーク(特にディープニューラルネットワーク)を使用するが、場合により、他の人工知能アルゴリズムを用いたもの(例えば、KNN法、決定木法、MT法等)であってもよい。
良否の判定は、次のような方法による。図6における人工知能32の出力は、「良品」を含む、複数の出力項目(クラス)と、その確信度(スコア)の行列となる。具体的には、出力項目(クラス)は、良品クラスと、1以上の不良要因に対応した不良クラスとなる。なお、ここでは複数要因(2以上)の不良クラスを有するものとして説明する。
具体的には、本実施形態では図6に示すように一例として、検査対象物を撮像した撮像画像が入力画像31として判定回路14の人工知能32に入力される。人工知能32から出力される出力行列33は、良品クラスとその確信度(スコア)、第1の不良クラスとその確信度(スコア)、第2の不良クラスとその確信度(スコア)、第3の不良クラスとその確信度(スコア)を含む。ここで確信度(スコア)は、対応するクラスへの確信度を示し、スコアの値が大きいほど確信度が高い。この出力行列33が判定回路14の最終判定部34に入力される。
その後、最終判定部34では、図7に沿って、判定する。図7は、本実施形態に係る判定処理の一例を示すフローチャートである。
(ステップS101)まず最終判定部34は、「良品」クラスのスコアを確認する。例えば、良品の基準スコアを0.8とすれば、最終判定部34は、「良品」クラスのスコアが0.8以上であるか否か判定する。
(ステップS101)まず最終判定部34は、「良品」クラスのスコアを確認する。例えば、良品の基準スコアを0.8とすれば、最終判定部34は、「良品」クラスのスコアが0.8以上であるか否か判定する。
(ステップS102)ステップS101で良品クラスのスコアが0.8以上である場合、最終判定部34は、検査対象物を良品と判定する。
(ステップS103)ステップS101で良品クラスのスコアが0.8未満の場合、次に最終判定部34は、複数ある不良項目(不良クラス)のスコアを順次確認する。ここで、各不良項目のスコアのうち、最もスコアの高いものが、不良要因として可能性が高いこととなる。よって、最終判定部34は、第1~3の不良クラスのうち最もスコアが高いクラスを判別し、最もスコアが高いクラスに対応する不良要因を識別する識別情報(例えば、第1の不良など)を出力してもよい。ここでは一例として、まず最終判定部34は、第1~3の不良クラスのうち第1の不良クラスのスコアが最大であるか否か判定する。
(ステップS104)ステップS103で第1~3の不良クラスのうち第1の不良クラスのスコアが最大である場合、最終判定部34は、第1の不良と判定する。
(ステップS105)ステップS103で第1~3の不良クラスのうち第1の不良クラスのスコアが最大でない場合、最終判定部34は、第1~3の不良クラスのうち第2の不良クラスのスコアが最大であるか否か判定する。
(ステップS106)ステップS105で第1~3の不良クラスのうち第2の不良クラスのスコアが最大である場合、最終判定部34は、第2の不良と判定する。
(ステップS107)ステップS105で第1~3の不良クラスのうち第2の不良クラスのスコアが最大である場合、最終判定部34は、第3の不良と判定する。
そして、最終判定部34は、検査対象物についての良否の判定結果として、良品か、または不良の要因を識別する識別情報(具体的には、第1の不良、第2の不良または第3の不良)を出力する。これにより、検査対象物の良否を把握することができ、不良の場合には、不良の要因を把握することができる。
このように、本実施形態では、人工知能32は、良品に対する確信度、及び不良の要因毎の確信度を出力する。判定回路14は、良品に対する確信度それぞれ、及び不良の要因の確信度それぞれを用いて、曲面の表面形状の良否を判定する。これにより、検査者は、検査対象物の良否だけでなく、不良の場合には、不良の要因を把握することができる。
なお、不良要因のクラスが第1の不良クラス、第2の不良クラスの二つの場合、判定回路14は、良品、第1の不良、または第2の不良のいずれかを出力してもよいし不良要因のクラスが4つ以上の場合、判定回路14は、良品とそれぞれの不良のいずれかを出力してもよい。
撮像装置13は、このように模様が投影された検査対象物(ここでは一例として羽根車)を撮像する。撮像装置13は、最終的にデジタルデータが必要となるため、いわゆるデジタルカメラやそれに類するものが望ましい。
なお、投影装置11および投影装置12を、模様の投影と非投影とを切り替えられるようにしてもよい。その場合、撮像装置13は、計測時にまず、模様が非投影の状態で検査対象物を撮像して第1の画像を取得し、次に、模様が投影された状態で検査対象物を撮像して第2の画像を取得する。そして、撮像装置13は、第1の画像と第2の画像の差分を求め、この差分画像を画像データとして判定回路14に出力してもよい。判定回路14は、第1の画像と第2の画像との差分画像を、同様にして作成された差分画像の教師データを用いて学習した学習済みの人工知能を適用して、曲面の表面形状の良否を判定する。これにより、差分画像は投影された模様のみが強調されるので、学習による判定精度を向上し、判定結果の精度を向上させることができる。特に、溶融金属の積層により造形された部品等の場合、積層により生じる縞模様等による影響を低減することができる。すなわち、溶融金属積層法等により成型した部品等は、表面を研磨しても、積層時の接合面(積層の「段」)が、縞模様となって残りやすい。このような縞模様は、検査のために投影する格子模様等と紛らわしく、判定に影響する。このため、画像の差分を使用することとすると、これらの縞模様がほぼ消去され、判定に影響しにくくなる。なお、さらに精度を上げようとした場合、差分をとる前に第1の画像と第2の画像に、投影する格子模様の反射光等の影響を抑えるため、画質調整等を加えてもよい。
以上、本実施形態に係る検査装置1は、材料を熱で溶融して造形された検査対象物あるいは表面を研磨して製造した検査対象物について当該検査対象物の曲面の表面形状を検査する検査装置である。検査装置1は、検査対象物に特定の模様を投影する投影装置11、12と、模様が投影された検査対象物を撮像する撮像装置13とを備える。更に検査装置1は、検査対象物と同種で且つ曲面の表面形状の良否が既知の学習用対象物について検査対象物に投影する特定の模様と同じ特定の模様が投影された状態で撮影された当該学習用対象物の画像と、当該学習用対象物の曲面の表面形状の良否の官能検査結果との組を教師データとして学習した人工知能を有しており、撮像装置13により撮像された撮像画像を、学習済みの前記人工知能に適用して、検査対象物の曲面の表面形状の良否を判定する判定回路14を備える。
この構成によれば、学習済みの人工知能に適用して、検査対象物の曲面の表面形状の良否を判定するため、寸法公差だけでは判定しにくい検査対象物の曲面の表面形状を客観的且つ自動的に検査することができる。すなわち、従来の数値による方法では判定の難しかった、「波打ち」のような不良を、機械的に判定することができる。更に、検査を無人で行うことができ、判定結果を数値で記録することができ、従来のように検査員により判定がばらつくことをなくすことができる。
<変形例>
変形例として、複数の不良要因に対して、個々に合格と不合格とを判定する人工知能を用いた判定回路を用い、同時に、もしくは順次、撮像画像について判定してもよい。
変形例として、複数の不良要因に対して、個々に合格と不合格とを判定する人工知能を用いた判定回路を用い、同時に、もしくは順次、撮像画像について判定してもよい。
図8は、変形例に係る判定回路の構成を説明する模式図である。図8に示すように、変形例に係る判定回路14bは、第1の不良要因用の人工知能41と、第2の不良要因用の人工知能42と、第3の不良要因用の人工知能43とを備える。
<学習時の処理>
人工知能41の学習時には、第1の不良要因用の人工知能41は、検査対象物と同種で且つ曲面の表面形状が良好であることが既知の学習用対象物について当該学習用対象物の画像と良品を識別する識別情報との組、及び検査対象物と同種で且つ曲面の表面形状が第1の不良要因(ここでは一例として波打ち)があることが既知の学習用対象物について検査対象物に投影する特定の模様と同じ特定の模様が投影された状態で撮影された当該学習用対象物の画像と当該第1の不良要因を識別する識別情報(ここでは例えば、第1の不良)との組を教師データとして予め学習する。
人工知能41の学習時には、第1の不良要因用の人工知能41は、検査対象物と同種で且つ曲面の表面形状が良好であることが既知の学習用対象物について当該学習用対象物の画像と良品を識別する識別情報との組、及び検査対象物と同種で且つ曲面の表面形状が第1の不良要因(ここでは一例として波打ち)があることが既知の学習用対象物について検査対象物に投影する特定の模様と同じ特定の模様が投影された状態で撮影された当該学習用対象物の画像と当該第1の不良要因を識別する識別情報(ここでは例えば、第1の不良)との組を教師データとして予め学習する。
また人工知能42の学習時には、第2の不良要因用の人工知能42は、検査対象物と同種で且つ曲面の表面形状が良好であることが既知の学習用対象物について当該学習用対象物の画像と良品を識別する識別情報との組、及び検査対象物と同種で且つ曲面の表面形状が第2の不良要因(ここでは一例として段差)があることが既知の学習用対象物について検査対象物に投影する特定の模様と同じ特定の模様が投影された状態で撮影された当該学習用対象物の画像と当該第2の不良要因を識別する識別情報(ここでは例えば、第2の不良)との組を教師データとして予め学習する。
また人工知能43の学習時には、第3の不良要因用の人工知能43は、検査対象物と同種で且つ曲面の表面形状が良好であることが既知の学習用対象物について当該学習用対象物の画像と良品を識別する識別情報との組、及び検査対象物と同種で且つ曲面の表面形状が第3の不良要因(ここでは一例として割れ)があることが既知の学習用対象物について検査対象物に投影する特定の模様と同じ特定の模様が投影された状態で撮影された当該学習用対象物の画像と当該第3の不良要因を識別する識別情報(ここでは例えば、第3の不良)との組を教師データとして予め学習する。
<判定時の処理>
人工知能41の判定時には、第1の不良要因用の人工知能41に、検査対象物の撮像画像が入力画像として入力され、良品クラスとそのスコアの組、第1の不良クラスとそのスコアの組とを含む出力行列51が出力される。
また人工知能42の判定時には、第2の不良要因用の人工知能42に、検査対象物の撮像画像が入力画像として入力され、良品クラスとそのスコアの組、第2の不良クラスとそのスコアの組とを含む出力行列52が出力される。
また人工知能43の判定時には、第3の不良要因用の人工知能43に、検査対象物の撮像画像が入力画像として入力され、良品クラスとそのスコアの組、第3の不良クラスとそのスコアの組とを含む出力行列53が出力される。
人工知能41の判定時には、第1の不良要因用の人工知能41に、検査対象物の撮像画像が入力画像として入力され、良品クラスとそのスコアの組、第1の不良クラスとそのスコアの組とを含む出力行列51が出力される。
また人工知能42の判定時には、第2の不良要因用の人工知能42に、検査対象物の撮像画像が入力画像として入力され、良品クラスとそのスコアの組、第2の不良クラスとそのスコアの組とを含む出力行列52が出力される。
また人工知能43の判定時には、第3の不良要因用の人工知能43に、検査対象物の撮像画像が入力画像として入力され、良品クラスとそのスコアの組、第3の不良クラスとそのスコアの組とを含む出力行列53が出力される。
最終判定部61に、これら三つの出力行列51~53が入力される。最終判定部61は例えば、出力行列51の良品クラスのスコアが第1の不良クラスのスコアより高く、出力行列52の良品クラスのスコアが第2の不良クラスのスコアより高く、且つ出力行列53の良品クラスのスコアが第3の不良クラスのスコアより高い場合、良品と判定する。一方、例えば、最終判定部61は、第1の不良クラスのスコアが出力行列51の良品クラスのスコアより高い場合、第1の不良と判定する。また例えば、最終判定部61は、第2の不良クラスのスコアが出力行列52の良品クラスのスコアより高い場合、第2の不良と判定する。また例えば、最終判定部61は、第3の不良クラスのスコアが出力行列53の良品クラスのスコアより高い場合、第3の不良と判定する。この場合、最終判定部61は、第1の不良クラスのスコアが出力行列51の良品クラスのスコアより高く且つ第2の不良クラスのスコアが出力行列52の良品クラスのスコアより高い場合、検査対象物に対して、第1の不良で、第2の不良であると判定することになる。このように、検査対象物に対して、複数の不良があると判定することができる。
このように、判定回路14bには、不良の要因毎に人工知能が設けられている。人工知能41~43それぞれは、検査対象物と同種で且つ曲面の表面形状が良好であることが既知の学習用対象物について当該学習用対象物の画像と良品を識別する識別情報との組、及び検査対象物と同種で且つ曲面の表面形状に当該人工知能が対象とする不良の要因があることが既知の学習用対象物について検査対象物に投影する特定の模様と同じ特定の模様が投影された状態で撮影された当該学習用対象物の画像と対象とする不良の要因を識別する識別情報との組を教師データとして良品の確信度及び対象とする不良の要因の確信度を出力するよう学習している。人工知能41~43それぞれは、検査対象物の撮像画像を用いて、検査対象物について良品の確信度及び互いに異なる不良の要因に対する確信度を出力する。判定回路14bは、人工知能それぞれから出力された良品に対する確信度それぞれ及び不良の要因の確信度それぞれを用いて、検査対象物について良品か、または不良の要因を識別する識別情報を出力する。これにより、検査者は、検査対象物の良否だけでなく、不良の場合には、不良の要因を把握することができる。
ここで、本実施形態と変形例とを比べると、本実施形態では、短時間で計算機資源をあまり消費せずに判定できることが長所である。一方、変形例の場合、複数の不良要因が複合して発生している場合でも、個々の不良要因を適切に判断できることが長所である。
大抵の場合、複数の不良要因が同時に発生することは少なく、発生していたとしても、本実施形態の方法でもスコアの大小である程度の判定ができる。また、良否の判定だけであれば特段の不都合はない。このため、変形例と比べて本実施形態による方が利便性は高いが、用途に応じて使い分けることが好ましい。
大抵の場合、複数の不良要因が同時に発生することは少なく、発生していたとしても、本実施形態の方法でもスコアの大小である程度の判定ができる。また、良否の判定だけであれば特段の不都合はない。このため、変形例と比べて本実施形態による方が利便性は高いが、用途に応じて使い分けることが好ましい。
以上、本発明は上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。
1 検査装置
11、12 投影装置
13 撮像装置
14、14b 判定回路
2 羽根車
31 入力画像
32 人口知能
33 出力行列
34 最終判定部
41、42、43 人工知能
51、52、53 出力行列
61 最終判定部
11、12 投影装置
13 撮像装置
14、14b 判定回路
2 羽根車
31 入力画像
32 人口知能
33 出力行列
34 最終判定部
41、42、43 人工知能
51、52、53 出力行列
61 最終判定部
Claims (10)
- 材料を熱で溶融して造形された検査対象物、あるいは表面を研磨して製造した検査対象物、あるいは切削加工により製造した検査対象物について当該検査対象物の曲面の表面形状を検査する検査装置であって、
前記検査対象物に特定の模様を投影する投影装置と、
前記模様が投影された検査対象物を撮像する撮像装置と、
前記検査対象物と同種で且つ曲面の表面形状の良否が既知の学習用対象物について前記検査対象物に投影する特定の模様と同じ特定の模様が投影された状態で撮影された当該学習用対象物の画像と、当該学習用対象物の曲面の表面形状の良否の官能検査結果との組を教師データとして学習した人工知能を有しており、前記撮像装置により撮像された撮像画像を、学習済みの前記人工知能に適用して、前記検査対象物の曲面の表面形状の良否を判定する判定回路と、
を備える検査装置。 - 前記特定の模様は、縞模様、もしくは格子模様である
請求項1に記載の検査装置。 - 前記投影装置は2台あり、それぞれの投影装置は、投影方向が略直交する2方向から縞模様を投影することにより、格子模様を前記特定の模様として投影する
請求項1または2に記載の検査装置。 - 前記人工知能は、前記検査対象物と同種で且つ曲面の表面形状が良好であることが既知の学習用対象物について当該学習用対象物の画像と良品を識別する識別情報との組、及び前記検査対象物と同種で且つ曲面の表面形状が不良であることが既知の学習用対象物について当該学習用対象物の画像と当該不良の要因を識別する識別情報との組を教師データとして良品の確信度及び不良の要因毎の確信度を出力するよう学習しており、
前記人工知能は、前記検査対象物の撮像画像を用いて、前記検査対象物について良品の確信度及び不良の要因毎の確信度を出力し、
前記判定回路は、前記良品の確信度及び前記不良の要因の確信度を用いて、前記検査対象物について良品か、または不良の要因を識別する識別情報を出力する
請求項1から3のいずれか一項に記載の検査装置。 - 前記判定回路には、不良の要因毎に人工知能が設けられており、
前記人工知能それぞれは、前記検査対象物と同種で且つ曲面の表面形状が良好であることが既知の学習用対象物について当該学習用対象物の画像と良品を識別する識別情報との組、及び前記検査対象物と同種で且つ曲面の表面形状に当該人工知能が対象とする不良の要因があることが既知の学習用対象物について当該学習用対象物の画像と前記対象とする不良の要因を識別する識別情報との組を教師データとして良品の確信度及び前記対象とする不良の要因の確信度を出力するよう学習しており、
前記人工知能それぞれは、前記検査対象物の撮像画像を用いて、前記検査対象物について良品の確信度及び互いに異なる不良の要因に対する確信度を出力し、
前記判定回路は、前記人工知能それぞれから出力された前記良品に対する確信度それぞれ及び前記不良の要因の確信度それぞれを用いて、前記検査対象物について良品か、または不良の要因を識別する識別情報を出力する
請求項1から3のいずれか一項に記載の検査装置。 - 前記投影装置は、投影と非投影とを切り替えられるようになっており、
前記撮像装置は、前記模様が非投影の状態で前記検査対象物を撮像して第1の画像を取得し、当該模様が投影された状態で検査対象物を撮像して第2の画像を取得し、
前記判定回路は、前記第1の画像と前記第2の画像との差分画像を、同様にして作成された差分画像の教師データを用いて学習した前記学習済みの人工知能に適用して、前記検査対象物の曲面の表面形状の良否を判定する
請求項1から5のいずれか一項に記載の検査装置。 - 前記検査対象物は、表面を研磨して製造した部品である
請求項1から6のいずれか一項に記載の検査装置。 - 前記検査対象物は、流体機械の部品である
請求項1から7のいずれか一項に記載の検査装置。 - 前記検査対象物は、溶融金属積層法または研磨により製造した部品である
請求項1から8のいずれか一項に記載の検査装置。 - 材料を熱で溶融して造形された検査対象物あるいは表面を研磨して製造した検査対象物について当該検査対象物の曲面の表面形状を検査する検査方法であって、
前記検査対象物に特定の模様を投影する手順と、
前記模様が投影された検査対象物を撮像する手順と
前記撮像された画像を、学習済みの人工知能に適用して、前記曲面の表面形状の良否を判定する手順と、
を有し、
前記人工知能は、前記検査対象物と同種で且つ曲面の表面形状の良否が既知の学習用対象物について前記検査対象物に投影する特定の模様と同じ特定の模様が投影された状態で撮影された当該学習用対象物の画像と、当該学習用対象物の曲面の表面形状の良否の官能検査結果との組を教師データとして学習したものである検査方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980030680.2A CN112088304A (zh) | 2018-05-10 | 2019-05-09 | 检查装置及检查方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-091086 | 2018-05-10 | ||
JP2018091086A JP7053366B2 (ja) | 2018-05-10 | 2018-05-10 | 検査装置及び検査方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019216362A1 true WO2019216362A1 (ja) | 2019-11-14 |
Family
ID=68466993
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/018467 WO2019216362A1 (ja) | 2018-05-10 | 2019-05-09 | 検査装置及び検査方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7053366B2 (ja) |
CN (1) | CN112088304A (ja) |
WO (1) | WO2019216362A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115210035B (zh) * | 2020-03-05 | 2024-06-25 | 松下知识产权经营株式会社 | 焊道外观检查装置、焊道外观检查方法、程序和焊道外观检查系统 |
WO2021177435A1 (ja) * | 2020-03-05 | 2021-09-10 | パナソニックIpマネジメント株式会社 | ビード外観検査装置、ビード外観検査方法、プログラムおよびビード外観検査システム |
CN115210034A (zh) * | 2020-03-05 | 2022-10-18 | 松下知识产权经营株式会社 | 焊道外观检查装置和焊道外观检查系统 |
KR102237374B1 (ko) * | 2020-09-09 | 2021-04-07 | 정구봉 | 3d 프린팅을 이용한 부품 및 부품 검사 지그 제조 방법 및 시스템 |
KR102512873B1 (ko) * | 2020-11-06 | 2023-03-23 | 한국생산기술연구원 | 인공 지능을 이용한 모아레 간섭계 측정 시스템 및 모아레 간섭계 측정 방법 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01219505A (ja) * | 1988-02-26 | 1989-09-01 | Toyota Motor Corp | 塗膜平滑度自動検査装置 |
JPH05164696A (ja) * | 1991-12-11 | 1993-06-29 | Nissan Motor Co Ltd | 塗装面評価装置 |
JPH08285557A (ja) * | 1995-04-17 | 1996-11-01 | Nissan Motor Co Ltd | 表面欠陥検査装置 |
JPH1023203A (ja) * | 1996-07-01 | 1998-01-23 | Ricoh Co Ltd | 紙分類装置 |
JPH11118731A (ja) * | 1997-10-20 | 1999-04-30 | Nissan Motor Co Ltd | 被検査面の欠陥検査方法およびその装置 |
US6191850B1 (en) * | 1999-10-15 | 2001-02-20 | Cognex Corporation | System and method for inspecting an object using structured illumination |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3732757B2 (ja) * | 2001-06-08 | 2006-01-11 | 株式会社東芝 | 画像認識方法および画像認識装置 |
JP5164696B2 (ja) | 2008-07-01 | 2013-03-21 | 昭和電工株式会社 | アルミニウム合金製引抜材 |
JP5818341B2 (ja) * | 2010-12-13 | 2015-11-18 | 国立大学法人 和歌山大学 | 形状計測装置および形状計測方法 |
JP6507653B2 (ja) * | 2015-01-13 | 2019-05-08 | オムロン株式会社 | 検査装置及び検査装置の制御方法 |
JP6795993B2 (ja) * | 2016-02-18 | 2020-12-02 | 株式会社ミツトヨ | 形状測定システム、形状測定装置及び形状測定方法 |
JP6333871B2 (ja) * | 2016-02-25 | 2018-05-30 | ファナック株式会社 | 入力画像から検出した対象物を表示する画像処理装置 |
JP6832650B2 (ja) * | 2016-08-18 | 2021-02-24 | 株式会社Screenホールディングス | 検査装置および検査方法 |
US10586318B2 (en) * | 2016-10-07 | 2020-03-10 | Raytheon Company | Automated model-based inspection system for screening electronic components |
-
2018
- 2018-05-10 JP JP2018091086A patent/JP7053366B2/ja active Active
-
2019
- 2019-05-09 CN CN201980030680.2A patent/CN112088304A/zh active Pending
- 2019-05-09 WO PCT/JP2019/018467 patent/WO2019216362A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01219505A (ja) * | 1988-02-26 | 1989-09-01 | Toyota Motor Corp | 塗膜平滑度自動検査装置 |
JPH05164696A (ja) * | 1991-12-11 | 1993-06-29 | Nissan Motor Co Ltd | 塗装面評価装置 |
JPH08285557A (ja) * | 1995-04-17 | 1996-11-01 | Nissan Motor Co Ltd | 表面欠陥検査装置 |
JPH1023203A (ja) * | 1996-07-01 | 1998-01-23 | Ricoh Co Ltd | 紙分類装置 |
JPH11118731A (ja) * | 1997-10-20 | 1999-04-30 | Nissan Motor Co Ltd | 被検査面の欠陥検査方法およびその装置 |
US6191850B1 (en) * | 1999-10-15 | 2001-02-20 | Cognex Corporation | System and method for inspecting an object using structured illumination |
Also Published As
Publication number | Publication date |
---|---|
JP7053366B2 (ja) | 2022-04-12 |
CN112088304A (zh) | 2020-12-15 |
JP2019196985A (ja) | 2019-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019216362A1 (ja) | 検査装置及び検査方法 | |
JP6618478B2 (ja) | 射影画像を用いた自動インライン検査及び計測 | |
EP1777491B1 (en) | Method and apparatus for inspecting an object | |
JP5243335B2 (ja) | 欠陥検査方法、欠陥検査装置、欠陥検査プログラム、及びそのプログラムを記録した記録媒体 | |
US20080055591A1 (en) | Apparatus and methods for two-dimensional and three-dimensional inspection of a workpiece | |
KR100598381B1 (ko) | 인-라인 타입의 자동 웨이퍼결함 분류장치 및 그 제어방법 | |
JP2005292136A (ja) | 多重解像度検査システム及びその動作方法 | |
KR101982347B1 (ko) | 오토 리페어 시스템의 불량 검출장치 및 방법 | |
JP6371044B2 (ja) | 表面欠陥検査装置および表面欠陥検査方法 | |
WO2017185058A1 (en) | System, method and computer program product for correcting a difference image generated from a comparison of target and reference dies | |
CN112085708A (zh) | 产品外轮廓中的直线边缘的缺陷检测方法及设备 | |
JP6630912B1 (ja) | 検査装置及び検査方法 | |
JP2007298505A (ja) | 欠陥検査方法およびその装置 | |
CN114609139A (zh) | 检查系统、管理装置、检查方法、记录介质和物品的制造方法 | |
TWI722861B (zh) | 分類方法及分類系統 | |
JP7157380B2 (ja) | 外観検査方法及び電子部品の製造方法 | |
JP2005283267A (ja) | 貫通穴計測装置及び方法並びに貫通穴計測用プログラム | |
JP2010091360A (ja) | 画像検査方法および画像検査装置 | |
JP2019190911A (ja) | 検査装置 | |
US7899573B2 (en) | Non-contact method and system for inspecting a multi-faceted machine surface | |
TWI493177B (zh) | 一種檢測具週期性結構光學薄膜的瑕疵檢測方法及其檢測裝置 | |
JP2011002280A (ja) | 欠陥検査方法 | |
JP2006226834A (ja) | 表面検査装置、表面検査の方法 | |
JP5071782B2 (ja) | 基板の欠陥検査方法及び欠陥検査プログラム | |
JP2018115866A (ja) | 表面撮像装置、表面検査装置、および表面検査方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19800553 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19800553 Country of ref document: EP Kind code of ref document: A1 |