WO2019216269A1 - 熱延鋼板及びその製造方法 - Google Patents

熱延鋼板及びその製造方法 Download PDF

Info

Publication number
WO2019216269A1
WO2019216269A1 PCT/JP2019/017932 JP2019017932W WO2019216269A1 WO 2019216269 A1 WO2019216269 A1 WO 2019216269A1 JP 2019017932 W JP2019017932 W JP 2019017932W WO 2019216269 A1 WO2019216269 A1 WO 2019216269A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
rolling
section
steel sheet
hot
Prior art date
Application number
PCT/JP2019/017932
Other languages
English (en)
French (fr)
Inventor
哲矢 平島
武 豊田
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to US17/048,430 priority Critical patent/US11486020B2/en
Priority to CN201980029882.5A priority patent/CN112088225B/zh
Priority to JP2019545824A priority patent/JP6687167B2/ja
Publication of WO2019216269A1 publication Critical patent/WO2019216269A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper

Definitions

  • the present invention relates to a hot-rolled steel sheet and a manufacturing method thereof.
  • This application claims priority based on Japanese Patent Application No. 2018-089179 for which it applied to Japan on May 07, 2018, and uses the content here.
  • Patent Document 1 C: 0.4% by weight or less and the total content of alloying elements: 5% or less of steel at the final stage of continuous hot rolling at a rolling reduction of 40% or more and an average strain rate of 60
  • a method for producing an ultrafine-grained ferritic steel has been proposed, which is characterized by applying a reduction of not more than / sec and further applying a reduction of 40% or more continuously within 2 seconds.
  • Patent Document 2 discloses a method for producing a fine-grain hot-rolled steel sheet that is subjected to finish rolling using a tandem rolling mill after rough rolling.
  • Patent Document 2 after rolling at a temperature of Ar 3 point or higher with a rolling mill one stage before the end of the tandem rolling mill row, “Ar 3 points ⁇ 20 ° C.” or less at an average cooling rate of 50 ° C./second or higher.
  • the ferrite average is characterized in that it is further cooled to 720 ° C. within 0.4 seconds, and further rolled to a temperature of 720 ° C. within 0.4 seconds.
  • a method for producing a fine-grain hot-rolled steel sheet having a particle size of 5 ⁇ m or less has been proposed.
  • Patent Document 3 C: 0.05 to 0.10 wt%, Si: 0.30 to 2.0 wt%, Mn: 1.0 wt% or less, Al: 0.003 to 0.100 %
  • Ti 0.05 to 0.30% by weight
  • the continuous cast slab composed of the remaining Fe and impurities is heated to a temperature of 950 ° C. or higher and 1100 ° C. or lower, and the rolling reduction per one time is 20 %
  • cooling is performed at a cooling rate of 20 ° C./second or higher, and the temperature is from 350 ° C. to 550 ° C.
  • a method for producing a high-tensile hot-rolled steel sheet having an ultrafine structure, which is characterized by winding in a range, has been proposed.
  • Patent Document 4 discloses that 0.15% ⁇ C ⁇ 0.40%, 1.5% ⁇ Mn ⁇ 3%, 0.005% ⁇ Si ⁇ 2%, 0.005% ⁇ Al ⁇ 0.1. %, S ⁇ 0.05%, P ⁇ 0.1%, 0.025% ⁇ Nb ⁇ 0.1%, the remainder of the composition being a semi-finished product consisting of iron and inevitable impurities resulting from processing The step of heating to a temperature T1 between 1050 ° C. and 1250 ° C., using a cumulative reduction ratio ⁇ a exceeding 100% at a temperature T2 between 1050 and 1150 ° C.
  • the toughness deteriorates when the material is strengthened. Therefore, it is important to develop a high strength hot-rolled steel sheet by increasing the strength without deteriorating the toughness. Moreover, when used as a member for automobiles, it is desirable that the tensile properties and toughness have little anisotropy and are excellent in isotropy. Moreover, it is important for developing a high-strength hot-rolled steel sheet that the load at the time of manufacturing the steel sheet is small.
  • the rough rolled plate before finish rolling has a mixed grain structure of fine grains that are recrystallized and flat and coarse grains that are not recrystallized and have a high aspect ratio. Even if such a rough rolled sheet is finish-rolled, it is not easy to obtain a hot-rolled steel sheet having an isotropic structure and characteristics.
  • This invention is made
  • the present invention also provides a method for producing a hot-rolled steel sheet that can reduce the load on the rolling mill, is excellent in isotropic tensile strength and toughness, and can produce a hot-rolled steel sheet having a tensile strength of 980 MPa or more. Let it be an issue.
  • the inventors have conducted intensive research on a technique for sufficiently miniaturizing the crystal grains of a hot-rolled steel sheet even in rolling under a low pressure, and a technique for improving the isotropy of tensile properties and toughness. did.
  • a technique for sufficiently miniaturizing the crystal grains of a hot-rolled steel sheet even in rolling under a low pressure did.
  • recrystallization occurs during finish rolling even in finish rolling under low pressure, and hot rolled steel sheet
  • the prior austenite grain size is 1.0 ⁇ m or more and 10.0 ⁇ m or less, its aspect ratio is 1.8 or less, and the remaining structure grain size is 5.0 ⁇ m or less and its aspect ratio is In the case of 2.0 or less, it has further been found that a high-strength hot-rolled steel sheet having a tensile strength of 980 MPa or more and excellent in tensile properties (particularly tensile strength) and toughness isotropic can be obtained.
  • the present invention has been completed based on such findings and further examination. That is, the gist of the present invention is as follows.
  • the hot-rolled steel sheet according to one embodiment of the present invention is mass%, C: 0.010% or more, 0.200% or less, Si: 1.00% or less, Mn: 3.0% or less, P : 0.040% or less, S: 0.004% or less, Al: 0.10% or less, N: 0.004% or less, Nb: 0% or more, 0.20% or less, Ti: 0% or more, 0 .15% or less, Mo: 0% or more, 1.00% or less, Cu: 0% or more, 0.50% or less, and Ni: 0% or more, 0.50% or less, with the balance being Fe and impurities
  • the metal structure is composed of martensite having a volume of 90% by volume or more and a balance structure of 0% by volume to 10% by volume, and the balance structure includes one or both of bainite and ferrite, and rolling.
  • the average grain size of prior austenite in the C section is 1.0 ⁇ m or more and 10.0 ⁇ m or less, and the average grain diameter of the prior austenite in the L section and the average of the prior austenite in the C section.
  • the aspect ratio which is the ratio to the particle size, is 1.8 or less, the average particle size of the remaining structure in the L cross section and the C cross section is 5.0 ⁇ m or less, respectively, and the remaining structure of the L cross section
  • the aspect ratio, which is the ratio between the average particle diameter and the average particle diameter of the remaining structure of the C cross section, is 2.0 or less.
  • a method for producing a hot-rolled steel sheet according to another aspect of the present invention comprises heating a steel material having the chemical composition described in [1] or [2] above to 1100 ° C or higher and 1350 ° C or lower.
  • a hot rolling process for obtaining a hot-rolled steel sheet by performing rough rolling and finish rolling by performing multiple passes of rolling on the steel material, and after the hot-rolling process is completed, the hot-rolled steel sheet A cooling step that starts cooling within 5 seconds and cools to a temperature range of 300 ° C. or less at an average cooling rate of 30 ° C./second or more, and the temperature of 300 ° C. or less of the hot-rolled steel sheet after the cooling step A winding step of winding in a range, the rough rolling is performed under the following condition (I), and the finish rolling is performed under the following condition (II).
  • the temperature T of the steel material after the final rolling pass in the rough rolling is in the range of 1000 ° C.
  • the temperature of the steel sheet after the final rolling pass in the finish rolling is set to Ar 3 or more, and the reduction amount of the final pass in the finish rolling is in the range of 12 to 45%.
  • the Ar 3 point is a temperature obtained by the following (formula 1).
  • Ar 3 (° C.) 910-310 ⁇ C-80 ⁇ Mn-20 ⁇ Cu-55 ⁇ Ni-80 ⁇ Mo (Formula 1)
  • C, Mn, Cu, Ni, and Mo are contents in mass% of each element, and 0 is substituted for elements that do not contain.
  • the metal structure of the steel sheet before the finish rolling is obtained by the rough rolling, the L section being a section parallel to the rolling direction of the rough rolling, and the rolling direction.
  • the average grain size of austenite in the C section which is a section parallel to the direction perpendicular to each other, is 100 ⁇ m or less, and the aspect ratio which is the ratio of the average grain size of the austenite in each of the L section and the C section is 2 It may be 0 or less.
  • a hot-rolled steel sheet having excellent tensile strength and toughness isotropy and a tensile strength of 980 MPa or more can be provided. Moreover, according to the said aspect of this invention, it is possible to manufacture a hot-rolled steel sheet having high strength and excellent isotropic tensile strength and toughness without increasing the load on the rolling mill.
  • the hot-rolled steel sheet of the present invention is suitable as a material for automobile structural parts, frameworks, and truck frames.
  • a hot-rolled steel sheet according to one embodiment of the present invention has a predetermined chemical composition, a martensite having a metal structure of 90% by volume or more, and 0% by volume or more and 10% by volume.
  • the remaining structure includes one or both of bainite and ferrite, the prior austenite grain size is 1.0 ⁇ m or more and 10.0 ⁇ m or less, and the aspect ratio of the prior austenite grain size is 1.8 or less.
  • the hot-rolled steel sheet according to this embodiment will be specifically described.
  • the percentages representing the following chemical components all mean mass%.
  • C 0.010% or more, 0.200% or less
  • C is an element necessary for improving solid solution strengthening and hardenability and generating martensite which is a low-temperature transformation phase to ensure the strength of the hot-rolled steel sheet.
  • the C content is set to 0.010% or more.
  • the C content is in the range of 0.010% or more and 0.200% or less. More preferably, the range is 0.040% or more and 0.180% or less.
  • Si 1.00% or less
  • the Si content is 1.00% or less.
  • the Si content is 0.80% or less.
  • Si is an element that suppresses coarse oxides and cementite that deteriorate toughness and contributes to solid solution strengthening. Therefore, the Si content may be 0.40% or more.
  • Mn 3.0% or less
  • Mn content is in the range of 3.0% or less.
  • the range is 2.0% or less.
  • Mn is an element that dissolves and contributes to an increase in the strength of the steel and enhances the hardenability. In order to obtain this effect, the Mn content may be 0.5% or more.
  • P is an element that contributes to increasing the strength of the steel by solid solution, but is also an element that segregates at the grain boundary, particularly the prior austenite grain boundary, and causes a decrease in low temperature toughness and workability. For this reason, it is preferable to reduce P content as much as possible, but the content up to 0.040% is acceptable. Therefore, the P content is 0.040% or less. Preferably it is 0.030% or less, More preferably, it is 0.020% or less. However, even if the P content is excessively reduced, an effect commensurate with the increase in the refining cost cannot be obtained. Therefore, the P content is preferably 0.003% or more, and may be 0.005% or more.
  • S is an element that combines with Mn to form coarse sulfides and lowers the workability of the hot-rolled steel sheet. Therefore, it is preferable to reduce the S content as much as possible, but a content of up to 0.004% is acceptable. Therefore, the S content is 0.004% or less. Preferably it is 0.003% or less, More preferably, it is 0.002% or less. However, even if the S content is excessively reduced, an effect commensurate with the increase in refining costs cannot be obtained. Therefore, the S content is preferably 0.0003% or more, and may be 0.0005% or more.
  • Al 0.10% or less
  • the Al content is set to 0.10% or less. Preferably it is 0.08% or less.
  • Al acts as a deoxidizer and is an effective element for improving the cleanliness of steel. In order to obtain this effect, the Al content may be 0.005% or more.
  • N 0.004% or less
  • N content shall be 0.004% or less.
  • it is 0.003% or less.
  • N is an element that precipitates as a nitride by combining with a nitride-forming element and contributes to refinement of crystal grains. In order to obtain this effect, the N content may be 0.0005% or more.
  • the hot-rolled steel sheet according to the present embodiment is Nb: 0.20%, for example, for the purpose of improving toughness and increasing strength.
  • Ti 0.15% or less
  • Mo 1.00% or less
  • Cu 0.50% or less
  • Ni 0.50% or less, containing one or more selected from it can. Since these elements do not necessarily have to be contained, the lower limit is 0%, but in order to obtain the effect, it is preferably more than 0%.
  • Nb is an element that contributes to an increase in the strength and fatigue strength of the hot-rolled steel sheet through the formation of carbonitrides.
  • the Nb content is preferably more than 0%, more preferably 0.01% or more, and further preferably 0.020% or more.
  • the Nb content exceeds 0.20%, the deformation resistance increases, so the hot rolling roll load increases during the production of hot-rolled steel sheets, and the burden on the rolling mill becomes too large, resulting in a rolling operation. It can be difficult.
  • the Nb content exceeds 0.20%, coarse precipitates are formed and the toughness of the hot-rolled steel sheet tends to decrease. Therefore, the Nb content is 0.20% or less, preferably 0.15% or less.
  • Ti is an element that improves the strength and fatigue strength of a steel sheet by forming fine carbonitrides to refine crystal grains.
  • the Ti content is preferably more than 0%, more preferably 0.01% or more, and further preferably more than 0.05%.
  • the Ti content is 0.15% or less. Preferably it is 0.10% or less of range.
  • Mo 0% or more, 1.00% or less
  • Mo is an element that enhances hardenability and contributes to increasing the strength of the hot-rolled steel sheet.
  • the Mo content is preferably more than 0%, more preferably 0.01% or more.
  • Mo has a high alloy cost, and if the Mo content exceeds 1.00%, the weldability deteriorates. Therefore, the Mo content is set to 1.00% or less. Preferably it is set as 0.40% or less of range.
  • Cu is an element that contributes to increasing the strength of the steel by solid solution. Moreover, Cu improves hardenability. In order to obtain these effects, the Cu content is preferably more than 0%, more preferably 0.01% or more, and even more preferably 0.05% or more. On the other hand, if the Cu content exceeds 0.50%, the surface properties of the hot-rolled steel sheet deteriorate. Therefore, the Cu content is 0.50% or less. Preferably it is 0.30% or less of range.
  • Ni is an element that dissolves and contributes to increasing the strength of the steel and improves the hardenability.
  • the Ni content is preferably more than 0%, more preferably 0.01% or more, and further preferably 0.02% or more.
  • Ni has a high alloy cost, and when the Ni content exceeds 0.50%, the weldability deteriorates. Therefore, the Ni content is 0.50% or less. Preferably it is 0.30% or less of range.
  • Other elements may be included as long as the effects of the steel sheet according to the present embodiment are not hindered.
  • 0.005% or less of Ca, REM (rare earth metal) or the like may be contained. Trace elements that improve hot workability can also be contained.
  • the balance other than the above components is composed of Fe and impurities.
  • the impurities are components that are mixed due to various factors in the manufacturing process, including raw materials such as ore and scrap, when industrially manufacturing a hot-rolled steel sheet, and according to this embodiment. It means what is not a component intentionally added to the hot-rolled steel sheet.
  • the metal structure is composed of martensite of 90% by volume or more and the remaining structure of 0% by volume to 10% by volume, and the remaining structure contains one or both of bainite and ferrite]
  • the structure of the hot-rolled steel sheet according to this embodiment is composed of 90% by volume or more martensite and 0% by volume to 10% by volume of the remaining structure.
  • “Martensite” in the present embodiment basically means fresh martensite, but tempered martensite may be partially included (for example, in a range of 10% or less). Tempered martensite is martensite that has been tempered and has a lower dislocation density than martensite.
  • the volume ratio of martensite is 90% by volume or more. More preferably, it is 95 volume% or more.
  • the remaining structure contains bainite and / or ferrite. Furthermore, residual austenite may be included in the remaining structure.
  • the remaining structure also includes carbides contained in bainite.
  • tissue shall be 10 volume% or less, Preferably it is 5 volume% or less, More preferably, it is 1 volume% or less.
  • the remaining tissue may be 0%.
  • the average particle size of prior austenite is 1.0 ⁇ m or more and 10.0 ⁇ m or less, and the aspect ratio, which is the ratio of the average particle size of prior austenite, is 1.8 or less]
  • the hot rolled steel sheet according to the present embodiment has an average grain size of prior austenite of 1.0 ⁇ m to 10.0 ⁇ m and an aspect ratio of 1.8 or less.
  • the average grain size of prior austenite is 1.0 ⁇ m or more and 10.0 ⁇ m or less, that is, an L cross section parallel to the rolling direction of the steel sheet and a cross section parallel to the direction orthogonal to the rolling direction of the steel sheet.
  • the average particle size of the prior austenite in the cross section is 1.0 ⁇ m or more and 10.0 ⁇ m or less, respectively.
  • the L cross section and the C cross section are cross sections in the plate thickness direction.
  • the prior austenite grain size is set to 10.0 ⁇ m or less. Preferably it is 5.0 micrometers or less.
  • the prior austenite grain size is 1.0 ⁇ m or more.
  • the hot rolled steel sheet according to the present embodiment reduces the austenite grain size by sufficiently recrystallizing austenite by rough rolling in the manufacturing process.
  • the austenite grain size after rough rolling is 100 ⁇ m or less and may be relatively large.
  • the austenite may not be reduced to 3.0 ⁇ m or less. Therefore, practically, the prior austenite grain size of the hot-rolled steel sheet according to the present embodiment may be more than 3.0 ⁇ m, or 3.5 ⁇ m or more.
  • the aspect ratio of prior austenite of 1.8 or less means that the ratio of the average grain size of prior austenite in the L cross section to the average grain diameter of prior austenite in the C cross section is 1.8 or less.
  • the aspect ratio of the prior austenite grain size affects the anisotropy of tensile strength and toughness.
  • the aspect ratio of the prior austenite grain size is set to 1.8 or less. Preferably it is 1.5 or less.
  • the average particle size of the remaining structure is 5.0 ⁇ m or less, and the aspect ratio of the average particle diameter of the remaining structure is 2.0 or less] Since the remaining structure is a soft phase, when the average particle size of the remaining structure exceeds 5.0 ⁇ m, the strength of the hot-rolled steel sheet is lowered, and it becomes difficult to obtain a desired strength. Therefore, the average particle size is 5.0 ⁇ m or less.
  • the lower limit of the average particle size of the remaining structure is not particularly limited, but it is difficult to make it less than 1.0 ⁇ m from the viewpoint of the manufacturing method. Therefore, the actual average particle size of the remaining structure is set to 1.0 ⁇ m or more and 5.0 ⁇ m or less. .
  • the average particle size of the remaining structure is 1.0 ⁇ m or more and 5.0 ⁇ m or less means that the average particle size of the remaining structure in the L cross section and the C cross section is 1.0 ⁇ m or more and 5.0 ⁇ m or less, respectively.
  • the aspect ratio of the remaining structure affects the anisotropy of tensile strength and toughness. If the aspect ratio of the remaining structure exceeds 2.0, the tensile strength and toughness anisotropy become strong, so the aspect ratio of the remaining structure is set to 2.0 or less. Preferably it is 1.8 or less.
  • the aspect ratio of the average particle size of the remaining structure being 2.0 or less means that the ratio of the average particle size of the remaining structure of the L cross section to the average particle size of the remaining structure of the C cross section is 2.0 or less. .
  • the identification of each phase or structure and the calculation of the average particle diameter are performed by image processing using a structure photograph taken with a scanning electron microscope (SEM) and backscattered electron diffraction image analysis (EBSP or EBSD).
  • SEM scanning electron microscope
  • EBSP backscattered electron diffraction image analysis
  • the average particle diameter of prior austenite and its aspect ratio are determined as follows.
  • the sheet width of the hot-rolled steel sheet is W
  • the width direction of the hot-rolled steel sheet the width is parallel to the rolling direction (L cross section) and perpendicular (C cross section) in the vicinity of 1/4 W (width) or 3/4 W (width) from one end.
  • L cross section the rolling direction
  • C cross section perpendicular
  • a sample is taken so that the cross section in the plate thickness direction becomes the observation surface.
  • the cross section is mirror-polished, it is corroded with picric acid to reveal the grain boundaries of the prior austenite crystal grains.
  • the rolling direction of the steel plate is 400 ⁇ m ⁇ the thickness direction is 400 ⁇ m, and in the case of the C cross section, the steel plate An area of 400 ⁇ m in the plate width direction ⁇ 400 ⁇ m in the thickness direction is observed. The observation area is one continuous area.
  • the average particle size of prior austenite is obtained.
  • the average particle diameter of austenite is determined as the equivalent circle diameter.
  • the larger one is Dp ⁇ (L), and the smaller one is Dp ⁇ (S), which is obtained by Dp ⁇ (L) / Dp ⁇ (S).
  • the value is the aspect ratio of the average grain size of the prior austenite.
  • the identification of the remaining structure, the average particle size of the remaining structure, and the aspect ratio are obtained as follows.
  • the plate width of the steel sheet is W
  • a sample is taken so as to be an observation surface, and the cross section is mirror-polished, followed by electrolytic polishing.
  • the rolling direction of the steel plate is 400 ⁇ m ⁇ the thickness direction is 400 ⁇ m
  • the plate width direction is 400 ⁇ m ⁇ the thickness direction is 400 ⁇ m.
  • the region is analyzed by EBSD with a measurement interval of 0.1 ⁇ m.
  • the EBSD analysis is carried out at an analysis speed of 200 to 300 points / second using, for example, an apparatus composed of a thermal field emission scanning electron microscope and an EBSD detector.
  • a difference in crystal orientation between adjacent measurement points is obtained as an orientation difference.
  • this difference in orientation is 15 ° or more
  • the intermediate between adjacent measurement points is determined as a grain boundary, and the region surrounded by this grain boundary is defined as a crystal grain.
  • the average orientation difference is calculated by simply averaging the orientation differences within the same grain of the crystal grains. The calculation of the average misorientation within the same grain can be obtained using software attached to the EBSD analyzer. Grains whose average orientation difference within the same grain is less than 0.6 ° are defined as ferrite.
  • the area ratio of grains defined as ferrite is defined as the volume ratio of ferrite.
  • a grain having an average orientation difference of 0.6 ° or more in the same grain is defined as bainite.
  • Martensite may also have an average misorientation of 0.6 ° or more in the same grain.
  • bainite contains carbide and has a lath-like structure
  • the SEM image contains carbide and lath-like. What has the structure is bainite, and the area ratio is the volume ratio of bainite.
  • martensite the average orientation difference in the same grain is 0.6 ° or more, and the structure other than that determined as bainite is martensite. Since the hot-rolled steel sheet of the present embodiment is not tempered, the martensite becomes fresh martensite containing no carbide.
  • the martensite in which carbides are generated in the structure may be included in the volume fraction of bainite. That is, the volume ratio of martensite is 100% minus the volume ratio of ferrite and the volume ratio of bainite.
  • the average particle size of the remaining structure is determined using the value obtained by the above EBSD analysis. Specifically, the crystal grain of the remaining structure is specified with a boundary having an orientation difference of 15 ° or more as a grain boundary, and a value calculated by the following formula is set as an average grain size.
  • N is the number of crystal grains included in the evaluation area of the average grain size
  • di is equivalent to the circle of the i-th crystal grain. Indicates diameter.
  • Dr (L) / Dr (S) when the larger one is Dr (L) and the smaller one is Dr (S) The value obtained by the above is used as the aspect ratio of the remaining tissue.
  • the tensile strength in the L direction parallel to the rolling direction of the steel sheet and the C direction perpendicular to the rolling direction of the steel sheet is 980 MPa or more, respectively.
  • the absolute value of the difference from the tensile strength is less than 100 MPa.
  • the hot-rolled steel sheet according to the present embodiment has a ductility-brittle transition temperature in the L direction and the C direction of ⁇ 60 ° C. or less respectively, and the ductility-brittle transition temperature in the L direction and the ductility-brittle transition temperature in the C direction are The absolute value of the difference is less than 15 ° C.
  • a hot-rolled steel sheet having high strength and excellent isotropic tensile strength and toughness can be obtained by satisfying the above-described chemical components (chemical composition) and structure. . Therefore, by applying the hot-rolled steel sheet according to the present embodiment to automobile structural parts, it is possible to contribute to ensuring safety of the automobile and improving fuel consumption.
  • the hot rolled steel sheet according to the present embodiment is excellent in product shape.
  • product shape By being excellent in product shape, it becomes possible to manufacture parts with high accuracy in forming processing when parts are formed from steel plates.
  • the product shape is excellent when the thickness of 30 locations is measured at a rate of 1 location per 2500 mm 2 on the surface of the steel plate, the average value of them is taken, and the difference between the maximum value and the minimum value is ⁇ t. / Tave is less than 0.125.
  • the method for producing a hot-rolled steel sheet according to the present embodiment includes heating the steel material having the chemical component (chemical composition) described above to 1100 ° C. or more and 1350 ° C. or less, and then performing a plurality of passes on the steel material.
  • Rough rolling In rough rolling, the temperature T of the steel material after the final rolling pass is in the range of 1000 ° C. to 1300 ° C., and the rolling reduction of the final rolling pass is 105-0.05 ⁇ T (%) (T is the final rough rolling) More than Ar 3 + 30 ° C. and Ar 3 + 300 ° C. at an average cooling rate of 20 ° C./second or more, after starting the cooling within 5 seconds after passing through the final rolling pass. Cool to the following temperature.
  • Finish rolling The temperature of the steel sheet after the final rolling pass in finish rolling is set to Ar 3 or more, and the amount of reduction in the final pass in finish rolling is in the range of 12 to 45%.
  • Ar 3 point is the temperature calculated
  • Ar 3 (° C.) 910-310 ⁇ C-80 ⁇ Mn-20 ⁇ Cu-55 ⁇ Ni-80 ⁇ Mo (Formula 1)
  • C, Mn, Cu, Ni, and Mo are contents (mass%) of each element, and 0 which substitutes for the element which does not contain.
  • Hot rolling process (heating temperature of steel material: 1100 ° C to 1350 ° C)
  • the heating temperature of the steel material has a great influence on solution solution and elimination of element segregation.
  • the heating temperature is less than 1100 ° C.
  • solution and element segregation are insufficient and anisotropy occurs in the tensile strength and toughness of the product.
  • the element which has the effect which suppresses the coarsening of an austenite grain can be solutionized by heating temperature being 1100 degreeC or more.
  • the heating temperature exceeds 1350 ° C. the effect of eliminating solution and element segregation is saturated, and the average austenite grain size becomes coarse, so it is difficult to obtain the desired austenite average grain size after rough rolling. become. Therefore, the heating temperature of the steel material is set to 1100 ° C. or higher and 1350 ° C. or lower. Preferably they are 1150 degreeC or more and 1300 degrees C or less.
  • Rough rolling process (temperature T of steel material after the final rolling pass: 1000 ° C. or higher and 1300 ° C. or lower)
  • rolling is performed by continuously passing a steel material through a rolling stand for rough rolling a plurality of times, but the temperature T of the steel material after the final rolling pass is 1000 ° C. or higher and 1300 ° C. or lower. Rough rolling is performed.
  • the temperature of the steel material during rough rolling is desirably high.
  • the rough rolling temperature T of the steel material is set to 1000 ° C. or higher.
  • the rough rolling temperature T exceeds 1300 ° C., grain growth occurs before the start of finish rolling, and the structure after finish rolling becomes coarse, and a desired structure and characteristics cannot be obtained.
  • the rough rolling temperature is the lowest temperature in the rough rolling process in which a plurality of passes are reduced, and in this embodiment, means the temperature T of the steel material immediately after the final rolling pass.
  • the rolling reduction of the final rolling pass is 105-0.05 ⁇ T (%) or more
  • the rolling reduction of the final rolling pass at the time of rough rolling has a great influence on the grain size immediately after the completion of rough rolling.
  • T is the temperature of the steel material after the final rough rolling pass (° C.)
  • the final rolling pass is processed during the rough rolling.
  • the grain size immediately after the completion of rough rolling becomes coarse, or the recrystallization occurs only in part, resulting in a mixed grain structure. Also coarsen or mixed.
  • the rolling reduction of the final rolling pass of rough rolling is 105-0.05 ⁇ T (%) or more.
  • the time from the passage of the final rolling pass of rough rolling to the start of cooling is set to within 5 seconds, and the average cooling rate is set to 20 ° C./second or more. More preferably, cooling is started within 3 seconds, and cooling is performed at an average cooling rate of 30 ° C./second or more.
  • Cooling after the end of rough rolling is performed to the temperature range of Ar 3 + 30 ° C. or higher and Ar 3 + 300 ° C. or lower with the above cooling start time and cooling rate. If the cooling stop temperature is less than Ar 3 + 30 ° C., the rolling temperature may be less than Ar 3 during the subsequent finish rolling step. When the rolling temperature is less than Ar 3 points, ferrite is generated during finish rolling, and a desired structure and characteristics cannot be obtained.
  • cooling stop temperature exceeds Ar 3 + 300 ° C.
  • grain growth occurs before the start of finish rolling, and the structure after finish rolling, which will be described later, is also coarsened, making it impossible to obtain the desired structure and characteristics. Therefore, cooling after rough rolling is performed up to a temperature range of Ar 3 + 30 ° C. or higher and Ar 3 + 300 ° C. or lower.
  • the cooling stop temperature is Ar 3 + 30 ° C. or higher and Ar 3 + 100 ° C. or lower.
  • the average cooling rate is obtained by dividing the temperature difference of the rough rolled sheet between the start of cooling and the end of cooling by the required time from the start of cooling to the end of cooling.
  • the start of cooling is the start of injection of a cooling medium such as water onto the rough rolled plate, and the end of cooling is the end of injection of the cooling medium.
  • the rough rolled plate before the start of finish rolling preferably has a metal structure having an austenite average particle size of 100 ⁇ m or less and an austenite aspect ratio of 2.0 or less.
  • the average grain size of austenite is 100 ⁇ m or less.
  • the average grain size of austenite in the L section which is a section parallel to the rolling direction of rough rolling and the C section which is a section parallel to the direction orthogonal to the rolling direction. Each diameter is 100 ⁇ m or less.
  • the L cross section and the C cross section are cross sections in the plate thickness direction.
  • the aspect ratio of austenite is 2.0 or less means that the ratio of the average particle size of L-section austenite to the average particle size of austenite of C-section (the larger value / the smaller value) is 2.0 or less. It means that.
  • the average particle size of austenite before the start of finish rolling is preferably 100 ⁇ m or less. More preferably, it is 50 micrometers or less, More preferably, it is 30 micrometers or less.
  • the aspect ratio of the austenite grain size before finish rolling greatly affects the aspect ratio of the structure after finish rolling.
  • the aspect ratio of the austenite before finish rolling exceeds 2.0, the prior austenite grain size of the structure after finish rolling or the aspect ratio of the remaining structure may not satisfy a predetermined value, such as tensile strength and toughness.
  • the directionality may be impaired. Therefore, the aspect ratio of the austenite grain size before finish rolling is preferably 2.0 or less. More preferably, it is 1.5 or less.
  • the rough rolled sheet before entering the finish rolling is rapidly cooled as much as possible, and preferably at a cooling rate of 20 ° C./second or more to room temperature.
  • the cross-sectional structure of the rough rolled sheet is etched to reveal the austenite grain boundary, and observed with a scanning electron microscope.
  • the width of the rough rolled sheet is W, it is parallel to the rolling direction at 1/4 W (width) or 3/4 W (width) from one end in the width direction of the rough rolled sheet after quenching ( A sample is taken so that the cross section of the (L cross section) and the vertical (C cross section) becomes the observation surface, and the cross section is mirror-polished and then corroded with picric acid to reveal the grain boundaries of the austenite crystal grains.
  • the rolling direction of the rough rolled plate is 200 ⁇ m ⁇ thickness direction 200 ⁇ m, In this case, an area of 200 ⁇ m in the plate width direction ⁇ 200 ⁇ m in the thickness direction of the rough rolled plate is observed.
  • the average particle size of austenite is obtained. The average particle diameter of austenite is determined as the equivalent circle diameter.
  • (B) Finish rolling process A finish rolling process performs rolling (a plurality of passes) in which a steel material is continuously passed through a rolling stand for finish rolling a plurality of times. At this time, the temperature of the steel sheet after the final rolling pass in the finish rolling is set to Ar 3 or more, and the reduction amount of the final pass in the finish rolling is set in the range of 12 to 45%.
  • the temperature at the time of finish rolling shall be Ar 3 points or more.
  • the temperature at the time of finish rolling here is the lowest temperature in the finish rolling step having a plurality of stands, and in this embodiment, the temperature of the steel sheet immediately after the final rolling pass is used.
  • the final pass reduction is 12-45%
  • austenite is refined in rough rolling. Therefore, a steel sheet excellent in isotropic tensile strength and toughness can be obtained without increasing the reduction amount in finish rolling.
  • the reduction amount of the final pass is less than 12%, recrystallization does not occur in finish rolling, the isotropy of the structure cannot be ensured, and desired characteristics cannot be obtained.
  • the amount of rolling reduction in the final pass exceeds 45%, the load on the rolling stand will increase.
  • the shape of the hot-rolled steel sheet after finish rolling may deteriorate. Therefore, the amount of reduction in the final pass in finish rolling is preferably in the range of 12 to 45%, and more preferably in the range of 15 to 45%.
  • Cooling process in which cooling is started within 5 seconds after completion of finish rolling, and cooling is performed at an average cooling rate of 30 ° C./second or more. Cooling is immediately started after finish rolling. If the time required from the end of finish rolling to the start of cooling exceeds 5 seconds, the structure after finish rolling becomes coarse. Even if the time to start cooling is within 5 seconds, if the average cooling rate is less than 30 ° C./second, ferrite and bainite are likely to be generated during cooling, and the desired structure and characteristics cannot be obtained. Therefore, the time from the end of finish rolling to the start of cooling is within 5 seconds, and the average cooling rate is a cooling rate of 30 ° C./second or more.
  • cooling is started within 3 seconds, and cooling is performed at an average cooling rate of 50 ° C./second or more.
  • the end of finish rolling is the time when the final rolling pass of finish rolling is passed, and the start of cooling is the start of injection of the cooling medium to the steel sheet, as will be described later.
  • the old austenite grains after rough rolling are old austenite grains that have not been coarsened, that is, austenite grains in which the fine grain region is not absorbed by the coarse grains due to male-wald growth. It is old austenite in which fine grain regions are mixed.
  • the old austenite grains after finish rolling also inherit the characteristics of the austenite grains after rough rolling, and the grain boundaries are stabilized although the fine grain region is mixed. For this reason, even if the start of cooling is within 5 seconds after finish rolling, the fine grain region is not absorbed by the coarse grains, and the subsequent ductile-brittle transition temperature becomes high.
  • the fine-grain region is a region in which a portion of the prior austenite grain size that is 20% or less of the average grain size is contained in an area ratio of 30% or less.
  • a cooling facility is installed after the finish rolling facility, and cooling is performed while passing the steel sheet after finish rolling through the cooling facility.
  • the cooling equipment is preferably equipment capable of cooling the steel sheet at a cooling rate of 30 ° C./second or more.
  • a cooling facility for example, a water cooling facility using water as a cooling medium can be exemplified.
  • the average cooling rate is a value obtained by dividing the temperature drop width of the steel sheet from the start of cooling to the end of cooling by the required time from the start of cooling to the end of cooling.
  • the cooling start time is when the cooling medium starts to be injected into the steel sheet by the cooling equipment
  • the cooling end time is when the steel sheet is led out from the cooling equipment.
  • the cooling facility includes a facility having no air-cooling section in the middle and a facility having one or more air-cooling sections in the middle. In this embodiment, any cooling equipment may be used. Even when a cooling facility having an air cooling section is used, the average cooling rate from the start of cooling to the end of cooling may be 30 ° C./second or more.
  • the steel plate cooled to the cooling stop temperature in the cooling step is wound in a temperature range of room temperature to 300 ° C. in the winding step. Since the steel sheet is wound immediately after the cooling step, the winding temperature is substantially equal to the cooling stop temperature.
  • the coiling temperature that is the cooling stop temperature is set to 300 ° C. or less.
  • the room temperature or higher means 20 ° C. or higher.
  • the hot-rolled steel sheet may be subjected to temper rolling according to a conventional method, or may be pickled to remove scale formed on the surface.
  • plating treatment such as hot dip galvanization and electrogalvanization, and chemical conversion treatment may be performed.
  • the structure is composed of martensite of 90% by volume or more and the remaining structure of 0% by volume or more and 10% by volume or less, and the remaining structure contains one or both of bainite and ferrite, and the prior austenite grain size is 1.0 ⁇ m or more and 10. 0 ⁇ m or less, the aspect ratio of the prior austenite particle size is 1.8 or less, the average particle size of the remaining structure is 5.0 ⁇ m or less, and the aspect ratio of the average particle size of the remaining structure is 2.0 or less.
  • Hot-rolled steel sheets can be manufactured. Therefore, according to the above production method, it is possible to produce a hot-rolled steel sheet having high strength and excellent isotropic tensile strength and toughness without increasing the load on the rolling mill.
  • Ar 3 (° C.) 910-310 ⁇ C-80 ⁇ Mn-20 ⁇ Cu-55 ⁇ Ni-80 ⁇ Mo (Formula 1)
  • C, Mn, Cu, Ni, and Mo are content (mass%) of each element, and 0 which substituted the element which does not contain.
  • Heating temperature in Table 2 is the heating temperature of the slab.
  • the final pass temperature of rough rolling is the steel plate temperature immediately after passing through the rolling mill in the final pass during rough rolling.
  • the time until the start of cooling is the time from the passage of the final pass of rough rolling to the start of cooling medium injection.
  • the cooling rate at the time of cooling is expressed by an average rate obtained by dividing the temperature drop width of the steel sheet from the time when the cooling equipment is introduced (at the time of cooling water injection) to the time when the water-cooling equipment is derived by the required passing time of the steel sheet with respect to the water-cooling equipment.
  • the cooling stop temperature is the temperature after the water cooling equipment is derived.
  • the final rolling temperature of finish rolling is the steel plate temperature immediately after passing through the rolling mill in the final pass of finish rolling.
  • the time until the start of cooling is the time from the time of passing through the final pass of finish rolling until the start of injection of the cooling medium.
  • the cooling rate at the time of cooling is represented by an average rate obtained by dividing the temperature drop width of the steel plate from the time when the water cooling facility is introduced (during cooling water injection) to the time when the water cooling facility is derived, divided by the required passing time of the steel plate with respect to the water cooling facility.
  • Specimens were collected from the obtained hot-rolled steel sheet and subjected to structure observation (scanning electron microscope and EBSD), tensile test, and Charpy test. Tissue observation was performed at an analysis rate of 200 to 300 points / second using an apparatus composed of a thermal field emission scanning electron microscope (JSMOL JSM-7001F) and an EBSD detector (TSL HIKARI detector). Calculation of the average misorientation within the same grain was obtained using software (OIM Analysis TM) attached to the EBSD analyzer.
  • JSMOL JSM-7001F thermal field emission scanning electron microscope
  • TSL HIKARI detector EBSD detector
  • TS tensile strength
  • a sub-size test piece (V notch) with a thickness of 2.5 mm is used from a hot-rolled steel sheet so that the longitudinal direction of the test piece is parallel to the rolling direction (L direction) and perpendicular (C direction).
  • the toughness was evaluated by collecting and performing a Charpy impact test at a temperature ranging from room temperature to ⁇ 198 ° C. in accordance with the provisions of JIS Z 2242: 2005, and determining the ductile-brittle transition temperature.
  • the plate thickness of the test piece the test piece was prepared by setting the plate thickness to 2.5 mm by double-side grinding of the hot-rolled steel plate.
  • the excellent toughness in the present invention means that the ductile-brittle transition temperature is ⁇ 60 ° C.
  • the excellent toughness isotropic means that the ductile-brittleness obtained by the L-direction and C-direction Charpy tests. It means that the value obtained by
  • the thickness of 30 locations is measured at a rate of 1 location per 2500 mm 2 on the surface of the steel plate, and the average value thereof is tave, and the difference between the maximum value and the minimum value is ⁇ t, ⁇ t / tave Evaluation was made with calculated values. If ⁇ t / tave was less than 0.125, it was evaluated that the shape was excellent. However, if the tensile strength and its isotropy and the ductility-brittle transition temperature and its isotropy are acceptable levels, the target of the steel sheet according to this embodiment is achieved even if ⁇ t / tave is less than 0.125. I was doing it.
  • the hot-rolled steel sheet of the example has desired strength (TS: 980 MPa or more in both L direction and C direction) and toughness ( ⁇ 60 ° C. or less in both L direction and C direction) in both the tensile strength and toughness in L direction and C direction. And has an excellent isotropic tensile strength and toughness (
  • the hot-rolled steel sheet of the comparative example that falls outside the scope of the present invention does not ensure the desired strength and toughness, or does not ensure its isotropy.
  • the balance structure contained one or both of ferrite and bainite.
  • No. No. 11 had a small amount of reduction in the final pass of finish rolling. For this reason, recrystallization did not sufficiently proceed during finish rolling, and the aspect ratio of the prior austenite grains after finish rolling was also deteriorated. As a result, anisotropy occurred in toughness.
  • No. No. 14 had a high cooling stop temperature (winding temperature) after finish rolling, bainite was generated, and the bainite particle size was coarsened. As a result, the tensile strength in the L direction was deteriorated.
  • No. No. 19 had a low rolling temperature during finish rolling, and ferrite was generated during rolling, so the tensile strength in the L direction and the C direction deteriorated. Further, the aspect ratio of ferrite (remainder structure) was deteriorated. As a result, the toughness isotropic property deteriorated.
  • No. No. 29 had a low C content, and sufficient martensite could not be generated. As a result, the tensile strength in the L direction and the C direction deteriorated. Moreover, since the amount of reduction in the final pass of finish rolling was high, the shape was inferior.
  • No. No. 30 satisfied the rough rolling and finish rolling conditions, but had a high Mn content and formed a band-like structure, resulting in anisotropy in tensile strength and toughness, and deterioration in toughness in the L direction.
  • No. No. 31 had little final pass reduction during rough rolling, and could not cause recrystallization during rough rolling. Moreover, since cooling was not performed after rough rolling, the austenite particle size before finish rolling became large. Therefore, the prior austenite grain size after finish rolling became coarse and the aspect ratio also deteriorated. As a result, the toughness deteriorated and the isotropic toughness and the isotropic tensile strength deteriorated.
  • No. No. 32 was not cooled after rough rolling, so the austenite grain size before finish rolling became large. Therefore, the prior austenite grain size after finish rolling became coarse. As a result, the toughness deteriorated and the isotropic toughness and the isotropic tensile strength deteriorated.
  • No. No. 34 had little final pass reduction during rough rolling, and could not cause recrystallization during rough rolling. Moreover, since cooling was not performed after rough rolling, the austenite particle size before finish rolling became large. Therefore, the prior austenite grain size after finish rolling became coarse and the aspect ratio also deteriorated. Moreover, since the coiling temperature was high, the volume ratio of martensite was lowered. As a result, the tensile strength in the L direction and the C direction deteriorated.
  • the present invention it is possible to provide a hot-rolled steel sheet that is excellent in isotropic tensile strength and toughness and has a tensile strength of 980 MPa or more. Moreover, according to the said aspect of this invention, it is possible to manufacture a hot-rolled steel sheet having high strength and excellent isotropic tensile strength and toughness without increasing the load on the rolling mill.
  • the hot-rolled steel sheet of the present invention is suitable as a material for automobile structural parts, frameworks, and truck frames.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

この熱延鋼板は、所定の化学組成を有し、金属組織が90体積%以上のマルテンサイトと、0体積%以上10体積%以下の残部組織とからなり、前記残部組織がベイナイトまたはフェライトの一方または両方を含み、圧延方向に平行な断面であるL断面と、前記圧延方向と直交する方向に平行な断面であるC断面と、における旧オーステナイトの平均粒径がそれぞれ、1.0μm以上、10.0μm以下であり、前記L断面の旧オーステナイトの前記平均粒径と、前記C断面の前記旧オーステナイトの前記平均粒径との比であるアスペクト比が1.8以下であり、前記L断面及び前記C断面における前記残部組織の平均粒径がそれぞれ、5.0μm以下であり、前記L断面の前記残部組織の前記平均粒径と、前記C断面の前記残部組織の前記平均粒径との比であるアスペクト比が2.0以下である。

Description

熱延鋼板及びその製造方法
 本発明は、熱延鋼板及びその製造方法に関する。
 本願は、2018年05月07日に日本に出願された特願2018-089179号に基づき優先権を主張し、その内容をここに援用する。
 近年、地球環境保護の観点から、自動車排ガス規制が強化されており、自動車の燃費向上が課題となっている。このような状況の下、自動車用鋼板の高強度化・薄肉化が要求されており、自動車用部品の素材として、特に高強度な熱延鋼板が積極的に適用されるようになっている。特に、引張強さ980MPa以上を有する高強度の熱延鋼板は、自動車の燃費を飛躍的に向上させ得る素材として注目されている。
 自動車用鋼板の機械的性質を高める手法として、その鋼材の組織中の結晶粒を微細化することが有効であることが知られている。結晶粒の微細化については種々の研究・開発が行われている。
 例えば、特許文献1には、C:0.4重量%以下、合金元素の含有量の合計:5%以下の鋼に連続熱間圧延の終段において、圧下率40%以上で平均ひずみ速度60/秒以下の圧下を加え、さらに、2秒以内に連続して圧下率40%以上の圧下を加えることを特徴とする、超細粒フェライト鋼の製造方法が提案されている。
 また、特許文献2には、粗圧延後にタンデム圧延機列を用いて仕上げ圧延を行う微細粒熱延鋼板の製造方法が開示されている。特許文献2では、前記タンデム圧延機列の最終から1段前の圧延機でAr点以上の温度で圧延した後、50℃/秒以上の平均冷却速度で「Ar点-20℃」以下の温度域まで冷却し、更に、前記タンデム圧延機列の最終圧延機で20%以下の圧下率で圧延し、その後0.4秒以内に720℃まで冷却することを特徴とする、フェライトの平均粒径が5μm以下の微細粒熱延鋼板の製造方法が提案されている。
 また、特許文献3には、C:0.05~0.10重量%、Si:0.30~2.0重量%、Mn:1.0重量%以下、Al:0.003~0.100重量%、Ti:0.05~0.30重量%を含有し、残部Fe及び不純物よりなる連続鋳造スラブを950℃以上、1100℃以下の温度に加熱した後、1回あたりの圧下率が20%以上となる圧下を少なくとも2回以上行い、仕上圧延温度がAr変態点以上となるように熱間圧延した後、20℃/秒以上の冷却速度で冷却し、350℃から550℃の温度範囲で巻き取ることを特徴とする、超微細組織を有する高張力熱延鋼板の製造方法が提案されている。
 また、特許文献4には、0.15%≦C≦0.40%、1.5%≦Mn≦3%、0.005%≦Si≦2%、0.005%≦Al≦0.1%、S≦0.05%、P≦0.1%、0.025%≦Nb≦0.1%を含有し、組成の残りは鉄および加工から生じる不可避的な不純物より成る半完成品を1050℃と1250℃との間の温度T1まで加熱するステップ、再加熱した半完成品を、粗圧延機で1050と1150℃との間の温度T2にて100%を超える累積圧下率εaを用いて圧延し、40マイクロメートル未満の平均粒度を有する、完全に再結晶化されていないオーステナイト構造を有する鋼板を得るステップ、次に、鋼板を、完全ではないが、2℃/秒を超える速度VR1にて970℃とAr+30℃との間の温度T3まで冷却するステップ、次に不完全に冷却された鋼板を仕上げ圧延機fで温度T3にて50%を超える累積圧下率εbを用いて圧延して鋼板を得るステップ、次に臨界マルテンサイト焼入れ速度を超える速度VR2にて、鋼板を冷却するステップ、を含む、マルテンサイト鋼板の製造方法が記載されている。
 材料を高強度化すると、一般的には靱性が劣化する。そのため、靱性を劣化させずに高強度化を図ることが高強度の熱延鋼板を開発する上で重要となる。また、自動車用部材として使用される場合、引張特性や靱性に異方性が少なく、等方性に優れることが望ましい。また、鋼板製造時の負荷が小さいことも、高強度の熱延鋼板を開発する上で重要となる。
 しかしながら、特許文献1に記載の熱延鋼板では、結晶粒を微細化させて材料特性を向上させるために大圧下の圧延を行っており、圧延機の負荷が大きい。また、フェライトを主に含む組織であるため強度が不十分である。
 また、特許文献2に記載の熱延鋼板では、未再結晶域でひずみを蓄積することにより結晶粒を微細化させているため、引張特性や靱性の異方性が大きくなる。
 また、特許文献3に記載の熱延鋼板では、スラブ加熱温度を低温化させることにより結晶粒の微細化を行っているが、スラブ加熱温度が低温の場合、溶体化や元素の偏析が解消されないため、引張特性や靱性の異方性が大きくなる。
 また、特許文献4に記載の製造方法では、粗圧延工程において、Nb等を添加することによって再結晶を抑制し、完全再結晶化していないオーステナイト粒で平均粒径40μm以下の結晶粒を作りこんでいる。すなわち、仕上げ圧延前の粗圧延板は、結晶粒は再結晶した細粒なものと、再結晶していない、アスペクト比の高い扁平で粗粒なものの混粒組織となっている。このような粗圧延板を仕上げ圧延したとしても、等方的な組織と特性を有する熱延鋼板を得るのは容易ではない。
日本国特開昭59-229413号公報 日本国特許第4803210号公報 日本国特開平10-8138号公報 日本国特表2014-517873号公報
 本発明は、上記事情に鑑みてなされたものであり、引張強度及び靱性の等方性に優れ、引張強度が980MPa以上の熱延鋼板を提供することを課題とする。また、本発明は、圧延機への負荷を小さくでき、引張強度及び靱性の等方性に優れ、かつ引張強度980MPa以上の熱延鋼板を製造可能な熱延鋼板の製造方法を提供することを課題とする。
 本発明者らは、上記した目標を達成するために、低圧下の圧延でも熱延鋼板の結晶粒を十分に微細化させる手法、さらに引張特性や靱性の等方性を向上させる手法について鋭意研究した。その結果、粗圧延時の圧延温度、圧下率、冷却速度を最適化し、粗圧延板の組織を細粒化することで、低圧下の仕上圧延でも仕上圧延中に再結晶が生じて熱延鋼板の結晶粒が微細化し、圧延機の負荷を小さくでき、引張強度が高く、引張強度及び靱性の等方性が向上した熱延鋼板を得ることが可能となることを見出した。
 また、機械特性と詳細な組織解析により、旧オーステナイト粒径が1.0μm以上10.0μm以下で、そのアスペクト比が1.8以下、残部組織の粒径が5.0μm以下でそのアスペクト比が2.0以下の場合、引張強度980MPa以上を有し、引張特性(特に引張強度)と靱性の等方性に優れた高強度熱延鋼板を得ることが可能となることをさらに見出した。
 本発明は、かかる知見に基づき、さらに検討を重ねて完成されたものである。すなわち、本発明の要旨は次の通りである。
[1]本発明の一態様に係る熱延鋼板は、質量%で、C:0.010%以上、0.200%以下、Si:1.00%以下、Mn:3.0%以下、P:0.040%以下、S:0.004%以下、Al:0.10%以下、N:0.004%以下、Nb:0%以上、0.20%以下、Ti:0%以上、0.15%以下、Mo:0%以上、1.00%以下、Cu:0%以上、0.50%以下及びNi:0%以上、0.50%以下、を含有し、残部がFe及び不純物からなる化学組成を有し、金属組織が90体積%以上のマルテンサイトと、0体積%以上10体積%以下の残部組織とからなり、前記残部組織がベイナイトまたはフェライトの一方または両方を含み、圧延方向に平行な断面であるL断面と、前記圧延方向と直交する方向に平行な断面であるC断面と、における旧オーステナイトの平均粒径がそれぞれ、1.0μm以上、10.0μm以下であり、前記L断面の旧オーステナイトの前記平均粒径と、前記C断面の前記旧オーステナイトの前記平均粒径との比であるアスペクト比が1.8以下であり、前記L断面及び前記C断面における前記残部組織の平均粒径がそれぞれ、5.0μm以下であり、前記L断面の前記残部組織の前記平均粒径と、前記C断面の前記残部組織の前記平均粒径との比であるアスペクト比が2.0以下である。
[2]上記[1]に記載の熱延鋼板では、前記化学組成が、質量%で、Nb:0.01%以上0.20%以下、Ti:0.01%以上0.15%以下、Mo:0.01%以上1.00%以下、Cu:0.01%以上0.50%以下及びNi:0.01%以上0.50%以下のうちから選ばれる1種又は2種以上を含有してもよい。
[3]本発明の別の態様に係る熱延鋼板の製造方法は、上記[1]又は[2]に記載の化学組成を有する鋼素材を、1100℃以上1350℃以下に加熱してから、前記鋼素材に対して複数回のパスの圧下を行うことで粗圧延及び仕上圧延を行って、熱延鋼板を得る熱間圧延工程と、前記熱間圧延工程完了後、前記熱延鋼板に対し、5秒以内に冷却を開始し、かつ30℃/秒以上の平均冷却速度で300℃以下の温度範囲まで冷却する冷却工程と、前記冷却工程後の前記熱延鋼板を300℃以下の前記温度範囲で巻き取る巻取り工程と、を備え、前記粗圧延を下記(I)の条件で行い、前記仕上圧延を下記(II)の条件で行う。
(I)前記粗圧延における最終の圧延パス後の前記鋼素材の温度Tを1000℃以上1300℃以下の範囲とし、最終の圧延パスの圧下率を、単位%で、105-0.05×T以上とし、最終の圧延パス通過後5秒以内に冷却を開始し、かつ20℃/秒以上の平均冷却速度でAr+30℃以上Ar+300℃以下の温度まで冷却する。
(II)前記仕上圧延における最終の圧延パス後の鋼板の温度をAr点以上とし、前記仕上圧延における最終パスの圧下量を12~45%の範囲とする。前記Ar点は下記(式1)で求められる温度である。
 Ar(℃)=910-310×C-80×Mn-20×Cu-55×Ni-80×Mo…(式1)
 式1中、C、Mn、Cu、Ni及びMoは各元素の質量%での含有量であり、含有しない元素は0を代入する。
[4]上記[3]の熱延鋼板の製造方法では、前記粗圧延によって、前記仕上圧延前の鋼板の金属組織を、前記粗圧延の圧延方向に平行な断面であるL断面と、圧延方向と直交する方向に平行な断面であるC断面と、におけるオーステナイトの平均粒径をそれぞれ、100μm以下とし、前記L断面及び前記C断面それぞれの前記オーステナイトの平均粒径の比であるアスペクト比を2.0以下にしてもよい。
 本発明の上記態様によれば、引張強度及び靱性の等方性に優れ、引張強度が980MPa以上の熱延鋼板を提供できる。また、本発明の上記態様によれば、高強度でかつ引張強度及び靱性の等方性に優れた熱延鋼板を圧延機の負荷を高めることなく製造することができる。本発明の熱延鋼板は、自動車の構造部品や骨格、トラックフレームの素材として好適である。本発明の熱延鋼板を自動車の構造部品等に適用することで、自動車の安全性を確保しつつ車体重量を軽減でき、環境負荷を低減することが可能となる。
<熱延鋼板>
 本発明の一実施形態に係る熱延鋼板(本実施形態に係る熱延鋼板)は、所定の化学組成を有し、金属組織が90体積%以上のマルテンサイトと、0体積%以上10体積%以下の残部組織とからなり、残部組織がベイナイトまたはフェライトの一方または両方を含み、旧オーステナイト粒径が1.0μm以上10.0μm以下であり、旧オーステナイト粒径のアスペクト比が1.8以下であり、残部組織の平均粒径が5.0μm以下、残部組織の平均粒径のアスペクト比が2.0以下である熱延鋼板である。
 以下、本実施形態に係る熱延鋼板について具体的に説明する。まず、本実施形態に係る熱延鋼板の化学組成の限定理由について説明する。以下の各化学成分を表す%は、すべて質量%を意味する。
[C:0.010%以上、0.200%以下]
 Cは、固溶強化と、焼入れ性を向上させ、低温変態相であるマルテンサイトを生成させて熱延鋼板の強度を確保するために必要な元素である。この効果を得るため、C含有量を0.010%以上とする。一方、C含有量が0.200%を超えると、加工性及び溶接性が劣化する。従って、C含有量は0.010%以上、0.200%以下の範囲とする。より好ましくは、0.040%以上、0.180%以下の範囲とする。
[Si:1.00%以下]
 Si含有量が1.00%を超えると熱延鋼板の表面性状が著しく劣化し、化成処理性や耐食性の低下を招く。したがって、Si含有量は1.00%以下とする。好ましくは0.80%以下である。一方、Siは靱性を劣化させる粗大な酸化物やセメンタイトを抑制し、固溶強化にも寄与する元素である。そのため、Si含有量を0.40%以上としてもよい。
[Mn:3.0%以下]
 Mn含有量が3.0%を超えると、凝固偏析によるバンド状組織が形成されて異方性が強くなり、加工性及び耐遅れ破壊特性が劣化する。従って、Mn含有量は3.0%以下の範囲とする。好ましくは、2.0%以下の範囲とする。一方、Mnは、固溶して鋼の強度増加に寄与するとともに、焼入れ性を高める元素である。この効果を得るため、Mn含有量を0.5%以上としてもよい。
[P:0.040%以下]
 Pは、固溶して鋼の強度増加に寄与する元素であるが、粒界、特に旧オーステナイト粒界に偏析し、低温靱性や加工性の低下を招く元素でもある。このため、P含有量は極力低減することが好ましいが、0.040%までの含有は許容できる。したがって、P含有量は0.040%以下とする。好ましくは0.030%以下であり、より好ましくは0.020%以下である。しかしながら、P含有量を過度に低減しても精錬コストの増大に見合う効果が得られない。そのため、P含有量は0.003%以上とすることが好ましく、0.005%以上としてもよい。
[S:0.004%以下]
 Sは、Mnと結合して粗大な硫化物を形成し、熱延鋼板の加工性を低下させる元素である。そのため、S含有量は極力低減することが好ましいが、0.004%までの含有は許容できる。したがって、S含有量は0.004%以下とする。好ましくは0.003%以下であり、より好ましくは0.002%以下である。しかしながら、S含有量を過度に低減しても精錬コストの増大に見合う効果が得られない。そのため、S含有量は0.0003%以上とすることが好ましく、0.0005%以上としてもよい。
[Al:0.10%以下]
 Alの過剰な含有は酸化物系介在物の増加を招くので、Al含有量が過剰になると、熱延鋼板の靱性が低下するとともに、疵発生の原因となる。したがって、Al含有量は0.10%以下とする。好ましくは0.08%以下である。一方、Alは、脱酸剤として作用し、鋼の清浄度を向上させるのに有効な元素である。この効果を得るため、Al含有量を0.005%以上としてもよい。
[N:0.004%以下]
 N含有量が0.004%を超えると、窒化物を形成しないNが固溶Nとして存在するようになり、靱性が低下する。このため、N含有量は0.004%以下とする。好ましくは、0.003%以下である。一方、Nは、窒化物形成元素と結合することにより窒化物として析出し、結晶粒の微細化に寄与する元素である。この効果を得るため、N含有量を0.0005%以上としてもよい。
 以上が本実施形態に係る熱延鋼板の基本成分であるが、本実施形態に係る熱延鋼板は、例えば靱性向上や高強度化等を目的として、必要に応じて、Nb:0.20%以下、Ti:0.15%以下、Mo:1.00%以下、Cu:0.50%以下、及びNi:0.50%以下のうちから選ばれる1種又は2種以上を含有することができる。これらの元素の必ずしも含有しなくてよいので、下限は0%であるが、効果を得る場合、好ましくは0%超である。
[Nb:0%以上、0.20%以下]
 Nbは、炭窒化物の形成を介して熱延鋼板の強度及び疲労強度の増加に寄与する元素である。このような効果を発現させるためには、Nb含有量を0%超とすることが好ましく、0.01%以上とすることがより好ましく、0.020%以上とすることがさらに好ましい。一方、Nb含有量が0.20%を超えると、変形抵抗が増加するため、熱延鋼板の製造時に、熱間圧延の圧延荷重が増加し、圧延機への負担が大きくなり過ぎて圧延操業そのものが困難になる恐れがある。また、Nb含有量が0.20%を超えると、粗大な析出物が形成されて熱延鋼板の靱性が低下する傾向にある。したがって、Nb含有量は0.20%以下とし、好ましくは、0.15%以下の範囲とする。
[Ti:0%以上、0.15%以下]
 Tiは、微細な炭窒化物を形成して結晶粒を微細化することにより、鋼板の強度と疲労強度とを向上させる元素である。この様な効果を発現させるためには、Ti含有量を0%超とすることが好ましく、0.01%以上とすることがより好ましく、0.05%超とすることがさらに好ましい。一方、Ti含有量が0.15%を超えて過剰になると、上記した効果が飽和する上、粗大な析出物の増加を招き、鋼板の靱性が低下する。したがって、Ti含有量は0.15%以下とする。好ましくは0.10%以下の範囲とする。
[Mo:0%以上、1.00%以下]
 Moは、焼入れ性を高め、熱延鋼板の高強度化に寄与する元素である。このような効果を得るためにはMo含有量を0%超とすることが好ましく、0.01%以上とすることがより好ましい。一方、Moは、合金コストが高く、また、Mo含有量が1.00%を超えると溶接性が劣化する。したがって、Mo含有量は1.00%以下とする。好ましくは0.40%以下の範囲とする。
[Cu:0%以上、0.50%以下]
 Cuは、固溶して鋼の強度増加に寄与する元素である。また、Cuは、焼入れ性を向上させる。これらの効果を得るためには、Cu含有量を0%超とすることが好ましく、0.01%以上とすることがより好ましく、0.05%以上とすることがさらに好ましい。一方、Cu含有量が0.50%を超えると熱延鋼板の表面性状が悪化する。したがって、Cu含有量は0.50%以下とする。好ましくは0.30%以下の範囲とする。
[Ni:0%以上、0.50%以下]
 Niは、固溶して鋼の強度増加に寄与し、また、焼入れ性を向上させる元素である。これらの効果を得るためには、Ni含有量を0%超とすることが好ましく、0.01%以上とすることがより好ましく、0.02%以上であることがさらに好ましい。一方、Niは、合金コストが高く、Ni含有量が0.50%を超えると溶接性が劣化する。したがって、Ni含有量は0.50%以下とする。好ましくは0.30%以下の範囲とする。
 その他の元素については、本実施形態に係る鋼板の効果を妨げない範囲で含まれていてもよい。例えば耐遅れ破壊特性の向上を目的に、Ca、REM(希土類金属:Rare-Earth Metal)等をそれぞれ0.005%以下含有してもよい。熱間加工性を向上させる微量元素等を含有することもできる。
 本実施形態に係る熱延鋼板において、上記成分以外の残部は、Fe及び不純物からなる。ここで、不純物とは、熱延鋼板を工業的に製造する際に、鉱石やスクラップ等のような原料を始めとして、製造工程の種々の要因によって混入する成分であって、本実施形態に係る熱延鋼板に対して意図的に添加した成分ではないものを意味する。
 次に、本実施形態に係る熱延鋼板の金属組織(ミクロ組織)の限定理由について説明する。
[金属組織が90体積%以上のマルテンサイトと、0体積%以上10体積%以下の残部組織とからなり、残部組織がベイナイトまたはフェライトの一方または両方を含む]
 本実施形態に係る熱延鋼板の組織は、90体積%以上のマルテンサイトと0体積%以上10体積%以下の残部組織からなる。本実施形態における「マルテンサイト」とは、基本的にはフレッシュマルテンサイトのことを意味するが、一部に(例えば10%以下の範囲で)、焼き戻しマルテンサイトが含まれていてもよい。焼戻しマルテンサイトは、マルテンサイトが焼戻されたものであって、マルテンサイトに比べて転位密度が低いマルテンサイトである。
 本実施形態に係る熱延鋼板において、マルテンサイトが90体積%未満になると、所望の強度を得ることが困難になる。そのため、マルテンサイトの体積率は90体積%以上とする。より好ましくは95体積%以上である。
 残部組織にはベイナイトおよび/またはフェライトを含む。さらには、残部組織に残留オーステナイトを含んでいてもよい。また、残部組織は、ベイナイトに含まれる炭化物も包含する。残部組織の体積率が高くなると、強度が低下し、所望の高強度を確保することが困難になる。このため、残部組織は10体積%以下とする、好ましくは5体積%以下であり、より好ましくは1体積%以下である。残部組織は0%であってもよい。
[旧オーステナイトの平均粒径が1.0μm以上10.0μm以下であり、旧オーステナイトの平均粒径の比であるアスペクト比が1.8以下]
 本実施形態に係る熱延鋼板は、旧オーステナイトの平均粒径が1.0μm以上10.0μm以下であり、そのアスペクト比が1.8以下である。
 ここで、旧オーステナイトの平均粒径が1.0μm以上10.0μm以下とは、鋼板の圧延方向に平行な断面であるL断面と、鋼板の圧延方向に直交する方向に平行な断面であるC断面と、における旧オーステナイトの平均粒径がそれぞれ、1.0μm以上10.0μm以下であることを意味する。L断面及びC断面は板厚方向の断面である。
 L断面またはC断面のいずれか一方における旧オーステナイトの平均粒径が10.0μmを超えると、引張強度が低下し、靱性も劣化する。そのため、旧オーステナイト粒径は、10.0μm以下とする。好ましくは5.0μm以下である。
 また、L断面またはC断面のいずれか一方における旧オーステナイトの平均粒径を1.0μm未満としても、細粒化による強度上昇や靱性改善の効果が飽和する上、マルテンサイト変態が起こりにくくなり、金属組織において90体積%以上のマルテンサイトを確保できない場合がある。このため、旧オーステナイト粒径は1.0μm以上とする。本実施形態に係る熱延鋼板は、その製造過程において、粗圧延でオーステナイトを十分に再結晶させることで、オーステナイト粒径を小さくする。しかしながら、粗圧延後のオーステナイト粒径は100μm以下であり、比較的大きい場合がある。そのため、仕上げ圧延を行っても、オーステナイトが3.0μm以下まで小さくならない場合がある。そのため、実用的には、本実施形態に係る熱延鋼板の旧オーステナイト粒径を3.0μm超、もしくは3.5μm以上としてもよい。
 また、旧オーステナイトのアスペクト比が1.8以下とは、L断面の旧オーステナイトの平均粒径とC断面の旧オーステナイトの平均粒径との比が1.8以下であることを意味する。
 旧オーステナイト粒径のアスペクト比は、引張強度や靱性の異方性に影響を与える。旧オーステナイト粒径のアスペクト比が1.8を超えると、引張強度や靱性の異方性が強まる。そのため、旧オーステナイト粒径のアスペクト比は1.8以下とする。好ましくは1.5以下である。
[残部組織の平均粒径が5.0μm以下、残部組織の平均粒径のアスペクト比が2.0以下]
 残部組織は軟質相のため、残部組織の平均粒径が5.0μmを超えると熱延鋼板の強度が低下し、所望の強度を得ることが困難になる。そのため、平均粒径を5.0μm以下とする。残部組織の平均粒径の下限は特に無いが、製法上の観点から1.0μm未満とすることは困難なため、現実的な残部組織の平均粒径は1.0μm以上5.0μm以下とする。ここで、残部組織の平均粒径が1.0μm以上5.0μm以下とは、L断面及びC断面とにおける残部組織の平均粒径がそれぞれ1.0μm以上5.0μm以下であることを意味する。
 また、残部組織のアスペクト比は、引張強度や靱性の異方性に影響を与える。残部組織のアスペクト比が2.0を超えると、引張強度や靱性の異方性に強くなるので、残部組織のアスペクト比は2.0以下とする。好ましくは1.8以下である。
 残部組織の平均粒径のアスペクト比が2.0以下とは、L断面の残部組織の平均粒径とC断面の残部組織の平均粒径との比が2.0以下であることを意味する。
 本実施形態に係る熱延鋼板において、各相又は組織の同定や平均粒径の算出は、走査型電子顕微鏡(SEM)で撮像した組織写真を用いた画像処理と、後方散乱電子回折像解析(EBSP又はEBSD)によって行うことができる。
 より具体的には、旧オーステナイトの平均粒径、およびそのアスペクト比は以下のようにして決定される。
 熱延鋼板の板幅をWとしたとき、熱延鋼板の幅方向で片端から1/4W(幅)又は3/4W(幅)付近において、圧延方向に平行(L断面)、および垂直(C断面)な板厚方向断面が観察面となるように試料を採取する。断面を鏡面研磨した後、ピクリン酸で腐食を行って旧オーステナイト結晶粒の粒界を現出させる。その後、走査型電子顕微鏡(SEM)を用い、鋼板表面から板厚の1/4の深さ位置で、L断面の場合は鋼板の圧延方向400μm×厚さ方向400μm、C断面の場合は鋼板の板幅方向400μm×厚さ方向400μmの領域を観察する。観察領域は1つの連続した領域とする。
 得られた画像を画像解析装置を用いて解析することにより、旧オーステナイトの平均粒径を求める。オーステナイトの平均粒径は、円相当直径として求める。得られたL断面、およびC断面における旧オーステナイトの平均粒径のうち、大きい方をDpγ(L)、小さい方をDpγ(S)としたとき、Dpγ(L)/Dpγ(S)により得られる値を旧オーステナイトの平均粒径のアスペクト比とする。
 また、残部組織の同定、残部組織の平均粒径、およびアスペクト比は以下のようにして求める。
 鋼板の板幅をWとしたとき、鋼板の幅方向で片端から1/4W(幅)又は3/4W(幅)において、圧延方向に平行(L断面)、および垂直(C断面)な断面が観察面となるように試料を採取し、断面を鏡面研磨した後、電解研磨を行う。その後、鋼板表面から板厚の1/4の深さ位置で、L断面の場合は鋼板の圧延方向400μm×厚さ方向400μm、C断面の場合は鋼板の板幅方向400μm×厚さ方向400μmの領域を、0.1μmの測定間隔でEBSD解析する。EBSD解析は、例えば、サーマル電界放射型走査電子顕微鏡とEBSD検出器で構成された装置を用い、200~300点/秒の解析速度で実施する。
 ここで、上記により測定した各測定点の結晶方位情報に基づき、隣接する測定点同士の結晶方位の差を求めたものを方位差とする。この方位差が15°以上であるとき、隣接する測定点同士の中間を粒界と判断し、この粒界によって囲まれる領域を結晶粒と定義する。この結晶粒の同一粒内の方位差を単純平均して平均方位差を計算する。同一粒内の平均方位差の算出は、EBSD解析装置に付属のソフトウェアを用いて求めることができる。
 同一粒内の平均方位差が0.6°未満の粒をフェライトと定義する。フェライトと定義された粒の面積率をフェライトの体積率とする。
 また、同一粒内の平均方位差が0.6°以上の粒をベイナイトと定義する。マルテンサイトも同一粒内の平均方位差が0.6°以上となる可能性があるが、ベイナイトは炭化物を含み、形状がラス状の組織を呈することから、SEM像において炭化物を含みラス状の組織を呈しているものはベイナイトとし、その面積率をベイナイトの体積率とする。一方、マルテンサイトは、同一粒内の平均方位差が0.6°以上であり、ベイナイトと判定した以外の組織をマルテンサイトとする。本実施形態の熱延鋼板は、焼戻しを行わないため、マルテンサイトは炭化物を含まないフレッシュマルテンサイトになる。仮に、マルテンサイトに炭化物が生じたとしても本実施形態ではその量はごく微量であるため、組織中に炭化物が生じたマルテンサイトはベイナイトの体積率に含めてもよい。
 すなわち、マルテンサイトの体積率は、100%からフェライトの体積率とベイナイトの体積率を差し引いたものとなる。
 残部組織の平均粒径は、上記のEBSD解析により求めた値を用いて決定される。具体的には、方位差15°以上の境界を粒界として残部組織の結晶粒を特定し、下記式で算出される値を平均粒径とする。式中、Nは平均粒径の評価領域に含まれる結晶粒の数、Aiはi番目(i=1、2、・・、N)の粒の面積、diはi番目の結晶粒の円相当直径を示す。これらのデータはEBSD解析により容易に求められる。
Figure JPOXMLDOC01-appb-M000001
 上記の方法により得られたL断面およびC断面における残部組織の平均粒径のうち、大きい方をDr(L)、小さい方をDr(S)としたとき、Dr(L)/Dr(S)により得られる値を、残部組織のアスペクト比とする。
 本実施形態に係る熱延鋼板は、鋼板の圧延方向に対して平行なL方向と鋼板の圧延方向と直交するC方向の引張強度がそれぞれ980MPa以上であり、L方向の引張強度とC方向の引張強度との差の絶対値が100MPa未満になる。
 また、本実施形態に係る熱延鋼板は、L方向及びC方向の延性-脆性遷移温度がそれぞれ-60℃以下であり、L方向の延性-脆性遷移温度とC方向の延性-脆性遷移温度の差の絶対値が15℃未満になる。
 本実施形態に係る熱延鋼板によれば、上記の化学成分(化学組成)及び組織を満たすことで、高強度でかつ引張強度及び靱性の等方性に優れた熱延鋼板を得ることができる。したがって、本実施形態に係る熱延鋼板を自動車の構造部品などに適用することで、自動車の安全性確保や燃費向上に貢献できる。
 本実施形態に係る熱延鋼板は、製品形状に優れることがより好ましい。製品形状に優れることで、鋼板から部品を成形する際の成形加工において精度の高い部品を製造できるようになる。製品形状に優れるとは、鋼板の表面2500mmに付き1ヶ所の割合で30ヶ所の板厚を測定し、それらの平均値をtave、最大値と最小値の差をΔtとしたときに、Δt/taveが0.125未満であることをいう。
<熱延鋼板の製造方法>
 次に、本実施形態に係る熱延鋼板の製造方法について説明する。
 本実施形態に係る熱延鋼板の製造方法は、上で説明した化学成分(化学組成)を有する鋼素材を1100℃以上1350℃以下に加熱してから、鋼素材に対して複数回のパスの圧下を行って粗圧延及び仕上圧延を行って、熱延鋼板を得る熱間圧延工程と、仕上圧延終了後、熱延鋼板に対し、5秒以内に冷却を開始し、かつ30℃/秒以上の平均冷却速度で冷却する冷却工程と、冷却後の熱延鋼板を室温以上300℃以下の温度範囲で巻き取る巻取り工程と、を備える。
 粗圧延は、下記(I)の条件で行い、仕上圧延は、下記(II)の条件で行う。
(I)粗圧延:
 粗圧延では、最終の圧延パス後の鋼素材の温度Tを1000℃以上1300℃以下の範囲とし、最終の圧延パスの圧下率を105-0.05×T(%)(Tは最終の粗圧延パス後の鋼素材の温度(℃))以上とし、最終の圧延パス通過後5秒以内に冷却を開始し、かつ20℃/秒以上の平均冷却速度でAr+30℃以上Ar+300℃以下の温度まで冷却する。
(II)仕上圧延:
 仕上圧延における最終の圧延パス後の鋼板の温度をAr点以上とし、仕上圧延における最終パスの圧下量を12~45%の範囲とする。
 ただし、Ar点は下記(式1)で求められる温度である。
 Ar(℃)=910-310×C-80×Mn-20×Cu-55×Ni-80×Mo…(式1)
 式1中、C、Mn、Cu、Ni及びMoは各元素の含有量(質量%)であり、含有しない元素は0を代入する。
 以下、本実施形態に係る熱延鋼板の製造方法について詳細に説明する。
(1)熱間圧延工程
(鋼素材の加熱温度:1100℃以上1350℃以下)
 鋼素材の加熱温度は、溶体化や元素の偏析解消に大きな影響を与える。加熱温度が1100℃未満では溶体化や元素偏析解消が不十分であり、製品の引張強度や靱性に異方性が生じる。また、加熱温度を1100℃以上とすることで、オーステナイト粒の粗大化を抑制する効果を有する元素を溶体化することができる。
 一方、加熱温度が1350℃を超えると溶体化や元素偏析解消の効果が飽和するばかりか、オーステナイトの平均粒径が粗大化するので、粗圧延後に所望のオーステナイトの平均粒径を得ることが困難になる。したがって、鋼素材の加熱温度は1100℃以上1350℃以下とする。好ましくは1150℃以上1300℃以下である。
(a)粗圧延工程
(最終の圧延パス後の、鋼素材の温度T:1000℃以上1300℃以下)
 粗圧延では、粗圧延用の圧延スタンドに鋼素材を複数回に渡って連続して通過させる圧延を行うが、最終の圧延パス後の鋼素材の温度Tが1000℃以上1300℃以下になるように粗圧延を行う。
 本実施形態に係る熱延鋼板の製造方法においては、粗圧延中に再結晶を生じさせることにより、仕上圧延開始前のオーステナイト粒径を微細化させる必要がある。粗圧延中に再結晶を生じさせるためには、粗圧延中の鋼素材の温度が高温であることが望ましい。鋼素材の粗圧延温度Tが1000℃未満になると、粗圧延中に再結晶を生じさせるために大圧下を要するようになり、粗圧延時に大きな負荷が必要となる。よって、粗圧延温度Tを1000℃以上とする。また、粗圧延温度Tが1300℃を超えると、仕上圧延開始前までに粒成長が生じてしまい、仕上圧延後の組織も粗大化し、所望の組織や特性を得ることができなくなる。ここでいう粗圧延温度とは、複数のパスの圧下を行う粗圧延工程における最低温度のことであり、本実施形態では、最終の圧延パス直後の鋼素材の温度Tを意味する。
(最終の圧延パスの圧下率が105-0.05×T(%)以上)
 粗圧延時の最終の圧延パスの圧下率は、粗圧延完了直後の粒径に大きな影響を与える。最終の圧延パスの圧下率が105-0.05×T(%)未満(Tは最終の粗圧延パス後の鋼素材の温度(℃))となると、粗圧延時の最終の圧延パスの加工中に十分に再結晶を起こすことができず、粗圧延完了直後の粒径が粗大化したり、一部のみに再結晶が生じることで組織が混粒になり、後述する仕上圧延工程後の組織も粗大化あるいは混粒化したりする。また、加工中に十分な再結晶を起こせないことで、組織のアスペクト比が増加するので、所望の組織や特性を得ることができなくなる。したがって、粗圧延の最終の圧延パスの圧下率は105-0.05×T(%)以上とする。
(最終の圧延パス通過後5秒以内に20℃/秒以上の平均冷却速度で冷却開始)
 粗圧延終了時の鋼板(粗圧延板)の温度は1000℃以上である。そのため、粒成長が生じやすい。そこで、熱間圧延工程中での粒成長を抑制するために粗圧延板を冷却する。このとき、粗圧延終了後から冷却開始までの時間が5秒を超えてしまうと、粗圧延板の組織が粗大化してしまう。また、冷却開始までの時間が5秒以内であっても、20℃/秒未満の平均冷却速度では冷却過程中に大きな粒成長が生じ、粗圧延板の組織が粗大化してしまう。したがって、粗圧延の最終の圧延パス通過後から冷却開始までの時間を5秒以内とし、平均冷却速度は20℃/秒以上とする。より好ましくは3秒以内に冷却を開始し30℃/秒以上の平均冷却速度で冷却する。
(冷却停止温度:Ar+30℃以上Ar+300℃以下)
 粗圧延終了後の冷却は、上記の冷却開始時間、および冷却速度で、Ar+30℃以上Ar+300℃以下の温度域まで冷却を行う。冷却停止温度がAr+30℃未満になると、その後の仕上圧延工程中に圧延温度がAr点未満になる恐れがある。圧延温度がAr点未満になると、仕上圧延中にフェライトが生じてしまい、所望の組織や特性を得ることができなくなる。また、冷却停止温度がAr+300℃を超えると、仕上圧延開始前までに粒成長が生じてしまい、後述する仕上圧延後の組織も粗大化し、所望の組織や特性を得ることができなくなる。したがって、粗圧延後の冷却は、Ar+30℃以上Ar+300℃以下の温度域まで行う。好ましくは冷却停止温度は、Ar+30℃以上Ar+100℃以下である。
 平均冷却速度は、冷却開始時と冷却終了時の間の粗圧延板の温度差を、冷却開始から冷却終了までの所要時間で除したものとする。冷却開始時は粗圧延板に対する水等の冷却媒体の噴射開始時であり、冷却終了時は冷却媒体の噴射終了時である。
 仕上圧延開始前の粗圧延板は、オーステナイトの平均粒径が100μm以下であり、オーステナイトのアスペクト比が2.0以下の金属組織になっていることが好ましい。
 ここで、オーステナイトの平均粒径が100μm以下とは、粗圧延の圧延方向に平行な断面であるL断面と、圧延方向と直交する方向に平行な断面であるC断面と、におけるオーステナイトの平均粒径がそれぞれ、100μm以下であることをいう。L断面及びC断面は板厚方向の断面である。
 また、オーステナイトのアスペクト比が2.0以下とは、L断面オーステナイトの平均粒径とC断面のオーステナイトの平均粒径との比(ただし値の大きい方/値の小さい方)が2.0以下であることをいう。
 仕上圧延開始前のオーステナイト粒径が細粒化するほど、仕上圧延時に再結晶を生じさせるのに必要な圧下率が低くなる。仕上圧延開始前のオーステナイトの平均粒径が100μmを超えると、仕上圧延中に再結晶を生じさせるのに必要な圧下率が高くなり、圧延機の負荷が増大し、製品形状の劣化につながる場合がある。したがって、仕上圧延開始前のオーステナイトの平均粒径は100μm以下とすることが好ましい。より好ましくは50μm以下、さらに好ましくは30μm以下である。
 また、仕上圧延前のオーステナイト粒径のアスペクト比は、仕上圧延後の組織のアスペクト比に大きな影響を与える。仕上圧延前のオーステナイトのアスペクト比が2.0を超えると、仕上圧延後の組織の旧オーステナイト粒径や残部組織のアスペクト比が所定の値を満足しなくなる恐れがあり、引張強度と靱性の等方性が損われる可能性がある。したがって、仕上圧延前のオーステナイト粒径のアスペクト比は2.0以下とすることが好ましい。より好ましくは1.5以下である。
 粗圧延板のオーステナイトの平均粒径及びアスペクト比を確認するためには、仕上圧延に入る前の粗圧延板を可能な限り高速で急冷し、好ましくは20℃/秒以上の冷却速度で室温まで急冷し、粗圧延板の断面の組織をエッチングしてオーステナイト粒界を現出させ、走査型電子顕微鏡にて観察する。
 より具体的には、粗圧延板の板幅をWとしたとき、急冷後の粗圧延板の幅方向で片端から1/4W(幅)又は3/4W(幅)において、圧延方向に平行(L断面)、および垂直(C断面)な断面が観察面となるように試料を採取し、断面を鏡面研磨した後、ピクリン酸で腐食を行ってオーステナイト結晶粒の粒界を現出させる。その後、走査型電子顕微鏡(SEM)を用い、粗圧延板表面から板厚の1/4の深さ位置で、L断面の場合は粗圧延板の圧延方向200μm×厚さ方向200μm、C断面の場合は粗圧延板の板幅方向200μm×厚さ方向200μmの領域を観察する。得られた画像を画像解析装置を用いて解析することにより、オーステナイトの平均粒径を求める。オーステナイトの平均粒径は、円相当直径として求める。得られたL断面、およびC断面におけるオーステナイトの平均粒径のうち、大きい方をDpγ(L)、小さい方をDpγ(S)としたとき、Dpγ(L)/Dpγ(S)により得られる値をオーステナイト粒径のアスペクト比とする。
(b)仕上圧延工程
 仕上圧延工程は、仕上圧延用の圧延スタンドに鋼素材を複数回に渡って連続して通過させる(複数パスの)圧延を行う。このとき、仕上圧延における最終の圧延パス後の鋼板の温度をAr点以上とし、仕上圧延における最終パスの圧下量を12~45%の範囲とする。
(最終の圧延パス後の、鋼板の温度:Ar点以上)
 仕上圧延時の温度がAr点未満となると、仕上圧延中にフェライトが生じてしまう。そのため、所望の組織や特性を得ることができなくなる。したがって、仕上圧延時の温度はAr点以上とする。ここでいう仕上圧延時の温度とは、複数のスタンドを有する仕上圧延工程における最低温度のことであり、本実施形態では、最終の圧延パス直後の鋼板の温度を用いる。
(最終パスの圧下量を12~45%)
 本実施形態に係る熱延鋼板の製造方法では、粗圧延においてオーステナイトを細粒化する。そのため、仕上圧延における圧下量を大きくしなくても、引張強度及び靱性の等方性に優れた鋼板が得られるようになる。ただし、最終パスの圧下量が12%未満では、仕上圧延において再結晶が起こらず、組織の等方性を確保できず、所望の特性を得ることができなくなる。また、最終パスの圧下量が45%を超えると、圧延スタンドの負荷が上昇してしまう。また、仕上圧延後の熱延鋼板の形状が劣化する場合がある。従って、仕上圧延における最終パスの圧下量は12~45%の範囲とすることが好ましく、15~45%の範囲とすることがより好ましい。
(c)仕上圧延終了後、5秒以内に冷却を開始し、かつ30℃/秒以上の平均冷却速度で冷却する冷却工程
 仕上圧延後、直ちに冷却を開始する。仕上圧延終了後から冷却開始までに要する時間が5秒を超えてしまうと、仕上圧延後の組織の粗大化が生じてしまう。また、冷却開始までの時間が5秒以内であっても、平均冷却速度が30℃/秒未満では冷却中にフェライトやベイナイトが生成しやすくなり、所望の組織や特性を得ることができなくなる。したがって、仕上圧延終了時から冷却開始時までの時間は5秒以内とし、平均冷却速度は、30℃/秒以上の冷却速度とする。好ましくは3秒以内に冷却を開始し、50℃/秒以上の平均冷却速度で冷却する。仕上圧延終了時とは、仕上圧延の最終の圧延パス通過時であり、冷却開始時とは、後述するように、鋼板への冷却媒体の噴射開始時である。
 本実施形態に係る熱延鋼板の製造方法において、粗圧延後の旧オーステナイト粒は、粗大化していない旧オーステナイト粒、即ち、オス卜ワルド成長により細粒領域が粗大粒に吸収されていないオーステナイト粒であり、細粒領域が混在する旧オーステナイトである。そのため、仕上圧延後の旧オーステナイト粒も、この粗圧延後のオーステナイト粒の特徴を引き継いでおり、微粒領域が混じっているが粒界が安定化している。このため、冷却開始を仕上げ圧延後の5秒以内としても、細粒領域が粗大粒に吸収されることが無く、その後の延性-脆性遷移温度が高くなる。微粒領域とは、旧オーステナイト粒径で平均粒径の20%以下の部分が面積率で30%以下含まれる領域である。
 本実施形態では、仕上圧延設備の後段に冷却設備を設置し、この冷却設備に対して仕上げ圧延後の鋼板を通過させながら冷却を行う。冷却設備は、30℃/秒以上の冷却速度で鋼板を冷却可能な設備が望ましい。そのような冷却設備として例えば、冷却媒体として水を用いた水冷設備を例示できる。
 平均冷却速度は、冷却開始時から冷却終了時までの鋼板の温度降下幅を、冷却開始時から冷却終了時までの所要時間で除した値とする。冷却開始時とは、冷却設備による鋼板への冷却媒体の噴射開始時とし、冷却終了時とは冷却設備からの鋼板の導出時とする。
 また、冷却設備には、途中に空冷区間がない設備や、途中に1以上の空冷区間を有する設備がある。本実施形態では、いずれの冷却設備を用いてもよい。空冷区間を有する冷却設備を用いる場合であっても、冷却開始から冷却終了までの平均冷却速度が30℃/秒以上であればよい。
(d)鋼板を300℃以下の温度範囲で巻き取る巻取り工程
 冷却工程において冷却停止温度まで冷却された鋼板は、巻取り工程において室温以上300℃以下の温度範囲で巻き取られる。冷却工程後に直ちに鋼板の巻取りが行われるため、巻取り温度は冷却停止温度にほぼ等しい。巻取り温度が300℃を超えると、ポリゴナルフェライト又はベイナイトが多量に生成するため、所望に組織や特性を得ることができなくなる。従って、冷却停止温度となる巻取り温度は300℃以下とする。室温以上とは、20℃℃以上を意味する。
 なお、巻取り後、熱延鋼板には常法に従って調質圧延を施してもよく、また、酸洗を施して表面に形成されたスケールを除去してもよい。或いは更に、溶融亜鉛めっき、電気亜鉛めっき等のめっき処理や、化成処理を施してもよい。
 本実施形態に係る熱延鋼板について説明したのと同じ組成を有するは鋼素材を鋳造後、上で説明したように粗圧延、仕上圧延、その後の冷却および巻取り操作を実施することで、金属組織が90体積%以上のマルテンサイトと、0体積%以上10体積%以下の残部組織とからなり、残部組織がベイナイトまたはフェライトの一方または両方を含み、旧オーステナイト粒径が1.0μm以上10.0μm以下であり、旧オーステナイト粒径のアスペクト比が1.8以下であり、残部組織の平均粒径が5.0μm以下であり、残部組織の平均粒径のアスペクト比が2.0以下である熱延鋼板を製造することができる。それゆえ、上記の製造方法によれば、高強度でかつ引張強度と靱性の等方性に優れた熱延鋼板を圧延機の負荷を高めることなく製造することが可能である。
 以下、実施例によって本発明をより詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。
 表1に示す化学成分の溶鋼を転炉で溶製し、連続鋳造法によりスラブ(鋼素材)とした。次いで、これらの鋼素材を表2に示す熱間圧延、冷却及び巻取り条件により板厚3.0mmの熱延鋼板を製造した。表1及び表2中のAr(℃)は、以下の式により算出した。
 Ar(℃)=910-310×C-80×Mn-20×Cu-55×Ni-80×Mo…(式1)
 式1中、C、Mn、Cu、Ni及びMoは各元素の含有量(質量%)であり、含有しない元素は0を代入した。
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
 表2中の「加熱温度」はスラブの加熱温度である。粗圧延の最終パス温度は粗圧延時の最終パスの圧延機を通過直後の鋼板温度である。冷却開始までの時間は、粗圧延の最終パスを通過後から、冷却媒体の噴射開始時までの時間である。冷却時の冷却速度は、冷却設備導入時(冷却水噴射時)から水冷設備導出時に至るまでの鋼板の温度降下幅を、水冷設備に対する鋼板の所要通過時間で除した平均速度で表す。冷却停止温度は水冷設備導出後の温度とする。
 また、仕上圧延の最終圧延温度は、仕上圧延の最終パスの圧延機を通過直後の鋼板温度である。冷却開始までの時間は、仕上圧延の最終パスを通過時から、冷却媒体の噴射開始時までの時間である。冷却時の冷却速度は、水冷設備導入時(冷却水噴射時)から水冷設備導出時に至るまでの鋼板の温度降下幅を、水冷設備に対する鋼板の所要通過時間で除した平均速度で表す。
 得られた熱延鋼板から試験片を採取し、組織観察(走査型電子顕微鏡およびEBSD)、引張試験、シャルピー試験を行った。組織観察は、サーマル電界放射型走査電子顕微鏡(JEOL製JSM-7001F)とEBSD検出器(TSL製HIKARI検出器)で構成された装置を用い、200~300点/秒の解析速度で実施し、同一粒内の平均方位差の算出は、EBSD解析装置に付属のソフトウェア(OIM AnalysisTM)を用いて求めた。
 引張試験は、熱延鋼板から、引張方向が圧延方向と平行(L方向)、および垂直(C方向)になるようにJIS5号試験片を採取し、JIS Z 2241:2011の規定に準拠して引張試験を行い、引張強さ(TS)を求めた。本発明における引張強度の等方性に優れるとは、L方向、およびC方向引張における引張強度をそれぞれTS(L)、TS(C)とした際に、|TS(L)-TS(C)|で求められる値が100MPa未満となることを意味する。よって、L方向及びC方向の引張強度がそれぞれ980MPa以上であり、|TS(L)-TS(C)|が100MPa未満であれば高強度かつ引張強度の等方性に優れると判断とした。
 シャルピー試験は、熱延鋼板から、試験片の長手方向が圧延方向と平行(L方向)、および垂直(C方向)になるように、厚さ2.5mmのサブサイズ試験片(Vノッチ)を採取し、JIS Z 2242:2005の規定に準拠して、室温から-198℃の範囲の温度でシャルピー衝撃試験を行い、延性-脆性遷移温度を求めることで靱性を評価した。ここで、試験片の板厚は、熱延鋼板を両面研削にて板厚を2.5mmとして試験片を作製した。本発明における靱性に優れるとは、延性‐脆性遷移温度が-60℃以下であることを意味し、靱性の等方性に優れるとは、L方向、およびC方向シャルピー試験によって得られる延性-脆性遷移温度をそれぞれvTrs(L)、vTrs(C)とした際に、|vTrs(L)-vTrs(C)|で求められる値が15℃未満となることを意味する。よって、L方向及びC方向の延性-脆性遷移温度が-60℃以下であり、|vTrs(L)-vTrs(C)|が15℃未満であれば靭性に優れ、かつ靭性の等方性に優れると判断した。
 形状評価は、鋼板の表面2500mmに付き1ヶ所の割合で30ヶ所の板厚を測定し、それらの平均値をtave、最大値と最小値の差をΔtとしたときに、Δt/taveで算出される値で評価した。Δt/taveが0.125未満であれば形状に優れると評価した。ただし、引張強度及びその等方性と、延性-脆性遷移温度及びその等方性が合格レベルであれば、Δt/taveが0.125未満であっても本実施形態に係る鋼板の目標を達成しているとした。
 実施例の熱延鋼板は、L方向及びC方向の引張強度及び靱性がともに、所望の強度(L方向、C方向ともにTS:980MPa以上)と靱性(L方向、C方向ともに-60℃以下)とを有し、また、優れた引張強度と靱性の等方性(|TS(L)-TS(C)|が100MPa未満、|vTrs(L)-vTrs(C)|が15℃未満)を有している。更に、一部の熱延鋼板については、優れた製品形状を兼備した熱延鋼板となっていた。残部組織を含む熱延鋼板については、残部組織としてフェライトまたはベイナイトの一方または両方を含んでいた。
 一方、本発明の範囲を外れる比較例の熱延鋼板は、所望の強度や靱性が確保できていないか、その等方性が確保できていない。残部組織にはフェライトまたはベイナイトの一方または両方を含んでいた。
 No.4は、粗圧延完了後から冷却開始までの時間が長いため粒成長が生じ、仕上圧延前のオーステナイト粒径が大きくなった。そのため、仕上圧延中に再結晶を生じさせることができず、旧オーステナイト粒径が十分に微細化されなかった。また、仕上圧延前のオーステナイト粒径のアスペクト比が劣化していたので、仕上圧延後の組織の旧オーステナイト粒のアスペクト比も劣化した。その結果、引張強度や靱性とその等方性が劣化していた。
 No.6は、粗圧延時の最終パス圧下量が少なく、粗圧延中に再結晶を起こせなかったので、仕上圧延前のオーステナイト粒径が大きくなり、仕上圧延中に再結晶を生じさせることができなかった。また、旧オーステナイト粒径が十分に微細化されていないことや、残部組織も粗大化していたため、L方向の引張強度が劣化し、また、L方向及びC方向の靱性が劣化した。また、仕上圧延前のオーステナイト粒径のアスペクト比が劣化していたため、仕上圧延後の組織の旧オーステナイト粒のアスペクト比も劣化した。その結果、引張強度及び靱性の等方性が劣化していた。
 No.7は、仕上圧延後の冷却速度が遅く、冷却中にフェライトが生じ、かつフェライト粒径が粗大化していた。その結果、L方向およびC方向の引張強度が劣化していた。
 No.8は、仕上圧延後から冷却開始までの時間が長く、仕上圧延後に粒成長が生じたため旧オーステナイト粒が粗大化した。その結果、L方向およびC方向の靱性が劣化していた。
 No.11は、仕上圧延の最終パスにおける圧下量が少なかった。このため、仕上圧延時に再結晶化が十分に進まず、仕上圧延後の旧オーステナイト粒のアスペクト比も劣化した。その結果、靱性に異方性が生じた。
 No.14は、仕上圧延後の冷却停止温度(巻取り温度)が高く、ベイナイトが生成し、かつベイナイト粒径が粗大化していた。その結果、L方向の引張強度が劣化していた。
 No.19は、仕上圧延時の圧延温度が低く、圧延中にフェライトが生じたためL方向及びC方向の引張強度が劣化した。また、フェライト(残部組織)のアスペクト比が劣化していた。その結果、靱性の等方性が劣化した。
 No.25は、粗圧延後の冷却停止温度が高いため粒成長が生じ、仕上圧延前のオーステナイト粒径が大きくなり、仕上圧延中に再結晶を生じさせることができず、旧オーステナイト粒径が十分に微細化されなかった。その結果、L方向の引張強度が劣化した。また、L方向及びC方向の靱性も劣化した。また、仕上圧延前のオーステナイト粒径のアスペクト比が劣化したため、仕上圧延後の組織の旧オーステナイト粒のアスペクト比も劣化した。その結果、引張強度及び靱性の等方性が劣化した。
 No.28は、粗圧延後の冷却速度が遅いため粒成長が生じ、仕上圧延前のオーステナイト粒径が大きくなり、仕上圧延中に再結晶を生じさせることができなかったことで、旧オーステナイト粒径が十分に微細化されなかった。その結果、L方向及びC方向の引張強度並びに靱性が劣化した。
 No.29は、C含有量が少なく、十分なマルテンサイトが生成できなかった。その結果、L方向及びC方向の引張強度が劣化した。また、仕上圧延の最終パスの圧下量が高かったので、形状が劣位であった。
 No.30は、粗圧延、仕上圧延条件は満足しているが、Mn含有量が多くバンド状組織が形成されたため、引張強度及び靱性に異方性が生じ、また、L方向の靱性が劣化した。
 No.31は、粗圧延時の最終パス圧下量が少なく、粗圧延中に再結晶を起こせなかった。また、粗圧延後に冷却を行わなかったので、仕上圧延前のオーステナイト粒径が大きくなった。そのため、仕上圧延後の旧オーステナイト粒径が粗大化し、アスペクト比も劣化した。その結果、靭性が劣化するとともに、靭性の等方性、引張強度の等方性が劣化した。
 No.32は、粗圧延後に冷却を行わなかったので、仕上圧延前のオーステナイト粒径が大きくなった。そのため、仕上圧延後の旧オーステナイト粒径が粗大化した。その結果、靭性が劣化するとともに、靭性の等方性、引張強度の等方性が劣化した。
 No.33は、スラブ加熱温度が低かったので、溶体化や元素偏析解消が不十分となったことで偏析が残存し、粗圧延後のオーステナイト粒径のアスペクト比が大きくなった。その結果、引張強度や靱性に異方性が生じた。
 No.34は、粗圧延時の最終パス圧下量が少なく、粗圧延中に再結晶を起こせなかった。また、粗圧延後に冷却を行わなかったので、仕上圧延前のオーステナイト粒径が大きくなった。そのため、仕上圧延後の旧オーステナイト粒径が粗大化し、アスペクト比も劣化した。また、巻取り温度が高かったので、マルテンサイトの体積率が低下した。その結果、L方向及びC方向の引張強度が劣化した。
Figure JPOXMLDOC01-appb-T000004
 本発明によれば、引張強度及び靱性の等方性に優れ、引張強度が980MPa以上の熱延鋼板を提供できる。また、本発明の上記態様によれば、高強度でかつ引張強度及び靱性の等方性に優れた熱延鋼板を圧延機の負荷を高めることなく製造することができる。本発明の熱延鋼板は、自動車の構造部品や骨格、トラックフレームの素材として好適である。本発明の熱延鋼板を自動車の構造部品等に適用することで、自動車の安全性を確保しつつ車体重量を軽減でき、環境負荷を低減することが可能となる。そのため、本発明は、産業上の利用可能性が高い。

Claims (4)

  1.  質量%で、
    C:0.010%以上、0.200%以下、
    Si:1.00%以下、
    Mn:3.0%以下、
    P:0.040%以下、
    S:0.004%以下、
    Al:0.10%以下、
    N:0.004%以下、
    Nb:0%以上、0.20%以下、
    Ti:0%以上、0.15%以下、
    Mo:0%以上、1.00%以下、
    Cu:0%以上、0.50%以下及び
    Ni:0%以上、0.50%以下、
    を含有し、残部がFe及び不純物からなる化学組成を有し、
     金属組織が90体積%以上のマルテンサイトと、0体積%以上10体積%以下の残部組織とからなり、前記残部組織がベイナイトまたはフェライトの一方または両方を含み、
     圧延方向に平行な断面であるL断面と、前記圧延方向と直交する方向に平行な断面であるC断面と、における旧オーステナイトの平均粒径がそれぞれ、1.0μm以上、10.0μm以下であり、
     前記L断面の旧オーステナイトの前記平均粒径と、前記C断面の前記旧オーステナイトの前記平均粒径との比であるアスペクト比が1.8以下であり、
     前記L断面及び前記C断面における前記残部組織の平均粒径がそれぞれ、5.0μm以下であり、
     前記L断面の前記残部組織の前記平均粒径と、前記C断面の前記残部組織の前記平均粒径との比であるアスペクト比が2.0以下である
    ことを特徴とする熱延鋼板。
  2.  前記化学組成が、質量%で、
    Nb:0.01%以上0.20%以下、
    Ti:0.01%以上0.15%以下、
    Mo:0.01%以上1.00%以下、
    Cu:0.01%以上0.50%以下及び
    Ni:0.01%以上0.50%以下
    のうちから選ばれる1種又は2種以上を含有する
    ことを特徴とする、請求項1に記載の熱延鋼板。
  3.  請求項1又は請求項2に記載の化学組成を有する鋼素材を、1100℃以上1350℃以下に加熱してから、前記鋼素材に対して複数回のパスの圧下を行うことで粗圧延及び仕上圧延を行って、熱延鋼板を得る熱間圧延工程と、
     前記熱間圧延工程完了後、前記熱延鋼板に対し、5秒以内に冷却を開始し、かつ30℃/秒以上の平均冷却速度で300℃以下の温度範囲まで冷却する冷却工程と、
     前記冷却工程後の前記熱延鋼板を300℃以下の前記温度範囲で巻き取る巻取り工程と、
    を備え、
     前記粗圧延を下記(I)の条件で行い、
     前記仕上圧延を下記(II)の条件で行う
    ことを特徴とする熱延鋼板の製造方法。
    (I)前記粗圧延における最終の圧延パス後の前記鋼素材の温度Tを1000℃以上1300℃以下の範囲とし、最終の圧延パスの圧下率を、単位%で、105-0.05×T以上とし、最終の圧延パス通過後5秒以内に冷却を開始し、かつ20℃/秒以上の平均冷却速度でAr+30℃以上Ar+300℃以下の温度まで冷却する。
    (II)前記仕上圧延における最終の圧延パス後の鋼板の温度をAr点以上とし、前記仕上圧延における最終パスの圧下量を12~45%の範囲とする。前記Ar点は下記(式1)で求められる温度である。
     Ar(℃)=910-310×C-80×Mn-20×Cu-55×Ni-80×Mo…(式1)
     式1中、C、Mn、Cu、Ni及びMoは各元素の質量%での含有量であり、含有しない元素は0を代入する。
  4.  前記粗圧延によって、前記仕上圧延前の鋼板の金属組織を、前記粗圧延の圧延方向に平行な断面であるL断面と、圧延方向と直交する方向に平行な断面であるC断面と、におけるオーステナイトの平均粒径をそれぞれ、100μm以下とし、前記L断面及び前記C断面それぞれの前記オーステナイトの平均粒径の比であるアスペクト比を2.0以下にする
    ことを特徴とする請求項3に記載の熱延鋼板の製造方法。
PCT/JP2019/017932 2018-05-07 2019-04-26 熱延鋼板及びその製造方法 WO2019216269A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/048,430 US11486020B2 (en) 2018-05-07 2019-04-26 Hot-rolled steel sheet and production method therefor
CN201980029882.5A CN112088225B (zh) 2018-05-07 2019-04-26 热轧钢板及其制造方法
JP2019545824A JP6687167B2 (ja) 2018-05-07 2019-04-26 熱延鋼板及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-089179 2018-05-07
JP2018089179 2018-05-07

Publications (1)

Publication Number Publication Date
WO2019216269A1 true WO2019216269A1 (ja) 2019-11-14

Family

ID=68468058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/017932 WO2019216269A1 (ja) 2018-05-07 2019-04-26 熱延鋼板及びその製造方法

Country Status (5)

Country Link
US (1) US11486020B2 (ja)
JP (1) JP6687167B2 (ja)
CN (1) CN112088225B (ja)
TW (1) TW202003873A (ja)
WO (1) WO2019216269A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153746A1 (ja) * 2020-01-30 2021-08-05 日本製鉄株式会社 熱延鋼板およびその製造方法
JPWO2021199629A1 (ja) * 2020-03-30 2021-10-07

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113584263B (zh) * 2021-07-26 2022-06-21 安徽工业大学 一种消除s31035高合金奥氏体耐热钢中混晶的方法
TWI787940B (zh) * 2021-08-04 2022-12-21 中國鋼鐵股份有限公司 加熱爐的爐溫設定值的優化方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012077336A (ja) * 2010-09-30 2012-04-19 Jfe Steel Corp 曲げ特性と低温靭性に優れた高強度熱延鋼板およびその製造方法
WO2014132968A1 (ja) * 2013-02-26 2014-09-04 新日鐵住金株式会社 焼き付け硬化性と低温靭性に優れた引張最大強度980MPa以上の高強度熱延鋼板
JP2015196891A (ja) * 2014-04-02 2015-11-09 新日鐵住金株式会社 打抜き穴広げ性と低温靭性に優れた引張最大強度980MPa以上の高強度熱延鋼板及びその製造方法
JP2017179540A (ja) * 2016-03-31 2017-10-05 Jfeスチール株式会社 熱延鋼板およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229413A (ja) 1983-06-10 1984-12-22 Nippon Steel Corp 超細粒フェライト鋼の製造方法
JP3323737B2 (ja) 1996-06-14 2002-09-09 川崎製鉄株式会社 超微細組織を有する高張力熱延鋼板の製造方法
JP4803210B2 (ja) 2008-05-23 2011-10-26 住友金属工業株式会社 微細粒熱延鋼板の製造方法
JP5609383B2 (ja) 2009-08-06 2014-10-22 Jfeスチール株式会社 低温靭性に優れた高強度熱延鋼板およびその製造方法
WO2012153009A1 (fr) 2011-05-12 2012-11-15 Arcelormittal Investigación Y Desarrollo Sl Procede de fabrication d'acier martensitique a tres haute resistance et tole ainsi obtenue

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012077336A (ja) * 2010-09-30 2012-04-19 Jfe Steel Corp 曲げ特性と低温靭性に優れた高強度熱延鋼板およびその製造方法
WO2014132968A1 (ja) * 2013-02-26 2014-09-04 新日鐵住金株式会社 焼き付け硬化性と低温靭性に優れた引張最大強度980MPa以上の高強度熱延鋼板
JP2015196891A (ja) * 2014-04-02 2015-11-09 新日鐵住金株式会社 打抜き穴広げ性と低温靭性に優れた引張最大強度980MPa以上の高強度熱延鋼板及びその製造方法
JP2017179540A (ja) * 2016-03-31 2017-10-05 Jfeスチール株式会社 熱延鋼板およびその製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153746A1 (ja) * 2020-01-30 2021-08-05 日本製鉄株式会社 熱延鋼板およびその製造方法
CN114929918A (zh) * 2020-01-30 2022-08-19 日本制铁株式会社 热轧钢板及其制造方法
JP7372560B2 (ja) 2020-01-30 2023-11-01 日本製鉄株式会社 熱延鋼板およびその製造方法
CN114929918B (zh) * 2020-01-30 2023-12-26 日本制铁株式会社 热轧钢板及其制造方法
JPWO2021199629A1 (ja) * 2020-03-30 2021-10-07
JP7276443B2 (ja) 2020-03-30 2023-05-18 Jfeスチール株式会社 鋼板およびその製造方法

Also Published As

Publication number Publication date
US20210062289A1 (en) 2021-03-04
TW202003873A (zh) 2020-01-16
JPWO2019216269A1 (ja) 2020-05-28
CN112088225B (zh) 2021-11-19
JP6687167B2 (ja) 2020-04-22
US11486020B2 (en) 2022-11-01
CN112088225A (zh) 2020-12-15

Similar Documents

Publication Publication Date Title
KR102269845B1 (ko) 열연 강판 및 그 제조 방법
JP5029748B2 (ja) 靭性に優れた高強度熱延鋼板およびその製造方法
JP5157375B2 (ja) 剛性、深絞り性及び穴拡げ性に優れた高強度冷延鋼板及びその製造方法
JP4692259B2 (ja) 成形性および形状凍結性に優れる高強度鋼板
JP6687167B2 (ja) 熱延鋼板及びその製造方法
EP3438307A1 (en) Hot-dip galvanized steel sheet
JP2014019928A (ja) 高強度冷延鋼板および高強度冷延鋼板の製造方法
JP4901623B2 (ja) 打ち抜き穴広げ性に優れた高強度薄鋼板およびその製造方法
JP6866932B2 (ja) 熱延鋼板及びその製造方法
JP6866933B2 (ja) 熱延鋼板及びその製造方法
JP6468410B1 (ja) 熱延鋼板およびその製造方法
JP6879378B2 (ja) 熱延鋼板及びその製造方法
JP5353578B2 (ja) 穴広げ性に優れた高強度熱延鋼板及びその製造方法
KR20230038544A (ko) 강판 및 강판의 제조 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019545824

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19799769

Country of ref document: EP

Kind code of ref document: A1