WO2019215832A1 - フレキシブル発光デバイスの製造方法および製造装置 - Google Patents

フレキシブル発光デバイスの製造方法および製造装置 Download PDF

Info

Publication number
WO2019215832A1
WO2019215832A1 PCT/JP2018/017901 JP2018017901W WO2019215832A1 WO 2019215832 A1 WO2019215832 A1 WO 2019215832A1 JP 2018017901 W JP2018017901 W JP 2018017901W WO 2019215832 A1 WO2019215832 A1 WO 2019215832A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
stage
light
resin film
light emitting
Prior art date
Application number
PCT/JP2018/017901
Other languages
English (en)
French (fr)
Inventor
克彦 岸本
田中 康一
Original Assignee
堺ディスプレイプロダクト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 堺ディスプレイプロダクト株式会社 filed Critical 堺ディスプレイプロダクト株式会社
Priority to US16/968,052 priority Critical patent/US11101258B2/en
Priority to CN201880092863.2A priority patent/CN112042272A/zh
Priority to JP2019540121A priority patent/JP6694558B2/ja
Priority to PCT/JP2018/017901 priority patent/WO2019215832A1/ja
Publication of WO2019215832A1 publication Critical patent/WO2019215832A1/ja
Priority to US17/378,504 priority patent/US20210343686A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • H01L27/1266Multistep manufacturing methods with a particular formation, treatment or coating of the substrate the substrate on which the devices are formed not being the final device substrate, e.g. using a temporary substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/80Manufacture or treatment specially adapted for the organic devices covered by this subclass using temporary substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a method and an apparatus for manufacturing a flexible light emitting device.
  • Typical examples of flexible displays include films made of synthetic resins such as polyimide (hereinafter referred to as “resin film”), TFTs supported on the resin film (Thin Film Transistor), OLEDs (Organic Light Emitting Diodes), etc. It is equipped with the element.
  • the resin film functions as a flexible substrate. Since the organic semiconductor layer constituting the OLED is easily deteriorated by water vapor, the flexible display is sealed with a gas barrier film (sealing film).
  • the above-mentioned flexible display is manufactured using a glass base having a resin film formed on the upper surface.
  • the glass base functions as a support (carrier) that keeps the shape of the resin film flat during the manufacturing process.
  • a light emitting element such as a TFT element and an OLED, a gas barrier film, and the like
  • a flexible display structure is realized while being supported on the glass base. Thereafter, the flexible display is peeled off from the glass base to obtain flexibility.
  • a portion where light emitting elements such as TFT elements and OLEDs are arranged as a whole can be called a “functional layer region”.
  • Patent Document 1 discloses a method of irradiating an interface between an individual flexible display and a glass base with a laser beam in order to peel the individual flexible display from a glass base (supporting substrate). According to the method disclosed in Patent Document 1, after the release light irradiation, the individual flexible displays are divided and the respective flexible displays are peeled off from the glass base.
  • Such a problem is not limited to a flexible display having an OLED as a light emitting element, but may also occur when a flexible light emitting device having a micro LED ( ⁇ LED) formed from an inorganic semiconductor material as a light emitting element.
  • ⁇ LED micro LED
  • the present disclosure provides a method and an apparatus for manufacturing a flexible light-emitting device that can solve the above-described problems.
  • a method for manufacturing a flexible light-emitting device of the present disclosure is a laminated structure having a first surface and a second surface, the glass base defining the first surface; a TFT layer And a functional layer region including a light emitting element layer; a synthetic resin film which is positioned between the glass base and the functional layer region and is fixed to the glass base, and which supports the functional layer region
  • Preparing a laminated structure comprising: a substrate region; a synthetic resin film including an intermediate region surrounding the flexible substrate region; and a protective sheet covering the functional layer region and defining the second surface; The step of dividing the intermediate region of the synthetic resin film and the flexible substrate region, and the interface between the synthetic resin film and the glass base are illuminated with peeling light.
  • the first portion of the laminated structure includes the intermediate region and the light emitting device of the synthetic resin film attached to the stage, and the light emitting device includes the functional layer region and the flexible substrate region of the synthetic resin film.
  • the second part of the laminated structure includes the glass base.
  • the manufacturing method further includes a step of peeling the intermediate region of the synthetic resin film attached to the stage from the stage while maintaining the state where the light emitting device is attached to the stage.
  • the peeling light is non-coherent light.
  • the light emitting element layer includes a plurality of micro LEDs arranged, and the peeling light is laser light.
  • the method further includes a step of performing a process on the light emitting device in contact with the stage after the intermediate region of the synthetic resin film is peeled off from the stage.
  • the treatment includes any one of applying a dielectric and / or conductor film to the light emitting device, performing cleaning or etching, and mounting an optical component and / or an electronic component.
  • the step of separating the stacked structure into the first portion and the second portion is performed in a state where the stage adsorbs the second surface of the stacked structure.
  • the step of irradiating the interface between the synthetic resin film and the glass base with the peeling light is performed in a state where the stage adsorbs the second surface of the laminated structure.
  • the surface of the stage has a first region facing the light emitting device and a second region facing the intermediate region of the synthetic resin film, and the adsorption force in the first region. Is higher than the adsorption force in the second region.
  • the method before bringing the second surface of the laminated structure into contact with the stage, the method further includes a step of arranging a suction sheet having a plurality of openings on the stage, the stage including the suction sheet
  • the adsorbent sheet has a first region in contact with the plurality of light-emitting devices, and a second region facing the intermediate region of the synthetic resin film, The aperture ratio of one region is higher than the aperture ratio of the second region.
  • An apparatus for manufacturing a flexible light-emitting device of the present disclosure is, in an exemplary embodiment, a laminated structure having a first surface and a second surface, the glass base defining the first surface; a TFT layer And a functional layer region including a light emitting element layer; a synthetic resin film which is positioned between the glass base and the functional layer region and is fixed to the glass base, and which supports the functional layer region A synthetic resin film including a substrate region and an intermediate region surrounding the flexible substrate region; and a protective sheet covering the functional layer region and defining the second surface; and the intermediate region of the synthetic resin film And the flexible substrate region is divided, the stage that supports the laminated structure, and the laminated structure that is supported by the stage A peeling light irradiation device for irradiating the interface between the synthetic resin film and the glass base with peeling light, and a distance from the stage to the glass base in a state where the stage is in contact with the second surface of the laminated structure And a driving device for separating the laminated structure into a first
  • the first portion of the laminated structure includes the intermediate region and the light emitting device of the synthetic resin film attached to the stage, the light emitting device includes the functional layer region, and the synthetic resin film
  • the flexible substrate region is included.
  • the second part of the laminated structure includes the glass base.
  • the peeling light irradiation device includes a non-coherent light source that emits the peeling light.
  • the light emitting element layer includes a plurality of micro LEDs arranged, and the peeling light irradiation device includes a laser light source that emits the peeling light.
  • the stage holds the intermediate region at a position facing a part of the intermediate region of the synthetic resin film included in the first portion of the laminated structure supported by the stage. It has a recess that makes it possible.
  • the stage has a first region facing the plurality of light emitting devices, and a second region facing the intermediate region of the synthetic resin film, and an adsorption force in the first region. Is higher than the adsorption force in the second region.
  • the stage includes a porous plate and an adsorption sheet having a plurality of openings disposed on the porous plate, and the adsorption sheet is in contact with the plurality of light emitting devices. It has a 1st field and the 2nd field which counters the middle field of the synthetic resin film, and the aperture ratio of the 1st field is higher than the aperture ratio of the 2nd field.
  • the stage has a plurality of ejection holes in a region facing the intermediate region of the synthetic resin film.
  • a new method for manufacturing a flexible light-emitting device that solves the above-described problems is provided.
  • FIG. 1B is a cross-sectional view of the laminated structure shown in FIG. 1A along the line BB. It is sectional drawing which shows the other example of a laminated structure. It is sectional drawing which shows the further another example of a laminated structure. It is sectional drawing which shows the division
  • FIG. 10 is another perspective view showing a structure example of a stage that can be used in the embodiment of the present disclosure. It is a perspective view which shows the surface of a stage typically. It is a top view which shows the surface of a stage typically. It is the schematic diagram which expanded a part of boundary vicinity of the surface 1st area
  • FIG. 10 is another perspective view showing a structure example of a stage that can be used in the embodiment of the present disclosure. It is a perspective view which shows the surface of a stage typically. It is a top view which shows the surface of a stage typically. It is the schematic diagram which expanded a part of boundary vicinity of the surface 1st area
  • FIG. 9B is a sectional view taken along line BB in FIG. 9A. It is a top view which shows the surface in the other structural example of a stage. It is the schematic diagram which expanded a part of boundary vicinity of the surface 1st area
  • FIG. 11B is a sectional view taken along line BB in FIG. 11A. It is the schematic diagram which expanded a part of boundary vicinity of the surface 1st area
  • FIG. 12B is a sectional view taken along line BB in FIG. 12A.
  • FIG. 13B is a sectional view taken along line BB in FIG. 13A. It is a perspective view which shows the state from which the intermediate area
  • FIG. 3 is a top view illustrating a configuration example of a surface light source 215.
  • FIG. 25 is a cross-sectional view showing a surface light source 215 in which the in-plane number density of the light emitting diode element 400 is increased as compared with the example shown in FIG. It is a figure which shows the array of the light emitting diode element 400 arranged in rows and columns.
  • FIG. 4 is a diagram illustrating a moving direction of a line beam light source with respect to a laminated structure 100. It is a figure which shows typically the upper surface of the line beam light source 214 provided with the light emitting diode element of several rows arranged in the Y-axis direction.
  • FIG. 28B is a cross-sectional view taken along line BB of the line beam light source illustrated in FIG. 28A. It is a figure which shows the moving direction of the line beam light source with respect to a laminated structure. It is a top view which shows typically the example of the surface light source with which many light emitting diode elements were arranged in matrix form.
  • Embodiments of a flexible light-emitting device manufacturing method and a manufacturing apparatus according to the present disclosure will be described with reference to the drawings.
  • Examples of “light emitting devices” include displays and lighting devices.
  • a more detailed description than necessary may be omitted.
  • detailed descriptions of already well-known matters and repeated descriptions for substantially the same configuration may be omitted. This is to avoid the following description from becoming unnecessarily redundant and to facilitate understanding by those skilled in the art.
  • the inventors provide the accompanying drawings and the following description to enable those skilled in the art to fully understand the present disclosure. They are not intended to limit the claimed subject matter.
  • FIG. 1A and FIG. 1B Please refer to FIG. 1A and FIG. 1B.
  • a laminated structure 100 illustrated in FIGS. 1A and 1B is prepared.
  • 1A is a plan view of the laminated structure 100
  • FIG. 1B is a cross-sectional view of the laminated structure 100 shown in FIG. 1A along the line BB.
  • 1A and 1B show an XYZ coordinate system having an X axis, a Y axis, and a Z axis orthogonal to each other for reference.
  • the laminated structure 100 includes a glass base (mother substrate or carrier) 10, a plurality of functional layer regions 20 each including a TFT layer 20A and a light emitting element layer 20B, and between the glass base 10 and the plurality of functional layer regions 20. And a protective resin sheet 50 that covers the plurality of functional layer regions 20 and a synthetic resin film (hereinafter simply referred to as “resin film”) 30 that is fixed to the glass base 10.
  • the laminated structure 100 further includes a gas barrier film 40 that covers the entire functional layer region 20 between the plurality of functional layer regions 20 and the protective sheet 50.
  • the laminated structure 100 may have other layers not shown such as a buffer layer.
  • the light emitting element layer 20B in the present embodiment has, for example, a plurality of OLED elements arranged two-dimensionally.
  • the “light emitting element layer” in the present disclosure means a two-dimensional array of light emitting elements. Individual light emitting elements are not limited to OLED elements, and may be micro LED elements.
  • a typical example of the flexible light-emitting device in the present embodiment is a “flexible display”, but may be a “flexible lighting device”.
  • the first surface 100 a of the laminated structure 100 is defined by the glass base 10, and the second surface 100 b is defined by the protective sheet 50.
  • the glass base 10 and the protective sheet 50 are members temporarily used during the manufacturing process, and are not elements constituting the final flexible light-emitting device.
  • the illustrated resin film 30 includes a plurality of flexible substrate regions 30d that respectively support the plurality of functional layer regions 20, and an intermediate region 30i that surrounds each flexible substrate region 30d.
  • the flexible substrate region 30d and the intermediate region 30i are merely different portions of one continuous resin film 30, and need not be physically distinguished.
  • the portion of the resin film 30 that is located directly below each functional layer region 20 is the flexible substrate region 30d, and the other portion is the intermediate region 30i.
  • Each of the plurality of functional layer regions 20 finally constitutes a panel of a flexible light emitting device (for example, “display panel”).
  • the laminated structure 100 has a structure in which a single glass base 10 supports a plurality of flexible light-emitting devices before division.
  • Each functional layer region 20 has a shape with a thickness (Z-axis direction size) of several tens of ⁇ m, a length (X-axis direction size) of about 12 cm, and a width (Y-axis direction size) of about 7 cm. is doing. These sizes can be set to arbitrary sizes according to the size of the required display screen or light emitting surface area.
  • the shape of each functional layer region 20 in the XY plane is a rectangle in the illustrated example, but is not limited thereto.
  • the shape in the XY plane of each functional layer region 20 may be a square, a polygon, or a shape including a curve in the outline.
  • the flexible substrate regions 30d are two-dimensionally arranged in rows and columns corresponding to the arrangement of the flexible light emitting devices.
  • the intermediate region 30i is composed of a plurality of orthogonal stripes and forms a lattice pattern.
  • the width of the stripe is, for example, about 1 to 4 mm.
  • the flexible substrate region 30d of the resin film 30 functions as a “flexible substrate” of each flexible light-emitting device in the form of the final product.
  • the intermediate region 30i of the resin film 30 is not an element constituting the final product.
  • the configuration of the laminated structure 100 is not limited to the illustrated example.
  • the number of functional layer regions 20 supported by one glass base 10 (the number of light emitting devices) is not necessarily plural, and may be single.
  • the intermediate region 30 i of the resin film 30 forms a simple frame pattern surrounding the one functional layer region 20.
  • the laminated structure 100 that can be used in the manufacturing method of the present disclosure is not limited to the example shown in FIGS. 1A and 1B.
  • 1C and 1D are cross-sectional views showing other examples of the laminated structure 100, respectively.
  • the protective sheet 50 covers the entire resin film 30 and extends outward from the resin film 30.
  • the protective sheet 50 covers the entire resin film 30 and extends outside the glass base 10.
  • the laminated structure 100 becomes a flexible thin sheet-like structure having no rigidity.
  • the protective sheet 50 impacts the functional layer region 20 when the functional layer region 20 collides with or comes into contact with an external device or instrument in the step of peeling the glass base 10 and the step after peeling. And protects against friction. Since the protective sheet 50 is finally peeled off from the laminated structure 100, a typical example of the protective sheet 50 has a laminate structure having an adhesive layer (application layer of a release agent) having a relatively low adhesive force on the surface. is doing. A more detailed description of the laminated structure 100 will be described later.
  • ⁇ Division of light emitting devices> After performing the step of preparing the laminated structure 100, the step of dividing the intermediate region 30i of the resin film 30 and each of the plurality of flexible substrate regions 30d. I do.
  • 2A and 2B are a cross-sectional view and a plan view schematically showing positions where the intermediate region 30i of the resin film 30 and each of the plurality of flexible substrate regions 30d are divided, respectively.
  • the irradiation position of the laser beam for cutting is along the outer periphery of each flexible substrate region 30d.
  • an irradiation position (cutting position) CT indicated by an arrow or a broken line is irradiated with a cutting laser beam, and a portion other than the glass base 10 in the laminated structure 100 is irradiated with a plurality of light emitting devices (for example, Display panel) 1000 and other unnecessary parts.
  • gaps of several tens to several hundreds of ⁇ m are formed between the individual light emitting devices 1000 and the periphery thereof.
  • Such cutting can be performed by a cutter having a fixed blade or a rotary blade instead of the laser beam irradiation. Even after cutting, the light emitting device 1000 and other unnecessary portions are fixed to the glass base 10.
  • the planar layout of “unnecessary portions” in the laminated structure 100 matches the planar layout of the intermediate region 30 i of the resin film 30.
  • this “unnecessary portion” is a continuous sheet-like structure having an opening.
  • the irradiation position CT of the cutting laser beam may be set so that the “unnecessary portion” is divided into a plurality of portions.
  • the sheet-like structure which is an “unnecessary portion” includes not only the intermediate region 30i of the resin film 30 but also the cut portions of the laminate (for example, the gas barrier film 40 and the protective sheet 50) existing on the intermediate region 30i. Contains.
  • the wavelength of the laser beam may be in any region of infrared, visible light, and ultraviolet. From the viewpoint of reducing the influence of cutting on the glass base 10, a laser beam having a wavelength in the green to ultraviolet region is desirable.
  • cutting can be performed using the second harmonic (wavelength 532 nm) or the third harmonic (wavelength 343 nm or 355 nm). In that case, if the laser output is adjusted to 1 to 3 watts and scanned at a speed of about 500 mm per second, the laminate supported by the glass base 10 can be removed from the light emitting device and unnecessary parts without damaging the glass base 10. And can be cut (divided).
  • the timing for performing the above-described cutting is earlier than in the related art. Since the cutting is executed in a state where the resin film 30 is fixed to the glass base 10, even when the interval between the adjacent light emitting devices 1000 is narrow, the cutting position can be aligned with high accuracy and precision. For this reason, the space
  • a polarizing plate, a heat dissipation sheet, and / or an electromagnetic shield may be attached so as to cover the entire surface (peeling surface) of the resin film 30.
  • the polarizing plate, the heat radiating sheet, and / or the electromagnetic shield are also divided into a part that covers the light emitting device 1000 and another unnecessary part by cutting. Unnecessary parts are wasted. On the other hand, according to the manufacturing method of this indication, generation
  • a step of irradiating the interface between the flexible substrate region 30d of the resin film 30 and the glass base 10 with peeling light is performed by a peeling device.
  • FIG. 3A is a diagram schematically showing a state immediately before the stage 212 supports the laminated structure 100 in a manufacturing apparatus (peeling apparatus) (not shown).
  • the stage 212 in the present embodiment is an adsorption stage having a large number of holes for adsorption on the surface. Details of the configuration of the suction stage will be described later.
  • the laminated structure 100 is arranged such that the second surface 100b of the laminated structure 100 faces the surface 212S of the stage 212, and is supported by the stage 212.
  • FIG. 3B is a diagram schematically showing a state in which the stage 212 supports the laminated structure 100.
  • the arrangement relationship between the stage 212 and the laminated structure 100 is not limited to the illustrated example.
  • the stacked structure 100 may be turned upside down and the stage 212 may be positioned below the stacked structure 100.
  • the laminated structure 100 is in contact with the surface 212S of the stage 212, and the stage 212 adsorbs the laminated structure 100.
  • FIG. 3C schematically shows a state in which the interface between the glass base 10 and the resin film 30 of the laminated structure 100 is irradiated by the peeling light 216 formed in a line extending in a direction perpendicular to the drawing sheet. It is. A part of the resin film 30 absorbs the peeling light 216 and decomposes (disappears) at the interface between the glass base 10 and the resin film 30. By scanning the interface with the peeling light 216, the degree of adhesion of the resin film 30 to the glass base 10 is reduced.
  • the wavelength of the peeling light 216 is typically in the ultraviolet region.
  • the wavelength of the peeling light 216 is selected so that the peeling light 216 is hardly absorbed by the glass base 10 and is absorbed by the resin film 30 as much as possible.
  • the light absorption rate of the glass base 10 is, for example, about 10% in the wavelength region of 343 to 355 nm, but can increase to 30 to 60% at 308 nm.
  • the peeling apparatus includes a line beam light source that emits peeling light 216.
  • the line beam light source includes a laser device and an optical system that shapes laser light emitted from the laser device into a line beam shape.
  • FIG. 4A is a perspective view schematically showing a state in which the laminated structure 100 is irradiated with a line beam (peeling light 216) emitted from the line beam light source 214 of the peeling device 220.
  • FIG. 4A For the sake of clarity, the stage 212, the stacked structure 100, and the line beam light source 214 are illustrated as being separated in the Z-axis direction in the figure.
  • the peeling light 216 is irradiated, the second surface 100 b of the stacked structure 100 is in contact with the stage 212.
  • FIG. 4B schematically shows the position of the stage 212 when the peeling light 216 is irradiated. Although not shown in FIG. 4B, the laminated structure 100 is supported by the stage 212.
  • Examples of laser devices that emit the peeling light 216 include gas laser devices such as excimer lasers, solid state laser devices such as YAG lasers, semiconductor laser devices, and other laser devices. According to the XeCl excimer laser device, laser light having a wavelength of 308 nm can be obtained. If neodymium (Nd) is doped yttrium vanadium tetraoxide (YVO 4), or ytterbium (Yb) uses YVO 4 doped as lasing medium, a laser beam (fundamental emitted from the laser gain medium Therefore, it can be used after being converted into laser light (third harmonic) having a wavelength of 340 to 360 nm by the wavelength conversion element. The spot beam-like laser light emitted from these laser devices is combined with an optical system composed of a lens, a prism, or the like that is shaped into a line beam to obtain a line beam-like peeling light 216.
  • gas laser devices such as excimer lasers, solid state
  • a sacrificial layer (a thin layer formed of metal or amorphous silicon) may be provided at the interface between the resin film 30 and the glass base 10. From the viewpoint of suppressing the generation of ash, it is more effective to use a laser beam having a wavelength of 308 nm by an excimer laser device than a laser beam having a wavelength of 340 to 360 nm. In addition, the provision of the sacrificial layer has a significant effect on the suppression of ash generation.
  • Irradiation of the peeling light 216 can be performed with an energy irradiation density of 250 to 300 mJ / cm 2 , for example.
  • the line beam-shaped peeling light 216 has a size that traverses the glass base 10, that is, a line length that exceeds the length of one side of the glass base (long axis dimension, Y-axis direction size in FIG. 4B).
  • the line length can be, for example, 750 mm or more.
  • the optical system for shaping the laser beam becomes too large, making it difficult to manufacture, and accordingly, the quality (uniformity) of the line beam.
  • the line beam (up to a beam length of about 750 mm) corresponding to the G6H substrate size (short side of 1800 mm ⁇ 750 mm) is generally the limit.
  • the line width (short axis dimension, X-axis direction size in FIG. 4B) of the peeling light 216 may be about 0.2 mm, for example. These dimensions are the size of the irradiation region at the interface between the resin film 30 and the glass base 10.
  • the peeling light 216 can be irradiated as a pulse or continuous wave. Pulsed irradiation can be performed at a frequency of about 200 times per second, for example.
  • the irradiation position of the peeling light 216 moves relative to the glass base 10, and scanning of the peeling light 216 is executed.
  • a light source 214 that emits peeling light and an optical device may be fixed, and the laminated structure 100 may move, or vice versa.
  • the irradiation of the peeling light 216 is performed while the stage 212 moves from the position shown in FIG. 4B to the position shown in FIG. 4C. That is, the scanning of the peeling light 216 is executed by the movement of the stage 212 along the X-axis direction.
  • the light source with which the peeling light irradiation apparatus in said embodiment is provided is a laser light source
  • the peeling light irradiation apparatus of this indication is not limited to this example.
  • the stripping light may be emitted from a non-coherent light source instead of a coherent light source such as a laser light source.
  • a coherent light source such as a laser light source
  • FIG. 23A is a cross-sectional view schematically showing a configuration example of the surface light source 215 that emits the peeling light 216.
  • FIG. 23B is a top view showing a configuration example of the surface light source 215.
  • the illustrated surface light source 215 includes a plurality of ultraviolet lamps 380 arranged in a region facing the laminated structure 100, and a reflector 390 that reflects ultraviolet light emitted from each ultraviolet lamp 380.
  • the ultraviolet lamp 380 can be, for example, a high-pressure mercury lamp that emits i-rays having a wavelength of 365 nm.
  • the reflector 390 in the illustrated example can reflect the ultraviolet light emitted from the ultraviolet lamp 380 to the surroundings to make the light substantially parallel.
  • the reflector 390 is formed of a cold mirror, it is possible to prevent the infrared component included in the light emitted from the high-pressure mercury lamp from entering the laminated structure 100.
  • An infrared cut filter may be disposed between the ultraviolet lamp 380 and the laminated structure 100. By reducing or cutting the infrared component that can be included in the peeling light 216, the temperature rise of the laminated structure 100 due to infrared irradiation can be suppressed or prevented.
  • the irradiation energy of the peeling light necessary for peeling the resin film 30 is, for example, in the range of 100 mJ / cm 2 to 300 mJ / cm 2 .
  • a light source (non-coherent light source) such as the ultraviolet lamp 380 generally has a lower irradiation intensity per unit area than the laser light source described above. For this reason, in order to achieve sufficient irradiation energy, it is only necessary to lengthen the peeling light irradiation time compared to the case of using a laser light source.
  • the surface light source 215 shown in FIGS. 23A and 23B can form the peeling light 216 that spreads in a planar shape, it is easy to lengthen the irradiation time at each position as compared with the case of scanning a line beam. .
  • the peeling light 216 that has been collimated by the reflector 390 is formed, but the embodiment of the present disclosure is not limited to this example.
  • the light emitted from each ultraviolet lamp 380 may be condensed into a line having a width of about 1 to 3 mm.
  • the entire surface of the laminated structure 100 is irradiated with the peeling light 216 by shifting the relative position of the surface light source 215 with respect to the laminated structure 100. be able to.
  • the entire surface of the multilayer structure 100 can be irradiated with the peeling light 216 by scanning with one or several ultraviolet lamps 380. Even when the irradiation intensity of the ultraviolet light emitted from the ultraviolet lamp 380 is not high, if the scanning speed is reduced, the entire surface of the laminated structure 100 is scanned with the peeling light 216 by scanning with one or several ultraviolet lamps 380. Irradiation is possible. However, due to restrictions on the lamp length of the ultraviolet lamp 380, it is difficult to cope with a G8 substrate (2400 mm ⁇ 2200 mm) or a super-large substrate having a size larger than that.
  • a plurality of light emitting diode (UV-LED) elements that emit ultraviolet light can be used as a light source that emits peeling light.
  • Each of such light emitting diode elements has a size of, for example, 3.5 mm long ⁇ 3.5 mm wide ⁇ 1.2 mm thick.
  • the plurality of light emitting diode elements can be used in a single row or in a plurality of rows. As described above, when a spot beam-like laser beam emitted from a conventional excimer laser or YAG laser is formed into a line beam using an optical system such as a lens or a prism, the manufacturing cost of the optical system and the laser beam are reduced.
  • the line length of the line beam-like peeling light can be easily set to 1 m or more, and a G8 size substrate (2400 mm ⁇ 2200 mm) and larger super-large substrates are also possible.
  • FIG. 24 is a cross-sectional view schematically showing a surface light source 215 including a plurality of light emitting diode elements 400 arranged two-dimensionally.
  • the light emitted from each light emitting diode element 400 spreads around the Z-axis direction.
  • This light shows a distribution (directivity) of relative radiation intensity depending on the radiation angle ⁇ which is an inclination from the Z axis.
  • the directivity of the light emitting diode element can be adjusted by arranging a lens and / or a reflector.
  • ultraviolet light having a wavelength of 365 nm can be emitted with an output of 1450 milliwatts under driving conditions of voltage: 3.85 volts and current: 1000 milliamperes.
  • FIG. 25 is a cross-sectional view showing a surface light source 215 in which the in-plane number density of the light emitting element diode element 400 is increased as compared with the example shown in FIG. The higher the in-plane number density of the light emitting element diode element 400, the higher the irradiation intensity.
  • FIG. 26 is a diagram showing an array of light emitting diode elements 400 arranged in rows and columns.
  • the interval (arrangement pitch) P between the adjacent light emitting diode elements 400 is selected so that the irradiation intensity exceeds the level necessary for peeling at the entire interface between the resin film and the glass base.
  • the light emitting diode element has its emission intensity controlled by adjusting the magnitude of the drive current. Therefore, in a state where a plurality of light-emitting diode elements are arranged one-dimensionally or two-dimensionally, the driving current flowing through each light-emitting diode element is modulated, thereby modulating the irradiation intensity of the peeling light temporally and / or spatially. You can also
  • the arrangement pitch of the light emitting diode elements is, for example, in the range of 3 mm to 10 mm.
  • light emitted from the light emitting diode element is incoherent (non-coherent) light.
  • the wavelength of light emitted from the light emitting diode element is in the range of, for example, not less than 300 nm and not more than 380 nm.
  • FIGS. 27A, 27B, and 27C An example of a line beam light source in which a plurality of light emitting diode elements are arranged will be described with reference to FIGS. 27A, 27B, and 27C.
  • FIG. 27A schematically shows an upper surface of a line beam light source 214 including a plurality of light emitting diode elements 400 arranged in the Y-axis direction.
  • FIG. 27B is a cross-sectional view taken along line BB of the line beam light source 214 shown in FIG. 27A.
  • FIG. 27B also shows the laminated structure 100.
  • FIG. 27C is a diagram illustrating a moving direction of the line beam light source 214 with respect to the stacked structure body 100.
  • the ultraviolet light emitted from the light emitting diode element 400 passes through the cylindrical lens 410 to increase the irradiation energy per unit area (irradiation intensity: unit: joule / cm 2 ). Incident on the base 10. Since the ultraviolet light is focused in the X-axis direction, the width of the irradiation region (size in the X-axis direction) at the interface (peeling surface) where peeling occurs can be reduced to, for example, about 0.2 mm or less. Since the cylindrical lens 410 does not perform focusing in the X-axis direction, the size of the irradiation region in the Y-axis direction is not shortened.
  • the number density of the light emitting diode elements 400 may be increased by reducing the arrangement pitch of the light emitting diode elements 400.
  • the arrangement pitch of the light emitting diode elements 400 is preferably 5 mm or less.
  • the light emitting diode elements 400 may be arranged in a plurality of rows.
  • FIG. 28A schematically shows the upper surface of the line beam light source 214 including a plurality of light emitting diode elements 400 arranged in the Y-axis direction.
  • FIG. 28B is a cross-sectional view taken along line BB of the line beam light source 214 shown in FIG. 28A.
  • FIG. 28B also shows the laminated structure 100.
  • FIG. 28C is a diagram illustrating a moving direction of the line beam light source 214 with respect to the stacked structure body 100.
  • the line beam light source 214 in this example includes five rows of light emitting diode elements 400 each extending in the Y-axis direction. The positions of the five rows of light emitting diode elements 400 in the Y-axis direction are different from each other. When the arrangement pitch is P, the positions of the light emitting diode columns are shifted by P / 5 in the Y-axis direction between adjacent columns. By moving the line beam light source 214 with respect to the laminated structure 100 as shown in FIG. 28C, irradiation of the peeling light onto the entire surface of the laminated structure 100 can be executed.
  • the irradiation of the peeling light may be performed in a state where a plurality of light sources are stationary with respect to the laminated structure 100.
  • FIG. 29 is a top view schematically showing an example of the surface light source 215 in which a large number of light emitting diode elements 400 are arranged in a matrix.
  • the arrangement number of the vertical and horizontal light emitting diodes may be arbitrarily set according to the substrate size to be used. In this case as well, by arranging a plurality of light emitting diode elements 400 two-dimensionally, a conventional light source ( It is possible to cope with a super large substrate that cannot be realized by a combination of a laser light source and an optical system or an ultraviolet lamp).
  • the surface to be peeled may be divided into a plurality of regions, and each region may be irradiated with a flash of peeling light in the same manner as the sequential exposure by the stepper.
  • the light emitting diode element By using the light emitting diode element in this way, it is possible to perform the peeling light irradiation using a large number of light sources at a lower cost than using a relatively expensive semiconductor laser element.
  • the irradiation energy required for peeling can be adjusted by adjusting the irradiation time. Can be achieved.
  • laser light since laser light is not used, it is advantageous in terms of safety (eye-safety) for human eyes.
  • FIG. 5A shows a state in which the laminated structure 100 is in contact with the stage 212 after irradiation with peeling light. While maintaining this state, the distance from the stage 212 to the glass base 10 is increased. At this time, the stage 212 in this embodiment adsorbs the light emitting device portion of the laminated structure 100.
  • the driving device holds the glass base 10 and moves the entire glass base 10 in the direction of the arrow L, whereby peeling (lift-off) is performed.
  • the glass base 10 can move together with the suction stage while being sucked by a suction stage (not shown).
  • the direction of movement of the glass base 10 does not need to be perpendicular to the first surface 100a of the laminated structure 100, and may be inclined.
  • the movement of the glass base 10 does not have to be a linear motion, and may be a rotational motion.
  • the glass base 10 may be fixed by a holding device (not shown) or another stage, and the stage 212 may move upward in the drawing.
  • FIG. 5B is a cross-sectional view showing the first portion 110 and the second portion 120 of the laminated structure 100 thus separated.
  • the first portion 110 of the stacked structure 100 includes a plurality of light emitting devices 1000 that are in contact with the stage 212.
  • Each light emitting device 1000 includes a functional layer region 20 and a plurality of flexible substrate regions 30 d of the resin film 30.
  • the second portion 120 of the laminated structure 100 includes the glass base 10 and the intermediate region 30 i of the resin film 30.
  • FIG. 5C is a cross-sectional view showing a state in which the intermediate region 30 i of the resin film 30 has been peeled off from the stage 212. The state where the light emitting devices 1000 are in contact with the stage 212 is maintained.
  • FIG. 6A and 6B are perspective views showing an example of the structure of the stage 212 that can be used in the embodiment of the present disclosure.
  • FIG. 6A shows a state where the intermediate region 30 i of the resin film 30 is in contact with the stage 212.
  • FIG. 6B shows a state where the intermediate region 30 i of the resin film 30 is peeled off from the stage 212.
  • the illustrated stage 212 is provided with a recess 218 that enables the intermediate region 30i of the resin film 30 to be gripped.
  • the recess 218 in this example is a notch at the top of the stage 212. Providing such a recess 218 in the stage 212 realizes a state where unnecessary portions (portions other than the light emitting device) of the laminated structure 100 are not in contact with the surface 212S of the stage 212. Therefore, a part of the intermediate region 30i of the resin film 30 can be held and moved in the negative direction of the Z-axis by a human finger, jig, robot arm, etc. Part) can be removed from stage 212.
  • the number of the recesses 218 is one, but the number of the recesses 218 may be plural.
  • the positions of the recesses 218 are not limited to the four corners of the stage 212.
  • the shape of the recess 218 need not be defined by a rectangular plane, and may be defined by a curved surface or an uneven surface. By providing the recesses 218 having various shapes such as round holes, through holes, and slits, it is easy to peel off unnecessary portions included in the first portion 110 of the laminated structure 100 from the stage 212.
  • the “unnecessary portion” may be composed of a plurality of portions depending on the irradiation position CT of the cutting laser beam.
  • the “unnecessary portion” is composed of a plurality of portions, one or more recesses 218 may be provided in the stage 212 so that each portion can be gripped.
  • a groove-shaped concave portion may be formed on the stage 212 along the outer edge of the laminated structure 100 so as to straddle a plurality of portions constituting the “unnecessary portion”.
  • both the peeling light irradiation process and the peeling process are performed by the peeling device 220 including the stage 212.
  • the peeling light irradiation process may be performed by a peeling light irradiation apparatus including another stage different from the stage 212, and the peeling process may be performed using a peeling apparatus including the stage 212. In this case, it is necessary to move the laminated structure 100 from the other stage (not shown) to the stage 212 after irradiation with the peeling light. If both the peeling light irradiation process and the peeling process are performed using the same stage, the step of moving the laminated structure between the stages can be omitted.
  • FIG. 7 is a perspective view schematically showing the surface of the stage 212 having another structure.
  • FIG. 8 is a plan view schematically showing the surface of the stage 212 of FIG.
  • the recess 218 is not an indispensable component for each stage 212 described below.
  • the stage 212 includes a suction sheet 300 disposed on a porous front plate 222.
  • the surface of the stage 212 shown in the figure has a plurality of first regions 300A that face a plurality of light emitting devices 1000 (not shown), and a second region 300B that faces a middle region 30i of the resin film 30. Yes.
  • the suction force in the first region 300A is greater than the suction force in the second region 300B.
  • FIG. 9A is an enlarged schematic view of a part near the boundary between the first region 300A and the second region 300B.
  • 9B is a cross-sectional view taken along line BB in FIG. 9A.
  • the stage 212 in this example includes a porous front plate 222, a back plate 224 parallel to the front plate 222, a space 226 formed between these plates, and the front plate 222. And an adsorbing sheet 300 disposed on the surface.
  • the space 226 is connected to a suction device (not shown) such as a pump.
  • the space 226 is negatively pressured by the suction device, so that the external air passes through the numerous voids of the porous front plate 222 and the openings (through holes 300H) of the suction sheet 300. Flow into. For this reason, the object in contact with the suction sheet 300 is sucked to the stage 212 and sucked to the stage 212.
  • the porous front plate 222 can be formed from various porous materials.
  • the porosity of the porous material is, for example, in the range of 20% to 60%.
  • the average pore diameter is, for example, in the range of 5 ⁇ m to 600 ⁇ m.
  • Examples of the porous material are a sintered body of metal or ceramic, or a resin.
  • the thickness of the porous material constituting the front plate 222 is, for example, in the range of 1 mm or more and 50 mm or less.
  • the suction sheet 300 has a plurality of through holes 300H, and the opening ratio thereof is the first region 300A in contact with the light emitting device 1000 and the intermediate region 30i of the resin 30. Is different from the second region 300B facing the.
  • the “opening ratio” of the suction sheet 300 is an area ratio of a region (opening) on the surface of the stage 212 where the porous front plate 222 is exposed and can exhibit a suction function.
  • the adsorbing sheet 300 is made of various materials such as PET (polyethylene terephthalate), PVC (polyvinyl chloride), PP (polypropylene), fluororesin (polyflon, etc.), polyimide (PI), PC (polycarbonate), ABS resin, and the like. Can be formed. Moreover, the adsorption sheet 300 may be formed from a woven fabric, a nonwoven fabric, a porous film, or the like. The thickness of the suction sheet 300 can be, for example, about 0.05 to 3.0 mm.
  • the surface of the porous front plate 222 can exhibit a substantially uniform suction force, but when the suction sheet 300 is placed, a difference occurs in the suction force between the first region 300A and the second region 300B. Of the surface of the front plate 222, the area covered by the non-opening portion of the suction sheet 300 cannot suck air and does not exhibit suction power.
  • the adsorption sheet 300 can be used in a state of being adsorbed by the porous front plate 222.
  • the method of fixing the suction sheet 300 to the surface of the front plate 222 is not limited to suction, and may be fixed to the front plate 222 or the stage 212 via an adhesive layer or a jig.
  • the suction sheet 300 in combination with an existing suction stage, various designs of the laminated structure 100 can be easily handled. For example, when the shape, size, number, or arrangement pattern of the light emitting device 1000 is changed, the in-plane distribution of the suction force of the stage 212 can be easily changed by replacing the suction sheet according to the change. . In other words, it is only necessary to replace the suction sheet 300 without changing the entire stage 212.
  • the in-plane number density (hereinafter simply referred to as “density”) of the through holes 300H in the first region 300A of the suction sheet 300 is higher than the density of the through holes 300H in the second region 300B.
  • the aperture ratio of the first region 300A is higher than the aperture ratio of the second region 300B.
  • the suction force of the second region 300B is smaller than the suction force (suction force) of the first region 300A.
  • the density of the through holes in the second region 300B is about 0 to 50%, preferably about 0 to 30% of the density of the through holes 300H in the first region 300A.
  • the density of the through holes 300H in the second region 300B may be 0 / cm 2 .
  • the method of providing the strength of the suction force between the first region 300A and the second region 300B is not limited to providing a difference in the density of the through holes 300H in the suction sheet 300, and the size and / or shape of the through holes 300H.
  • a difference in the aperture ratio can also be provided by adjusting the suction force.
  • the thickness of the second region 300B of the suction sheet 300 smaller than the thickness of the first region 300A, when the stacked structure 100 is in contact with the first region 300A, the stacked structure 100 and the second region A gap may be generated between 300B and 300B. Due to the presence of such a gap, it is possible to reduce the suction force of the second region 300B.
  • the stage 212 having the above-described configuration, in the state shown in FIG. 5A, the plurality of flexible substrate regions 30d of the resin film 30 in contact with the first region 300A of the stage 212 are respectively changed to the first of the stage 212.
  • the region 300A can be strongly adsorbed.
  • no strong adsorption force is generated between the intermediate region 30 i of the resin film 30 and the second region 300 B of the stage 212.
  • the shape and size of the first region 300 ⁇ / b> A in contact with the light emitting device 1000 in the suction sheet 300 matches the shape and size of the light emitting device 1000.
  • the embodiment of the present disclosure is not limited to this example. If the adsorption power of the first region 300A is sufficiently strong, the first region 300A only needs to face at least a part of each light emitting device 1000, not the whole.
  • FIG. 10 is a plan view showing a suction sheet 300 in another configuration example.
  • the first area 300 ⁇ / b> A of the adsorption sheet 300 has an arbitrary shape and size as long as it firmly adsorbs the individual light emitting devices 1000 included in the laminated structure 100 and does not contact the intermediate area 30 i of the resin film 30. obtain.
  • FIG. 11A is an enlarged schematic view of a part near the boundary between the first region 300A and the second region 300B in another configuration example of the suction sheet 300.
  • FIG. 11B is a cross-sectional view taken along line BB of FIG. 11A.
  • the first region 300A is defined by a large opening 300P that exposes the surface 212S of the front plate 222 formed of a porous material.
  • the second region 300B covers the surface 212S of the front plate 222 formed of a porous material and exhibits a function of reducing the adsorption force.
  • the through hole 300H is provided in the second region 300B, but the through hole 300H is not essential in the second region 300B.
  • FIG. 12A is an enlarged schematic view of a part near the boundary between the first region 212A and the second region 212B in the stage 212 in which the front plate 222 is formed of a plate having a through hole instead of a porous material.
  • 12B is a cross-sectional view taken along the line BB of FIG. 12A.
  • the density or aperture ratio of the through holes 222A in the first region 212A is higher than the density or aperture ratio of the through holes 222B in the second region 212B. For this reason, the suction force of the second region 212B is smaller than the suction force of the first region 212A.
  • a plurality of regions having different adsorption forces may be provided on the stage 212 itself.
  • the second region 212 ⁇ / b> B in the stage 212 of the present embodiment may have an ejection hole that can eject a fluid to the intermediate region 30 i of the resin film 30.
  • a typical example of the fluid is air or a gas such as nitrogen.
  • FIG. 13A is an enlarged schematic view of a part near the boundary between the first region 212A and the second region 212B.
  • 13B is a cross-sectional view taken along line BB of FIG. 13A.
  • the stage 212 in this example includes a front plate 222 having a porous portion 232 ⁇ / b> A in the first region 212 ⁇ / b> A and a back plate 224 parallel to the front plate 222.
  • the second region 212B of the front plate 222 has an ejection hole (foam hole) 232B instead of the porous portion 232A.
  • a first space 226A and a second space 226B partitioned by a partition are formed between the front plate 222 and the back plate 224.
  • the first space 226A communicates with the outside through a large number of pores in the porous portion 232A of the first region 212A.
  • the second space 226B communicates with the outside through the ejection hole 232B of the second region 212B.
  • the first space 226A is connected to a suction device (not shown) such as a decompression pump. During the operation, the first space 226A becomes negative pressure by the suction device, so external air flows into the first space 226A through the porous portion 232A of the first region 212A. For this reason, the object in contact with the first region 212 ⁇ / b> A of the front plate 222 is sucked by the porous portion 232 ⁇ / b> A, and as a result, adsorbs to the stage 212.
  • a suction device not shown
  • the second space 226B is connected to a pressurizing device (not shown) such as a pressurizing pump.
  • a pressurizing device such as a pressurizing pump.
  • air is ejected from the second space 226B to the outside through the ejection holes 232B of the second region 212B.
  • the object in contact with the second region 212B of the front plate 222 is separated from the ejection hole 232B and peeled off from the stage 212.
  • the first region 212A of the front plate 222 may be formed from various porous materials.
  • the porosity of the porous material is, for example, in the range of 20% to 60%.
  • the average pore diameter is, for example, in the range of 5 ⁇ m to 600 ⁇ m.
  • Examples of the porous material are a sintered body of metal or ceramic, or a resin.
  • the thickness of the porous material is, for example, in the range of 1 mm or more and 50 mm or less.
  • the inner diameter of the ejection hole 232B in the second region 212B of the front plate 222 is in the range of several hundred ⁇ m to several mm, for example.
  • the ejection holes 232B are arranged on a straight line at equal intervals. Embodiments of the present disclosure are not limited to this example.
  • the ejection hole 232B may be located on one or a plurality of curves or bend lines. Further, the arrangement of the ejection holes 232B need not be evenly spaced.
  • the distance between the centers of two adjacent ejection holes 232B is, for example, several mm to 3 cm.
  • the timing at which fluid such as air is ejected from the second space 226B to the outside through the ejection hole 232B is when the process of FIG. 5C is executed. Except at this time, it is not necessary to eject the fluid from the ejection hole 232B. Therefore, the second space 226B may be set to a negative pressure similarly to the first space 226A in the stage before the separation process is performed. At that time, the ejection holes 232B can contribute to the adsorption of the laminated structure 100 together with the porous portion 232A of the first region 212A.
  • the stage 212 having the above-described configuration, in the state shown in FIG. 5A, the plurality of flexible substrate regions 30d of the resin film 30 in contact with the first region 212A of the stage 212 are respectively changed to the first of the stage 212.
  • the region 212A can be strongly adsorbed.
  • the intermediate region 30i of the resin film 30 and the second region 212B of the stage 212 can be peeled from the surface 212S of the stage 212 at least when the air current is ejected. As a result, the intermediate region 30 i of the resin film 30 is easily separated from the stage 212.
  • the shape and size of the first region 212A in contact with the light emitting device 1000 match the shape and size of the light emitting device 1000, but the embodiment of the present disclosure is not limited to this example. If the adsorption force of the first region 212A is sufficiently strong, the first region 212A only needs to face at least a part of each light emitting device 1000, not the whole.
  • FIG. 10 is a diagram illustrating another arrangement example of the first region 212A. If the individual light emitting devices 1000 included in the stacked structure 100 can be firmly adsorbed, the shape and size of the first region 212A are arbitrary. However, the ejection hole 232 ⁇ / b> B is disposed in a region facing the intermediate region 30 i of the resin film 30.
  • the stage 212 includes a plurality of porous portions 232A in the first region 212A and adsorbs the laminated structure 100 by negative pressure, but the stage of the present disclosure is not limited to this example.
  • a stage having an electrostatic chuck or a stage having an adhesive layer in place of the porous portion 232A in the first region 212A may be used. If such a stage also has a plurality of ejection holes 232B in a region (second region 212B) facing the intermediate region 30i of the resin film 30, the above-described function can be realized.
  • the intermediate region 30i of the resin film 30 in the state of FIG. 5B can be easily removed from the stage 212.
  • FIG. 14 is a perspective view showing a state in which the intermediate region 30 i of the resin film 30 is peeled off from the first portion 110 (light emitting device 1000) of the laminated structure 100 in a state of being adsorbed to the stage 212.
  • FIG. 15 is a perspective view showing the light emitting device 1000 in a state of being attracted to the stage 212.
  • FIG. A plurality of light emitting devices 1000 arranged in rows and columns are adsorbed on the stage 212.
  • the surface (peeling surface) 30 s of the flexible substrate region 30 d of each light emitting device 1000 is exposed in the resin film 30.
  • FIG. 16 is a cross-sectional view showing a state in which the stage 212 is adsorbing the light emitting device 1000.
  • This cross section is a cross section parallel to the ZX plane. The direction of the Z axis in FIG. 16 is reversed from the direction of the Z axis in FIGS. 14 and 15.
  • Various processes can be executed sequentially or simultaneously on each of the plurality of light emitting devices 1000 in contact with the stage 212.
  • “Processing” for the light emitting device 1000 includes applying a dielectric film and / or a conductive film to each of the plurality of light emitting devices 1000, cleaning or etching, and mounting an optical component and / or an electronic component.
  • the sheet-like component includes a functional film that can add an optical, electrical, or magnetic function to the light emitting device 1000.
  • the surface 30s of the resin film 30 peeled from the glass base 10 is active, the surface 30s is covered with a protective film or subjected to hydrophobic surface treatment, and various components are mounted thereon. Also good.
  • FIG. 17 is a cross-sectional view schematically showing a state where the light emitting device 1000 is detached from the stage 212 after the sheet-like component (functional film) 60 is mounted.
  • the resin film is peeled off from the glass base before the light emitting device 1000 is divided, many light emitting devices 1000 are fixed to one resin film when the subsequent processing is performed. Therefore, it is difficult to perform efficient processing for each light emitting device 1000. Further, when the light emitting device 1000 is divided after the sheet-like component is attached, a portion of the sheet-like component that is located in an intermediate region between the two adjacent light emitting devices 1000 is wasted.
  • the individual light emitting devices 1000 are sequentially or At the same time, various processes can be executed efficiently.
  • a step of fixing another protective sheet (second protective sheet) 70 may be further performed.
  • the second protective sheet 70 can exhibit a function of temporarily protecting the surface of the flexible substrate region 30 d of the resin film 30 peeled from the glass base 10.
  • the second protective sheet 70 may have a laminate structure similar to that of the protective sheet 50 described above.
  • the protective sheet 50 can be referred to as the first protective sheet 50.
  • the second protective sheet 70 may be fixed to the plurality of light emitting devices 1000 after performing the above-described various processes on each of the plurality of light emitting devices 1000 that are in contact with the stage 212.
  • the plurality of light emitting devices 1000 fixed to the second protective sheet 70 can be separated from the stage 212. Thereafter, the second protective sheet 70 can function as a carrier for the plurality of light emitting devices 1000. This is transfer of the light emitting device 1000 from the stage 212 to the second protective sheet 70.
  • Various processes may be executed sequentially or simultaneously on each of the plurality of light emitting devices 1000 that are fixed to the second protective sheet 70.
  • FIG. 19 is a cross-sectional view showing a carrier sheet 90 on which a plurality of components (functional films) 80 mounted on the plurality of light emitting devices 1000 are mounted.
  • each component 80 can be attached to the light emitting device 1000.
  • the upper surface of the component 80 has an adhesive layer that adheres strongly to the light emitting device 1000.
  • the carrier sheet 90 and the component 80 are relatively weakly adhered.
  • FIG. 20A is a cross-sectional view showing the glass base 10 with the resin film 30 formed on the surface.
  • the glass base 10 is a supporting substrate for processing, and the thickness thereof can be, for example, about 0.3 to 0.7 mm.
  • the resin film 30 in the present embodiment is a polyimide film having a thickness of 5 ⁇ m to 100 ⁇ m, for example.
  • the polyimide film can be formed from a precursor polyamic acid or a polyimide solution. Thermal imidization may be performed after the polyamic acid film is formed on the surface of the glass base 10, or the film may be formed on the surface of the glass base 10 from a polyimide solution in which polyimide is melted or dissolved in an organic solvent.
  • the polyimide solution can be obtained by dissolving a known polyimide in an arbitrary organic solvent.
  • a polyimide film can be formed by applying the polyimide solution to the surface 10s of the glass base 10 and then drying.
  • the polyimide film preferably achieves a high transmittance in the entire visible light region.
  • the transparency of the polyimide film can be expressed by, for example, the total light transmittance according to JIS K7105-1981.
  • the total light transmittance can be set to 80% or more, or 85% or more.
  • the top emission type flexible display is not affected by the transmittance.
  • the resin film 30 may be a film formed of a synthetic resin other than polyimide.
  • a heat treatment at 350 ° C. or higher is performed in the step of forming the thin film transistor. Therefore, the resin film 30 is formed from a material that does not deteriorate by this heat treatment.
  • the resin film 30 may be a laminate of a plurality of synthetic resin layers.
  • a step of irradiating the resin film 30 with ultraviolet peeling light that passes through the glass base 10 is performed.
  • a part of the resin film 30 needs to be decomposed (disappeared) by absorbing such ultraviolet peeling light at the interface with the glass base 10.
  • the resin film 30 is made of glass by irradiation of the peeling light. It can be easily peeled from the base 10.
  • the sacrificial layer is provided, an effect that generation of ash is suppressed is also obtained.
  • a polishing target such as a particle or a convex portion exists on the surface 30x of the resin film 30
  • the target may be polished and flattened by a polishing apparatus. It is possible to detect which foreign matter in the particles by processing an image acquired by an image sensor, for example.
  • a planarization process on the surface 30x of the resin film 30 may be performed.
  • the flattening treatment includes a step of forming a film (flattening film) for improving flatness on the surface 30 x of the resin film 30.
  • the planarizing film need not be made of resin.
  • a gas barrier film may be formed on the resin film 30.
  • the gas barrier film can have various structures.
  • An example of the gas barrier film is a film such as a silicon oxide film or a silicon nitride film.
  • Another example of the gas barrier film may be a multilayer film in which an organic material layer and an inorganic material layer are stacked. This gas barrier film may be referred to as a “lower gas barrier film” in order to distinguish it from a gas barrier film described later that covers the functional layer region 20. Further, the gas barrier film covering the functional layer region 20 can be referred to as an “upper gas barrier film”.
  • a plurality of functional layer regions 20 are formed on the glass base 10. Between the glass base 10 and the functional layer region 20, the resin film 30 fixed to the glass base 10 is located.
  • the functional layer region 20 includes a TFT layer 20A located in a lower layer and a light emitting element layer 20B located in an upper layer.
  • the TFT layer 20A and the light emitting element layer 20B are sequentially formed by a known method.
  • the TFT layer 20A includes a TFT array circuit that realizes an active matrix.
  • the light emitting element layer 20B includes an array of light emitting elements (OLED elements and / or micro LED elements), each of which can be driven independently.
  • the chip size of the micro LED element is smaller than 100 ⁇ m ⁇ 100 ⁇ m, for example.
  • Micro LED elements can be formed from different inorganic semiconductor materials depending on the color or wavelength of the emitted light.
  • the same semiconductor chip may include a plurality of semiconductor stacked structures having different compositions, and different R (red), G (green), and B (blue) light may be emitted from each semiconductor stacked structure. Further, as is well known, R, G, and B light may be emitted by combining a semiconductor chip that emits ultraviolet light or a semiconductor chip that emits blue light and various phosphor materials. .
  • the thickness of the TFT layer 20A is, for example, about 4 ⁇ m, and the thickness of the light emitting element layer 20B including the OLED element is, for example, 1 ⁇ m.
  • the thickness of the light emitting element layer 20B including the micro LED element may be, for example, 10 ⁇ m or more.
  • FIG. 21 is a basic equivalent circuit diagram of subpixels in a display which is an example of a light emitting device.
  • One pixel of the display can be constituted by sub-pixels of different colors such as R, G, B, for example.
  • the example shown in FIG. 21 includes a selection TFT element Tr1, a driving TFT element Tr2, a storage capacitor CH, and a light emitting element EL.
  • the selection TFT element Tr1 is connected to the data line DL and the selection line SL.
  • the data line DL is a wiring that carries a data signal that defines an image to be displayed.
  • the data line DL is electrically connected to the gate of the driving TFT element Tr2 via the selection TFT element Tr1.
  • the selection line SL is a wiring that carries a signal for controlling on / off of the selection TFT element Tr1.
  • the driving TFT element Tr2 controls a conduction state between the power line PL and the light emitting element EL.
  • a current flows from the power line PL to the ground line GL via the light emitting element EL. This current causes the light emitting element EL to emit light.
  • the ON state of the driving TFT element Tr2 is maintained by the storage capacitor CH.
  • the TFT layer 20A includes a selection TFT element Tr1, a driving TFT element Tr2, a data line DL, a selection line SL, and the like.
  • the light emitting element layer 20B includes a light emitting element EL. Before the light emitting element layer 20B is formed, the upper surface of the TFT layer 20A is planarized by an interlayer insulating film that covers the TFT array and various wirings. A structure that supports the light emitting element layer 20B and realizes active matrix driving of the light emitting element layer 20B is referred to as a “backplane”.
  • 21 may be included in either the TFT layer 20A or the light emitting element layer 20B. 21 is connected to a driver circuit (not shown).
  • the specific configurations of the TFT layer 20A and the light emitting element layer 20B may vary. These configurations do not limit the content of the present disclosure.
  • the configuration of the TFT element included in the TFT layer 20A may be a bottom gate type or a top gate type.
  • the light emission of the light emitting element included in the light emitting element layer 20B may be a bottom emission type or a top emission type.
  • the specific structure of the light emitting element is also arbitrary.
  • the material of the semiconductor layer constituting the TFT element includes, for example, crystalline silicon, amorphous silicon, and an oxide semiconductor.
  • a part of the process of forming the TFT layer 20A includes a heat treatment process at 350 ° C. or higher in order to improve the performance of the TFT element.
  • a gas barrier film (upper gas barrier film) 40 As shown in FIG. 20C.
  • a typical example of the upper gas barrier film 40 is a multilayer film in which an inorganic material layer and an organic material layer are laminated. Elements such as an adhesive film, another functional layer constituting a touch screen, and a polarizing film may be disposed between the upper gas barrier film 40 and the functional layer region 20 or further above the upper gas barrier film 40.
  • the upper gas barrier film 40 can be formed by a thin film encapsulation (TFE) technique.
  • the WVTR Water Vapor Transmission Rate
  • the WVTR Water Vapor Transmission Rate of the thin film sealing structure is typically 1 ⁇ 10 ⁇ 4 g / m 2 / day or less from the viewpoint of sealing reliability. There is a need to be. This criterion is achieved according to embodiments of the present disclosure.
  • the thickness of the upper gas barrier film 40 is, for example, 1.5 ⁇ m or less.
  • FIG. 22 is a perspective view schematically showing the upper surface side of the laminated structure 100 at the stage where the upper gas barrier film 40 is formed.
  • One laminated structure 100 includes a plurality of light emitting devices 1000 supported by the glass base 10.
  • one stacked structure 100 includes more functional layer regions 20 than the example shown in FIG. 1A. As described above, the number of functional layer regions 20 supported by one glass base 10 is arbitrary.
  • the protective sheet 50 is attached to the upper surface of the laminated structure 100.
  • the protective sheet 50 can be formed of a material such as polyethylene terephthalate (PET) or polyvinyl chloride (PVC).
  • PET polyethylene terephthalate
  • PVC polyvinyl chloride
  • a typical example of the protective sheet 50 has a laminated structure having a release agent coating layer on the surface.
  • the thickness of the protective sheet 50 can be, for example, 50 ⁇ m or more and 150 ⁇ m or less.
  • the manufacturing method according to the present disclosure can be performed using the above-described manufacturing apparatus (peeling apparatus 220).
  • Embodiments of the present invention provide a new flexible light emitting device manufacturing method.
  • the flexible light-emitting device can be widely applied to smartphones, tablet terminals, in-vehicle displays, and small to medium-sized television devices.
  • the flexible light emitting device can also be used as a lighting device.
  • SYMBOLS 10 Glass base, 20 ... Functional layer area

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Led Device Packages (AREA)

Abstract

本開示のフレキシブル発光デバイスの製造方法によれば、積層構造体(100)の樹脂膜(30)の中間領域(30i)とフレキシブル基板領域(30d)とを分割した後、樹脂膜(30)とガラスベース(10)との界面を剥離光で照射する。積層構造体(100)をステージ(212)に接触させた状態で、積層構造体(100)を第1部分(110)と第2部分(120)とに分離する。第1部分(110)は、ステージ(212)に付着した中間領域(30i)および発光デバイス(1000)を含み、発光デバイス(1000)は、機能層領域(20)とフレキシブル基板領域(30d)を有する。第2部分(120)は、ガラスベース(10)を含む。発光デバイス(1000)がステージ(212)に付着している状態を維持したまま、ステージに付着した中間領域(30i)をステージから剥がし取る。

Description

フレキシブル発光デバイスの製造方法および製造装置
 本開示は、フレキシブル発光デバイスの製造方法および製造装置に関する。
 フレキシブルディスプレイの典型例は、ポリイミドなどの合成樹脂から形成されたフィルム(以下、「樹脂膜」と称する)と、樹脂膜に支持されたTFT(Thin Film Transistor)およびOLED(Organic Light Emitting Diode)などの素子を備えている。樹脂膜はフレキシブル基板として機能する。OLEDを構成する有機半導体層は水蒸気によって劣化しやすいため、フレキシブルディスプレイは、ガスバリア膜(封止用フィルム)によって封止されている。
 上記のフレキシブルディスプレイの製造は、樹脂膜が上面に形成されたガラスベースを用いて行われる。ガラスベースは、製造工程中、樹脂膜の形状を平面状に維持する支持体(キャリア)として機能する。樹脂膜上にTFT素子およびOLEDなどの発光素子、およびガスバリア膜などが形成されることにより、ガラスベースに支持された状態でフレキシブルディスプレイの構造が実現する。その後、フレキシブルディスプレイはガラスベースから剥離され、柔軟性を獲得する。TFT素子およびOLEDなどの発光素子が配列された部分を全体として「機能層領域」と呼ぶことができる。
 従来技術によれば、複数のフレキシブルディスプレイを含むシート状の構造物をガラスベースから剥離した後、このシート状の構造物に対して光学部品などの実装が行われる。その後、シート状の構造物から複数のフレキシブルデバイスが分割される。この分割は、例えばレーザビームの照射によって行われる。
 特許文献1は、個々のフレキシブルディスプレイをガラスベース(支持基板)から剥離するため、個々のフレキシブルディスプレイとガラスベースとの界面をレーザ光で照射する方法を開示している。特許文献1に開示されている方法によれば、剥離光照射の後、個々のフレキシブルディスプレイが分割され、それぞれのフレキシブルディスプレイがガラスベースから剥がされる。
特開2014-48619号公報
 従来の製造方法によれば、複数のフレキシブルディスプレイを含むシート状の構造物に例えば封止フィルム、偏光板および/または放熱シートなどの高価な部品を実装した後、レーザビームの照射による分割を行うため、レーザビームの照射によって分割される不要部分、すなわち最終的にディスプレイを構成しない部分は全くの無駄になる。また、ガラスベースから剥離された後、剛性を有しない複数のフレキシブルディスプレイをハンドリングすることが難しいという課題もある。
 このような課題は、発光素子としてOLEDを有するフレキシブルディスプレイに限定されず、発光素子として無機半導体材料から形成されたマイクロLED(μLED)を有するフレキシブル発光デバイスの製造に際しても発生し得る。
 本開示は、上記の課題を解決することができる、フレキシブル発光デバイスの製造方法および製造装置を提供する。
 本開示のフレキシブル発光デバイスの製造方法は、例示的な実施形態において、第1の表面と第2の表面とを有する積層構造体であって、前記第1の表面を規定するガラスベース;TFT層および発光素子層を含む機能層領域;前記ガラスベースと前記機能層領域との間に位置して前記ガラスベースに固着している合成樹脂フィルムであって、前記機能層領域を支持しているフレキシブル基板領域と、前記フレキシブル基板領域を囲む中間領域とを含む合成樹脂フィルム;および、前記機能層領域を覆い、前記第2の表面を規定する保護シート;を備える積層構造体を用意する工程と、前記合成樹脂フィルムの前記中間領域と前記フレキシブル基板領域とを分割する工程と、前記合成樹脂フィルムと前記ガラスベースとの界面を剥離光で照射する工程と、前記積層構造体の前記第2の表面をステージに接触させた状態で、前記ステージから前記ガラスベースまでの距離を拡大することにより、前記積層構造体を第1部分と第2部分とに分離する工程とを含む。前記積層構造体の前記第1部分は、前記ステージに付着した前記合成樹脂フィルムの前記中間領域および発光デバイスを含み、前記発光デバイスは、前記機能層領域と前記合成樹脂フィルムの前記フレキシブル基板領域を有している。前記積層構造体の前記第2部分は、前記ガラスベースを含む。本製造方法は、更に、前記発光デバイスが前記ステージに付着している状態を維持したまま、前記ステージに付着した前記合成樹脂フィルムの前記中間領域を前記ステージから剥がし取る工程を含む。
 ある実施形態において、前記剥離光は、非コヒーレント光である。
 ある実施形態において、前記発光素子層は、配列された複数のマイクロLEDを含み、前記剥離光は、レーザ光である。
 ある実施形態において、前記合成樹脂フィルムの前記中間領域を前記ステージから剥がし取った後、前記ステージに接触している前記発光デバイスに対して、処理を実行する工程を更に含む。
 ある実施形態において、前記処理は、前記発光デバイスに、誘電体および/または導電体のフィルムを貼ること、クリーニングまたはエッチングを行うこと、光学部品および/または電子部品を実装することのいずれか含む。
 ある実施形態において、前記積層構造体を前記第1部分と前記第2部分とに分離する工程は、前記ステージが前記積層構造体の前記第2の表面を吸着している状態で実行される。
 ある実施形態において、前記合成樹脂フィルムと前記ガラスベースとの前記界面を前記剥離光で照射する工程は、前記ステージが前記積層構造体の前記第2の表面を吸着している状態で実行される。
 ある実施形態において、前記ステージの表面は、前記発光デバイスに対向する第1領域と、前記合成樹脂フィルムの前記中間領域に対向する第2領域とを有しており、前記第1領域における吸着力は、前記第2領域における吸着力よりも高い。
 ある実施形態において、前記積層構造体の前記第2の表面をステージに接触させる前に、複数の開口部を有する吸着シートを前記ステージ上に配置する工程を更に含み、前記ステージは、前記吸着シートを載せる多孔質プレートを備えており、前記吸着シートは、前記複数の発光デバイスに接する第1領域と、前記合成樹脂フィルムの前記中間領域に対向する第2領域とを有しており、前記第1領域の開口率は、前記第2領域の開口率よりも高い。
 本開示のフレキシブル発光デバイスの製造装置は、例示的な実施形態において、第1の表面と第2の表面とを有する積層構造体であって、前記第1の表面を規定するガラスベース;TFT層および発光素子層を含む機能層領域;前記ガラスベースと前記機能層領域との間に位置して前記ガラスベースに固着している合成樹脂フィルムであって、前記機能層領域を支持しているフレキシブル基板領域と、前記フレキシブル基板領域を囲む中間領域とを含む合成樹脂フィルム;および、前記機能層領域を覆い、前記第2の表面を規定する保護シート;を備え、前記合成樹脂フィルムの前記中間領域と前記フレキシブル基板領域とが分割されている、積層構造体を支持するステージと、前記ステージに支持されている前記積層構造体における前記合成樹脂フィルムと前記ガラスベースとの界面を剥離光で照射する剥離光照射装置と、前記ステージが前記積層構造体の前記第2の表面に接触した状態で、前記ステージから前記ガラスベースまでの距離を拡大することにより、前記積層構造体を第1部分と第2部分とに分離する駆動装置とを備える。前記積層構造体の前記第1部分は、前記ステージに付着した前記合成樹脂フィルムの前記中間領域および発光デバイスを含み、前記発光デバイスは、前記機能層領域を有し、かつ、前記合成樹脂フィルムの前記フレキシブル基板領域を有している。前記積層構造体の前記第2部分は、前記ガラスベースを含む。
 ある実施形態において、前記剥離光照射装置は、前記剥離光を放射する非コヒーレント光源を備えている。
 ある実施形態において、前記発光素子層は、配列された複数のマイクロLEDを含み、前記剥離光照射装置は、前記剥離光を放射するレーザ光源を備えている。
 ある実施形態において、前記ステージは、前記ステージに支持されている前記積層構造体の前記第1部分に含まれる前記合成樹脂フィルムの前記中間領域の一部に対向する位置に、前記中間領域の把持を可能にする凹部を有している。
 ある実施形態において、前記ステージは、前記複数の発光デバイスに対向する第1領域と、前記合成樹脂フィルムの前記中間領域に対向する第2領域とを有しており、前記第1領域における吸着力は、前記第2領域における吸着力よりも高い。
 ある実施形態において、前記ステージは、多孔質プレートと、前記多孔質プレート上に配置された複数の開口部を有する吸着シートとを有しており、前記吸着シートは、前記複数の発光デバイスに接する第1領域と、前記合成樹脂フィルムの前記中間領域に対向する第2領域とを有しており、前記第1領域の開口率は、前記第2領域の開口率よりも高い。
 ある実施形態において、前記ステージは、前記合成樹脂フィルムの前記中間領域に対向する領域に複数の噴出孔を有している。
 本発明の実施形態によれば、前記の課題を解決する、フレキシブル発光デバイスの新しい製造方法が提供される。
本開示によるフレキシブル発光デバイスの製造方法に用いられる積層構造体の構成例を示す平面図である。 図1Aに示される積層構造体のB-B線断面図である。 積層構造体の他の例を示す断面図である。 積層構造体の更に他の例を示す断面図である。 積層構造体の分割位置を模式的に示す断面図である。 積層構造体の分割位置を模式的に示す平面図である。 ステージが積層構造体を支持する直前の状態を模式的に示す図である。 ステージが積層構造体を支持している状態を模式的に示す図である。 剥離光によって積層構造体のガラスベースと樹脂膜との界面を照射している状態を模式的に示す図である。 剥離装置のラインビーム光源から出射されたラインビームで積層構造体を照射する様子を模式的に示す斜視図である。 剥離光の照射開始時におけるステージの位置を模式的に示す図である。 剥離光の照射終了時におけるステージの位置を模式的に示す図である。 剥離光の照射後に積層構造体を第1部分と第2部分とに分離する前の状態を模式的に示す断面図である。 積層構造体を第1部分と第2部分とに分離した状態を模式的に示す断面図である。 ステージから樹脂膜の中間領域を剥がした状態を示す断面図である。 本開示の実施形態で使用され得るステージの構造例を示す斜視図である。 本開示の実施形態で使用され得るステージの構造例を示す他の斜視図である。 ステージの表面を模式的に示す斜視図である。 ステージの表面を模式的に示す平面図である。 ステージの構成例における表面の第1領域と第2領域との境界近傍の一部を拡大した模式図である。 図9AのB-B線断面図である。 ステージの他の構成例における表面を示す平面図である。 ステージの更に他の構成例における表面の第1領域と第2領域との境界近傍の一部を拡大した模式図である。 図11AのB-B線断面図である。 ステージの他の構成例における表面の第1領域と第2領域との境界近傍の一部を拡大した模式図である。 図12AのB-B線断面図である。 ステージの更に他の構成例における第1領域と第2領域との境界近傍の一部を拡大した模式図である。 図13AのB-B線断面図である。 ステージから樹脂膜の中間領域などが除去される状態を示す斜視図である。 ステージから樹脂膜の中間領域などが除去された状態を示す斜視図である。 ステージから樹脂膜の中間領域などが除去された状態を示す断面図である。 ステージから離れたフレキシブル発光デバイスを示す断面図である。 ステージに接触した複数の発光デバイスに固着された他の保護シートを示す断面図である。 複数の発光デバイスにそれぞれ実装される複数の部品を載せたキャリアシートを示す断面図である。 本開示の実施形態におけるフレキシブル発光デバイスの製造方法を示す工程断面図である。 本開示の実施形態におけるフレキシブル発光デバイスの製造方法を示す工程断面図である。 本開示の実施形態におけるフレキシブル発光デバイスの製造方法を示す工程断面図である。 本開示の実施形態におけるフレキシブル発光デバイスの製造方法を示す工程断面図である。 フレキシブル発光デバイスにおける1個のサブ画素の等価回路図である。 製造工程の途中段階における積層構造体の斜視図である。 剥離光216を放射する面光源215の構成例を模式的に示す断面図である。 面光源215の構成例を示す上面図である。 2次元的に配列された複数の発光ダイオード素子400を備える面光源215を模式的に示す断面図である。 図24に示される例に比べて発光素子ダイオード素子400の面内個数密度を高めた面光源215を示す断面図である。 行および列状に配列された発光ダイオード素子400のアレイを示す図である。 Y軸方向に配列された1列の発光ダイオード素子を備えるラインビーム光源214の上面を模式的に示す図である。 図27Aに示されるラインビーム光源のB-B線断面である。 積層構造体100に対するラインビーム光源の移動方向を示す図である。 Y軸方向に配列された複数列の発光ダイオード素子を備えるラインビーム光源214の上面を模式的に示す図である。 図28Aに示されるラインビーム光源のB-B線断面である。 積層構造体に対するラインビーム光源の移動方向を示す図である。 多数の発光ダイオード素子がマトリックス状に配列された面光源の例を模式的に示す上面図である。
 図面を参照しながら、本開示によるフレキシブル発光デバイスの製造方法および製造装置の実施形態を説明する。「発光デバイス」の例は、ディスプレイおよび照明装置を含む。以下の説明において、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。本発明者らは、当業者が本開示を十分に理解するために添付図面および以下の説明を提供する。これらによって特許請求の範囲に記載の主題を限定することを意図しない。
 <積層構造体>
 図1Aおよび図1Bを参照する。本実施形態におけるフレキシブル発光デバイスの製造方法では、まず、図1Aおよび図1Bに例示される積層構造体100を用意する。図1Aは、積層構造体100の平面図であり、図1Bは、図1Aに示される積層構造体100のB-B線断面図である。図1Aおよび図1Bには、参考のため、互いに直交するX軸、Y軸、およびZ軸を有するXYZ座標系が示されている。
 積層構造体100は、ガラスベース(マザー基板またはキャリア)10と、それぞれがTFT層20Aおよび発光素子層20Bを含む複数の機能層領域20と、ガラスベース10と複数の機能層領域20との間に位置してガラスベース10に固着している合成樹脂フィルム(以下、単に「樹脂膜」と称する)30と、複数の機能層領域20を覆う保護シート50を備えている。積層構造体100は、更に、複数の機能層領域20と保護シート50との間において、機能層領域20の全体を覆うガスバリア膜40を備えている。積層構造体100は、バッファ層などの図示されていない他の層を有していてもよい。
 本実施形態における発光素子層20Bは、例えば、2次元的に配列された複数のOLED素子を有している。本開示における「発光素子層」は、発光素子の2次元アレイを意味する。個々の発光素子は、OLED素子に限定されず、マイクロLED素子であってもよい。また、本実施形態におけるフレキシブル発光デバイスの典型例は、「フレキシブルディスプレイ」であるが、「フレキシブル照明装置」であってもよい。
 積層構造体100の第1の表面100aはガラスベース10によって規定され、第2の表面100bは保護シート50によって規定されている。ガラスベース10および保護シート50は、製造工程中に一時的に用いられる部材であり、最終的なフレキシブル発光デバイスを構成する要素ではない。
 図示されている樹脂膜30は、複数の機能層領域20をそれぞれ支持している複数のフレキシブル基板領域30dと、個々のフレキシブル基板領域30dを囲む中間領域30iとを含む。フレキシブル基板領域30dと中間領域30iは、連続した1枚の樹脂膜30の異なる部分にすぎず、物理的に区別される必要はない。言い換えると、樹脂膜30のうち、各機能層領域20の真下に位置している部分がフレキシブル基板領域30dであり、その他の部分が中間領域30iである。
 複数の機能層領域20のそれぞれは、最終的にフレキシブル発光デバイスのパネル(例えば「ディスプレイパネル」)を構成する。言い換えると、積層構造体100は、分割前の複数のフレキシブル発光デバイスを1枚のガラスベース10が支持している構造を有している。各機能層領域20は、例えば厚さ(Z軸方向サイズ)が数十μm、長さ(X軸方向サイズ)が12cm程度、幅(Y軸方向サイズ)が7cm程度のサイズを持つ形状を有している。これらのサイズは、必要な表示画面または発光面領域の大きさに応じて任意の大きさに設定され得る。各機能層領域20のXY平面内における形状は、図示されている例において、長方形であるが、これに限定されない。各機能層領域20のXY平面内における形状は、正方形、多角形、または、輪郭に曲線を含む形状を有していてもよい。
 図1Aに示されるように、フレキシブル基板領域30dは、フレキシブル発光デバイスの配置に対応して、行および列状に、二次元的に配列されている。中間領域30iは、直交する複数のストライプから構成され、格子パターンを形成している。ストライプの幅は、例えば1~4mm程度である。樹脂膜30のフレキシブル基板領域30dは、最終製品の形態において、個々のフレキシブル発光デバイスの「フレキシブル基板」として機能する。これに対して、樹脂膜30の中間領域30iは、最終製品を構成する要素ではない。
 本開示の実施形態において、積層構造体100の構成は、図示されている例に限定されない。1枚のガラスベース10に支持されている機能層領域20の個数(発光デバイスの個数)は、複数である必要はなく、単数であってもよい。機能層領域20が単数である場合、樹脂膜30の中間領域30iは、1個の機能層領域20の周りを囲む単純なフレームパターンを形成する。
 なお、各図面に記載されている各要素のサイズまたは比率は、わかりやすさの観点から決定されており、実際のサイズまたは比率を必ずしも反映していない。
 本開示の製造方法に用いられ得る積層構造体100は、図1Aおよび図1Bに示される例に限定されない。図1Cおよび図1Dは、それぞれ、積層構造体100の他の例を示す断面図である。図1Cに示される例において、保護シート50は、樹脂膜30の全体を覆い、樹脂膜30よりも外側に拡がっている。図1Dに示される例において、保護シート50は、樹脂膜30の全体を覆い、かつ、ガラスベース10よりも外側に拡がっている。後述するように、積層構造体100からガラスベース10が隔離された後、積層構造体100は、剛性を有しないフレキシブルな薄いシート状の構造物になる。保護シート50は、ガラスベース10の剥離を行う工程、および、剥離後の工程において、機能層領域20が外部の装置または器具などに衝突したり、接触したりしたとき、機能層領域20を衝撃および摩擦などから保護する役割を果たす。保護シート50は、最終的に積層構造体100から剥がし取られるため、保護シート50の典型例は、接着力が比較的小さな接着層(離型剤の塗布層)を表面に有するラミネート構造を有している。積層構造体100のより詳細な説明は、後述する。
 <発光デバイスの分割>
 本実施形態のフレキシブル発光デバイスの製造方法によれば、上記の積層構造体100を用意する工程を実行した後、樹脂膜30の中間領域30iと複数のフレキシブル基板領域30dのそれぞれとを分割する工程を行う。
 図2Aおよび図2Bは、それぞれ、樹脂膜30の中間領域30iと複数のフレキシブル基板領域30dのそれぞれとを分割する位置を模式的に示す断面図および平面図である。切断のためのレーザビームの照射位置は、個々のフレキシブル基板領域30dの外周に沿っている。図2Aおよび図2Bにおいて、矢印または破線で示される照射位置(切断位置)CTを切断用のレーザビームで照射し、積層構造体100のうちでガラスベース10以外の部分を複数の発光デバイス(例えばディスプレイパネル)1000とその他の不要部分とに切断する。切断により、個々の発光デバイス1000と、その周囲との間に数十μmから数百μmの隙間が形成される。このような切断は、レーザビームの照射に代えて、固定刃や回転刃を有するカッターによって行うことも可能である。切断後も、発光デバイス1000およびその他の不要部分は、ガラスベース10に固着されている。
 図2Bに示されているように、積層構造体100における「不要部分」の平面レイアウトは、樹脂膜30の中間領域30iの平面レイアウトに整合している。図示されている例において、この「不要部分」は、開口部を有する1枚の連続したシート状構造物である。しかし、本開示の実施形態は、この例に限定されない。切断用レーザビームの照射位置CTは、「不要部分」を複数の部分に分けるように設定されていても良い。なお、「不要部分」であるシート状構造物は、樹脂膜30の中間領域30iのみならず、中間領域30i上に存在する積層物(例えばガスバリア膜40および保護シート50)の切断された部分を含んでいる。
 レーザビームによって切断を行う場合、レーザビームの波長は、赤外、可視光、紫外のいずれの領域にあってもよい。ガラスベース10に及ぶ切断の影響を小さくすると言う観点からは、波長が緑から紫外域に含まれるレーザビームが望ましい。例えば、Nd:YAGレーザ装置によれば、2次高調波(波長532nm)、または3次高調波(波長343nmまたは355nm)を利用して切断を行うことができる。その場合、レーザ出力を1~3ワットに調整して毎秒500mm程度の速度で走査すれば、ガラスベース10に損傷を与えることなく、ガラスベース10に支持されている積層物を発光デバイスと不要部分とに切断(分割)することができる。
 本開示の実施形態によれば、上記の切断を行うタイミングが従来技術に比べて早い。樹脂膜30がガラスベース10に固着した状態で切断が実行されるため、隣接する発光デバイス1000の間隔が狭くても、高い正確度および精度で切断の位置合わせが可能になる。このため、隣接する発光デバイス1000の間隔を短縮して、最終的に不要になる無駄な部分を少なくできる。また、従来技術では、ガラスベース10から剥離した後、樹脂膜30の表面(剥離表面)の全体を覆うように、偏光板、放熱シート、および/または電磁シールドなどが張り付けられることがある。そのような場合、切断により、偏光板、放熱シート、および/または電磁シールドも発光デバイス1000を覆う部分と、その他の不要な部分とに分割される。不要な部分は無駄に廃棄されることになる。これに対して、本開示の製造方法によれば、後に説明するように、このような無駄の発生を抑制できる。
 <剥離光照射>
 樹脂膜30の中間領域30iと複数のフレキシブル基板領域30dのそれぞれとを分割した後、剥離装置により、樹脂膜30のフレキシブル基板領域30dとガラスベース10との界面を剥離光で照射する工程を行う。
 図3Aは、不図示の製造装置(剥離装置)におけるステージ212が積層構造体100を支持する直前の状態を模式的に示す図である。本実施形態におけるステージ212は、吸着のための多数の孔を表面に有する吸着ステージである。吸着ステージの構成の詳細は、後述する。積層構造体100は、積層構造体100の第2の表面100bがステージ212の表面212Sに対向するように配置され、ステージ212によって支持される。
 図3Bは、ステージ212が積層構造体100を支持している状態を模式的に示す図である。ステージ212と積層構造体100との配置関係は、図示される例に限定されない。例えば、積層構造体100の上下が反転し、ステージ212が積層構造体100の下方に位置していてもよい。
 図3Bに示される例において、積層構造体100は、ステージ212の表面212Sに接しており、ステージ212は積層構造体100を吸着している。
 次に、図3Cに示されるように、樹脂膜30の複数のフレキシブル基板領域30dとガラスベース10との界面を剥離光216で照射する。図3Cは、図の紙面に垂直な方向に延びるライン状に成形された剥離光216によって積層構造体100のガラスベース10と樹脂膜30との界面を照射している状態を模式的に示す図である。樹脂膜30の一部は、ガラスベース10と樹脂膜30との界面において、剥離光216を吸収して分解(消失)する。剥離光216で上記の界面をスキャンすることにより、樹脂膜30のガラスベース10に対する固着の程度を低下させる。剥離光216の波長は、典型的には紫外域にある。剥離光216の波長は、剥離光216がガラスベース10には、ほとんど吸収されず、できるだけ樹脂膜30によって吸収されるように選択される。ガラスベース10の光吸収率は、例えば波長が343~355nmの領域では10%程度だが、308nmでは30~60%に上昇し得る。
 以下、本実施形態における剥離光の照射を詳しく説明する。
 <剥離光照射装置1>
 本実施形態における剥離装置は、剥離光216を出射するラインビーム光源を備えている。ラインビーム光源は、レーザ装置と、レーザ装置から出射されたレーザ光をラインビーム状に成形する光学系とを備えている。
 図4Aは、剥離装置220のラインビーム光源214から出射されたラインビーム(剥離光216)で積層構造体100を照射する様子を模式的に示す斜視図である。わかりやすさのため、ステージ212、積層構造体100、およびラインビーム光源214は、図のZ軸方向に離れた状態で図示されている。剥離光216の照射時、積層構造体100の第2の表面100bはステージ212に接している。
 図4Bは、剥離光216の照射時におけるステージ212の位置を模式的に示している。図4Bには表れていないが、積層構造体100はステージ212によって支持されている。
 剥離光216を放射するレーザ装置の例は、エキシマレーザなどのガスレーザ装置、YAGレーザなどの固体レーザ装置、半導体レーザ装置、および、その他のレーザ装置を含む。XeClのエキシマレーザ装置によれば、波長308nmのレーザ光が得られる。ネオジウム(Nd)がドープされたイットリウム・四酸化バナジウム(YVO4)、またはイッテルビウム(Yb)がドープされたYVO4をレーザ発振媒体として使用する場合は、レーザ発振媒体から放射されるレーザ光(基本波)の波長が約1000nmであるため、波長変換素子によって340~360nmの波長を有するレーザ光(第3次高調波)に変換してから使用され得る。これらのレーザ装置から出射されたスポットビーム状のレーザ光を、ラインビーム状に成形するレンズやプリズムなどから構成された光学系と組み合わせてラインビーム状の剥離光216を得る。
 樹脂膜30とガラスベース10との界面に犠牲層(金属または非晶質シリコンから形成された薄層)を設けてもよい。アッシュの生成を抑制するという観点からは、波長が340~360nmのレーザ光よりも、エキシマレーザ装置による波長308nmのレーザ光を利用することが、より有効である。また、犠牲層を設けることはアッシュ生成の抑制に顕著な効果がある。
 剥離光216の照射は、例えば250~300mJ/cm2のエネルギ照射密度で実行され得る。ラインビーム状の剥離光216は、ガラスベース10を横切るサイズ、すなわちガラスベースの1辺の長さを超えるライン長さ(長軸寸法、図4BのY軸方向サイズ)を有する。ライン長さは、例えば750mm以上であり得る。ただし、1m以上のライン長さを有するラインビームを得ようとすると、レーザ光を成形する光学系が巨大になりすぎて製造が困難になること、およびそれに伴いラインビームの品質(均一性)の低下が不可避であることから、一般的にはG6H基板サイズ(1800mm×750mmの短辺側)程度に対応するラインビーム(ビーム長さが750mm程度まで)が限界であった。一方、剥離光216のライン幅(短軸寸法、図4BのX軸方向サイズ)は、例えば0.2mm程度であり得る。これらの寸法は、樹脂膜30とガラスベース10との界面における照射領域のサイズである。剥離光216は、パルス状または連続波として照射され得る。パルス状の照射は、例えば毎秒200回程度の周波数で行われ得る。
 剥離光216の照射位置は、ガラスベース10に対して相対的に移動し、剥離光216のスキャンが実行される。剥離装置220内において、剥離光を出射する光源214および光学装置(不図示)が固定され、積層構造体100が移動してもよいし、その逆であってもよい。本実施形態では、ステージ212が図4Bに示される位置から図4Cに示される位置に移動する間、剥離光216の照射が行われる。すなわち、X軸方向に沿ったステージ212の移動により、剥離光216のスキャンが実行される。
 <剥離光照射装置2>
 上記の実施形態における剥離光照射装置が備える光源は、レーザ光源であるが、本開示の剥離光照射装置は、この例に限定されない。剥離光は、レーザ光源のようなコヒーレント光源の代わりに、非コヒーレント光源から放射されてもよい。以下、紫外線ランプから放射された剥離光で樹脂膜とガラスベースとの界面を照射する例を説明する。
 図23Aは、剥離光216を放射する面光源215の構成例を模式的に示す断面図である。図23Bは、この面光源215の構成例を示す上面図である。
 図示されている面光源215は、積層構造体100に対向する領域に配列された複数の紫外ランプ380と、各紫外ランプ380から放射された紫外光を反射するリフレクタ390とを備えている。この紫外ランプ380は、例えば、波長365nmのi線を放射する高圧水銀ランプであり得る。図示されている例におけるリフレクタ390は、紫外ランプ380から周囲に放射された紫外光を反射して実質的に平行光にすることができる。リフレクタ390がコールドミラーから形成されていると、高圧水銀ランプから放射された光に含まれる赤外成分が積層構造体100に入射することを抑制できる。紫外ランプ380と積層構造体100との間に赤外カットフィルタを配置してもよい。剥離光216に含まれ得る赤外成分を低減またはカットすることにより、赤外線照射による積層構造体100の昇温を抑制また防止することができる。
 樹脂膜30の剥離に必要な剥離光の照射エネルギは、例えば100mJ/cm2以上300mJ/cm2以下の範囲にある。紫外ランプ380のような光源(非コヒーレント光源)は、前述したレーザ光源に比べて一般に単位面積あたりの照射強度が小さい。このため、充分な照射エネルギを達成するためには、レーザ光源を用いる場合に比べて剥離光照射時間を長くすればよい。
 図23Aおよび図23Bに示される面光源215は、面状に広がる剥離光216を形成できるため、ラインビームをスキャンする場合に比べて、それぞれの位置での照射時間を長くすることが容易である。
 なお、図23Aの例では、リフレクタ390によって平行化された剥離光216が形成されているが、本開示の実施形態は、この例に限定されない。リフレクタ390および不図示のレンズを利用して、各紫外ランプ380から放射された光を幅が1~3mm程度のライン状に集光してもよい。そのようなストライプ状の剥離光216で積層構造体100を照射する場合は、積層構造体100に対する面光源215の相対位置をシフトさせることより、積層構造体100の全面を剥離光216で照射することができる。
 紫外ランプ380から放射される紫外光の照射強度が高い場合、1本または数本の紫外ランプ380でスキャンすることにより、積層構造体100の全面を剥離光216で照射することも可能である。紫外ランプ380から放射される紫外光の照射強度が高くない場合でも、スキャン速度を低下させれば、1本または数本の紫外ランプ380のスキャンにより、積層構造体100の全面を剥離光216で照射することが可能である。ただし、紫外ランプ380のランプ長の制約から、G8基板(2400mm×2200mm)やそれ以上のサイズの超大型基板への対応は困難な面もある。
 <剥離光照射装置3>
 以下、複数の発光ダイオード素子を備える非コヒーレント光源から放射された剥離光で樹脂膜とガラスベースとの界面を照射する例を説明する。
 剥離光を放射する光源として、紫外光を放射する複数の発光ダイオード(UV-LED)素子を用いることができる。このような発光ダイオード素子は、それぞれが、例えば縦3.5mm×横3.5mm×厚さ1.2mmのサイズを有している。複数の発光ダイオード素子は、1列または複数列に並べられて使用され得る。前述したとおり、従来のエキシマレーザやYAGレーザから出射するスポットビーム状のレーザ光を、レンズやプリズムなどの光学系を用いてラインビーム状に成形する際には、光学系の製造コストやレーザ光成形後のラインビームの不均一性の増大の問題から1m以上のライン長さを実現することは困難であった。また、紫外線ランプを用いても、そのランプ長に制約があるため、無制限に長いライン長さを実現することはできない。しかしながら、本実施形態のように複数の紫外光を放射する光源を並べて使用することにより、ラインビーム状の剥離光のライン長さを容易に1m以上とすることができ、G8サイズの基板(2400mm×2200mm)やそれ以上の超大型基板への対応も可能となる。
 図24は、2次元的に配列された複数の発光ダイオード素子400を備える面光源215を模式的に示す断面図である。個々の発光ダイオード素子400から放射された光は、Z軸方向を中心として拡がる。この光は、Z軸からの傾きである放射角度θに依存した相対放射強度の分布(指向性)を示す。ある例において、発光ダイオード素子の相対放射強度は、θ=45°で約75%、θ=65°で約50%であり得る。発光ダイオード素子の指向性は、レンズおよび/またはリフレクタを配置することにより、調節され得る。この場合も、複数の発光ダイオード素子400を2次元的に多数個配列させることにより、従来光源(レーザ光源と光学系の組合せや紫外線ランプ)では実現不可能であった超大型基板への対応が可能となる。
 市販されている発光ダイオード素子によれば、例えば電圧:3.85ボルト、電流:1000ミリアンペアの駆動条件で波長365nmの紫外光を1450ミリワットの出力で放射することができる。
 図25は、図24に示される例に比べて発光素子ダイオード素子400の面内個数密度を高めた面光源215を示す断面図である。発光素子ダイオード素子400の面内個数密度が高くなるほど、照射強度を高めることができる。
 図26は、行および列状に配列された発光ダイオード素子400のアレイを示す図である。隣接する発光ダイオード素子400の間隔(配列ピッチ)Pは、樹脂膜とガラスベースとの界面の全体において、照射強度が剥離に必要なレベルを超えるように選択される。
 <剥離光照射装置4>
 発光ダイオード素子は、駆動電流の大きさを調整することにより、その発光強度が制御される。従って、複数の発光ダイオード素子を1次元または2次元的に配列した状態において、個々の発光ダイオード素子を流れる駆動電流を変調することにより、剥離光の照射強度を時間的および/または空間的に変調することもできる。
 発光ダイオード素子の配列ピッチは、例えば3mm以上10mm以下の範囲にある。発光ダイオード素子から放射される光は、レーザ光とは異なり、インコヒーレント(非コヒーレント)光である。発光ダイオード素子から放射される光の波長は、例えば300nm以上380nm以下の範囲にある。
 図27A、図27Bおよび図27Cを参照しながら、複数の発光ダイオード素子が配列されたラインビーム光源の例を説明する。
 図27Aは、Y軸方向に配列された複数の発光ダイオード素子400を備えるラインビーム光源214の上面を模式的に示している。図27Bは、図27Aに示されるラインビーム光源214のB-B線断面である。図27Bには、積層構造体100も記載されている。図27Cは、積層構造体100に対するラインビーム光源214の移動方向を示す図である。
 この例において、発光ダイオード素子400から放射された紫外光は、単位面積あたりの照射エネルギ(照射強度:単位はジュール/cm2)を高めるために、シリンドリカルレンズ410を通って積層構造体100のガラスベース10に入射する。紫外光はX軸方向にフォーカスされるため、剥離が生じる界面(剥離面)における照射領域の幅(X軸方向サイズ)を例えば0.2mm程度またはそれ以下に狭くすることができる。シリンドリカルレンズ410は、X軸方向におけるフォーカスは行わないため、照射領域のY軸方向サイズは短縮されない。
 剥離光の照射強度を高めるためには、発光ダイオード素子400の配列ピッチを縮小して発光ダイオード素子400の個数密度を高めればよい。例えば、個々の発光ダイオード素子400のサイズが前述した大きさを有する場合、3.5mm~10mm間隔(配列ピッチ:隣接する光源の中心間距離)で数10個または100個以上の個数の発光ダイオード素子400を配列してもよい。より小さな発光ダイオード素子400を用いる場合は、例えば2.0mm~10mm間隔で配置することも可能である。発光ダイオード素子400の配列ピッチは5mm以下であることが好ましい。
 図27Cに示すように積層構造体100に対してラインビーム光源214を移動させることにより、積層構造体100の全面に対する剥離光の照射を実行できる。
 ラインビーム光源214の照射強度を高めるため、発光ダイオード素子400を複数列に並べてもよい。
 図28Aは、Y軸方向に配列された複数列の発光ダイオード素子400を備えるラインビーム光源214の上面を模式的に示している。図28Bは、図28Aに示されるラインビーム光源214のB-B線断面である。図28Bには、積層構造体100も記載されている。図28Cは、積層構造体100に対するラインビーム光源214の移動方向を示す図である。
 この例のラインビーム光源214は、それぞれがY軸方向に延びる5列の発光ダイオード素子400を備えている。Y軸方向における5列の発光ダイオード素子400の位置は、それぞれ、異なる。配列ピッチをPとするとき、発光ダイオード列の位置は、隣接する列の間で、Y軸方向にP/5ずつシフトしている。図28Cに示すように積層構造体100に対してラインビーム光源214を移動させることにより、積層構造体100の全面に対する剥離光の照射を実行できる。
 剥離光の照射は、積層構造体100に対して複数の光源を静止させた状態で行ってもよい。
 図29は、多数の発光ダイオード素子400がマトリックス状に配列された面光源215の例を模式的に示す上面図である。縦、横の発光ダイオードの配列個数は、使用する基板サイズに応じて任意に設定すればよく、この場合も、複数の発光ダイオード素子400を2次元的に多数個配列させることにより、従来光源(レーザ光源と光学系の組合せや紫外線ランプ)では実現不可能であった超大型基板への対応が可能となる。なお、剥離するべき面内を複数の領域に区分し、ステッパによる順次露光と同様に、各領域を剥離光のフラッシュで照射してもよい。
 なお、積層構造体100および面光源215を共に静止した状態で剥離光照射を行う場合、光スキャンのための精密な駆動装置が不要になる。また、固定されたラインビーム光源に対して積層構造体100を移動させながら剥離光照射を行う場合(図4A-図4C)は、積層構造体100の移動のために積層構造体100の少なくとも2倍の面積を持つエリアが必要である。しかし、面光源215を使用すれば、積層構造体100の移動に必要な余分のエリアが不要になり、装置の設置面積が半減する利点がある。
 このように発光ダイオード素子を用いることにより、比較的に高価な半導体レーザ素子を用いるよりも多数の光源を用いて剥離光照射を実行することが低コストで可能になる。また、個々の発光ダイオード素子から剥離光を放射する時間を長くすることも容易であるため、各発光ダイオード素子の光出力が小さくても、照射時間を調整することにより、剥離に必要な照射エネルギを達成できる。さらには、レーザ光を使用しないため、人間の眼に対する安全性(アイセーフ)の面でも有利である。
 <リフトオフ>
 図5Aは、剥離光の照射後、積層構造体100がステージ212に接触した状態を記載している。この状態を維持したまま、ステージ212からガラスベース10までの距離を拡大する。このとき、本実施形態におけるステージ212は積層構造体100の発光デバイス部分を吸着している。
 不図示の駆動装置がガラスベース10を保持してガラスベース10の全体を矢印Lの方向に移動させることにより、剥離(リフトオフ)が実行される。ガラスベース10は、不図示の吸着ステージによって吸着した状態で吸着ステージとともに移動し得る。ガラスベース10の移動の方向は、積層構造体100の第1の表面100aに垂直である必要はなく、傾斜していてもよい。ガラスベース10の移動は直線運動である必要はなく、回転運動であってもよい。また、ガラスベース10が不図示の保持装置または他のステージによって固定され、ステージ212が図の上方に移動してもよい。
 図5Bは、こうして分離された積層構造体100の第1部分110と第2部分120とを示す断面図である。積層構造体100の第1部分110は、ステージ212に接触した複数の発光デバイス1000を含む。各発光デバイス1000は、機能層領域20と、樹脂膜30の複数のフレキシブル基板領域30dとを有している。これに対して、積層構造体100の第2部分120は、ガラスベース10と、樹脂膜30の中間領域30iとを有している。
 図5Cは、ステージ212から樹脂膜30の中間領域30iが剥がされた状態を示す断面図である。ステージ212には各発光デバイス1000が接触した状態が維持されている。
 <ステージの構造例1>
 図6Aおよび図6Bは、本開示の実施形態で使用され得るステージ212の構造の一例を示す斜視図である。図6Aは、樹脂膜30の中間領域30iがステージ212に接触している状態を示している。図6Bは、樹脂膜30の中間領域30iがステージ212から剥がされた状態を示している。
 図示されているステージ212には、樹脂膜30の中間領域30iの把持を可能にする凹部218が設けられている。この例における凹部218は、ステージ212の頂部の切り欠きである。このような凹部218をステージ212に設けることにより、積層構造体100の不要部分(発光デバイス以外の部分)がステージ212の表面212Sに接触していない状態が実現する。このため、人の指、治具、ロボットアームなどにより、樹脂膜30の中間領域30iの一部を保持してZ軸の負方向に移動させることができ、それによって不要部分(発光デバイス以外の部分)の全体をステージ212から除去することができる。
 このように積層構造体100の第1部分110における不要部分(発光デバイス以外の部分)の全体をステージ212から除去すると、ステージ212には発光デバイス1000のみが接触した状態が実現される。ステージ212には、最終製品を構成する発光デバイス1000のみが支持されているため、ステージ212に接触した状態にある発光デバイス1000に対して各種の処理(部品の実装など)を無駄なく行うことが可能になる。処理の内容については、後述する。
 図示されている例において、凹部218の個数は1個であるが、凹部218の個数は複数であってもよい。凹部218の位置も、ステージ212の四隅に限定されない。凹部218の形状も、矩形の平面によって規定される必要はなく、曲面または凹凸面によって規定されていても良い。丸穴、貫通孔、スリットなど、種々の形状を有する凹部218を設けることにより、積層構造体100の第1部分110に含まれる不要部分をステージ212から剥がすことが容易になる。
 図2Bを参照しながら説明したように、切断用レーザビームの照射位置CTによっては「不要部分」が複数の部分から構成され得る。「不要部分」が複数の部分から構成される場合、それぞれの部分を把持できるように1個または複数個の凹部218がステージ212に設けられ得る。「不要部分」を構成する複数の部分を跨ぐように溝状の凹部が積層構造体100の外縁に沿ってステージ212に形成されていてもよい。
 更に後述するように、ステージ212の表面212Sのうち、積層構造体100の第1部分110に含まれる不要部分に接触する領域の吸着力を局所的に低下させたり、剥離を促したりしても良い。そのような構成を凹部218と組み合わせてもよい。
 上記の例では、剥離光の照射プロセスと剥離プロセスの両方が、ステージ212を備える剥離装置220によって実行されている。本開示の実施形態は、このような例に限定されない。剥離光の照射プロセスは、ステージ212とは異なる他のステージを備える剥離光照射装置によって実行し、剥離プロセスは、ステージ212を備える剥離装置を用いて実行してもよい。この場合、剥離光の照射後に、積層構造体100を不図示の他のステージからステージ212に移動させる必要がある。同一のステージを用いて剥離光の照射プロセスと剥離プロセスの両方を実行すれば、ステージ間で積層構造体を移動させる工程を省くことができる。
 <ステージの構造例2>
 図7は、他の構造を有するステージ212の表面を模式的に示す斜視図である。図8は、図7のステージ212の表面を模式的に示す平面図である。簡単のため、図6Bの凹部218の記載は省略されている。凹部218は、以下に説明する各ステージ212にとって不可欠の構成要素ではない。
 この例において、ステージ212は、多孔質の正面プレート222上に配置された吸着シート300を備えている。図示されるステージ212の表面は、それぞれが複数の発光デバイス1000(不図示)に対向する複数の第1領域300Aと、樹脂膜30の中間領域30iに対向する第2領域300Bとを有している。第1領域300Aにおける吸着力は、第2領域300Bにおける吸着力よりも大きい。
 図9Aは、第1領域300Aと第2領域300Bとの境界近傍の一部を拡大した模式図である。図9Bは、図9AのB-B線断面図である。この例におけるステージ212は、図9Bに示されるように、多孔質の正面プレート222と、正面プレート222に平行な背面プレート224と、これらのプレート間に形成されたスペース226と、正面プレート222上に配置された吸着シート300とを有している。スペース226は、ポンプなどの吸引装置(不図示)に接続される。動作時、吸引装置によってスペース226が負圧になるため、多孔質の正面プレート222が有する多数の空隙、および、吸着シートの300の開口部(貫通孔300H)を介して外部の空気がスペース226に流入する。このため、吸着シート300に接する物体はステージ212に吸引され、ステージ212に吸着する。
 多孔質の正面プレート222は、種々の多孔質材料から形成され得る。多孔質材料の気孔率は、例えば20%以上60%以下の範囲内にある。平均気孔径は、例えば5μm以上600μm以下の範囲内にある。多孔質材料の例は、金属もしくはセラミックスの焼結体、または樹脂である。正面プレート222を構成する多孔質材料の厚さは、例えば1mm以上50mm以下の範囲内にある。
 吸着シート300は、図9Aおよび図9Bに示されるように、複数の貫通孔300Hを有しているが、その開口率は、発光デバイス1000に接する第1領域300Aと、樹脂30の中間領域30iに対向する第2領域300Bとで異なっている。吸着シート300の「開口率」は、ステージ212の表面において、多孔質の正面プレート222が露出して吸着機能を発揮し得る領域(開口部)の面積割合である。
 吸着シート300は、例えば、PET(ポリエチレンテレフタレート)、PVC(ポリ塩化ビニル)、PP(ポリプロピレン)、フッ素樹脂(ポリフロン等)、ポリイミド(PI)、PC(ポリカーボネート)、ABS樹脂などの種々の材料から形成され得る。また、吸着シート300は、織布、不織布、多孔質フィルムなどから形成されていてもよい。吸着シート300の厚さは、例えば0.05~3.0mm程度であり得る。
 多孔質の正面プレート222の表面は、ほぼ一様な吸引力を発揮し得るが、吸着シート300を載せることにより、第1領域300Aと第2領域300Bとで吸着力に差が生じる。正面プレート222の表面のうち、吸着シート300の非開口部によって覆われた領域は、空気を吸引できず、吸着力を発揮しない。吸着シート300は、多孔質の正面プレート222によって吸着された状態で使用され得る。吸着シート300を正面プレート222の表面に固定する方法は、吸着に限定されず、接着層または治具を介して正面プレート222またはステージ212に固定してもよい。
 既存の吸着ステージに吸着シート300を組み合わせて使用することにより、積層構造体100の様々な設計に容易に対応することができる。例えば、発光デバイス1000の形状、寸法、個数、または配列パターンが変更された場合、この変更に応じた吸着シートに交換すれば、ステージ212の吸着力の面内分布を変更することが容易である。言い換えると、ステージ212の全体を変更することなく、吸着シート300のみを交換すればよい。
 本実施形態において、吸着シート300における第1領域300Aの貫通孔300Hの面内個数密度(以下、単に「密度」)は、第2領域300Bの貫通孔300Hの密度よりも高い。言い換えると、第1領域300Aの開口率は第2領域300Bの開口率よりも高い。このため、第1領域300Aの吸着力(吸引力)に比べて第2領域300Bの吸着力は小さい。第2領域300Bにおける貫通孔の密度は第1領域300Aにおける貫通孔300Hの密度の0~50%程度、好ましくは0~30%程度である。ある態様において、第2領域300Bの貫通孔300Hの密度は0個/cm2であってもよい。
 第1領域300Aと第2領域300Bとの間で吸着力の強弱を設ける方法は、吸着シート300における貫通孔300Hの密度に差を与えることに限定されない、貫通孔300Hの大きさおよび/または形状に差を与えることによっても開口率に差を与え、吸着力を調整することができる。更に、吸着シート300の第2領域300Bの厚さを第1領域300Aの厚さよりも小さくすることにより、積層構造体100が第1領域300Aに接しているとき、積層構造体100と第2領域300Bとの間に隙間が発生するようにしてもよい。そのような隙間の存在により、第2領域300Bの吸着力を低下させることが可能である。
 上記の構成を有するステージ212を用いることにより、図5Aに示される状態において、ステージ212の第1領域300Aに接している樹脂膜30の複数のフレキシブル基板領域30dを、それぞれ、ステージ212の第1領域300Aに強く吸着させることができる。一方、樹脂膜30の中間領域30iとステージ212の第2領域300Bとの間には強い吸着力は発生していない。
 図9Aおよび図9Bを参照しながら説明した構成例では、吸着シート300のうちで発光デバイス1000に接する第1領域300Aの形状および大きさが、発光デバイス1000の形状および大きさに一致しているが、本開示の実施形態は、この例に限定されない。第1領域300Aの吸着力が充分に強ければ、第1領域300Aは、個々の発光デバイス1000の全体ではなく、少なくとも一部に対向していればよい。
 図10は、他の構成例における吸着シート300を示す平面図である。吸着シート300の第1領域300Aは、積層構造体100に含まれる個々の発光デバイス1000をしっかりと吸着し、かつ、樹脂膜30の中間領域30iに接触しないかぎり、任意の形状および寸法を有し得る。
 図11Aは、吸着シート300の他の構成例における第1領域300Aと第2領域300Bとの境界近傍の一部を拡大した模式図である。図11Bは、図11AのB-B線断面図である。この例において、第1領域300Aは、多孔質材料から形成された正面プレート222の表面212Sを露出させる大きな開口部300Pによって規定されている。一方、第2領域300Bは、多孔質材料から形成された正面プレート222の表面212Sを覆い、吸着力を低下させる機能を発揮する。図示される例において、第2領域300Bには貫通孔300Hが設けられているが、第2領域300Bに貫通孔300Hは不可欠ではない。
 <ステージの構造例3>
 図12Aは、正面プレート222が多孔質材料ではなく、貫通孔を有するプレートから形成されたステージ212における第1領域212Aと第2領域212Bとの境界近傍の一部を拡大した模式図である。図12Bは、図12AのB-B線断面図である。
 この例において、第1領域212Aの貫通孔222Aの密度または開口率は第2領域212Bの貫通孔222Bの密度または開口率よりも高い。このため、第2領域212Bの吸着力は第1領域212Aの吸着力に比べて小さい。
 このようにステージ212そのものに吸着力が異なる複数の領域が設けられていてもよい。
 <ステージの構造例4>
 本実施形態のステージ212における第2領域212Bは、樹脂膜30の中間領域30iに対して流体を噴出し得る噴出孔を有していてもよい。流体の典型例は、大気または窒素などの気体である。
 図13Aは、第1領域212Aと第2領域212Bとの境界近傍の一部を拡大した模式図である。図13Bは、図13AのB-B線断面図である。この例におけるステージ212は、図13Bに示されるように、第1領域212Aに多孔質部分232Aを有する正面プレート222と、正面プレート222に平行な背面プレート224とを有している。正面プレート222の第2領域212Bは、多孔質部分232Aの代わりに噴出孔(噴気孔)232Bを有している。正面プレート222と背面プレート224との間には、仕切りによって区画された第1スペース226Aおよび第2スペース226Bが形成されている。第1スペース226Aは、第1領域212Aの多孔質部分232Aの多数の気孔を介して外部と連通している。一方、第2スペース226Bは第2領域212Bの噴出孔232Bを介して外部と連通している。
 第1スペース226Aは、減圧ポンプなどの吸引装置(不図示)に接続される。動作時、吸引装置によって第1スペース226Aが負圧になるため、第1領域212Aの多孔質部分232Aを介して外部の空気が第1スペース226Aに流入する。このため、正面プレート222の第1領域212Aに接する物体は、多孔質部分232Aによって吸引され、その結果、ステージ212に吸着する。
 第2スペース226Bは、加圧ポンプなどの加圧装置(不図示)に接続される。動作時、加圧装置によって第2スペース226Bが正圧になるため、第2領域212Bの噴出孔232Bを介して第2スペース226Bから外部に空気が噴き出す。このため、正面プレート222の第2領域212Bに接する物体は、噴出孔232Bから離れ、ステージ212から剥がれることになる。
 正面プレート222の第1領域212Aは、種々の多孔質材料から形成され得る。多孔質材料の気孔率は、例えば20%以上60%以下の範囲内にある。平均気孔径は、例えば5μm以上600μm以下の範囲内にある。多孔質材料の例は、金属もしくはセラミックスの焼結体、または樹脂である。多孔質材料の厚さは、例えば1mm以上50mm以下の範囲内にある。正面プレート222の第2領域212Bにおける噴出孔232Bの内径は、例えば数百μmから数mmの範囲内にある。
 図13Aの例において、噴出孔232Bは等間隔で直線上に配列されている。本開示の実施形態は、この例に限定されない。噴出孔232Bは、1もしくは複数の曲線または屈曲線上に位置していてもよい。また、噴出孔232Bの配列は等間隔である必要もない。隣接する2個の噴出孔232Bの中心間距離は、例えば数mm~3cmである。
 噴出孔232Bを介して第2スペース226Bから外部に空気などの流体が噴出するタイミングは、図5Cのプロセスを実行するときである。このとき以外は、噴出孔232Bから流体を噴出する必要はない。従って、分離の工程を実行する前の段階において、第2スペース226Bは、第1スペース226Aと同様に負圧にされていてもよい。そのとき、噴出孔232Bは、第1領域212Aの多孔質部分232Aとともに積層構造体100の吸着に寄与し得る。
 上記の構成を有するステージ212を用いることにより、図5Aに示される状態において、ステージ212の第1領域212Aに接している樹脂膜30の複数のフレキシブル基板領域30dを、それぞれ、ステージ212の第1領域212Aに強く吸着させることができる。一方、樹脂膜30の中間領域30iとステージ212の第2領域212Bとの間では、少なくとも気流噴出時に、ステージ212の表面212Sから中間領域30iを剥離することができる。その結果、樹脂膜30の中間領域30iは、ステージ212から離れやすくなる。
 この構成例では、発光デバイス1000に接する第1領域212Aの形状および大きさが、発光デバイス1000の形状および大きさに一致しているが、本開示の実施形態は、この例に限定されない。第1領域212Aの吸着力が充分に強ければ、第1領域212Aは、個々の発光デバイス1000の全体ではなく、少なくとも一部に対向していればよい。
 図10は、第1領域212Aの他の配置例を示す図である。積層構造体100に含まれる個々の発光デバイス1000をしっかりと吸着することができれば、第1領域212Aの形状および寸法は任意である。ただし、噴出孔232Bは、樹脂膜30の中間領域30iに対向する領域に配置される。
 本実施形態では、ステージ212が第1領域212Aに複数の多孔質部分232Aを備え、負圧によって積層構造体100を吸着するが、本開示のステージは、この例に限定されない。例えば静電チャックを備えるステージ、または第1領域212Aに多孔質部分232Aに代えて粘着層を有するステージであってもよい。そのようなステージも、樹脂膜30の中間領域30iに対向する領域(第2領域212B)に複数の噴出孔232Bを有していれば、上述した機能を実現することができる。
 上記の各構成を有するステージ212を用いることにより、図5Bの状態における樹脂膜30の中間領域30iを、ステージ212から容易に取り除くことができる。
 <剥離後の工程>
 図14は、ステージ212に吸着された状態にある積層構造体100の第1部分110(発光デバイス1000)から樹脂膜30の中間領域30iが剥がし取られる状態を示す斜視図である。
 図15は、ステージ212に吸着された状態にある発光デバイス1000を示す斜視図である。ステージ212には、行および列状に配列された複数の発光デバイス1000が吸着されている。図15の例においては、樹脂膜30のうち、各発光デバイス1000のフレキシブル基板領域30dの表面(剥離表面)30sが露出している。
 図16は、ステージ212が発光デバイス1000を吸着している状態を示す断面図である。この断面は、ZX面に平行な断面である。図16のZ軸の方向は、図14および図15のZ軸の方向から反転している。
 ステージ212に接触した複数の発光デバイス1000のそれぞれに対しては、順次または同時に、様々な処理を実行することができる。
 発光デバイス1000に対する「処理」は、複数の発光デバイス1000のそれぞれに、誘電体および/または導電体のフィルムを貼ること、クリーニングまたはエッチングを行うこと、ならびに、光学部品および/または電子部品を実装することを含み得る。具体的には、個々の発光デバイス1000のフレキシブル基板領域30dに対して、例えば、偏光板、封止フィルム、タッチパネル、放熱シート、電磁シールド、ドライバ集積回路などの部品が実装され得る。シート状の部品には、光学的、電気的、または磁気的な機能を発光デバイス1000に付加し得る機能性フィルムが含まれる。
 複数の発光デバイス1000がステージ212に吸着した状態で支持されているため、各発光デバイス1000に対する様々な処理が効率的に実行できる。
 ガラスベース10から剥離された樹脂膜30の表面30sは、活性であるため、表面30sを保護膜で覆ったり、疎水化の表面処理を行ったりした後、その上に各種の部品を実装してもよい。
 図17は、シート状の部品(機能性フィルム)60が実装された後、発光デバイス1000がステージ212から取り外された状態を模式的に示す断面図である。
 従来技術によれば、発光デバイス1000を分割する前に樹脂膜をガラスベースから剥離するため、その後の処理を行うときには、多数の発光デバイス1000が一枚の樹脂膜に固着した状態にある。そのため、個々の発光デバイス1000に対して効率的な処理を実行することが困難である。また、シート状の部品を取り付けた後に、発光デバイス1000を分割する場合、シート状部品のうち、隣接する2個の発光デバイス1000の中間領域に位置する部分は無駄になる。
 これに対して、本開示の実施形態によれば、ガラスベース10から剥離した後も多数の発光デバイス1000がステージ212上に整然と配列されているため、個々の発光デバイス1000に対して、順次または同時に、様々な処理を効率的に実行することが可能になる。
 積層構造体100を第1部分110と第2部分120とに分離する工程を行い、不要部分をステージ12から除去した後、図18に示すように、ステージ212に接触した複数の発光デバイス1000に他の保護シート(第2の保護シート)70を固着する工程を更に実行してもよい。第2の保護シート70は、ガラスベース10から剥離した樹脂膜30のフレキシブル基板領域30dの表面を一時的に保護する機能を発揮し得る。第2の保護シート70は、前述の保護シート50と同様のラミネート構造を有し得る。保護シート50を第1の保護シート50と呼ぶことができる。
 第2の保護シート70は、ステージ212に接触した複数の発光デバイス1000のそれぞれに対して上記の様々な処理を実行した後、複数の発光デバイス1000に固着されてもよい。
 第2の保護シート70を付着した後、発光デバイス1000に対するステージ212による吸着を停止すると、第2の保護シート70に固着された状態にある複数の発光デバイス1000をステージ212から離すことができる。その後、第2の保護シート70は、複数の発光デバイス1000のキャリアとして機能し得る。これは、ステージ212から第2の保護シート70への発光デバイス1000の転写である。第2の保護シート70に固着された状態にある複数の発光デバイス1000のそれぞれに対して、順次または同時に、様々な処理を実行してもよい。
 図19は、複数の発光デバイス1000にそれぞれ実装される複数の部品(機能性フィルム)80を載せたキャリアシート90を示す断面図である。このようなキャリアシート90を矢印Uの方向に移動させることにより、各部品80を発光デバイス1000に取り付けることが可能である。部品80の上面は、発光デバイス1000に強く付着する接着層を有している。一方、キャリアシート90と部品80との間は、比較的弱く付着している。このようなキャリアシート90を用いることにより、部品80の一括的な「転写」が可能になる。このような転写は、複数の発光デバイス1000がステージ212に規則的に配置された状態で支持されているため、容易に実現する。
 以下、図2Aおよび図2Bに示す分割を行う前における積層構造体100の構成をより詳しく説明する。
 まず、図20Aを参照する。図20Aは、表面に樹脂膜30が形成されたガラスベース10を示す断面図である。ガラスベース10は、プロセス用の支持基板であり、その厚さは、例えば0.3~0.7mm程度であり得る。
 本実施形態における樹脂膜30は、例えば厚さ5μm以上100μm以下のポリイミド膜である。ポリイミド膜は、前駆体であるポリアミド酸またはポリイミド溶液から形成され得る。ポリアミド酸の膜をガラスベース10の表面に形成した後に熱イミド化を行ってもよいし、ポリイミドを溶融または有機溶媒に溶解したポリイミド溶液からガラスベース10の表面に膜を形成してもよい。ポリイミド溶液は、公知のポリイミドを任意の有機溶媒に溶解して得ることができる。ポリイミド溶液をガラスベース10の表面10sに塗布した後、乾燥することによってポリイミド膜が形成され得る。
 ポリイミド膜は、ボトムエミッション型のフレキシブルディプレイの場合、可視光領域の全体で高い透過率を実現することが好ましい。ポリイミド膜の透明度は、例えばJIS K7105-1981に従った全光線透過率によって表現され得る。全光線透過率は80%以上、または85%以上に設定され得る。一方、トップエミッション型のフレキシブルディスプレイの場合には透過率の影響は受けない。
 樹脂膜30は、ポリイミド以外の合成樹脂から形成された膜であってもよい。ただし、本開示の実施形態では、薄膜トランジスタを形成する工程において、例えば350℃以上の熱処理を行うため、この熱処理によって劣化しない材料から樹脂膜30は形成される。
 樹脂膜30は、複数の合成樹脂層の積層体であってもよい。本実施形態のある態様では、フレキシブルディスプレイの構造物をガラスベース10から剥離するとき、ガラスベース10を透過する紫外線剥離光を樹脂膜30に照射する工程が行われる。樹脂膜30の一部は、ガラスベース10との界面において、このような紫外線剥離光を吸収して分解(消失)する必要がある。また、例えば、ある波長帯域の剥離光を吸収してガスを発生する犠牲層をガラスベース10と樹脂膜30との間に配置しておけば、その剥離光の照射により、樹脂膜30をガラスベース10から容易に剥離することができる。犠牲層を設けると、アッシュの生成が抑制されるという効果も得られる。
 <研磨処理>
 樹脂膜30の表面30x上にパーティクルまたは凸部などの研磨対象(ターゲット)が存在する場合、研磨装置によってターゲットを研磨し平坦化してもよい。パーティクルにどの異物の検出は、例えばイメージセンサによって取得した画像を処理することによって可能である。研磨処理後、樹脂膜30の表面30xに対する平坦化処理を行ってもよい。平坦化処理は、平坦性を向上させる膜(平坦化膜)を樹脂膜30の表面30xに形成する工程を含む。平坦化膜は樹脂から形成されている必要はない。
 <下層ガスバリア膜>
 次に、樹脂膜30上にガスバリア膜を形成してもよい。ガスバリア膜は、種々の構造を有し得る。ガスバリア膜の例は、シリコン酸化膜またはシリコン窒化膜などの膜である。ガスバリア膜の他の例は、有機材料層および無機材料層が積層された多層膜であり得る。このガスバリア膜は、機能層領域20を覆う後述のガスバリア膜から区別するため、「下層ガスバリア膜」と呼んでもよい。また、機能層領域20を覆うガスバリア膜は、「上層ガスバリア膜」と呼ぶことができる。
 <機能層領域>
 以下、TFT層20Aおよび発光素子層20Bなどを含む機能層領域20、ならびに上層ガスバリア膜40を形成する工程を説明する。
 まず、図20Bに示されるように、複数の機能層領域20をガラスベース10上に形成する。ガラスベース10と機能層領域20との間には、ガラスベース10に固着している樹脂膜30が位置している。
 機能層領域20は、より詳細には、下層に位置するTFT層20Aと、上層に位置する発光素子層20Bとを含んでいる。TFT層20Aおよび発光素子層20Bは、公知の方法によって順次形成される。発光デバイスがディスプレイの場合、TFT層20Aは、アクティブマトリクスを実現するTFTアレイの回路を含む。発光素子層20Bは、各々が独立して駆動され得る発光素子(OLED素子および/またはマイクロLED素子)のアレイを含む。
 マイクロLED素子のチップサイズは、例えば、100μm×100μmよりも小さい。マイクロLED素子は、放射する光の色または波長に応じて異なる無機半導体材料から形成され得る。同一の半導体チップが組成の異なる複数の半導体積層構造を含み、それぞれの半導体積層構造から異なるR(レッド)、G(グリーン)、B(ブルー)の光が放射されてもよい。また、周知のように、紫外光を放射する半導体チップ、または青色光を放射する半導体チップと、種々の蛍光体材料とを組み合せることにより、R、G、Bの光を放射させてもよい。
 TFT層20Aの厚さは例えば4μm程度であり、OLED素子を含む発光素子層20Bの厚さは、例えば1μmである。マイクロLED素子を含む発光素子層20Bの厚さは、例えば10μm以上であり得る。
 図21は、発光デバイスの一例であるディスプレイにおけるサブ画素の基本的な等価回路図である。ディスプレイの1個の画素は、例えばR、G、Bなどの異なる色のサブ画素によって構成され得る。図21に示される例は、選択用TFT素子Tr1、駆動用TFT素子Tr2、保持容量CH、および発光素子ELを有している。選択用TFT素子Tr1は、データラインDLと選択ラインSLとに接続されている。データラインDLは、表示されるべき映像を規定するデータ信号を運ぶ配線である。データラインDLは選択用TFT素子Tr1を介して駆動用TFT素子Tr2のゲートに電気的に接続される。選択ラインSLは、選択用TFT素子Tr1のオン/オフを制御する信号を運ぶ配線である。駆動用TFT素子Tr2は、パワーラインPLと発光素子ELとの間の導通状態を制御する。駆動用TFT素子Tr2がオンすれば、発光素子ELを介してパワーラインPLから接地ラインGLに電流が流れる。この電流が発光素子ELを発光させる。選択用TFT素子Tr1がオフしても、保持容量CHにより、駆動用TFT素子Tr2のオン状態は維持される。
 TFT層20Aは、選択用TFT素子Tr1、駆動用TFT素子Tr2、データラインDL、および選択ラインSLなどを含む。発光素子層20Bは発光素子ELを含む。発光素子層20Bが形成される前、TFT層20Aの上面は、TFTアレイおよび各種配線を覆う層間絶縁膜によって平坦化されている。発光素子層20Bを支持し、発光素子層20Bのアクティブマトリクス駆動を実現する構造体は、「バックプレーン」と称される。
 図21に示される回路要素および配線の一部は、TFT層20Aおよび発光素子層20Bのいずれかに含まれ得る。また、図21に示されている配線は、不図示のドライバ回路に接続される。
 本開示の実施形態において、TFT層20Aおよび発光素子層20Bの具体的な構成は多様であり得る。これらの構成は、本開示の内容を制限しない。TFT層20Aに含まれるTFT素子の構成は、ボトムゲート型であってもよいし、トップゲート型であってもよい。また、発光素子層20Bに含まれる発光素子の発光は、ボトムエミション型であってもよいし、トップエミション型であってもよい。発光素子の具体的構成も任意である。
 TFT素子を構成する半導体層の材料は、例えば、結晶質のシリコン、非晶質のシリコン、酸化物半導体を含む。本開示の実施形態では、TFT素子の性能を高めるために、TFT層20Aを形成する工程の一部が350℃以上の熱処理工程を含む。
 <上層ガスバリア膜>
 上記の機能層を形成した後、図20Cに示されるように、機能層領域20の全体をガスバリア膜(上層ガスバリア膜)40によって覆う。上層ガスバリア膜40の典型例は、無機材料層と有機材料層とが積層された多層膜である。なお、上層ガスバリア膜40と機能層領域20との間、または上層ガスバリア膜40の更に上層に、粘着膜、タッチスクリーンを構成する他の機能層、偏光膜などの要素が配置されていてもよい。上層ガスバリア膜40の形成は、薄膜封止(Thin Film Encapsulation:TFE)技術によって行うことができる。発光素子層20BがOLED素子を含む場合、封止信頼性の観点から、薄膜封止構造のWVTR(Water Vapor Transmission Rate)は、典型的には1×10-4g/m2/day以下であることが求められている。本開示の実施形態によれば、この基準を達成している。上層ガスバリア膜40の厚さは例えば1.5μm以下である。
 図22は、上層ガスバリア膜40が形成された段階における積層構造体100の上面側を模式的に示す斜視図である。1個の積層構造体100は、ガラスベース10に支持された複数の発光デバイス1000を含んでいる。図22に示される例において、1個の積層構造体100は、図1Aに示される例よりも多くの機能層領域20を含んでいる。前述したように、1枚のガラスベース10に支持される機能層領域20の個数は任意である。
 <保護シート>
 次に図20Dを参照する。図20Dに示されるように、積層構造体100の上面に保護シート50を張り付ける。保護シート50は、例えばポリエチレンテレフタレート(PET)やポリ塩化ビニル(PVC)などの材料から形成され得る。前述したように、保護シート50の典型例は、離型剤の塗布層を表面に有するラミネート構造を有している。保護シート50の厚さは、例えば50μm以上150μm以下であり得る。
 こうして作製された積層構造体100を用意した後、前述の製造装置(剥離装置220)を用いて本開示による製造方法を実行することができる。
 本発明の実施形態は、新しいフレキシブル発光デバイスの製造方法を提供する。フレキシブル発光デバイスは、スマートフォン、タブレット端末、車載用ディスプレイ、および中小型から大型のテレビジョン装置に広く適用され得る。また、フレキシブル発光デバイスは、照明装置としても利用され得る。
 10・・・ガラスベース、20・・・機能層領域、20A・・・TFT層、20B・・・発光素子層、30・・・樹脂膜、30d・・・樹脂膜のフレキシブル基板領域、30i・・・樹脂膜の中間領域、40・・・ガスバリア膜、50・・・保護シート、100・・・積層構造体、212・・・ステージ、220・・・剥離光照射装置(剥離装置)、1000・・・発光デバイス

Claims (16)

  1.  第1の表面と第2の表面とを有する積層構造体であって、
     前記第1の表面を規定するガラスベース;
     TFT層および発光素子層を含む機能層領域;
     前記ガラスベースと前記機能層領域との間に位置して前記ガラスベースに固着している合成樹脂フィルムであって、前記機能層領域を支持しているフレキシブル基板領域と、前記フレキシブル基板領域を囲む中間領域とを含む合成樹脂フィルム;および、
     前記機能層領域を覆い、前記第2の表面を規定する保護シート;
    を備える積層構造体を用意する工程と、
     前記合成樹脂フィルムの前記中間領域と前記フレキシブル基板領域とを分割する工程と、
     前記合成樹脂フィルムと前記ガラスベースとの界面を剥離光で照射する工程と、
     前記積層構造体の前記第2の表面をステージに接触させた状態で、前記ステージから前記ガラスベースまでの距離を拡大することにより、前記積層構造体を第1部分と第2部分とに分離する工程と、
    を含み、
     前記積層構造体の前記第1部分は、前記ステージに付着した前記合成樹脂フィルムの前記中間領域および発光デバイスを含み、前記発光デバイスは、前記機能層領域と前記合成樹脂フィルムの前記フレキシブル基板領域を有しており、前記積層構造体の前記第2部分は、前記ガラスベースを含み、
     更に、前記発光デバイスが前記ステージに付着している状態を維持したまま、前記ステージに付着した前記合成樹脂フィルムの前記中間領域を前記ステージから剥がし取る工程を含む、フレキシブル発光デバイスの製造方法。
  2.  前記剥離光は、非コヒーレント光である、請求項1に記載の製造方法。
  3.  前記発光素子層は、配列された複数のマイクロLEDを含み、
     前記剥離光は、レーザ光である、請求項1に記載の製造方法。
  4.  前記合成樹脂フィルムの前記中間領域を前記ステージから剥がし取った後、前記ステージに接触している前記発光デバイスに対して、処理を実行する工程を更に含む、請求項1から3のいずれかに記載の製造方法。
  5.  前記処理は、前記発光デバイスに、誘電体および/または導電体のフィルムを貼ること、クリーニングまたはエッチングを行うこと、光学部品および/または電子部品を実装することのいずれか含む、請求項4に記載の製造方法。
  6.  前記積層構造体を前記第1部分と前記第2部分とに分離する工程は、前記ステージが前記積層構造体の前記第2の表面を吸着している状態で実行される、請求項1から5のいずれかに記載の製造方法。
  7.  前記合成樹脂フィルムと前記ガラスベースとの前記界面を前記剥離光で照射する工程は、前記ステージが前記積層構造体の前記第2の表面を吸着している状態で実行される、請求項6に記載の製造方法。
  8.  前記ステージの表面は、前記発光デバイスに対向する第1領域と、前記合成樹脂フィルムの前記中間領域に対向する第2領域とを有しており、前記第1領域における吸着力は、前記第2領域における吸着力よりも高い、請求項1から7のいずれかに記載の製造方法。
  9.  前記積層構造体の前記第2の表面をステージに接触させる前に、複数の開口部を有する吸着シートを前記ステージ上に配置する工程を更に含み、
     前記ステージは、前記吸着シートを載せる多孔質プレートを備えており、
     前記吸着シートは、前記複数の発光デバイスに接する第1領域と、前記合成樹脂フィルムの前記中間領域に対向する第2領域とを有しており、前記第1領域の開口率は、前記第2領域の開口率よりも高い、請求項1から8のいずれかに記載の製造方法。
  10.  第1の表面と第2の表面とを有する積層構造体であって、
     前記第1の表面を規定するガラスベース;
     TFT層および発光素子層を含む機能層領域;
     前記ガラスベースと前記機能層領域との間に位置して前記ガラスベースに固着している合成樹脂フィルムであって、前記機能層領域を支持しているフレキシブル基板領域と、前記フレキシブル基板領域を囲む中間領域とを含む合成樹脂フィルム;および、
     前記機能層領域を覆い、前記第2の表面を規定する保護シート;
    を備え、前記合成樹脂フィルムの前記中間領域と前記フレキシブル基板領域とが分割されている、積層構造体を支持するステージと、
     前記ステージに支持されている前記積層構造体における前記合成樹脂フィルムと前記ガラスベースとの界面を剥離光で照射する剥離光照射装置と、
     前記ステージが前記積層構造体の前記第2の表面に接触した状態で、前記ステージから前記ガラスベースまでの距離を拡大することにより、前記積層構造体を第1部分と第2部分とに分離する駆動装置と、
    を備え、
     前記積層構造体の前記第1部分は、前記ステージに付着した前記合成樹脂フィルムの前記中間領域および発光デバイスを含み、前記発光デバイスは、前記機能層領域を有し、かつ、前記合成樹脂フィルムの前記フレキシブル基板領域を有しており、
     前記積層構造体の前記第2部分は、前記ガラスベースを含む、
    フレキシブル発光デバイスの製造装置。
  11.  前記剥離光照射装置は、前記剥離光を放射する非コヒーレント光源を備えている、請求項10に記載の製造装置。
  12.  前記発光素子層は、配列された複数のマイクロLEDを含み、
     前記剥離光照射装置は、前記剥離光を放射するレーザ光源を備えている、請求項10に記載の製造装置。
  13.  前記ステージは、前記ステージに支持されている前記積層構造体の前記第1部分に含まれる前記合成樹脂フィルムの前記中間領域の一部に対向する位置に、前記中間領域の把持を可能にする凹部を有している、請求項10から12のいずれかに記載の製造装置。
  14.  前記ステージは、前記複数の発光デバイスに対向する第1領域と、前記合成樹脂フィルムの前記中間領域に対向する第2領域とを有しており、前記第1領域における吸着力は、前記第2領域における吸着力よりも高い、請求項10から13のいずれかに記載の製造装置。
  15.  前記ステージは、
     多孔質プレートと、
     前記多孔質プレート上に配置された複数の開口部を有する吸着シートと、
    を有しており、
     前記吸着シートは、前記複数の発光デバイスに接する第1領域と、前記合成樹脂フィルムの前記中間領域に対向する第2領域とを有しており、前記第1領域の開口率は、前記第2領域の開口率よりも高い、請求項8から10のいずれかに記載の製造装置。
  16.  前記ステージは、前記合成樹脂フィルムの前記中間領域に対向する領域に複数の噴出孔を有している、請求項10から15のいずれかに記載の製造装置。
PCT/JP2018/017901 2018-05-09 2018-05-09 フレキシブル発光デバイスの製造方法および製造装置 WO2019215832A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/968,052 US11101258B2 (en) 2018-05-09 2018-05-09 Method and apparatus for manufacturing flexible light-emitting device
CN201880092863.2A CN112042272A (zh) 2018-05-09 2018-05-09 柔性发光器件的制造方法以及制造装置
JP2019540121A JP6694558B2 (ja) 2018-05-09 2018-05-09 フレキシブル発光デバイスの製造方法および製造装置
PCT/JP2018/017901 WO2019215832A1 (ja) 2018-05-09 2018-05-09 フレキシブル発光デバイスの製造方法および製造装置
US17/378,504 US20210343686A1 (en) 2018-05-09 2021-07-16 Method and apparatus for manufacturing flexible light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/017901 WO2019215832A1 (ja) 2018-05-09 2018-05-09 フレキシブル発光デバイスの製造方法および製造装置

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/968,052 A-371-Of-International US11101258B2 (en) 2018-05-09 2018-05-09 Method and apparatus for manufacturing flexible light-emitting device
US17/378,504 Continuation US20210343686A1 (en) 2018-05-09 2021-07-16 Method and apparatus for manufacturing flexible light-emitting device

Publications (1)

Publication Number Publication Date
WO2019215832A1 true WO2019215832A1 (ja) 2019-11-14

Family

ID=68467310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/017901 WO2019215832A1 (ja) 2018-05-09 2018-05-09 フレキシブル発光デバイスの製造方法および製造装置

Country Status (4)

Country Link
US (2) US11101258B2 (ja)
JP (1) JP6694558B2 (ja)
CN (1) CN112042272A (ja)
WO (1) WO2019215832A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11114650B2 (en) * 2017-10-26 2021-09-07 Sakai Display Products Corporation Method and apparatus for producing flexible OLED device including lift-off light irradiation
CN112136361A (zh) * 2018-05-09 2020-12-25 堺显示器制品株式会社 柔性发光器件的制造方法以及制造装置
CN112042274A (zh) * 2018-05-09 2020-12-04 堺显示器制品株式会社 柔性发光器件的制造方法以及制造装置
CN112136362A (zh) * 2018-05-09 2020-12-25 堺显示器制品株式会社 柔性发光器件的制造方法以及制造装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014048619A (ja) * 2012-09-04 2014-03-17 Panasonic Corp フレキシブルデバイスの製造方法
JP2015173088A (ja) * 2013-08-30 2015-10-01 株式会社半導体エネルギー研究所 積層体の加工装置および加工方法
WO2015190418A1 (ja) * 2014-06-13 2015-12-17 日本電気硝子株式会社 ガラスフィルムの製造方法、及びこのガラスフィルムを含む電子デバイスの製造方法
WO2017115484A1 (ja) * 2015-12-28 2017-07-06 鴻海精密工業股▲ふん▼有限公司 有機el表示装置の製造方法
JP6334078B1 (ja) * 2017-10-26 2018-05-30 堺ディスプレイプロダクト株式会社 フレキシブルoledデバイスの製造方法および製造装置
JP6334077B1 (ja) * 2017-10-26 2018-05-30 堺ディスプレイプロダクト株式会社 フレキシブルoledデバイスの製造方法および製造装置
JP6334079B1 (ja) * 2017-10-26 2018-05-30 堺ディスプレイプロダクト株式会社 フレキシブルoledデバイスの製造方法および製造装置
JP6334080B1 (ja) * 2017-10-26 2018-05-30 堺ディスプレイプロダクト株式会社 フレキシブルoledデバイスの製造方法および製造装置
JP6333502B1 (ja) * 2017-11-17 2018-05-30 堺ディスプレイプロダクト株式会社 フレキシブルoledデバイスの製造方法および製造装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090016438A (ko) * 2005-07-11 2009-02-13 젤코어 엘엘씨 광방출 효율이 향상된 레이저 리프트오프 led
JP5567912B2 (ja) 2010-06-25 2014-08-06 リンテック株式会社 光照射装置及び光照射方法
TWI492373B (zh) * 2012-08-09 2015-07-11 Au Optronics Corp 可撓式顯示模組的製作方法
KR102187752B1 (ko) * 2013-05-07 2020-12-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 박리 방법 및 박리 장치
JP2017191283A (ja) 2016-04-15 2017-10-19 株式会社ジャパンディスプレイ 表示装置及びその製造方法
JP6702781B2 (ja) 2016-04-19 2020-06-03 株式会社半導体エネルギー研究所 表示装置
TWI674682B (zh) * 2016-09-07 2019-10-11 優顯科技股份有限公司 光電半導體裝置及其製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014048619A (ja) * 2012-09-04 2014-03-17 Panasonic Corp フレキシブルデバイスの製造方法
JP2015173088A (ja) * 2013-08-30 2015-10-01 株式会社半導体エネルギー研究所 積層体の加工装置および加工方法
WO2015190418A1 (ja) * 2014-06-13 2015-12-17 日本電気硝子株式会社 ガラスフィルムの製造方法、及びこのガラスフィルムを含む電子デバイスの製造方法
WO2017115484A1 (ja) * 2015-12-28 2017-07-06 鴻海精密工業股▲ふん▼有限公司 有機el表示装置の製造方法
JP6334078B1 (ja) * 2017-10-26 2018-05-30 堺ディスプレイプロダクト株式会社 フレキシブルoledデバイスの製造方法および製造装置
JP6334077B1 (ja) * 2017-10-26 2018-05-30 堺ディスプレイプロダクト株式会社 フレキシブルoledデバイスの製造方法および製造装置
JP6334079B1 (ja) * 2017-10-26 2018-05-30 堺ディスプレイプロダクト株式会社 フレキシブルoledデバイスの製造方法および製造装置
JP6334080B1 (ja) * 2017-10-26 2018-05-30 堺ディスプレイプロダクト株式会社 フレキシブルoledデバイスの製造方法および製造装置
JP6333502B1 (ja) * 2017-11-17 2018-05-30 堺ディスプレイプロダクト株式会社 フレキシブルoledデバイスの製造方法および製造装置

Also Published As

Publication number Publication date
US11101258B2 (en) 2021-08-24
JPWO2019215832A1 (ja) 2020-05-28
CN112042272A (zh) 2020-12-04
US20210035963A1 (en) 2021-02-04
JP6694558B2 (ja) 2020-05-13
US20210343686A1 (en) 2021-11-04

Similar Documents

Publication Publication Date Title
JP6405073B1 (ja) フレキシブルoledデバイスの製造方法および製造装置
JP6334080B1 (ja) フレキシブルoledデバイスの製造方法および製造装置
WO2019082359A1 (ja) フレキシブルoledデバイスの製造方法および製造装置
WO2019215832A1 (ja) フレキシブル発光デバイスの製造方法および製造装置
JP6333502B1 (ja) フレキシブルoledデバイスの製造方法および製造装置
JP6334078B1 (ja) フレキシブルoledデバイスの製造方法および製造装置
JP6334077B1 (ja) フレキシブルoledデバイスの製造方法および製造装置
WO2019215834A1 (ja) フレキシブル発光デバイスの製造方法および製造装置
WO2019082357A1 (ja) フレキシブルoledデバイスの製造方法および製造装置
WO2019215830A1 (ja) フレキシブル発光デバイスの製造方法および製造装置
US20220006010A1 (en) Method and apparatus for manufacturing flexible light emitting device
US20210343957A1 (en) Method and apparatus for manufacturing flexible light-emitting device
JP6670425B1 (ja) フレキシブル発光デバイスの製造方法および製造装置
WO2019215833A1 (ja) フレキシブル発光デバイスの製造方法および製造装置
JP6556298B2 (ja) フレキシブルoledデバイスの製造方法および製造装置
JP2020115238A (ja) フレキシブル発光デバイスの製造方法および製造装置
JP6535122B2 (ja) フレキシブルoledデバイスの製造方法および製造装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019540121

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18917810

Country of ref document: EP

Kind code of ref document: A1