WO2019215799A1 - 医療用イメージング装置 - Google Patents
医療用イメージング装置 Download PDFInfo
- Publication number
- WO2019215799A1 WO2019215799A1 PCT/JP2018/017674 JP2018017674W WO2019215799A1 WO 2019215799 A1 WO2019215799 A1 WO 2019215799A1 JP 2018017674 W JP2018017674 W JP 2018017674W WO 2019215799 A1 WO2019215799 A1 WO 2019215799A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- excitation light
- icg
- light
- fluorescence
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
Definitions
- the present invention relates to a medical imaging apparatus.
- a medical imaging apparatus including an excitation light source that emits excitation light for exciting a fluorescent substance is known.
- Such a medical imaging apparatus is disclosed in, for example, Japanese Patent Application Laid-Open No. 2014-196953.
- JP-A-2014-196953 supplies (irradiates) excitation light in the infrared wavelength band for fluorescence observation to an observation object to which the fluorescent material is administered, and the fluorescent material is excited by the excitation light.
- a fluorescence observation apparatus (medical imaging apparatus) that acquires an observation image of fluorescence in the infrared wavelength band emitted by this is disclosed.
- the fluorescence observation apparatus disclosed in Japanese Patent Application Laid-Open No. 2014-196953 includes excitation light supply means that can switch ON / OFF of supply of excitation light.
- the difference between the ON image and the OFF image is photographed at the time of excitation light irradiation by an imaging device configured to detect the wavelength band of fluorescence. This is considered to be the difference between the measured image and the image taken when the excitation light is not irradiated.
- the excitation light is reflected in the ON image, so that it depends on the difference between the ON image and the OFF image. There is an inconvenience that excitation light is reflected as it is in a fluorescent image.
- the fluorescent substance administered to an observation object is generally an organic substance
- an organic substance generally has a small Stokes shift. Therefore, in the fluorescence observation apparatus disclosed in Japanese Patent Application Laid-Open No. 2014-196953, the excitation light is reflected in the fluorescence image because the correction for removing the excitation light from the ON image cannot be performed (the noise with respect to the signal increases). This is considered to cause a problem that the S / N ratio (signal / noise ratio) in the fluorescent image is lowered.
- a visible light image may be simultaneously acquired together with a fluorescence image.
- the fluorescence observation apparatus disclosed in Japanese Patent Application Laid-Open No. 2014-196953 supports only fluorescence images, visible light (white light) is reflected in the fluorescence image obtained by taking the difference between the ON image and the OFF image. it is conceivable that. Therefore, in the fluorescence observation apparatus disclosed in Japanese Patent Application Laid-Open No. 2014-196953, white light is reflected in the fluorescence image because the case of simultaneously obtaining the visible light image together with the fluorescence image is not taken into consideration (noise for the signal increases). This is considered to cause a problem that the S / N ratio (signal / noise ratio) in the fluorescent image is lowered.
- the present invention has been made to solve the above-described problems, and one object of the present invention is to provide an S / N ratio in a fluorescent image due to light other than fluorescence reflected in the fluorescent image. It is providing the medical imaging device which can suppress that it falls.
- a medical imaging apparatus includes an excitation light source that emits excitation light for exciting a fluorescent substance administered to a subject, and at least a dose administered to the subject.
- the first wavelength range detection unit is different from the first wavelength range detection unit that detects light in the first wavelength range including the wavelength range of fluorescence generated when one fluorescent substance is excited by excitation light irradiated by an excitation light source.
- a second wavelength band detector that detects light in the second wavelength band, which is a wavelength band, and a first wavelength band image that is a fluorescence image based on the light in the first wavelength band detected by the first wavelength band detector.
- a first wavelength band image generation unit that generates, a second wavelength band image generation unit that generates a second wavelength band image based on the light of the second wavelength band detected by the second wavelength band detection unit, and excitation light 1st wavelength range generated when irradiated Based on the image and the second wavelength band image, comprising an image correcting unit for correcting the first wavelength band image.
- the image correction unit includes the first wavelength band image based on the first wavelength band light generated when the excitation light is irradiated.
- the first wavelength band image is corrected based on the second wavelength band image based on the light in the second wavelength band, which is a wavelength band different from the first wavelength band.
- the first wavelength range image and the second wavelength By taking the difference from the area image, it is possible to perform correction for almost removing the excitation light from the first wavelength area image that is a fluorescence image.
- the excitation light contained in the fluorescence image can be removed, it is possible to suppress a decrease in the S / N ratio in the fluorescence image due to light other than fluorescence reflected in the fluorescence image. Can do.
- the image correction unit is generated when the excitation light is irradiated and the first wavelength region image generated when the excitation light is not irradiated. Based on the first wavelength region image, the second wavelength region image generated when the excitation light is irradiated, and the second wavelength region image generated when the excitation light is not irradiated, The wavelength range image is corrected.
- light other than the excitation light and fluorescence (white light or disturbance light) detected by the first wavelength range detection unit when the excitation light is irradiated and when the excitation light is not irradiated. Etc.) have substantially the same intensity.
- the first wavelength band image which is a fluorescence image generated when excitation light is irradiated and the fluorescence image generated when excitation light is not irradiated.
- the excitation light and the light other than the fluorescence (white light, visible light, etc.) detected by the second wavelength band detection unit are substantially the same when the excitation light is irradiated and when the excitation light is not irradiated.
- the difference between the second wavelength region image generated when the excitation light is irradiated and the second wavelength region image generated when the excitation light is not irradiated is taken.
- an image from which light other than excitation light and fluorescence is almost removed can be acquired. Therefore, when the intensity of the excitation light detected by the first wavelength range detection unit and the intensity of the excitation light detected by the second wavelength range detection unit are substantially aligned, it is generated when the excitation light is irradiated.
- a fluorescence image based on the first wavelength region image, the first wavelength region image generated when the excitation light is not irradiated, the second wavelength region image generated when the excitation light is irradiated By taking the difference from the image based on the second wavelength band image generated when the excitation light is not irradiated, light other than the excitation light and fluorescence is almost removed from the first wavelength band image in addition to the excitation light. Correction can be performed. As a result, the excitation light and the light other than the excitation light and the fluorescence included in the fluorescence image can be almost eliminated, and the S / N ratio in the fluorescence image due to the reflection of light other than the fluorescence in the fluorescence image. Can be reliably suppressed.
- the image correction unit is preferably configured based on the correlation between the excitation light intensity in the first wavelength band image and the excitation light intensity in the second wavelength band image.
- the wavelength range image is corrected. If comprised in this way, based on the said correlation, the intensity
- the second wavelength range preferably includes a visible wavelength range. If comprised in this way, the 1st wavelength range image which is the fluorescence image produced
- the first wavelength range detector is preferably configured to be able to detect fluorescence corresponding to a plurality of fluorescent substances that emit fluorescence having different wavelength ranges. If comprised in this way, in the structure which produces
- the fluorescence corresponding to a plurality of fluorescent substances can be detected in one first wavelength range detection unit, detection for detecting light corresponding to the fluorescent material in a wavelength range different from that of the first wavelength range detection unit
- the medical imaging apparatus can be downsized as compared with the case where the parts are provided separately.
- the medical imaging apparatus preferably further includes a third wavelength range detection unit that detects fluorescence corresponding to a fluorescent substance that emits fluorescence in a wavelength range different from that of the first wavelength range detection unit. If comprised in this way, in the structure which produces
- the first wavelength range detection unit and the third wavelength range detection unit are provided separately, compared to a case where one first wavelength range detection unit is configured to detect fluorescence corresponding to a plurality of fluorescent substances. Thus, the fluorescence detection accuracy can be improved.
- a medical imaging apparatus capable of suppressing a decrease in the S / N ratio in a fluorescent image due to reflection of light other than fluorescence in the fluorescent image. Can be provided.
- FIG. 1 is a diagram illustrating an overview of a medical imaging apparatus according to a first embodiment of the present invention. It is a block diagram which shows the structure of the control system of the medical imaging device by 1st Embodiment of this invention. It is a figure for demonstrating the picked-up image in the medical imaging device by 1st Embodiment of this invention. It is a flowchart of the correction process of the fluorescence image which removes light other than fluorescence.
- the configuration of the near-infrared light camera system 100 according to the first embodiment of the present invention will be described with reference to FIGS.
- the near-infrared light camera system 100 is an apparatus for capturing an image during surgery from the outside of the subject P and performing surgery support.
- the near-infrared light camera system 100 is an example of the “medical imaging apparatus” in the claims.
- the near-infrared camera system 100 includes an imaging unit 1 for imaging a subject P, a main unit 2 including a control unit 6 (see FIG. 2) and the like. And an arm part 3 that connects the photographing part 1 and the main body part 2.
- the near-infrared light camera system 100 irradiates ICG (indocyanine green), which is a fluorescent substance administered to the subject P, with the excitation light Ex, and the ICG fluorescence emitted when the ICG is excited by the excitation light Ex.
- An imaging apparatus configured to detect and image Lx.
- the excitation light Ex and the ICG fluorescence Lx are light having a center wavelength in the near infrared wavelength band. Since the ICG fluorescence Lx excited by the excitation light Ex has a longer wavelength (Stokes shift), the center wavelength is longer than that of the excitation light Ex.
- ICG is an example of the “fluorescent substance” in the claims.
- the ICG fluorescence Lx is an example of “light in the first wavelength range” and “fluorescence” in the claims.
- the photographing unit 1 includes an irradiation unit 4 for irradiating light and a detection unit 5 for detecting light.
- the main body 2 includes a control unit 6 for controlling various configurations of the near-infrared light camera system 100, a storage unit 7 for storing images taken by the photographing unit 1, and an image taken by the photographing unit 1. And a display unit 8 for displaying the above.
- the irradiation unit 4 includes an excitation light source 41 for generating excitation light Ex and irradiating the subject P, and a visible light source 42 for generating visible light Vis and irradiating the subject P. Yes.
- Each of the excitation light source 41 and the visible light source 42 includes a light emitting diode (LED) as a light source.
- the excitation light source 41 is an example of the “excitation light source” in the claims.
- the visible light Vis is an example of “light in the second wavelength range” in the claims.
- the excitation light source 41 is configured to generate, for example, near-infrared light having a center wavelength of 760 nm as excitation light Ex for exciting the ICG administered to the subject P.
- the visible light source 42 is configured to generate, for example, white light W including a plurality of (all) wavelengths in the visible region as the visible light Vis.
- the visible light Vis is not limited to the white light W, and may include only a specific wavelength in the visible region.
- the detection unit 5 includes a fluorescence detector 51 for detecting ICG fluorescence Lx and a visible light detector 52 for detecting visible light Vis.
- the fluorescence detector 51 is an example of the “first wavelength range detector” in the claims.
- the visible light detector 52 is an example of the “second wavelength range detector” in the claims.
- the fluorescence detector 51 and the visible light detector 52 are each composed of an image sensor (imaging device) using, for example, a CMOS (complementary metal oxide semiconductor) or a CCD (charge coupled device).
- image sensor imaging device
- CMOS complementary metal oxide semiconductor
- CCD charge coupled device
- an image sensor capable of detecting light in a range substantially equal to the wavelength band of the ICG fluorescence Lx is used to detect the ICG fluorescence Lx emitted from the ICG excited by the excitation light Ex.
- the visible light detector 52 uses an image sensor that can detect light in a range substantially equal to the wavelength band of the visible light Vis in order to detect the visible light Vis.
- the control unit 6 is a computer including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like.
- the control unit 6 includes an image generation unit 9 that generates an image captured by the imaging unit 1.
- the image generation unit 9 is an example of a “first wavelength range image generation unit”, a “second wavelength range image generation unit”, and an “image correction unit”.
- the image generation unit 9 may generate the ICG image 11 (see FIG. 3) and the VIS image 12 (see FIG. 3) based on the detection signals sent from the fluorescence detector 51 and the visible light detector 52, respectively. It is configured to be possible. That is, the image generation unit 9 generates the ICG image 11 based on the ICG fluorescence Lx detected by the fluorescence detector 51 and generates the VIS image 12 based on the visible light Vis detected by the visible light detector 52. Is configured to do. The image generation unit 9 is configured to be able to generate a composite image 13 obtained by combining the ICG image 11 and the VIS image 12.
- the synthesized image 13 is generated by synthesizing an ICG image 11 in which a site where ICG is administered by ICG fluorescence Lx is highlighted on a VIS image 12 photographed with visible light Vis.
- the ICG image 11 is an example of the “first wavelength region image” in the claims.
- the VIS image 12 is an example of the “second wavelength band image” in the claims.
- the storage unit 7 includes, for example, a nonvolatile memory.
- the storage unit 7 stores a program used for the processing of the control unit 6 and can store images (ICG image 11, VIS image 12, and composite image 13) generated by the image generation unit 9 and the like. It is configured.
- the display unit 8 is configured as a liquid crystal display, for example.
- the display unit 8 is configured to be able to display the images (ICG image 11, VIS image 12, and composite image 13) generated by the image generation unit 9.
- images ICG image 11, VIS image 12, and composite image 13
- a plurality of images can be displayed as a moving image by continuously displaying the images.
- the doctor or the like confirms the composite image 13 in which the site where ICG has been administered is highlighted with fluorescence, so that the visibility of the affected part can be improved in surgery or the like. Is possible.
- the fluorescence detector 51 detects not only the ICG fluorescence Lx but also the excitation light Ex.
- the wavelength bands of the ICG fluorescence Lx and the excitation light Ex partially overlap, and it is not easy to separate them. Therefore, when the image generation unit 9 generates the ICG image 11 as it is from the detection signal detected by the fluorescence detector 51, not only the ICG fluorescence Lx but also the excitation light Ex is reflected in the ICG image 11. The S / N ratio of the ICG image 11 is lowered.
- the image generation unit 9 includes the ICG image 11 based on the ICG fluorescence Lx generated when the excitation light Ex is irradiated and the visible light Vis having a wavelength range different from the ICG fluorescence Lx.
- the ICG image 11 is corrected based on the VIS image 12 based on.
- the near-infrared light camera system 100 is configured to be able to perform correction for removing the excitation light Ex from the ICG image 11.
- the correction of the ICG image 11 will be described in detail.
- condition A is the case where there is no irradiation with the excitation light Ex and the irradiation with the visible light Vis (W)
- condition B is the case where there is no irradiation with the excitation light Ex and there is the irradiation with the visible light Vis (W).
- Condition C is when there is no irradiation with Vis (W) and there is irradiation with excitation light Ex
- Condition D is when there is irradiation with excitation light Ex and irradiation with visible light Vis (W). It should be noted that the case where there is light irradiation or detection and the case where there is no light irradiation or there is (almost) no detection are 1 and 0, respectively.
- the imaging devices of the fluorescence detector 51 and the visible light detector 52 are referred to as an imaging device ICG and an imaging device VIS, respectively.
- the light detected by the image sensor ICG and the image sensor VIS includes ambient light, visible light Vis (W), excitation light Ex, and ICG fluorescence Lx.
- the visible light Vis (W) is the same light as the visible light Vis (W) irradiated by the visible light source 42.
- disturbance light is light other than visible light Vis (W), excitation light Ex, and ICG fluorescence Lx, for example, light, such as room light and sunlight.
- disturbance light is light other than visible light Vis (W), excitation light Ex, and ICG fluorescence Lx, it is detected under any of conditions A, B, C, and D. Further, the disturbance light includes all light other than the visible light Vis (W), the excitation light Ex, and the ICG fluorescence Lx, and thus is detected in both the image sensor ICG and the image sensor VIS.
- the visible light Vis (W) detected by the imaging element ICG and the imaging element VIS is the same light as the visible light Vis (W) irradiated by the visible light source 42, and therefore, visible light Vis ( This corresponds to the presence or absence of irradiation of (W).
- the visible light Vis (W) is detected by the image sensor ICG and the image sensor VIS when the visible light Vis (W) is irradiated by the visible light source 42 (in the case of condition B and condition D).
- the image sensor ICG and the image sensor VIS are not detected.
- the excitation light Ex detected by the imaging element ICG and the imaging element VIS is the same light as the excitation light Ex irradiated by the excitation light source 41, it corresponds to the presence or absence of irradiation of the excitation light Ex by the excitation light source 41. ing. Specifically, the excitation light Ex is detected by the imaging element ICG and the imaging element VIS and excited light when there is irradiation of the excitation light Ex by the excitation light source 41 (in the case of the condition C and the condition D). When there is no irradiation of the excitation light Ex by the light source 41 (in the case of the conditions A and B), the image sensor ICG and the image sensor VIS are not detected.
- the ICG fluorescence Lx detected by the image sensor ICG and the image sensor VIS corresponds to the presence or absence of the excitation light Ex by the excitation light source 41.
- the imaging element VIS is configured to detect visible light Vis, the wavelength band between the visible light Vis and the ICG fluorescence Lx hardly overlaps, so that the ICG fluorescence Lx is hardly detected.
- the ICG fluorescence Lx is detected by the imaging element ICG and hardly detected by the imaging element VIS when the excitation light Ex 41 is irradiated by the excitation light source 41 (in the case of Condition C and Condition D).
- the ICG fluorescence Lx is not detected in any of the image sensor ICG and the image sensor VIS when the excitation light Ex 41 is not irradiated by the excitation light source 41 (condition A and condition B).
- the image generation unit 9 has four conditions (conditions A, Under B, C and D), four types of ICG images 11 and four types of VIS images 12 respectively detected by the image sensor ICG and the image sensor VIS can be generated.
- the ICG images 11 under the conditions A, B, C, and D are represented by the function ICG (0, 0), respectively.
- the VIS images 12 in the conditions A, B, C, and D are respectively expressed as a function VIS (0, 0), a function VIS (0, 1), a function VIS (1, 0), and a function VIS (1, 1).
- VIS VIS
- the image generation part 9 is the ICG image 11 produced
- the ICG image 11 is configured to be corrected based on the VIS image 12 generated when the excitation light Ex is irradiated and the VIS image 12 generated when the excitation light Ex is not irradiated. Yes.
- the ICG image 11 generated when the excitation light Ex 41 is irradiated with the excitation light Ex 41 the ICG image 11 generated when the excitation light Ex 41 is not irradiated with the excitation light Ex
- the ICG image 11 generated when the excitation light Ex 41 is not irradiated with the excitation light Ex
- the excitation light Ex is not irradiated by the excitation light source 41
- the VIS image 12 generated when the excitation light Ex is irradiated by the excitation light source 41 The ICG image 11 is corrected based on the generated VIS image 12 and the second difference image acquired by the difference between the generated VIS image 12 and the second difference image.
- the image generation unit 9 removes most of the disturbance light and the visible light Vis (W) by the difference between the function ICG (0, 0) and the function ICG (1, 0), and the excitation light Ex and ICG. It is possible to obtain a function ICG (Ex, Lx) including the fluorescence Lx. Similarly, the image generation unit 9 removes most of the disturbance light and the visible light Vis (W) by the difference between the function ICG (0, 1) and the function ICG (1, 1), and the excitation light Ex and the ICG fluorescence Lx. It is possible to obtain a function ICG (Ex, Lx) including
- the image generation unit 9 removes the disturbance light and the visible light Vis (W) almost by the difference between the function VIS (0, 0) and the function VIS (1, 0), and includes the excitation light Ex. It is possible to obtain a function VIS (Ex) that hardly contains the fluorescence Lx. Similarly, the image generation unit 9 almost eliminates disturbance light and visible light Vis (W) by the difference between the function VIS (0, 1) and the function VIS (1, 1), and includes the excitation light Ex. It is possible to obtain a function VIS (Ex) that contains almost no ICG fluorescence Lx.
- the intensity of the excitation light Ex detected by the fluorescence detector 51 and the intensity of the excitation light Ex detected by the visible light detector 52 are different.
- the image generation unit 9 is configured to correct the ICG image 11 based on the correlation between the intensity of the excitation light Ex in the ICG image 11 and the intensity of the excitation light Ex in the VIS image 12. ing. Specifically, the image generation unit 9 can calculate in advance the correlation between the intensity of the excitation light Ex in the function ICG (Ex, Lx) and the intensity of the excitation light Ex in the function VIS (Ex) as a function VIStoICG. It is configured to be possible.
- the function VIStoICG is a function for converting the intensity of the excitation light Ex in the function VIS (Ex) into the intensity of the excitation light Ex in the function ICG (Ex, Lx). Thereby, the image generation unit 9 can acquire the ICG image 11 from which the excitation light Ex is almost removed from the function ICG (Ex, Lx) -function VIStoICG (function VIS (Ex)).
- the image generation unit 9 obtains the function ICG (Ex, Lx) including the excitation light Ex and the ICG fluorescence Lx from which the disturbance light and the visible light Vis (W) are almost removed.
- the function VIS (Ex) is obtained in which the visible light Vis (W) is almost removed and the excitation light Ex is included, but the ICG fluorescence Lx is hardly included.
- the image generation unit 9 acquires an ICG image 11 from which disturbance light, visible light Vis, and excitation light Ex are almost eliminated, based on the function ICG (Ex, Lx) and the function VIS (Ex). Thereby, the ICG image 11 can be corrected so that light other than the ICG fluorescence Lx is almost removed from the ICG image 11.
- the image generation unit 9 determines whether or not the imaging element ICG is in accordance with the combination of the presence or absence of the excitation light Ex from the excitation light source 41 and the presence or absence of the visible light Vis (W) from the visible light source 42. And four types of ICG images 11 and four types of VIS images 12 respectively detected by the image sensor VIS.
- the four types of ICG images 11 are a function ICG (0, 0), a function ICG (0, 1), a function ICG (1, 0), and a function ICG (1, 1).
- the four types of VIS images 12 are a function VIS (0, 0), a function VIS (0, 1), a function VIS (1, 0), and a function VIS (1, 1).
- step S12 the image generation unit 9 determines the difference between the function ICG (0, 0) and the function ICG (1, 0), or the function ICG (0, 1) and the function ICG (1, 1). As a result, the disturbance light and the visible light Vis (W) are almost removed, and the function ICG (Ex, Lx) including the excitation light Ex and the ICG fluorescence Lx is obtained.
- step S13 the image generation unit 9 determines the difference between the function VIS (0, 0) and the function VIS (1, 0), or the function VIS (0, 1) and the function VIS (1, 1). As a result, the disturbance light and the visible light Vis (W) are almost removed, and a function VIS (Ex) that includes the excitation light Ex but hardly includes the ICG fluorescence Lx is obtained. Note that the order of step S12 and step S13 may be reversed.
- step S14 the image generation unit 9 functions VIStoICG representing the correlation between the intensity of the excitation light Ex in the function ICG (Ex, Lx) calculated in advance and the intensity of the excitation light Ex in the function VIS (Ex).
- VIStoICG representing the correlation between the intensity of the excitation light Ex in the function ICG (Ex, Lx) calculated in advance and the intensity of the excitation light Ex in the function VIS (Ex).
- the image generation unit 9 is in a wavelength range different from the ICG image 11 based on the ICG fluorescence Lx generated when the excitation light Ex is irradiated and the ICG fluorescence Lx.
- the ICG image 11 is configured to be corrected based on the VIS image 12 based on the visible light Vis.
- the intensity of the excitation light Ex detected by the fluorescence detector 51 and the intensity of the excitation light Ex detected by the visible light detector 52 are substantially aligned, the difference between the ICG image 11 and the VIS image 12 is obtained.
- correction for removing the excitation light Ex from the ICG image 11 can be performed.
- the excitation light Ex contained in the ICG image 11 can be almost removed, the S / N ratio in the ICG image 11 is lowered due to the light other than the ICG fluorescence Lx being reflected in the ICG image 11. Can be suppressed.
- the image generation unit 9 is generated when the ICG image 11 generated when the excitation light Ex is irradiated and when the excitation light Ex is not irradiated.
- the ICG image 11 is corrected based on the ICG image 11, the VIS image 12 generated when the excitation light Ex is irradiated, and the VIS image 12 generated when the excitation light Ex is not irradiated.
- light other than the excitation light Ex and the ICG fluorescence Lx detected by the fluorescence detector 51 (white light, disturbance light, etc.) when the excitation light Ex is irradiated and when the excitation light Ex is not irradiated.
- the ICG image 11 that is a fluorescence image generated when the excitation light Ex is irradiated and the ICG that is a fluorescence image generated when the excitation light Ex is not irradiated By taking the difference from the image 11, it is possible to obtain a fluorescence image from which light other than the excitation light Ex and the ICG fluorescence Lx is almost removed.
- the excitation light Ex detected by the visible light detector 52 and light other than fluorescence are detected when the excitation light Ex is irradiated and when the excitation light Ex is not irradiated.
- the intensity is substantially the same, by taking the difference between the VIS image 12 generated when the excitation light Ex is irradiated and the VIS image 12 generated when the excitation light Ex is not irradiated, An image from which light other than the excitation light Ex and the ICG fluorescence Lx is almost removed can be acquired. Therefore, when the intensity of the excitation light Ex detected by the fluorescence detector 51 is substantially equal to the intensity of the excitation light Ex detected by the visible light detector 52, it is generated when the excitation light Ex is irradiated.
- the fluorescence image based on the ICG image 11 and the ICG image 11 generated when the excitation light Ex is not irradiated, the VIS image 12 generated when the excitation light Ex is irradiated, and the excitation light Ex By taking a difference from the image based on the VIS image 12 generated when not irradiated, correction is made to remove most of the light other than the excitation light Ex and the ICG fluorescence Lx in addition to the excitation light Ex from the ICG image 11. It can be carried out.
- the excitation light Ex and the light other than the excitation light Ex and the ICG fluorescence Lx included in the ICG image 11 can be almost eliminated, and therefore, the light other than the ICG fluorescence Lx is reflected in the ICG image 11.
- the S / N ratio in the ICG image 11 can be reliably suppressed from decreasing.
- the image generation unit 9 causes the ICG image 11 to be generated based on the correlation between the intensity of the excitation light Ex in the ICG image 11 and the intensity of the excitation light Ex in the VIS image 12. Configure to correct. Thereby, based on the above correlation, the intensity of the excitation light Ex detected by the fluorescence detector 51 and the intensity of the excitation light Ex detected by the visible light detector 52 can be easily made substantially uniform. Correction that almost eliminates the excitation light Ex from the image 11 can be easily performed. As a result, most of the excitation light Ex contained in the ICG image 11 can be easily removed, and therefore the S / N ratio in the ICG image 11 is caused by light other than the ICG fluorescence Lx being reflected in the ICG image 11. It can suppress easily that it falls.
- the second wavelength range includes the wavelength range of visible light Vis.
- the ICG image 11 which is a fluorescence image generated based on the wavelength range of the ICG fluorescence Lx detected by the fluorescence detector 51 and the wavelength range of the visible light Vis detected by the visible light detector 52.
- the generated VIS image 12 that is a visible light image Based on the generated VIS image 12 that is a visible light image, the ICG image 11 that is a fluorescent image can be corrected.
- the visible light image is acquired together with the fluorescent image, it is possible to prevent the S / N ratio in the ICG image 11 from being lowered due to the light other than the ICG fluorescence Lx being reflected in the ICG image 11. can do.
- the image generation unit 9 performs an ICG image based on the ICG fluorescence Lx generated when the excitation light Ex is irradiated. 11 and the VIS image 12 based on the visible light Vis that is in a different wavelength range from the ICG fluorescence Lx, the ICG image 11 is corrected. Specifically, unlike the first embodiment, the image generation unit 9 generates the ICG fluorescence Lx based on the ICG image 11 and the VIS image 12 that are generated according to the presence or absence of the excitation light Ex by the excitation light source 41. The ICG image 11 can be corrected so that most of the light other than the light is removed.
- the correction of the ICG image 11 in the second embodiment can be regarded as omitting the irradiation of the visible light Vis (W) by the visible light source 42 of the first embodiment.
- the visible light Vis (W) is not irradiated only during the photographing by the photographing unit 1 for generating the ICG image 11.
- the imaging for generating the ICG image 11 and the imaging for the VIS image 12 for clearly imaging the subject P can be switched every several frames.
- condition E is not irradiated with the excitation light Ex
- condition F is the case where the excitation light Ex is irradiated.
- the light detected by the image sensor ICG and the image sensor VIS includes disturbance light, excitation light Ex, and ICG fluorescence Lx.
- the excitation light Ex is detected by the imaging element ICG and the imaging element VIS and irradiated with the excitation light Ex by the excitation light source 41 when the excitation light Ex is irradiated by the excitation light source 41 (condition F).
- condition E When there is no (condition E), the image sensor ICG and the image sensor VIS are not detected.
- the ICG fluorescence Lx is detected by the imaging device ICG and hardly detected by the imaging device VIS when the excitation light Ex 41 is irradiated by the excitation light source 41 (condition F). Further, the ICG fluorescence Lx is not detected in any of the image sensor ICG and the image sensor VIS when the excitation light Ex 41 is not irradiated by the excitation light source 41 (condition E).
- the image generation unit 9 detects the two types detected by the imaging element ICG and the imaging element VIS under two conditions (conditions E and F) depending on whether or not the excitation light source 41 is irradiated with the excitation light Ex. ICG image 11 and two types of VIS images 12 can be generated.
- the ICG images 11 under the conditions E and F are respectively expressed as a function ICG (0) and a function ICG (1). It expresses.
- the VIS images 12 in the conditions E and F are expressed as a function VIS (0) and a function VIS (1), respectively.
- the image generation unit 9 generates the ICG image 11 generated when the excitation light Ex is irradiated and the excitation light Ex is not irradiated. Based on the generated ICG image 11, the VIS image 12 generated when the excitation light Ex is irradiated, and the VIS image 12 generated when the excitation light Ex is not irradiated, the ICG image 11 is generated. Is configured to correct.
- the image generation unit 9 eliminates the disturbance light by the difference between the function ICG (0) and the function ICG (1), and includes the function ICG (Ex, Lx) including the excitation light Ex and the ICG fluorescence Lx. ) Can be obtained.
- the image generation unit 9 eliminates the disturbance light based on the difference between the function VIS (0) and the function VIS (1), includes the excitation light Ex, but does not include the ICG fluorescence Lx. ) Can be obtained.
- the image generation unit 9 performs ICG based on the correlation between the intensity of the excitation light Ex in the ICG image 11 and the intensity of the excitation light Ex in the VIS image 12.
- the image 11 is configured to be corrected. Thereby, the image generation unit 9 can acquire the ICG image 11 from which the excitation light Ex is almost removed from the function ICG (Ex, Lx) -function VIStoICG (function VIS (Ex)).
- the image generation unit 9 removes the disturbance light and the visible light Vis (W), and includes the function ICG (Ex, Lx) including the excitation light Ex and the ICG fluorescence Lx. As well as disturbance light and visible light Vis (W) are almost removed, and a function VIS (Ex) containing excitation light Ex but almost no ICG fluorescence Lx is obtained. Then, the image generation unit 9 corrects the ICG image 11 based on the function ICG (Ex, Lx) and the function VIS (Ex) so as to almost remove light other than the ICG fluorescence Lx from the ICG image 11. Can do.
- the image generation unit 9 performs the ICG image 11 based on the ICG fluorescence Lx generated when the excitation light Ex is irradiated, and the ICG fluorescence.
- the ICG image 11 is corrected based on the VIS image 12 based on the visible light Vis that is in a wavelength region different from Lx.
- the excitation light Ex included in the ICG image 11 can be almost removed. Therefore, the ICG image 11 is caused by light other than the ICG fluorescence Lx being reflected in the ICG image 11. It can suppress that the S / N ratio in falls.
- the ICG image 11 and the VIS image 12 are generated according to the combination of the presence / absence of the excitation light Ex and the presence / absence of the visible light Vis (W). Unlike the above, the ICG image 11 and the VIS image 12 are generated according to the presence or absence of the irradiation of the excitation light Ex. Thereby, unlike the first embodiment, the ICG image 11 can be corrected so as to almost eliminate the excitation light Ex without considering the presence or absence of irradiation with the visible light Vis (W). The correction process can be simplified.
- the “medical imaging apparatus” in the claims uses a near-infrared light camera for assisting surgery by capturing an image during surgery from outside the subject P.
- the present invention is not limited to this.
- the “medical imaging apparatus” in the claims may be applied to an apparatus that captures an image other than at the time of surgery.
- the inside of the subject P You may apply to the apparatus which images from.
- the excitation light source 41 and the visible light source 42 including a light emitting diode (LED) as a light source are provided, but the present invention is not limited to this.
- the excitation light source 41 and the visible light source 42 may include a light emitting element other than the light emitting diode as a light source as long as the excitation light Ex and the visible light Vis can be irradiated.
- the present invention is not limited to this. I can't.
- the visible light Vis (W) if the visible light source 42 is not provided and the user of the medical imaging apparatus can take an image with such a sharpness that the affected part of the subject P can be recognized. You may make it image
- the example in which near-infrared light having a center wavelength of 760 nm is generated as the excitation light Ex for exciting the ICG has been shown. Not limited to.
- the center wavelength of the excitation light Ex is not limited to 760 nm, and any wavelength that can excite ICG may be used.
- the present invention is not limited to this.
- a fluorescent substance other than ICG may be used as the “fluorescent substance” in the claims as long as the fluorescent substance can be emitted by being excited by excitation light.
- ICG single one
- the excitation light source 41 one excitation light source.
- the present invention is not limited to this.
- the “fluorescent substance” in the claims a plurality of fluorescent substances having different fluorescence wavelength ranges may be used.
- the “first wavelength range detection unit” in the claims may be configured to detect the wavelength ranges corresponding to the respective fluorescent substances with a single detection unit.
- the medical imaging apparatus may be configured to include a “third wavelength range detector” separately from the “first wavelength range detector” of the range. Moreover, you may provide the "excitation light source” of a claim separately for every excitation light for exciting the some fluorescent substance from which the wavelength range of the mutually corresponding fluorescence differs.
- the “first wavelength band detector” is configured to detect the wavelength band corresponding to each fluorescent substance with one unit, in one “first wavelength band detector”, Since fluorescence corresponding to a plurality of “fluorescent substances” can be detected, a detection unit for detecting light corresponding to a “fluorescent substance” in a wavelength range different from the “first wavelength range detection unit” is separately provided. Compared to the above, the medical imaging apparatus can be downsized.
- the medical imaging apparatus when configured to include the “third wavelength range detection unit” separately from the “first wavelength range detection unit”, the “first wavelength range detection unit” and “ Since the “third wavelength range detection unit” is provided separately, the single “first wavelength range detection unit” is configured to detect fluorescence corresponding to a plurality of “fluorescent substances”. Detection accuracy can be improved.
- the “first wavelength band detector” when configured to detect the wavelength band corresponding to each fluorescent substance with one unit, or “first wavelength band detector”.
- the medical imaging apparatus is configured to include a “third wavelength range detector” separately, an image corresponding to the presence or absence of irradiation of excitation light for each fluorescent substance having a different corresponding fluorescence wavelength range (A first wavelength band image or a third wavelength band image) can be generated. Therefore, for example, when a plurality of fluorescent materials having different fluorescence wavelength ranges corresponding to each other are used as the fluorescent material A and the fluorescent material B, a difference image generated according to the presence or absence of excitation light irradiation is displayed on the fluorescent material A.
- a first difference image based on light detected by a detector that detects corresponding fluorescence, a third difference image based on light detected by a detector that detects fluorescence corresponding to fluorescent substance B, and visible light are detected. It is possible to acquire three types of images having different wavelength ranges from the second difference image based on the light detected by the detector.
- the image corresponding to the fluorescent substance A may be corrected based on the first difference image and the second difference image
- the image corresponding to the fluorescent substance B may be corrected based on the second difference image.
- an image corresponding to the fluorescent material A or an image corresponding to the fluorescent material B may be corrected based on the first difference image and the third difference image.
- the fluorescence generated from the fluorescent substance A It is conceivable to measure by switching the fluorescence generated from the fluorescent substance B.
- the fluorescent substance A and the fluorescent substance B are ICG (excitation light Ex1, fluorescence Lx1) and IR700 (excitation light Ex2, fluorescence Lx2), respectively, fluorescence Lx1 and fluorescence generated from the fluorescent substance A (ICG)
- ICG excitation light Ex1, fluorescence Lx1
- IR700 excitation light Ex2, fluorescence Lx2
- Condition G irradiation of the excitation light Ex1 without irradiation of the excitation light Ex1
- condition I is the case where there is irradiation with visible light Vis.
- the ICG images 11 in the condition G and the condition I are assumed to be a function ICG (1, 0, 1) and a function (0, 0, 1), respectively.
- the images (IR images) in the condition G and the condition I are assumed to be a function IR (1, 0, 1) and a function IR (0, 0, 1), respectively.
- imaging elements for detecting ICG and IR700 are assumed to be imaging element ICG and imaging element IR, respectively.
- the function ICG (1, 0, 1) includes disturbance light, visible light Vis (W), excitation light Ex1, and fluorescence Lx1.
- the function (1, 0, 1) includes disturbance light and visible light Vis (W). Therefore, due to the difference between the function ICG (1, 0, 1) and the function (1, 0, 1), the disturbance light and the visible light Vis (W) are almost removed, and the function ICG includes the excitation light Ex1 and the fluorescence Lx1. (E1x, Lx1) can be acquired.
- the function IR (1, 0, 1) includes disturbance light, visible light Vis (W), and fluorescence Lx1.
- the function IR (0, 0, 1) includes disturbance light and visible light Vis (W). Accordingly, the disturbance light and the visible light Vis (W) are almost removed by the difference between the function IR (1, 0, 1) and the function IR (0, 0, 1), and the function IR (E1x including the excitation light Ex1 is included. ) Can be obtained.
- the imaging element IR is configured to detect the fluorescence Lx2, but the excitation light Ex1 is detected because there is a portion that overlaps the wavelength band of the excitation light Ex1 of the ICG.
- the excitation light Ex1 is almost removed by the difference between the function ICG (Ex1, Lx1) including the excitation light Ex1 and the function IR (Ex1) including the excitation light Ex1 but almost no fluorescence Lx1.
- the ICG image 11 can be corrected so that light other than the fluorescence Lx1 is almost removed.
- Image generation unit (first wavelength range image generation unit, second wavelength range image generation unit, image correction unit) 11 ICG image (first wavelength range image) 12 VIS image (second wavelength range image) 41 Excitation light source (excitation light source) 51 Fluorescence detector (first wavelength range detector) 52 Visible Light Detector (Second Wavelength Range Detection Unit) 100 Near-infrared light camera system (medical imaging device) P subject
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Pathology (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Endoscopes (AREA)
Abstract
この医療用イメージング装置(100)では、画像補正部(9)は、励起光源(41)によりICGに対応した波長域の励起光(Lx)が照射されている場合に生成された、第1波長域の光に基づく第1波長域画像(11)と、第1波長域とは異なる波長域である第2波長域の光に基づく第2波長域画像(12)とに基づいて、第1波長域画像(11)を補正する。
Description
本発明は、医療用イメージング装置に関する。
従来、蛍光物質を励起させるための励起光を照射する励起光源を備えた医療用イメージング装置が知られている。このような医療用イメージング装置は、たとえば、特開2014-196953号公報に開示されている。
特開2014-196953号公報には、蛍光物質が投与された観測対象物に対して蛍光観測のための赤外波長帯域の励起光を供給(照射)すると共に、励起光により蛍光物質が励起されることにより放出される赤外波長帯域の蛍光の観測画像を取得する蛍光観察装置(医療用イメージング装置)が開示されている。この特開2014-196953号公報の蛍光観察装置は、励起光の供給のON/OFFを切換可能な励起光供給手段を備える。そして、赤外波長帯域の室内光や太陽光などの外乱光を除いた蛍光のみの画像(蛍光画像)を取得するために、励起光の供給をONにした場合の画像(ON画像)と、励起光の供給をOFFにした場合の画像(OFF画像)との差分を取る補正が行われるように構成されている。
なお、特開2014-196953号公報には開示されていないが、ON画像とOFF画像との差分は、蛍光の波長帯域を検出するように構成された撮像素子により、励起光の照射時に撮影された画像と励起光の非照射時に撮影された画像との差分であると考えられる。ここで、励起光と(励起光に起因する)蛍光とのピーク波長が近接している(ストークスシフトが小さい)場合、ON画像において励起光が映り込むため、ON画像とOFF画像との差分による蛍光画像において、励起光がそのまま映り込むという不都合がある。なお、観測対象物に投与される蛍光物質は一般的に有機物であるが、有機物は、一般的にストークスシフトが小さいことが知られている。したがって、特開2014-196953号公報の蛍光観察装置では、ON画像から励起光を除去する補正を行うことができないことによって、蛍光画像に励起光が映り込む(信号に対するノイズが大きくなる)ことに起因して蛍光画像におけるS/N比(信号/ノイズ比)が低下してしまうという問題点があると考えられる。
また、特開2014-196953号公報のような蛍光観察装置では、蛍光画像とともに、可視光画像を同時に取得する場合がある。しかしながら、特開2014-196953号公報の蛍光観察装置は、蛍光画像のみに対応しているので、ON画像とOFF画像との差分を取った蛍光画像には、可視光(白色光)が映り込むと考えられる。したがって、特開2014-196953号公報の蛍光観察装置では、蛍光画像とともに可視光画像を同時に取得する場合が考慮されていないことによって、蛍光画像に白色光が映り込む(信号に対するノイズが大きくなる)ことに起因して蛍光画像におけるS/N比(信号/ノイズ比)が低下してしまうという問題点があると考えられる。
この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、蛍光画像に蛍光以外の光が映り込むことに起因して蛍光画像におけるS/N比が低下してしまうのを抑制することが可能な医療用イメージング装置を提供することである。
上記目的を達成するために、この発明の一の局面における医療用イメージング装置は、被検体に投与された蛍光物質を励起させるための励起光を照射する励起光源と、被検体に投与された少なくとも1つの蛍光物質が励起光源により照射された励起光により励起されることにより生じる蛍光の波長域を含む第1波長域の光を検出する第1波長域検出部と、第1波長域とは異なる波長域である第2波長域の光を検出する第2波長域検出部と、第1波長域検出部により検出された第1波長域の光に基づいて蛍光画像である第1波長域画像を生成する第1波長域画像生成部と、第2波長域検出部により検出された第2波長域の光に基づいて第2波長域画像を生成する第2波長域画像生成部と、励起光が照射されている場合に生成された第1波長域画像と第2波長域画像とに基づいて、第1波長域画像を補正する画像補正部と、を備える。
この発明の一の局面による医療用イメージング装置では、上記のように、画像補正部は、励起光が照射されている場合に生成された、第1波長域の光に基づく第1波長域画像と、第1波長域とは異なる波長域である第2波長域の光に基づく第2波長域画像とに基づいて、第1波長域画像を補正する。これにより、たとえば、第1波長域検出部により検出される励起光の強度と第2波長域検出部により検出される励起光の強度とを略揃えた場合、第1波長域画像と第2波長域画像との差分を取ることにより、蛍光画像である第1波長域画像から励起光を殆ど除去する補正を行うことができる。その結果、蛍光画像に含まれる励起光を除去することができるので、蛍光画像に蛍光以外の光が映り込むことに起因して蛍光画像におけるS/N比が低下してしまうのを抑制することができる。
上記一の局面による医療用イメージング装置において、好ましくは、画像補正部は、励起光が照射されている場合に生成された第1波長域画像と、励起光が照射されていない場合に生成された第1波長域画像と、励起光が照射されている場合に生成された第2波長域画像と、励起光が照射されていない場合に生成された第2波長域画像とに基づいて、第1波長域画像を補正するように構成されている。このように構成すれば、励起光が照射されている場合と励起光が照射されていない場合とで、第1波長域検出部により検出される励起光および蛍光以外の光(白色光や外乱光等)は略同一の強度となるので、たとえば、励起光が照射されている場合に生成された蛍光画像である第1波長域画像と、励起光が照射されていない場合に生成された蛍光画像である第1波長域画像との差分を取ることにより、励起光および蛍光以外の光が殆ど除去された蛍光画像を取得することができる。また、励起光が照射されている場合と励起光が照射されていない場合とで、第2波長域検出部により検出される励起光および蛍光以外の光(白色光や可視光等)は略同一の強度となるので、たとえば、励起光が照射されている場合に生成された第2波長域画像と、励起光が照射されていない場合に生成された第2波長域画像との差分を取ることにより、励起光および蛍光以外の光が殆ど除去された画像を取得することができる。したがって、第1波長域検出部により検出される励起光の強度と第2波長域検出部により検出される励起光の強度とを略揃えた場合、励起光が照射されている場合に生成された第1波長域画像と、励起光が照射されていない場合に生成された第1波長域画像とに基づく蛍光画像と、励起光が照射されている場合に生成された第2波長域画像と、励起光が照射されていない場合に生成された第2波長域画像とに基づく画像との差分を取ることにより、第1波長域画像から励起光に加えて励起光および蛍光以外の光を殆ど除去する補正を行うことができる。その結果、蛍光画像に含まれる励起光と励起光および蛍光以外の光とを殆ど除去することができるので、蛍光画像に蛍光以外の光が映り込むことに起因して蛍光画像におけるS/N比が低下してしまうのを確実に抑制することができる。
上記一の局面による医療用イメージング装置において、好ましくは、画像補正部は、第1波長域画像における励起光の強度と第2波長域画像における励起光の強度との相関関係に基づいて、第1波長域画像を補正するように構成されている。このように構成すれば、上記相関関係に基づいて、第1波長域検出部により検出される励起光の強度と第2波長域検出部により検出される励起光の強度とを容易に略揃えることができるので、蛍光画像である第1波長域画像から励起光を殆ど除去する補正を容易に行うことができる。その結果、蛍光画像に含まれる励起光を容易に殆ど除去することができるので、蛍光画像に蛍光以外の光が映り込むことに起因して蛍光画像におけるS/N比が低下してしまうのを容易に抑制することができる。
上記一の局面による医療用イメージング装置において、好ましくは、第2波長域は、可視光の波長域を含む。このように構成すれば、第1波長域検出部により検出された蛍光の波長域を含む第1波長域の光に基づいて生成された蛍光画像である第1波長域画像と、第2波長域検出部により検出された可視光の波長域を含む第2波長域の光に基づいて生成された可視光画像である第2波長域画像とに基づいて、蛍光画像である第1波長域画像を補正することができる。その結果、蛍光画像とともに可視光画像を同時に取得する場合に、蛍光画像に蛍光以外の光が映り込むことに起因して蛍光画像におけるS/N比が低下してしまうのを抑制することができる。
上記一の局面による医療用イメージング装置において、好ましくは、第1波長域検出部は、互いに波長域の異なる蛍光を発する複数の蛍光物質に対応した蛍光を検出可能に構成されている。このように構成すれば、第1波長域検出部により検出された互いに異なる波長域の複数の蛍光に基づいて、互いに波長域の異なる蛍光画像を生成する構成において、蛍光画像に蛍光以外の光が映り込むことに起因して蛍光画像におけるS/N比が低下してしまうのを抑制することができる。また、1つの第1波長域検出部において、複数の蛍光物質に対応した蛍光を検出することができるので、第1波長域検出部とは異なる波長域の蛍光物質に対応した光を検出する検出部を別個に設ける場合と比較して、医療用イメージング装置を小型化することができる。
上記一の局面による医療用イメージング装置において、好ましくは、第1波長域検出部とは異なる波長域の蛍光を発する蛍光物質に対応した蛍光を検出する第3波長域検出部をさらに備える。このように構成すれば、第1波長域検出部および第3波長域検出部により検出された互いに異なる波長域の複数の蛍光に基づいて、互いに波長域の異なる蛍光画像を生成する構成において、蛍光画像に蛍光以外の光が映り込むことに起因して蛍光画像におけるS/N比が低下してしまうのを抑制することができる。また、第1波長域検出部と第3波長域検出部とを別個に設けるので、1つの第1波長域検出部において、複数の蛍光物質に対応した蛍光を検出するように構成する場合と比較して、蛍光の検出精度を向上させることができる。
本発明によれば、上記のように、蛍光画像に蛍光以外の光が映り込むことに起因して蛍光画像におけるS/N比が低下してしまうのを抑制することが可能な医療用イメージング装置を提供することができる。
以下、本発明を具体化した実施形態を図面に基づいて説明する
[第1実施形態]
図1~図3を参照して、本発明の第1実施形態による近赤外光カメラシステム100の構成について説明する。近赤外光カメラシステム100は、手術時の画像を被検体Pの外部から撮像し、手術支援を行うための装置である。なお、近赤外光カメラシステム100は、特許請求の範囲の「医療用イメージング装置」の一例である。
図1~図3を参照して、本発明の第1実施形態による近赤外光カメラシステム100の構成について説明する。近赤外光カメラシステム100は、手術時の画像を被検体Pの外部から撮像し、手術支援を行うための装置である。なお、近赤外光カメラシステム100は、特許請求の範囲の「医療用イメージング装置」の一例である。
(近赤外光カメラシステムの構成)
図1に示すように、第1実施形態による近赤外光カメラシステム100は、被検体Pを撮影するための撮影部1と、制御部6(図2参照)等が内蔵された本体部2と、撮影部1と本体部2とを接続するアーム部3と、を備えている。近赤外光カメラシステム100は、被検体Pに投与された蛍光物質であるICG(indocyanine green)に励起光Exを照射するとともに、励起光ExによりICGが励起されることにより放出されるICG蛍光Lxを検出して画像化するように構成された撮影装置である。なお、励起光ExおよびICG蛍光Lxは、近赤外波長帯域に中心波長を有する光である。励起光Exにより励起されたICG蛍光Lxは、波長が長くなる(ストークスシフトする)ため、励起光Exよりも中心波長が長い。なお、ICGは、特許請求の範囲の「蛍光物質」の一例である。また、ICG蛍光Lxは、特許請求の範囲の「第1波長域の光」および「蛍光」の一例である。
図1に示すように、第1実施形態による近赤外光カメラシステム100は、被検体Pを撮影するための撮影部1と、制御部6(図2参照)等が内蔵された本体部2と、撮影部1と本体部2とを接続するアーム部3と、を備えている。近赤外光カメラシステム100は、被検体Pに投与された蛍光物質であるICG(indocyanine green)に励起光Exを照射するとともに、励起光ExによりICGが励起されることにより放出されるICG蛍光Lxを検出して画像化するように構成された撮影装置である。なお、励起光ExおよびICG蛍光Lxは、近赤外波長帯域に中心波長を有する光である。励起光Exにより励起されたICG蛍光Lxは、波長が長くなる(ストークスシフトする)ため、励起光Exよりも中心波長が長い。なお、ICGは、特許請求の範囲の「蛍光物質」の一例である。また、ICG蛍光Lxは、特許請求の範囲の「第1波長域の光」および「蛍光」の一例である。
図2に示すように、撮影部1は、光を照射するための照射部4と、光を検出するための検出部5と、を備えている。また、本体部2は、近赤外光カメラシステム100の各種構成を制御するための制御部6と、撮影部1で撮影した画像等を記憶する記憶部7と、撮影部1で撮影した画像等を表示する表示部8と、を備えている。
照射部4は、励起光Exを発生して被検体Pに照射するための励起光光源41と、可視光Visを発生させて被検体Pに照射するための可視光光源42と、を備えている。励起光光源41および可視光光源42は、それぞれ、光源としての発光ダイオード(LED)を含む。なお、励起光光源41は、特許請求の範囲の「励起光源」の一例である。また、可視光Visは、特許請求の範囲の「第2波長域の光」の一例である。
励起光光源41は、被検体Pに投与されたICGを励起させるための励起光Exとして、たとえば、中心波長が760nmの近赤外光を発生させるように構成されている。
可視光光源42は、可視光Visとして、たとえば、可視領域の複数の(全ての)波長を含む白色光Wを発生させるように構成されている。なお、可視光Visは、白色光Wに限らず、可視領域の特定の波長だけを含むように構成してもよい。
検出部5は、ICG蛍光Lxを検出するための蛍光検出器51と、可視光Visを検出するための可視光検出器52と、を備えている。なお、蛍光検出器51は、特許請求の範囲の「第1波長域検出部」の一例である。また、可視光検出器52は、特許請求の範囲の「第2波長域検出部」の一例である。
蛍光検出器51および可視光検出器52は、たとえば、それぞれCMOS(complementary metal oxide semiconductor)やCCD(charge coupled device)等を用いたイメージセンサ(撮像素子)から構成される。
蛍光検出器51では、励起光Exにより励起されたICGから放出されるICG蛍光Lxを検出するために、ICG蛍光Lxの波長帯域と略等しい範囲の光を検出可能な撮像素子が用いられる。また、可視光検出器52では、可視光Visを検出するために、可視光Visの波長帯域と略等しい範囲の光を検出可能な撮像素子が用いられる。
制御部6は、CPU(Central Processing Unit)、ROM(Read Only Memory)およびRAM(Random Access Memory)などを含んで構成されたコンピュータである。制御部6は、撮影部1で撮影された画像を生成する画像生成部9を備えている。なお、画像生成部9は、「第1波長域画像生成部」、「第2波長域画像生成部」および「画像補正部」の一例である。
画像生成部9は、蛍光検出器51および可視光検出器52から送られた検出信号に基づいて、それぞれ、ICG画像11(図3参照)およびVIS画像12(図3参照)を生成することが可能に構成されている。すなわち、画像生成部9は、蛍光検出器51により検出されたICG蛍光Lxに基づいてICG画像11を生成するとともに、可視光検出器52により検出された可視光Visに基づいてVIS画像12を生成するように構成されている。また、画像生成部9は、ICG画像11およびVIS画像12を合成した合成画像13を生成することが可能に構成されている。この合成画像13は、可視光Visで撮影したVIS画像12に、ICG蛍光LxによりICGが投与された部位が強調表示されたICG画像11が合成されることによって生成されている。なお、ICG画像11は、特許請求の範囲の「第1波長域画像」の一例である。また、VIS画像12は、特許請求の範囲の「第2波長域画像」の一例である。
記憶部7は、たとえば、不揮発メモリを含む。そして、記憶部7には、制御部6の処理に用いられるプログラムが記憶されているとともに、画像生成部9で生成した画像(ICG画像11、VIS画像12および合成画像13)等を記憶できるように構成されている。
表示部8は、たとえば、液晶ディスプレイとして構成されている。そして、表示部8は、画像生成部9により生成された画像(ICG画像11、VIS画像12および合成画像13)を表示することが可能に構成されている。また、複数枚の画像を連続的に表示することで、動画として表示することも可能に構成されている。
上記の構成により、近赤外光カメラシステム100では、ICGが投与された部位を蛍光により強調表示させた合成画像13を医師等が確認することで、手術等において患部の視認性を高めることが可能である。
ここで、ICG蛍光Lxおよび励起光Exの中心波長が近い(ストークスシフトが小さい)ことに起因して、蛍光検出器51では、ICG蛍光Lxだけでなく、励起光Exも検出される。ICG蛍光Lxと励起光Exとの波長帯域は一部が重複しており、単純に分離することは容易ではない。したがって、画像生成部9が、蛍光検出器51により検出された検出信号から、そのままICG画像11を生成した場合、ICG画像11にICG蛍光Lxだけでなく励起光Exも映り込んでしまうことによって、ICG画像11のS/N比が低下してしまう。
そこで、第1実施形態では、画像生成部9は、励起光Exが照射されている場合に生成されたICG蛍光Lxに基づくICG画像11と、ICG蛍光Lxとは異なる波長域である可視光Visに基づくVIS画像12とに基づいて、ICG画像11を補正するように構成されている。この方法により、近赤外光カメラシステム100では、ICG画像11から励起光Exを除去する補正を行うことが可能に構成されている。以下に、ICG画像11の補正について詳細に説明する。
以下の説明では、励起光Exの照射および可視光Vis(W)の照射が無い場合を条件A、励起光Exの照射が無く可視光Vis(W)の照射が有る場合を条件B、可視光Vis(W)の照射が無く励起光Exの照射が有る場合を条件C、励起光Exの照射および可視光Vis(W)の照射が有る場合を条件Dとする。なお、光の照射または検出が有る場合と、光の照射が無いまたは検出が(殆ど)無い場合とを、それぞれ、1と0とする。
また、蛍光検出器51および可視光検出器52の撮像素子を、それぞれ、撮像素子ICGおよび撮像素子VISとする。なお、撮像素子ICGおよび撮像素子VISで検出される光は、外乱光と、可視光Vis(W)と、励起光Exと、ICG蛍光Lxとのいずれかが含まれる。ここで、可視光Vis(W)は、可視光光源42により照射された可視光Vis(W)と同一の光である。また、外乱光は、可視光Vis(W)、励起光ExおよびICG蛍光Lxの以外の光であり、たとえば、室内光や太陽光等の光である。
外乱光は、可視光Vis(W)、励起光ExおよびICG蛍光Lxの以外の光であるため、条件A、条件B、条件Cおよび条件Dのいずれの条件においても検出される。また、外乱光は、可視光Vis(W)、励起光ExおよびICG蛍光Lx以外の光を全て含むため、撮像素子ICGおよび撮像素子VISのいずれにおいても検出される。
撮像素子ICGおよび撮像素子VISで検出される可視光Vis(W)は、可視光光源42により照射された可視光Vis(W)と同一の光であるため、可視光光源42による可視光Vis(W)の照射の有無と対応している。具体的には、可視光Vis(W)は、可視光光源42による可視光Vis(W)の照射が有る場合(条件Bおよび条件Dの場合)には、撮像素子ICGおよび撮像素子VISで検出されるとともに、可視光光源42による可視光Vis(W)の照射が無い場合(条件Aおよび条件Cの場合)には、撮像素子ICGおよび撮像素子VISで検出されない。
撮像素子ICGおよび撮像素子VISで検出される励起光Exは、励起光光源41により照射された励起光Exと同一の光であるため、励起光光源41による励起光Exの照射の有無と対応している。具体的には、励起光Exは、励起光光源41による励起光Exの照射が有る場合(条件Cおよび条件Dの場合)には、撮像素子ICGおよび撮像素子VISで検出されるとともに、励起光光源41による励起光Exの照射が無い場合(条件Aおよび条件Bの場合)には、撮像素子ICGおよび撮像素子VISで検出されない。
撮像素子ICGおよび撮像素子VISで検出されるICG蛍光Lxは、励起光光源41による励起光Exの照射の有無と対応している。なお、撮像素子VISは、可視光Visを検出するように構成されているため、可視光VisとICG蛍光Lxとの波長帯域が殆ど重複しないことにより、ICG蛍光Lxが殆ど検出されない。具体的には、ICG蛍光Lxは、励起光光源41による励起光Exの照射が有る場合(条件Cおよび条件Dの場合)には、撮像素子ICGで検出されるとともに撮像素子VISでは殆ど検出されない。また、ICG蛍光Lxは、励起光光源41による励起光Exの照射が無い場合(条件Aおよび条件Bの場合)には、撮像素子ICGおよび撮像素子VISのいずれにもおいても検出されない。
以上のように、画像生成部9は、励起光光源41による励起光Exの照射の有無と可視光光源42による可視光Vis(W)の照射の有無との組み合わせによる4つの条件(条件A、B、CおよびD)下で、撮像素子ICGおよび撮像素子VISでそれぞれ検出された4種類のICG画像11および4種類のVIS画像12を生成することができる。
ここで、4種類のICG画像11と4種類のVIS画像12を区別するために、以下の説明では、条件A、B、CおよびDにおけるICG画像11を、それぞれ、関数ICG(0、0)、関数ICG(0、1)、関数ICG(1、0)および関数ICG(1、1)と表す。
また、条件A、B、CおよびDにおけるVIS画像12を、それぞれ、関数VIS(0、0)、関数VIS(0、1)、関数VIS(1、0)および関数VIS(1、1)と表す。
また、条件A、B、CおよびDにおけるVIS画像12を、それぞれ、関数VIS(0、0)、関数VIS(0、1)、関数VIS(1、0)および関数VIS(1、1)と表す。
そして、第1実施形態では、画像生成部9は、励起光Exが照射されている場合に生成されたICG画像11と、励起光Exが照射されていない場合に生成されたICG画像11と、励起光Exが照射されている場合に生成されたVIS画像12と、励起光Exが照射されていない場合に生成されたVIS画像12とに基づいて、ICG画像11を補正するように構成されている。詳細には、励起光光源41により励起光Exが照射されている場合に生成されたICG画像11と、励起光光源41により励起光Exが照射されていない場合に生成されたICG画像11と、の差分により取得された第1差分画像と、励起光光源41により励起光Exが照射されている場合に生成されたVIS画像12と、励起光光源41により励起光Exが照射されていない場合に生成されたVIS画像12と、の差分により取得された第2差分画像とに基づいて、ICG画像11を補正するように構成されている。
具体的には、画像生成部9は、関数ICG(0、0)と関数ICG(1、0)との差分により、外乱光および可視光Vis(W)が殆ど除去され、励起光ExおよびICG蛍光Lxが含まれる関数ICG(Ex、Lx)を取得することが可能である。同様に、画像生成部9は、関数ICG(0、1)と関数ICG(1、1)との差分により、外乱光および可視光Vis(W)が殆ど除去され、励起光ExおよびICG蛍光Lxが含まれる関数ICG(Ex、Lx)を取得することが可能である。
また、画像生成部9は、関数VIS(0、0)と関数VIS(1、0)との差分により、外乱光および可視光Vis(W)が殆ど除去され、励起光Exが含まれるがICG蛍光Lxが殆ど含まれない関数VIS(Ex)を取得することが可能である。同様に、画像生成部9は、関数VIS(0、1)と関数VIS(1、1)との差分により、外乱光および可視光Vis(W)が殆ど除去され、励起光Exが含まれるがICG蛍光Lxが殆ど含まれない関数VIS(Ex)を取得することが可能である。
ここで、近赤外光カメラシステム100では、蛍光検出器51により検出される励起光Exの強度と、可視光検出器52により検出される励起光Exの強度とが異なる。
そこで、第1実施形態では、画像生成部9は、ICG画像11における励起光Exの強度とVIS画像12における励起光Exの強度との相関関係に基づいてICG画像11を補正するように構成されている。具体的には、画像生成部9は、関数ICG(Ex、Lx)における励起光Exの強度と、関数VIS(Ex)における励起光Exの強度との相関関係を関数VIStoICGとして予め算出することが可能に構成されている。なお、関数VIStoICGは、関数VIS(Ex)における励起光Exの強度を関数ICG(Ex、Lx)における励起光Exの強度に換算する関数である。これにより、画像生成部9は、励起光Exを殆ど除去したICG画像11を、関数ICG(Ex、Lx)-関数VIStoICG(関数VIS(Ex))から取得することが可能である。
上記の構成により、画像生成部9は、外乱光および可視光Vis(W)が殆ど除去され、励起光ExおよびICG蛍光Lxが含まれる関数ICG(Ex、Lx)を取得するとともに、外乱光および可視光Vis(W)が殆ど除去され、励起光Exが含まれるがICG蛍光Lxが殆ど含まれない関数VIS(Ex)を取得する。そして、画像生成部9は、関数ICG(Ex、Lx)と関数VIS(Ex)とに基づいて、外乱光、可視光Visおよび励起光Exを殆ど除去したICG画像11を取得する。これにより、ICG画像11からICG蛍光Lx以外の光を殆ど除去するように、ICG画像11を補正することができる。
(蛍光画像の補正処理のフロー)
次に、図4を参照して、ICG蛍光Lx以外の光を殆ど除去するICG画像11の補正処理のフローについて説明する。なお、励起光光源41による励起光Exの照射の有無および可視光光源42による可視光Vis(W)の照射の有無の組み合わせを変えて、撮影部1による撮影が行われているものとする。
次に、図4を参照して、ICG蛍光Lx以外の光を殆ど除去するICG画像11の補正処理のフローについて説明する。なお、励起光光源41による励起光Exの照射の有無および可視光光源42による可視光Vis(W)の照射の有無の組み合わせを変えて、撮影部1による撮影が行われているものとする。
まず、ステップS11において、画像生成部9は、励起光光源41による励起光Exの照射の有無と可視光光源42による可視光Vis(W)の照射の有無との組み合わせに応じて、撮像素子ICGおよび撮像素子VISでそれぞれ検出された4種類のICG画像11および4種類のVIS画像12を取得する。4種類のICG画像11は、関数ICG(0、0)、関数ICG(0、1)、関数ICG(1、0)および関数ICG(1、1)である。また、4種類のVIS画像12は、関数VIS(0、0)、関数VIS(0、1)、関数VIS(1、0)および関数VIS(1、1)である。
次に、ステップS12において、画像生成部9は、関数ICG(0、0)と関数ICG(1、0)との差分、または、関数ICG(0、1)と関数ICG(1、1)との差分により、外乱光および可視光Vis(W)が殆ど除去され、励起光ExおよびICG蛍光Lxが含まれる関数ICG(Ex、Lx)を取得する。
次に、ステップS13において、画像生成部9は、関数VIS(0、0)と関数VIS(1、0)との差分、または、関数VIS(0、1)と関数VIS(1、1)との差分により、外乱光および可視光Vis(W)が殆ど除去され、励起光Exが含まれるがICG蛍光Lxが殆ど含まれない関数VIS(Ex)を取得する。なお、ステップS12とステップS13との順序は逆にしてもよい。
そして、ステップS14において、画像生成部9は、予め算出された関数ICG(Ex、Lx)における励起光Exの強度と、関数VIS(Ex)における励起光Exの強度との相関関係を表す関数VIStoICGを用いて、励起光ExおよびICG蛍光Lxが含まれる関数ICG(Ex、Lx)と励起光Exが含まれるがICG蛍光Lxが殆ど含まれない関数VIS(Ex)との差分により、外乱光、可視光Vis(W)および励起光Exを殆ど除去する。これにより、ICG蛍光Lx以外の光を殆ど除去するようにICG画像11を補正することができる。
(第1実施形態の効果)
第1実施形態では、以下のような効果を得ることができる。
第1実施形態では、以下のような効果を得ることができる。
第1実施形態では、上記のように、画像生成部9を、励起光Exが照射されている場合に生成されたICG蛍光Lxに基づくICG画像11と、ICG蛍光Lxとは異なる波長域である可視光Visに基づくVIS画像12とに基づいて、ICG画像11を補正するように構成する。これにより、蛍光検出器51により検出される励起光Exの強度と可視光検出器52により検出される励起光Exの強度とを略揃えた場合、ICG画像11とVIS画像12との差分を取ることにより、ICG画像11から励起光Exを除去する補正を行うことができる。その結果、ICG画像11に含まれる励起光Exを殆ど除去することができるので、ICG画像11にICG蛍光Lx以外の光が映り込むことに起因してICG画像11におけるS/N比が低下してしまうのを抑制することができる。
また、第1実施形態では、上記のように、画像生成部9を、励起光Exが照射されている場合に生成されたICG画像11と、励起光Exが照射されていない場合に生成されたICG画像11と、励起光Exが照射されている場合に生成されたVIS画像12と、励起光Exが照射されていない場合に生成されたVIS画像12とに基づいて、ICG画像11を補正するように構成する。これにより、励起光Exが照射されている場合と励起光Exが照射されていない場合とで、蛍光検出器51により検出される励起光ExおよびICG蛍光Lx以外の光(白色光や外乱光等)は略同一の強度となるので、励起光Exが照射されている場合に生成された蛍光画像であるICG画像11と、励起光Exが照射されていない場合に生成された蛍光画像であるICG画像11との差分を取ることにより、励起光ExおよびICG蛍光Lx以外の光が殆ど除去された蛍光画像を取得することができる。また、励起光Exが照射されている場合と励起光Exが照射されていない場合とで、可視光検出器52により検出される励起光Exおよび蛍光以外の光(白色光や可視光等)は略同一の強度となるので、励起光Exが照射されている場合に生成されたVIS画像12と、励起光Exが照射されていない場合に生成されたVIS画像12との差分を取ることにより、励起光ExおよびICG蛍光Lx以外の光が殆ど除去された画像を取得することができる。したがって、蛍光検出器51により検出される励起光Exの強度と可視光検出器52により検出される励起光Exの強度とを略揃えた場合、励起光Exが照射されている場合に生成されたICG画像11と、励起光Exが照射されていない場合に生成されたICG画像11とに基づく蛍光画像と、励起光Exが照射されている場合に生成されたVIS画像12と、励起光Exが照射されていない場合に生成されたVIS画像12とに基づく画像との差分を取ることにより、ICG画像11から励起光Exに加えて励起光ExおよびICG蛍光Lx以外の光を殆ど除去する補正を行うことができる。その結果、ICG画像11に含まれる励起光Exと励起光ExおよびICG蛍光Lx以外の光とを殆ど除去することができるので、ICG画像11にICG蛍光Lx以外の光が映り込むことに起因してICG画像11におけるS/N比が低下してしまうのを確実に抑制することができる。
また、第1実施形態では、上記のように、画像生成部9を、ICG画像11における励起光Exの強度とVIS画像12における励起光Exの強度との相関関係に基づいて、ICG画像11を補正するように構成する。これにより、上記相関関係に基づいて、蛍光検出器51により検出される励起光Exの強度と可視光検出器52により検出される励起光Exの強度とを容易に略揃えることができるので、ICG画像11から励起光Exを殆ど除去する補正を容易に行うことができる。その結果、ICG画像11に含まれる励起光Exを容易に殆ど除去することができるので、ICG画像11にICG蛍光Lx以外の光が映り込むことに起因してICG画像11におけるS/N比が低下してしまうのを容易に抑制することができる。
また、第1実施形態では、上記のように、第2波長域は、可視光Visの波長域を含む。これにより、蛍光検出器51により検出されたICG蛍光Lxの波長域に基づいて生成された蛍光画像であるICG画像11と、可視光検出器52により検出された可視光Visの波長域に基づいて生成された可視光画像であるVIS画像12とに基づいて、蛍光画像であるICG画像11を補正することができる。その結果、蛍光画像とともに可視光画像を同時に取得する場合に、ICG画像11にICG蛍光Lx以外の光が映り込むことに起因してICG画像11におけるS/N比が低下してしまうのを抑制することができる。
[第2実施形態]
図2および図3を参照して、第2実施形態について説明する。この第2実施形態では、励起光Exの照射の有無と可視光Vis(W)の照射の有無の組み合わせに応じてICG画像11およびVIS画像12を生成した上記第1実施形態と異なり、励起光Exの照射の有無のみに応じてICG画像11およびVIS画像12を生成する例について説明する。なお、図中において、上記第1実施形態と同様の構成の部分には、同一の符号を付している。
図2および図3を参照して、第2実施形態について説明する。この第2実施形態では、励起光Exの照射の有無と可視光Vis(W)の照射の有無の組み合わせに応じてICG画像11およびVIS画像12を生成した上記第1実施形態と異なり、励起光Exの照射の有無のみに応じてICG画像11およびVIS画像12を生成する例について説明する。なお、図中において、上記第1実施形態と同様の構成の部分には、同一の符号を付している。
第2実施形態では、図2および図3に示すように、第1実施形態と同様に、画像生成部9は、励起光Exが照射されている場合に生成されたICG蛍光Lxに基づくICG画像11と、ICG蛍光Lxとは異なる波長域である可視光Visに基づくVIS画像12とに基づいて、ICG画像11を補正するように構成されている。具体的には、第1実施形態と異なり、画像生成部9は、励起光光源41による励起光Exの照射の有無に応じて生成されるICG画像11およびVIS画像12に基づいて、ICG蛍光Lx以外の光が殆ど除去されるようにICG画像11を補正することが可能に構成されている。
なお、第2実施形態におけるICG画像11の補正は、第1実施形態の可視光光源42による可視光Vis(W)の照射を省略したものと見なすことが可能である。ここで、可視光Vis(W)の照射が無い場合は、図3のように被検体Pを鮮明に撮影することができない。したがって、第2実施形態では、ICG画像11を生成するための撮影部1による撮影時のみ、可視光Vis(W)を照射しないように構成されている。たとえば、ICG画像11を生成するための撮影と、被検体Pを鮮明に撮影するためのVIS画像12の撮影とを、数フレーム毎に切り換えるように構成することができる。
以下の説明では、励起光Exの照射が無い場合を条件E、励起光Exの照射が有る場合を条件Fとする。
なお、撮像素子ICGおよび撮像素子VISで検出される光は、外乱光と、励起光Exと、ICG蛍光Lxとのいずれかが含まれる。
外乱光は、励起光ExおよびICG蛍光Lxの以外の光であるため、条件Eおよび条件Fのいずれの条件においても検出される。
励起光Exは、励起光光源41による励起光Exの照射が有る場合(条件Fの場合)には、撮像素子ICGおよび撮像素子VISで検出されるとともに、励起光光源41による励起光Exの照射が無い場合(条件Eの場合)には、撮像素子ICGおよび撮像素子VISで検出されない。
ICG蛍光Lxは、励起光光源41による励起光Exの照射が有る場合(条件Fの場合)には、撮像素子ICGで検出されるとともに撮像素子VISでは殆ど検出されない。また、ICG蛍光Lxは、励起光光源41による励起光Exの照射が無い場合(条件Eの場合)には、撮像素子ICGおよび撮像素子VISのいずれにもおいても検出されない。
以上のように、画像生成部9は、励起光光源41による励起光Exの照射の有無による2つの条件(条件EおよびF)下で、撮像素子ICGおよび撮像素子VISでそれぞれ検出された2種類のICG画像11および2種類のVIS画像12を生成することができる。
ここで、2種類のICG画像11と2種類のVIS画像12を区別するために、以下の説明では、条件EおよびFにおけるICG画像11を、それぞれ、関数ICG(0)および関数ICG(1)と表す。また、条件EおよびFにおけるVIS画像12を、それぞれ、関数VIS(0)および関数VIS(1)と表す。
そして、第2実施形態では、第1実施形態と同様に、画像生成部9は、励起光Exが照射されている場合に生成されたICG画像11と、励起光Exが照射されていない場合に生成されたICG画像11と、励起光Exが照射されている場合に生成されたVIS画像12と、励起光Exが照射されていない場合に生成されたVIS画像12とに基づいて、ICG画像11を補正するように構成されている。
具体的には、画像生成部9は、関数ICG(0)と関数ICG(1)との差分により、外乱光が殆ど除去され、励起光ExおよびICG蛍光Lxが含まれる関数ICG(Ex、Lx)を取得することが可能である。
また、画像生成部9は、関数VIS(0)と関数VIS(1)との差分により、外乱光が殆ど除去され、励起光Exが含まれるがICG蛍光Lxが殆ど含まれない関数VIS(Ex)を取得することが可能である。
そして、第2実施形態では、第1実施形態と同様に、画像生成部9は、ICG画像11における励起光Exの強度とVIS画像12における励起光Exの強度との相関関係に基づいて、ICG画像11を補正するように構成されている。これにより、画像生成部9は、励起光Exを殆ど除去したICG画像11を、関数ICG(Ex、Lx)-関数VIStoICG(関数VIS(Ex))から取得することが可能である。
上記の構成により、第1実施形態と同様に、画像生成部9は、外乱光および可視光Vis(W)が殆ど除去され、励起光ExおよびICG蛍光Lxが含まれる関数ICG(Ex、Lx)を取得するとともに、外乱光および可視光Vis(W)が殆ど除去され、励起光Exが含まれるがICG蛍光Lxが殆ど含まれない関数VIS(Ex)とを取得する。そして、画像生成部9は、関数ICG(Ex、Lx)と関数VIS(Ex)とに基づいて、ICG画像11からICG蛍光Lx以外の光を殆ど除去するように、ICG画像11を補正することができる。
なお、第2実施形態による近のその他の構成は、上記第1実施形態と同様である。
(第2実施形態の効果)
第2実施形態では、上記のように、第1実施形態と同様に、画像生成部9を、励起光Exが照射されている場合に生成されたICG蛍光Lxに基づくICG画像11と、ICG蛍光Lxとは異なる波長域である可視光Visに基づくVIS画像12とに基づいて、ICG画像11を補正する。これにより、第1実施形態と同様に、ICG画像11に含まれる励起光Exを殆ど除去することができるので、ICG画像11にICG蛍光Lx以外の光が映り込むことに起因してICG画像11におけるS/N比が低下してしまうのを抑制することができる。
第2実施形態では、上記のように、第1実施形態と同様に、画像生成部9を、励起光Exが照射されている場合に生成されたICG蛍光Lxに基づくICG画像11と、ICG蛍光Lxとは異なる波長域である可視光Visに基づくVIS画像12とに基づいて、ICG画像11を補正する。これにより、第1実施形態と同様に、ICG画像11に含まれる励起光Exを殆ど除去することができるので、ICG画像11にICG蛍光Lx以外の光が映り込むことに起因してICG画像11におけるS/N比が低下してしまうのを抑制することができる。
また、第2実施形態では、上記のように、励起光Exの照射の有無と可視光Vis(W)の照射の有無の組み合わせに応じてICG画像11およびVIS画像12を生成した第1実施形態と異なり、励起光Exの照射の有無に応じてICG画像11およびVIS画像12を生成する。これにより、第1実施形態と異なり、可視光Vis(W)の照射の有無を考慮することなく、励起光Exを殆ど除去するようにICG画像11を補正することができるので、ICG画像11を補正する処理を簡略化することができる。
なお、第2実施形態のその他の効果は、上記第1実施形態と同様である。
[変形例]
なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
たとえば、上記第1および上記第2実施形態では、特許請求の範囲の「医療用イメージング装置」を、手術時の画像を被検体Pの外部から撮像し手術支援を行うための近赤外光カメラシステム100とした例を示したが、本発明はこれに限られない。本発明では、特許請求の範囲の「医療用イメージング装置」を、手術時以外の画像を撮像する装置に適用してもよいし、たとえば、内視鏡システム等のように、被検体Pの内部から撮像する装置に適用してもよい。
また、上記第1および上記第2実施形態では、光源としての発光ダイオード(LED)を含む励起光光源41および可視光光源42を備えた例を示したが、本発明はこれに限られない。本発明では、励起光光源41および可視光光源42は、それぞれ、励起光Exおよび可視光Visを照射することが可能であれば、光源として発光ダイオード以外の発光素子を含むようにしてもよい。
また、上記第2実施形態では、ICG画像11を補正するための撮影部1による撮影時のみ、可視光Vis(W)を照射するように構成した例を示したが、本発明はこれに限られない。本発明では、可視光光源42を設けずに、医療用イメージング装置の使用者が被検体Pの患部を認識できる程度の鮮明度で撮影することが可能であれば、可視光Vis(W)以外の方法で撮影するようにしてもよい。
また、上記第1および上記第2実施形態では、ICGを励起させるための励起光Exとして、中心波長が760nmの近赤外光を発生させるように構成した例を示したが、本発明はこれに限られない。本発明では、励起光Exの中心波長は、760nmに限定されず、ICGを励起できる波長であればどのような波長でもよい。
また、上記第1および上記第2実施形態では、励起光Exにより励起させることによりICG蛍光Lxを放出させるための蛍光物質としてICGを用いた例を示したが、本発明はこれに限られない。本発明では、励起光により励起させることにより蛍光を放出することが可能であれば、特許請求の範囲の「蛍光物質」として、ICG以外の蛍光物質を用いてもよい。
また、上記第1および上記第2実施形態では、励起光光源41(1つの励起光源)により照射された励起光Exにより励起させることによりICG蛍光Lxを放出させるための蛍光物質としてICG(1つの蛍光物質)を用いた例を示したが、本発明はこれに限られない。本発明では、特許請求の範囲の「蛍光物質」として、互いに対応する蛍光の波長域が異なる複数の蛍光物質を用いてもよい。この場合、たとえば、特許請求の範囲の「第1波長域検出部」を、一台の検出部で各々の蛍光物質に対応する波長域を検出するように構成してもよいし、特許請求の範囲の「第1波長域検出部」とは別個に「第3波長域検出部」を備えるように、医療用イメージング装置を構成してもよい。また、特許請求の範囲の「励起光源」を、互いに対応する蛍光の波長域が異なる複数の蛍光物質を励起させるための励起光毎に別個に設けてもよい。
なお、上記のように、「第1波長域検出部」を、一台で各々の蛍光物質に対応する波長域を検出するように構成した場合、1つの「第1波長域検出部」において、複数の「蛍光物質」に対応した蛍光を検出することができるので、「第1波長域検出部」とは異なる波長域の「蛍光物質」に対応した光を検出する検出部を別個に設ける場合と比較して、医療用イメージング装置を小型化することができる。また、上記のように、「第1波長域検出部」とは別個に「第3波長域検出部」を備えるように医療用イメージング装置を構成した場合、「第1波長域検出部」と「第3波長域検出部」とを別個に設けるので、1つの「第1波長域検出部」において、複数の「蛍光物質」に対応した蛍光を検出するように構成する場合と比較して、蛍光の検出精度を向上させることができる。
ここで、上記のように、「第1波長域検出部」を、一台で各々の蛍光物質に対応する波長域を検出するように構成した場合、または、「第1波長域検出部」とは別個に「第3波長域検出部」を備えるように医療用イメージング装置を構成した場合、互いに対応する蛍光の波長域が異なる各々の蛍光物質毎に、励起光の照射の有無に応じた画像(第1波長域画像または第3波長域画像)を生成することができる。したがって、たとえば、互いに対応する蛍光の波長域が異なる複数の蛍光物質を、蛍光物質Aおよび蛍光物質Bとした場合、励起光の照射の有無に応じて生成される差分画像を、蛍光物質Aに対応した蛍光を検出する検出器によって検出された光に基づく第1差分画像と、蛍光物質Bに対応した蛍光を検出する検出器によって検出された光に基づく第3差分画像と、可視光を検出する検出器によって検出された光に基づく第2差分画像との互いに波長域の異なる3種類の画像を取得することができる。これにより、上記第1および上記第2実施形態と同様に、第1差分画像と第2差分画像とに基づいて、蛍光物質Aに対応した画像を補正してもよいし、第3差分画像と第2差分画像とに基づいて、蛍光物質Bに対応した画像を補正してもよい。また、第1差分画像と第3差分画像とに基づいて、蛍光物質Aに対応した画像、または、蛍光物質Bに対応した画像を補正してもよい。
上記のように、第1差分画像と第3差分画像とに基づいて、蛍光物質Aに対応した画像、または、蛍光物質Bに対応した画像を補正する場合、たとえば、蛍光物質Aから生じる蛍光と蛍光物質Bから生じる蛍光とを切り換えて計測することが考えられる。以下に、蛍光物質Aおよび蛍光物質Bを、それぞれ、ICG(励起光Ex1、蛍光Lx1)およびIR700(励起光Ex2、蛍光Lx2)とした場合に、蛍光物質A(ICG)から生じる蛍光Lx1と蛍光物質B(IR700)から生じる蛍光Lx2とを切り換えて計測して、蛍光物質A(ICG)に対応した画像を補正する例について説明する。
なお、以下の説明では、励起光Ex1の照射が有り、励起光Ex2の照射が無く、かつ、可視光Visの照射が有る場合を条件G、励起光Ex1の照射が無く、励起光Ex2の照射が無く、かつ、可視光Visの照射が有る場合を条件Iとする。また、条件Gおよび条件IにおけるICG画像11を、それぞれ、関数ICG(1、0、1)および関数(0、0、1)とする。また、条件Gおよび条件Iにおける画像(IR画像)を、それぞれ、関数IR(1、0、1)および関数IR(0、0、1)とする。また、ICGおよびIR700を検出するための撮像素子を、それぞれ、撮像素子ICGおよび撮像素子IRとする。
関数ICG(1、0、1)には、外乱光、可視光Vis(W)、励起光Ex1および蛍光Lx1が含まれる。また、関数(1、0、1)には、外乱光および可視光Vis(W)が含まれる。したがって、関数ICG(1、0、1)と関数(1、0、1)との差分により、外乱光および可視光Vis(W)が殆ど除去され、励起光Ex1および蛍光Lx1が含まれる関数ICG(E1x、Lx1)を取得することが可能である。
また、関数IR(1、0、1)には、外乱光、可視光Vis(W)および蛍光Lx1が含まれる。また、関数IR(0、0、1)には、外乱光および可視光Vis(W)が含まれる。したがって、関数IR(1、0、1)と関数IR(0、0、1)との差分により、外乱光および可視光Vis(W)が殆ど除去され、励起光Ex1が含まれる関数IR(E1x)を取得することが可能である。なお、撮像素子IRは、蛍光Lx2を検出するように構成されているが、ICGの励起光Ex1の波長帯域と重複する部分があるため、励起光Ex1が検出される。
そして、予め算出された関数ICG(Ex1、Lx1)における励起光Ex1の強度と、関数IR(Ex1)における励起光Ex1の強度との相関関係を表す関数IRtoICGを用いて、励起光Ex1および蛍光Lx1が含まれる関数ICG(Ex1、Lx1)と励起光Ex1が含まれるが蛍光Lx1が殆ど含まれない関数IR(Ex1)との差分により、励起光Ex1を殆ど除去する。これにより、蛍光Lx1以外の光を殆ど除去するようにICG画像11を補正することができる。
9 画像生成部(第1波長域画像生成部、第2波長域画像生成部、画像補正部)
11 ICG画像(第1波長域画像)
12 VIS画像(第2波長域画像)
41 励起光光源(励起光源)
51 蛍光検出器(第1波長域検出部)
52 可視光検出器(第2波長域検出部)
100 近赤外光カメラシステム(医療用イメージング装置)
P 被検体
11 ICG画像(第1波長域画像)
12 VIS画像(第2波長域画像)
41 励起光光源(励起光源)
51 蛍光検出器(第1波長域検出部)
52 可視光検出器(第2波長域検出部)
100 近赤外光カメラシステム(医療用イメージング装置)
P 被検体
Claims (6)
- 被検体に投与された蛍光物質を励起させるための励起光を照射する励起光源と、
前記被検体に投与された少なくとも1つの前記蛍光物質が前記励起光源により照射された前記励起光により励起されることにより生じる蛍光の波長域を含む第1波長域の光を検出する第1波長域検出部と、
前記第1波長域とは異なる波長域である第2波長域の光を検出する第2波長域検出部と、
前記第1波長域検出部により検出された前記第1波長域の光に基づいて蛍光画像である第1波長域画像を生成する第1波長域画像生成部と、
前記第2波長域検出部により検出された前記第2波長域の光に基づいて第2波長域画像を生成する第2波長域画像生成部と、
前記励起光が照射されている場合に生成された前記第1波長域画像と前記第2波長域画像とに基づいて、前記第1波長域画像を補正する画像補正部と、を備える、医療用イメージング装置。 - 前記画像補正部は、前記励起光が照射されている場合に生成された前記第1波長域画像と、前記励起光が照射されていない場合に生成された前記第1波長域画像と、前記励起光が照射されている場合に生成された前記第2波長域画像と、前記励起光が照射されていない場合に生成された前記第2波長域画像とに基づいて、前記第1波長域画像を補正するように構成されている、請求項1に記載の医療用イメージング装置。
- 前記画像補正部は、前記第1波長域画像における前記励起光の強度と前記第2波長域画像における前記励起光の強度との相関関係に基づいて、前記第1波長域画像を補正するように構成されている、請求項1または2に記載の医療用イメージング装置。
- 前記第2波長域は、可視光の波長域を含む、請求項1~3のいずれか1項に記載の医療用イメージング装置。
- 前記第1波長域検出部は、互いに波長域の異なる前記蛍光を発する複数の前記蛍光物質に対応した前記蛍光を検出可能に構成されている、請求項1~4のいずれか1項に記載の医療用イメージング装置。
- 前記第1波長域検出部とは異なる波長域の前記蛍光を発する前記蛍光物質に対応した蛍光を検出する第3波長域検出部をさらに備える、請求項1~4のいずれか1項に記載の医療用イメージング装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/017674 WO2019215799A1 (ja) | 2018-05-07 | 2018-05-07 | 医療用イメージング装置 |
JP2020517645A JP6863520B2 (ja) | 2018-05-07 | 2018-05-07 | 医療用イメージング装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/017674 WO2019215799A1 (ja) | 2018-05-07 | 2018-05-07 | 医療用イメージング装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019215799A1 true WO2019215799A1 (ja) | 2019-11-14 |
Family
ID=68467347
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/017674 WO2019215799A1 (ja) | 2018-05-07 | 2018-05-07 | 医療用イメージング装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6863520B2 (ja) |
WO (1) | WO2019215799A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009028136A1 (ja) * | 2007-08-29 | 2009-03-05 | Panasonic Corporation | 蛍光観察装置 |
WO2015045479A1 (ja) * | 2013-09-27 | 2015-04-02 | 富士フイルム株式会社 | 光計測装置 |
WO2016035450A1 (ja) * | 2014-09-01 | 2016-03-10 | 株式会社島津製作所 | イメージング装置 |
WO2016063636A1 (ja) * | 2014-10-23 | 2016-04-28 | 浜松ホトニクス株式会社 | 蛍光観察方法及び蛍光観察装置 |
WO2017199757A1 (ja) * | 2016-05-16 | 2017-11-23 | ソニー株式会社 | 光学装置および情報処理方法 |
-
2018
- 2018-05-07 JP JP2020517645A patent/JP6863520B2/ja active Active
- 2018-05-07 WO PCT/JP2018/017674 patent/WO2019215799A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009028136A1 (ja) * | 2007-08-29 | 2009-03-05 | Panasonic Corporation | 蛍光観察装置 |
WO2015045479A1 (ja) * | 2013-09-27 | 2015-04-02 | 富士フイルム株式会社 | 光計測装置 |
WO2016035450A1 (ja) * | 2014-09-01 | 2016-03-10 | 株式会社島津製作所 | イメージング装置 |
WO2016063636A1 (ja) * | 2014-10-23 | 2016-04-28 | 浜松ホトニクス株式会社 | 蛍光観察方法及び蛍光観察装置 |
WO2017199757A1 (ja) * | 2016-05-16 | 2017-11-23 | ソニー株式会社 | 光学装置および情報処理方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6863520B2 (ja) | 2021-04-21 |
JPWO2019215799A1 (ja) | 2021-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5449816B2 (ja) | 画像処理装置、画像処理プログラムおよび画像処理装置の作動方法 | |
JP5507376B2 (ja) | 撮像装置 | |
JP5396121B2 (ja) | 画像処理装置、撮像装置、画像処理プログラムおよび画像処理装置の作動方法 | |
JP5984681B2 (ja) | 蛍光観察装置 | |
JP5485190B2 (ja) | 内視鏡装置 | |
JP5191329B2 (ja) | 画像取得装置 | |
JP2002345733A (ja) | 撮像装置 | |
JPWO2010116552A1 (ja) | 蛍光観察装置 | |
JPWO2018211885A1 (ja) | 画像取得システム、制御装置及び画像取得方法 | |
CN113208567A (zh) | 多光谱成像系统、成像方法和存储介质 | |
JP2017176811A5 (ja) | ||
JP6859554B2 (ja) | 観察補助装置、情報処理方法、およびプログラム | |
WO2016035450A1 (ja) | イメージング装置 | |
US20180092519A1 (en) | Infrared fluorescence observation device | |
JP2009142586A (ja) | 内視鏡システムの自動焦点調整方法および内視鏡システム | |
JP2002345739A (ja) | 画像表示装置 | |
WO2019215799A1 (ja) | 医療用イメージング装置 | |
KR102112229B1 (ko) | 가시광 및 근적외선 광을 모두 가시화할 수 있는 내시경 장치 | |
JP6017749B1 (ja) | 撮像装置、撮像装置の作動方法 | |
JP5489806B2 (ja) | 蛍光内視鏡装置 | |
WO2017212946A1 (ja) | 画像処理装置 | |
JP2013013589A (ja) | 画像信号処理装置、撮像システム、及び電子内視鏡システム | |
JP2003159209A (ja) | 蛍光診断画像表示方法および表示装置 | |
KR102042128B1 (ko) | 복합 광원을 이용한 광학영상화 시스템 및 그에 따른 구동 제어방법 | |
JP6535701B2 (ja) | 撮像装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18917805 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020517645 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18917805 Country of ref document: EP Kind code of ref document: A1 |