WO2019214749A1 - 非金属路易斯酸催化烯烃分子内加成c-o键合成苯并呋喃衍生物的方法 - Google Patents

非金属路易斯酸催化烯烃分子内加成c-o键合成苯并呋喃衍生物的方法 Download PDF

Info

Publication number
WO2019214749A1
WO2019214749A1 PCT/CN2019/087153 CN2019087153W WO2019214749A1 WO 2019214749 A1 WO2019214749 A1 WO 2019214749A1 CN 2019087153 W CN2019087153 W CN 2019087153W WO 2019214749 A1 WO2019214749 A1 WO 2019214749A1
Authority
WO
WIPO (PCT)
Prior art keywords
olefin
lewis acid
reaction
bond
derivative
Prior art date
Application number
PCT/CN2019/087153
Other languages
English (en)
French (fr)
Inventor
赵继阳
Original Assignee
南京晓庄学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京晓庄学院 filed Critical 南京晓庄学院
Publication of WO2019214749A1 publication Critical patent/WO2019214749A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/78Benzo [b] furans; Hydrogenated benzo [b] furans
    • C07D307/79Benzo [b] furans; Hydrogenated benzo [b] furans with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring

Definitions

  • the invention belongs to the technical field of organic synthesis, and in particular relates to a method for synthesizing a benzofuran derivative.
  • Benzofuran compounds are a class of natural organic compounds widely found in plants, such as in medicinal plants such as Salvia miltiorrhiza, Hundreds, Wild Jasmine, and Zanthoxylum bungeanum. Benzofuran compounds have good antibacterial, anti-oxidative, anti-tumor, anti-viral and other physiological activities, and thus can be used for selective adenosine A1 receptor antagonists, immunosuppressive agents and the like. However, since the extraction of benzofuran compounds from natural products cannot meet people's needs, it is very important to obtain them by artificial synthesis.
  • Olefin addition reactions are a very important class of chemical conversion reactions in organic synthesis and medicinal chemistry.
  • Direct addition of C-O bonds to olefins is a very cost effective olefin functionalization process for both atoms and steps.
  • olefin addition C-X (X is a hetero atom) has gained wide attention, the direct addition of C-O bonds to olefins is still challenging due to the high stability of C-O bonds.
  • the Nakao team used synergistic metal palladium and boric acid catalysts to achieve intramolecular addition of C-O bonds to olefins to give benzofurans. The reaction was carried out in a solvent of 80 ° C in tetrahydrofuran.
  • the present invention adopts the following technical solutions:
  • a method for synthesizing a benzofuran derivative by intramolecular addition of a C-O bond to an olefin by a non-metal Lewis acid comprising the steps of:
  • Step one preparing an olefin: using a phenol derivative as a raw material, and passing through a three-step reaction as shown in the following reaction formula, an olefin as a reaction substrate is obtained; the reaction formula is as follows:
  • R is H or OMe
  • Step 2 adding the non-metal Lewis acid and toluene to the olefin prepared in the first step, and reacting to obtain the benzofuran derivative; the reaction formula is as follows:
  • the first step is specifically: adding potassium carbonate, methallyl chloride and compound 1 to the stirring acetone solution, and refluxing the formed mixture at room temperature overnight, then adding water, and extracting with diethyl ether to collect the organic layer. and washed with NaOH, dried over MgSO 4 performed, filtered and concentrated in vacuo to give the intermediate compound 2; intermediate compound 2 was dissolved in N, N- dimethylaniline or N, N- dimethylformamide, and the mixture at 200 Reflux in a nitrogen atmosphere at -250 ° C for 1-5 hours, then cool to room temperature, and concentrate under reduced pressure.
  • the solvent was a mixture of anhydrous hexane and diethyl ether in a volume ratio of 5:2.
  • the olefin, the non-metal Lewis acid and the toluene prepared in the first step are mixed and placed in a closed vessel and reacted at 90 ° C for 12-24 hours; after the reaction is completed, it is cooled to room temperature and diluted with diethyl ether; finally concentrated with diatomaceous earth.
  • the product was purified by column chromatography and dried to give the product.
  • the non-metallic Lewis acid is B(C 6 F 5 ) 3 .
  • a non-metallic Lewis acid is used as a catalyst in the reaction, and the electrons in the O-C bond are extracted by the complexation of the Lewis acid with the cyano group in the reaction substrate, thereby weakening the chemical bond strength of the O-C bond.
  • This mode of activation of the Lewis acid is different from that of the transition metal, but achieves the same effect as the transition metal.
  • contamination of the reaction system by the metal catalyst is avoided, and troublesome post-treatment is also eliminated.
  • Example 1 is an H NMR spectrum of a raw material olefin obtained in Example 1;
  • Example 2 is a 13 C NMR spectrum of the raw material olefin obtained in Example 1;
  • Figure 5 is a H NMR spectrum of the raw material olefin obtained in Example 2.
  • Figure 6 is a 13 C NMR spectrum of the starting olefin obtained in Example 2.
  • Figure 8 is a 13 C NMR spectrum of the final product benzofuran derivative B obtained in Example 2;
  • the present invention synthesizes the benzofuran derivative A, comprising the following steps:
  • reaction formula is:
  • the purity of the crude product can be used in the next catalytic reaction without further purification. In this step, all operations must be carried out in a well-ventilated fume hood because cyanogen bromide is highly toxic and can generate hydrogen cyanide during the hydrolysis process.
  • reaction formula is:
  • the reaction flask was capped with a Teflon sealing cap and then taken out of the glove box; the reaction flask was heated to 90 ° C for 24 h; after the reaction was completed, it was cooled to room temperature and diluted with 10.0 ml of diethyl ether; by TLC thin layer chromatography
  • the reaction (1:4 EtOAc/hexanes) was used to complete the complete consumption of the reaction; the solution was concentrated with celite, and the product was purified by flash column chromatography (1:9 ⁇ 1:4 diethyl ether/hexane) to give product It was 147 mg of a yellow solid with a yield of 85%, which was the product benzofuran derivative A.
  • reaction formula is:
  • the purity of the crude product can be used in the next catalytic reaction without further purification. In this step, all operations must be carried out in a well-ventilated fume hood because cyanogen bromide is highly toxic and can generate hydrogen cyanide during the hydrolysis process.
  • reaction formula is:
  • Step 204 of the prepared 204 mg of olefin, 511 mg of non-metallic Lewis acid B (C 6 F 5 ) 3 and 5 mL of toluene were sequentially added to the reaction flask.
  • the reaction flask was capped with a Teflon sealing cap and then taken out of the glove box; the reaction flask was heated to 90 ° C for 24 h; after the reaction was completed, it was cooled to room temperature and diluted with 10.0 ml of diethyl ether; by TLC thin layer chromatography
  • the reaction (1:4 EtOAc/hexanes) was used to complete the complete consumption of the reaction; the solution was concentrated with celite, and the product was purified by flash column chromatography (1:9 ⁇ 1:4 diethyl ether/hexane). 177 mg of a red solid with a yield of 88% is the product benzofuran derivative B.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Furan Compounds (AREA)

Abstract

提供了一种非金属路易斯酸催化烯烃分子内加成C-O键合成苯并呋喃衍生物的方法,包括以下步骤:步骤一,制备烯烃:以苯酚衍生物为原料,经过三步反应,得到作为反应底物的烯烃;步骤二,将步骤一制备得到的反应底物中加入非金属路易斯酸和甲苯,反应得到所述苯并呋喃衍生物。该反应在反应过程中使用了非金属路易斯酸作为催化剂,避免了残留金属催化剂对产物的污染,也省去了麻烦的后处理。

Description

非金属路易斯酸催化烯烃分子内加成C-O键合成苯并呋喃衍生物的方法 技术领域
本发明属于有机合成技术领域,特别涉及一种苯并呋喃衍生物的合成方法。
背景技术
苯并呋喃类化合物是一类广泛存在于植物中的天然有机化合物,比如在丹参、百部、野茉莉、花椒等药用植物中。苯并呋喃类化合物具有良好的抗菌、抗氧化、抗肿瘤、抗病毒等生理活性,因此可以用于选择性腺苷A1受体拮抗剂、免疫抑制剂等。但是因为从天然产物中提取苯并呋喃类化合物无法满足人们的需求,因此通过人工合成方法得到就显得非常重要。
烯烃加成反应是有机合成及药物化学中非常重要的一类化学转化反应。直接加成C-O键到烯烃是一种原子和步骤都非常经济高效的烯烃官能团化方法。尽管烯烃加成C-X(X为杂原子)已经获得了广泛的关注,但是因为C-O键的高稳定性,烯烃直接加成C-O键依然充满挑战。2012年,Nakao课题组利用协同的金属钯和硼酸催化剂实现了烯烃分子内加成C-O键,得到苯并呋喃类化合物,反应是在80摄氏度四氢呋喃溶剂中进行。反应虽然通过烯烃分子内加成C-O键实现了苯并呋喃的合成,但是在反应中应用了过渡金属钯。反应中利用过渡金属钯的高反应活性实现了C-O键的活化,但是祛除反应体系中的过渡金属残留是一件非常困难的事情。特别是在医药和生活用品中,对于过渡金属的残留值有着非常苛刻的要求。所以寻找非金属化合物催化苯并呋喃类化合物的合成具有重要的战略意义。
发明内容
本发明的目的是提供一种非金属路易斯酸催化烯烃分子内加成C-O键合成苯并呋喃衍生物的方法,以解决现有技术存在的使用过渡金属催化剂导致过渡金属残留的问题。
为实现上述目的,本发明采用以下技术方案:
一种非金属路易斯酸催化烯烃分子内加成C-O键合成苯并呋喃衍生物的方法,包括以下步骤:
步骤一,制备烯烃:以苯酚衍生物为原料,经过如下述反应式所示的三步反应,得到作为反应底物的烯烃;反应式如下:
Figure PCTCN2019087153-appb-000001
其中R为H或OMe;
步骤二,将步骤一制备得到的烯烃中加入非金属路易斯酸和甲苯,反应得到所述苯并呋喃衍生物;反应式如下:
Figure PCTCN2019087153-appb-000002
所述步骤一具体为:将碳酸钾、甲基烯丙基氯和化合物1加入到正在搅拌的丙酮溶液中,室温下将形成的混合物回流一夜,然后加入水,再用乙醚萃取,收集有机层并用NaOH洗涤,用MgSO 4进行干燥,过滤并真空浓缩得到中间产物化合物2;将中间产物化合物2溶解在N,N-二甲基苯胺或者N,N-二甲基甲酰胺中,混合物在200-250℃温度下氮气氛围中回流1-5小时,然后冷却到室温,并在减压下浓缩,粗产品用快速柱层析提纯,得到黄色油状的化合物3;在惰性气体气氛下,将化合物3溶解于溶剂中,然后冷却至0℃,加入溴化氰,然后再将三乙胺滴加到混合物中,将混合物保持在0℃持续3h,沉淀物经硅藻土过滤,并通过己烷进行多次洗涤,再经旋转蒸发去除溶剂,得到化合物4,即为烯烃。
所述溶剂为无水己烷和二乙醚按照体积比5:2的混合物。
将步骤一制备得到的烯烃、非金属路易斯酸和甲苯混合,并置于密闭容器中,在90℃下反应12~24h;反应结束后,冷却至室温,并用乙醚稀释;最后用硅藻土浓缩,柱层析纯化产物,烘干后得到产物。
所述步骤二中,非金属路易斯酸为B(C 6F 5) 3
有益效果:本发明在反应过程成使用了非金属路易斯酸作为催化剂,通过路易斯酸与反应底物中氰基的络合作用,抽取O-C键中的电子,弱化了O-C键的化学键强度。从而使烯烃对O-C键的加成容易进行,得到目标产物苯并呋喃衍生物。路易斯酸的这种活化模式和过渡金属不同,但是实现了过 渡金属同样的效果。同时,避免了金属催化剂对反应体系的污染,也省去了麻烦的后处理。
附图说明
图1为实施例1得到的原料烯烃的HNMR谱图;
图2为实施例1得到的原料烯烃的 13CNMR谱图;
图3为实施例1得到的最终产物苯并呋喃衍生物A的HNMR谱图;
图4为实施例1得到的最终产物苯并呋喃衍生物A的 13CNMR谱图;
图5为实施例2得到的原料烯烃的HNMR谱图;
图6为实施例2得到的原料烯烃的 13CNMR谱图;
图7为实施例2得到的最终产物苯并呋喃衍生物B的HNMR谱图;
图8为实施例2得到的最终产物苯并呋喃衍生物B的 13CNMR谱图;
具体实施方式
下面结合实施例对本发明做更进一步的解释。
实施例1
本实施例合成苯并呋喃衍生物A,包括以下步骤:
(1)制备烯烃:
反应式为:
Figure PCTCN2019087153-appb-000003
将12克碳酸钾、8.6mL甲基烯丙基氯和7.6克苯酚(化合物1)加入到的20.0毫升正在搅拌的丙酮溶液中,室温下将形成的混合物回流一夜,之后加入100毫升水,然后乙醚萃取(12×10ml)。收集有机层用浓度为2M的NaOH(3x80mL)洗涤,用MgSO 4进行干燥,过滤并真空浓缩得到4.8克中间产物化合物2,可直接使用,不需要提纯。
将4.8克化合物2溶解在4.0mL N,N-二甲基苯胺中,混合物在205℃氮气氛中回流5小时。冷却到室温,加入400毫升二乙醚,用浓度为1M的HCl(3x200ml)清洗反应混合物。水层用二乙醚(3x200ml)进一步萃取。有机层用水和盐水清洗。然后在MgSO 4上干燥,并在减压下浓缩。粗产品用快速柱层析(SiO 2,PET/EtOAc 30:1-5:1)提纯,得到 黄色油状的1.48克中间产物2-(2-甲基烯丙基)苯酚,即化合物3。
在氩气气氛下将1.48克2-(2-甲基烯丙基)苯酚溶解于无水己烷和二乙醚的混合物中,其中,无水己烷和二乙醚的体积比为5:2;将混合后的反应溶液冷却到0℃,然后一次性加入1.27克溴化氰;随后,将1.21克三乙胺滴加到反应混合物中;将反应混合物保持在0℃持续3h,沉淀物经过一层硅藻土过滤,并通过己烷进行多次洗涤。通过旋转蒸发去除溶剂,得到粗产品,即化合物4; 1H NMR(400MHz,CDCl 3)δ1.72(s,3H),3.34(s,2H),4.60(s,1H),4.84(s,1H),7.24–7.27(m,2H),7.33(dd,J=6.2,3.3Hz,1H),7.45(d,J=8.3Hz,1H); 13C NMR(100MHz,CDCl 3)δ22.3,37.4,109.0,112.6,114.5,126.8,128.0,128.3,131.9,142.6,151.3。
粗产品的纯度可用于下一步的催化反应,无需进一步提纯。本步骤中,所有的操作都必须在通风良好的通风橱中进行,因为溴化氰的毒性很强,可以在水解过程中产生氰化氢。
(2)制备苯并呋喃衍生物A:
反应式为:
Figure PCTCN2019087153-appb-000004
取一个微量的反应瓶,加入磁性搅拌子,放入一个充满氮气的手套箱中。在反应瓶中依次加入步骤一制备好的173毫克化合物4、511毫克非金属路易斯酸B(C 6F 5) 3和5mL甲苯。用聚四氟乙烯密封帽盖紧反应瓶,然后从手套箱中拿出;将反应瓶加热到90℃下反应24h;反应结束后,冷却至室温,用10.0毫升乙醚稀释;通过TLC薄层色谱分析(1:4EtOAc/hexanes)起始反应物的完全消耗;反应结束后的溶液用硅藻土浓缩,用快速柱层析(1:9→1:4乙醚/己烷)纯化产物,得到产物为147毫克黄色固体,产率85%,即为产物苯并呋喃衍生物A。 1H-NMR(300MHz,CDCl 3)δ1.67(s,3H),2.71(d,J=16.5Hz,1H),2.77(d,J=16.5Hz,1H),3.14(d,J=16.4Hz,1H),3.23(d,J=16.4Hz,1H),6.79(d,J=7.8Hz,1H),6.89(td,J=7.5,1.0Hz,1H),7.13–7.18(m,2H); 13C NMR(75MHz,CDCl 3)δ25.9,29.7,41.2,84.6,110.0,116.8,121.1,125.2,128.6,157.9。
实施例2
本实施例合成苯并呋喃衍生物B,包括以下步骤:
(1)制备烯烃:
反应式为:
Figure PCTCN2019087153-appb-000005
将12克碳酸钾、8.0mL甲基烯丙基氯和8.0克对甲氧基苯酚(化合物1)加入到16.0毫升搅拌的丙酮溶液中,室温下将形成的混合物回流一夜,之后加入100毫升水,然后用乙醚萃取(12×10ml)。收集有机层用浓度为2M的NaOH(3x80mL)洗涤,用MgSO 4进行干燥,过滤并真空浓缩得8.1克中间产物化合物2,可直接使用,不需要提纯。
将8.0克中间产物2溶解在35mLN,N-二甲基甲酰胺DMF溶剂中,混合物在240℃下氮气氛中微波条件下回流80分钟。冷却到室温,并在减压下浓缩。粗产品用快速柱层析(SiO 2,PET/EtOAc 30:1-15:1)提纯,得到黄色油状的中间产物6.5克2-(2-甲基烯丙基)-4-甲氧基苯酚(即化合物3)。
在氩气气氛下将1.8克2-(2-甲基烯丙基)-4-甲氧基苯酚溶解于无水己烷和二乙醚的混合物中,其中,无水己烷和二乙醚的体积比为5:2;将混合后的反应溶液冷却到0℃,然后一次性加入1.27克溴化氰;随后,将1.21克三乙胺滴加到反应混合物中;将反应混合物保持在0℃持续3h,沉淀物经过一层硅藻土过滤,并通过己烷进行多次洗涤。通过旋转蒸发去除溶剂,得到粗产品,即化合物4; 1H NMR(300MHz,CDCl 3)δ1.72(s,3H),3.31(s,2H),3.80(s,3H),4.65(s,1H),4.86(s,1H),6.72–6.82(m,2H),7.35(d,J=9.3Hz,1H); 13C NMR(75MHz,CDCl 3)δ22.2,37.6,55.6,109.6,112.5,112.8,115.8,116.9,129.3,142.4,145.4,157.8。
粗产品的纯度可用于下一步的催化反应,无需进一步提纯。本步骤中,所有的操作都必须在通风良好的通风橱中进行,因为溴化氰的毒性很强,可以在水解过程中产生氰化氢。
(2)制备苯并呋喃衍生物B:
反应式为:
Figure PCTCN2019087153-appb-000006
取一个微量的反应瓶,加入磁性搅拌子,放入一个充满氮气的手套箱中。在反应瓶中依次加入步骤一制备好的204毫克烯烃、511毫克非金属路易斯酸B(C 6F 5) 3和5mL甲苯。用聚四氟乙烯密封帽盖紧反应瓶,然后从手套箱中拿出;将反应瓶加热到90℃下反应24h;反应结束后,冷却至室温,用10.0毫升乙醚稀释;通过TLC薄层色谱分析(1:4EtOAc/hexanes)起始反应物的完全消耗;反应结束后的溶液用硅藻土浓缩,用快速柱层析(1:9→1:4乙醚/己烷)纯化产物,产物为177毫克红色固体,产率88%,即为产物苯并呋喃衍生物B。 1H NMR(300MHz,CDCl 3)1.65(s,3H),2.72(s,2H),3.11(d,J=16.0Hz,1H),3.20(d,J=16.0Hz,1H),3.75(s,3H),6.68–6.75(m,3H); 13C NMR(75MHz,CDCl 3)δ26.0,29.6,41.4,56.9,85.5,111.3,116.7,117.2,121.8,126.3,144.6,146.2。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (5)

  1. 一种非金属路易斯酸催化烯烃分子内加成C-O键合成苯并呋喃衍生物的方法,其特征在于:包括以下步骤:
    步骤一,制备烯烃:以苯酚衍生物为原料,经过如下述反应式所示的三步反应,得到作为反应底物的烯烃;反应式如下:
    Figure PCTCN2019087153-appb-100001
    其中R为H或OMe;
    步骤二,将步骤一制备得到的烯烃中加入非金属路易斯酸和甲苯,反应得到所述苯并呋喃衍生物;反应式如下:
    Figure PCTCN2019087153-appb-100002
  2. 根据权利要求1所述的非金属路易斯酸催化烯烃分子内加成C-O键合成苯并呋喃衍生物的方法,其特征在于:所述步骤一具体为:将碳酸钾、甲基烯丙基氯和化合物1加入到正在搅拌的丙酮溶液中,室温下将形成的混合物回流一夜,然后加入水,再用乙醚萃取,收集有机层并用NaOH洗涤,用MgSO 4进行干燥,过滤并真空浓缩得到中间产物化合物2;将中间产物化合物2溶解在N,N-二甲基苯胺或者N,N-二甲基甲酰胺中,混合物在200-250℃温度下氮气氛围中回流1-5小时,然后冷却到室温,并在减压下浓缩,粗产品用快速柱层析提纯,得到黄色油状的化合物3;在惰性气体气氛下,将化合物3溶解于溶剂中,然后冷却至0℃,加入溴化氰,然后再将三乙胺滴加到混合物中,将混合物保持在0℃持续3h,沉淀物经硅藻土过滤,并通过己烷进行多次洗涤,再经旋转蒸发去除溶剂,得到化合物4,即为烯烃。
  3. 根据权利要求2所述的非金属路易斯酸催化烯烃分子内加成C-O键合成苯并呋喃及其衍生物的方法,其特征在于:所述溶剂为无水己烷和二乙醚按照体积比5:2的混合物。
  4. 根据权利要求1所述的非金属路易斯酸催化烯烃分子内加成C-O键合成苯并呋 喃及其衍生物的方法,其特征在于:所述步骤二具体为:将步骤一制备得到的烯烃、非金属路易斯酸和甲苯混合,并置于密闭容器中,在90℃下反应12~24h;反应结束后,冷却至室温,并用乙醚稀释;最后用硅藻土浓缩,柱层析纯化产物,烘干后得到产物。
  5. 根据权利要求1或4所述的非金属路易斯酸催化烯烃分子内加成C-O键合成苯并呋喃及其衍生物的方法,其特征在于:所述步骤二中,非金属路易斯酸为B(C 6F 5) 3
PCT/CN2019/087153 2018-05-08 2019-05-16 非金属路易斯酸催化烯烃分子内加成c-o键合成苯并呋喃衍生物的方法 WO2019214749A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810429931.1 2018-05-08
CN201810429931.1A CN108530405A (zh) 2018-05-08 2018-05-08 非金属路易斯酸催化烯烃分子内加成c-o键合成苯并呋喃衍生物的方法

Publications (1)

Publication Number Publication Date
WO2019214749A1 true WO2019214749A1 (zh) 2019-11-14

Family

ID=63476625

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/087153 WO2019214749A1 (zh) 2018-05-08 2019-05-16 非金属路易斯酸催化烯烃分子内加成c-o键合成苯并呋喃衍生物的方法

Country Status (2)

Country Link
CN (1) CN108530405A (zh)
WO (1) WO2019214749A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108530405A (zh) * 2018-05-08 2018-09-14 南京晓庄学院 非金属路易斯酸催化烯烃分子内加成c-o键合成苯并呋喃衍生物的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0345593A1 (en) * 1988-06-10 1989-12-13 Takeda Chemical Industries, Ltd. 2-substituted coumaran derivatives
WO2006000902A1 (en) * 2004-06-25 2006-01-05 Pfizer Products Inc. Dihydrobenzofuran compounds and uses thereof
CN102421767A (zh) * 2009-03-10 2012-04-18 武田药品工业株式会社 苯并呋喃衍生物
CN108530405A (zh) * 2018-05-08 2018-09-14 南京晓庄学院 非金属路易斯酸催化烯烃分子内加成c-o键合成苯并呋喃衍生物的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0345593A1 (en) * 1988-06-10 1989-12-13 Takeda Chemical Industries, Ltd. 2-substituted coumaran derivatives
WO2006000902A1 (en) * 2004-06-25 2006-01-05 Pfizer Products Inc. Dihydrobenzofuran compounds and uses thereof
CN102421767A (zh) * 2009-03-10 2012-04-18 武田药品工业株式会社 苯并呋喃衍生物
CN108530405A (zh) * 2018-05-08 2018-09-14 南京晓庄学院 非金属路易斯酸催化烯烃分子内加成c-o键合成苯并呋喃衍生物的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KOESTER, DENNIS C. ET AL.: "Intramolecular Oxycyanation of Alkenes by Coope- rative Pd/BPh3 Catalysis", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 134, no. 15, 1 April 2012 (2012-04-01), pages 6544 - 6547, XP055651416, DOI: 10.1021/ja301375c *
NICOLAI, STEFANO ET AL.: "Pd-Catalyzed Intramolecular Oxyalkynylation of Alkenes with Hypervalent Iodine", ORGANIC LETTERS, vol. 12, no. 2, 10 December 2009 (2009-12-10), pages 384 - 387, XP055651422, DOI: 10.1021/ol9027286 *
ZHAO, JIYANG ET AL.: "An insight into the Lewis acid-catalyzed intramoleculai aminocyanation and oxycyanation of alkenes: a concerted or stepwise mechani- sm", CHEMICAL COMMUNICATIONS, vol. 51, 27 August 2015 (2015-08-27), pages 15450 - 15453, XP055651447, DOI: 10.1039/C5CC06808H *

Also Published As

Publication number Publication date
CN108530405A (zh) 2018-09-14

Similar Documents

Publication Publication Date Title
JP4342940B2 (ja) 5−メチル−1−フェニル−2(1h)ピリジノンの製造方法
CN106902880B (zh) 4,6-二甲基-2-巯基嘧啶一价铜配合物在催化酮或醛氢转移反应制备醇中的应用
JP2011505364A (ja) TMEDAを用いた5−シクロプロピル−5,11−ジヒドロ[1]ベンゾオキセピノ[3,4−b]−ピリジン−5−オールの製造方法
CN110183378B (zh) 一种烟酰胺的衍生物及其催化合成方法
TWI642671B (zh) 依魯替尼之製備方法及其中間體
WO2019214749A1 (zh) 非金属路易斯酸催化烯烃分子内加成c-o键合成苯并呋喃衍生物的方法
CN111592507A (zh) 一种绿色简单制备多取代呋喃的新方法
CN111574444A (zh) 一种贝达喹啉的制备方法
JP6728151B2 (ja) 1−(3,5−ジクロロフェニル)−2,2,2−トリフルオロ−エタノン及びその誘導体の製造方法
KR101253367B1 (ko) 5―클로로―2,4-디히드록시피리딘의 제조방법
JP6096465B2 (ja) ペランパネルの中間体である2−アルコキシ−5−(ピリジン−2−イル)ピリジンの調製方法
CN112574081B (zh) 制备芳基硫代酰胺类化合物的方法
CN113735752B (zh) 一种基于取代碘苯制备异硫脲化合物的方法
CN106543081B (zh) 一种1-二氟烷基异喹啉的制备方法
KR102436961B1 (ko) 할로-치환된 트리플루오로아세토페논의 제조 방법
CN102382051A (zh) 异喹啉酮及其衍生物的制备方法
CN114105989A (zh) 一种碘代吡咯并三嗪胺类化合物的制备方法和应用
WO2015077286A1 (en) Hexahydroindenopyridine derivatives
JP5068642B2 (ja) ピロール−2−カルボニトリルの合成
CN104844452B (zh) 一种母番茄娥信息素的合成方法
CN113956139B (zh) 一种将四氢噻唑类衍生物转化为羰基化合物的绿色方法
TWI333957B (en) Verfahren zur eifuhrung einer 1,2-doppelbindung bei 3-oxo-4-azasteroidverbindungen
CN110804010B (zh) 靛红衍生物的合成方法
CN111499520B (zh) 一种含氮四齿配体和中间体及其制备方法
CN108467348B (zh) 合成达泊西汀有关物质的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19799080

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19799080

Country of ref document: EP

Kind code of ref document: A1