WO2019214469A1 - 一种参考信号传输方法及通信设备 - Google Patents

一种参考信号传输方法及通信设备 Download PDF

Info

Publication number
WO2019214469A1
WO2019214469A1 PCT/CN2019/084722 CN2019084722W WO2019214469A1 WO 2019214469 A1 WO2019214469 A1 WO 2019214469A1 CN 2019084722 W CN2019084722 W CN 2019084722W WO 2019214469 A1 WO2019214469 A1 WO 2019214469A1
Authority
WO
WIPO (PCT)
Prior art keywords
initial resource
resource index
frequency band
bandwidth
index
Prior art date
Application number
PCT/CN2019/084722
Other languages
English (en)
French (fr)
Inventor
刘永
张希
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19800067.1A priority Critical patent/EP3790337B9/en
Priority to CA3099769A priority patent/CA3099769A1/en
Priority to JP2020563682A priority patent/JP7168290B2/ja
Priority to CN201980031696.5A priority patent/CN112106424B/zh
Priority to BR112020022919-9A priority patent/BR112020022919A2/pt
Publication of WO2019214469A1 publication Critical patent/WO2019214469A1/zh
Priority to US17/095,553 priority patent/US11425729B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a reference signal transmission method and a communication device.
  • CSI-RS Channel State Information-Reference Signal
  • LTE Long Term Evolution
  • NR New Radio
  • the configuration parameters of the part of the bandwidth include an index of an initial resource block (RB) and a configured bandwidth size (ie, the number of RBs occupied by the bandwidth).
  • the existing protocol stipulates that if the configured bandwidth is greater than the corresponding part bandwidth (BWP), the terminal equipment (User Equipment, UE) should assume that the actual CSI-RS bandwidth is equal to the BWP size.
  • BWP corresponding part bandwidth
  • the UE determines the base station to configure its own CSI-RS bandwidth according to the existing protocol, it will make an error in some scenarios. Therefore, the existing protocol definition has defects and cannot accurately determine the actual transmission bandwidth of the reference signal.
  • the embodiment of the invention provides a reference signal transmission method and a communication device, which can accurately determine the actual transmission bandwidth of the reference signal.
  • an embodiment of the present invention provides a reference signal transmission method, which is applied to a first communication device side.
  • the method includes: determining, by the first communications device, the first frequency band according to the first initial resource index, the second initial resource index, the first configured bandwidth, and the second configured bandwidth, where the first initial resource index is greater than or equal to the second initial resource index, and The first initial resource index is less than or equal to a sum of the second initial resource index and the second configured bandwidth; the first communications device receives the reference signal on the first frequency band.
  • an embodiment of the present invention provides a reference signal transmission method, which is applied to a second communication device side.
  • the method includes: determining, by the second communications device, the first frequency band according to the first initial resource index, the second initial resource index, the first configured bandwidth, and the second configured bandwidth, where the first initial resource index is greater than or equal to the second initial resource index, and The first initial resource index is less than or equal to a sum of the second initial resource index and the second configured bandwidth.
  • the second communication device transmits the reference signal on the first frequency band.
  • the communication device can accurately determine the actual transmission bandwidth of the reference signal, avoiding the first communication device from misjudgement of the reference signal transmission bandwidth, and improving the channel estimation performance of the reference signal. To improve the accuracy of feedback or transmission.
  • the first frequency band is satisfied if the sum of the first initial resource index and the first configured bandwidth is greater than or equal to a sum of the second initial resource index and the second configured bandwidth.
  • bandwidth of the first frequency band second initial resource index + second configuration bandwidth - first initial resource index.
  • the bandwidth of the first frequency band is equal to The first configuration bandwidth.
  • the first frequency band Meet the following conditions: Where n is a positive integer.
  • n is a positive integer.
  • the first initial resource index is an index of the first initial resource in the second frequency band
  • the second initial resource index is the second initial resource in the second frequency band
  • the second frequency band is a frequency band composed of a resource corresponding to a sum of the second initial resource index to the second initial resource index and the second configured bandwidth.
  • the first initial resource index is an index of the first initial resource in the third frequency band bandwidth
  • the second initial resource index is the second initial resource in the third frequency band.
  • the index in the third frequency band includes a second frequency band
  • the second frequency band is a frequency band composed of a resource corresponding to a sum of the second initial resource index to the second initial resource index and the second configured bandwidth.
  • the reference signal is a CSI-RS.
  • the embodiment of the present application provides a communication device, where the communication device is a first communication device, and the first communication device may include multiple function modules or units for performing the reference provided by the first aspect. Signal transmission method.
  • the embodiment of the present application provides a communication device, where the communication device is a second communication device, and the second communication device may include multiple function modules or units for performing the reference provided by the second aspect. Signal transmission method.
  • the embodiment of the present application provides a communication device, where the communication device is a first communication device, and is configured to perform the reference signal transmission method provided by the first aspect.
  • the first communication device can include a memory, a processor, a transmitter, a receiver, wherein: the transmitter and the receiver are for communicating with other communication devices, such as the second communication device.
  • the memory is used to store the implementation code of the reference signal transmission method provided by the first aspect
  • the processor is configured to execute the program code stored in the memory, that is, to perform the reference signal transmission method provided by the first aspect.
  • the embodiment of the present application provides a communications device, where the communications device is a second communications device, configured to perform the reference signal transmission method provided by the second aspect.
  • the second communication device can include a memory, a processor, a transmitter, a receiver, wherein: the transmitter and the receiver are for communicating with other communication devices, such as the first communication device.
  • the memory is used to store the implementation code of the reference signal transmission method provided by the second aspect
  • the processor is configured to execute the program code stored in the memory, that is, to perform the reference signal transmission method provided by the second aspect.
  • the embodiment of the present application provides a communication system, where the communication system includes: a first communication device and a second communication device. among them:
  • the first communication device may be the first communication device described in the above third aspect, or may be the first communication device described in the fifth aspect above.
  • the second communication device may be the first communication device described in the above fourth aspect, or may be the second communication device described in the sixth aspect above.
  • the present application provides a communication chip, which can include a processor, and one or more interfaces coupled to the processor.
  • the processor can be used to invoke an implementation of the reference signal transmission method provided by the first aspect from the memory and execute the instructions included in the program.
  • the interface can be used to output data processing results of the processor.
  • the present application provides a communication chip, which can include a processor and one or more interfaces coupled to the processor.
  • the processor can be used to invoke an implementation of the reference signal transmission method provided by the second aspect from the memory and execute the instructions included in the program.
  • the interface can be used to output data processing results of the processor.
  • the embodiment of the present application provides a computer readable storage medium, where the readable storage medium stores instructions, when executed on a processor, causing the processor to execute the reference signal transmission method described in the first aspect above. .
  • an embodiment of the present application provides a computer readable storage medium, where the readable storage medium stores instructions, when executed on a processor, causing the processor to perform the reference signal transmission described in the second aspect above. method.
  • the embodiment of the present application provides a computer program product comprising instructions, when executed on a processor, causing the processor to perform the reference signal transmission method described in the first aspect above.
  • the embodiment of the present application provides a computer program product comprising instructions, when executed on a processor, causing the processor to perform the reference signal transmission method described in the second aspect above.
  • FIG. 1 is a schematic structural diagram of a wireless communication system according to an embodiment of the present invention.
  • FIG. 2A is a schematic diagram of a scenario for determining a configuration bandwidth of a CSI-RS according to an embodiment of the present invention
  • 2B is a schematic diagram of another scenario for determining a configuration bandwidth of a CSI-RS according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a hardware architecture of a terminal device according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a hardware architecture of a network device according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a reference signal transmission method according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a configuration manner of a first transmission resource according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of another configuration manner of a first transmission resource according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of another configuration manner of a first transmission resource according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of another configuration manner of a first transmission resource according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of another configuration manner of a first transmission resource according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of another configuration manner of a first transmission resource according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of another configuration manner of a first transmission resource according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of another configuration manner of a first transmission resource according to an embodiment of the present disclosure.
  • FIG. 14 is a functional block diagram of a wireless communication system, a first communication device, and a second communication device according to an embodiment of the present application;
  • FIG. 15 is a schematic structural diagram of a communication chip according to an embodiment of the present application.
  • the wireless communication system 100 can operate in a licensed band or in an unlicensed band.
  • the wireless communication system 100 is not limited to a Long Term Evolution (LTE) system, and may be a future evolved 5G system, a New Radio (NR) system, or the like.
  • LTE Long Term Evolution
  • NR New Radio
  • the use of unlicensed frequency bands can increase the system capacity of the wireless communication system 100.
  • the wireless communication system 100 includes one or more network devices 101, one or more terminal devices 102. among them:
  • Network device 101 can communicate wirelessly with terminal device 102 via one or more antennas. Each network device 101 can provide communication coverage for each respective coverage area 104.
  • the coverage area 104 corresponding to the network device 101 can be divided into a plurality of sectors, wherein one sector corresponds to a portion of coverage (not shown).
  • the network device 101 may include: a base transceiver station (Base Transceiver Station), a wireless transceiver, a basic service set (BSS), and an extended service set (ESS).
  • BSS basic service set
  • ESS extended service set
  • Node B evolved NodeB (eNB or eNodeB), or next-generation Node B (gNB), and so on.
  • the wireless communication system 100 can include several different types of network devices 101, such as a macro base station, a micro base station, and the like.
  • the network device 101 can apply different wireless technologies, such as a cell radio access technology, or a WLAN radio access technology.
  • the terminal device 102 can be distributed throughout the wireless communication system 100, either stationary or mobile.
  • the terminal device 102 may include: a mobile device, a mobile station, a mobile unit, a wireless unit, a remote unit, a user agent, a mobile client, and the like.
  • the wireless communication system 100 can be a multi-beam communication system. among them:
  • the network device 101 can be configured with a large-scale antenna array and utilize beamforming techniques to control the antenna array to form beams of different orientations. In order to cover the entire cell 104, the network device 101 needs to use a plurality of differently directed beams.
  • the network device 101 may sequentially transmit wireless signals (Reference Signals (RSs) and/or Synchronization Signal Blocks (SS blocks)) using different directional beams. It is called Beam scanning.
  • the terminal device 102 measures the transmit beam to determine the signal quality of the transmit beam that the terminal device 102 can receive. This process is called Beam Measurement.
  • the terminal device 102 may be configured with an antenna array, or may convert different beams to transmit and receive signals. That is to say, in the wireless communication system 100, both the network device 101 and the terminal device 102 may use multiple beams for communication.
  • the wireless communication system 100 can support multi-carrier (waveform signals of different frequencies) operations.
  • a multi-carrier transmitter can simultaneously transmit modulated signals on multiple carriers.
  • each communication connection 103 can carry multi-carrier signals modulated with different wireless technologies.
  • Each modulated signal can be transmitted on different carriers, and can also carry control information (such as reference signals, control channel information, etc.), overhead information, data, and the like.
  • the network device 101 sends a Channel State Information-Reference Signal (CSI-RS) to the terminal device 102 for measuring the Channel State Information (CSI).
  • the CSI includes one or more of a Rank Index (RI), a Precoding Matrix Index (PMI), and a Channel Quality Index (CQI).
  • the terminal device 102 feeds back CSI to the network device 101, and the CSI fed back by the terminal device 102 includes one or more of PIM, RI, and CQI.
  • the PMI is used by the network device 101 to determine a precoding matrix
  • the RI is used to recommend the number of data layers that the network device 101 sends to the terminal device 102 on the same time-frequency resource
  • the CQI auxiliary network device 101 determines the modulation and coding mode to improve the transmission. Reliability and efficiency.
  • the precoding matrix determined according to the PMI may be used, or the downlink data may be precoded according to a precoding matrix determined by the PMI and other information.
  • the network device 101 needs to inform the terminal device 102 of two parameters: an initial resource block (RB) index and a configured bandwidth size (ie, the number of RBs occupied by the bandwidth), and the terminal device 102 is configured according to the terminal device 102.
  • RB initial resource block
  • bandwidth size ie, the number of RBs occupied by the bandwidth
  • the terminal device 102 is configured according to the terminal device 102.
  • These two parameters calculate the bandwidth of the frequency band used to transmit the CSI-RS. If the terminal device 102 calculates the bandwidth of the frequency band of the CSI-RS according to the existing protocol, an error may occur in some scenarios. For example, referring to FIG.
  • the current protocol is It is reasonable that the terminal device 102 assumes that the actual transmission bandwidth is the BWP size.
  • the configuration bandwidth is greater than the BWP size and the initial PRB index is not 0, that is, the CSI-RS is not configured from the BWP PRB0, the current protocol is unreasonable, and the actual transmission bandwidth of the CSI-RS cannot be the BWP size.
  • the terminal device 102 cannot assume that the actual transmission bandwidth of the CSI-RS is the BWP size, see FIG. 2B. In this case, in order to improve the receiving performance of the terminal device, a more accurate formula is needed to calculate the actual transmission bandwidth of the CSI-RS.
  • the following method embodiment will specifically describe the manner of calculating the actual transmission bandwidth of the CSI-RS.
  • FIG. 3 shows a terminal device according to an embodiment of the present invention.
  • the terminal device 200 may include: an input and output module (including an audio input and output module 218, a key input module 216, and a display 220, etc.), a user interface 202, one or more processors 204, a transmitter 206, and a receiving device.
  • FIG. 3 is exemplified by a bus connection. among them:
  • the antenna 214 can be used to convert electromagnetic energy into electromagnetic waves in free space or to convert electromagnetic waves in free space into electromagnetic energy in a transmission line.
  • the coupler 210 is configured to divide the mobile communication signal received by the antenna 214 into multiple channels and distribute it to a plurality of receivers 208.
  • Transmitter 206 can be used to perform transmission processing on signals output by processor 204.
  • Receiver 208 can be used to perform reception processing on the mobile communication signals received by antenna 214.
  • the transmitter 206 and the receiver 208 can be regarded as a wireless modem.
  • the number of the transmitter 206 and the receiver 208 may each be one or more.
  • the terminal device 200 may also include other communication components such as a GPS module, a Bluetooth module, a Wireless Fidelity (Wi-Fi) module, and the like. Not limited to the above-described wireless communication signals, the terminal device 200 can also support other wireless communication signals such as satellite signals, short-wave signals, and the like. Not limited to wireless communication, the terminal device 200 may be configured with a wired network interface (such as a LAN interface) 201 to support wired communication.
  • a wired network interface such as a LAN interface
  • the input and output module can be used to implement interaction between the terminal device 200 and the user/external environment, and can mainly include an audio input and output module 218, a key input module 216, a display 220, and the like. Specifically, the input and output module may further include: a camera, a touch screen, a sensor, and the like. The input and output modules communicate with the processor 204 through the user interface 202.
  • Memory 212 can be coupled to processor 204 via a bus or input and output port, and memory 212 can also be integrated with processor 204.
  • Memory 212 is used to store various software programs and/or sets of instructions.
  • memory 212 may include high speed random access memory, and may also include non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid state storage devices.
  • the memory 212 can store an operating system (hereinafter referred to as a system) such as an embedded operating system such as ANDROID, IOS, WINDOWS, or LINUX.
  • the memory 212 can also store a network communication program that can be used to communicate with one or more additional devices, one or more terminal devices, one or more network devices.
  • the memory 212 can also store a user interface program, which can realistically display the content image of the application through a graphical operation interface, and receive user control operations on the application through input controls such as menus, dialog boxes, and keys. .
  • the memory 212 can be used to store an implementation program of the reference signal transmission method provided by one or more embodiments of the present application on the terminal device 200 side.
  • the reference signal transmission method provided by one or more embodiments of the present application please refer to the subsequent embodiments.
  • the processor 204 can be used to read and execute computer readable instructions. Specifically, the processor 204 can be used to invoke a program stored in the memory 212, such as the implementation of the reference signal transmission method provided by one or more embodiments of the present application on the terminal device 200 side, and execute the instructions included in the program. The method involved in the subsequent embodiments is implemented.
  • the processor 204 can support: Global System for Mobile Communication (GSM) (2G) communication, Wideband Code Division Multiple Access (WCDMA) (3G) communication, and Long Term Evolution (Long Term Evolution) One or more of LTE) (4G) communication, and 5G communication, and the like.
  • GSM Global System for Mobile Communication
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • 4G Long Term Evolution
  • 5G communication and the like.
  • the processor 204 transmits any message or data, it specifically performs the transmission by driving or controlling the transmitter 206.
  • processor 204 when the processor 204 receives any message or data, it specifically performs the reception by driving or controlling the receiver 208.
  • processor 204 can be viewed as a control center that performs transmission or reception, and transmitter 206 and receiver 208 are the specific executors of the transmitting and receiving operations.
  • the terminal device 200 can be the terminal device 102 in the wireless communication system 100 shown in FIG. 1 and can be implemented as a mobile device, a mobile station, a mobile unit, a wireless unit, and a remote unit.
  • User agents mobile clients, and more.
  • terminal device 200 shown in FIG. 3 is only one implementation manner of the embodiment of the present application. In an actual application, the terminal device 200 may further include more or fewer components, which are not limited herein.
  • FIG. 4 shows a network device according to an embodiment of the present invention.
  • network device 300 can include one or more processors 301, memory 302, network interface 303, transmitter 305, receiver 306, coupler 307, and antenna 308. These components can be connected by bus 304 or other means, and FIG. 4 is exemplified by a bus connection. among them:
  • Network interface 303 can be used by network device 300 to communicate with other communication devices, such as other network devices.
  • the network interface 303 can be a wired interface.
  • Transmitter 305 can be used to perform transmission processing, such as signal modulation, on signals output by processor 301.
  • Receiver 306 can be used to perform reception processing on the mobile communication signals received by antenna 308. For example, signal demodulation.
  • transmitter 305 and receiver 306 can be viewed as a wireless modem. In the network device 300, the number of the transmitter 305 and the receiver 306 may each be one or more.
  • the antenna 308 can be used to convert electromagnetic energy in a transmission line into electromagnetic waves in free space, or to convert electromagnetic waves in free space into electromagnetic energy in a transmission line.
  • Coupler 307 can be used to divide the mobile pass signal into multiple channels and distribute it to multiple receivers 306.
  • the memory 302 can be coupled to the processor 301 via a bus 304 or an input and output port, and the memory 302 can also be integrated with the processor 301.
  • Memory 302 is used to store various software programs and/or sets of instructions.
  • memory 302 may include high speed random access memory, and may also include non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid state storage devices.
  • the memory 302 can store an operating system (hereinafter referred to as a system) such as an embedded operating system such as uCOS, VxWorks, or RTLinux.
  • the memory 302 can also store a network communication program that can be used to communicate with one or more additional devices, one or more terminal devices, one or more network devices.
  • the processor 301 can be used for performing wireless channel management, implementing call and communication link establishment and teardown, and providing cell handover control and the like for users in the control area.
  • the processor 301 may include: an Administration Module/Communication Module (AM/CM) (a center for voice exchange and information exchange), and a Basic Module (BM) (for completing a call) Processing, signaling processing, radio resource management, radio link management and circuit maintenance functions), code conversion and sub-multiplexer (TCSM) (for multiplexing demultiplexing and code conversion functions) Wait.
  • AM/CM Administration Module/Communication Module
  • BM Basic Module
  • TCSM code conversion and sub-multiplexer
  • the processor 301 can be used to read and execute computer readable instructions. Specifically, the processor 301 can be used to invoke a program stored in the memory 302.
  • the reference signal transmission method provided by one or more embodiments of the present application implements a program on the network device 300 side, and executes instructions included in the program.
  • the network device 300 can be the network device 101 in the wireless communication system 100 shown in FIG. 1, and can be implemented as a base transceiver station, a wireless transceiver, a basic service set (BSS), and an extended service set (ESS). , NodeB, eNodeB, gNB, etc.
  • the network device 300 shown in FIG. 4 is only one implementation of the embodiment of the present application. In actual applications, the network device 300 may further include more or fewer components, which are not limited herein.
  • first communication device described in the following embodiments may be the foregoing terminal device, and the second communication device may be the foregoing network device.
  • first communication device described in the following embodiments may be the foregoing network device, and the second communication device may be the foregoing terminal device.
  • the embodiment of the present invention provides a reference signal transmission method.
  • the reference signal transmission method includes but is not limited to the following steps:
  • the second communications device determines the first frequency band according to the first initial resource index, the second initial resource index, the first configured bandwidth, and the second configured bandwidth, where the first initial resource index is greater than or equal to the second initial resource index, and the first The initial resource index is less than or equal to the sum of the second initial resource index and the second configured bandwidth.
  • FIG. 6 is a schematic diagram of a configuration manner of a first frequency band according to an embodiment of the present invention.
  • the second frequency band is a frequency domain resource configured by the network device for the terminal device in advance, and the second configuration bandwidth is a size (or width) of the second frequency band, such as 10 MHz, or 20 MHz.
  • the second frequency band may be a BWP or a common carrier (CC).
  • This application describes a second frequency band as a BWP as an example.
  • the network device may configure a plurality of frequency domain resources for the terminal device in advance, and indicate, by using a signaling manner, which one or more of the plurality of frequency domain resources are used by the terminal device when performing communication.
  • the network device may configure three BWPs for the terminal device in advance (such as configured by Radio Resource Control signaling), which are BWP0, BWP1, and BWP2, respectively.
  • the BWP0 includes 30 RBs, and the corresponding indexes may be 0 to 29, the BWP1 includes 30 RBs, the corresponding indexes may be 30 to 59, and the BWP2 includes 21 RBs, and the corresponding indexes may be 60 to 80, respectively.
  • the network device may indicate that the terminal device adopts the BWP1 and the network by using Downlink Control Information (DCI) or Media Access Control (MAC) signaling or RRC signaling.
  • DCI Downlink Control Information
  • MAC Media Access Control
  • RRC Radio Resource Control
  • the second initial resource index is an index of the initial resource in the second frequency band.
  • the initial resource can be understood as: the lowest frequency resource in the second frequency band, or the resource with the smallest index.
  • the index described in the embodiment of the present invention refers to the index in the frequency domain. For example, if the second frequency band is BWP1, the second initial resource index is 30.
  • the second frequency band may be 30 for the second initial resource index and 30 RBs for the size.
  • the size of the second frequency band may be represented by the number of RBs, and may also be represented by the number of source block groups (RBGs), such as 30 RBGs, where one RBG may include one. Or multiple RBs, or using the number of subcarriers, such as 120 subcarriers, one of which may include multiple subcarriers, and so on.
  • the second initial resource index may also be represented as RGB 30, or subcarrier 30.
  • an RB is taken as an example for description.
  • the first configuration bandwidth is a bandwidth configured by the network device for the terminal device to transmit the reference signal.
  • the reference signal may include, but is not limited to, a CSI-RS.
  • the first initial resource index is an index of an initial resource configured by the network device for the terminal device to transmit the reference signal.
  • the first configuration bandwidth may be expressed as the number of RBs, or the number of RBGs, or the number of subcarriers.
  • the first initial resource index may be an index of the RB, or an index of the RBG, or an index of the subcarrier, and the like, which is not limited by the present invention.
  • the minimum value of the first configuration bandwidth may be equal to min(m, the second configuration bandwidth), where m is a positive integer. For example, if m is 24 and the second configuration bandwidth is equal to 30, the first configuration bandwidth is at least 24 RBs.
  • the first initial resource index may be equal to the second initial resource index, or may be greater than the second initial resource index.
  • the first initial resource index is less than or equal to the index of the resource with the largest index in the second frequency band, or the first initial resource index is less than or equal to the sum of the second initial resource index and the second configured bandwidth, that is, the first The resource corresponding to the initial resource index needs to be in the range of the second frequency band.
  • the size of the first configuration bandwidth may be equal to the size of the second configuration bandwidth, or may be greater than or smaller than the size of the second configuration bandwidth.
  • the network device sends the first initial resource index and the first configured bandwidth to the terminal device by using a signaling manner.
  • the network device may send the first initial resource index and the first configuration bandwidth to the terminal device by using RRC signaling or MAC layer signaling or physical layer signaling.
  • the network device may use the same signaling to send the first initial resource index and the first configuration bandwidth, and may also use different signaling, which is not limited by the present invention.
  • the first frequency band is the calculated frequency band actually used to transmit the reference signal.
  • the NR Rel-15 standard specifies that the first configuration bandwidth of the network device configuration and the first initial resource index are in units of 4 RBs, and the bandwidth of the BWP is in units of 1 RB. Therefore, the portion corresponding to the first configured bandwidth of the network device configuration Resources may exceed the range of the second frequency band.
  • the second frequency band is BWP1
  • the second configuration bandwidth is equal to 30
  • the first configuration bandwidth is equal to 20
  • the two RBs corresponding to the first configuration bandwidth are not in the second frequency band.
  • the first frequency band is satisfied if the sum of the first initial resource index and the first configured bandwidth is greater than or equal to a sum of the second initial resource index and the second configured bandwidth.
  • the bandwidth of the first frequency band the second initial resource index + the second configuration bandwidth - the first initial resource index. That is to say, the initial resource index of the first frequency band is the first initial resource index, and the termination resource index of the first frequency band is the second initial resource index + the second configuration bandwidth -1.
  • the termination resource index of the first frequency band is an index corresponding to the resource with the largest index in the first frequency band.
  • the above-mentioned judgment condition or formula, and/or the condition that the first frequency band satisfies may be arbitrarily modified, as long as it can be finally converted into the above-mentioned judgment condition or formula, and/or the condition satisfied by the first frequency band can be considered as It is a condition that satisfies the above-described judgment condition or formula, and/or the above-described first frequency band. For example, if the sum-1 of the first initial resource index and the first configured bandwidth is greater than or equal to the sum of the second initial resource index and the second configured bandwidth, the first frequency band satisfies the following condition:
  • the bandwidth of the first frequency band the second initial resource index + the second configuration bandwidth - the first initial resource index.
  • the second frequency band is BWP1
  • the second initial resource is RB30
  • the second initial resource index is 30, and the second configuration bandwidth is 30.
  • the first initial resource is RB42
  • the first initial resource index is 42
  • the first configuration bandwidth is 20.
  • the initial frequency index of the first frequency band is 42 and the size is 18 RBs.
  • the initial resource index of the first frequency band is 42 and the termination resource index is 59.
  • FIG. 6 is an example in which the first initial resource index is greater than the second initial resource index.
  • the configuration manner of the first frequency band is introduced for the case where the first initial resource index is equal to the second initial resource index.
  • the second frequency band is BWP1
  • the second initial resource is RB30
  • the second initial resource index is 30, and the second configuration bandwidth is 30.
  • the first initial resource index is 30, and the first configuration bandwidth is 32.
  • the initial frequency index of the first frequency band is 30 and the size is 30 RBs.
  • the initial resource index of the first frequency band is 30, and the termination resource index is 59.
  • the bandwidth of the first frequency band Equal to the first configured bandwidth. That is to say, the initial resource index of the first frequency band is the first initial resource index, and the termination resource index of the first frequency band is the first configured bandwidth + the first initial resource index -1.
  • the second frequency band is BWP1
  • the second initial resource is RB30
  • the second initial resource index is 30, and the second configuration bandwidth is 30.
  • the first initial resource is RB42
  • the first initial resource index is 42
  • the first configuration bandwidth is 12.
  • the initial frequency index of the first frequency band is 42 and the size is 12 RBs.
  • the initial resource index of the first frequency band is 42 and the termination resource index is 53.
  • FIG. 8 is an example in which the first initial resource index is greater than the second initial resource index.
  • the configuration manner of the first frequency band is introduced for the case where the first initial resource index is equal to the second initial resource index.
  • the second frequency band is BWP1
  • the second initial resource is RB30
  • the second initial resource index is 30, and the second configuration bandwidth is 30.
  • the first initial resource index is 30, and the first configuration bandwidth is 12.
  • 30 + 12 ⁇ 30 + 30, therefore, the bandwidth of the first frequency band 12.
  • the initial frequency index of the first frequency band is 30 and the size is 12 RBs.
  • the initial resource index of the first frequency band is 30, and the termination resource index is 41.
  • the first initial resource index and the second initial resource index are all based on an index of the initial resource occupying the full frequency band.
  • a schematic diagram of the full-band indexing mode can be seen in FIG.
  • the index of each resource in different BWPs is indexed based on the full frequency band.
  • the bandwidth of the full band may be configured by the network device through RRC signaling or MAC layer signaling, or physical layer signaling, or fixed in the protocol.
  • the RRC signaling may be system information or a dedicated RRC message.
  • the invention is not limited.
  • the bandwidth of the full band is 100 GHz, or 20 GHz.
  • the full frequency band includes the above second frequency band.
  • an RB may also be referred to as a Common Resource Block (CRB) in the full frequency band, and the index of the RB may also be referred to as a CRB index. Therefore, the first initial resource index and the second initial resource index can be represented by a CRB index.
  • the second initial resource index is CRB30, that is, the second initial resource index is equal to 30.
  • the full bandwidth may be replaced by a third bandwidth, wherein the third frequency band includes a second frequency band, that is, resources of the third frequency band include resources of the second frequency band, and may further include resources outside the second frequency band.
  • the full band includes both the second band BWP1 and BWP0 and BWP2 other than BWP1.
  • the first initial resource index and the second initial resource index may also be calculated as an index inside a single BWP.
  • a schematic diagram of a single BWP indexing manner can be seen in FIG.
  • the indexes of each resource in different BWPs are indexed independently.
  • an RB may also be referred to as a physical resource block (PRB) in a BWP bandwidth
  • an RB index may also be referred to as a PRB index. Therefore, the first initial resource index and the second initial resource index may be represented by a PRB index.
  • the second initial resource index is PRB0, that is, the second initial resource index is equal to zero.
  • the bandwidth of one RB may be, for example, 12 consecutive subcarriers in the frequency domain.
  • the bandwidth of the first frequency band is determined according to a minimum resource unit (such as an RB, an RBG, a subcarrier, etc.).
  • the bandwidth of the first frequency band may also be n minimum resource units (such as n RBs, n RBGs, n subcarriers, etc.) are configured, and n is a positive integer.
  • the value of n can match the resource scheduling granularity, the CSI feedback granularity, or the sub-band size. For example, to ensure the flexibility of CSI reporting configuration, n can be taken as the minimum sub-band size.
  • the first frequency band satisfies the following conditions:
  • n is a positive integer.
  • the second frequency band is BWP1
  • the second initial resource is RB30
  • the second initial resource index is 30, and the second configuration bandwidth is 30.
  • the first initial resource is RB42
  • the first initial resource index is 42
  • the first configuration bandwidth is 20.
  • 42+20>30+30 therefore, The initial frequency index of the first frequency band is 42 and the size is 16 RBs.
  • the initial resource index of the first frequency band is 42 and the termination resource index is 57.
  • n is a positive integer.
  • n 4 referring to FIG. 13, assuming that the second frequency band is BWP1, the second initial resource is RB30, the second initial resource index is 30, and the second configuration bandwidth is 30.
  • the first initial resource is RB42, the first initial resource index is 42, and the first configuration bandwidth is 12. Then 42+12 ⁇ 30+30, therefore, The initial frequency index of the first frequency band is 42 and the size is 12 RBs.
  • the initial resource index of the first frequency band is 42 and the termination resource index is 53.
  • the first frequency band satisfies the following conditions:
  • the bandwidth of the first frequency band the first configuration bandwidth
  • the initial resource index of the first frequency band the first initial resource index - (the termination resource index of the first configuration resource - the second Configure the resource's termination resource index).
  • the resource index is based on the index of the full frequency band.
  • the second frequency band is BWP1
  • the second initial resource is RB30
  • the second initial resource index is 30, and the second configuration bandwidth is 30.
  • the first initial resource is RB42
  • the first initial resource index is 42
  • the first configuration bandwidth is 20.
  • the initial resource index of the first frequency band is 40 and the termination resource index is 59.
  • the reference signal may be an uplink reference signal or a downlink reference signal.
  • the foregoing reference signals include, but are not limited to, a CSI-RS, a Sounding Reference Signal (SRS), and a Demodulation Reference Signal (DMRS).
  • the first communications device determines the first frequency band according to the first initial resource index, the second initial resource index, the first configured bandwidth, and the second configured bandwidth, where the first initial resource index is greater than or equal to the second initial resource index, and the first The initial resource index is less than or equal to the sum of the second initial resource index and the second configured bandwidth.
  • the manner in which the first communications device determines the first frequency band according to the first initial resource index, the second initial resource index, the first configured bandwidth, and the second configured bandwidth may refer to the foregoing first communications device according to the first initial resource index and the second initial resource.
  • the manner in which the first frequency band is determined by the index, the first configuration bandwidth, and the second configuration bandwidth is not described herein.
  • the second communications device transmits a reference signal on the first frequency band, and the first communications device receives the reference signal on the first frequency band.
  • the second communication device transmits the reference signal on the first frequency band.
  • the initial resource index of the first frequency band the first initial resource index
  • the bandwidth of the first frequency band the second initial resource index + the second configured bandwidth - the first initial resource index
  • the first communication device receives the reference signal on the first frequency band.
  • the initial resource index of the first frequency band the first initial resource index
  • the bandwidth of the first frequency band the second initial resource index + the second configured bandwidth - the first initial resource index
  • the defect problem in the definition of the existing protocol can be solved, so that the receiving end device can accurately calculate the actual transmission bandwidth of the reference signal, and avoid the first communication device misjudges the bandwidth of the reference signal transmission, thereby improving the reference.
  • the channel estimation performance of the signal improves the accuracy of feedback or transmission and improves communication performance.
  • FIG. 14 illustrates a wireless communication system, a first communication device, and a second communication device.
  • the wireless communication system 600 includes a first communication device 700 and a second communication device 800.
  • the first communication device 700 may be the network device 101 or the terminal device 102 in the embodiment of FIG. 1.
  • the second communication device 800 may be the terminal device 102 or the network device 101 in the embodiment of FIG. 600 can be the wireless communication system 100 depicted in FIG. Described separately below.
  • the first communication device 700 may include a determining unit 701 and a receiving unit 702.
  • the determining unit 701 is configured to determine a first frequency band according to the first initial resource index, the second initial resource index, the first configured bandwidth, and the second configured bandwidth, where the first initial resource index is greater than or equal to the second initial a resource index, and the first initial resource index is less than or equal to a sum of the second initial resource index and the second configured bandwidth;
  • the receiving unit 702 is configured to receive the reference signal on the first frequency band.
  • the first frequency band meets the following conditions:
  • the bandwidth of the first frequency band the second initial resource index + the second configuration bandwidth - the first initial resource index.
  • the bandwidth of the first frequency band is equal to the first A configuration bandwidth.
  • the first frequency band meets the following conditions: :
  • n is a positive integer.
  • the first initial resource index is an index of the first initial resource in the second frequency band
  • the second initial resource index is an index of the second initial resource in the second frequency band
  • the The second frequency band is a frequency band composed of resources of the second initial resource index to the sum of the second initial resource index and the second configured bandwidth.
  • the full bandwidth may be replaced by a third bandwidth, where the third frequency band includes a second frequency band, that is, resources of the third frequency band include resources of the second frequency band, and may further include resources outside the second frequency band.
  • the first initial resource index is an index of a first initial resource in a third frequency band
  • the second initial resource index is an index of a second initial resource in the third frequency band
  • the second frequency band is the And a second initial resource index to a frequency band composed of resources corresponding to a sum-1 of the second initial resource index and the second configuration bandwidth.
  • the reference signal is a channel state information reference signal.
  • the second communication device 800 may include a determining unit 801 and a transmitting unit 802.
  • the determining unit 801 is configured to determine a first frequency band according to the first initial resource index, the second initial resource index, the first configured bandwidth, and the second configured bandwidth, where the first initial resource index is greater than or equal to the second initial a resource index, and the first initial resource index is less than or equal to a sum of the second initial resource index and the second configured bandwidth;
  • the sending unit 802 is configured to send a reference signal on the first frequency band.
  • the first frequency band meets the following conditions:
  • the bandwidth of the first frequency band the second initial resource index + the second configuration bandwidth - the first initial resource index.
  • the bandwidth of the first frequency band is equal to the first A configuration bandwidth.
  • the first frequency band meets the following conditions: :
  • n is a positive integer.
  • n is a positive integer.
  • the first initial resource index is an index of the first initial resource in the second frequency band
  • the second initial resource index is an index of the second initial resource in the second frequency band
  • the The second frequency band is a frequency band composed of resources of the second initial resource index to the sum of the second initial resource index and the second configured bandwidth.
  • the first initial resource index is an index of a first initial resource in a third frequency band
  • the second initial resource index is an index of a second initial resource in the third frequency band
  • the third frequency band includes a second frequency band
  • the second frequency band is a frequency band composed of resources corresponding to the second initial resource index to the second initial resource index and the second configured bandwidth.
  • the reference signal is a channel state information reference signal.
  • FIG. 15 is a schematic structural diagram of a communication chip provided by the present application.
  • communication chip 150 can include a processor 1501 and one or more interfaces 1502 coupled to processor 1501. among them:
  • the processor 1501 can be used to read and execute computer readable instructions.
  • the processor 1501 may mainly include a controller, an operator, and a register.
  • the controller is mainly responsible for instruction decoding, and sends a control signal for the operation corresponding to the instruction.
  • the operator is mainly responsible for performing fixed-point or floating-point arithmetic operations, shift operations, and logic operations, as well as performing address operations and conversions.
  • the register is mainly responsible for saving the register operands and intermediate operation results temporarily stored during the execution of the instruction.
  • the hardware architecture of the processor 1501 may be an Application Specific Integrated Circuits (ASIC) architecture, a MIPS architecture, an ARM architecture, or an NP architecture.
  • the processor 1501 may be single core or multi-core.
  • the interface 1502 can be used to input data to be processed to the processor 1501, and can output the processing result of the processor 1501 to the outside.
  • the interface 1502 can be a General Purpose Input Output (GPIO) interface, and can be combined with multiple peripheral devices (such as a display (LCD), a camera (camara), a radio frequency (RF) module, etc.) connection.
  • GPIO General Purpose Input Output
  • the interface 1502 is coupled to the processor 1501 via a bus 1503.
  • the processor 1501 can be used to invoke an implementation program of the reference signal transmission method provided by one or more embodiments of the present application on the communication device side from the memory, and execute the instructions included in the program.
  • the interface 1502 can be used to output the execution result of the processor 1501.
  • the interface 1502 may be specifically used to output the resource allocation result of the processor 1501.
  • processor 1501 and the interface 1502 can be implemented by using a hardware design or a software design, and can also be implemented by a combination of software and hardware, which is not limited herein.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种参考信号传输方法及通信设备,其中,该方法包括:第一通信设备根据第一初始资源索引、第二初始资源索引、第一配置带宽以及第二配置带宽确定第一频带,所述第一初始资源索引大于或等于所述第二初始资源索引,且所述第一初始资源索引小于或等于所述第二初始资源索引与所述第二配置带宽之和;所述第一通信设备在所述第一频带上接收参考信号。实施本申请,能够准确地确定出参考信号的实际传输带宽。

Description

一种参考信号传输方法及通信设备 技术领域
本发明涉及通信技术领域,尤其涉及一种参考信号传输方法及通信设备。
背景技术
在长期演进(Long Term Evolution,LTE)系统中,信道状态信息参考信号(Channel State Information-Reference Signal,CSI-RS)是在全频带上传输的。为了实现CSI-RS的带宽配置更加灵活,新无线(New Radio,NR)系统的R15版本已经支持在部分带宽传输CSI-RS。为了确保接收端设备能够获知传输CSI-RS的部分带宽,发送端设备需要将该部分带宽的配置参数发送给接收端设备,接收端设备基于该配置参数可以确定出用于传输CSI-RS的频域资源。该部分带宽的配置参数包括初始资源块(Resource Block,RB)的索引以及配置的带宽大小(即带宽所占的RB个数)。
现有协议中规定了:如果配置的带宽大于相应的部分带宽(Bandwidth Part,BWP),则终端设备(User Equipment,UE)应该假定实际的CSI-RS带宽等于BWP大小。
如果按照现有的协议,UE在判断基站配置给自己的CSI-RS带宽时在部分场景下会出错。因此,现有的协议定义存在缺陷,无法准确地确定出参考信号实际传输带宽。
发明内容
本发明实施例提供了一种参考信号传输方法及通信设备,能够准确地确定出参考信号的实际传输带宽。
第一方面,本发明实施例提供了一种参考信号传输方法,应用于第一通信设备侧。该方法包括:第一通信设备根据第一初始资源索引、第二初始资源索引、第一配置带宽以及第二配置带宽确定第一频带,第一初始资源索引大于或等于第二初始资源索引,且第一初始资源索引小于或等于第二初始资源索引与第二配置带宽之和;第一通信设备在第一频带上接收参考信号。
第二方面,本发明实施例提供了一种参考信号传输方法,应用于第二通信设备侧。该方法包括:第二通信设备根据第一初始资源索引、第二初始资源索引、第一配置带宽以及第二配置带宽确定第一频带,第一初始资源索引大于或等于第二初始资源索引,且第一初始资源索引小于或等于第二初始资源索引与第二配置带宽之和。第二通信设备在第一频带上发送参考信号。
实施第一方面或第二方面所描述的方法,通信设备能够准确地确定出参考信号的实际传输带宽,避免第一通信设备对参考信号发送带宽大小产生误判,提高了参考信号的信道估计性能,从而提升反馈或者传输的精度。
结合第一方面或第二方面,在一种可能的设计中,若第一初始资源索引与第一配置带宽之和大于或等于第二初始资源索引与第二配置带宽之和,第一频带满足如下条件:第一频带的带宽=第二初始资源索引+第二配置带宽-第一初始资源索引。
结合第一方面或第二方面,在一种可能的设计中,若第一初始资源索引与第一配置带 宽之和小于第二初始资源索引与第二配置带宽之和,第一频带的带宽等于第一配置带宽。
结合第一方面或第二方面,在一种可能的设计中,若第一初始资源索引与第一配置带宽之和大于或等于第二初始资源索引与第二配置带宽之和,则第一频带满足如下条件:第
Figure PCTCN2019084722-appb-000001
其中n为正整数。
结合第一方面或第二方面,在一种可能的设计中,若第一初始资源索引与第一配置带宽之和小于第二初始资源索引与第二配置带宽之和,
Figure PCTCN2019084722-appb-000002
Figure PCTCN2019084722-appb-000003
其中n为正整数。
结合第一方面或第二方面,在一种可能的设计中,第一初始资源索引为第一初始资源在第二频带中的索引,第二初始资源索引为第二初始资源在第二频带中的索引,且第二频带为第二初始资源索引至第二初始资源索引与第二配置带宽之和-1对应的资源组成的频带。
结合第一方面或第二方面,在一种可能的设计中,第一初始资源索引为第一初始资源在第三频带带宽中的索引,第二初始资源索引为第二初始资源在第三频带中的索引,其中,第三频带包括第二频带,第二频带为第二初始资源索引至第二初始资源索引与第二配置带宽之和-1对应的资源组成的频带。
结合第一方面或第二方面,在一种可能的设计中,参考信号为CSI-RS。
第三方面,本申请实施例提供了一种通信设备,该通信设备为第一通信设备,该第一通信设备可包括多个功能模块或单元,用于相应的执行第一方面所提供的参考信号传输方法。
第四方面,本申请实施例提供了一种通信设备,该通信设备为第二通信设备,该第二通信设备可包括多个功能模块或单元,用于相应的执行第二方面所提供的参考信号传输方法。
第五方面,本申请实施例提供了一种通信设备,该通信设备为第一通信设备,用于执行第一方面所提供的参考信号传输方法。第一通信设备可包括:存储器、处理器、发射器、接收器,其中:发射器和接收器用于与其他通信设备(如第二通信设备)通信。存储器用于存储第一方面所提供的参考信号传输方法的实现代码,处理器用于执行存储器中存储的程序代码,即执行第一方面所提供的参考信号传输方法。
第六方面,本申请实施例提供了一种通信设备,该通信设备为第二通信设备,用于执行第二方面所提供的参考信号传输方法。第二通信设备可包括:存储器、处理器、发射器、接收器,其中:发射器和接收器用于与其他通信设备(如第一通信设备)通信。存储器用于存储第二方面所提供的参考信号传输方法的实现代码,处理器用于执行存储器中存储的程序代码,即执行第二方面所提供的参考信号传输方法。
第七方面,本申请实施例提供了一种通信系统,通信系统包括:第一通信设备和第二通信设备。其中:
第一通信设备可以是上述第三方面描述的第一通信设备,也可以是上述第五方面描述的第一通信设备。
第二通信设备可以是上述第四方面描述的第一通信设备,也可以是上述第六方面描述的第二通信设备。
第八方面,本申请提供了一种通信芯片,该通信芯片可包括:处理器,以及耦合于所述处理器的一个或多个接口。其中,所述处理器可用于从存储器中调用第一方面所提供的参考信号传输方法的实现程序,并执行该程序包含的指令。所述接口可用于输出所述处理器的数据处理结果。
第九方面,本申请提供了一种通信芯片,该通信芯片可包括:处理器,以及耦合于所述处理器的一个或多个接口。其中,所述处理器可用于从存储器中调用第二方面所提供的参考信号传输方法的实现程序,并执行该程序包含的指令。所述接口可用于输出所述处理器的数据处理结果。
第十方面,本申请实施例提供了一种计算机可读存储介质,可读存储介质上存储有指令,当其在处理器上运行时,使得处理器执行上述第一方面描述的参考信号传输方法。
第十一方面,本申请实施例提供了一种计算机可读存储介质,可读存储介质上存储有指令,当其在处理器上运行时,使得处理器执行上述第二方面描述的参考信号传输方法。
第十二方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在处理器上运行时,使得处理器执行上述第一方面描述的参考信号传输方法。
第十三方面,本申请实施例提供了一种包含指令的计算机程序产品,当其在处理器上运行时,使得处理器执行上述第二方面描述的参考信号传输方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本发明实施例提供的无线通信系统的架构示意图;
图2A是本发明实施例提供的一种确定CSI-RS的配置带宽的场景示意图;
图2B是本发明实施例提供的另一种确定CSI-RS的配置带宽的场景示意图;
图3是本发明实施例的一个实施例提供的终端设备的硬件架构示意图;
图4是本发明实施例的一个实施例提供的网络设备的硬件架构示意图;
图5是本发明实施例提供的一种参考信号传输方法的流程示意图;
图6是本发明实施例提供的一种第一传输资源的配置方式示意图;
图7是本发明实施例提供的另一种第一传输资源的配置方式示意图;
图8是本发明实施例提供的另一种第一传输资源的配置方式示意图;
图9是本发明实施例提供的另一种第一传输资源的配置方式示意图;
图10是本发明实施例提供的另一种第一传输资源的配置方式示意图;
图11是本发明实施例提供的另一种第一传输资源的配置方式示意图;
图12是本发明实施例提供的另一种第一传输资源的配置方式示意图;
图13是本发明实施例提供的另一种第一传输资源的配置方式示意图;
图14是本申请实施例提供无线通信系统,第一通信设备和第二通信设备的功能框图;
图15是本申请实施例提供的一种通信芯片的结构示意图。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
参考图1,图1示出了本发明实施例涉及的无线通信系统。无线通信系统100可以工作在授权频段,也可以工作在非授权频段。无线通信系统100不限于长期演进(Long Term Evolution,LTE)系统,还可以是未来演进的5G系统、新无线技术(New Radio,NR)系统等。可以理解的,非授权频段的使用可以提高无线通信系统100的系统容量。如图1所示,无线通信系统100包括:一个或多个网络设备101,一个或多个终端设备102。其中:
网络设备101可以通过一个或多个天线来和终端设备102进行无线通信。各个网络设备101均可以为各自对应的覆盖范围104提供通信覆盖。网络设备101对应的覆盖范围104可以被划分为多个扇区(sector),其中,一个扇区对应一部分覆盖范围(未示出)。
在本申请实施例中,网络设备101可以包括:基站收发台(Base Transceiver Station),无线收发器,一个基本服务集(Basic Service Set,BSS),一个扩展服务集(Extended Service Set,ESS),节点B(Node B),演进的节点B(evolved NodeB,eNB或者eNodeB),或下一代节点(next-generation Node B,gNB)等等。无线通信系统100可以包括几种不同类型的网络设备101,例如宏基站(macro base station)、微基站(micro base station)等。网络设备101可以应用不同的无线技术,例如小区无线接入技术,或者WLAN无线接入技术。
终端设备102可以分布在整个无线通信系统100中,可以是静止的,也可以是移动的。在本申请实施例中,终端设备102可以包括:移动设备,移动台(mobile station),移动单元(mobile unit),无线单元,远程单元,用户代理,移动客户端等等。
本申请中,无线通信系统100可以是多波束通信系统。其中:
网络设备101可以被配置有大规模的天线阵列,并利用波束成形技术控制天线阵列形成不同指向的波束。为了覆盖整个小区104,网络设备101需要使用多个不同指向的波束。
例如,在下行过程中,网络设备101可以依次使用不同指向的波束发射无线信号(如下行参考信号(Reference Signal,RS)和/或下行同步信号块(Synchronization Signal block,SS block)),该过程被称为波束扫描(Beam scanning)。同时,终端设备102对发射波束进行测量,确定终端设备102所能接收到的发射波束的信号质量,该过程被称为波束测量(Beam measurement)。
在未来通信系统中,终端设备102也可以被配置有天线阵列,也可以变换不同的波束进行信号的收发。也即是说,在无线通信系统100中,网络设备101和终端设备102都可能采用多波束进行通信。
本申请实施例中,无线通信系统100可以支持多载波(multi-carrier)(不同频率的波形信号)操作。多载波发射器可以在多个载波上同时发射调制信号。例如,每一个通信连接103都可以承载利用不同无线技术调制的多载波信号。每一个调制信号均可以在不同的载波上发送,也可以承载控制信息(例如参考信号、控制信道信息等),开销信息(Overhead Information),数据等等。
本申请实施例中,网络设备101向终端设备102发送信道状态信息参考信号(Channel  State Information-Reference Signal,CSI-RS),用于终端设备102测量信道状态信息(Channel State Information,CSI)。CSI包括秩指示(Rank Index,RI)、预编码矩阵指示(Precoding Matrix Index,PMI)和信道质量指示(Channel Quality Index,CQI)中的一个或多个。终端设备102向网络设备101反馈CSI,终端设备102反馈的CSI包括PIM、RI和CQI中的一个或多个。其中,PMI用于网络设备101确定预编码矩阵,RI用于推荐网络设备101给终端设备102在相同的时频资源上发送的数据层数,CQI辅助网络设备101确定调制编码方式,以提高传输可靠性和效率。之后,网络设备101向终端设备102发送下行数据时,可以采用根据PMI确定的预编码矩阵,或根据PMI和其他信息共同决定的预编码矩阵对下行数据进行预编码处理。
现有的协议中,网络设备101至少需要告知终端设备102两个参数:初始资源块(Resource Block,RB)的索引以及配置的带宽大小(即带宽所占的RB个数),终端设备102根据这两个参数计算用于传输CSI-RS的频带的带宽。如果按照现有的协议,终端设备102在计算CSI-RS的频带的带宽时在部分场景下会出错。例如,参见图2A,当网络设备101配置的带宽大于BWP大小且初始物理资源块(Physical Resource Block,PRB)索引(index)为0,即CSI-RS从BWP PRB0开始配置时,当前的协议是合理的,即终端设备102假设实际传输带宽为BWP大小。参见图2B,当配置带宽大于BWP大小且初始PRB index不为0,即CSI-RS不从BWP PRB0开始配置时,当前的协议是不合理的,CSI-RS实际传输带宽不可能为BWP大小,终端设备102不能假设CSI-RS的实际传输带宽为BWP大小,参见附图2B。这种情况下,为了提高终端设备接收性能,需要采用更加精确的公式计算CSI-RS的实际传输带宽,下述方法实施例中将具体介绍计算CSI-RS的实际传输带宽的方式。
参考图3,图3示出了本发明实施例提供的终端设备。如图3所示,终端设备200可包括:输入输出模块(包括音频输入输出模块218、按键输入模块216以及显示器220等)、用户接口202、一个或多个处理器204、发射器206、接收器208、耦合器210、天线214以及存储器212。这些部件可通过总线或者其它方式连接,图3以通过总线连接为例。其中:
天线214可用于将电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。耦合器210用于将天线214接收到的移动通信信号分成多路,分配给多个的接收器208。
发射器206可用于对处理器204输出的信号进行发射处理。
接收器208可用于对天线214接收的移动通信信号进行接收处理。
在本申请实施例中,发射器206和接收器208可看作一个无线调制解调器。在终端设备200中,发射器206和接收器208的数量均可以是一个或者多个。
除了图3所示的发射器206和接收器208,终端设备200还可包括其他通信部件,例如GPS模块、蓝牙(Bluetooth)模块、无线高保真(Wireless Fidelity,Wi-Fi)模块等。不限于上述表述的无线通信信号,终端设备200还可以支持其他无线通信信号,例如卫星信号、短波信号等等。不限于无线通信,终端设备200还可以配置有有线网络接口(如LAN接口)201来支持有线通信。
所述输入输出模块可用于实现终端设备200和用户/外部环境之间的交互,可主要包括音频输入输出模块218、按键输入模块216以及显示器220等。具体的,所述输入输出模块还可包括:摄像头、触摸屏以及传感器等等。其中,所述输入输出模块均通过用户接口202与处理器204进行通信。
存储器212可以和处理器204通过总线或者输入输出端口耦合,存储器212也可以与处理器204集成在一起。存储器212用于存储各种软件程序和/或多组指令。具体的,存储器212可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器212可以存储操作系统(下述简称系统),例如ANDROID,IOS,WINDOWS,或者LINUX等嵌入式操作系统。存储器212还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个终端设备,一个或多个网络设备进行通信。存储器212还可以存储用户接口程序,该用户接口程序可以通过图形化的操作界面将应用程序的内容形象逼真的显示出来,并通过菜单、对话框以及按键等输入控件接收用户对应用程序的控制操作。
在本申请实施例中,存储器212可用于存储本申请的一个或多个实施例提供的参考信号传输方法在终端设备200侧的实现程序。关于本申请的一个或多个实施例提供的参考信号传输方法的实现,请参考后续实施例。
处理器204可用于读取和执行计算机可读指令。具体的,处理器204可用于调用存储于存储器212中的程序,例如本申请的一个或多个实施例提供的参考信号传输方法在终端设备200侧的实现程序,并执行该程序包含的指令以实现后续实施例涉及的方法。处理器204可支持:全球移动通信系统(Global System for Mobile Communication,GSM)(2G)通信、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)(3G)通信,以及长期演进(Long Term Evolution,LTE)(4G)通信、以及5G通信等等中的一个或多个。可选地,当处理器204发送任何消息或数据时,其具体通过驱动或控制发射器206做所述发送。可选地,当处理器204接收任何消息或数据时,其具体通过驱动或控制接收器208做所述接收。因此,处理器204可以被视为是执行发送或接收的控制中心,发射器206和接收器208是发送和接收操作的具体执行者。
可以理解的,终端设备200可以是图1示出的无线通信系统100中的终端设备102,可实施为移动设备,移动台(mobile station),移动单元(mobile unit),无线单元,远程单元,用户代理,移动客户端等等。
需要说明的,图3所示的终端设备200仅仅是本申请实施例的一种实现方式,实际应用中,终端设备200还可以包括更多或更少的部件,这里不作限制。
参考图4,图4示出了本发明实施例提供的网络设备。如图4所示,网络设备300可包括:一个或多个处理器301、存储器302、网络接口303、发射器305、接收器306、耦合器307和天线308。这些部件可通过总线304或者其他方式连接,图4以通过总线连接为例。其中:
网络接口303可用于网络设备300与其他通信设备,例如其他网络设备,进行通信。具体的,网络接口303可以是有线接口。
发射器305可用于对处理器301输出的信号进行发射处理,例如信号调制。接收器306可用于对天线308接收的移动通信信号进行接收处理。例如信号解调。在本申请的一些实施例中,发射器305和接收器306可看作一个无线调制解调器。在网络设备300中,发射器305和接收器306的数量均可以是一个或者多个。天线308可用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。耦合器307可用于将移动通信号分成多路,分配给多个的接收器306。
存储器302可以和处理器301通过总线304或者输入输出端口耦合,存储器302也可以与处理器301集成在一起。存储器302用于存储各种软件程序和/或多组指令。具体的,存储器302可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器302可以存储操作系统(下述简称系统),例如uCOS、VxWorks、RTLinux等嵌入式操作系统。存储器302还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个终端设备,一个或多个网络设备进行通信。
处理器301可用于进行无线信道管理、实施呼叫和通信链路的建立和拆除,并为本控制区内的用户提供小区切换控制等。具体的,处理器301可包括:管理/通信模块(Administration Module/Communication Module,AM/CM)(用于话路交换和信息交换的中心)、基本模块(Basic Module,BM)(用于完成呼叫处理、信令处理、无线资源管理、无线链路的管理和电路维护功能)、码变换及子复用单元(Transcoder and SubMultiplexer,TCSM)(用于完成复用解复用及码变换功能)等等。
本申请实施例中,处理器301可用于读取和执行计算机可读指令。具体的,处理器301可用于调用存储于存储器302中的程序,例如本申请的一个或多个实施例提供的参考信号传输方法在网络设备300侧的实现程序,并执行该程序包含的指令。
可以理解的,网络设备300可以是图1示出的无线通信系统100中的网络设备101,可实施为基站收发台,无线收发器,一个基本服务集(BSS),一个扩展服务集(ESS),NodeB,eNodeB,gNB等等。
需要说明的是,图4所示的网络设备300仅仅是本申请实施例的一种实现方式,实际应用中,网络设备300还可以包括更多或更少的部件,这里不作限制。
需要说明的是,下述各实施例中所描述的第一通信设备可以为上述终端设备,第二通信设备可以为上述网络设备。或者,下述各实施例中所描述的第一通信设备可以为上述网络设备,第二通信设备可以为上述终端设备。
基于前述无线通信系统100、终端设备200以及网络设备300分别对应的实施例,本发明实施例提供了一种参考信号传输方法。参见图5,该参考信号传输方法包括但不限于如下步骤:
S501、第二通信设备根据第一初始资源索引、第二初始资源索引、第一配置带宽以及第二配置带宽确定第一频带,第一初始资源索引大于或等于第二初始资源索引,且第一初始资源索引小于或等于第二初始资源索引与第二配置带宽之和。
参见图6,是本发明实施例提供的一种第一频带的配置方式示意图。图6中,第二频 带为网络设备预先为终端设备配置的频域资源,第二配置带宽为第二频带的大小(或宽度),比如10MHz,或者20MHz等。这里,第二频带可以为BWP,也可以为公共载波(Common Carrier,CC)。本申请以第二频带为BWP为例进行说明。网络设备可以预先为终端设备配置多个频域资源,并通过信令方式指示终端设备当前进行通信时采用这多个频域资源中的哪个或哪几个频域资源。例如,网络设备可以预先为终端设备配置3个BWP(如通过无线资源控制(Radio Resource Control)信令配置),分别为BWP0、BWP1和BWP2。其中,BWP0包括30个RB,对应的索引可以分别为0至29,BWP1包括30个RB,对应的索引可以分别为30至59,BWP2包括21个RB,对应的索引可以分别为60至80。
可选的,在步骤S501之前,网络设备可以通过下行链路控制信息(Downlink Control Information,DCI)或者媒体接入控制(Media Access Control,MAC)信令或者RRC信令指示终端设备采用BWP1与网络设备进行通信,或者网络设备与终端设备使用默认的或协议固定的第二频带进行通信,此时不需要网络信令指示。则图6中的第二频带可以理解为BWP1,第二配置带宽可以理解为BWP1的带宽大小,即30。
第二初始资源索引为第二频带中的初始资源的索引。这里,初始资源可以理解为:第二频带中频率最低的资源,或者索引最小的资源,本发明实施例中所描述的索引均指的是频域上的索引。例如,若第二频带为BWP1,则第二初始资源索引即为30。
相应的,以图6为例,第二频带可以为第二初始资源索引即为30,大小为30个RB。
需要说明的是,第二频带的大小除了可以使用RB个数来表示,还可以使用源块组(Resource Block Group,RBG)的个数来表示,比如30个RBG,其中,一个RBG可以包括一个或多个RB,或者使用子载波(Sub Carrier)的个数来表示,比如120个子载波,其中一个RB可以包括多个子载波,等。相应的,第二初始资源索引也可以表示为RGB 30,或者子载波30。本发明不作具体限制。本发明实施例中以RB为例进行说明。
第一配置带宽为网络设备为终端设备配置的用于传输参考信号的带宽。这里,参考信号可以包括但不限于:CSI-RS。第一初始资源索引为网络设备为终端设备配置的用于传输参考信号的初始资源的索引。这里,与第二配置带宽类似,第一配置带宽可以表示为RB的个数,或者RBG的个数,或者子载波的个数。相应的,与第二初初资源索引类似,第一初始资源索引可以为RB的索引,或者RBG的索引,或者子载波的索引,等,本发明不作限制。可选的,第一配置带宽的最小取值可以等于min(m,第二配置带宽),其中,m为正整数。例如,m为24,第二配置带宽等于30,则第一配置带宽最小为24个RB。
需要说明的是,第一初始资源索引可以等于第二初始资源索引,也可以大于第二初始资源索引。第一初始资源索引小于或等于第二频带中索引最大的资源的索引,或者第一初始资源索引小于或等于第二初始资源索引与第二配置带宽之和-1,也即是说,第一初始资源索引对应的资源需要在第二频带的范围内。第一配置带宽的大小可以等于第二配置带宽的大小,也可以大于或者小于第二配置带宽的大小。
可选的,在步骤S501之前,网络设备会通过信令方式将第一初始资源索引和第一配置带宽发送给终端设备。例如,网络设备可以通过RRC信令或者MAC层信令或者物理层信令将第一初始资源索引和第一配置带宽发送给终端设备。网络设备可以使用同一条信令发送第一初始资源索引和第一配置带宽,也可以使用不同的信令,本发明不作限制。
图6中,第一频带为计算出的实际用于传输参考信号的频带。
NR Rel-15标准中规定了网络设备配置的第一配置带宽以及第一初始资源索引均以4RB为单位,而BWP的带宽以1RB为单位,因此,网络设备配置的第一配置带宽对应的部分资源有可能超出第二频带的范围。例如图6中,假设第二频带为BWP1,即第二配置带宽等于30,第一配置带宽等于20,第一配置带宽对应的两个RB未在第二频带范围内。这种情况下,为了提高终端设备接收性能,需要计算实际传输参考信号的带宽,即第一频带的带宽。
在一种实施方式中,若所述第一初始资源索引与所述第一配置带宽之和大于或等于所述第二初始资源索引与所述第二配置带宽之和,所述第一频带满足如下条件:
所述第一频带的带宽=所述第二初始资源索引+所述第二配置带宽-所述第一初始资源索引。也即是说,第一频带的初始资源索引为所述第一初始资源索引,第一频带的终止资源索引为所述第二初始资源索引+所述第二配置带宽-1。这里,第一频带的终止资源索引即第一频带中索引最大的资源对应的索引。
需要说明的是,上述判断条件或者公式,和/或上述第一频带满足的条件可以进行任意变形,只要最终可以转化成上述判断条件或者公式,和/或上述第一频带满足的条件均可以认为是满足上述判断条件或者公式,和/或上述第一频带满足的条件。例如,若所述第一初始资源索引与所述第一配置带宽之和-1大于或等于所述第二初始资源索引与所述第二配置带宽之和-1,所述第一频带满足如下条件:
所述第一频带的带宽=所述第二初始资源索引+所述第二配置带宽-所述第一初始资源索引。
例如,参见图6,第二频带为BWP1,则第二初始资源为RB30,第二初始资源索引为30,第二配置带宽为30。第一初始资源为RB42,第一初始资源索引为42,第一配置带宽为20。则42+20>30+30,因此,第一频带的带宽=30+30-42=18。第一频带的初始资源索引为42,大小为18个RB。或者,第一频带的初始资源索引为42,终止资源索引为59。
图6是以第一初始资源索引大于第二初始资源索引为例进行说明的,结合图7,针对第一初始资源索引等于第二初始资源索引的情况介绍第一频带的配置方式。参见图7,假设第二频带为BWP1,则第二初始资源为RB30,第二初始资源索引为30,第二配置带宽为30。第一初始资源索引为30,第一配置带宽为32。则30+32>30+30,因此,第一频带的带宽=30+30-30=30。第一频带的初始资源索引为30,大小为30个RB。或者,第一频带的初始资源索引为30,终止资源索引为59。
在另一种实施方式中,若所述第一初始资源索引与所述第一配置带宽之和小于所述第二初始资源索引与所述第二配置带宽之和,所述第一频带的带宽等于所述第一配置带宽。也即是说,第一频带的初始资源索引为所述第一初始资源索引,第一频带的终止资源索引为所述第一配置带宽+所述第一初始资源索引-1。
例如,参见图8,假设第二频带为BWP1,则第二初始资源为RB30,第二初始资源索引为30,第二配置带宽为30。第一初始资源为RB42,第一初始资源索引为42,第一配置带宽为12。则42+12<30+30,因此,第一频带的带宽=12。第一频带的初始资源索引为42,大小为12个RB。或者,第一频带的初始资源索引为42,终止资源索引为53。
图8是以第一初始资源索引大于第二初始资源索引为例进行说明的,结合图9,针对第一初始资源索引等于第二初始资源索引的情况介绍第一频带的配置方式。参见图9,假设第二频带为BWP1,则第二初始资源为RB30,第二初始资源索引为30,第二配置带宽为30。第一初始资源索引为30,第一配置带宽为12。则30+12<30+30,因此,第一频带的带宽=12。第一频带的初始资源索引为30,大小为12个RB。或者,第一频带的初始资源索引为30,终止资源索引为41。
上述几个例子中,第一初始资源索引以及第二初始资源索引均是以初始资源占全频带的索引为例的。全频带索引方式的示意图可以参见图10所示。不同BWP中的每个资源的索引均是基于全频带进行索引的。其中,全频带的带宽可以由网络设备通过RRC信令或者MAC层信令,或者物理层信令进行配置,或者在协议中固定。当全频带由网络设备通过RRC信令进行配置时,所述RRC信令可以是系统信息,或者专用的RRC消息。本发明不作限制。例如,全频带的带宽为100GHz,或者20GHz。全频带包括上述第二频带。这种情况下,一个RB在全频带中还可以称为一个公共资源块(Common Resource Block,CRB),RB的索引也可以称为CRB索引。因此,第一初始资源索引和第二初始资源索引可以用CRB索引表示。例如,图10中,第二初始资源索引为CRB30,即第二初始资源索引等于30。上述全带宽可以替换为第三带宽,其中,所述第三频带包括第二频带,即第三频带的资源包括第二频带的资源,还可以包括第二频带之外的资源。例如,图10中,全频带既包括第二频带BWP1,也包括除BWP1以外的BWP0和BWP2。
此外,第一初始资源索引以及第二初始资源索引还可以以单个BWP内部的索引进行计算。单个BWP索引方式的示意图可以参见图11所示。不同BWP中的每个资源的索引均是独立进行索引的。这种情况下,一个RB在一个BWP带宽中还可以称为一个物理资源块(Physical Resource Block,PRB),RB的索引也可以称为PRB索引。因此,第一初始资源索引和第二初始资源索引可以用PRB索引表示。例如,图11中,第二初始资源索引为PRB0,即第二初始资源索引等于0。一个RB的带宽例如可以是频域上连续的12个子载波。
上述图6-图11实现方式中,第一频带的带宽是按照一个最小资源单位(如一个RB,一个RBG,一个子载波等)确定出的,可选的,第一频带的带宽还可以是n个最小资源单位(如n个RB,n个RBG,n个子载波等)进行配置,n为正整数。n的取值大小可以匹配资源调度粒度大小、CSI反馈粒度大小或者子带(sub-band)大小。例如为了保证CSI上报配置的灵活性,n可以取值为最小sub-band大小。
在一种实施方式中,若第一初始资源索引与第一配置带宽之和大于或等于第二初始资源索引与第二配置带宽之和,则第一频带满足如下条件:
Figure PCTCN2019084722-appb-000004
其中,
Figure PCTCN2019084722-appb-000005
表示向下取整,n为正整数。
例如,n=4,参见图12,第二频带为BWP1,则第二初始资源为RB30,第二初始资源索引为30,第二配置带宽为30。第一初始资源为RB42,第一初始资源索引为42,第一配置带宽为20。则42+20>30+30,因此,
Figure PCTCN2019084722-appb-000006
第一频带 的初始资源索引为42,大小为16个RB。或者,第一频带的初始资源索引为42,终止资源索引为57。
在另一种实施方式中,若第一初始资源索引与第一配置带宽之和小于第二初始资源索引与第二配置带宽之和,
Figure PCTCN2019084722-appb-000007
n为正整数。
例如,n=4,参见图13,假设第二频带为BWP1,则第二初始资源为RB30,第二初始资源索引为30,第二配置带宽为30。第一初始资源为RB42,第一初始资源索引为42,第一配置带宽为12。则42+12<30+30,因此,
Figure PCTCN2019084722-appb-000008
第一频带的初始资源索引为42,大小为12个RB。或者,第一频带的初始资源索引为42,终止资源索引为53。
在另一种实施方式中,若所述第一初始资源索引与所述第一配置带宽之和大于或等于所述第二初始资源索引与所述第二配置带宽之和,且所述第一配置带宽小于或等于所述第二配置带宽,则所述第一频带满足如下条件:
所述第一频带的带宽=所述第一配置带宽,且所述第一频带的初始资源索引=所述第一初始资源索引-(所述第一配置资源的终止资源索引-所述第二配置资源的终止资源索引)。需要说明的是,在这种实施方式中,资源索引是基于全频带的索引。例如,参见图13,第二频带为BWP1,则第二初始资源为RB30,第二初始资源索引为30,第二配置带宽为30。第一初始资源为RB42,第一初始资源索引为42,第一配置带宽为20。则42+20>30+30且20<30,因此,第一频带的带宽=20。第一频带的初始资源索引为42-(61-59)=40,大小为20个RB。或者,第一频带的初始资源索引为40,终止资源索引为59。
可选的,上述参考信号可以为上行参考信号,也可以为下行参考信号。上述参考信号包括但不限于:CSI-RS、探测参考信号(Sounding Reference Signal,SRS)、解调参考信号(Demodulation Reference Signal,DMRS)。
S502、第一通信设备根据第一初始资源索引、第二初始资源索引、第一配置带宽以及第二配置带宽确定第一频带,第一初始资源索引大于或等于第二初始资源索引,且第一初始资源索引小于或等于第二初始资源索引与第二配置带宽之和。
第一通信设备根据第一初始资源索引、第二初始资源索引、第一配置带宽以及第二配置带宽确定第一频带的方式可以参考上述第二通信设备根据第一初始资源索引、第二初始资源索引、第一配置带宽以及第二配置带宽确定第一频带的方式,此次不再赘述。
需要说明的是,上述步骤S501和S502没有先后顺序。
S503、第二通信设备在第一频带上发送参考信号,第一通信设备在第一频带上接收参考信号。
本发明实施例中,第二通信设备按照前述实施例计算出第一频带后,在第一频带上发送参考信号。例如,所述第一频带的初始资源索引=所述第一初始资源索引,所述第一频带的带宽=所述第二初始资源索引+所述第二配置带宽-所述第一初始资源索引,则所述第二通信设备在[N 1,N 2]这一段资源内发送参考信号,其中,N 1表示所述第一初始资源索引对应的资源,N 2表示索引=所述第二初始资源索引+所述第二配置带宽-1的资源。
相应的,第一通信设备按照前述实施例计算出第一频带后,在第一频带上接收参考信 号。例如,所述第一频带的初始资源索引=所述第一初始资源索引,所述第一频带的带宽=所述第二初始资源索引+所述第二配置带宽-所述第一初始资源索引,则所述第二通信设备在[N 1,N 2]这一段资源内接收参考信号,其中,N 1表示所述第一初始资源索引对应的资源,N 2表示索引=所述第二初始资源索引+所述第二配置带宽-1的资源。
实施本发明实施例,可以解决现有协议定义中的缺陷问题,使得接收端设备能够准确计算出参考信号的实际传输带宽,避免第一通信设备对参考信号发送带宽大小产生误判,提高了参考信号的信道估计性能,从而提升反馈或者传输的精度,提高通信性能。
参见图14,图14示出了本申请提供一种无线通信系统、第一通信设备及第二通信设备。无线通信系统600包括:第一通信设备700和第二通信设备800。其中,第一通信设备700可以为图1实施例中的网络设备101或终端设备102,相应的,第二通信设备800可以为图1实施例中的终端设备102或网络设备101,无线通信系统600可以是图1描述的无线通信系统100。下面分别描述。
如图14所示,第一通信设备700可包括:确定单元701和接收单元702。
其中,确定单元701,用于根据第一初始资源索引、第二初始资源索引、第一配置带宽以及第二配置带宽确定第一频带,所述第一初始资源索引大于或等于所述第二初始资源索引,且所述第一初始资源索引小于或等于所述第二初始资源索引与所述第二配置带宽之和;
接收单元702,用于在所述第一频带上接收参考信号。
可选的,若所述第一初始资源索引与所述第一配置带宽之和大于或等于所述第二初始资源索引与所述第二配置带宽之和,所述第一频带满足如下条件:
所述第一频带的带宽=所述第二初始资源索引+所述第二配置带宽-所述第一初始资源索引。
可选的,若所述第一初始资源索引与所述第一配置带宽之和小于所述第二初始资源索引与所述第二配置带宽之和,所述第一频带的带宽等于所述第一配置带宽。
可选的,若所述第一初始资源索引与所述第一配置带宽之和大于或等于所述第二初始资源索引与所述第二配置带宽之和,则所述第一频带满足如下条件:
所述第一频带的带宽=
Figure PCTCN2019084722-appb-000009
其中n为正整数。
可选的,若所述第一初始资源索引与所述第一配置带宽之和小于所述第二初始资源索引与所述第二配置带宽之和,所述
Figure PCTCN2019084722-appb-000010
其中n为正整数。
可选的,所述第一初始资源索引为第一初始资源在第二频带中的索引,所述第二初始资源索引为第二初始资源在所述第二频带中的索引,且所述第二频带为所述第二初始资源索引至所述第二初始资源索引与所述第二配置带宽之和-1对应的资源组成的频带。
可选的,上述全带宽可以替换为第三带宽,其中,所述第三频带包括第二频带,即第三频带的资源包括第二频带的资源,还可以包括第二频带之外的资源。所述第一初始资源索引为第一初始资源在第三频带中的索引,所述第二初始资源索引为第二初始资源在所述第三频带中的索引,所述第二频带为所述第二初始资源索引至所述第二初始资源索引与所述第二配置带宽之和-1对应的资源组成的频带。
可选的,所述参考信号为信道状态信息参考信号。
可以理解的,关于第一通信设备700包括的各个功能单元的具体实现,可以参考前述实施例,这里不再赘述。
如图14所示,第二通信设备800可包括:确定单元801和发送单元802。
其中,确定单元801,用于根据第一初始资源索引、第二初始资源索引、第一配置带宽以及第二配置带宽确定第一频带,所述第一初始资源索引大于或等于所述第二初始资源索引,且所述第一初始资源索引小于或等于所述第二初始资源索引与所述第二配置带宽之和;
发送单元802,用于在所述第一频带上发送参考信号。
可选的,若所述第一初始资源索引与所述第一配置带宽之和大于或等于所述第二初始资源索引与所述第二配置带宽之和,所述第一频带满足如下条件:
所述第一频带的带宽=所述第二初始资源索引+所述第二配置带宽-所述第一初始资源索引。
可选的,若所述第一初始资源索引与所述第一配置带宽之和小于所述第二初始资源索引与所述第二配置带宽之和,所述第一频带的带宽等于所述第一配置带宽。
可选的,若所述第一初始资源索引与所述第一配置带宽之和大于或等于所述第二初始资源索引与所述第二配置带宽之和,则所述第一频带满足如下条件:
所述
Figure PCTCN2019084722-appb-000011
Figure PCTCN2019084722-appb-000012
其中n为正整数。
可选的,若所述第一初始资源索引与所述第一配置带宽之和小于所述第二初始资源索引与所述第二配置带宽之和,所述
Figure PCTCN2019084722-appb-000013
其中n为正整数。
可选的,所述第一初始资源索引为第一初始资源在第二频带中的索引,所述第二初始资源索引为第二初始资源在所述第二频带中的索引,且所述第二频带为所述第二初始资源索引至所述第二初始资源索引与所述第二配置带宽之和-1对应的资源组成的频带。
可选的,所述第一初始资源索引为第一初始资源在第三频带带宽中的索引,所述第二初始资源索引为第二初始资源在所述第三频带中的索引,其中,所述第三频带包括第二频带,所述第二频带为所述第二初始资源索引至所述第二初始资源索引与所述第二配置带宽之和-1对应的资源组成的频带。
可选的,所述参考信号为信道状态信息参考信号。
可以理解的,关于第二通信设备800包括的各个功能单元的具体实现,可以参考前述实施例,这里不再赘述。
参见图15,图15示出了本申请提供的一种通信芯片的结构示意图。如图15所示,通信芯片150可包括:处理器1501,以及耦合于处理器1501的一个或多个接口1502。其中:
处理器1501可用于读取和执行计算机可读指令。具体实现中,处理器1501可主要包括控制器、运算器和寄存器。其中,控制器主要负责指令译码,并为指令对应的操作发出控制信号。运算器主要负责执行定点或浮点算数运算操作、移位操作以及逻辑操作等,也可以执行地址运算和转换。寄存器主要负责保存指令执行过程中临时存放的寄存器操作数和中间操作结果等。具体实现中,处理器1501的硬件架构可以是专用集成电路(Application Specific Integrated Circuits,ASIC)架构、MIPS架构、ARM架构或者NP架构等等。处理器1501可以是单核的,也可以是多核的。
接口1502可用于输入待处理的数据至处理器1501,并且可以向外输出处理器1501的处理结果。具体实现中,接口1502可以是通用输入输出(General Purpose Input Output,GPIO)接口,可以和多个外围设备(如显示器(LCD)、摄像头(camara)、射频(Radio Frequency,RF)模块等等)连接。接口1502通过总线1503与处理器1501相连。
本申请中,处理器1501可用于从存储器中调用本申请的一个或多个实施例提供的参考信号传输方法在通信设备侧的实现程序,并执行该程序包含的指令。接口1502可用于输出处理器1501的执行结果。本申请中,接口1502可具体用于输出处理器1501的资源分配结果。关于本申请的一个或多个实施例提供的参考信号传输方法可参考前述各个实施例,这里不再赘述。
需要说明的,处理器1501、接口1502各自对应的功能既可以通过硬件设计实现,也可以通过软件设计来实现,还可以通过软硬件结合的方式来实现,这里不作限制。
本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选的还包括没有列出的步骤或单元,或可选的还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质 或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上的具体实施方式,对本发明实施例的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上仅为本发明实施例的具体实施方式而已,并不用于限定本发明实施例的保护范围,凡在本发明实施例的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明实施例的保护范围之内。

Claims (39)

  1. 一种通信设备,其特征在于,包括:
    确定单元,用于根据第一初始资源索引、第二初始资源索引、第一配置带宽以及第二配置带宽确定第一频带,所述第一初始资源索引大于或等于所述第二初始资源索引,且所述第一初始资源索引小于或等于所述第二初始资源索引与所述第二配置带宽之和;
    接收单元,用于在所述第一频带上接收参考信号。
  2. 根据权利要求1所述的通信设备,其特征在于,
    若所述第一初始资源索引与所述第一配置带宽之和大于或等于所述第二初始资源索引与所述第二配置带宽之和,所述第一频带满足如下条件:
    所述第一频带的带宽=所述第二初始资源索引+所述第二配置带宽-所述第一初始资源索引。
  3. 根据权利要求1或2所述的通信设备,其特征在于,
    若所述第一初始资源索引与所述第一配置带宽之和小于所述第二初始资源索引与所述第二配置带宽之和,所述第一频带的带宽等于所述第一配置带宽。
  4. 根据权利要求1所述的通信设备,其特征在于,
    若所述第一初始资源索引与所述第一配置带宽之和大于或等于所述第二初始资源索引与所述第二配置带宽之和,则所述第一频带满足如下条件:
    Figure PCTCN2019084722-appb-100001
    Figure PCTCN2019084722-appb-100002
    其中n为正整数。
  5. 根据权利要求1或4所述的通信设备,其特征在于,
    若所述第一初始资源索引与所述第一配置带宽之和小于所述第二初始资源索引与所述第二配置带宽之和,
    Figure PCTCN2019084722-appb-100003
    其中n为正整数。
  6. 根据权利要求1至5任一项所述的通信设备,其特征在于,所述第一初始资源索引为第一初始资源在第二频带中的索引,所述第二初始资源索引为第二初始资源在所述第二频带中的索引,且所述第二频带为所述第二初始资源索引至所述第二初始资源索引与所述第二配置带宽之和-1对应的资源组成的频带。
  7. 根据权利要求1至5任一项所述的通信设备,其特征在于,所述第一初始资源索引为第一初始资源在第三频带带宽中的索引,所述第二初始资源索引为第二初始资源在所述第三频带中的索引,其中,所述第三频带包括第二频带,所述第二频带为所述第二初始资源索引至所述第二初始资源索引与所述第二配置带宽之和-1对应的资源组成的频带。
  8. 根据权利要求1至7任一项所述的通信设备,其特征在于,所述参考信号为信道状态信息参考信号。
  9. 一种通信设备,其特征在于,包括:
    确定单元,用于根据第一初始资源索引、第二初始资源索引、第一配置带宽以及第二配置带宽确定第一频带,所述第一初始资源索引大于或等于所述第二初始资源索引,且所述第一初始资源索引小于或等于所述第二初始资源索引与所述第二配置带宽之和;
    发送单元,用于在所述第一频带上发送参考信号。
  10. 根据权利要求9所述的通信设备,其特征在于,
    若所述第一初始资源索引与所述第一配置带宽之和大于或等于所述第二初始资源索引与所述第二配置带宽之和,所述第一频带满足如下条件:
    所述第一频带的带宽=所述第二初始资源索引+所述第二配置带宽-所述第一初始资源索引。
  11. 根据权利要求9或10所述的通信设备,其特征在于,
    若所述第一初始资源索引与所述第一配置带宽之和小于所述第二初始资源索引与所述第二配置带宽之和,所述第一频带的带宽等于所述第一配置带宽。
  12. 根据权利要求9所述的通信设备,其特征在于,
    若所述第一初始资源索引与所述第一配置带宽之和大于或等于所述第二初始资源索引与所述第二配置带宽之和,则所述第一频带满足如下条件:
    Figure PCTCN2019084722-appb-100004
    Figure PCTCN2019084722-appb-100005
    其中n为正整数。
  13. 根据权利要求9或12所述的通信设备,其特征在于,
    若所述第一初始资源索引与所述第一配置带宽之和小于所述第二初始资源索引与所述第二配置带宽之和,
    Figure PCTCN2019084722-appb-100006
    其中n为正整数。
  14. 根据权利要求9至13任一项所述的通信设备,其特征在于,所述第一初始资源索引为第一初始资源在第二频带中的索引,所述第二初始资源索引为第二初始资源在所述第二频带中的索引,且所述第二频带为所述第二初始资源索引至所述第二初始资源索引与所述第二配置带宽之和-1对应的资源组成的频带。
  15. 根据权利要求9至13任一项所述的通信设备,其特征在于,所述第一初始资源索引为第一初始资源在第三频带带宽中的索引,所述第二初始资源索引为第二初始资源在所述第三频带中的索引,其中,所述第三频带包括第二频带,所述第二频带为所述第二初始资源索引至所述第二初始资源索引与所述第二配置带宽之和-1对应的资源组成的频带。
  16. 根据权利要求9至15任一项所述的通信设备,其特征在于,所述参考信号为信道状态信息参考信号。
  17. 一种参考信号传输方法,其特征在于,包括:
    第一通信设备根据第一初始资源索引、第二初始资源索引、第一配置带宽以及第二配置带宽确定第一频带,所述第一初始资源索引大于或等于所述第二初始资源索引,且所述第一初始资源索引小于或等于所述第二初始资源索引与所述第二配置带宽之和;
    所述第一通信设备在所述第一频带上接收参考信号。
  18. 根据权利要求17所述的方法,其特征在于,若所述第一初始资源索引与所述第一配置带宽之和大于或等于所述第二初始资源索引与所述第二配置带宽之和,所述第一频带满足如下条件:
    所述第一频带的带宽=所述第二初始资源索引+所述第二配置带宽-所述第一初始资源索引。
  19. 根据权利要求17或18所述的方法,其特征在于,
    若所述第一初始资源索引与所述第一配置带宽之和小于所述第二初始资源索引与所述第二配置带宽之和,所述第一频带的带宽等于所述第一配置带宽。
  20. 根据权利要求17所述的方法,其特征在于,
    若所述第一初始资源索引与所述第一配置带宽之和大于或等于所述第二初始资源索引与所述第二配置带宽之和,则所述第一频带满足如下条件:
    Figure PCTCN2019084722-appb-100007
    Figure PCTCN2019084722-appb-100008
    其中n为正整数。
  21. 根据权利要求17或20所述的方法,其特征在于,
    若所述第一初始资源索引与所述第一配置带宽之和小于所述第二初始资源索引与所述第二配置带宽之和,
    Figure PCTCN2019084722-appb-100009
    其中n为正整数。
  22. 根据权利要求17至21任一项所述的方法,其特征在于,所述第一初始资源索引为第一初始资源在第二频带中的索引,所述第二初始资源索引为第二初始资源在所述第二频带中的索引,且所述第二频带为所述第二初始资源索引至所述第二初始资源索引与所述第二配置带宽之和-1对应的资源组成的频带。
  23. 根据权利要求17至21任一项所述的方法,其特征在于,所述第一初始资源索引为第一初始资源在第三频带带宽中的索引,所述第二初始资源索引为第二初始资源在所述第三频带中的索引,其中,所述第三频带包括第二频带,所述第二频带为所述第二初始资源索引至所述第二初始资源索引与所述第二配置带宽之和-1对应的资源组成的频带。
  24. 根据权利要求17至23任一项所述的方法,其特征在于,所述参考信号为信道状态信息参考信号。
  25. 一种参考信号传输方法,其特征在于,包括:
    第二通信设备根据第一初始资源索引、第二初始资源索引、第一配置带宽以及第二配置带宽确定第一频带,所述第一初始资源索引大于或等于所述第二初始资源索引,且所述第一初始资源索引小于或等于所述第二初始资源索引与所述第二配置带宽之和;
    所述第二通信设备在所述第一频带上发送参考信号。
  26. 根据权利要求25所述的方法,其特征在于,
    若所述第一初始资源索引与所述第一配置带宽之和大于或等于所述第二初始资源索引与所述第二配置带宽之和,所述第一频带满足如下条件:
    所述第一频带的带宽=所述第二初始资源索引+所述第二配置带宽-所述第一初始资 源索引。
  27. 根据权利要求25或26所述的方法,其特征在于,
    若所述第一初始资源索引与所述第一配置带宽之和小于所述第二初始资源索引与所述第二配置带宽之和,所述第一频带的带宽等于所述第一配置带宽。
  28. 根据权利要求25所述的方法,其特征在于,
    若所述第一初始资源索引与所述第一配置带宽之和大于或等于所述第二初始资源索引与所述第二配置带宽之和,则所述第一频带满足如下条件:
    Figure PCTCN2019084722-appb-100010
    Figure PCTCN2019084722-appb-100011
    Figure PCTCN2019084722-appb-100012
    其中n为正整数。
  29. 根据权利要求25或28所述的方法,其特征在于,
    若所述第一初始资源索引与所述第一配置带宽之和小于所述第二初始资源索引与所述第二配置带宽之和,
    Figure PCTCN2019084722-appb-100013
    其中n为正整数。
  30. 根据权利要求25至29任一项所述的方法,其特征在于,所述第一初始资源索引为第一初始资源在第二频带中的索引,所述第二初始资源索引为第二初始资源在所述第二频带中的索引,且所述第二频带为所述第二初始资源索引至所述第二初始资源索引与所述第二配置带宽之和-1对应的资源组成的频带。
  31. 根据权利要求25至29任一项所述的方法,其特征在于,所述第一初始资源索引为第一初始资源在第三频带带宽中的索引,所述第二初始资源索引为第二初始资源在所述第三频带中的索引,其中,所述第三频带包括第二频带,所述第二频带为所述第二初始资源索引至所述第二初始资源索引与所述第二配置带宽之和-1对应的资源组成的频带。
  32. 根据权利要求25至31任一项所述的方法,其特征在于,所述参考信号为信道状态信息参考信号。
  33. 根据权利要求1至7任一项所述的通信设备,9至15任一项所述的通信设备,17至23任一项所述的方法或25至31任一项所述的方法,其特征在于,所述第一初始资源索引是为终端设备配置的用于传输参考信号的初始资源的索引,所述第二初始资源索引是第二频带中的初始资源的索引,所述第一配置带宽是为终端设备配置的用于传输所述参考信号的带宽,所述第二配置带宽为所述第二频带的大小,所述第二频带为所述通信设备为所述终端设备配置的频域资源,所述第一频带为实际用于所述传输参考信号的频带。
  34. 根据权利要求7,8,15,16任一项所述的通信设备,或23,24,31或32任一项所述的方法,其特征在于,所述第三频带为全带宽,第二频带为部分带宽BWP。
  35. 一种处理器可读存储介质,用于存储指令,当所述指令在处理器上运行时,使得所述处理器执行权利要求17至24任一项所述的方法,权利要求33或权利要求34任一项所述的方法。
  36. 一种处理器可读存储介质,用于存储指令,当所述指令在处理器上运行时,使得 所述处理器执行权利要求25至31任一项所述的方法,权利要求33或权利要求34任一项所述的方法。
  37. 一种通信装置,其特征在于,包括:
    处理器和与所述处理器耦合的存储器,所述存储器用于存储指令,所述处理器用于调用所述存储器中的指令以控制所述通信装置执行权利要求17至24任一项所述的方法,权利要求33或权利要求34任一项所述的方法。
  38. 一种通信装置,其特征在于,包括:
    处理器和与所述处理器耦合的存储器,所述存储器用于存储指令,所述处理器用于调用所述存储器中的指令以控制所述通信装置执行权利要求25至31任一项所述的方法,权利要求33或权利要求34任一项所述的方法。
  39. 一种通信系统,其特征在于,包括至少一个如权利要求1至8任一项所述的通信设备和至少一个如权利要求9至16任一项所述的通信设备。
PCT/CN2019/084722 2018-05-11 2019-04-28 一种参考信号传输方法及通信设备 WO2019214469A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP19800067.1A EP3790337B9 (en) 2018-05-11 2019-04-28 Method for transmitting reference signal, and communication device
CA3099769A CA3099769A1 (en) 2018-05-11 2019-04-28 Reference signal transmission method and communications device
JP2020563682A JP7168290B2 (ja) 2018-05-11 2019-04-28 参照信号伝送方法および通信装置
CN201980031696.5A CN112106424B (zh) 2018-05-11 2019-04-28 一种参考信号传输方法及通信设备
BR112020022919-9A BR112020022919A2 (pt) 2018-05-11 2019-04-28 método de transmissão de sinal de referência e dispositivo de comunicações
US17/095,553 US11425729B2 (en) 2018-05-11 2020-11-11 Reference signal transmission method and communications device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810450412.3A CN110475352B (zh) 2018-05-11 2018-05-11 一种参考信号传输方法及通信设备
CN201810450412.3 2018-05-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/095,553 Continuation US11425729B2 (en) 2018-05-11 2020-11-11 Reference signal transmission method and communications device

Publications (1)

Publication Number Publication Date
WO2019214469A1 true WO2019214469A1 (zh) 2019-11-14

Family

ID=68467736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084722 WO2019214469A1 (zh) 2018-05-11 2019-04-28 一种参考信号传输方法及通信设备

Country Status (7)

Country Link
US (1) US11425729B2 (zh)
EP (1) EP3790337B9 (zh)
JP (1) JP7168290B2 (zh)
CN (2) CN110475352B (zh)
BR (1) BR112020022919A2 (zh)
CA (1) CA3099769A1 (zh)
WO (1) WO2019214469A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022031149A1 (en) * 2020-08-07 2022-02-10 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving reference signal in wireless communication system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103095431A (zh) * 2011-11-08 2013-05-08 华为技术有限公司 参考信号处理的方法和装置
WO2016021993A2 (ko) * 2014-08-08 2016-02-11 엘지전자(주) 무선 통신 시스템에서 측정 수행 방법 및 이를 위한 장치

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8160008B2 (en) * 2008-03-28 2012-04-17 Apple Inc. Techniques for channel sounding in a wireless communication system
CN101778068B (zh) * 2009-12-25 2014-01-01 中兴通讯股份有限公司 定位参考信号频域位置确定方法及装置
CN110545133B (zh) * 2013-12-20 2022-12-06 北京三星通信技术研究有限公司 信道状态信息汇报的方法及装置
CN104767592B (zh) * 2014-01-02 2019-01-01 中国移动通信集团公司 一种csi-rs的端口配置、csi-rs传输的方法和设备
US10735155B2 (en) * 2014-11-03 2020-08-04 Qualcomm Incorporated Rate matching around reference signals in wireless communications
CN107911203B (zh) * 2017-08-11 2023-11-14 华为技术有限公司 发送和接收参考信号的方法、网络设备、终端设备和系统
CN115021879A (zh) * 2017-08-21 2022-09-06 中兴通讯股份有限公司 参考信号传输方法及装置、终端、基站和存储介质
CN108111282B (zh) * 2017-09-30 2020-11-24 中兴通讯股份有限公司 一种无线通信方法及装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103095431A (zh) * 2011-11-08 2013-05-08 华为技术有限公司 参考信号处理的方法和装置
WO2016021993A2 (ko) * 2014-08-08 2016-02-11 엘지전자(주) 무선 통신 시스템에서 측정 수행 방법 및 이를 위한 장치

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "Remaining details on CSI-RS design in NR", 3GPP TSG RAN WG1 MEETING #92BIS, RL-1803638, 20 April 2018 (2018-04-20), XP051425935 *
HUAWEI: "Remaining details on CSI-RS design in NR", 3GPP TSG RAN WG1 MEETING #93, RL-1805957, 11 May 2018 (2018-05-11), XP051441176 *
HUAWEI: "Remaining issues on CSI-RS #2", 3GPP TSG RAN WG1 MEETING #92BIS, RL-1805685, 20 April 2018 (2018-04-20), XP051427810 *
See also references of EP3790337A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022031149A1 (en) * 2020-08-07 2022-02-10 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving reference signal in wireless communication system
US11930481B2 (en) 2020-08-07 2024-03-12 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving reference signal in wireless communication system

Also Published As

Publication number Publication date
CN112106424A (zh) 2020-12-18
BR112020022919A2 (pt) 2021-02-23
EP3790337B9 (en) 2023-06-28
EP3790337A1 (en) 2021-03-10
CN110475352B (zh) 2022-06-28
US20210068116A1 (en) 2021-03-04
CA3099769A1 (en) 2019-11-14
JP2021522751A (ja) 2021-08-30
EP3790337B1 (en) 2022-12-21
EP3790337A4 (en) 2021-06-23
JP7168290B2 (ja) 2022-11-09
CN112106424B (zh) 2023-11-28
CN110475352A (zh) 2019-11-19
US11425729B2 (en) 2022-08-23

Similar Documents

Publication Publication Date Title
KR102305312B1 (ko) 신호 전송을 위한 방법, 장치, 및 시스템
CN110972251B (zh) 信号传输方法、相关设备及系统
JP7364004B2 (ja) チャネル状態情報の測定目的の指示方法、装置及び通信システム
WO2019137509A1 (zh) 信号传输方法、相关设备及系统
US11206064B2 (en) Transmission precoding matrix indication method and device
WO2018141272A1 (zh) 终端、网络设备和通信方法
US10856267B2 (en) Information indication method and related device
WO2019136723A1 (zh) 上行数据传输方法及相关设备
JP7022762B2 (ja) ユーザ装置、基地局、無線通信方法およびシステム
CN110880958A (zh) 一种射频参数的上报方法及装置
JP2019509660A5 (zh)
WO2019192410A1 (zh) 一种信号传输方法及通信设备
WO2023226046A1 (zh) Tci状态的指示方法、装置、设备及介质
JP2021530161A (ja) 通信方法及び通信機器
WO2018202168A1 (zh) 信息传输方法及装置
WO2021129229A1 (zh) 一种通信方法和装置
WO2021047457A1 (zh) 参考信号传输方法及相关设备
WO2020192719A1 (zh) 更新波束的方法与通信装置
WO2019214469A1 (zh) 一种参考信号传输方法及通信设备
US20170359105A1 (en) Transmission control methods and transmission control apparatus
WO2019137299A1 (zh) 通信的方法和通信设备
US20230156680A1 (en) Signal transmission method and device
JP2023538918A (ja) 異なる用途のsrsリソースセット間でsrsリソースを共有する方法
CN116888905A (zh) 用于在无线通信系统中测量和报告通信参数的方法和装置
WO2019001221A1 (zh) 一种秩指示上报方法和装置、指示方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800067

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3099769

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020563682

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020022919

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2019800067

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2019800067

Country of ref document: EP

Effective date: 20201203

ENP Entry into the national phase

Ref document number: 112020022919

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20201110