WO2019214432A1 - 车用空气质量传感器的应用 - Google Patents

车用空气质量传感器的应用 Download PDF

Info

Publication number
WO2019214432A1
WO2019214432A1 PCT/CN2019/083980 CN2019083980W WO2019214432A1 WO 2019214432 A1 WO2019214432 A1 WO 2019214432A1 CN 2019083980 W CN2019083980 W CN 2019083980W WO 2019214432 A1 WO2019214432 A1 WO 2019214432A1
Authority
WO
WIPO (PCT)
Prior art keywords
air quality
vehicle
air
module
pollution
Prior art date
Application number
PCT/CN2019/083980
Other languages
English (en)
French (fr)
Inventor
陆鹏
张良
董伟太
是蓉珠
Original Assignee
江苏日盈电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810438664.4A external-priority patent/CN110466307B/zh
Priority claimed from CN201810437423.8A external-priority patent/CN110470313A/zh
Priority claimed from CN201810438665.9A external-priority patent/CN110470792A/zh
Application filed by 江苏日盈电子股份有限公司 filed Critical 江苏日盈电子股份有限公司
Publication of WO2019214432A1 publication Critical patent/WO2019214432A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology

Definitions

  • the present invention relates to the field of air quality, and in particular to the use of a vehicle air quality sensor.
  • the air quality inside and outside the vehicle is good or bad based on the driver's feelings or the air quality data outside the vehicle.
  • the interior space of the vehicle is relatively small compared to the bedroom, office, etc.
  • the long-term closure will cause an increase in harmful gas content such as carbon dioxide and oxygen deficiency, especially in the case of full load or smoking in the car. That is to say, compared with the indoor environment with large space, the air quality variation and frequency of the interior space of the vehicle are large. If the air quality in the vehicle is to be ensured, the driver needs to frequently view the data and frequently switch windows, air conditioners or Air conditioning equipment such as air purifiers.
  • the average driver has no expertise in air quality, and it is difficult to control the setting state of the air conditioning equipment. That is to say, to take a step back, even if the vehicle is equipped with a detector for detecting the air quality inside the vehicle, the driver can know the air condition inside and outside the vehicle, and not only actively switch the setting trouble, but also cannot set the ventilation state well, such as the air conditioning row. The speed of the wind, the opening of the front or rear window, the working hours of the air purifier, etc.
  • Air quality is closely related to people's health. Especially in the past few years, when smog is frequent and air quality deteriorates drastically, people always pay attention to daily air quality data to take precautionary measures.
  • the existing air quality testing method is to obtain the air quality of this area by setting detection points at various locations in a region. For example, between a city, some geographical locations are selected to set up an air detector, and the data acquired by the air detector is calculated by a preset program to obtain an air data about the entire city.
  • the position of the air detector is generally fixed. For a region, the air quality of the entire region is in a dynamic change as factors such as temperature and wind direction change.
  • the air detector can only Detecting the air quality in a small location where the air detector is located, the detection data obviously has great limitations, and whether it can accurately reflect the air quality in this area is a problem to be discussed.
  • the number of air detectors is also fixed, unless the final data is found to be biased during the detection process, so that more air detectors are arranged in the subsequent steps, but in fact it is difficult to obtain information from the back-end data. Improve the deployment of the air detector at the front end.
  • Another problem is that the air detector itself is placed in a fixed position, and once the air detector itself has a problem or a problem with the surrounding environment, the final detection result may be deviated. For example, if a detector is installed in a park and is surrounded by a fountain, the quality of the detected air pollution is likely to be affected by the fountain. Still another problem is the interference of human factors. In order to show the effect that the air quality has been improved from the data, the air detector may be artificially placed in some areas with better environment.
  • the existing air quality detection methods have many problems and may not accurately reflect the air quality state of a certain area.
  • Vehicles are common means of travel, because of their own maneuverability, the driver can quickly reach different areas in the process of driving the vehicle, even in the fresh air of the park in the last second, the next moment came to the evil chemical industry plant.
  • Drivers travel thousands of miles with the help of vehicles, but in the process, both vehicles and drivers need to face a complex and changing environment.
  • the design itself has taken into account the various environments that may be faced, so that it is configured with a sturdy torso, and for the driver, the more likely scene is directly exposed to the environment.
  • the driver cannot have a sufficient pre-judgment for the current driving route, especially in the driving environment of the driving route, the driver can only confirm the congestion degree of the driving route through the traditional navigation system and Road data, such as road location, direction, etc.
  • An object of the present invention is to provide an in-vehicle air quality control system, method and vehicle, wherein the air quality control system controls an air interaction device such as a window or a car air conditioner through a device control module according to the air quality information in the vehicle.
  • An air purifying device such as a car air purifier is used to control the air quality inside the vehicle to avoid increasing or reducing the pollution level.
  • Another object of the present invention is to provide an in-vehicle air quality control system, method and vehicle, wherein the air quality control system can actively adjust and optimize the air quality inside the vehicle without driver control and avoiding the driver's attention during driving. Disperse and improve driving safety.
  • Another object of the present invention is to provide an in-vehicle air quality control system, method and vehicle, wherein the air quality control system is adapted to the magnitude and frequency of air quality variation in the vehicle, and passes the device according to detecting changes in air quality inside the vehicle.
  • the control module controls the air interaction device and the air purification device without requiring the driver to operate frequently, simplifying use.
  • Another object of the present invention is to provide an in-vehicle air quality control system, method and vehicle, wherein the device control module can control an air interaction device such as a window and a vehicle air conditioner, and adjust the interior of the vehicle by means of air interaction inside and outside the vehicle. air quality.
  • the device control module can control an air interaction device such as a window and a vehicle air conditioner, and adjust the interior of the vehicle by means of air interaction inside and outside the vehicle. air quality.
  • Another object of the present invention is to provide an in-vehicle air quality control system, method and vehicle, wherein the device control module can control an air purifying device such as a car air purifier, and adjust the interior of the vehicle by purifying the air in the vehicle. air quality.
  • the device control module can control an air purifying device such as a car air purifier, and adjust the interior of the vehicle by purifying the air in the vehicle. air quality.
  • Another object of the present invention is to provide an in-vehicle air quality control system, method and vehicle, wherein the air quality control system simultaneously acquires in-vehicle air quality information and off-board air quality information through a detection module, and analyzes whether the passage can be passed.
  • the air interaction inside and outside the vehicle realizes the adjustment of the air quality inside the vehicle to prevent the air inside the vehicle from being polluted by the outside air.
  • Another object of the present invention is to provide an in-vehicle air quality control system, method and vehicle, wherein when the air quality outside the vehicle is poor, for example, the PM2.5 outside the vehicle exceeds the standard, and the air outside the vehicle has harmful gases, and the air quality control
  • the system can still optimize the air quality inside the vehicle by controlling the air purifying device.
  • Another object of the present invention is to provide an in-vehicle air quality control system, method and vehicle, wherein the detection module can acquire network data of the air quality outside the vehicle, so that the vehicle does not need to be additionally equipped with a detector for detecting the air quality outside the vehicle, thereby reducing cost.
  • Another object of the present invention is to provide an in-vehicle air quality control system, method and vehicle, wherein the air quality control system facilitates control of the air purifying device and the air quality information based on in-vehicle air quality information and off-board air quality information
  • the switch of the air interaction device sets its operating parameters without the driver setting according to self-feeling.
  • Another object of the present invention is to provide an in-vehicle air quality control system, method and vehicle, wherein an in-vehicle air detection module of the detection module is disposed in a duct of a vehicle for facilitating acquisition and detection of in-vehicle air quality information. .
  • Another object of the present invention is to provide an in-vehicle air quality control system, method and vehicle, wherein the in-vehicle air detection module can eliminate interference of humidity, temperature and wind speed, thereby obtaining vehicle interior air quality information more accurately.
  • Another object of the present invention is to provide an air quality acquisition method and an air quality acquisition system, wherein the air quality acquisition system is capable of dynamically acquiring the air quality of an area by means of the vehicle passing through the area.
  • Another object of the present invention is to provide an air quality acquisition method and an air quality acquisition system, wherein the air quality acquisition system is capable of acquiring air quality of the area multiple times by means of a plurality of the vehicles passing through the area.
  • Another object of the present invention is to provide an air quality acquisition method and an air quality acquisition system, wherein the air quality acquisition system is capable of acquiring the air quality of the area in real time by means of the vehicle passing through the area.
  • Another object of the present invention is to provide an air quality acquisition method and an air quality acquisition system, wherein the air quality acquisition system is capable of obtaining the above-mentioned comprehensive trajectory of the vehicle in the area by means of the vehicle passing through the area.
  • the air quality of the area is provided.
  • Another object of the present invention is to provide an air quality acquisition method and an air quality acquisition system, wherein the air quality acquisition system is capable of acquiring air about the area by means of different types of the air detectors mounted to the vehicle Different reference data for quality.
  • Another object of the present invention is to provide an air quality acquisition method and an air quality acquisition system, wherein the air quality acquisition system is capable of acquiring air quality at different locations or in different regions by means of the moving vehicle.
  • Another object of the present invention is to provide an air quality acquisition method and an air quality acquisition system, wherein the air quality acquisition system is capable of acquiring a significant number of air quality samples by means of an existing large number of said vehicles.
  • Another object of the present invention is to provide an air quality acquisition method and an air quality acquisition system, wherein the air quality acquisition system is capable of acquiring the air quality of the location of the vehicle, and can feed back to the vehicle in a subsequent step. The driver takes appropriate measures.
  • Another object of the present invention is to provide a vehicle acquisition system and an air quality acquisition method thereof, wherein the air quality acquisition system can acquire some geodesicities that are difficult to set or are not provided with an air detector by means of the common vehicle. Air data for locations, such as heavily polluting businesses.
  • Another object of the present invention is to provide a vehicle acquisition system and an air quality acquisition method thereof, wherein the air quality acquisition system can be used to detect a vehicle in a timely manner, which is very effective for timely detection.
  • the air quality of the geographical locations where the access is made makes the acquired air quality data very practical.
  • Another object of the present invention is to provide an air quality based vehicle navigation method and navigation system and application thereof, wherein the vehicle navigation system can plan at least one route based on air quality based on road data.
  • Another object of the present invention is to provide an air quality based vehicle navigation method and navigation system and application thereof, wherein the vehicle navigation system is capable of planning at least one route based on time cost and air quality based on road data.
  • Another object of the present invention is to provide an air quality based vehicle navigation method and navigation system and application thereof, wherein the vehicle navigation system is capable of at least one route based on path length and air quality rules on the basis of road data.
  • Another object of the present invention is to provide an air quality based vehicle navigation method and navigation system and application thereof, wherein the vehicle navigation system can determine whether air pollution occurs in the front and re-plan the route according to the position of the vehicle.
  • Another object of the present invention is to provide an air quality based vehicle navigation method and navigation system and application thereof, wherein the vehicle navigation system can determine whether the current route of the vehicle has a tendency to air pollution and promptly alert the user.
  • Another object of the present invention is to provide an air quality based vehicle navigation method and navigation system and application thereof, wherein the vehicle navigation system can determine whether the current route of the vehicle has a tendency of air pollution so as not to replace the route Take timely measures.
  • Another object of the present invention is to provide an air quality based vehicle navigation method and navigation system and application thereof, wherein the vehicle navigation system can plan a route based on whether the area has a tendency to air pollution.
  • an air quality based vehicle navigation system comprising:
  • An acquisition module wherein the acquisition module is configured to acquire a vehicle location and a vehicle destination information
  • a processing module wherein the processing module is communicably coupled to the acquisition module, the route generation module generating at least one travel route based on the vehicle location and the vehicle destination information on an air quality map.
  • an air quality map module is further included, wherein the air quality map module is communicably coupled to the processing module, wherein the air quality map module includes a geolocation module and a map Generating a module, wherein the geolocation module confirms an area based on the vehicle location, and the map generation module corresponds to at least one air quality data acquired from at least one vehicle with an air detector from the area The vehicle position generates the air quality map.
  • the processing module is arranged to plan at least one of the travel routes based on time cost and air quality.
  • the processing module is arranged to plan at least one of the travel routes based on the length of the journey and the air quality.
  • the processing module is arranged to generate at least one of the travel routes based on a user command.
  • the method further includes a rule setting module and a sorting module, wherein the sorting module sorts the driving route according to the rule setting module being set with a sorting rule.
  • the processing module further includes a pollution judging module and a pollution degree judging module, wherein the pollution judging module determines whether there is air pollution at a position that the vehicle is to arrive according to the vehicle position. If yes, the pollution level determination module determines whether the air pollution exceeds a preset value, and if so, the route generation module re-maps the air quality map based on the current vehicle location and the vehicle destination Plan at least one driving route.
  • the predetermined value is a processing capability of an air purifier of the vehicle.
  • the processing module further includes a pollution judging module and a pollution degree judging module, wherein the pollution judging module determines whether there is air pollution at a position that the vehicle is to arrive according to the vehicle position. If yes, the pollution level determination module determines whether the air pollution exceeds a predetermined value, and if not, the processing module sends a signal to the air purifier to before the vehicle reaches the pollution position The air purifier is activated.
  • the processing module includes a pollution judging module and a pollution trend judging module, wherein the pollution judging module judges whether there is air pollution in a position that the vehicle is to arrive according to the vehicle position, if No, the pollution trend judging module judges whether the location has a tendency to air pollution.
  • the processing module further includes a prediction module, wherein the prediction module is communicably connected to the pollution trend determination module, and the pollution trend determination module determines that the location has air pollution
  • the trending module predicts a future air quality data when the vehicle arrives at the location based on a historical air quality data of the location.
  • the prediction module is communicably connected to the pollution determination module and the pollution degree determination module, wherein the pollution determination module determines the vehicle according to a prediction result of the prediction module Whether there is air pollution at the location when the location is reached, and if so, the pollution level determination module determines whether the air pollution exceeds a predetermined value, and if so, the route generation module is based on the current vehicle location Re-planning at least one travel route with the vehicle destination on the air quality map.
  • the prediction module is communicably connected to the pollution determination module and the pollution degree determination module, wherein the pollution determination module determines the vehicle according to a prediction result of the prediction module Whether there is air pollution at the location when the location is reached, and if so, the pollution level determination module determines whether the air pollution exceeds a predetermined value, and if not, sends a prompt message.
  • the pollution trend judging module is configured to judge whether the position has a tendency of air pollution according to a trend of change in air quality over a period of time at the same location.
  • an in-vehicle air quality control method including the steps of:
  • it includes the steps of:
  • the method includes the steps of: (d) triggering an air interaction device to operate outside the vehicle when the outside air quality information is relatively better than the in-vehicle air quality information Thereby adjusting the air quality inside the car.
  • step (c) further comprises the steps of:
  • step (e) further comprises the steps of:
  • step (d) further comprises the steps of:
  • the air interaction device is implemented as a window system and/or an air conditioning system.
  • the method includes the steps of: when the off-board air quality information is greater than the in-vehicle air quality
  • the in-vehicle air quality information of the off-board air quality information is detected by switching the detection path by a same air quality sensor disposed in a duct of the vehicle.
  • the in-vehicle air quality information of the off-board air quality information is separately detected by a plurality of air quality sensors disposed in a duct of the vehicle.
  • the present invention further provides an in-vehicle air quality adjustment system suitable for a vehicle having an air purification device and an air interaction device, including:
  • a detecting module for detecting air quality inside and outside the vehicle to form an in-vehicle air quality information and an outboard air quality information
  • a device control module controls the air purification device and the air interaction device according to the in-vehicle air quality information and the off-board air quality information
  • the device control module includes a process a module, an air purification device control module, and an air interaction device control module
  • the processing module determines a manner of adjusting the interior of the vehicle according to the in-vehicle air quality information and the outside air quality information to form a trigger information.
  • the air purifying device control module and the air interaction device control module trigger the corresponding air purifying device and the air interacting device to operate according to the trigger information.
  • the processing module determines the outside air quality according to the outside air quality information, wherein when the outside air quality is poor, the air interaction device control module controls according to the trigger information.
  • the air interaction device closes the interior space of the vehicle, wherein when the air quality outside the vehicle is good, the air interaction device control module triggers the air interaction device to start working according to the trigger information.
  • the processing module determines whether the air in the vehicle needs to be adjusted according to the in-vehicle air quality information, wherein the air purifying device control module is configured according to the trigger information when the in-vehicle air needs to be adjusted. , triggering the air purifying device to start working.
  • the in-vehicle air detection module is mounted in a duct of the vehicle.
  • the detection system includes an in-vehicle air detection module and an off-board air detection module, wherein the in-vehicle air detection module detects in-vehicle air quality to form the in-vehicle air quality information.
  • the outboard air detection module detects the outside air quality to form the off-board air quality information, wherein the in-vehicle air detection module and the off-board air detection module are installed in the air duct of the vehicle.
  • the off-board air detecting module is communicably connected to the Internet to positionally acquire Internet data of the outside air quality to form the outboard air quality information.
  • the off-board air detecting module acquires the out-of-vehicle air quality information along the route in advance according to the navigation route of the vehicle.
  • the device control module includes a setting module, wherein the setting module forms a setting information according to the trigger information, the in-vehicle air quality information, and the off-board air quality information. For setting corresponding air interaction devices and/or air purification device operating parameters.
  • the air interaction device control module further includes a window control module and/or an air conditioning control module, wherein the processing module is based on the in-vehicle air quality information and the outside air quality
  • the information forms a selection triggering information, wherein the window control mode and/or the air conditioning control module triggers operation of the corresponding window system and/or the air conditioning system according to the selection trigger information.
  • the air purification device is wirelessly communicatively coupled to the air purification device control module.
  • the in-vehicle air quality adjustment system further includes a display module, wherein the module displays the in-vehicle air quality information, the off-board air quality information, and the trigger information.
  • the present invention further provides a vehicle comprising:
  • the present invention provides an air quality acquisition system, the air quality acquisition system comprising:
  • the geographic location module is configured to confirm a geographic location of an area
  • a processing module wherein the processing module processes an air quality result for the area based on an air quality data acquisition of the area acquired by a vehicle with an air detector.
  • the processing module includes a determination module and a generation module, wherein the determination module determines whether the vehicle with the air detector detects the area at the geographic location An air quality data, if so, the generation module generates an air quality result for the area based on the detected air quality data.
  • the processing module further includes a re-judging module and a fitting module, wherein the judging module judges that the vehicle having the air detector does not detect the area Air quality data, the re-judging module determining whether the vehicle with the air detector detects the air quality data within a predetermined range from the area, and if so, the fitting module The air quality result of the region is generated based on the air mass fit from the predetermined range from the region.
  • a time position location module is further included, wherein the time position location module is used to confirm a time location of the area and is communicatively coupled to the processing module.
  • the processing module further includes an analysis module, wherein the analysis module obtains an analysis result based on the air quality data of the area and a source location of the air quality data, The generating module generates the air quality result of the region according to the analysis result.
  • the generating module is arranged to process the air quality data in a manner that determines the processing means of the air quality data during processing according to different source locations and to derive information about the region The air quality results.
  • the processing module further includes an analysis module, wherein the analysis module is based on the air quality data of the area and a vehicle state of the vehicle that detects the air quality data And an analysis result, the generating module generates the air quality result of the region according to the analysis result.
  • a detection type positioning module is further included, wherein the detection type positioning module is communicably connected to the processing module, and the detection type positioning module is configured to confirm one of the air quality data. Types of.
  • a pollution locating module communicatively coupled to the geographic location locating module, wherein the pollution locating module compares the same location in the region The change of each of the air quality data detected at different times exceeds a preset value to confirm that the position is a pollution point.
  • a pollution locating module communicatively coupled to the geographic location locating module, wherein the pollution locating module compares different locations at the same time in the region The detected change in each of the air quality data exceeds a predetermined value to confirm that the location is a pollution point.
  • the present invention provides an air quality obtaining method, wherein the air quality obtaining method comprises the following steps:
  • step (d) comprises:
  • a geographic location of a region is identified, wherein said step (d) is prior to said step (a).
  • step (d) is implemented as:
  • step (a) Determining the geographic location and a temporal location of the area, wherein the step (a) is performed to: determine whether at least one of the vehicles with the air detector detects the area at the time location The air quality data.
  • the method further comprises the following steps:
  • the method further comprises a step (e), wherein the step (e) comprises:
  • step (c) Determining a type of the air quality data for the area to be detected, wherein the step (c) is prior to the step (a), and the step (a) is implemented as:
  • step (b) is implemented as:
  • At least one contaminated location of the region is confirmed based on the analysis.
  • step (b) at least one of the contaminated locations of the region is confirmed by comparing each of the air quality data.
  • step (b) at least one of the contaminated locations of the region is confirmed by comparing the air quality data at different times of the same source location.
  • step (b) is implemented as:
  • a map result is generated in a manner that combines the air quality data with the source location.
  • step (b) is implemented as:
  • the air quality data is processed in a manner that determines the processing means of the air quality data during processing in accordance with the difference in source locations and results in the air quality results for the region.
  • the vehicle state comprises a vehicle location information.
  • the vehicle state comprises a vehicle travel speed information.
  • the step (b) further comprises: determining whether at least one of the respective air quality data has a deviation outside a preset range;
  • step (b) is implemented as:
  • An air quality result for the area is derived based on the air quality data averaged by the vehicle.
  • step (b) is implemented as:
  • An air quality result for the region is derived from the air quality data acquired by the vehicle.
  • the present invention provides an air quality obtaining method, wherein the air quality obtaining method comprises the following steps:
  • the method further comprises the following steps:
  • an air quality result for the area is derived based on the air quality data processing.
  • the present invention provides an air quality obtaining method, wherein the air quality obtaining method comprises the following steps:
  • the air quality data is processed to obtain an air quality result for the area.
  • the method further comprises the following steps:
  • the air quality data is processed to obtain an air quality result for the area.
  • the present invention provides an air quality obtaining method, wherein the air quality obtaining method comprises the following steps:
  • the demand instruction includes a geographic location of an area
  • the air quality data is processed to derive an air quality result for the area.
  • the present invention provides an air quality obtaining method, wherein the air quality obtaining method comprises the following steps:
  • the present invention provides an air quality obtaining method, wherein the air quality obtaining method comprises the following steps:
  • An air quality result of the region is output based on the real-time air quality map.
  • a vehicle comprising:
  • a vehicle body, and an air quality based vehicle navigation system according to any of the preceding claims, wherein said vehicle navigation system is disposed on said vehicle body.
  • an air quality based vehicle navigation method comprising the steps of:
  • the navigation method further comprises the steps of:
  • the air quality map is generated based on the air quality data and a road data.
  • step (c) is implemented as:
  • At least one travel route is planned on the air quality map based on time cost and air quality.
  • step (c) is implemented as:
  • At least one driving route is planned on the air quality map based on the length of the route and the air quality.
  • step (c) is implemented as:
  • At least one travel route is generated based on the air quality map and a user setting command.
  • the navigation method further comprises the steps of:
  • the travel routes are sorted according to a sorting rule.
  • the vehicle navigation method further comprises the steps of:
  • the vehicle navigation method further comprises the steps of:
  • a travel route is re-planned based on the current location of the vehicle and the vehicle destination information.
  • the vehicle navigation method further comprises the steps;
  • the vehicle navigation method further comprises the steps of:
  • the vehicle navigation method further comprises the steps of:
  • the pollution level determining module determines whether the air pollution exceeds a preset value
  • the route generation module re-plans at least one travel route on the air quality map based on the current vehicle location and the vehicle destination.
  • the vehicle navigation method further comprises the following steps:
  • the pollution level determining module determines whether the air pollution exceeds a preset value
  • FIG. 1A is a schematic view showing an application scenario of an in-vehicle air quality control system and method according to an embodiment of the present invention, showing a situation in which the air quality outside the vehicle is poor.
  • 1B is a schematic view of a vehicle showing the adjustment of air inside the vehicle by means of purification, in accordance with an embodiment of the present invention.
  • FIG. 2A is a schematic view showing an application scenario of an in-vehicle air quality control system and method according to an embodiment of the present invention, showing a situation in which the air quality outside the vehicle is good.
  • 2B is a schematic view of a vehicle showing the adjustment of air inside the vehicle by means of air interaction, in accordance with an embodiment of the present invention.
  • 2C is a schematic view of a vehicle showing the adjustment of air inside the vehicle by means of air interaction, in accordance with an embodiment of the present invention.
  • FIG. 3 is a schematic structural view of an in-vehicle air quality control system in accordance with an embodiment of the present invention.
  • FIG. 4 is a flow chart of adjustment of a method of controlling air quality in a vehicle according to an embodiment of the present invention.
  • FIG. 5 is a flow chart of an air interaction device adjustment method of an in-vehicle air quality control method according to an embodiment of the present invention.
  • FIG. 6 is a block diagram of an air quality acquisition system in accordance with a preferred embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the application of an air quality acquisition system in accordance with a preferred embodiment of the present invention.
  • FIG. 8A is a schematic diagram of an application of an air quality acquisition system in accordance with a preferred embodiment of the present invention.
  • Figure 8B is a schematic illustration of the application of an air quality acquisition system in accordance with a preferred embodiment of the present invention.
  • FIG. 9 is a schematic diagram of the application of an air quality acquisition system in accordance with a preferred embodiment of the present invention.
  • Figure 10 is a schematic illustration of the application of an air quality acquisition system in accordance with a preferred embodiment of the present invention.
  • FIG. 11 is a schematic diagram of the application of an air quality acquisition system in accordance with a preferred embodiment of the present invention.
  • Figure 12 is a schematic illustration of a vehicle with an air detector in accordance with a preferred embodiment of the present invention.
  • Figure 13 is a block diagram of an air quality navigation system in accordance with a preferred embodiment of the present invention.
  • FIG. 14 is a schematic diagram of an application of an air quality navigation system in accordance with a preferred embodiment of the present invention.
  • 15 is a schematic diagram of an application of an air quality navigation system in accordance with a preferred embodiment of the present invention.
  • 16 is a schematic diagram of an application of an air quality navigation system in accordance with a preferred embodiment of the present invention.
  • FIG. 17 is a schematic diagram of an application of an air quality navigation system in accordance with a preferred embodiment of the present invention.
  • Figure 18 is a schematic illustration of a vehicle with an air detector in accordance with a preferred embodiment of the present invention.
  • the term “a” is understood to mean “at least one” or “one or more”, that is, in one embodiment, the number of one element may be one, and in other embodiments, the element The number can be multiple, and the term “a” cannot be construed as limiting the quantity.
  • the in-vehicle air quality control system includes a detection module 10 and a device control module 20, wherein the detection module 10 detects air quality conditions inside and outside the vehicle, and acquires an in-vehicle air quality information 11 and a The vehicle air quality information 12, the equipment control module 20 controls an air interaction device 100 and/or an air purification device 200 according to the vehicle interior air quality information 11 and the vehicle exterior air quality information 12, thereby implementing the interior of the vehicle.
  • the adjustment of the air is even optimized.
  • the air interaction device 100 can be implemented as a device such as a window system and/or an air conditioning system that interacts with air inside and outside the vehicle to achieve air conditioning and optimization.
  • the air interaction device 100 may be implemented as a device that purifies and optimizes air by purifying the air inside the vehicle by an in-vehicle air cleaner or the like.
  • the detection module 10 includes an in-vehicle air detection module 13 for detecting air quality in the vehicle to form the in-vehicle air quality information 11.
  • the in-vehicle air quality information 11 may include, but is not limited to, a PM2.5 value, a PM10 value, whether there is a harmful gas, whether the carbon dioxide content is too high, temperature, humidity, or the like.
  • the in-vehicle air detecting module 13 can be implemented as a combination of one or more of a PM2.5 detector, a PM10 detector, a temperature detector, a humidity detector, a wind speed detector, a cigarette detector, an organic compound detector, and the like. To measure the air quality data in the car and provide intelligent control services for subsequent devices.
  • the detection module 10 further includes an off-board air detection module 14 for detecting the outside air quality to form the off-board air quality information 12.
  • the off-board air quality information 12 may include, but is not limited to, a PM2.5 value, whether there is a harmful gas, whether the carbon dioxide content is too high, temperature, humidity, and the like.
  • the off-board air detecting module 14 can also be implemented as a combination of one or more of a PM2.5 detector, a PM10 detector, a temperature detector, a humidity detector, a wind speed detector, a cigarette detector, etc., to measure the vehicle. External air quality data for intelligent control of subsequent equipment.
  • the in-vehicle air detecting module 13 and the off-board air detecting module 14 are implemented as a PM2.5 detector, so that the device control module 20 can control the device according to the PM2.5 value inside and outside the vehicle. Air inside the car. It can be known by those skilled in the art that the in-vehicle air detecting module 13 and the off-board air detecting module 14 can share the same detector or sensor, or can be independently equipped with corresponding detectors or sensors, and the present invention Not limited.
  • the in-vehicle air detecting module 13 is installed in a wind tunnel of the vehicle, such as an air conditioning duct or a separate detecting air duct, and extracting the inside and outside of the vehicle.
  • the air sample is detected to form the in-vehicle air quality information 11 and the off-board air quality information 12.
  • the in-vehicle air detection module 13 and/or the off-board air detection module 14 are preferably implemented as a sensor having a water-vapor separation structure, in particular a PM2.5 sensor.
  • reducing the humidity is less than the detection accuracy, on the other hand filtering large particles and protecting the sensor life as much as possible.
  • the off-board air detection module 14 is communicatively coupled to the Internet to positionally acquire Internet data of the outside air quality to form the off-board air quality information 12 without additional installation detection.
  • the equipment detects the air quality outside the vehicle and reduces the cost.
  • the off-board air detecting module 14 is operatively connected to the vehicle navigation module, and pre-acquires the air quality of the vehicle along the route according to the navigation route of the vehicle, that is, the outboard air quality information 12 may include navigation. Air quality data along the route.
  • the device control module may take measures in advance according to various air quality data acquired in advance.
  • the device control module 20 can control the window to close and open the air purifying device to ensure that the vehicle is in the vehicle when passing through the area. Air quality is not contaminated by the air quality outside the car.
  • the device control module 20 includes a processing module 21, an air cleaning device control module 22, and an air interaction device control module 23, wherein the processing module 21 analyzes the in-vehicle air quality information 11 and the outside of the vehicle.
  • the air quality information 12 determines that the air inside the vehicle is adjusted by means of air interaction or purification inside and outside the vehicle to form a trigger information 211.
  • the air purifying device control module 22 selects whether to trigger the operation of the corresponding air purifying device 200 according to the trigger information 211.
  • the air cleaning device 200 can be communicatively coupled to the air cleaning device control module 22 via Bluetooth, WiFi, or the like. That is, the consumer can additionally purchase the air purifying device 200, wirelessly connected to the in-vehicle air quality control system of the present invention, and does not need to modify the vehicle itself to load the air purifying device 200.
  • the air interaction device control module 23 selects whether to trigger the operation of the corresponding air interaction device 100 according to the trigger information 211.
  • the air interaction device 100 can be implemented as a window system and/or an air conditioning system loaded by the vehicle itself, and can be connected by wireless or wired means such as Bluetooth or WiFi, and the present invention is not limited thereto.
  • the processing module 21 analyzes the in-vehicle air quality information 11 and the off-board air quality information 12, and determines whether the in-vehicle air quality needs to be adjusted and adjusted to trigger the corresponding air purifying device 200 or the The air interaction device 100 operates.
  • the processing module 21 analyzes whether the air in the vehicle needs to be adjusted according to the in-vehicle air quality information 11. For example, when the air information 11 in the vehicle indicates that the air inside the vehicle contains harmful gases such as second-hand smoke, high oxygen and carbon dioxide content, odor or PM10, PM2.5 does not meet the standard, etc., the vehicle is judged. The internal air needs to be adjusted. When the in-vehicle air information 11 indicates that the air quality in the vehicle is normal, there is no harmful gas, oxygen and carbon dioxide content, PM10, PM2.5 is normal, etc., and it is determined that the air in the vehicle does not need to be adjusted, it is not necessary to trigger the air purifying device 200. Or the air interaction device 100 operates, or does not need to change its current working state.
  • harmful gases such as second-hand smoke, high oxygen and carbon dioxide content, odor or PM10, PM2.5 does not meet the standard, etc.
  • the vehicle is judged.
  • the internal air needs to be adjusted.
  • the in-vehicle air information 11 indicates
  • the processing module 21 determines that the in-vehicle air needs to be adjusted, whether the outside air quality reflected by the outside air quality information 12 is good, the analysis is applicable to the purification or air interaction mode adjustment. For example, according to whether the PM2.5 of the air outside the vehicle meets the standard, whether the PM10 meets the standard, whether the value of toxic gas such as nitrogen dioxide or sulfur dioxide is within the safe range, whether the wind speed and humidity are suitable for the personnel in the vehicle, etc. the way.
  • the processing module 21 triggers the air interaction device control module 22 to work.
  • the air interaction device 100 is further controlled to operate information, such as opening a window, opening a ventilation and ventilation system of the air conditioner, etc., to achieve air interaction to adjust air quality in the vehicle, as shown in FIGS. 2B and 2C.
  • the processing module 21 triggers the air interaction device control module 23 and/or the air cleaning device control module 23 to work.
  • the operation of the air interaction device 100 is stopped, and the air cleaning device 200 is activated.
  • triggering the air interaction device control module 23 to control the opening of the open window to stop the ventilation and ventilation system of the air conditioner, thereby preventing the outside air from contaminating the air in the vehicle; and purifying the air in the vehicle through an air purifier or the like, To achieve purification and adjust the air quality inside the car, as shown in Figure 1B.
  • the processing module 21 can form the trigger information 211, thereby triggering the air interaction device control module 23 to work. Controlling the air interaction device 100 to stop working or shut down.
  • the trigger information 211 formed by the processing module 21 may include, but is not limited to, whether to turn on or off the ventilation ventilation system of the air conditioner, whether to open the window, whether to close the window, whether to activate the air purification device 200, and the like.
  • the air purifying device control module 22 and the air interaction device control module 23 trigger the corresponding air purifying device 200 and the air interacting device 100 to operate according to the trigger information 211.
  • the air quality control system can actively adjust and optimize the air quality inside the vehicle without driver control, avoiding the distraction of the driver during driving, and improving driving safety. Moreover, the air quality control system can still ensure the air quality control and optimization in the vehicle through the double layer of purification and air interaction.
  • the air interaction device control module 23 includes a window control module 231 and an air conditioning control module 232.
  • the window control module 231 controls the opening and closing of the window, the degree of windowing, and the like according to the trigger information 211.
  • the air conditioning control module 232 controls the switch, the set temperature, the wind speed, and the like of the vehicle air conditioner according to the trigger information 211.
  • the processing module 21 forms a selection trigger information 212 for selectively triggering the window control module 231 and/or the air conditioner according to the in-vehicle air quality information 11 and/or the off-board air quality information 12
  • Control module 232 operates. For example, when it is raining, in order to prevent rainwater from entering the vehicle, the processing module 21 selects the air conditioning control module 232 to work, interacts with the air through the ventilation system of the air conditioner, and prevents rainwater from entering the vehicle, forming the selection trigger information 212. As shown in Figure 2B.
  • the processing module 21 selects the window control module 231 to work, and uses the natural circulation of air to exchange air to prevent the person in the vehicle from being in the air conditioning environment for a long time, forming the selection trigger information 212, as shown in the figure. 2C is shown.
  • the window control module 231 and the air conditioning control module 232 can also be triggered to work simultaneously according to preset conditions, and the invention is not limited.
  • the window control module 231 or the air conditioning control module 232 is triggered to work at the same time.
  • Those skilled in the art can preset different conditions, and the above is only an example and is not a limitation.
  • the device control module 20 further includes a setting module 24.
  • the setting module 24 forms a setting information 241 according to the trigger information 211, the in-vehicle air quality information 11 and the off-board air quality information 12, for setting the corresponding air interaction device 100 and/or The air cleaning device 200 operates parameters.
  • the setting information 241 may include, but is not limited to, a purifying wind speed and a purifying time of the purifying device, a switching state of each window, a degree of opening of the window, an air conditioning ventilation speed, an air conditioning setting temperature, and the like.
  • the air cleaning device control module 22 triggers the air cleaning device 200 to start.
  • the setting module 24 forms setting information 241 such as a purifying wind speed file and a purifying working time according to the in-vehicle air quality information 11.
  • the air purifying device control module 22 sets an operational parameter of the air purifying device 200 according to the setting information 241. For example, if the in-vehicle air quality information 11 indicates that there is a harmful gas or oxygen deficiency in the vehicle, such as second-hand smoke, the setting information 241 can display the highest purifying wind speed to achieve rapid purification.
  • the setting module 24 forms, according to the in-vehicle air quality information 11 and the off-board air quality information 12, whether the window of the driving area is opened, whether the window of the passenger area is opened, and whether the window of the rear seat area is opened.
  • the setting information 241 is set such as the degree of opening such as full opening or half opening.
  • the window control module 231 sets an operating parameter of the window according to the setting information 241. For example, if the in-vehicle air quality information 11 indicates that there is a harmful gas such as second-hand smoke in the vehicle, the setting information 241 may display that all the windows are fully opened to quickly disperse the second-hand smoke. Or, for example, the outside air quality information 12 indicates that the outside wind speed is large and the temperature is low, the setting information 241 may indicate that only the rear seat area window is half open.
  • the setting module 24 forms, for example, an air conditioning ventilation wind speed, whether the dehumidification, the temperature, the air conditioning vent in the front seat area is turned on, and the air conditioning ventilation in the rear seat area according to the in-vehicle air quality information 11 and the outside air quality information 12.
  • the setting information 241 is turned on or not.
  • the air conditioning control module 232 sets an operating parameter of the air conditioning system according to the setting information 241.
  • the setting information 241 can display the air conditioning temperature of 17 degrees Celsius, dehumidification, and the front and rear air conditioners.
  • the vents are open.
  • setting information 241 of other contents may be formed in the same case.
  • a person skilled in the art can design different conditions according to requirements to form corresponding setting information 241, which is not limited by the present invention.
  • the in-vehicle air quality control system further includes a display module 30, wherein the display module 30 displays the in-vehicle air quality information 11 and the off-board air quality information 12, In order to know the current state of the environment, especially the air quality inside the vehicle.
  • the display module 30 can be implemented as a display screen mounted on a vehicle, an electronic device such as a mobile phone or a tablet of a person in the vehicle, and the invention is not limited thereto.
  • the display module 30 can also display the trigger information 211 and the setting information 241. For example, it shows whether the current air adjustment mode is interaction or purification, the working state and working parameters of the window, the working state and working parameters of the air conditioner, the working state and working parameters of the air purifier, and the like.
  • the present invention further provides an in-vehicle air quality control method.
  • the in-vehicle air quality control method can be applied to the above-described in-vehicle air quality control system to achieve the above objects and advantages of the invention, and to solve the problems of the present invention.
  • FIG. 4 it is a flow chart of a method for adjusting air quality in a vehicle according to the present invention.
  • Step 301 Detecting air quality in the vehicle to form an in-vehicle air quality information 11.
  • the detection of the air quality in the vehicle may be by a combination of one or more of a PM10 detector, a PM2.5 detector, a temperature detector, a humidity detector, a wind speed detector, a cigarette detector, etc., and the method of the present invention is not limited.
  • the in-vehicle air quality information 11 may include, but is not limited to, PM2.5, PM10, temperature, humidity, presence of harmful gases, and the like.
  • Step 303 Acquire an off-board air quality information 12.
  • the acquisition of the off-board air quality information 12 may be obtained by an off-board air quality detecting instrument configured by the vehicle, or may be acquired from the network in a targeted manner.
  • the vehicle exterior air quality detecting instrument of the vehicle configuration may also be a combination of one or more of a PM10 detector, a PM2.5 detector, a temperature detector, a humidity detector, a wind speed detector, and a cigarette detector.
  • buses are long-distance buses, passing through different areas, especially the inter-provincial buses. That is to say, for vehicles, they are not used in fixed rooms, and the air quality outside the car is constantly changing, as shown in Figure 1A and 2A is shown. Therefore, when the outside air quality information 12 is acquired by the outside air quality detecting instrument, real-time detection is required, and the pair is supplied in time. When the off-board air quality information 12 is acquired from the network, the route can be navigated, and the data corresponding to the route can be acquired in advance, thereby responding in advance.
  • the off-board air quality information 12 may include, but is not limited to, PM2.5, PM10, temperature, humidity, presence or absence of harmful gases, and the aforementioned parameters of different locations.
  • Step 305 Analyze whether the air in the vehicle needs to be adjusted according to the in-vehicle air quality information 11.
  • the in-vehicle air quality information 11 can reflect whether the passenger is in a good air environment. For example, when the air quality information 11 in the vehicle reacts to one or more of the conditions of second-hand smoke, excessive carbon dioxide, and high temperature, the surface passengers are in a bad air environment, and the air inside the vehicle needs to be adjusted and optimized to Keep passengers healthy.
  • step 303 does not follow the numerical serial number limitation.
  • a person skilled in the art may perform step 303 first, and perform steps 301 and 305; or perform step 301 first, and then perform step 305, step 303; or step 301 and step 303 are performed simultaneously.
  • Step 307 When the air in the vehicle needs to be adjusted, it is analyzed whether the air outside the vehicle is good according to the outside air quality information 12.
  • the off-board air quality information 12 can reflect whether the ambient air quality of the vehicle is good. For example, when the PM2.5 or PM10 outside the vehicle exceeds the standard, it indicates that the air outside the vehicle is poor. For example, when the air outside the vehicle contains toxic gases, it indicates that the air outside the vehicle is poor.
  • the air good standard can be preset according to the user's requirements, but it cannot meet the national standards to avoid health threats.
  • Step 309 Trigger an air interaction device 100 when the outside air is good.
  • the air quality inside and outside the vehicle can be adjusted by opening the window or the air conditioning ventilation system to adjust the air quality inside and outside the vehicle. For example, after the air inside and outside the car is circulated, the ratio of carbon dioxide and oxygen in the car is normal, the amount of dust is reduced, and PM2.5 is also lowered.
  • Step 311 Set the air interaction device 100 operating parameters according to the outside air quality information 12 and the in-vehicle air quality information 11.
  • the corresponding working parameters of the air interaction device 100 can be set to provide services for the in-vehicle personnel more humanely and fit. For example, according to the wind speed outside the vehicle, the opening size of the window is set, whether it is a front window or a rear window. For example, according to the severity of the air inside the vehicle, the air conditioning ventilation speed is set, and the highest wind speed is set if the air in the vehicle contains poisonous gas.
  • the air interaction device 100 operating parameters may be preset.
  • Step 313 When the outside air is bad, that is, lower than a preset standard, an air purifying device 200 is triggered to work.
  • air conditioning can be achieved by purging the air in the vehicle by the air purifying device 200.
  • Step 315 Set the operating parameters of the air cleaning device 200 according to the in-vehicle air quality information 11.
  • the operating parameters of the air cleaning device 200 are correspondingly set according to the in-vehicle air quality information 11 in response to the in-vehicle air quality condition. For example, according to the severity of the air inside the vehicle, the purifying wind is set, and the highest wind speed is set if the air in the car contains poisonous gas. For example, according to the air condition in the vehicle, the basic purification working time is set, so that the package is effectively purified.
  • the step 313 may further perform step 308: closing the interior space of the vehicle. For example, close the open window, stop the air conditioning ventilation system, and so on.
  • Step 317 When the air inside the vehicle is good, continue to monitor the air quality inside the vehicle. That is, when the air inside the vehicle is good, steps 301 and 303 are performed until the in-vehicle air quality needs to be adjusted to perform the subsequent steps.
  • step 305 is not a necessary step, and even if the air inside the vehicle does not need to be adjusted, but is in a good state, after analyzing whether the outside air is good, the steps 307, 308, and 309 are performed. That is to say, when the in-vehicle air quality information 11 indicates that the air quality in the vehicle is good, in order to avoid the pollution of the air quality outside the vehicle, when the air outside the vehicle is bad, the interior space of the vehicle is closed, and the air purification is triggered. Device 200 operates.
  • FIG. 5 in the in-vehicle air quality control method of the present invention, a schematic diagram of adjusting the air flow in the vehicle for the air interaction device 100 such as a specific window system and an air conditioning system is shown.
  • Step 402 Form a selection trigger information 212 according to the in-vehicle air quality information 11 and the off-board air quality information 12.
  • the selection trigger information 212 includes, but is not limited to, whether to open the window, whether to turn on the air conditioner, whether to turn on the air conditioning ventilation system, and the like. Specifically, the formation of the selection trigger information 212 may be formed by analyzing the in-vehicle air quality information 11 and the off-board air quality information 12 by using the trigger module 21, and the trigger module 21 may be implemented as a central The processor, the server, etc., the invention is not limited.
  • the selection trigger information 212 displays triggering air conditioning ventilation instead of opening the window for consideration of in-vehicle comfort.
  • Step 403 Determine whether the quality of the outside air is good according to the outside air quality information 12.
  • Step 404 When the air quality outside the vehicle is good, triggering a window system to work according to the selection trigger information 212.
  • the window system is triggered to operate, for example, the closed window is opened.
  • Step 406 Set operating parameters of the window system according to the in-vehicle air quality information 11 and the off-board air quality information 12.
  • the window in the driving area is opened, whether the window in the passenger driving area is open, whether the window in the rear seat area is open, whether the opening degree is fully open or half open, and other working parameters.
  • the difference between the in-vehicle air quality information 11 and the off-board air quality information 12 may also affect the setting of the operating parameters.
  • the outside air quality information 12 indicates that the outside wind speed is large, and the temperature is low, then only the setting is set. The rear window is half open.
  • step 408 when the air quality outside the vehicle is good, triggering an air conditioning system to work according to the selection trigger information 212.
  • the window system is triggered to operate, such as the ventilation system starts to work, the heating or heating system starts to work, the dehumidification function is turned on, and the like.
  • Step 410 Set operating parameters of the air conditioning system according to the in-vehicle air quality information 11 and the off-board air quality information 12.
  • the air conditioning ventilation speed For example, setting the air conditioning ventilation speed, whether to dehumidify, the temperature, whether the air conditioning vents in the front seat area are open, whether the air conditioning vents in the rear seat area are open, etc.
  • the difference between the in-vehicle air quality information 11 and the off-board air quality information 12 also affects the setting of the operating parameters.
  • the outside air quality information 12 indicates that there is second-hand smoke in the vehicle, and the air conditioning vents in the front seat area and the rear seat area are all opened to quickly exchange air.
  • Step 412 When the air quality outside the vehicle is poor, the interior space of the vehicle is closed.
  • step 403 may be performed prior to step 402.
  • the air quality system is capable of acquiring the positional air quality data of the vehicle 7200A through a vehicle 7200A with an air detector 71A and is capable of feeding back air quality results for different areas to the user for reference.
  • the air quality acquisition system includes a geolocation module 710 and a processing module 720, wherein the geolocation module 710 is configured to confirm a geographic location of an area, and the processing module 720 is configured to The geographic location of the region obtains an air quality result for the region.
  • the geolocation module 710 is communicably coupled to the processing module 720.
  • the geographic location location module 710 can be a display screen communicatively coupled to a vehicle 7200A or a voice receiving device to obtain an instruction of a user regarding the geographic location of the area.
  • the geolocation module 710 can also be a module communicatively coupled to a location of a vehicle 7200A to provide the air quality outcome based on the geographic location of the vehicle 7200A.
  • the air quality system is capable of providing the air quality data to the vehicle 7200A that does not have the air detector 71A installed or that is not provided by a user on the vehicle 7200A. data.
  • the air quality acquisition system acquires the air quality result for the area by the vehicle 7200A with the air detector 71A.
  • the number of air samples and the type of air sample are not limited by the fixed position and the fixed position air sensor type.
  • the source of the air sample can be more diverse, and due to the athletic ability of the vehicle 7200A, one of the vehicles 7200A can detect an air quality within a very wide range, regardless of whether the vehicle 7200A is in a motion state or not.
  • the air detectors 71A can all be in an air operating state to provide an air quality data for the environment in which the vehicle 7200A is located. With the current large number of vehicles, the 7200A, a powerful air detection network is formed to monitor air quality at all times.
  • the processing module 720 includes a determining module 721 and a generating module 722, wherein the determining module 721 is configured to determine whether the vehicle 7200A with the air detector 71A is in the area.
  • the geographic location detects an air quality data for the area, and the generation module 722 is communicably coupled to the determination module 721.
  • a determination result of the determining module 721 is affirmative, and the generating module 722 generates an air quality result about the area according to the air quality data.
  • the determination module 721 is communicably coupled to the vehicle 7200A with the air detector 71A to determine the data detected by the air detector 71A.
  • the generation module 722 is communicably coupled to the vehicle 7200A with the air detector 71A to process the air quality data from the area to obtain a location for the area The air quality results.
  • the air quality result may be an air quality result that is capable of feeding back air quality throughout the area, such as superior, good, poor, and the like.
  • the generating module 722 directly compares the data with a standard data to obtain the air quality result.
  • the generating module 722 passes the average and fits.
  • the method furtherly processes the air quality data of the plurality of regions to obtain a processed data, and compares the processed data with the standard data to obtain the air quality result.
  • the generating module 722 can also directly generate the processed data, for example, the PM2.5 data of the area is 780.
  • the air quality result may also be that the data is directly presented in a map manner, that is, the air quality data and a source location of the air quality data are combined to obtain an intuitive display effect.
  • the detection of air quality by the vehicle 7200A has its advantages and disadvantages.
  • the disadvantage is that some of the areas may not be passed by the vehicle 7200A or the vehicle 7200A is generally unable to enter.
  • the area for example some roads are rugged or according to the area where no roads are provided for the vehicle 7200A to pass.
  • the air quality acquisition system is also capable of acquiring an air quality result for the area.
  • the processing module 720 includes a re-judging module 723 and a fitting module 724, wherein the fitting module 724 is communicably connected to the judging module 721 and the re-judgement module 723, the A determination module 723 is communicably coupled to the generation module 722.
  • the determination result obtained by the determining module 721 is that the air quality data of the area detected by the vehicle 7200A with the air detector 71A is not present, and the re-judging module 723 determines whether there is any presence.
  • the vehicle 7200A with the air detector 71A detects the air quality data within a predetermined range from the area.
  • the fitting module 724 fits the generated area according to the air quality data from the preset range from the area.
  • the fitting module 724 is communicably coupled to the vehicle 7200A with the air detector 71A within the predetermined range from the area to obtain the air quality data it detects.
  • the air quality acquisition system is capable of acquiring the air quality result for the area detected by the vehicle 7200A without the air.
  • the air quality acquisition system is capable of acquiring a real-time air quality detection result for the area by real-time air detection of the vehicle 7200A with the air detector 71A, it is worth mentioning that the air quality acquisition system A historical air quality result for the area can also be provided for reference.
  • the air quality acquisition system includes a time position location module 730 and a storage module 740, wherein the time position location module 730 is communicably coupled to the processing module 720 and the geographic location module 710.
  • the time position location module 730 is used to locate a time position with respect to the area.
  • the storage module 740 is communicably coupled to the processing module 720 for storing historical data regarding the air quality data.
  • the time position of the area can be confirmed by the time position location module 730, and the determining module 721 of the processing module 720 determines whether the time position and the geographic location detect the An air quality data for the zone, if so, the generation module 722 generates an air quality result for the zone at the time location and the geographic location. If not, the re-judgment module 723 determines whether there is detected air quality data within a certain range of the geographic location from the time location, and if so, the fitting module 724 is for the time location Performing a fitting process on the detected air quality data within the preset range of the area, the generating module 722 generates one for the area according to a fitting result of the fitting module 724 Air quality results.
  • an analysis module 725 is further included, wherein the analysis module 725 is communicably coupled to the generation module 722,
  • the analysis module 725 derives an analysis result based on the air quality data of the area and the detected vehicle state of the vehicle 7200A, and the generating module 722 generates the analysis result according to the analysis result.
  • the vehicle 7200A state includes a vehicle location and a vehicle travel speed information.
  • the location of the source of air quality data is also different as the location of the vehicle 7200A is within the area.
  • the processing method corresponding to the air quality data in the later data processing may be determined. For example, part of the air quality data comes from an edge position of the area, and the remaining part
  • the air quality data is derived from an intermediate position of the area, and an air of the area may be derived by increasing the weight of the air quality data from the intermediate position of the area during processing. Quality test results.
  • the generating module 722 is configured to process the air quality data in a manner that determines the processing means of the air quality data during processing according to different source locations and to derive the air quality result for the region
  • the manner in which the air quality data is in subsequent processing is also different as the state derived from the vehicle 7200A is different.
  • An air quality data acquired by the vehicle 7200A in a stationary state may be higher than an air quality data acquired by the vehicle 7200A in a moving state, particularly a high-speed moving state, and thus may be processed in subsequent processes.
  • the weight corresponding to the air quality data in the subsequent processing is determined according to the difference in the state of the vehicle from which the air quality data is acquired. It can be understood that, in an embodiment of the invention, if most of the air quality data is from the vehicle 7200A in a fixed position, the air quality of the vehicle 7200A from a high speed movement may even be After the data is removed, an air quality test result of the area is obtained.
  • the generating module 722 is configured to process the air quality data in a manner that determines a processing manner of the air quality data during processing according to a difference in the traveling speed of the vehicle at the time of detection and to derive the air about the area Quality result
  • the processing module 720 includes a correction module 726, wherein the correction module 726 is communicably coupled to the determination module 721.
  • the correction module 726 is configured to reject the air quality data in which the deviation occurs, and the generating module 722 obtains the air quality result according to the corrected air quality data.
  • the correction module 726 may compare at least three air quality detection data from adjacent locations to determine whether one of the deviations from the other at least two exceeds a predetermined value, for example, at 0.5.
  • a predetermined value for example, at 0.5.
  • three air quality data, PM2.5 750, 752, and 780 are acquired by the air detector 71A disposed in the vehicle 7200A, then the data PM2.5 780 exceeds a deviation range 710, thus the The data PM2.5 780 may be an erroneous data, the source of which may be that the air detector 71A itself is being contacted with a relatively small range of sources of contamination, for example, the user is smoking next to the air detector 71A.
  • the fact that the data PM2.5 780 does not reflect an air quality situation throughout the area.
  • the generation module 722 derives an air quality result for the region based on the corrected air quality data.
  • the air quality acquisition system includes a pollution locating module 750, wherein the pollution locating module 750 is configured to locate at least one pollution point of the area.
  • the pollution locating module 750 can obtain a pollution location of the area according to the air quality data acquired by the vehicle 7200A and the corresponding position of the vehicle 7200A by comparing the air quality data sizes of the respective locations.
  • the pollution locating module 750 is communicably connected to the determining module 721 and the generating module 722.
  • the determination result of the determining module 721 is affirmative, and the pollution locating module 750 obtains the pollution.
  • the generation module 722 generates the air quality result for the region based on the pollution point.
  • the air quality acquisition system includes a detection type positioning module 760, wherein the detection type positioning module 760 is communicably connected to the processing module 720, and the detection type positioning module 760 is configured to confirm the air. A type of quality data.
  • an air quality obtaining method by which air quality data of a certain area can be acquired by a vehicle 7200A with an air detector 71A, and because The vehicle 7200A itself has athletic ability, and the acquired air quality data is not limited to air from a fixed position, but may also be from air traveling along the vehicle 7200A. That is, in contrast to the conventional manner of providing an air sensor at a fixed sampling point, in the present invention, the number of air samples and the type of air sample are not limited by the fixed position and the fixed position air sensor type, and the air sample thereof
  • the source can be more diverse, such as by air data acquired by the vehicle 7200A with different air quality indices detected in the area.
  • the air quality obtaining method includes the following steps:
  • the air quality obtaining method further comprises a step (c), wherein the step (c):
  • the air quality obtaining method further comprises a step (d), wherein the step (d) comprises:
  • step (d) is located prior to step (a).
  • the vehicle 7200A in the step (a) is located in the area.
  • the vehicle 7200A in the step (a) is once located in the area.
  • the step (b) is implemented as: (b.1) analyzing the air quality data to obtain an analysis result;
  • step (b) is implemented as:
  • the air quality detection result of the area is obtained by determining a weight corresponding to the air quality in a subsequent process based on a position source of the air quality data.
  • the location of the source of air quality data is also different as the location of the vehicle 7200A is within the area.
  • the processing method corresponding to the air quality data in the later data processing may be determined. For example, part of the air quality data comes from an edge position of the area, and the remaining part
  • the air quality data is derived from an intermediate position of the area, and an air of the area may be derived by increasing the weight of the air quality data from the intermediate position of the area during processing. Quality test results.
  • step (b) is implemented as:
  • An air quality data acquired by the vehicle 7200A in a stationary state may be higher than an air quality data acquired by the vehicle 7200A in a moving state, particularly a high-speed moving state, and thus may be processed in subsequent processes.
  • the weight corresponding to the air quality data in the subsequent processing is determined according to the difference in the state of the vehicle 7200A from which the air quality data is acquired.
  • step (b) is implemented as:
  • step (e) comprises the steps of:
  • the determining manner in the step (e.1) may be to compare at least three air quality detecting data from adjacent positions to determine whether one of the deviations from the other at least two Whether a predetermined value is exceeded, for example, three air quality data, PM2.5 50, 52, and 80 are acquired by the air detector 71A disposed in the vehicle 7200A within a range of 0.5 meters, then the data PM2 .5 780 exceeds a deviation range of 10, so the data PM2.580 may be an erroneous data, the source of the error may be that the air detector 71A itself or is exposed to a relatively small range of pollution sources, such as The user is said to smoke next to the air detector 71A, but in fact the data PM2.5 80 does not reflect an air quality condition throughout the area.
  • the data PM2.5 80 can be stripped and processed to yield an air quality data for the area.
  • step (b) is implemented as:
  • At least one contaminated location of the region is confirmed based on the analysis.
  • step (b) at least one of the contaminated locations of the region is confirmed by comparing each of the air quality data.
  • step (b) at least one of the contaminated locations of the region is confirmed by comparing the air quality data at different times of the same source location.
  • an air quality acquisition method comprising the steps of:
  • the air quality data is processed to obtain an air quality result for the area.
  • the air quality obtaining method further comprises the following steps:
  • At least one vehicle 7200A with the air detector 71A is located within a predetermined range of the area or is within a predetermined range of the area;
  • the air quality data is processed to obtain an air quality result for the area.
  • an air quality acquisition method comprising the steps of:
  • the demand instruction includes a geographic location of an area
  • the air quality data is processed to derive an air quality result for the area.
  • an air quality acquisition method comprising the steps of:
  • an air quality acquisition method comprising the steps of:
  • An air quality result of the region is output based on the real-time air quality map.
  • the location location module 710 confirms a geographic location of the area as a hospital by an instruction from the user, and the determination module 721 determines that the vehicle 7200A with the air detector 71A exists in the area.
  • the generation module 722 generates an air quality result for the regional hospital based on the air quality data detected by the air detector 71A of the vehicle 7200A located in the area.
  • an air quality result regarding a whole of the area may be acquired after the air quality data is processed. For example, the method of averaging is adopted.
  • the location location module 710 confirms that a geographic location of a region is a hospital, and the detection type location module 760 confirms that the type of air quality data required is formaldehyde quality data in the air.
  • the determining module 721 determines whether the area has the vehicle 7200A with the air detector 71A capable of detecting formaldehyde, and if so, the generating module 722 identifies from the area belonging to the area and is related to formaldehyde. The air quality data and an air quality result for the area is generated.
  • the air quality result may be a map type, and the air quality data and the corresponding source location are directly detected and presented to the user in a map manner.
  • the location location module 710 confirms that a geographic location of a region is a park, and the time location location module 730 confirms that a time location of an area is January 1, 2018, which is a historical time, in the determining module 721.
  • the determination module 721 can be communicably connected
  • the storage module 740 in order to obtain the historical air quality data from the storage module 740, the generating module 722 according to the air quality data of the area at the geographic location and the time position An air quality result is obtained for the area.
  • the fitting module 724 is communicably connected to the storage module 740, and the fitting module 724 Based on a historical time location of the area stored in the storage module 740, such as the currently confirmed time position being a future time January 2019, based on a historical time stored in the storage module 740
  • the air quality data for January 2018, the fitting module 724 is fitted to derive at least one air quality data for the park in January 2019, and the generation module 722 is based on a fitting result of the fitting module 724.
  • An air quality result is obtained for the area.
  • the location location module 710 confirms a geographic location of an area, such as a bank, and the determination module 721 determines that the vehicle 7200A with the air detector 71A is not currently passing through the area. That is, there is a lack of air quality data for the area.
  • the re-judgment module 723 continues to determine, according to a determination result of the judging module 721, whether the vehicle 7200A with the air detector 71A passes in the 75 km range of the bank, and the re-judgement module If a determination result of 723 is affirmative, the fitting module 724 fits a fitting result based on the air quality data detected within a range of 75 kilometers of the bank, and the generating module 722 is configured according to the The result of the fitting produces an air quality result for the region.
  • the analysis module 725 detects the air quality data and its source location information within a range of 75 kilometers from the bank or a vehicle of the vehicle 7200A when the air quality data is detected.
  • the 7200A state yields an analysis result that includes, but does not limit, a vehicle 7200A travel speed information, vehicle 7200A position information.
  • the air quality data source location information includes, but is not limited to, wind speed and direction information of the source geographic location and the source geographic location of the air quality.
  • the data A comes from the east side of the area - the park, because the detector that detected the air quality data A is at that position at the time, the data B comes from the west side of the area - the park Because the air detector 71A that detected the air quality data B is at that position at the time, and the wind direction within the 5 km range of the area-park at that time is from the east side, the wind is from east to west. blow. It can be understood that at the position where the air quality data A is located, most of the air may flow from the area-park, so the air quality data A can be to some extent for an air quality of the area.
  • the generation module 722 will take different processing approaches for different of the air quality data based on the analysis results of the analysis module 725 to generate an air quality result for the region.
  • the processing module 720 will adopt a corresponding processing manner according to each of the air quality data to obtain an air quality capable of reflecting the area.
  • the air quality result of the condition based on the difference in each of the air quality data, the processing module 720 will adopt a corresponding processing manner according to each of the air quality data to obtain an air quality capable of reflecting the area. The air quality result of the condition.
  • the air quality result may be a fitting result of the air quality data from the bank within 75 kilometers of the bank by the fitting module 724.
  • the air acquisition system can not only acquire an air quality state of an area, but also can find a pollution point based on an air quality state of the area, so as to facilitate timely measures to treat the pollution point in a timely manner.
  • the sewage acquisition system can be found in time through the air acquisition system to take measures.
  • the geographic location locating module 710 confirms a geographic location of an area. It can be understood that not only the geographic location of the area can be confirmed by a user command, but also according to a preset setting. Or confirming a geographic location of an area based on the location of the vehicle 7200A disposed in the air acquisition system.
  • the pollution locating module 750 confirms that a location of the area is a contamination point based on the air quality data collected by the vehicle 7200A with the air detector 71A in the area.
  • the pollution locating module 750 confirms that the location is a pollution point by comparing the change of each of the air quality data detected at different times of the same location over a preset value. For example, in a same location in the area, the air quality data collected by a manufacturing company at 17:00, 20:00, 23:00, and 01:00 are PM2.5 10, PM2.5 15, and PM2, respectively. .5 150 and 01:00 180.
  • the pollution locating module 750 can position the manufacturing enterprise as a pollution point, and the pollution event location of the pollution point is between 23:00 and 01:00, and the production enterprise may have the suspicion of secretly discharging at night.
  • the pollution locating module 750 confirms that the location is a pollution point by comparing the change of each of the air quality data detected at different positions at the same time by more than a preset value.
  • the air quality index is detected to be PM2.5 10 at the first position, and the air quality index is detected as PM 2.5 at a position adjacent to the second position of the first position at the same time, adjacent to the same time at the same time.
  • the air quality index detected at a third position of the first position is PM2.5 100.
  • the second position and the third position are respectively within a range of 75 meters of the first position, and the pollution positioning module 750 locates the second position as a pollution point, and there may be a pollution source.
  • a vehicle 7200A is provided, wherein the vehicle 7200A includes a vehicle body 7201A and the air quality acquisition system, wherein the air quality acquisition system is disposed to the vehicle body 7201A.
  • the vehicle navigation method implements an air quality based navigation for the other vehicle 8200A or the vehicle 8200A itself by an air quality data acquired by an air detector 81A disposed in a vehicle 8200A. In this way, the user can select a driving route with a better air quality.
  • vehicle navigation system is not limited to a car, and may also be other tools with greater mobility, such as a stroller, a train, an airplane, and the like.
  • the vehicle navigation system includes an acquisition module 810 and a processing module 820, wherein the acquisition module 810 is communicably coupled to the processing module 820, wherein the acquisition module 810 is configured to acquire a vehicle location And a vehicle destination information, the processing module 820 generates at least one travel route based on the vehicle location and the vehicle destination information and according to an air quality map.
  • the air quality map includes road data and air quality data.
  • the acquisition module 810 can be communicably coupled to a positioning system of the vehicle 8200A to obtain the vehicle location, and the vehicle destination information can be from one of the vehicles 8200A disposed in a navigation system. Destination information, or the acquisition module 810 is communicably coupled to a mobile electronic device, the vehicle destination information being obtained by travel arrangements of users in the mobile electronic device.
  • the processing module 820 includes a route generation module 821, wherein the route generation module 821 generates at least one of the travel routes on the air quality map based on the vehicle location and the vehicle destination location.
  • the route generation module 821 is capable of generating at least one of the travel routes based on time cost and air quality. In some examples of the invention, the route generation module 821 is capable of generating at least one of the travel routes based on the length of the journey and the air mass. In some examples of the invention, the route generation module 821 is capable of generating at least one of the travel routes based on route congestion and air quality. In some examples of the invention, the route generation module 821 is capable of generating at least one travel route based on time cost and avoidance air pollution zones. In some examples of the invention, the route generation module 821 is capable of generating at least one travel route based on a user command.
  • the route generation module 821 will generate a travel route with a shorter time and a better air quality, so that the user can pass an air while saving time.
  • a better quality driving route can of course be a lower-cost driving route with a better air quality. It will be appreciated that different travel routes may be provided depending on the time cost and the priority of the two reference values of the air quality.
  • the vehicle navigation system includes an air quality map module 830, wherein the air quality map module 830 is configured to provide an air quality map, wherein the air quality map module 830 includes an acquisition module 831 and a map generation module. 832, wherein the acquisition module 831 is communicably connected to the map generation module 832, the collection module 831 is configured to collect air quality data of a location where the vehicle 8200A is located, and the map generation module 832 is based on the vehicle. The location and corresponding air quality data generate an air quality map.
  • the acquisition module 831 is configured to confirm an area based on the vehicle position and the vehicle destination information and to detect detection by a vehicle 8200A with an air detector 81A in the area.
  • the map generation module 832 generates an air quality map based on the vehicle location and the corresponding air quality data.
  • the air quality map can be directly fed back to the user, such as through a central control panel of the vehicle 8200A. In this way, the vehicle navigation system can timely acquire the air quality information of the road based on the real-time air quality map, thereby providing a reasonable and effective plan for the user.
  • the vehicle navigation system further includes a rule setting module 822 and a sorting module 823, wherein the rule setting module 822 is configured to set a sorting rule by the user, and the sorting module 823 is communicably connected to the The rule setting module 822 and the processing module 820 are configured to sort the travel route generated by the route generation module 821 according to the sorting rule, for example, according to the length of time, sort by distance, or according to air quality. Good or bad sorting.
  • the vehicle navigation system can not only provide the driving route based on the air quality, but also timely feedback the front air quality to the user according to the air quality map, so as to take measures in advance.
  • the processing module 820 of the vehicle navigation system further includes a pollution determination module 824 and a pollution degree determination module 825, wherein the pollution determination module 824 is communicably connected to the acquisition module 810 and the The air quality map module 830, wherein the pollution degree judging module 825 is communicably connected to the pollution judging module 824, and the pollution level judging module 825 is configured to determine an air pollution level.
  • the vehicle navigation system includes a prompting module 840, wherein the prompting module 840 is communicably connected to the pollution determining module 824 of the processing module 820 and/or the pollution level determining module 825.
  • the prompt module 840 is used to issue a prompt.
  • the pollution determination module 824 determines that the vehicle position determines that the vehicle 8200A is to be contaminated according to the current vehicle position, and the prompting module 840 issues a prompt to prompt the user to take measures in time.
  • the pollution determination module 824 determines that the vehicle position determines that the vehicle 8200A is to be in accordance with the current vehicle position, and the pollution degree determination module 825 performs the air pollution degree of the position. Determining and obtaining a judgment result, the prompting module 840 issues different prompts according to the judgment result. For example, when the judgment result is heavy air pollution, the prompting module 840 issues a prompt for prompting the user to have heavy air. Contamination, damage to the user's health, or prompting the user to change the route.
  • the prompting module 840 issues a prompt to prompt the user to have moderate air pollution, prompting the user to start the air purifier, when The result of the determination is mild air pollution, and the prompting module 840 issues a prompt to prompt the user to have a slight air pollution, prompting the user to close the window to prevent the polluted air from proceeding.
  • a location to be reached by the vehicle 8200A may be preset to be in front of the vehicle 8200A and within a predetermined range of the vehicle 8200A, such as within 81 kilometers of the vehicle 8200A.
  • the pollution determination module 824 determines whether there is air pollution at a position that the vehicle 8200A is to reach according to the current vehicle position. For example, if the travel route of the vehicle 8200A has been confirmed, the pollution determination module 824 passes the The obtaining module 810 acquires the vehicle position and acquires an air quality of the vehicle 8200A at the traveling route to reach a position based on the vehicle position, and determines whether the air quality of the position exists with respect to a standard air quality index.
  • the air pollution if a result of the determination by the pollution determination module 824 is that the vehicle 8200A is in a position to be contaminated, the pollution level determination module 825 is configured to determine the pollution level of the location.
  • the pollution degree determination module 825 determines whether the air pollution level of the location exceeds the processing capability of an air cleaner of the vehicle 8200A, if a determination result of the pollution degree determination module 825 is the The level of air pollution exceeds the processing capacity of the air purifier of the vehicle 8200A, the prompting module 840 issues a prompt to the user, and the route generation module 821 is based on the current vehicle location and the vehicle destination At least one travel route is re-planned on the air quality map to cause the user to bypass the contaminated location. Further, the route generation module 821 re-plans at least one travel route on the air quality map based on the current vehicle location and the vehicle destination and the pollution location. Optionally, the route generation module 821 re-plans at least another of the travel routes based on the current travel route, so that the user can continue driving on the basis of the originally exercised route.
  • a vehicle 8200A is traveling on a road.
  • the pollution determination module 824 determines that a position to be reached by the vehicle 8200A, for example, a position exists in the air.
  • the pollution level determination module 825 determines that the level of air pollution at the position A is very high and is highly likely to affect the health of the driver.
  • the route generation module 821 is based on the current vehicle position, the vehicle destination and the real time.
  • the air quality map and the at least one new travel route P81 are re-planned with reference to a time cost and air quality according to a planning rule, and the new travel route P81 is fed back to the driver according to a sorting rule.
  • the navigation system can receive an instruction from the user to confirm the driving route, and the navigation system is communicably connected to a display device of the vehicle 8200A, such as a central control panel, to The air quality map including the travel route of the vehicle 8200A is presented to the user.
  • a display device of the vehicle 8200A such as a central control panel
  • the processing module 820 when the pollution level determination module 825 determines that the air pollution level of the location does not exceed the processing capability of an air cleaner of the vehicle 8200A, the processing module 820 sends a start signal to The air cleaner activates the air cleaner before the vehicle 8200A reaches the contaminated position to thereby ensure air quality within the vehicle 8200A.
  • the processing module 820 sends an activation signal to the air purifier according to the vehicle position in real time before the vehicle 8200A reaches the pollution position.
  • the processing module 820 further includes a pollution trend determination module 826, wherein the pollution trend determination module 826 is communicably coupled to the pollution determination module 824, the pollution trend determination module 826 determines whether there is a tendency for air pollution in a position to be reached by the vehicle 8200A according to the current vehicle position.
  • the pollution determination module 824 determines whether there is air pollution at a position that the vehicle 8200A is to reach according to the current vehicle position, a result of the determination by the pollution determination module 824 is that there is no air pollution.
  • the pollution trend determination module 826 continues to determine whether there is a trend of air pollution at the location that the vehicle 8200A is to reach.
  • the pollution determination module 824 is communicably coupled to the acquisition module 810 and the air quality map module 830.
  • the pollution judging module 824 determines whether the location or the region has a tendency of air pollution according to the air quality change of the same location or the air quality of the same region at different times.
  • an air at a B position in front of the vehicle position is acquired based on the air quality map.
  • the air quality of the B position can be found based on the air quality data about the B position detected by the vehicle 8200A with the air detector 81A in the B position in the past period of time.
  • the B trend determining module 826 determines that the B position has a pollution trend, and the prompting module 840 sends a prompt to prompt the user that there is a pollution trend in the B position.
  • an air quality condition at a B position in front of the vehicle position is acquired based on the air quality map, wherein The A position is 81 km from the B position.
  • the air mass of the B position is obtained by the vehicle 8200A with the air detector 81A passing through the B position as PM2.5 10, at 9:10, by at least one pass.
  • the vehicle 8200A with the air detector 81A at the B position obtains the air mass of the B position as PM2.5 20, and at 9:20, passes the air detection through at least one of the B positions.
  • the vehicle 8200A of the device 81A obtains the air quality of the B position as PM2.5 30 minutes, and at 9:30, no vehicle 8200A passes the B position, that is, the air quality of the B position is not obtained. data. However, according to the trend of air quality change of the B position in the past period of time, it can be judged that there is a tendency of air pollution. When the vehicle 8200A reaches the B position from the A position, the B position may have become a Contaminated area.
  • the processing module 820 includes a prediction module 827, wherein the prediction module 827 is communicably coupled to the pollution trend determination module 826, and the pollution trend determination module 826 determines There is a possibility that there is air pollution at the location in front of the vehicle 8200A, and the prediction module 827 predicts based on the location and an air quality condition detected about the location in the past period of time. Whether the location of the vehicle 8200A passes through the location is airborne.
  • the air quality data is not necessarily limited to PM2.5, and may be other types of reactive air quality data, such as PM810, formaldehyde, benzene and the like.
  • the pollution determination module 824 determines a position or a point that the vehicle 8200A is about to enter based on the vehicle position and the motion trajectory of the vehicle 8200A. Whether there is air pollution in the area. For example, the pollution determination module 824 acquires the position or the air quality data of the area that the vehicle 8200A is about to enter from the air quality map according to the vehicle position and the motion trajectory of the vehicle 8200A. The comparison of the air quality data with a standard air quality data results in the location or the conclusion that there is air pollution in the area.
  • the pollution trend judging module 826 acquires the position to be reached by the vehicle 8200A or the area in the past Air quality data of time, and based on the air quality data, a determination result as to whether the position or the area has an air pollution tendency is obtained. If the result of the determination is affirmative, the prediction module 827 derives the time at which the vehicle 8200A reaches the location or the region based on the current vehicle location and the vehicle 8200A travel speed, and based on the location Or the history of the area, the air quality data is derived at the location at the time or an air quality data for the area.
  • the vehicle 8200A is located at the C position, and the pollution trend determination module 826 concludes that there is an air pollution trend at the D position, and passes the D position during a period of time in the past
  • the data acquired by the other vehicle 8200A with the air detector 81A and its corresponding time are, 9 points, PM2.5 10, 9:30, PM2.5 15, 10 points, PM 2.5 20, 10:30 PM 2.5 25, 11 points, PM 2.5 30, predicting that the vehicle 8200A will arrive at the D position at 11:30, and by a fitting process, the air quality data at the D position at 11:30 will be PM2.5 35.
  • the pollution determination module 824 is communicably coupled to the prediction module 827 to determine whether there is air pollution at the location when the vehicle 8200A reaches the location based on a prediction result of the prediction module 827.
  • the pollution determination module 824 and the pollution trend determination module 826 are communicably coupled to the prediction module 827, respectively.
  • the pollution determination module 824 determines, according to the prediction result, that the location to be reached by the vehicle 8200A is contaminated, and the pollution degree determination module 825 determines the air pollution degree of the location and obtains a determination result.
  • the prompting module 840 issues different prompts according to the determination result. For example, when the determination result is heavy air pollution, the prompting module 840 issues a prompt regarding prompting the user that there may be heavy air pollution, damaging the user's health, or The user is prompted to change the route.
  • the prompting module 840 issues a prompt for prompting the user to have moderate air pollution, prompting the user to start the air purifier, when the judgment result is mild In the air pollution, the prompting module 840 sends a prompt to prompt the user to have a slight air pollution, prompting the user to close the window to prevent the polluted air from proceeding.
  • the pollution degree judging module 825 determines whether the prediction result exceeds the processing capability of an air cleaner of the vehicle 8200A, if a judgment result of the pollution degree judging module 825 is a prediction.
  • the level of air pollution at the location exceeds the processing capacity of the air purifier of the vehicle 8200A
  • the prompting module 840 issues a prompt to the user
  • the route generation module 821 is based on the current vehicle location and location
  • the vehicle destination re-plans at least one travel route on the air quality map to cause the user to bypass the contaminated location.
  • the route generation module 821 re-plans at least one travel route on the air quality map based on the current vehicle location and the vehicle destination and the pollution location.
  • the route generation module 821 re-plans at least another of the travel routes based on the current travel route, so that the user can continue driving on the basis of the originally exercised route.
  • the processing module 820 when the pollution level determination module 825 determines that the predicted air pollution level of the location does not exceed the processing capability of an air cleaner of the vehicle 8200A, the processing module 820 sends a start. A signal is sent to the air purifier to activate the air purifier before the vehicle 8200A reaches the contaminated location to assure air quality within the vehicle 8200A.
  • the processing module 820 sends an activation signal to the air purifier according to the vehicle position in real time before the vehicle 8200A reaches the pollution position.
  • an air quality based vehicle navigation method comprising the following steps:
  • the navigation method further comprises the steps of: acquiring, by a vehicle 8200A with an air purifier, an air quality data of a location of the vehicle 8200A;
  • the air quality map is generated based on the air quality data and a road data.
  • step (c) is implemented as:
  • At least one travel route is planned on the air quality map based on time cost and air quality.
  • step (c) is implemented as:
  • At least one driving route is planned on the air quality map based on the length of the route and the air quality.
  • step (c) is implemented as:
  • At least one travel route is generated based on the air quality map and a user setting command.
  • the navigation method further comprises the steps of:
  • the travel routes are sorted according to a sorting rule.
  • the vehicle navigation method further comprises the step of confirming a travel route.
  • the vehicle navigation method further comprises the step of confirming a travel route according to a user selection command.
  • the vehicle navigation method further comprises the step of: confirming a driving route according to a preset rule.
  • the vehicle navigation method further comprises the steps of:
  • a travel route is re-planned based on the current location of the vehicle 8200A and the vehicle destination information.
  • the vehicle navigation method further comprises the steps;
  • the air purifier is activated before the vehicle 8200A reaches the location.
  • the vehicle navigation method further comprises the steps of:
  • a vehicle 8200A comprising:
  • an air quality map generation method comprising the steps of:
  • the air quality map is generated based on the air quality data and a road data.
  • FIG. 18 a vehicle 8200A with an air detector 81A in accordance with the present invention is illustrated.
  • the vehicle 8200A includes a vehicle body 8201A and an air detector 81A, wherein the air detector 81A is disposed to the vehicle body 8201A and disposed outside the vehicle body 8201A for detecting external air quality.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Environmental Sciences (AREA)
  • Ecology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Atmospheric Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Automation & Control Theory (AREA)
  • General Physics & Mathematics (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

一种车用空气质量传感器的应用,其中车内空气质量控制方法包括如下步骤(a)获取一车外空气质量信息(12)和一车内空气质量信息(11);步骤(b)基于车外空气质量信息(12)和车内空气质量信息(11)控制一空气交互装置(100)工作,以控制车内空气质量,空气质量获取系统利用带有空气检测器(71A)的车辆(7200A)获取地理位置及空气质量;车辆导航系统根据空气质量对车辆进行导航,上述应用可以获取并改善行驶环境数据,并作出对驾驶者身体健康更有利的判断。

Description

车用空气质量传感器的应用 技术领域
本发明涉及一空气质量领域,特别地,涉及一车用空气质量传感器的应用。
背景技术
由于发电、冶金、石油、化学、纺织印染等工业的长期发展应用,各类交通工具在运行过程中向大气排放的尾气不断积累等等原因,现如今反应空气质量的PM2.5数据严重超标,对人们的健康和出行负面影响也越来越大。已经有大量流行病学证据表明,高PM2.5会增加患急性呼吸道疾病与心脑血管疾病的风险,也会可能会诱发肺癌、COPD(慢性阻塞型肺炎)、心脑血管疾病等慢性疾病。这也导致,传统生活观念中,开窗通风换气的做法并不一定有利于人们的健康,尤其在外界的空气质量较差的情况下。也就是说除了外出出行,处于室内的人也有暴露于高PM2.5的环境中的危险。
所以,如今人们会关注当日的PM2.5等空气质量数据,决定是否开窗,从而避免室内空气受到外界空气污染。但这种做法对于诸如卧室、办公室等室内环境较为适用,固定地点的环境状况变化幅度较小,室内的人们在工作间隙随时用手机或电脑定位查看室外PM2.5状况。而对于开车行驶中的驾驶员来说,经过不同的区域,外界的环境就会不同,比如有的区域建有发电工业设备,周边的空气质量相较于无工业设备的地区就会较差,有的区域堵车或车辆较多,大量车辆尾气集中排放也会导致周边的空气质量较差。也就是说,车辆行驶的每段路程的PM2.5都会不同,有的地段比车内好,有的地段比车差。
驾驶员如果时不时的分神查看数据,还要根据数据判断,自己主动控制车窗、空调等设备的开关,并不利于安全驾驶,很容易造成交通事故。
此外,如果没有专业的设备检测,仅凭驾驶员的感受或者车外的空气质量数据,很难判断车内外的空气质量孰好孰坏。车辆的内部空间相对于卧室、办公室等室内空间较小,长时间封闭会造成二氧化碳等有害气体含量增加和氧气缺失,尤其在满载或车内有人抽烟的情况下。也就是说,相比于空间较大的室内环境, 车辆内部空间空气质量变化幅度和频率较大,如果为了保证车内的空气质量,驾驶员需要频繁地查看数据,频繁地开关窗户、空调或空气净化器等空气调节设备。
除了无法准确把握是否开关空气调节设备,和开关设备的时机,普通驾驶员没有空气质量方面的专业知识,也很难掌控空气调整设备的设置状态。也就是说,退一步讲,即使车辆内配有检测车内空气质量的检测仪,驾驶员可以知道车内外空气状况,不仅主动切换设置麻烦,也无法很好地设置换气状态,比如空调排风速度大小、打开前窗还是后窗、空气净化器的工作时间等等。
空气质量和人们的身体健康息息相关,尤其是近些年来雾霾频现,空气质量急剧恶化的情况下,人们时刻关注着每日空气质量数据,以做好防范措施。
现有的空气质量检测方法是采取在一区域的各个地点设置检测点的方式来获得这一区域的空气质量。比如说在一个城市之间,就选取一些地理地点设置空气检测器,通过空气检测器的获取的数据经过一预设的程序计算后获得关于整个城市的一空气数据。
这样的方式,看似简单便捷,但是存在着不少问题。首先所述空气检测器的位置一般的是固定的,对于一个区域来说,随着气温和风向等因素的变化,整个区域的空气质量处于一个动态的变化之中,所述空气检测器仅能够检测到所述空气检测器所在的一较小位置内的空气质量,其检测数据显然具有很大的局限性,其是否能够准确地反应这一区域的空气质量是一个有待商榷的问题。
其次是所述空气检测器的数目也是固定的,除非在检测过程中发现最终的数据存在偏差,所以在后续中选择布置更多的空气检测器,但是事实上很难从后端数据获得信息以改善前端所述空气检测器的部署。
另一个问题是所述空气检测器本身被设置在一固定位置,一旦所述空气检测器本身出现问题或者是周边的环境出现问题会使得最后的检测结果出现偏差。比如说一个被设置在公园的检测器,周围就是喷泉,那么其检测到的空气污染质量很可能受到喷泉的影响。还有一个问题在于人为因素的干扰,为了从数据上显示空气质量已经改善的效果,所述空气检测器可能被人为地设置在一些环境较好的区域。
因此,现有的空气质量检测方式存在着诸多问题,可能并不能够准确地反应出某一区域的空气质量状态。
随着经济水平的进步,人们对于健康越来越重视,生活环境中的空气质量和 水质量都和我们的健康息息相关,尤其是空气质量,因为我们时时刻刻都在呼吸,一旦处在一空气污染的环境中,污染物也时时刻刻从呼吸道进入到我们的身体中,最终对健康造成影响。
车辆是常见的出行工具,因为其本身的机动性能,使得驾驶者在驾驶车辆的过程中能够快速达到不同的区域,甚至是上一秒在空气清新的公园,下一刻就来到了恶气冲天的化工厂。驾驶者借助车辆日行千里,然而在这个过程中,车辆和驾驶者都需要面对复杂多变的环境。对于车辆而言,本身在设计过程中已经考虑到了可能面临的各种环境,从而被配置有一个坚固的躯干,对于驾驶者来说,更加可能出现的场景是被直接暴露在环境中。也就是说,通过传统的导航系统,驾驶者无法对于目前行驶路线有一个充分的预判,尤其是在行驶路线的驾驶环境方面,驾驶者通过传统的导航系统仅能够确认行驶路线的拥挤程度和道路数据,比如说道路位置,走向等。
传统的车辆导航系统带来的问题就是驾驶者在目前信息下难以获取对于驾驶者身体健康密切相关的行驶环境数据,更不用说做出对于驾驶者身体健康更为有利的判断。
发明内容
本发明的一个目的在于提供一车内空气质量控制系统、方法和车辆,其中所述空气质量控制系统根据车内空气质量信息,通过一设备控制模块,控制车窗或车载空调等空气交互装置和车载空气净化器等空气净化装置,从而实现控制车内空气质量,避免增加或降低其污染度。
本发明的另一个目的在于提供一车内空气质量控制系统、方法和车辆,其中所述空气质量控制系统可以主动调整和优化车内空气质量,无需驾驶员控制,避免驾驶员行驶过程中注意力分散,提高驾驶安全性。
本发明的另一个目的在于提供一车内空气质量控制系统、方法和车辆,其中所述空气质量控制系统适应于车内空气质量变化幅度和频率,根据检测车内空气质量变化,通过所述设备控制模块控制所述空气交互装置和所述空气净化装置,无需驾驶者频繁地操作,简化使用。
本发明的另一个目的在于提供一车内空气质量控制系统、方法和车辆,其中所述设备控制模块可以控制车窗和车载空调等空气交互装置,通过车内外空气交 互的方式,调整车内的空气质量。
本发明的另一个目的在于提供一车内空气质量控制系统、方法和车辆,其中所述设备控制模块可以控制车载空气净化器等空气净化装置,通过对车内空气净化的方式,调整车内的空气质量。
本发明的另一个目的在于提供一车内空气质量控制系统、方法和车辆,其中所述空气质量控制系统通过一检测模块同时获取车内空气质量信息和车外空气质量信息,分析判断是否可以通过车内外空气交互的方式实现调整车内的空气质量,避免车内的空气受到外界空气的污染。
本发明的另一个目的在于提供一车内空气质量控制系统、方法和车辆,其中当车外空气质量较差时,例如车外PM2.5超标、车外空气有有害气体,所述空气质量控制系统仍可以通过控制所述空气净化装置,以净化的方式优化车内空气质量。
本发明的另一个目的在于提供一车内空气质量控制系统、方法和车辆,其中所述检测模块可以获取车外空气质量的网络数据,从而车辆无需额外装配检测仪针对车外空气质量检测,降低成本。
本发明的另一个目的在于提供一车内空气质量控制系统、方法和车辆,其中所述空气质量控制系统根据车内空气质量信息和车外空气质量信息,便于控制所述空气净化装置和所述空气交互装置的开关,设置其工作参数,无需驾驶员根据自我感受设置。
本发明的另一个目的在于提供一种车内空气质量控制系统、方法和车辆,其中所述检测模块的一车内空气检测模块被设置于车辆的风道内,便于获取和检测车内空气质量信息。
本发明的另一个目的在于提供一种车内空气质量控制系统、方法和车辆,其中所述车内空气检测模块能够排除湿度、温度和风速的干扰,从而较为准确地获取车内空气质量信息。
本发明的一目的在于提供一空气质量获取方法及空气质量获取系统,其中所述空气质量获取系统提供了多个带有空气检测器的车辆,借助所述车辆获得所述车辆所在位置的空气质量。
本发明的另一目的在于提供一空气质量获取方法及空气质量获取系统,其中所述空气质量获取系统能够借助经过所述区域的所述车辆动态地获取一区域的 空气质量。
本发明的另一目的在于提供一空气质量获取方法及空气质量获取系统,其中所述空气质量获取系统能够借助经过所述区域的多台所述车辆多次地获取所述区域的空气质量。
本发明的另一目的在于提供一空气质量获取方法及空气质量获取系统,其中所述空气质量获取系统能够借助经过所述区域的所述车辆实时地获取所述区域的空气质量。
本发明的另一目的在于提供一空气质量获取方法及空气质量获取系统,其中所述空气质量获取系统能够借助经过所述区域的所述车辆在所述区域内的运动轨迹较为全面地获取所述区域的空气质量。
本发明的另一目的在于提供一空气质量获取方法及空气质量获取系统,其中所述空气质量获取系统能够借助被安装于所述车辆的不同类型的所述空气检测器获取关于所述区域的空气质量的不同参考数据。
本发明的另一目的在于提供一空气质量获取方法及空气质量获取系统,其中所述空气质量获取系统能够借助运动的所述车辆获取不同位置或者是不同区域的空气质量。
本发明的另一目的在于提供一空气质量获取方法及空气质量获取系统,其中所述空气质量获取系统能够借助现有的拥有庞大数目的所述车辆获取数目可观的空气质量样本数量。
本发明的另一目的在于提供一空气质量获取方法及空气质量获取系统,其中所述空气质量获取系统能够获取所述车辆所在位置的空气质量,在后续的步骤中能够反馈给所述车辆的一驾驶者以采取相应的措施。
本发明的另一目的在于提供一车辆获取系统及其空气质量获取方法,其中所述空气质量获取系统能够借助常见的所述车辆获取一些难以设置空气检测器或者是未设置有空气检测器的地理地点的空气数据,比如说污染严重的企业。
本发明的另一目的在于提供一车辆获取系统及其空气质量获取方法,其中所述空气质量获取系统能够借助所述车辆-这一常规的出行工具,能够非常有效地及时检测对于用户来说经常出入的地理地点的空气质量,使得获取的空气质量数据非常具有实际的意义。
本发明的一目的在于提供一基于空气质量的车辆导航方法及其导航系统和 应用,其中所述车辆导航系统能够提供一空气质量导航。
本发明的另一目的在于提供一基于空气质量的车辆导航方法及其导航系统和应用,其所述车辆导航系统能够在一道路数据的基础上基于空气质量规划至少一路线。
本发明的另一目的在于提供一基于空气质量的车辆导航方法及其导航系统和应用,其中所述车辆导航系统能够在一道路数据的基础上基于时间成本和空气质量规划至少一路线。
本发明的另一目的在于提供一基于空气质量的车辆导航方法及其导航系统和应用,其中所述车辆导航系统能够在一道路数据的基础上基于路程长度和空气质量规则至少一路线。
本发明的另一个目的在于提供一基于空气质量的车辆导航方法及其导航系统和应用,其中所述车辆导航系统能够根据一车辆位置按照空气质量规划至少一路线。
本发明的另一目的在于提供一基于空气质量的车辆导航方法及其导航系统和应用,其中所述车辆导航系统能够根据所述车辆的位置判断出前方是否会出现空气污染以及时重新规划路线。
本发明的另一目的在于提供一基于空气质量的车辆导航方法及其导航系统和应用,其中所述车辆导航系统能够判断所述车辆目前的路线是否具有空气污染的趋势以及时向用户发出提醒。
本发明的另一目的在于提供一基于空气质量的车辆导航方法及其导航系统和应用,其中所述车辆导航系统能够判断所述车辆目前的路线是否具有空气污染的趋势以在不更换路线的前提下及时采取措施。
本发明的另一目的在于提供一基于空气质量的车辆导航方法及其导航系统和应用,其中所述车辆导航系统能够基于所述区域是否具有空气污染的趋势来规划路线。
根据本发明的一个方面,提供了一基于空气质量的车辆导航系统,包括:
一获取模块,其中所述获取模块用于获取一车辆位置和一车辆目的地信息;
一处理模块,其中所述处理模块被可通信地连接于所述获取模块,所述路线生成模块在一空气质量地图基于所述车辆位置和所述车辆目的地信息生成至少一行驶路线。
根据本发明的一实施例,进一步包括一空气质量地图模块,其中所述空气质量地图模块被可通信地连接于所述处理模块,其中所述空气质量地图模块包括一地理位置定位模块和一地图生成模块,其中所述地理位置定位模块基于所述车辆位置确认一区域,所述地图生成模块根据来自于所述区域的带有一空气检测器的至少一车辆获取的至少一空气质量数据对应于所述车辆位置生成所述空气质量地图。
根据本发明的一实施例,所述处理模块被设置为基于时间成本和空气质量规划至少一所述行驶路线。
根据本发明的一实施例,所述处理模块被设置为基于路程长度和空气质量规划至少一所述行驶路线。
根据本发明的一实施例,所述处理模块被设置为基于一用户指令生成至少一所述行驶路线。
根据本发明的一实施例,进一步包括一规则设定模块和一排序模块,其中所述排序模块根据所述规则设定模块被设置一排序规则将所述行驶路线排序。
根据本发明的一实施例,所述处理模块进一步包括一污染判断模块和一污染程度判断模块,其中所述污染判断模块根据所述车辆位置判断所述车辆要到达的一位置是否存在空气污染,如果是,所述污染程度判断模块判断所述空气污染是否超过了一预设的数值,如果是,所述路线生成模块基于当前所述车辆位置和所述车辆目的地在所述空气质量地图重新规划至少一行驶路线。
根据本发明的一实施例,所述预设的数值是所述车辆的一空气净化器的一处理能力。
根据本发明的一实施例,所述处理模块进一步包括一污染判断模块和一污染程度判断模块,其中所述污染判断模块根据所述车辆位置判断所述车辆要到达的一位置是否存在空气污染,如果是,所述污染程度判断模块判断所述空气污染是否超过了一预设的数值,如果不是,所述处理模块发送一信号至所述空气净化器以在所述车辆达到所述污染位置之前启动所述空气净化器。
根据本发明的一实施例,所述处理模块包括一污染判断模块和一污染趋势判断模块,其中所述污染判断模块根据所述车辆位置判断所述车辆要到达的一位置是否存在空气污染,如果不是,所述污染趋势判断模块判断所述位置是否具有空气污染的趋势。
根据本发明的一实施例,所述处理模块进一步包括一预测模块,其中所述预测模块被可通信地连接于所述污染趋势判断模块,在所述污染趋势判断模块判断所述位置具有空气污染的趋势,所述预测模块基于所述位置的一历史空气质量数据预测在所述车辆到达所述位置时的一未来空气质量数据。
根据本发明的一实施例,所述预测模块被可通信地连接于所述污染判断模块和所述污染程度判断模块,其中所述污染判断模块根据所述预测模块的一预测结果判断所述车辆到达所述位置时所述位置是否存在空气污染,如果是,所述污染程度判断模块判断所述空气污染是否超过了一预设的数值,如果是,所述路线生成模块基于当前所述车辆位置和所述车辆目的地在所述空气质量地图重新规划至少一行驶路线。
根据本发明的一实施例,所述预测模块被可通信地连接于所述污染判断模块和所述污染程度判断模块,其中所述污染判断模块根据所述预测模块的一预测结果判断所述车辆到达所述位置时所述位置是否存在空气污染,如果是,所述污染程度判断模块判断所述空气污染是否超过了一预设的数值,如果不是,发出一提示信息。
根据本发明的一实施例,所述污染趋势判断模块被设置为根据同一位置的在一段时间内空气质量的变化趋势来判断所述位置是否具有空气污染的趋势。
为了实现以上至少一个目的,依本发明的一个方面,提供车内空气质量控制方法,包括步骤:
(a)获取一车外空气质量信息和一车内空气质量信息;和
(b)基于所述车外空气质量信息和所述车内空气质量信息控制一空气交互装置工作,以控制车内空气质量。
在一些实施例中,其包括步骤:
(c)当所述车外空气质量信息比所述车内空气质量信息相对较差时,使车内空间封闭。
在一些实施例中,其包括步骤:(d)当所述车外空气质量信息比所述车内空气质量信息相对较好时,触发一空气交互装置工作,以使车外空气得以进入车内从而调整车内空气质量。
在一些实施例中,所述步骤(c)还包括步骤:
(e)触发一空气净化装置工作。
在一些实施例中,所述步骤(e)还包括步骤:
(f)根据所述车内空气质量信息,设置所述空气净化装置工作参数。
在一些实施例中,所述步骤(d)还包括步骤:
(g)根据所述车外空气质量信息和所述车内空气质量信息,设置所述空气交互装置的工作参数。
在一些实施例中,所述空气交互装置被实施为一车窗系统和\或一空调系统。
在一些实施例中,包括步骤:当所述车外空气质量信息比所述车内空气质量
信息相对较差时,关闭打开的车窗,停止空调系统通风工作。
在一些实施例中,通过设置于车辆的一风道内的同一空气质量传感器切换检测通路从而检测得到所述车外空气质量信息所述车内空气质量信息。
在一些实施例中,通过设置于车辆的一风道内的多个空气质量传感器分别检测得到所述车外空气质量信息所述车内空气质量信息。
依本发明的另一个方面,本发明进一步提供一车内空气质量调节系统,适用于一具有一空气净化装置和一空气交互装置的车辆,包括:
一检测模块,用于检测车内外空气质量,形成一车内空气质量信息和一车外空气质量信息;和
一设备控制模块,其中所述设备控制模块根据所述车内空气质量信息和所述车外空气质量信息,控制所述空气净化装置和所述空气交互装置,其中所述设备控制模块包括一处理模块、一空气净化装置控制模块和一空气交互装置控制模块,其中所述处理模块根据所述车内空气质量信息和所述车外空气质量信息,判断车内调整的方式,形成一触发信息,其中所述空气净化装置控制模块和所述空气交互装置控制模块根据所述触发信息,触发对应的所述空气净化装置和所述空气交互装置工作。
根据本发明的一个实施例,所述处理模块根据所述车外空气质量信息,判断车外空气质量,其中当车外空气质量不良时,所述空气交互装置控制模块根据所述触发信息,控制所述空气交互装置,使车内空间封闭,其中当车外空气质量良好时,所述空气交互装置控制模块根据所述触发信息,触发所述空气交互装置开始工作。
根据本发明的一个实施例,所述处理模块根据所述车内空气质量信息,判断车内空气是否需要调整,其中当车内空气需要调整时,所述空气净化装置控制模 块根据所述触发信息,触发所述空气净化装置开始工作。
根据本发明的一个实施例,所述车内空气检测模块被安装于该车辆的一风道内。
根据本发明的一个实施例,所述检测系统包括一车内空气检测模块和一车外空气检测模块,其中所述车内空气检测模块检测车内空气质量,形成所述车内空气质量信息,其中所述车外空气检测模块检测车外空气质量,形成所述车外空气质量信息,其中所述车内空气检测模块和所述车外空气检测模块被安装于该车辆的该风道内。
根据本发明的一个实施例,所述车外空气检测模块可通信地连接于互联网,定位地获取车外空气质量的互联网数据,形成所述车外空气质量信息。
根据本发明的一个实施例,所述车外空气检测模块根据该车辆的导航路线,预先获取路线沿途的所述车外空气质量信息。
根据本发明的一个实施例,所述设备控制模块包括一设置模块,其中所述设置模块根据所述触发信息、所述车内空气质量信息和所述车外空气质量信息,形成一设置信息,用于设置对应的所述空气交互装置和\或所述空气净化装置工作参数。
根据本发明的一个实施例,所述空气交互装置控制模块进一步包括一车窗控制模和\或一空调控制模块,其中所述处理模块根据所述车内空气质量信息和所述车外空气质量信息,形成一选择触发信息,其中所述车窗控制模和\或所述空调控制模块根据所述选择触发信息,触发对应的车窗系统和\或空调系统工作。
根据本发明的一个实施例,所述空气净化装置无线通信地连接于所述空气净化装置控制模块。
根据本发明的一个实施例,所述车内空气质量调节系统进一步包括一显示模块,其中所述模块显示所述车内空气质量信息、所述车外空气质量信息和所述触发信息。
依本发明的另一个方面,本发明进一步提供一车辆,包括:
一车辆本体;和
一如上所述的车内空气质量调节系统,其中所述车内空气质量调节系统被安装于所述车辆本体。
根据本发明的一方面,本发明提供了一空气质量获取系统,所述空气质量获 取系统,包括:
一地理位置定位模块,其中所述地理位置定位模块用于确认一区域的一地理位置;
一处理模块,其中所述处理模块基于带有一空气检测器的一车辆获取的关于所述区域的一空气质量数据处理得出关于所述区域的一空气质量结果。
根据本发明的一实施例,所述处理模块包括一判断模块和一生成模块,其中所述判断模块判断是否存在带有所述空气检测器的所述车辆在所述地理位置检测到所述区域的一空气质量数据,如果是,所述生成模块根据检测到的所述空气质量数据生成所述区域的一空气质量结果。
根据本发明的一实施例,所述处理模块进一步包括一再判断模块和一拟合模块,在所述判断模块判断不存在带有所述空气检测器的所述车辆检测到所述区域的所述空气质量数据,所述再判断模块判断是否存在带有所述空气检测器的所述车辆检测到距离所述区域的一预设范围内的所述空气质量数据,如果是,所述拟合模块根据来自于距离所述区域的所述预设范围内的所述空气质量拟合生成所述区域的所述空气质量结果。
根据本发明的一实施例,进一步包括一时间位置定位模块,其中所述时间位置定位模块被用于确认所述区域的一时间位置并且被可通信地连接于所述处理模块。
根据本发明的一实施例,所述处理模块进一步包括一分析模块,其中所述分析模块基于所述区域的所述空气质量数据和所述空气质量数据的一来源位置得出一分析结果,所述生成模块根据所述分析结果生成所述区域的所述空气质量结果。
根据本发明的一实施例,所述生成模块被设置为根据所述来源位置的不同决定所述空气质量数据在处理过程中的处理手段的方式处理所述空气质量数据并且得出关于所述区域的所述空气质量结果。
根据本发明的一实施例,所述处理模块进一步包括一分析模块,其中所述分析模块基于所述区域的所述空气质量数据和检测到所述空气质量数据的所述车辆的一车辆状态得出一分析结果,所述生成模块根据所述分析结果生成所述区域的所述空气质量结果。
根据本发明的一实施例,进一步包括一检测类型定位模块,其中所述检测类 型定位模块被可通信地连接于所述处理模块,所述检测类型定位模块用于确认所述空气质量数据的一类型。
根据本发明的一实施例,进一步包括一污染定位模块,所述污染定位模块被可通信地连接于所述地理位置定位模块,其中所述污染定位模块通过对比在所述区域的同一位置的在不同时间检测到的各个所述空气质量数据的变化超过一预设的数值确认所述位置为一污染点。
根据本发明的一实施例,进一步包括一污染定位模块,所述污染定位模块被可通信地连接于所述地理位置定位模块,其中所述污染定位模块通过对比在所述区域的同一时间不同位置检测到的各个所述空气质量数据的变化超过一预设的数值确认所述位置为一污染点。
根据本发明的另一方面,本发明提供了一空气质量获取方法,其中所述空气质量获取方法包括如下步骤:
(a)判断是否存在带有空气检测器的至少一车辆检测到一区域的一空气质量数据;和
(b)如果是,基于所述车辆检测到的所述区域的所述空气质量数据处理得到所述区域的一空气质量结果。
根据本发明的一实施例,进一步包括步骤(c):
如果不是,继续判断是否存在带有空气检测器的至少所述车辆检测到距离所述区域的一预设范围内的所述空气质量数据;和
如果是,基于所述车辆检测到所述空气质量数据处理得到所述区域的一空气质量结果。
根据本发明的一实施例,进一步包括一步骤(d),其中所述步骤(d)包括:
确认一区域的一地理位置,其中所述步骤(d)位于所述步骤(a)之前。
根据本发明的一实施例,所述步骤(d)被实施为:
确认所述区域的所述地理位置和一时间位置,其中所述步骤(a)被实施为:判断在所述时间位置是否存在带有空气检测器的至少一所述车辆检测到所述区域的所述空气质量数据。
根据本发明的一实施例,进一步包括如下步骤:
如果不是,判断在一历史时间是否存在带有空气检测器的至少一所述车辆检测到所述区域的所述空气质量数据,其中所述历史时间和所述时间位置不超过一 预设的范围;和
如果是,基于所述车辆检测到在所述历史时间的所述空气质量数据处理得到所述区域的一空气质量结果。
根据本发明的一实施例,进一步包括一步骤(e),其中所述步骤(e)包括:
确认需要检测的所述区域的所述空气质量数据的一类型,其中所述步骤(c)位于所述步骤(a)之前,所述步骤(a)被实施为:
判断是否存在带有空气检测器的至少一车辆检测到一区域的所述类型的所述空气质量数据。
根据本发明的一实施例,所述步骤(b)被实施为:
以结合所述空气质量数据的一来源位置的方式基于所述空气质量数据得出一分析结果;和
根据所述分析结果确认所述区域的至少一污染位置。
根据本发明的一实施例,在所述步骤(b)中,通过比较各个所述空气质量数据确认所述区域的至少一所述污染位置。
根据本发明的一实施例,在所述步骤(b)中,通过比较同一来源位置的在不同时间的所述空气质量数据确认所述区域的至少一所述污染位置。
根据本发明的一实施例,所述步骤(b)被实施为:
获取所述空气质量数据和对应的所述空气质量数据的一来源位置;和
以结合所述空气质量数据和所述来源位置的方式生成一地图式结果。
根据本发明的一实施例,所述步骤(b)被实施为:
获取所述空气质量数据和所述空气质量数据被检测到时的所述车辆状态;和
根据所述来源位置的不同决定所述空气质量数据在处理过程中的处理手段的方式处理所述空气质量数据并且得出关于所述区域的所述空气质量结果。
根据本发明的一实施例,所述车辆状态包括一车辆位置信息。
根据本发明的一实施例,所述车辆状态包括一车辆行驶速度信息。
根据本发明的一实施例,所述步骤(b)进一步包括:判断各个所述空气质量数据中的其中至少一个是否存在一预设范围外的偏离;和
如果是,剔除偏离的所述空气质量数据。
根据本发明的一实施例,所述步骤(b)被实施为:
根据所述车辆获取的所述空气质量数据平均处理得出关于所述区域的一空 气质量结果。
根据本发明的一实施例,所述步骤(b)被实施为:
根据所述车辆获取的所述空气质量数据拟合得出关于所述区域的一空气质量结果。
根据本发明的另一方面,本发明提供了一空气质量获取方法,其中所述空气质量获取方法包括如下步骤:
通过带有空气检测器的至少一车辆检测到一空气质量数据;
根据所述空气质量数据的一位置来源判断所述空气质量数据是否来自于一区域;以及
如果是,基于所述空气质量数据处理得到所述区域的一空气质量结果。
根据本发明的一实施例,进一步包括如下步骤:
如果不是,根据所述空气质量数据的一位置来源继续判断所述空气质量数据是否来自于距离所述区域的一预设范围;
如果是,基于所述空气质量数据处理得出所述区域的一空气质量结果。
根据本发明的另一方面,本发明提供了一空气质量获取方法,其中所述空气质量获取方法包括如下步骤:
判断带有空气检测器的至少一车辆是否位于一区域或者是经过所述区域;
如果所述车辆位于所述区域或者是经过所述区域,获取关于所述区域的一空气质量数据;以及
处理所述空气质量数据以得到关于所述区域的一空气质量结果。
根据本发明的一实施例,进一步包括如下步骤:
如果不是,继续判断带有空气检测器的至少一车辆是否位于所述区域的一预设范围内或者是经过所述区域的一预设范围内;
如果所述车辆位于所述区域的所述预设范围或者是经过所述区域的所述预设范围,获取关于所述区域的所述预设范围内的所述空气质量数据;以及
处理所述空气质量数据以得到关于所述区域的一空气质量结果。
根据本发明的另一方面,本发明提供了一空气质量获取方法,其中所述空气质量获取方法包括如下步骤:
接收一需求指令,其中所述需求指令包括一区域的一地理位置;
采集来自于经过所述区域或者是位于所述区域的一车辆检测到的一空气质 量数据;和
处理所述空气质量数据以得出关于所述区域的一空气质量结果。
根据本发明的另一方面,本发明提供了一空气质量获取方法,其中所述空气质量获取方法包括如下步骤:
通过带有空气检测器的一车辆获取一空气质量数据;
基于所述空气质量数据和对应所述空气质量数据的所述车辆的一位置生成一环境地图;以及
在所述环境地图定位一污染位置。
根据本发明的另一方面,本发明提供了一空气质量获取方法,其中所述空气质量获取方法包括如下步骤:
根据一车辆的位置信息和来自于所述车辆的一空气质量数据生成一实时空气质量地图;
接收一区域的一地理位置信息;以及
基于所述实时空气质量地图输出所述区域的一空气质量结果。
根据本发明的另一个方面,提供了一车辆,包括:
一车辆本体,和根据上述权利要求任一所述的一基于空气质量的车辆导航系统,其中所述车辆导航系统被设置于所述车辆本体。
根据本发明的一个方面,提供了一基于空气质量的车辆导航方法,包括如下步骤:
(a)获取一车辆位置和一车辆目的地位置;
(b)提供一空气质量地图,其中所述空气质量地图和所述车辆所在的一区域的空气质量状态相关联;以及
(c)基于所述空气质量地图按照一规划规则生成至少一行驶路线。
根据本发明的一实施例,所述导航方法进一步包括步骤:
通过带有一空气净化器的一车辆获取所述车辆所在位置的一空气质量数据;和
根据所述空气质量数据和一道路数据生成所述空气质量地图。
根据本发明的一实施例,所述步骤(c)被实施为:
基于时间成本和空气质量在所述空气质量地图规划至少一行驶路线。
根据本发明的一实施例,所述步骤(c)被实施为:
基于路程长度和空气质量在所述空气质量地图规划至少一行驶路线。
根据本发明的一实施例,所述步骤(c)被实施为:
基于所述空气质量地图和一用户设定指令生成至少一行驶路线。
根据本发明的一实施例,所述导航方法进一步包括步骤:
将所述行驶路线按照一排序规则排序。
根据本发明的一实施例,所述车辆导航方法进一步包括步骤:
确认一所述行驶路线。
根据本发明的一实施例,所述车辆导航方法进一步包括步骤:
在所述车辆要到达的一位置存在空气污染,判断所述空气污染是否超过所述车辆的一空气净化器的处理能力;
如果是,根据所述车辆当前位置和所述车辆目的地信息重新规划一行驶路线。
根据本发明的一实施例,所述车辆导航方法进一步包括步骤;
在所述车辆要到达的一位置存在空气污染,判断所述空气污染是否超过所述车辆的一空气净化器的处理能力;
如果不是,在所述车辆到达所述位置前启动所述空气净化器。
根据本发明的一实施例,所述车辆导航方法进一步包括步骤:
在所述车辆要达到的一位置不存在空气污染,判断是否具有空气污染的趋势;和
如果是,发出一提示信息。
根据本发明的一实施例,所述车辆导航方法进一步包括步骤:
在所述车辆要达到的一位置不存在空气污染但是具有空气污染的趋势,基于所述位置的一历史空气质量数据预测在所述车辆到达所述位置时的一未来空气质量数据;
基于所述未来空气质量数据判断是否存在空气污染;
如果是,所述污染程度判断模块判断所述空气污染是否超过了一预设的数值;以及
如果是,所述路线生成模块基于当前所述车辆位置和所述车辆目的地在所述空气质量地图重新规划至少一行驶路线。
根据本发明的一实施例,所述车辆导航方法进一步包括如下步骤:
在所述车辆要达到的一位置不存在空气污染但是具有空气污染的趋势,基于 所述位置的一历史空气质量数据预测在所述车辆到达所述位置时的一未来空气质量数据;
基于所述未来空气质量数据判断是否存在空气污染;
如果是,所述污染程度判断模块判断所述空气污染是否超过了一预设的数值;以及
如果不是,发出一提示信息。
附图说明
图1A是根据本发明的一实施例的车内空气质量控制系统和方法应用场景示意图,表示车外空气质量不良的情况。
图1B是根据本发明的一实施例的车辆示意图,示出了通过净化的方式调整车内空气的情况。
图2A是根据本发明的一实施例的车内空气质量控制系统和方法应用场景示意图,表示车外空气质量良好的情况。
图2B是根据本发明的一实施例的车辆示意图,示出了通过空气交互的方式调整车内空气的情况。
图2C是根据本发明的一实施例的车辆示意图,示出了通过空气交互的方式调整车内空气的情况。
图3是根据本发明的一个实施例的车内空气质量控制系统的结构示意图。
图4是根据本发明的一个实施例的车内空气质量控制方法的调整流程图。
图5是根据本发明的一个实施例的车内空气质量控制方法的一空气交互装置调整流程图。
图6是根据本发明的一较佳实施例的一空气质量获取系统的框图示意图。
图7是根据本发明的一较佳实施例的一空气质量获取系统的应用示意图。
图8A是根据本发明的一较佳实施例的一空气质量获取系统的应用示意图。
图8B是根据本发明的一较佳实施例的一空气质量获取系统的应用示意图。
图9是根据本发明的一较佳实施例的一空气质量获取系统的应用示意图。
图10是根据本发明的一较佳实施例的一空气质量获取系统的应用示意图。
图11是根据本发明的一较佳实施例的一空气质量获取系统的应用示意图。
图12是根据本发明的一较佳实施例的带有一空气检测器的一车辆的示意图。
图13是根据本发明的一较佳实施例的一空气质量导航系统的一框图示意图。
图14是根据本发明的一较佳实施例的一空气质量导航系统的一应用示意图。
图15是根据本发明的一较佳实施例的一空气质量导航系统的一应用示意图。
图16是根据本发明的一较佳实施例的一空气质量导航系统的一应用示意图。
图17是根据本发明的一较佳实施例的一空气质量导航系统的一应用示意图。
图18是根据本发明的一较佳实施例的带有一空气检测器的一车辆的示意图。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
可以理解的是,术语“一”应理解为“至少一”或“一个或多个”,即在一个实施例中,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个,术语“一”不能理解为对数量的限制。
如图1至5所示,本发明提供一车内空气质量控制系统、方法和车辆,以实现根据车内外空气质量状况,通过空气交互或净化的方式,主动调整和优化车内空气的目的,契合当下空气质量问题,保护车内人员的身体健康。
具体地,所述车内空气质量控制系统包括一检测模块10和一设备控制模块20,其中所述检测模块10检测车内和车外的空气质量状况,获取一车内空气质量信息11和一车外空气质量信息12,所述设备控制模块20根据所述车内空气质量信息11和所述车外空气质量信息12控制一空气交互装置100和\或一空气净化装置200,从而实现车内空气的调整甚至优化。所述空气交互装置100可以被实施为车窗系统和\或空调系统等通过车内外空气交互,实现空气调整和优化 的装置。所述空气交互装置100可以被实施为车载空气净化器等通过净化车内空气,实现空气调整和优化的装置。
所述检测模块10包括一车内空气检测模块13,用于检测车内的空气质量,形成所述车内空气质量信息11。所述车内空气质量信息11可以包括但不限于PM2.5值、PM10值、是否有有害气体、二氧化碳含量是否过高、温度、湿度等等。所述车内空气检测模块13可以被实施为PM2.5检测仪、PM10检测仪、温度检测仪、湿度检测仪、风速检测仪、香烟检测仪、有机化合物检测仪等一种或多种的组合,以测量车内的空气质量数据,为后续设备的智能控制服务。
所述检测模块10进一步包括一车外空气检测模块14,用于检测车外空气质量,形成所述车外空气质量信息12。所述车外空气质量信息12可以包括但不限于PM2.5值、是否有有害气体、二氧化碳含量是否过高、温度、湿度等等。所述车外空气检测模块14也可以被实施为PM2.5检测仪、PM10检测仪、温度检测仪、湿度检测仪、风速检测仪、香烟检测仪等一种或多种的组合,以测量车外的空气质量数据,为后续设备的智能控制服务。
优选地,所述车内空气检测模块13和所述车外空气检测模块14被实施为PM2.5检测仪,从而使所述设备控制模块20可以根据车内外的PM2.5值控制设备,调整车内空气。本领域技术人员可以知道的是,所述车内空气检测模块13和所述车外空气检测模块14可以共用同一检测仪或传感器,也可以各自独立地配有相应的检测仪或传感器,本发明并不限制。
优选地,为了是所述车内空气质量信息11更加准确,所述车内空气检测模块13被安装于车辆的风道内,比如空调风道或者单独设置检测风道,抽取车内和车外的空气样品检测,形成所述车内空气质量信息11和所述车外空气质量信息12。
此外,所述车内空气检测模块13和\或所述车外空气检测模块14优选地被实施为一具有水气分离结构的传感器,尤其是PM2.5传感器。一方面,减少湿度低于检测精度的影响,另一方面过滤大颗粒物,尽可能保护传感器寿命。
在本发明的另一实施例中,所述车外空气检测模块14通信地连接于互联网,定位地获取车外空气质量的互联网数据,形成所述车外空气质量信息12,而无需额外安装检测设备检测车外空气质量,减少成本。进一步,所述车外空气检测模块14可工作地连接于车辆导航模块,根据车辆的导航路线,预先获取路线沿 途的车外空气质量,也就是说,所述车外空气质量信息12可以包含导航路线沿途的各项空气质量数据。所述设备控制模块可以根据预先获取的各项空气质量数据,提前采取措施。例如,当获取的互联网数据显示前方将要经过的地区的PM2.5数据超标,则所述设备控制模块20可以控制车窗关闭,并打开空气净化装置,以保证在经过该区域时,车内的空气质量不会受到车外空气质量的污染。
进一步,所述设备控制模块20包括一处理模块21、一空气净化装置控制模块22和一空气交互装置控制模块23,其中所述处理模块21分析所述车内空气质量信息11和所述车外空气质量信息12,判断采用车内外空气交互或净化的方式调整车内空气,形成一触发信息211。
所述空气净化装置控制模块22根据所述触发信息211,选择是否触发对应的空气净化装置200工作。所述空气净化装置200可以通过蓝牙、WiFi等无线方式通信地连接于所述空气净化装置控制模块22。也就是说,消费者可以额外购买所述空气净化装置200,通过无线方式连入本发明的所述车内空气质量控制系统,并不需要改造车辆本身装载所述空气净化装置200。
所述空气交互装置控制模块23根据所述触发信息211,选择是否触发对应的空气交互装置100工作。所述空气交互装置100可以被实施为车辆本身装载的车窗系统和\或空调系统,可以通过蓝牙、WiFi等无线方式或有线方式连接,本发明并不限制。
所述处理模块21分析所述车内空气质量信息11和所述车外空气质量信息12,判断车内空气质量是否需要调整以及调整的方式,以触发对应的所述空气净化装置200或所述空气交互装置100工作。
具体地,所述处理模块21根据所述车内空气质量信息11,分析车内空气是否需要调整。比如当所述车内空气信息11显示车内空气含有二手烟等有害气体、氧气和二氧化碳含量偏高、异味或PM10、PM2.5不符合标准等等情况之一或多种情况时,判断车内空气需要调整。而当所述车内空气信息11显示车内空气质量正常,没有有害气体、氧气和二氧化碳含量、PM10、PM2.5正常等,判断车内空气不需要调整,则无需触发所述空气净化装置200或所述空气交互装置100工作,或者说无需改变其当前工作状态。
进一步,当所述处理模块21判断结果为车内空气需要调整时,根据所述车外空气质量信息12反映的车外空气质量是否良好,分析适用净化或空气交互方 式调整。比如根据车外空气的PM2.5是否符合标准、PM10是否符合标准、如二氧化氮、二氧化硫等有毒气体含量数值是否在安全范围内,风速、湿度是否对车内人员适宜等等,分析选择调整方式。
当所述车外空气质量信息12显示车外空气质量优良时,如图2A所示,优选使用车内外空气交互方式调整,即所述处理模块21触发所述空气交互装置控制模块22工作,以进一步控制所述空气交互装置100工作信息,例如打开车窗、打开空调的通风换气系统等,以实现空气交互调整车内的空气质量,如图2B和图2C所示。
当所述车外空气质量信息12显示车外空气质量较差时,如图1A所示,所述处理模块21触发所述空气交互装置控制模块23和\或空气净化装置控制模块23工作,以停止所述空气交互装置100工作,启动所述空气净化装置200。例如,触发所述空气交互装置控制模块23控制打开的车窗关闭,停止空调的通风换气系统,从而避免外界的空气污染车内的空气;通过空气净化器等装置针对车内的空气净化,以实现净化调整车内的空气质量,如图1B所示。
可以理解的是,尽管车内空气不需要调整时,而所述车外空气质量较差时,所述处理模块21仍可以形成所述触发信息211,从而触发所述空气交互装置控制模块23工作,控制所述空气交互装置100停止工作或关闭。
也就是说,所述处理模块21分析后形成的所述触发信息211可以包括但不限于是否启动或关闭空调的通风换气系统、是否开窗、是否关窗、是否启动空气净化装置200等等。所述空气净化装置控制模块22和所述空气交互装置控制模块23根据所述触发信息211触发对应的所述空气净化装置200和所述空气交互装置100工作。
此时,所述空气质量控制系统可以主动调整和优化车内空气质量,无需驾驶员控制,避免驾驶员行驶过程中注意力分散,提高驾驶安全性。而且,所述空气质量控制系统仍可以通过净化和空气交互的方式双层保证车内空气质量控制和优化。
进一步,所述空气交互装置控制模块23包括一车窗控制模块231和一空调控制模块232。所述车窗控制模块231根据所述触发信息211控制车窗的开关、开窗程度等。所述空调控制模块232根据所述触发信息211控制车载空调的开关、设置温度、风速等。
所述处理模块21根据所述车内空气质量信息11和\或所述车外空气质量信息12,形成一选择触发信息212,以供选择触发所述车窗控制模块231和\或所述空调控制模块232工作。例如当下雨天时,为了避免雨水进入车内,则所述处理模块21选择所述空调控制模块232工作,通过空调的通风系统交互空气,并阻止雨水进入车内,形成所述选择触发信息212,如图2B所示。当天气晴朗时,则所述处理模块21选择所述车窗控制模块231工作,利用空气的自然流通交互空气,避免车内人员长时间处于空调环境中,形成所述选择触发信息212,如图2C所示。
本领域技术人员可以知道的是,根据预设条件,所述车窗控制模块231和所述空调控制模块232也可以被同时触发工作,本发明并不限制。此外,触发所述车窗控制模块231或所述空调控制模块232,还是两者同时工作,本领域技术人员可以预设不同的条件,上述只是举例并非限制。
在本发明的一个实施例中,所述设备控制模块20进一步包括一设置模块24。所述设置模块24根据所述触发信息211、所述车内空气质量信息11和所述车外空气质量信息12,形成一设置信息241,用于设置对应的所述空气交互装置100和\或所述空气净化装置200工作参数。所述设置信息241可以包括但不限于净化装置的净化风速和净化时间等,每个车窗的开关状态,车窗开启程度,空调通风速度、空调设定温度等。
根据所述触发信息211,所述空气净化装置控制模块22触发所述空气净化装置200启动。对应地,所述设置模块24根据所述车内空气质量信息11,形成如净化风速档、净化工作时间等设置信息241。所述空气净化装置控制模块22根据所述设置信息241,设置所述空气净化装置200的工作状参数。例如,所述车内空气质量信息11显示车内有二手烟等有害气体或氧气缺失,则所述设置信息241可以显示净化风速最高档,以实现快速净化。
根据所述触发信息211,所述车窗控制模块231被触发工作时。对应地,所述设置模块24根据所述车内空气质量信息11和车外空气质量信息12,形成如驾驶区车窗是否开启,副驾驶区车窗是否开启,后座区域车窗是否开启,是否全开或半开等开启程度等等设置信息241。所述车窗控制模块231根据所述设置信息241设置车窗的工作参数。例如,所述车内空气质量信息11显示车内有二手烟等有害气体,则所述设置信息241可以显示所有窗户全开,以快速散去二手烟。 或者例如所述车外空气质量信息12显示车外风速较大,温度较低,则所述设置信息241可以显示仅后座区域车窗半开。
根据所述触发信息211,所述空调控制模块232被触发工作时。对应地,所述设置模块24根据所述车内空气质量信息11和车外空气质量信息12,形成如空调通风风速档、是否除湿、温度、前座区域空调通风口是否开启、后座区域空调通风口是否开启等等设置信息241。所述空调控制模块232根据所述设置信息241设置空调系统的工作参数。例如,所述车内空气质量信息11显示车内温度6摄氏度、湿度不适宜、有较多灰尘或PM10值较大,则所述设置信息241可以显示空调温度17摄氏度、除湿,同时前后座空调通风口均开启。
本领域技术人员可以知道的是,上述只是举例并非限制,同样的情况也可以形成其他内容的所述设置信息241。本领域技术人员可以根据需要设计不同的条件,形成对应的所述设置信息241,本发明并不限制。
在本发明的另一实施例中,所述车内空气质量控制系统进一步包括一显示模块30,其中所述显示模块30显示所述车内空气质量信息11和所述车外空气质量信息12,以便车内人员知道当前所述环境状态,尤其是车内空气质量。所述显示模块30可以被实施为车辆装载的显示屏,车内人员的手机、平板等电子设备,本发明并不限制。
所述显示模块30也可以显示所述触发信息211和所述设置信息241。比如显示当前空气调整模式是交互还是净化、车窗的工作状态和工作参数、空调的工作状态和工作参数、空气净化器的工作状态和工作参数等等。
根据本发明的另一个方面,本发明进一步提供一车内空气质量控制方法。所述车内空气质量控制方法可以被适用于上述车内空气质量控制系统,实现上述发明目的和优势,解决本发明的问题。
如图4所示,为本发明调整车内空气质量的方法流程图。
步骤301:检测车内空气质量,形成一车内空气质量信息11。
由于车辆内部空间有限,车内空气质量变化的幅度和频率加大,尤其在车内人数较多的情况下,以大巴车为例,现在大巴车大部分窗户封闭无法开启,而当大巴车满载时,车内空气的二氧化碳和灰尘量会短时间内上升。所以实时检测车内的空气质量以应对,才能保证车内空气质量处于较佳状态。
车内空气质量的检测可以通过PM10检测仪、PM2.5检测仪、温度检测仪、 湿度检测仪、风速检测仪、香烟检测仪等一种或多种的组合,本发明的方法并不限制。对应地,所述车内空气质量信息11可以包括但不限于PM2.5、PM10、温度、湿度、是否有有害气体等等。
步骤303:获取一车外空气质量信息12。
所述车外空气质量信息12的获取可以通过车辆配置的车外空气质量检测仪器获取,也可以定位地从网络获取。车辆配置的车外空气质量检测仪器也可以是PM10检测仪、PM2.5检测仪、温度检测仪、湿度检测仪、风速检测仪、香烟检测仪等一种或多种的组合。
多数的大巴车都是长途汽车,途经不同的区域,特别是跨省份的大巴车,也就是说,对于车辆来说,不用于固定室内,车外的空气质量在不断变化,如图1A和图2A所示。所以当利用车外空气质量检测仪器获取所述车外空气质量信息12时,需要实时检测,以及时供应对。当所述车外空气质量信息12从网络获取时,可以导航路线,提前获取路线对应的数据,从而提前应对。
对应地,所述车外空气质量信息12可以包括但不限于PM2.5、PM10、温度、湿度、是否有有害气体,以及不同地段的前述参数等等。
步骤305:根据所述车内空气质量信息11,分析车内空气是否需要调整。
根据各个检测仪的检测结果,所述车内空气质量信息11可以反应乘客是否处于良好的空气环境中。比如当所述车内空气质量信息11反应存在二手烟、二氧化碳量过高、温度过高等情况之一或多种情况,都表面乘客处于不良的空气环境中,车内空气需要调整和优化,以保证乘客健康。
可以知道的是,上述步骤303的顺序并不走数字序号限制。本领域技术人员可以先执行步骤303,在执行步骤301和305;或者先执行步骤301,再执行步骤305、步骤303;或者步骤301和步骤303同时执行。
步骤307:当车内空气需要调整时,根据所述车外空气质量信息12,分析车外空气是否良好。
也就是说,车外空气是否良好会影响车内空气调整方式,所以判断车外空气是否良好十分必要。
所述车外空气质量信息12可以反应车外空气环境质量是否良好。比如当车外空气PM2.5或PM10超标时,则表明车外空气较差。比如当车外空气含有有毒气体时,则表明车外空气较差。此时,空气良好的标准除了使用国家标准,还 可以根据使用者的要求预设,但不能不符合国家标准,以避免受到健康威胁。
步骤309:当车外空气良好时,触发一空气交互装置100工作。
由于车外空气良好,通过一打开车窗或空调通风系统,可以实现车内外空气交换流通,从而调整车内的空气质量。例如,车内外空气流通后,车内二氧化碳和氧气比例正常,灰尘量降低、PM2.5等也会降低。
步骤311:根据所述车外空气质量信息12和所述车内空气质量信息11,设置所述空气交互装置100工作参数。
根据不同的车内外空气质量情况,可以设置所述空气交互装置100的对应工作参数,以更人性地和契合需要的为车内人员提供服务。例如,根据车外的风速,设置车窗的开启大小,是前窗还是后窗。例如根据车内空气严重程度,设置空调通风速度,比如果车内空气含有毒气体,则设置最高档风速。
尤其当所述车外空气质量信息12通过网络获取时,所述空气交互装置100工作参数可以预先设置。
步骤313:当车外空气不良即低于一预设标准时,触发一空气净化装置200工作。
由于车外空气不良,如果车内外空气交换流通,车内的空气就会被车外的空气污染,无法起到调整作用。所以通过所述空气净化装置200净化车内空气,才可以实现空气调整。
步骤315:根据所述车内空气质量信息11,设置所述空气净化装置200工作参数。
根据所述车内空气质量信息11反应车内空气质量状况,对应地设置所述空气净化装置200工作参数。例如根据车内空气严重程度,设置净化风度,比如果车内空气含有毒气体,则设置最高档风速。例如根据车内空气状况,设置基本净化工作时间,从而包装有效净化时长。
进一步,为了使所述空气净化装置200工作效率提高,而不受车外空气的干扰,所述步骤313步骤之前还可以执行步骤308:使车内空间封闭。例如关闭打开的车窗、停止工作的空调通风系统等等。
步骤317:当所述车内空气良好时,继续监测车内空气质量。也就是说,当车内空气良好时,执行步骤301和303,直至车内空气质量需要调整后执行后续步骤。
当然,上述步骤305并非必要步骤,即使车内空气不需要调整,而是处于良好的状态,仍可以分析车外空气是否良好后,执行307、308、309步骤。也就是说,当所述车内空气质量信息11显示车内空气质量良好时,为了其避免受到车外空气质量的污染,当车外空气不良时,使车内空间封闭,触发所述空气净化装置200工作。
如图5所示,为本发明的所述车内空气质量控制方法中,针对具体地车窗系统和空调系统等空气交互装置100调整车内空气流程示意图。
步骤402:根据所述车内空气质量信息11和所述车外空气质量信息12,形成一选择触发信息212。
所述选择触发信息212包括但不限于是否开启车窗、是否开启空调、是否开启空调通风系统等等。具体地,所述选择触发信息212的形成可以利用所述触发模块21通过分析所述车内空气质量信息11和所述车外空气质量信息12形成,而所述触发模块21可以被实施为中央处理器、服务器等等,本发明并不限制。
例如,根据所述车外空气质量信息12显示的车外的雨量或风速超过预设,则为了车内舒适度考虑,则所述选择触发信息212显示触发空调通风而非打开车窗。
步骤403:根据所述车外空气质量信息12,判断车外空气质量是否良好。
步骤404:当车外空气质量良好时,根据所述选择触发信息212,触发一车窗系统工作。
当所述选择触发信息212显示触发车窗进行车内外空气交换时,所述车窗系统被触发工作,例如闭合的车窗被打开。
步骤406:根据所述车内空气质量信息11和所述车外空气质量信息12,设置所述车窗系统的工作参数。
例如设置驾驶区车窗是否开启,副驾驶区车窗是否开启,后座区域车窗是否开启,是否全开或半开等开启程度等工作参数。而所述车内空气质量信息11和所述车外空气质量信息12不同也会影响工作参数的设置,例如所述车外空气质量信息12显示车外风速较大,温度较低,则设置仅后座区域车窗半开。
或者步骤408:当车外空气质量良好时,根据所述选择触发信息212,触发一空调系统工作。
当所述选择触发信息212显示触发空调系统进行车内外空气交换时,所述车 窗系统被触发工作,例如通风系统开始工作、制热或制热系统开始工作、除湿功能开启等等。
步骤410:根据所述车内空气质量信息11和所述车外空气质量信息12,设置所述空调系统的工作参数。
例如设置空调通风风速档、是否除湿、温度、前座区域空调通风口是否开启、后座区域空调通风口是否开启等等工作参数。同样地,所述车内空气质量信息11和所述车外空气质量信息12不同也会影响工作参数的设置。例如所述车外空气质量信息12显示车内有二手烟,则前座区域和后座区域空调通风口全部打开,以快速交换空气。
步骤412:当车外空气质量不良时,使车内空间封闭。
可以知道的上述步骤的出现顺序和数字顺序只是为了说明并不是限制,例如步骤403可以在步骤402之前执行。
参考附图6以及参考附图7所示,是根据本发明的一较佳实施例的一空气质量获取系统被阐明。
所述空气质量系统能够通过带有一空气检测器71A的一车辆7200A获取所述车辆7200A经过位置的空气质量数据并且能够将不同区域的空气质量结果反馈给用户以供参考。
具体地说,所述空气质量获取系统包括一地理位置定位模块710和一处理模块720,其中所述地理位置定位模块710用于确认一区域的一地理位置,所述处理模块720用于根据所述区域的所述地理位置获取关于所述区域的一空气质量结果。所述地理位置定位模块710被可通信地连接于所述处理模块720。
所述地理位置定位模块710可以是被可通信地连接于一车辆7200A的一显示屏或者是一语音接收装置,以获取一用户关于所述区域的所述的地理位置的一指令。所述地理位置定位模块710也可以是可通信地连接于一车辆7200A的一位置的模块以根据车辆7200A的所述地理位置提供所述空气质量结果。可以理解的是,所述空气质量系统能够为那些并没有安装有所述空气检测器71A的所述车辆7200A提供所述空气质量数据或者并没有在所述车辆7200A上的用户提供所述空气质量数据。通过所述带有空气检测器71A的所述车辆7200A,所述空气质量获取系统获取关于所述区域的所述空气质量结果。值得一提到是,相对于传统的在固定采样点设置空气传感器的方式,在本发明中,空气样本的数量和空 气样本的类型,并不受到固定位置和固定位置空气传感器类型的限制,其空气样本的来源可以更加的多样,并且由于所述车辆7200A的运动能力,使得其一台所述车辆7200A就能够检测极大范围内的空气质量,并不论所述车辆7200A是否处于一运动状态还是处于一静止状态,所述空气检测器71A皆可处在一空气工作状态以提供所述车辆7200A所在环境的一空气质量数据。借助目前数量庞大的车辆7200A,形成了一强大的空气检测网络以随时监测空气质量。
进一步地,所述处理模块720包括一判断模块721和一生成模块722,其中所述判断模块721用于判断是否存在带有所述空气检测器71A的所述车辆7200A在所述区域的所述地理位置检测到所述区域的一空气质量数据,所述生成模块722被可通信地连接于所述判断模块721。所述判断模块721的一判断结果是肯定的,所述生成模块722根据所述空气质量数据生成关于所述区域的一空气质量结果。所述判断模块721被可通信地连接于带有所述空气检测器71A的所述车辆7200A以对所述空气检测器71A检测到的所述数据进行判断。所述生成模块722被可通信地连接于带有所述空气检测器71A的所述车辆7200A以在所述空气质量数据来自于所述区域的情况下对其进行处理获得关于所述区域的所述空气质量结果。
可以理解的是,所述空气质量结果可以是一个能够反馈整个所述区域的空气质量的空气质量结果,比如说,优,良,差等。当仅有一个数据时,所述生成模块722直接将所述数据和一标准数据对比即可得到所述空气质量结果,当所述区域存在多个数据,所述生成模块722通过平均、拟合等方式对于多个所述区域的空气质量数据进行处理以得到一处理后数据,再将所述处理后数据和所述标准数据对比即可得到所述空气质量结果。当然,所述生成模块722也可以直接生成所述处理后数据,比如说所述区域的PM2.5数据是780。本领域技术人员可以理解的是,上述的数据处理方式并不对本发明造成限制。所述空气质量结果也可以是直接将数据直接以地图的方式呈现,也就是说,将所述空气质量数据和所述空气质量数据的一来源位置结合以获得一直观的展示效果。
值得一提的是,通过所述车辆7200A来检测空气质量,有其优点,也有一定的缺点,缺点在于有些所述区域可能并不能供所述车辆7200A通过或者是所述车辆7200A一般无法驶入所述区域,比如说一些道路崎岖或者是根据就没有提供道路供所述车辆7200A通过的所述区域。在这种情况下,所述空气质量获取 系统也能够获取关于所述区域的一空气质量结果。
具体地说,所述处理模块720包括一再判断模块723和一拟合模块724,其中所述拟合模块724被可通信地连接于所述判断模块721和所述再判断模块723,所述再判断模块723被可通信地连接于所述生成模块722。在所述判断模块721得出的所述判断结果是不存在带有所述空气检测器71A的所述车辆7200A检测到所述区域的所述空气质量数据,所述再判断模块723判断是否存在带有所述空气检测器71A的所述车辆7200A检测到距离所述区域的一预设范围内的所述空气质量数据。如果所述再判断模块723的所述判断结果是肯定的,所述拟合模块724根据来自于距离所述区域的所述预设范围内的所述空气质量数据拟合生成所述区域的所述空气质量结果。所述拟合模块724被可通信地连接于距离所述区域在所述预设范围内的带有所述空气检测器71A的所述车辆7200A以获得其检测到的所述空气质量数据。通过这样的方式,所述空气质量获取系统能够获取关于没有带有所述空气器的所述车辆7200A检测到所述区域的所述空气质量结果。所述空气质量获取系统能够通过带有所述空气检测器71A的所述车辆7200A的实时空气检测获取关于所述区域的一实时空气质量检测结果,值得一提的是,所述空气质量获取系统还可以提供关于所述区域的一历史空气质量结果以供参考。
进一步地,所述空气质量获取系统包括一时间位置定位模块730和一存储模块740,其中所述时间位置定位模块730被可通信地连接于所述处理模块720和所述地理位置定位模块710,所述时间位置定位模块730被用于定位关于所述区域的一时间位置。所述存储模块740被可通信地连接于所述处理模块720,所述存储模块740用于存储关于所述空气质量数据的历史数据。
也就是说,通过所述时间位置定位模块730可以确认所述区域的所述时间位置,所述处理模块720的所述判断模块721判断在所述时间位置和所述地理位置是否检测到所述区域的一空气质量数据,如果是,所述生成模块722生成在所述时间位置和所述地理位置关于所述区域的一空气质量结果。如果不是,所述再判断模块723判断是否存在在所述时间位置距离所述地理位置一定范围内的检测到的所述空气质量数据,如果是,所述拟合模块724对于在所述时间位置距离所述区域的所述预设范围内的检测到的所述空气质量数据进行一拟合处理,所述生成模块722根据所述拟合模块724的一拟合结果生成关于所述区域的一空气质量结果。
更加具体地说,进一步包括一分析模块725,其中所述分析模块725可通信地连接于所述生成模块722,
所述分析模块725基于所述区域的所述空气质量数据和检测到的所述空气质量数据的所述车辆7200A的一车辆状态得出一分析结果,所述生成模块722根据所述分析结果生成所述区域的所述空气质量结果。所述车辆7200A状态包括一车辆位置和一车辆行驶速度信息。
随着所述车辆7200A在所述区域内位置的不同,所述空气质量数据来源的位置也并不相同。根据所述空气质量数据的来源位置的不同,可以决定在后期数据处理中所述空气质量数据对应的处理方式,举例说明,部分所述空气质量数据来自于所述区域的一边缘位置,剩余部分所述空气质量数据来自于所述区域的一中间位置,那么在处理过程中可以以增加来自于所述区域的所述中间位置的所述空气质量数据权重的方式来得出所述区域的一空气质量检测结果。所述生成模块722被设置为根据所述来源位置的不同决定所述空气质量数据在处理过程中的处理手段的方式处理所述空气质量数据并且得出关于所述区域的所述空气质量结果
随着来源于所述车辆7200A的状态的不同,所述空气质量数据在后续处理中的方式也并不相同。在所述车辆7200A处于一静止状态获取的一空气质量数据可能比所述车辆7200A处于一移动状态尤其是高速移动状态获取的一空气质量数据的准确率要高,因此可以在后续的处理过程中根据获取到所述空气质量数据的所述车辆状态的不同决定对应所述空气质量数据在后续处理中的权重。可以理解的是,在本发明的一实施例中,假如大部分所述空气质量数据来自于固定位置的所述车辆7200A,甚至可以将自于一高速移动的所述车辆7200A的所述空气质量数据剔除后再得出所述区域的一空气质量检测结果。所述生成模块722被设置为根据检测时所述车辆行驶速度的不同决定所述空气质量数据在处理过程中的处理手段的方式处理所述空气质量数据并且得出关于所述区域的所述空气质量结果
进一步地,所述处理模块720包括一校正模块726,其中所述校正模块726被可通信地连接于所述判断模块721。所述校正模块726用于剔除出现偏差的所述空气质量数据,所述生成模块722根据校正后的所述空气质量数据得出所述空气质量结果。
举例说明,所述校正模块726可以是比较至少三个来自于相邻位置的所述空气质量检测数据判断是否其中的一个和其他至少两个的偏离是否超过一预设的数值,比如说在0.5米范围内通过被设置于所述车辆7200A的所述空气检测器71A获取了三个空气质量数据,PM2.5 750、752以及780,那么数据PM2.5 780超过一偏离范围710,因此所述数据PM2.5 780可能是一错误数据,其错误来源可能是所述空气检测器71A本身或者是被在检测时接触到了一范围较小的污染源,比如说用户在所述空气检测器71A旁边抽烟,但是事实上数据PM2.5 780无法反映整个所述区域的一空气质量情况。所述校正模块726将数据PM2.5 780剔除后,所述生成模块722根据校正处理后的所述空气质量数据得出所述区域的一空气质量结果。
进一步地,所述空气质量获取系统包括一污染定位模块750,其中所述污染定位模块750用于定位所述区域的至少一污染点。所述污染定位模块750能够根据所述车辆7200A获取的所述空气质量数据和对应的所述车辆7200A的位置比较各个所述位置的所述空气质量数据大小得出所述区域的一污染位置。所述污染定位模块750被可通信地连接于所述判断模块721和所述生成模块722,在所述判断模块721的所述判断结果是肯定的,所述污染定位模块750得出所述污染点,所述生成模块722根据所述污染点生成关于所述区域的所述空气质量结果。
也就是说,通过比较所述车辆7200A采集到的所述空气质量数据的大小和来源的位置,可以分析得出所述区域内的至少一污染位置,尤其是一些没有安装所述空气检测器71A因此平时难以发现的排污企业。
进一步地,所述空气质量获取系统包括一检测类型定位模块760,其中所述检测类型定位模块760被可通信地连接于所述处理模块720,所述检测类型定位模块760用于确认所述空气质量数据的一类型。
根据本发明的另一方面,提供了一空气质量获取方法,藉由所述空气质量获取方法,某一区域的空气质量数据能够通过带有一空气检测器71A的一车辆7200A获取,并且因为所述车辆7200A本身拥有的运动能力,其获取的空气质量数据并不限于来自固定位置的空气,也可以来自所述车辆7200A行驶沿线的空气。也就是说,相对于传统的在固定采样点设置空气传感器的方式,在本发明中,空气样本的数量和空气样本的类型,并不受到固定位置和固定位置空气传感器类型的限制,其空气样本的来源可以更加的多样,比如说通过带有检测不同空 气质量指数的所述车辆7200A在所述区域内获取的空气数据。
具体地说,所述空气质量获取方法包括如下步骤:
(a)判断是否存在带有空气检测器71A的至少一车辆7200A检测到所述区域的一空气质量数据;和
(b)如果是,基于所述车辆7200A检测到的所述区域的空气质量数据处理得出关于所述区域的一空气质量结果。
根据本发明的一实施例,所述空气质量获取方法进一步包括一步骤(c),其中所述步骤(c):
(c.1)如果不是,判断是否存在带有空气检测器71A的所述车辆7200A检测到所述区域的一预设范围内的一空气质量数据;和
(c.2)如果是,获取所述空气质量数据以得出所述区域的一空气质量检测结果。
根据本发明的一实施例,所述空气质量获取方法进一步包括一步骤(d),其中所述步骤(d)包括:
确认一区域的一地理位置,所述步骤(d)位于所述步骤(a)之前。
根据本发明的一实施例,所述步骤(a)中的所述车辆7200A位于所述区域。
根据本发明的一实施例,所述步骤(a)中的所述车辆7200A曾经位于所述区域。
根据本发明的一实施例,所述步骤(b)被实施为:(b.1)分析所述空气质量数据以得出一分析结果;和
(b.2)通过基于所述分析结果决定所述空气质量数据在后续过程中处理手段的方式得出所述区域的一空气质量检测结果。
根据本发明的一实施例,其中所述步骤(b)被实施为:
(b.1)分析所述空气质量数据来自于所述区域的位置;和
(b.2)通过基于所述空气质量数据的位置来源决定对应所述空气质量在后续处理中权重的方式得出所述区域的所述空气质量检测结果。
随着所述车辆7200A在所述区域内位置的不同,所述空气质量数据来源的位置也并不相同。根据所述空气质量数据的来源位置的不同,可以决定在后期数据处理中所述空气质量数据对应的处理方式,举例说明,部分所述空气质量数据来自于所述区域的一边缘位置,剩余部分所述空气质量数据来自于所述区域的一中 间位置,那么在处理过程中可以以增加来自于所述区域的所述中间位置的所述空气质量数据权重的方式来得出所述区域的一空气质量检测结果。
根据本发明的一实施例,其中所述步骤(b)被实施为:
(b.1)分析所述空气质量数据是否来自一固定车辆7200A;和
(b.2)如果是,以增大来自于所述固定车辆7200A的所述空气质量数据在后续处理权重的方式的得出所述区域的一空气质量检测结果。
随着所述车辆7200A来源于所述车辆7200A的状态的不同,所述空气质量数据在后续处理中的方式也并不相同。在所述车辆7200A处于一静止状态获取的一空气质量数据可能比所述车辆7200A处于一移动状态尤其是高速移动状态获取的一空气质量数据的准确率要高,因此可以在后续的处理过程中根据获取到所述空气质量数据的所述车辆7200A状态的不同决定对应所述空气质量数据在后续处理中的权重。可以理解的是,在本发明的一实施例中,假如大部分所述空气质量数据来自于固定位置的所述车辆7200A,甚至可以将自于一高速移动的所述车辆7200A的所述空气质量数据剔除后再得出所述区域的一空气质量检测结果。
根据本发明的一实施例,其中所述步骤(b)被实施为:
(b.1)分析获取到所述空气质量数据的所述车辆7200A在获取所述空气质量数据的一车辆7200A状态;和
(b.2)通过基于所述车辆7200A状态的不同决定对应所述空气质量数据在后续处理过程权重的方式得出所述区域的一空气质量检测结果。
根据本发明的一实施例,进一步包括一步骤(e),其中所述步骤(e)包括步骤:
(e.1)判断所述区域内的各个所述空气质量检测数据是否其中至少一个存在一预设范围外的偏离;和
(e.2)如果是,剔除偏离的所述空气质量检测数据。
根据本发明的一实施例,所述步骤(e.1)中的判断方式可以是比较至少三个来自于相邻位置的所述空气质量检测数据判断是否其中的一个和其他至少两个的偏离是否超过一预设的数值,比如说在0.5米范围内通过被设置于所述车辆7200A的所述空气检测器71A获取了三个空气质量数据,PM2.5 50、52以及80,那么数据PM2.5 780超过一偏离范围10,因此所述数据PM2.580可能是一错误 数据,其错误来源可能是所述空气检测器71A本身或者是被在检测时接触到了一范围较小的污染源,比如说用户在所述空气检测器71A旁边抽烟,但是事实上数据PM2.5 80无法反映整个所述区域的一空气质量情况。可将数据PM2.5 80剔除后再处理得出所述区域的一空气质量数据。
根据本发明的一实施例,所述步骤(b)被实施为:
以结合所述空气质量数据的一来源位置的方式基于所述空气质量数据得出一分析结果;和
根据所述分析结果确认所述区域的至少一污染位置。
根据本发明的一实施例,在所述步骤(b)中,通过比较各个所述空气质量数据确认所述区域的至少一所述污染位置。
根据本发明的一实施例,在所述步骤(b)中,通过比较同一来源位置的在不同时间的所述空气质量数据确认所述区域的至少一所述污染位置。
也就是说,通过比较所述车辆7200A采集到的所述空气质量数据的大小和来源的位置,可以分析得出所述区域内的至少一污染位置,尤其是一些没有安装所述空气检测器71A因此平时难以发现的排污企业。
根据本发明的另一方面,提供了一空气质量获取方法,包括如下步骤:
判断带有空气检测器71A的至少一车辆7200A是否位于一区域或者是经过所述区域;
如果所述车辆7200A位于所述区域或者是经过所述区域,获取关于所述区域的一空气质量数据;以及
处理所述空气质量数据以得到关于所述区域的一空气质量结果。
根据本发明的一实施例,所述空气质量获取方法进一步包括如下步骤:
如果不是,继续判断带有空气检测器71A的至少一车辆7200A是否位于所述区域的一预设范围内或者是经过所述区域的一预设范围内;
如果所述车辆7200A位于所述区域的所述预设范围或者是经过所述区域的所述预设范围,获取关于所述区域的所述预设范围内的所述空气质量数据;以及
处理所述空气质量数据以得到关于所述区域的一空气质量结果。
根据本发明的另一方面,提供了一空气质量获取方法,包括如下步骤:
接收一需求指令,其中所述需求指令包括一区域的一地理位置;
采集来自于经过所述区域或者是位于所述区域的一车辆7200A检测到的一 空气质量数据;和
处理所述空气质量数据以得出关于所述区域的一空气质量结果。
根据本发明的另一方面,提供了一空气质量获取方法,包括如下步骤:
通过带有空气检测器71A的一车辆7200A获取一空气质量数据;
基于所述空气质量数据和对应所述空气质量数据的所述车辆7200A的一位置生成一环境地图;以及
在所述环境地图定位一污染位置。
根据本发明的另一方面,提供了一空气质量获取方法,包括如下步骤:
根据一车辆7200A的位置信息和来自于所述车辆7200A的一空气质量数据生成一实时空气质量地图;
接收一区域的一地理位置信息;以及
基于所述实时空气质量地图输出所述区域的一空气质量结果。
参考附图8A以及继续参考附图6所示,是根据本发明的所述空气质量获取系统的一应用场景被阐明。
所述地理位置定位模块710通过来自于用户的一指令确认所述区域的一地理位置为医院,所述判断模块721判断所述区域内存在带有所述空气检测器71A的所述车辆7200A,所述生成模块722基于位于所述区域的所述车辆7200A的所述空气检测器71A检测到的空气质量数据生成关于所述区域医院的一空气质量结果。
在所述空气质量数据存在多个的情况下,可对于所述空气质量数据处理后获取关于所述区域的一整体的空气质量结果。比如说采取平均处理的方式。
参考附图8B以及继续参考附图6所示,是根据本发明的所述空气质量获取系统的另一应用场景被阐明。
所述地理位置定位模块710确认一区域的一地理位置为医院,所述检测类型定位模块760确认需要的空气质量数据的类型是空气中甲醛质量数据。所述判断模块721判断所述区域是否存在带有能够检测甲醛的所述空气检测器71A的所述车辆7200A,如果是,所述生成模块722识别来自于属于所述区域的并且是关于甲醛的所述空气质量数据并生成关于所述区域的一空气质量结果。
可以理解的是,所述空气质量结果可以是地图式,直接将检测到所述空气质量数据和对应的来源位置以地图的方式呈现给用户。
参考附图9以及继续参考附图6所示,是根据本发明的所述空气质量获取系统的一应用场景被阐明。
所述地理位置定位模块710确认一区域的一地理位置为公园,所述时间位置定位模块730确认一区域的一时间位置为2018年1月1日,是一历史时间,在所述判断模块721的判断结果是在所述区域的所述地理位置和所述时间位置存在通过带有所述空气检测器71A的所述车辆7200A检测到的空气质量数据,所述判断模块721可被通信地连接于所述存储模块740,以从所述存储模块740中获得历史的所述空气质量数据,所述生成模块722根据所述区域的在所述地理位置和所述时间位置的所述空气质量数据得出关于所述区域的一空气质量结果。
可以理解的是,当所述时间位置定位模块730确认的一区域的一时间位置为一未来时间,所述拟合模块724被可通信地连接于所述存储模块740,所述拟合模块724根据存储于所述存储模块740中的所述区域的一历史时间位置,比如说目前确认的所述时间位置是一未来时间2019年1月,基于被存储于所述存储模块740的一历史时间2018年1月的空气质量数据,所述拟合模块724拟合得出关于公园在2019年1月的至少一空气质量数据,所述生成模块722基于所述拟合模块724的一拟合结果得出关于所述区域的一空气质量结果。
参考附图10以及继续参考附图6所示,是根据本发明的所述空气质量获取系统的一应用场景被阐明。
所述地理位置定位模块710确认一区域的一地理位置,比如说银行,所述判断模块721判断在所述区域当前并没有带有所述空气检测器71A的所述车辆7200A路过。也就是说,缺少关于所述区域的一空气质量数据。
所述再判断模块723根据所述判断模块721的一判断结果继续判断在所述银行的75公里范围内是否存在带有所述空气检测器71A的所述车辆7200A路过,在所述再判断模块723的一判断结果是肯定的情况下,所述拟合模块724基于在所述银行75公里范围内检测到的所述空气质量数据拟合得出一拟合结果,所述生成模块722根据所述拟合结果生成关于所述区域的一空气质量结果。
更加具体地说,所述分析模块725对于在所述银行75公里范围内检测到的所述空气质量数据及其来源位置信息或者是在检测到所述空气质量数据时所述车辆7200A的一车辆7200A状态得出一分析结果,所述车辆7200A状态信息包括但是并不限制一车辆7200A行驶速度信息,车辆7200A位置信息。所述空气 质量数据来源位置信息包括但是并不限制于所述空气质量的来源地理位置和来源地理位置的风速和风向信息。
在本示例中,数据A来自于所述区域-公园的东面,因为检测到所述空气质量数据A的所述检测器当时正处于该位置,数据B来自于所述区域-公园的西面,因为检测到所述空气质量数据B的所述空气检测器71A当时正处于该位置,并且当时的所述区域-公园的5公里范围内的风向都是来自于东面,风从东向西吹。可以理解的是,在所述空气质量数据A所在的位置,大部分空气可能是流动自所述区域-公园,所以所述空气质量数据A对于所述区域的一空气质量来说能够在一定程度上反映所述区域的一空气质量状况,在所述空气质量数据B所在的位置,大部分空气都将要移动至所述区域-公园,所以所述空气质量数据B对于所述区域的一空气质量来说能够在一定程度上反映所述区域的一空气质量状况。很显然,所述空气质量数据A和所述空气质量数据B对于所述区域的一空气质量状况的反应程度是不相同的,所述空气质量数据A相当于是一在后的反应,所述空气质量数据B相当于是一在前的反应。所述生成模块722基于所述分析模块725的所述分析结果将对于不同的所述空气质量数据采取不同的处理方式,以生成关于所述区域的一空气质量结果。
换句话说,基于每个所述空气质量数据的不同,所述处理模块720将根据每个所述空气质量数据的不同采取对应的处理方式,以侧面获取一能够反应所述区域的一空气质量状况的所述空气质量结果。
所述空气质量结果可以是通过所述拟合模块724将所有来自于所述银行75公里范围内的所述空气质量数据的一拟合结果。
参考附图11以及继续参考附图6所示,是根据本发明的所述空气质量获取系统的一应用场景被阐明。
所述空气获取系统不仅能够获取一区域的一空气质量状态,还可以基于所述区域的一空气质量状态以发现一污染点,以有利于在后续的及时采取措施处理所述污染点。比如说对于环保部门来说,可以通过所述空气获取系统及时发现排污企业,以采取措施。
具体的说,所述地理位置定位模块710确认一区域的一地理位置,可以理解的是,不仅是可以通过一用户指令来确认所述区域的所述地理位置,还可以根据一预先的设定,或者是根据被设置于所述空气获取系统的所述车辆7200A的位 置来确认一区域的一地理位置。
所述污染定位模块750根据经过所述区域的带有所述空气检测器71A的所述车辆7200A采集得到的所述空气质量数据确认所述区域的一位置为一污染点。
可选地,所述污染定位模块750通过对比同一位置的在不同时间检测到的各个所述空气质量数据的变化超过一预设的数值确认所述位置为一污染点。比如说在所述区域的一同一位置,一生产企业,在17:00、20:00、23:00以及01:00采集到的空气质量数据分别为PM2.5 10、PM2.5 15、PM2.5 150以及01:00 180。所述污染定位模块750可将所述生产企业定位为污染点,并且所述污染点的污染事件位置在23:00和01:00之间,所述生产企业可能有偷偷在夜间排污的嫌疑。
可选地,所述污染定位模块750通过对比同一时间不同位置检测到的各个所述空气质量数据的变化超过一预设的数值确认所述位置为一污染点。比如说在第一位置检测到空气质量指数是PM2.5 10,在同一时间邻近于所述第一位置的一第二位置的位置检测到空气质量指数是PM 2.5 15,在同一时间邻近于所述第一位置的一第三位置检测到的空气质量指数是PM2.5 100。所述第二位置和所述第三位置分别在所述第一位置的75米范围内,所述污染定位模块750定位所述第二位置为一污染点,可能存在污染源。
根据本发明的另一方面,提供了一车辆7200A,其中所述车辆7200A包括一车辆本体7201A和所述空气质量获取系统,其中所述空气质量获取系统被设置于所述车辆本体7201A。
参考附图13和附图14所示,是根据本发明的一较佳实施例的一基于空气质量的车辆导航系统被阐明。所述车辆导航方法通过被设置于一车辆8200A的一空气检测器81A获取的一空气质量数据来实现对于其他车辆8200A或者是所述车辆8200A本身的一基于空气质量的导航。通过这样的方式,使用者能够在选择一空气质量较好的行驶路线。
可以理解的是,所述车辆导航系统的应用并不限制于汽车,也可以是其他具有较大移动能力的工具,比如说儿童推车,火车,飞机等。
具体地说,所述车辆导航系统包括一获取模块810和一处理模块820,其中所述获取模块810被可通信地连接于所述处理模块820,其中所述获取模块810用于获取一车辆位置和一车辆目的地信息,所述处理模块820基于所述车辆位置和所述车辆目的地信息并且根据一空气质量地图生成至少一行驶路线。所述空气 质量地图包括道路数据和空气质量数据。
所述获取模块810可以被可通信地连接于所述车辆8200A的一定位系统,以获得所述车辆位置,所述车辆目的地信息可来自于所述车辆8200A的被设置于一导航系统的一目的地信息,或者是所述获取模块810被可通信地连接于一移动电子设备,通过所述移动电子设备中用户的出行安排获得所述车辆目的地信息。
所述处理模块820包括一路线生成模块821,其中所述路线生成模块821基于所述车辆位置和所述车辆目的地位置在所述空气质量地图生成至少一所述行驶路线。
在本发明的一些示例中,所述路线生成模块821能够基于时间成本和空气质量生成至少一所述行驶路线。在本发明的一些示例中,所述路线生成模块821能够基于路程长度和空气质量生成至少一所述行驶路线。在本发明的一些示例中,所述路线生成模块821能够基于路线拥堵和空气质量生成至少一所述行驶路线。在本发明的一些示例中,所述路线生成模块821能够基于时间成本和躲避空气污染区域生成至少一行驶路线。在本发明的一些示例中,所述路线生成模块821能够基于一用户指令生成至少一行驶路线。比如说对于所述以基于时间成本和空气质量为例,所述路线生成模块821将生成所需时间较短同时空气质量较好的行驶路线,以使用户能够在节约时间的前提下通过一空气质量较好的行驶路线,当然也可以是在空气质量较好的前提下通过一时间成本较低的行驶路线。可以理解的是,可以按照所述时间成本和所述空气质量的两个参考数值的优先级的不同提供不同的行驶路线。
进一步地,所述车辆导航系统包括一空气质量地图模块830,其中所述空气质量地图模块830用于提供一空气质量地图,其中所述空气质量地图模块830包括一采集模块831和一地图生成模块832,其中所述采集模块831被可通信地连接于所述地图生成模块832,所述采集模块831用于采集一车辆8200A所在的位置的空气质量数据,所述地图生成模块832基于所述车辆位置和对应的所述空气质量数据生成一空气质量地图。
在本发明的一示例中,所述采集模块831被设置为根据所述车辆位置和所述车辆目的地信息确认一区域并且采集所述区域内的通过带有一空气检测器81A的一车辆8200A检测到的一空气质量数据,所述地图生成模块832基于所述车辆位置和对应的所述空气质量数据生成一空气质量地图。所述空气质量地图被可 直接反馈给用户,比如说通过所述车辆8200A的一中控屏。通过这样的方式,所述车辆导航系统能够基于实时的所述空气质量地图及时获取道路的空气质量信息,从而为用户提供合理有效的规划。
所述车辆导航系统进一步包括一规则设定模块822和一排序模块823,其中所述规则设定模块822用于供用户设定一排序规则,所述排序模块823被分别可通信地连接于所述规则设定模块822和所述处理模块820,以将所述路线生成模块821生成的所述行驶路线按照所述排序规则排序,比如说按照时间长短排序,按照路程长短排序或者是按照空气质量优劣排序。
所述规则设定模块822不仅可以供用户设定所述排序模块823,还可以供用户设定路线生成规则,比如说设定所述路线生成模块821按照哪一参数生成所述路线,比如说设定按照时间成本参数和空气质量生成所述行驶路线,或者是按照路程参数和空气质量生成所述行驶路线,或者是同时按照路程参数和时间成本参数以及空气质量生成所述行驶路线。
值得一提的是,所述车辆导航系统不仅能够基于空气质量提供所述行驶路线,还可以根据所述空气质量地图及时为用户反馈前方空气质量,以提前做好措施。
具体地说,所述车辆导航系统的所述处理模块820进一步包括一污染判断模块824和一污染程度判断模块825,其中所述污染判断模块824被可通信地连接于所述获取模块810和所述空气质量地图模块830,其中所述污染程度判断模块825被可通信地连接于所述污染判断模块824,所述污染程度判断模块825用于判断一空气污染程度。
进一步地,所述车辆导航系统包括一提示模块840,其中所述提示模块840被可通信地连接于所述处理模块820的所述污染判断模块824和/或所述污染程度判断模块825,所述提示模块840用于发出一提示。
具体地说,在所述污染判断模块824根据当前所述车辆位置判断所述车辆位置判断所述车辆8200A要达到的一位置存在污染,所述提示模块840发出一提示以提示用户及时采取措施。
进一步地,在所述污染判断模块824根据当前所述车辆位置判断所述车辆位置判断所述车辆8200A要达到的一位置存在污染,所述污染程度判断模块825对于所述位置的空气污染程度进行判断并得出一判断结果,所述提示模块840根据所述判断结果发出不同的提示,比如说当所述判断结果是重度空气污染,所述 提示模块840发出一提示,关于提示用户存在重度空气污染,损害用户健康,或者是提示用户更换路线,当所述判断结果是中度空气污染,所述提示模块840发出一提示,关于提示用户存在中度空气污染,提示用户启动空气净化器,当所述判断结果是轻度空气污染,所述提示模块840发出一提示,关于提示用户存在轻度空气污染,提示用户关窗,以阻止污染空气进行。可以理解的是,所述车辆8200A要达到的一位置可被预设为在所述车辆8200A前方并且距离所述车辆8200A的一预设范围,比如说距离所述车辆8200A的81公里范围内。
所述污染判断模块824根据当前所述车辆位置判断所述车辆8200A要达到的一位置是否存在空气污染,比如在所述车辆8200A的所述行驶路线已经被确认,所述污染判断模块824通过所述获取模块810获取所述车辆位置以及基于所述车辆位置获取所述车辆8200A在所述行驶路线将要达到位置的一空气质量,并且判断所述位置的空气质量相对于一标准空气质量指数是否存在空气污染,如果所述污染判断模块824的一判断结果所述车辆8200A要达到的一所述位置存在污染,所述污染程度判断模块825用于判断所述位置的污染程度。
具体地说,所述污染程度判断模块825判断所述位置的空气污染程度是否超过了所述车辆8200A的一空气净化器的处理能力,如果所述污染程度判断模块825的一判断结果是所述位置的空气污染程度超过了所述车辆8200A的所述空气净化器的处理能力,所述提示模块840向用户发出一提示,并且所述路线生成模块821基于当前所述车辆位置和所述车辆目的地在所述空气质量地图重新规划至少一行驶路线,以使用户绕开所述污染位置。进一步地,所述路线生成模块821基于当前车辆位置和所述车辆目的地以及所述污染位置在所述空气质量地图重新规划至少一行驶路线。可选地,所述路线生成模块821基于当前所述行驶路线的基础上重新规划至少另一所述行驶路线,以使用户可以在原先所述行使路线的基础上继续行驶。
举例说明,参考附图15,一车辆8200A行驶在道路上,按照原先的所述行驶路线P81或者是P82,所述污染判断模块824判断所述车辆8200A要达到的一位置比如说甲位置存在空气污染,所述污染程度判断模块825判断甲位置的空气污染程度很高,对于驾驶者身体健康极有可能造成影响,所述路线生成模块821基于当前所述车辆位置,所述车辆目的地以及实时的所述空气质量地图并且按照一规划规则以时间成本和空气质量为参考重新规划了至少一新的行驶路线P81, 并将新的所述行驶路线P81按照一排序规则反馈给驾驶者。进一步地,所述导航系统能够接收一来自于用户的一指令以确认所述行驶路线,所述导航系统被可通信地连接于所述车辆8200A的一显示设备,比如说中控屏,以将包括所述车辆8200A的所述行驶路线的所述空气质量地图呈现给用户。
在本发明的另一示例中,当所述污染程度判断模块825判断所述位置的空气污染程度没有超过所述车辆8200A的一空气净化器的处理能力,所述处理模块820发送一启动信号给所述空气净化器,以在所述车辆8200A达到所述污染位置之前启动所述空气净化器,从而保证所述车辆8200A内的空气质量。
可选地,所述处理模块820根据实时的所述车辆位置在所述车辆8200A达到所述污染位置之前发送一启动信号给所述空气净化器。
在本发明的另一些示例中,所述处理模块820进一步包括一污染趋势判断模块826,其中所述污染趋势判断模块826被可通信地连接于所述污染判断模块824,所述污染趋势判断模块826根据当前所述车辆位置判断所述车辆8200A要达到的一位置是否存在空气污染的趋势。
具体地说,当所述污染判断模块824根据当前所述车辆位置判断所述车辆8200A要达到的一位置是否存在空气污染,在所述污染判断模块824的一判断结果是不存在一空气污染,所述污染趋势判断模块826继续判断所述车辆8200A要到达的所述位置是否存在空气污染的趋势。所述污染判断模块824被可通信地连接于所述获取模块810和所述空气质量地图模块830。所述污染判断模块824根据同一位置或者是同一区域的空气质量在不同时间内的空气质量变化情况判断所述位置或者是所述区域是否存在空气污染的趋势。
举例说明,参考附图16中,当所述车辆8200A在一行驶路线行驶并且在89点830分位置位于一A位置,基于所述空气质量地图获取在所述车辆位置前方的一B位置的空气在情况,根据在过去一段时间内经过所述B位置的带有所述空气检测器81A的所述车辆8200A检测到的关于所述B位置的空气质量数据,可以发现所述B位置的空气质量一直在变差,所述污染趋势判断模块826所述B位置判断模块判断所述B位置具有一污染趋势,所述提示模块840发出一提示以提示用户前方所述B位置存在一污染趋势。
更加具体地说,当所述车辆8200A在一行驶路线行驶并且在89点830分位于一A位置,基于所述空气质量地图获取在所述车辆位置前方的一B位置的空 气质量情况,其中所述A位置距离所述B位置81公里。在89点,通过一路过所述B位置的带有所述空气检测器81A的所述车辆8200A获得所述B位置的空气质量为PM2.5 10,在9点10,通过至少一路过所述B位置的带有所述空气检测器81A的所述车辆8200A获得所述B位置的空气质量为PM2.5 20,在9点20,通过至少一路过所述B位置的带有所述空气检测器81A的所述车辆8200A获得所述B位置的空气质量为PM2.5 30分,在9点30分,没有车辆8200A路过所述B位置,也就是说没有获取到所述B位置的空气质量数据。但是根据过去一段时间内所述B位置的空气质量变化趋势可以判断存在空气污染的趋势,当所述车辆8200A从所述A位置达到所述B位置时,可能已经所述B位置已经成为了一污染区域。
继续参考附图13,进一步地,所述处理模块820包括一预测模块827,其中所述预测模块827被可通信地连接于所述污染趋势判断模块826,在所述污染趋势判断模块826判断在所述车辆8200A的一前方存在一所述位置存在空气污染的可能性,所述预测模块827基于所述位置及其在过去一段时间内检测到的关于所述位置的一空气质量情况预测在所述车辆8200A经过所述位置时所述位置是否会有空气污染。
可以理解的是,所述空气质量数据并不一定限制于PM2.5,可以是其他类型的反应空气质量的数据,比如说PM810、甲醛、苯等相关数据。
举例说明,参考附图17,当所述车辆8200A目前在一C位置,所述污染判断模块824根据所述车辆位置和所述车辆8200A的运动轨迹判断所述车辆8200A将要进入的一位置或者一区域是否存在空气污染。比如说,所述污染判断模块824根据所述车辆位置和所述车辆8200A的运动轨迹从所述空气质量地图获取所述车辆8200A即将要进入的所述位置或者所述区域的空气质量数据,将所述空气质量数据和一标准空气质量数据比较得出所述位置或者是所述区域是否存在空气污染的结论。当所述车辆8200A要达到的所述位置或者是所述区域不存在空气污染的情况下,所述污染趋势判断模块826获取所述车辆8200A要达到的所述位置或者是所述区域在过去一段时间的空气质量数据,并且根据所述空气质量数据得出关于所述位置或者是所述区域是否存在空气污染趋势的判断结果。如果所述判断结果是肯定的,所述预测模块827根据当前所述车辆位置和所述车辆8200A行驶速度得出所述车辆8200A达到所述位置或者是所述区域的时间,并 且基于所述位置或者是所述区域的历史所述空气质量数据得出在所述时间的所述位置或者是所述区域的一空气质量数据。在811点,所述车辆8200A位于所述C位置,所述污染趋势判断模块826得出在所述D位置存在一空气污染趋势,在所述D位置过去的一段时间内通过经过所述D位置的带有空气检测器81A的另外所述车辆8200A获取到的数据及其对应时间有,9点,PM2.5 10,9点30,PM2.5 15,10点,PM 2.5 20,10点半,PM 2.5 25,11点,PM 2.5 30,预测所述车辆8200A将在11点30到达所述D位置,通过一拟合处理得出在11点30在所述D位置的空气质量数据将是PM2.5 35。所述污染判断模块824被可通信地连接于所述预测模块827,根据所述预测模块827的一预测结果判断在所述车辆8200A达到所述位置时所述位置是否存在空气污染。所述污染判断模块824和所述污染趋势判断模块826被分别可通信地连接于所述预测模块827。
在所述污染判断模块824根据所述预测结果判断所述车辆8200A要达到的所述位置存在污染,所述污染程度判断模块825对于所述位置的空气污染程度进行判断并得出一判断结果,所述提示模块840根据所述判断结果发出不同的提示,比如说当所述判断结果是重度空气污染,所述提示模块840发出一提示,关于提示用户可能存在重度空气污染,损害用户健康,或者是提示用户更换路线,当所述判断结果是中度空气污染,所述提示模块840发出一提示,关于提示用户存在中度空气污染,提示用户启动空气净化器,当所述判断结果是轻度空气污染,所述提示模块840发出一提示,关于提示用户存在轻度空气污染,提示用户关窗,以阻止污染空气进行。
在本发明的一示例中,所述污染程度判断模块825判断所述预测结果是否超过了所述车辆8200A的一空气净化器的处理能力,如果所述污染程度判断模块825的一判断结果是预测的所述位置的空气污染程度超过了所述车辆8200A的所述空气净化器的处理能力,所述提示模块840向用户发出一提示,并且所述路线生成模块821基于当前所述车辆位置和所述车辆目的地在所述空气质量地图重新规划至少一行驶路线,以使用户绕开所述污染位置。进一步地,所述路线生成模块821基于当前车辆位置和所述车辆目的地以及所述污染位置在所述空气质量地图重新规划至少一行驶路线。可选地,所述路线生成模块821基于当前所述行驶路线的基础上重新规划至少另一所述行驶路线,以使用户可以在原先所述行使路线的基础上继续行驶。
在本发明的另一示例中,当所述污染程度判断模块825判断预测的所述位置的空气污染程度没有超过所述车辆8200A的一空气净化器的处理能力,所述处理模块820发送一启动信号给所述空气净化器,以在所述车辆8200A达到所述污染位置之前启动所述空气净化器,从而保证所述车辆8200A内的空气质量。
可选地,所述处理模块820根据实时的所述车辆位置在所述车辆8200A达到所述污染位置之前发送一启动信号给所述空气净化器。
根据本发明的另一方面,提供了一基于空气质量的车辆导航方法,其中所述基于空气质量的车辆导航方法包括如下步骤:
(a)获取一车辆位置和一车辆目的地位置;
(b)提供一空气质量地图,其中所述空气质量地图和所述车辆8200A所在的一区域的空气质量状态相关联;以及
(c)基于所述空气质量地图按照一规划规则生成至少一行驶路线。
根据本发明的一实施例,所述导航方法进一步包括步骤:通过带有一空气净化器的一车辆8200A获取所述车辆8200A所在位置的一空气质量数据;
根据所述空气质量数据和一道路数据生成所述空气质量地图。
根据本发明的一实施例,所述步骤(c)被实施为:
基于时间成本和空气质量在所述空气质量地图规划至少一行驶路线。
根据本发明的一实施例,所述步骤(c)被实施为:
基于路程长度和空气质量在所述空气质量地图规划至少一行驶路线。
根据本发明的一实施例,所述步骤(c)被实施为:
基于所述空气质量地图和一用户设定指令生成至少一行驶路线。
根据本发明的一实施例,所述导航方法进一步包括步骤:
将所述行驶路线按照一排序规则排序。
根据本发明的一实施例,所述车辆导航方法进一步包括步骤:确认一所述行驶路线。根据本发明的一实施例,所述车辆导航方法进一步包括步骤:根据一用户选择指令确认一所述行驶路线。根据本发明的一实施例,所述车辆导航方法进一步包括步骤:根据一预设规则确认一所述行驶路线。
根据本发明的一实施例,所述车辆导航方法进一步包括步骤:
在所述车辆8200A要到达的一位置存在空气污染,判断所述空气污染是否超过所述车辆8200A的一空气净化器的处理能力;
如果是,根据所述车辆8200A当前位置和所述车辆目的地信息重新规划一行驶路线。
根据本发明的一实施例,所述车辆导航方法进一步包括步骤;
在所述车辆8200A要到达的一位置存在空气污染,判断所述空气污染是否超过所述车辆8200A的一空气净化器的处理能力;
如果不是,在所述车辆8200A到达所述位置前启动所述空气净化器。
根据本发明的一实施例,所述车辆导航方法进一步包括步骤:
在所述车辆8200A要达到的一位置不存在空气污染,判断是否具有空气污染的趋势;
如果是,发出一提示信息。
根据本发明的另一个方面,提供了一车辆8200A,包括:
一车辆8200A本体,和根据上述权利要求任一所述的一基于空气质量的车辆导航系统,其中所述车辆导航系统被设置于所述车辆8200A本体。
值得一提的是,当所述车辆8200A的所述车辆8200A本体也被设置有所述空气检测器81A,使用所述车辆导航系统的所述车辆8200A本身也可以为所述空气质量地图提供所述车辆位置和相对应的所述空气质量数据。根据本发明的一些示例,提供了一空气质量地图生成方法,包括如下步骤:
通过带有一空气净化器的一车辆8200A获取所述车辆8200A所在位置的一空气质量数据;和
根据所述空气质量数据和一道路数据生成所述空气质量地图。
参考附图18,是根据本发明的带有一空气检测器81A的一车辆8200A被阐明。
所述车辆8200A包括一车辆本体8201A和一空气检测器81A,其中所述空气检测器81A被设置于所述车辆本体8201A并且被设置于所述车辆本体8201A外部,用于检测外部的空气质量。
值得一提的是,在随着车辆车门或者是车窗被开关的过程中,所述车辆内外压力差的变化也会使得所述封闭盖8152A在所述封闭状态和所述打开状态之间切换。本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方 式可以有任何变形或修改。

Claims (83)

  1. 一车内空气质量控制方法,其特征在于,包括步骤:
    (a)获取一车外空气质量信息和一车内空气质量信息;和
    (b)基于所述车外空气质量信息和所述车内空气质量信息控制一空气交互装置工作,以控制车内空气质量。
  2. 根据权利要求1所述的车内空气质量控制方法,其中包括步骤:
    (c)当所述车外空气质量信息比所述车内空气质量信息相对较差时,使车内空间封闭。
  3. 根据权利要求1所述的车内空气质量控制方法,其中包括步骤:
    (d)当所述车外空气质量信息比所述车内空气质量信息相对较好时,触发一空气交互装置工作,以使车外空气得以进入车内从而调整车内空气质量。
  4. 根据权利要求2所述的车内空气质量控制方法,其中所述步骤(c)还包括步骤:
    (e)触发一空气净化装置工作。
  5. 根据权利要求4所述的车内空气质量控制方法,其中所述步骤(e)还包括步骤:
    (f)根据所述车内空气质量信息,设置所述空气净化装置工作参数。
  6. 根据权利要求3所述的车内空气质量控制方法,其中所述步骤(d)还包括步骤:
    (g)根据所述车外空气质量信息和所述车内空气质量信息,设置所述空气交互装置的工作参数。
  7. 根据权利要求1至6任一所述的车内空气质量控制方法,其中所述空气交互装置被实施为一车窗系统和\或一空调系统。
  8. 根据权利要求2所述的车内空气质量控制方法,其中所述步骤(c)还包括步骤:关闭打开的车窗,停止空调系统通风工作。
  9. 根据权利要求1至6任一所述的车内空气质量控制方法,在所述步骤(a)中还包括步骤:
    通过设置于车辆的一风道内的同一空气质量传感器切换检测通路从而检测得到所述车外空气质量信息所述车内空气质量信息。
  10. 根据权利要求1至6任一所述的车内空气质量控制方法,在所述步骤(a)中还包括步骤:
    通过设置于车辆的一风道内的多个空气质量传感器分别检测得到所述车外空气质量信息所述车内空气质量信息。
  11. 一车内空气质量控制系统,适用于一具有一空气净化装置和一空气交互装置的车辆,其特征在于,包括:
    一检测模块,用于检测车内外空气质量,形成一车内空气质量信息和一车外空气质量信息;和
    一设备控制模块,其中所述设备控制模块根据所述车内空气质量信息和所述车外空气质量信息,控制所述空气净化装置和所述空气交互装置,其中所述设备控制模块包括一处理模块、一空气净化装置控制模块和一空气交互装置控制模块,其中所述处理模块根据所述车内空气质量信息和所述车外空气质量信息,判断车内调整的方式,形成一触发信息,其中所述空气净化装置控制模块和所述空气交互装置控制模块根据所述触发信息,触发对应的所述空气净化装置和所述空气交互装置工作。
  12. 根据权利要求11所述的车内空气质量控制系统,其中所述处理模块根据所述车外空气质量信息,判断车外空气质量,其中当车外空气质量低于预设标准时,所述空气交互装置控制模块根据所述触发信息,控制所述空气交互装置,使车内空间封闭,其中当车外空气质量良好时,所述空气交互装置控制模块根据所述触发信息,触发所述空气交互装置开始工作。
  13. 根据权利要求12所述的车内空气质量控制系统,其中所述处理模块根据所述车内空气质量信息,判断车内空气是否需要调整,其中当车内空气需要调整时,所述空气净化装置控制模块根据所述触发信息,触发所述空气净化装置开始工作。
  14. 根据权利要求11至13任一所述的车内空气质量控制系统,其中所述车内空气检测模块被安装于该车辆的一风道内。
  15. 根据权利要求14所述的车内空气质量控制系统,其中所述检测系统包括一车内空气检测模块和一车外空气检测模块,其中所述车内空气检测模块检测车内空气质量,形成所述车内空气质量信息,其中所述车外空气检测模块检测车外空气质量,形成所述车外空气质量信息,其中所述车内空气检测模块和所述车 外空气检测模块被安装于该车辆的该风道内。
  16. 根据权利要求15所述的车内空气质量控制系统,其中所述车外空气检测模块可通信地连接于互联网,定位地获取车外空气质量的互联网数据,形成所述车外空气质量信息。
  17. 根据权利要求16所述的车内空气质量控制系统,其中所述车外空气检测模块根据该车辆的导航路线,预先获取路线沿途的所述车外空气质量信息。
  18. 根据权利要求11至13任一所述的车内空气质量控制系统,其中所述设备控制模块包括一设置模块,其中所述设置模块根据所述触发信息、所述车内空气质量信息和所述车外空气质量信息,形成一设置信息,用于设置对应的所述空气交互装置和\或所述空气净化装置工作参数。
  19. 根据权利要求11至13任一所述的车内空气质量控制系统,其中所述空气交互装置被实施为该车辆的一车窗系统和\或一空调系统。
  20. 根据权利要求19所述的车内空气质量控制系统,其中所述空气交互装置控制模块进一步包括一车窗控制模和\或一空调控制模块,其中所述处理模块根据所述车内空气质量信息和所述车外空气质量信息,形成一选择触发信息,其中所述车窗控制模和\或所述空调控制模块根据所述选择触发信息,触发对应的车窗系统和\或空调系统工作。
  21. 根据权利要求11至13任一所述的车内空气质量控制系统,其中所述空气净化装置无线通信地连接于所述空气净化装置控制模块。
  22. 根据权利要求11至13任一所述的车内空气质量控制系统,进一步包括一显示模块,其中所述模块显示所述车内空气质量信息、所述车外空气质量信息和所述触发信息。
  23. 一车辆,其特征在于,包括:
    一车辆本体;和
    一如权利要求11至21任一所述的车内空气质量控制系统,其中所述车内空气质量调节系统被安装于所述车辆本体。
  24. 一空气质量获取系统,其特征在于,包括:
    一地理位置定位模块,其中所述地理位置定位模块用于确认一区域的一地理位置;
    一处理模块,其中所述处理模块基于带有一空气检测器的一车辆获取的关于 所述区域的一空气质量数据处理得出关于所述区域的一空气质量结果。
  25. 根据权利要求24所述的空气质量获取系统,其中所述处理模块包括一判断模块和一生成模块,其中所述判断模块判断是否存在带有所述空气检测器的所述车辆在所述地理位置检测到所述区域的一空气质量数据,如果是,所述生成模块根据检测到的所述空气质量数据生成所述区域的一空气质量结果。
  26. 根据权利要求25所述的空气质量获取系统,其中所述处理模块进一步包括一再判断模块和一拟合模块,在所述判断模块判断不存在带有所述空气检测器的所述车辆检测到所述区域的所述空气质量数据,所述再判断模块判断是否存在带有所述空气检测器的所述车辆检测到距离所述区域的一预设范围内的所述空气质量数据,如果是,所述拟合模块根据来自于距离所述区域的所述预设范围内的所述空气质量拟合生成所述区域的所述空气质量结果。
  27. 根据权利要求24所述的空气质量获取系统,进一步包括一时间位置定位模块,其中所述时间位置定位模块被用于确认所述区域的一时间位置并且被可通信地连接于所述处理模块。
  28. 根据权利要求25或26所述的空气质量获取系统,其中所述处理模块进一步包括一分析模块,其中所述分析模块基于所述区域的所述空气质量数据和所述空气质量数据的一来源位置得出一分析结果,所述生成模块根据所述分析结果生成所述区域的所述空气质量结果。
  29. 根据权利要求28所述的空气质量获取系统,其中所述生成模块被设置为根据所述来源位置的不同决定所述空气质量数据在处理过程中的处理手段的方式处理所述空气质量数据并且得出关于所述区域的所述空气质量结果。
  30. 根据权利要求25或26所述的空气质量获取系统,其中所述处理模块进一步包括一分析模块,其中所述分析模块基于所述区域的所述空气质量数据和检测到所述空气质量数据的所述车辆的一车辆状态得出一分析结果,所述生成模块根据所述分析结果生成所述区域的所述空气质量结果。
  31. 根据权利要求24所述的空气质量获取系统,进一步包括一检测类型定位模块,其中所述检测类型定位模块被可通信地连接于所述处理模块,所述检测类型定位模块用于确认所述空气质量数据的一类型。
  32. 根据权利要求24所述的空气质量获取系统,进一步包括一污染定位模块,所述污染定位模块被可通信地连接于所述地理位置定位模块,其中所述污染 定位模块通过对比在所述区域的同一位置的在不同时间检测到的各个所述空气质量数据的变化超过一预设的数值确认所述位置为一污染点。
  33. 根据权利要求24所述的空气质量获取系统,进一步包括一污染定位模块,所述污染定位模块被可通信地连接于所述地理位置定位模块,其中所述污染定位模块通过对比在所述区域的同一时间不同位置检测到的各个所述空气质量数据的变化超过一预设的数值确认所述位置为一污染点。
  34. 一空气质量获取方法,其特征在于,包括如下步骤:
    (a)判断是否存在带有空气检测器的至少一车辆检测到一区域的一空气质量数据;和
    (b)如果是,基于所述车辆检测到的所述区域的所述空气质量数据处理得到所述区域的一空气质量结果。
  35. 根据权利要求34所述的空气质量获取方法,进一步包括步骤(c):
    如果不是,继续判断是否存在带有空气检测器的至少所述车辆检测到距离所述区域的一预设范围内的所述空气质量数据;和
    如果是,基于所述车辆检测到所述空气质量数据处理得到所述区域的一空气质量结果。
  36. 根据权利要求34所述的空气质量获取方法,进一步包括一步骤(d),其中所述步骤(d)包括:
    确认一区域的一地理位置,其中所述步骤(d)位于所述步骤(a)之前。
  37. 根据权利要求34所述的空气质量获取方法,其中所述步骤(d)被实施为:
    确认所述区域的所述地理位置和一时间位置,其中所述步骤(a)被实施为:判断在所述时间位置是否存在带有空气检测器的至少一所述车辆检测到所述区域的所述空气质量数据。
  38. 根据权利要求37所述的空气质量获取方法,进一步包括如下步骤:
    如果不是,判断在一历史时间是否存在带有空气检测器的至少一所述车辆检测到所述区域的所述空气质量数据,其中所述历史时间和所述时间位置不超过一预设的范围;和
    如果是,基于所述车辆检测到在所述历史时间的所述空气质量数据处理得到所述区域的一空气质量结果。
  39. 根据权利要求34所述的空气质量获取方法,进一步包括一步骤(e),其中所述步骤(e)包括:
    确认需要检测的所述区域的所述空气质量数据的一类型,其中所述步骤(c)位于所述步骤(a)之前,所述步骤(a)被实施为:
    判断是否存在带有空气检测器的至少一车辆检测到一区域的所述类型的所述空气质量数据。
  40. 根据权利要求34所述的空气质量获取方法,其中所述步骤(b)被实施为:
    以结合所述空气质量数据的一来源位置的方式基于所述空气质量数据得出一分析结果;和
    根据所述分析结果确认所述区域的至少一污染位置。
  41. 根据权利要求40所述的空气质量获取方法,其中在所述步骤(b)中,通过比较各个所述空气质量数据确认所述区域的至少一所述污染位置。
  42. 根据权利要求40所述的空气质量获取方法,其中在所述步骤(b)中,通过比较同一来源位置的在不同时间的所述空气质量数据确认所述区域的至少一所述污染位置。
  43. 根据权利要求34所述的空气质量获取方法,其中所述步骤(b)被实施为:
    获取所述空气质量数据和对应的所述空气质量数据的一来源位置;和
    以结合所述空气质量数据和所述来源位置的方式生成一地图式结果。
  44. 根据权利要求34所述的空气质量获取方法,其中所述步骤(b)被实施为:
    获取所述空气质量数据和所述空气质量数据被检测到时的所述车辆状态;和
    根据所述来源位置的不同决定所述空气质量数据在处理过程中的处理手段的方式处理所述空气质量数据并且得出关于所述区域的所述空气质量结果。
  45. 根据权利要求44所述的空气质量获取方法,其中所述车辆状态包括一车辆位置信息。
  46. 根据权利要求44所述的空气质量获取方法,其中所述车辆状态包括一车辆行驶速度信息。
  47. 根据权利要求44所述的空气质量获取方法,其中所述步骤(b)进一步 包括:判断各个所述空气质量数据中的其中至少一个是否存在一预设范围外的偏离;和
    如果是,剔除偏离的所述空气质量数据。
  48. 根据权利要求34所述的空气质量获取方法,其中所述步骤(b)被实施为:
    根据所述车辆获取的所述空气质量数据平均处理得出关于所述区域的一空气质量结果。
  49. 根据权利要求34所述的空气质量获取方法,其中所述步骤(b)被实施为:
    根据所述车辆获取的所述空气质量数据拟合得出关于所述区域的一空气质量结果。
  50. 一空气质量获取方法,其特征在于,包括如下步骤:
    通过带有空气检测器的至少一车辆检测到一空气质量数据;
    根据所述空气质量数据的一位置来源判断所述空气质量数据是否来自于一区域;以及
    如果是,基于所述空气质量数据处理得到所述区域的一空气质量结果。
  51. 根据权利要求50所述的空气质量获取方法,进一步包括如下步骤:
    如果不是,根据所述空气质量数据的一位置来源继续判断所述空气质量数据是否来自于距离所述区域的一预设范围;
    如果是,基于所述空气质量数据处理得出所述区域的一空气质量结果。
  52. 一空气质量获取方法,其特征在于,包括如下步骤:
    判断带有空气检测器的至少一车辆是否位于一区域或者是经过所述区域;
    如果所述车辆位于所述区域或者是经过所述区域,获取关于所述区域的一空气质量数据;以及
    处理所述空气质量数据以得到关于所述区域的一空气质量结果。
  53. 根据权利要求52所述的空气质量获取方法,进一步包括如下步骤:
    如果不是,继续判断带有空气检测器的至少一车辆是否位于所述区域的一预设范围内或者是经过所述区域的一预设范围内;
    如果所述车辆位于所述区域的所述预设范围或者是经过所述区域的所述预设范围,获取关于所述区域的所述预设范围内的所述空气质量数据;以及
    处理所述空气质量数据以得到关于所述区域的一空气质量结果。
  54. 一空气质量获取方法,其特征在于,包括如下步骤:
    接收一需求指令,其中所述需求指令包括一区域的一地理位置;
    采集来自于经过所述区域或者是位于所述区域的一车辆检测到的一空气质量数据;和
    处理所述空气质量数据以得出关于所述区域的一空气质量结果。
  55. 一空气质量获取方法,其特征在于,包括如下步骤:
    通过带有空气检测器的一车辆获取一空气质量数据;
    基于所述空气质量数据和对应所述空气质量数据的所述车辆的一位置生成一环境地图;以及
    在所述环境地图定位一污染位置。
  56. 一空气质量获取方法,其特征在于,包括如下步骤:
    根据一车辆的位置信息和来自于所述车辆的一空气质量数据生成一实时空气质量地图;
    接收一区域的一地理位置信息;以及
    基于所述实时空气质量地图输出所述区域的一空气质量结果。
  57. 一基于空气质量的车辆导航系统,其特征在于,包括:
    一获取模块,其中所述获取模块用于获取一车辆位置和一车辆目的地信息;和
    一处理模块,其中所述处理模块被可通信地连接于所述获取模块,所述路线生成模块在一空气质量地图基于所述车辆位置和所述车辆目的地信息生成至少一行驶路线。
  58. 根据权利要求57所述的车辆导航系统,进一步包括一空气质量地图模块,其中所述空气质量地图模块被可通信地连接于所述处理模块,其中所述空气质量地图模块包括一地理位置定位模块和一地图生成模块,其中所述地理位置定位模块基于所述车辆位置确认一区域,所述地图生成模块根据来自于所述区域的带有一空气检测器的至少一车辆获取的至少一空气质量数据对应于所述车辆位置生成所述空气质量地图。
  59. 根据权利要求57或58所述的车辆导航系统,其中所述处理模块被设置为基于时间成本和空气质量规划至少一所述行驶路线。
  60. 根据权利要求57或58所述的车辆导航系统,其中所述处理模块被设置为基于路程长度和空气质量规划至少一所述行驶路线。
  61. 根据权利要求57或58所述的车辆导航系统,其中所述处理模块被设置为基于一用户指令生成至少一所述行驶路线。
  62. 根据权利要求57或58所述的车辆导航系统,进一步包括一规则设定模块和一排序模块,其中所述排序模块根据所述规则设定模块被设置一排序规则将所述行驶路线排序。
  63. 根据权利要求57或58所述的车辆导航系统,其中所述处理模块进一步包括一污染判断模块和一污染程度判断模块,其中所述污染判断模块根据所述车辆位置判断所述车辆要到达的一位置是否存在空气污染,如果是,所述污染程度判断模块判断所述空气污染是否超过了一预设的数值,如果是,所述路线生成模块基于当前所述车辆位置和所述车辆目的地在所述空气质量地图重新规划至少一行驶路线。
  64. 根据权利要求63所述的车辆导航系统,其中所述预设的数值是所述车辆的一空气净化器的一处理能力。
  65. 根据权利要求57或58所述的车辆导航系统,其中所述处理模块进一步包括一污染判断模块和一污染程度判断模块,其中所述污染判断模块根据所述车辆位置判断所述车辆要到达的一位置是否存在空气污染,如果是,所述污染程度判断模块判断所述空气污染是否超过了一预设的数值,如果不是,所述处理模块发送一信号至所述空气净化器以在所述车辆达到所述污染位置之前启动所述空气净化器。
  66. 根据权利要求57或58所述的车辆导航系统,其中所述处理模块包括一污染判断模块和一污染趋势判断模块,其中所述污染判断模块根据所述车辆位置判断所述车辆要到达的一位置是否存在空气污染,如果不是,所述污染趋势判断模块判断所述位置是否具有空气污染的趋势。
  67. 根据权利要求66所述的车辆导航系统,其中所述处理模块进一步包括一预测模块,其中所述预测模块被可通信地连接于所述污染趋势判断模块,在所述污染趋势判断模块判断所述位置具有空气污染的趋势,所述预测模块基于所述位置的一历史空气质量数据预测在所述车辆到达所述位置时的一未来空气质量数据。
  68. 根据权利要求67所述的车辆导航系统,其中所述预测模块被可通信地连接于所述污染判断模块和所述污染程度判断模块,其中所述污染判断模块根据所述预测模块的一预测结果判断所述车辆到达所述位置时所述位置是否存在空气污染,如果是,所述污染程度判断模块判断所述空气污染是否超过了一预设的数值,如果是,所述路线生成模块基于当前所述车辆位置和所述车辆目的地在所述空气质量地图重新规划至少一行驶路线。
  69. 根据权利要求67所述的车辆导航系统,其中所述预测模块被可通信地连接于所述污染判断模块和所述污染程度判断模块,其中所述污染判断模块根据所述预测模块的一预测结果判断所述车辆到达所述位置时所述位置是否存在空气污染,如果是,所述污染程度判断模块判断所述空气污染是否超过了一预设的数值,如果不是,发出一提示信息。
  70. 根据权利要求69所述的车辆导航系统,其中所述污染趋势判断模块被设置为根据同一位置的在一段时间内空气质量的变化趋势来判断所述位置是否具有空气污染的趋势。
  71. 一车辆,其特征在于,包括:
    一车辆本体,和根据权利要求57至70任一所述的一基于空气质量的车辆导航系统,其中所述车辆导航系统被设置于所述车辆本体。
  72. 一基于空气质量的车辆导航方法,其特征在于,包括如下步骤:
    (a)获取一车辆位置和一车辆目的地位置;
    (b)提供一空气质量地图,其中所述空气质量地图和所述车辆所在的一区域的空气质量状态相关联;以及
    (c)基于所述空气质量地图按照一规划规则生成至少一行驶路线。
  73. 根据权利要求72所述的车辆导航方法,其中所述导航方法进一步包括步骤:
    通过带有一空气净化器的一车辆获取所述车辆所在位置的一空气质量数据;和
    根据所述空气质量数据和一道路数据生成所述空气质量地图。
  74. 根据权利要求72所述的车辆导航方法,其中所述步骤(c)被实施为:
    基于时间成本和空气质量在所述空气质量地图规划至少一行驶路线。
  75. 根据权利要求72所述的车辆导航方法,其中所述步骤(c)被实施为:
    基于路程长度和空气质量在所述空气质量地图规划至少一行驶路线。
  76. 根据权利要求72所述的车辆导航方法,其中所述步骤(c)被实施为:
    基于所述空气质量地图和一用户设定指令生成至少一行驶路线。
  77. 根据权利要求72至76任一所述的车辆导航方法,其中所述导航方法进一步包括步骤:
    将所述行驶路线按照一排序规则排序。
  78. 根据权利要求77所述的车辆导航方法,其中所述车辆导航方法进一步包括步骤:
    确认一所述行驶路线。
  79. 根据权利要求72或78所述的车辆导航方法,其中所述车辆导航方法进一步包括步骤:
    在所述车辆要到达的一位置存在空气污染,判断所述空气污染是否超过所述车辆的一空气净化器的处理能力;
    如果是,根据所述车辆当前位置和所述车辆目的地信息重新规划一行驶路线。
  80. 根据权利要求72或78所述的车辆导航方法,其中所述车辆导航方法进一步包括步骤;
    在所述车辆要到达的一位置存在空气污染,判断所述空气污染是否超过所述车辆的一空气净化器的处理能力;
    如果不是,在所述车辆到达所述位置前启动所述空气净化器。
  81. 根据权利要求72或78所述的车辆导航方法,其中所述车辆导航方法进一步包括步骤:
    在所述车辆要达到的一位置不存在空气污染,判断是否具有空气污染的趋势;和
    如果是,发出一提示信息。
  82. 根据权利要求72或78所述的车辆导航方法,其中所述车辆导航方法进一步包括步骤:
    在所述车辆要达到的一位置不存在空气污染但是具有空气污染的趋势,基于所述位置的一历史空气质量数据预测在所述车辆到达所述位置时的一未来空气质量数据;
    基于所述未来空气质量数据判断是否存在空气污染;
    如果是,所述污染程度判断模块判断所述空气污染是否超过了一预设的数值;以及
    如果是,所述路线生成模块基于当前所述车辆位置和所述车辆目的地在所述空气质量地图重新规划至少一行驶路线。
  83. 根据权利要求72或78所述的车辆导航方法,其中所述车辆导航方法进一步包括如下步骤:
    在所述车辆要达到的一位置不存在空气污染但是具有空气污染的趋势,基于所述位置的一历史空气质量数据预测在所述车辆到达所述位置时的一未来空气质量数据;
    基于所述未来空气质量数据判断是否存在空气污染;
    如果是,所述污染程度判断模块判断所述空气污染是否超过了一预设的数值;以及
    如果不是,发出一提示信息。
PCT/CN2019/083980 2018-05-09 2019-04-24 车用空气质量传感器的应用 WO2019214432A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201810438664.4A CN110466307B (zh) 2018-05-09 2018-05-09 车内空气质量控制系统、方法和车辆
CN201810437423.8A CN110470313A (zh) 2018-05-09 2018-05-09 基于空气质量的车辆导航方法及其导航系统和应用
CN201810438664.4 2018-05-09
CN201810437423.8 2018-05-09
CN201810438665.9 2018-05-09
CN201810438665.9A CN110470792A (zh) 2018-05-09 2018-05-09 空气质量获取方法及空气质量获取系统

Publications (1)

Publication Number Publication Date
WO2019214432A1 true WO2019214432A1 (zh) 2019-11-14

Family

ID=68467115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/083980 WO2019214432A1 (zh) 2018-05-09 2019-04-24 车用空气质量传感器的应用

Country Status (1)

Country Link
WO (1) WO2019214432A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4658707A (en) * 1985-09-27 1987-04-21 Hawkins Vernon F Automatic air purifier for vehicles
CN103969701A (zh) * 2013-01-31 2014-08-06 上海飞田通信技术有限公司 城市全区域空气质量实时监测系统及方法
CN104006821A (zh) * 2014-05-28 2014-08-27 英华达(南京)科技有限公司 一种导航方法和系统
CN104502534A (zh) * 2014-12-15 2015-04-08 中国航空工业集团公司北京长城航空测控技术研究所 车载便携式大气环境实时监测装置
CN105966195A (zh) * 2016-05-31 2016-09-28 中国汽车技术研究中心 一种车内空气品质智能管理系统及其使用方法
CN107825933A (zh) * 2017-09-28 2018-03-23 宁波吉利汽车研究开发有限公司 一种车内空气质量控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4658707A (en) * 1985-09-27 1987-04-21 Hawkins Vernon F Automatic air purifier for vehicles
CN103969701A (zh) * 2013-01-31 2014-08-06 上海飞田通信技术有限公司 城市全区域空气质量实时监测系统及方法
CN104006821A (zh) * 2014-05-28 2014-08-27 英华达(南京)科技有限公司 一种导航方法和系统
CN104502534A (zh) * 2014-12-15 2015-04-08 中国航空工业集团公司北京长城航空测控技术研究所 车载便携式大气环境实时监测装置
CN105966195A (zh) * 2016-05-31 2016-09-28 中国汽车技术研究中心 一种车内空气品质智能管理系统及其使用方法
CN107825933A (zh) * 2017-09-28 2018-03-23 宁波吉利汽车研究开发有限公司 一种车内空气质量控制系统

Similar Documents

Publication Publication Date Title
US11007846B2 (en) Auto-isolate vehicular climate system
CN105966195A (zh) 一种车内空气品质智能管理系统及其使用方法
Okokon et al. Particulates and noise exposure during bicycle, bus and car commuting: A study in three European cities
JP6546695B2 (ja) 車両ネットワーキングに基づく空気質検出システム
CN105339198B (zh) 用于交通工具厢室的自适应内部空气质量控制装置和方法
US10317226B2 (en) System and method for pollution mapping from variations data
CN210775409U (zh) 一种车载式走航溯源监测系统
KR102116160B1 (ko) 통합 실내 환경 관리 장치
WO2020159893A1 (en) Sensor and data platforms for vehicle environmental quality management
CN110466307B (zh) 车内空气质量控制系统、方法和车辆
CN104816692A (zh) 一种基于多点检测的酒驾警示系统
GB2551947A (en) Internal air quality in vehicles
CN103851756B (zh) 一种用于汽车的空气污染物防护装置
CN106114135A (zh) 汽车内外循环控制方法和系统
CN110654202A (zh) 车辆的内部空间的通风
CN107808540A (zh) 车辆服务及预警系统
CN106256576A (zh) 空气排出器
CN110466306A (zh) 用于检测空气质量的车用传感器组件、车辆及其应用
KR20140066900A (ko) 승객 맞춤형 객실 제어 시스템
WO2019214432A1 (zh) 车用空气质量传感器的应用
KR102346238B1 (ko) 차량용 실내공기 청정 장치
EP3733433A1 (en) System of monitoring and improving air quality according to a bus service route and control method thereof
KR20200133151A (ko) 자동차의 실내공기 스마트 케어 시스템 및 방법
CN203757956U (zh) 一种用于汽车的空气污染物防护装置
CN115199174B (zh) 车窗调控方法、介质、电子设备、调控系统及车辆

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19800191

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19800191

Country of ref document: EP

Kind code of ref document: A1