WO2019214247A1 - 一种高效催化糠醛转化制备环戊酮的方法和催化剂及其制备方法 - Google Patents
一种高效催化糠醛转化制备环戊酮的方法和催化剂及其制备方法 Download PDFInfo
- Publication number
- WO2019214247A1 WO2019214247A1 PCT/CN2018/122982 CN2018122982W WO2019214247A1 WO 2019214247 A1 WO2019214247 A1 WO 2019214247A1 CN 2018122982 W CN2018122982 W CN 2018122982W WO 2019214247 A1 WO2019214247 A1 WO 2019214247A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- catalyst
- precursor
- hydrotalcite
- reaction
- furfural
- Prior art date
Links
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 title claims abstract description 92
- BGTOWKSIORTVQH-UHFFFAOYSA-N cyclopentanone Chemical compound O=C1CCCC1 BGTOWKSIORTVQH-UHFFFAOYSA-N 0.000 title claims abstract description 68
- 239000003054 catalyst Substances 0.000 title claims abstract description 60
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000002360 preparation method Methods 0.000 title claims abstract description 17
- 238000006243 chemical reaction Methods 0.000 claims abstract description 49
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 claims abstract description 41
- 229960001545 hydrotalcite Drugs 0.000 claims abstract description 41
- 229910001701 hydrotalcite Inorganic materials 0.000 claims abstract description 41
- 229910052751 metal Inorganic materials 0.000 claims abstract description 38
- 239000002184 metal Substances 0.000 claims abstract description 34
- 239000002243 precursor Substances 0.000 claims abstract description 21
- 239000012018 catalyst precursor Substances 0.000 claims abstract description 16
- 229910021642 ultra pure water Inorganic materials 0.000 claims abstract description 9
- 239000012498 ultrapure water Substances 0.000 claims abstract description 9
- 230000003197 catalytic effect Effects 0.000 claims abstract description 7
- 239000007810 chemical reaction solvent Substances 0.000 claims abstract description 5
- 230000035484 reaction time Effects 0.000 claims abstract description 5
- 239000002105 nanoparticle Substances 0.000 claims abstract description 4
- 238000001354 calcination Methods 0.000 claims abstract description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 26
- 150000001768 cations Chemical class 0.000 claims description 25
- 239000008367 deionised water Substances 0.000 claims description 24
- 229910021641 deionized water Inorganic materials 0.000 claims description 24
- 150000002500 ions Chemical class 0.000 claims description 11
- 239000002245 particle Substances 0.000 claims description 9
- 239000010410 layer Substances 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 8
- 238000003756 stirring Methods 0.000 claims description 8
- 239000011229 interlayer Substances 0.000 claims description 5
- 238000006073 displacement reaction Methods 0.000 claims description 4
- 238000011065 in-situ storage Methods 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 2
- 239000001257 hydrogen Substances 0.000 claims description 2
- 238000007789 sealing Methods 0.000 claims description 2
- 239000000758 substrate Substances 0.000 claims description 2
- 125000004429 atom Chemical group 0.000 claims 2
- 230000000694 effects Effects 0.000 claims 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims 1
- 238000005984 hydrogenation reaction Methods 0.000 abstract description 9
- 239000002028 Biomass Substances 0.000 abstract description 5
- 239000008346 aqueous phase Substances 0.000 abstract description 3
- 239000010949 copper Substances 0.000 description 43
- 229910017518 Cu Zn Inorganic materials 0.000 description 18
- 229910017752 Cu-Zn Inorganic materials 0.000 description 18
- 229910017943 Cu—Zn Inorganic materials 0.000 description 18
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 18
- 239000000243 solution Substances 0.000 description 16
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 239000011701 zinc Substances 0.000 description 11
- 238000011068 loading method Methods 0.000 description 10
- 239000000203 mixture Substances 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 238000002425 crystallisation Methods 0.000 description 4
- 230000008025 crystallization Effects 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- 239000010802 sludge Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- VQKFNUFAXTZWDK-UHFFFAOYSA-N 2-Methylfuran Chemical compound CC1=CC=CO1 VQKFNUFAXTZWDK-UHFFFAOYSA-N 0.000 description 2
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- 229930182558 Sterol Natural products 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- LPIQUOYDBNQMRZ-UHFFFAOYSA-N cyclopentene Chemical compound C1CC=CC1 LPIQUOYDBNQMRZ-UHFFFAOYSA-N 0.000 description 2
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 239000012847 fine chemical Substances 0.000 description 2
- 239000003205 fragrance Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 150000003432 sterols Chemical class 0.000 description 2
- 235000003702 sterols Nutrition 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910017816 Cu—Co Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000013177 MIL-101 Substances 0.000 description 1
- 229910018054 Ni-Cu Inorganic materials 0.000 description 1
- 229910018481 Ni—Cu Inorganic materials 0.000 description 1
- 229910002668 Pd-Cu Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910000611 Zinc aluminium Inorganic materials 0.000 description 1
- 239000001089 [(2R)-oxolan-2-yl]methanol Substances 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- HXFVOUUOTHJFPX-UHFFFAOYSA-N alumane;zinc Chemical compound [AlH3].[Zn] HXFVOUUOTHJFPX-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000002551 biofuel Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000010504 bond cleavage reaction Methods 0.000 description 1
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000002082 metal nanoparticle Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- RGSFGYAAUTVSQA-UHFFFAOYSA-N pentamethylene Natural products C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 1
- HGBOYTHUEUWSSQ-UHFFFAOYSA-N pentanal Chemical compound CCCCC=O HGBOYTHUEUWSSQ-UHFFFAOYSA-N 0.000 description 1
- -1 pentose sugars Chemical class 0.000 description 1
- 150000002972 pentoses Chemical class 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- BSYVTEYKTMYBMK-UHFFFAOYSA-N tetrahydrofurfuryl alcohol Chemical compound OCC1CCCO1 BSYVTEYKTMYBMK-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/80—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/16—Reducing
- B01J37/18—Reducing with gases containing free hydrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
- B01J23/8933—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/8953—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals also combined with metals, or metal oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/42—Platinum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/20—Carbon compounds
- B01J27/232—Carbonates
- B01J27/236—Hydroxy carbonates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/391—Physical properties of the active metal ingredient
- B01J35/393—Metal or metal oxide crystallite size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/391—Physical properties of the active metal ingredient
- B01J35/394—Metal dispersion value, e.g. percentage or fraction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/009—Preparation by separation, e.g. by filtration, decantation, screening
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/04—Mixing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/06—Washing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/56—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds from heterocyclic compounds
- C07C45/57—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds from heterocyclic compounds with oxygen as the only heteroatom
- C07C45/59—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds from heterocyclic compounds with oxygen as the only heteroatom in five-membered rings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/70—Catalysts, in general, characterised by their form or physical properties characterised by their crystalline properties, e.g. semi-crystalline
- B01J35/73—Catalysts, in general, characterised by their form or physical properties characterised by their crystalline properties, e.g. semi-crystalline having a two-dimensional layered crystalline structure, e.g. layered double hydroxide [LDH]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/06—Systems containing only non-condensed rings with a five-membered ring
- C07C2601/08—Systems containing only non-condensed rings with a five-membered ring the ring being saturated
Definitions
- the invention belongs to the technical field of biomass catalysis, and particularly relates to a catalyst for efficiently converting valeraldehyde to cyclopentanone and a preparation method thereof, and a method for efficiently converting furfural to prepare cyclopentanone.
- Furfural can be produced by acid-catalyzed dehydration of renewable biomass resource pentose, which is one of the important biomass platform molecules and can be converted into high value-added biofuels and fine chemicals.
- Cyclopentanone is a multifunctional fine chemical and an important intermediate in many chemical synthesis. It can be used in synthetic drugs, fungicides, rubber chemicals, and fragrance and fragrance chemicals.
- the industry uses oil route production, and cyclopentanone is mainly prepared by liquid phase oxidation of cyclopentene by nitrous oxide or gas phase cyclization of 1,6-hexanediol or adipic acid.
- the preparation of cyclopentanone from renewable biomass or platform molecules is in line with the current development trend of green and clean chemical processes.
- work has reported the route of furfural to prepare cyclopentanone, which may replace unsustainable fossil fuels as raw materials.
- Furfural is the product of acid-catalyzed dehydration of pentose sugars in the aqueous phase.
- the process of separating furfural from the formed aqueous solution increases its production cost. Therefore, the use of aqueous furfural as a raw material for the preparation of chemicals and fuels is very beneficial.
- Hronec et al. reported a new method for the re-hydrogenation of furfural and sterol rearrangement in water to cyclopentanone. They found that some metal catalysts (such as Pt/C, Pd-Cu/C and Ni-based catalysts) exhibited good conversion of furfural or sterol to cyclopentanone.
- Ni-Cu/SBA-15, Cu-Co, ZnAl oxide-supported Cu, Ru/MIL-101 and other catalytic systems have been developed for the preparation of cyclopentanone in aqueous furfural.
- the object of the present invention is to provide a catalyst for efficiently converting furfural to cyclopentanone and a preparation method thereof, and a method for efficiently converting furfural to cyclopentanone, and a method for preparing cyclopentanone by mildly and efficiently catalyzing the conversion of furfural.
- the first aspect of the present invention provides a catalyst for efficiently converting furfural to produce cyclopentanone, which is composed of uniformly dispersed metal active center nanoparticles and an oxide obtained by calcining hydrotalcite, and the metal active center is a single atom Pt /Cu is the Pt atom in situ displacement loading on the Cu surface.
- the content of Cu in the metal active center in the catalyst is 5 to 30 wt%
- the content of Pt is 0.01 to 3 wt%
- the particle diameter of the metal active center PtCu is 2 to 20 nm.
- the metal active center Cu is contained in an amount of 8 to 20% by weight, the Pt content is 0.05 to 1% by weight, and the metal active center single atom Pt/Cu has a particle diameter ranging from 2 to 10 nm.
- a second aspect of the present invention provides a method for preparing a catalyst for efficiently converting a furfural to produce cyclopentanone, which comprises: preparing a Cu-containing catalyst precursor by using hydrotalcite as a precursor, reducing in a H 2 atmosphere, and then The Pt 2+ is reacted with the Cu-containing catalyst precursor, washed and dried to obtain a catalyst containing a metal active center PtCu.
- the preparation of the Cu-containing catalyst precursor is carried out by using hydrotalcite as a precursor system: the hydrotalcite precursor containing Cu ions is reduced in a H 2 atmosphere, the reduction temperature is controlled at 400 ° C to 650 ° C, and the reduction time is controlled at 5 min. At 6 h, a Cu-containing catalyst precursor was obtained.
- the divalent cation of the hydrotalcite layer containing the Cu ion-containing hydrotalcite precursor is selected from Zn 2+ or / and Mg 2+
- the trivalent cation is selected from Al 3+
- the metal active center ion entering the interlayer is Cu 2+ .
- the molar ratio of the divalent cation Zn 2+ or / and Mg 2+ of the hydrotalcite layer to the metal active center ion Cu 2+ entering the interlayer is (0-10): 1, and the hydrotalcite layer is bivalent.
- the hydrotalcite precursor further contains tetravalent cations entering the laminate, and the tetravalent cations are selected from Zr 4+ , Zr 4+ and
- the molar ratio of the valent cation Al 3+ is (0.1-1):1, such as 0.5:1.
- the preparation method of the catalyst comprises: a Cu-containing catalyst precursor, the hydrotalcite precursor is reduced in a H 2 atmosphere, the reduction temperature is controlled at 400 ° C to 650 ° C, and the reduction time is controlled at 5 min to 6 h to obtain a Cu-containing catalyst precursor.
- the third aspect of the present invention provides a method for efficiently converting furfural to produce cyclopentanone, which comprises using the above catalyst or the catalyst prepared by the above preparation method to catalyze furfural reaction, and the reaction conditions include: reaction temperature is 120-250 ° C The reaction pressure is 0.1 to 5 MPa. The reaction time is 0.5 to 24 hours, and the reaction solvent is ultrapure water.
- the present invention uses a monoatomic Pt/Cu catalyst to catalyze the preparation of cyclopentanone from furfural by replacing the air in the reaction vessel with hydrogen and charging it with an appropriate pressure.
- the mass fraction of the substrate furfural is 1 to 20 wt%, using a Cu-containing catalyst, the reaction temperature is 120 to 250 ° C, the reaction pressure is 0.1 to 5 MPa, the reaction time is 0.5 to 24 h, and the reaction solvent is ultrapure water.
- the PtCu-containing catalyst is composed of oxides obtained by uniformly dispersing metal active center nanoparticles and hydrotalcite, and the metal active center is a single atom of Pt/Cu; preferably, the catalyst metal active center Cu is 5 to 30 wt%.
- the content of Pt is 0.01 to 3 wt%, and the particle diameter of the active metal is in the range of 2 to 20 nm.
- the preparation of the monoatomic Pt/Cu catalyst comprises: using a bimetallic composite hydroxide, also known as hydrotalcite as a precursor, and selecting a Zn 2+ or Mg 2+ as a divalent cation of the hydrotalcite laminate, trivalent
- the cation selects Al 3+
- the metal active center ion entering the interlayer is Cu 2+
- the molar ratio of the divalent cation of the hydrotalcite layer to the metal active center ion is (0-10): 1, the hydrotalcite layer is bivalent.
- the reduction time is controlled from 5 min to 6 h, the Cu-containing catalyst can be obtained, and a small amount of Pt 2+ is reacted with the Cu catalyst, and after reduction in the H 2 atmosphere, a monoatomic Pt/Cu catalyst can be obtained. Further tetravalent cations in the hydrotalcite enter the interlayer and Zr 4+ is selected.
- the catalyst of the present invention consists of a uniformly dispersed metal nanoparticle PtCu alloy and a supported zinc aluminum composite oxide.
- the metal active center element of the catalyst is controlled by the proportion and composition of the metal cation of the hydrotalcite laminate.
- the Cu-based catalyst containing Cu was prepared by in-situ reduction, and the PtCu supported catalyst was obtained by loading Pt.
- the high-dispersion supported monoatomic Pt/Cu catalyst with adjustable loading and composition was prepared by using the metal ion ratio and composition of the hydrotalcite laminate to catalyze the conversion of furfural to cyclopentanone.
- the yield of cyclopentanone reached 99%. .
- the reaction conditions are mild and the energy consumption is low.
- the reaction was carried out at 160 ° C, an initial pressure of 0.1 MPa, and the furfural was completely converted at 10 h.
- the reaction is easy to operate and can occur in a sealed reaction vessel.
- Step A Cu(NO 3 ) 2 ⁇ 3H 2 O (14 mmol), Zn(NO 3 ) 2 ⁇ 6H 2 O (42 mmol), Al(NO 3 ) 3 ⁇ 9H 2 O (12 mmol), and ZrO (NO) 3 ) 2 ⁇ 6H 2 O (6 mmol) was dissolved in 200 mL of deionized water into solution A, and NaOH (0.156 mol) and Na 2 CO 3 (0.024 mol) were dissolved in solution B in 200 mL of deionized water. Solutions A and B were then simultaneously added dropwise to a four-necked flask containing 200 mL of deionized water at a constant pH (10.0).
- Step B The CuZnAlZr-LDHs synthesized in the step (A) are placed in a tube furnace under H 2 (40 mL min -1 ), and the temperature is raised from room temperature to 450 ° C for 2 h, and the heating rate is 2 ° C min -1 .
- Cu-Zn(Al)(Zr)O was obtained. 1 g of the reduced Cu-Zn(Al)(Zr)O was directly sealed with 5 mL of deionized water except peroxygen, poured into a round bottom flask, and a Pt 2+ solution was added dropwise under vigorous stirring and N 2 protection. After that, the replacement reaction was carried out for 2 h under vigorous stirring at 100 ° C under reflux. The centrifuged separated sludge was washed three times with deionized water and dried under vacuum at 40 ° C for 24 h. obtain.
- a Pt/Cu-Zn(Al)(Zr)O catalyst was prepared, and the actual loading of Pt was 0.1%, the actual loading of Cu was 11%, and the metal center particle diameter ranged from 2 to 20 nm.
- the mixture is cooled to room temperature, and the liquid in the reaction vessel is centrifuged to quantitatively analyze the product.
- the conversion of furfural to the Pt/Cu-Zn(Al)(Zr)O catalyst was determined to be 100%, and the selectivity to cyclopentanone was 99%.
- Step A Cu(NO 3 ) 2 ⁇ 3H 2 O (10 mmol), Zn(NO 3 ) 2 ⁇ 6H 2 O (46 mmol), Al(NO 3 ) 3 ⁇ 9H 2 O (12 mmol), and ZrO (NO) 3 ) 2 ⁇ 6H 2 O (6 mmol) was dissolved in 200 mL of deionized water into solution A, and NaOH (0.156 mol) and Na 2 CO 3 (0.024 mol) were dissolved in solution B in 200 mL of deionized water. Solutions A and B were then simultaneously added dropwise to a four-necked flask containing 200 mL of deionized water at a constant pH (10.0).
- Step B The CuZnAlZr-LDHs synthesized in the step (A) are placed in a tube furnace under H 2 (40 mL min -1 ), and the temperature is raised from room temperature to 450 ° C for 2 h, and the heating rate is 2 ° C min -1 .
- Cu-Zn(Al)(Zr)O was obtained. 1 g of the reduced Cu-Zn(Al)(Zr)O was directly sealed with 5 mL of deionized water except peroxygen, poured into a round bottom flask, and a Pt 2+ solution was added dropwise under vigorous stirring and N 2 protection. After that, the replacement reaction was carried out for 2 h under vigorous stirring at 100 ° C under reflux. The centrifuged separated sludge was washed three times with deionized water and dried under vacuum at 40 ° C for 24 h. obtain.
- a Pt/Cu-Zn(Al)(Zr)O catalyst was prepared, and the actual loading of Pt was 0.1%, the actual loading of Cu was 8%, and the metal center particle diameter ranged from 2 to 20 nm.
- the mixture is cooled to room temperature, and the liquid in the reaction vessel is centrifuged to quantitatively analyze the product.
- the conversion of furfural to the Pt/Cu-Zn(Al)(Zr)O catalyst was determined to be 100%, and the cyclopentanone selectivity was 92%.
- Step A Cu(NO 3 ) 2 ⁇ 3H 2 O (20 mmol), Zn(NO 3 ) 2 ⁇ 6H 2 O (36 mmol), Al(NO 3 ) 3 ⁇ 9H 2 O (12 mmol), and ZrO (NO) 3 ) 2 ⁇ 6H 2 O (6 mmol) was dissolved in 200 mL of deionized water into solution A, and NaOH (0.156 mol) and Na 2 CO 3 (0.024 mol) were dissolved in solution B in 200 mL of deionized water. Solutions A and B were then simultaneously added dropwise to a four-necked flask containing 200 mL of deionized water at a constant pH (10.0).
- Step B The CuZnAlZr-LDHs synthesized in the step (A) are placed in a tube furnace under H 2 (40 mL min -1 ), and the temperature is raised from room temperature to 450 ° C for 2 h, and the heating rate is 2 ° C min -1 .
- Cu-Zn(Al)(Zr)O was obtained. 1 g of the reduced Cu-Zn(Al)(Zr)O was directly sealed with 5 mL of deionized water except peroxygen, poured into a round bottom flask, and a Pt 2+ solution was added dropwise under vigorous stirring and N 2 protection. After that, the replacement reaction was carried out for 2 h under vigorous stirring at 100 ° C under reflux. The centrifuged separated sludge was washed three times with deionized water and dried under vacuum at 40 ° C for 24 h. obtain.
- a Pt/Cu-Zn(Al)(Zr)O catalyst was prepared, and the actual loading of Pt was 0.1%, the actual loading of Cu was 17%, and the metal center particle diameter ranged from 2 to 20 nm.
- the mixture is cooled to room temperature, and the liquid in the reaction vessel is centrifuged to quantitatively analyze the product.
- the conversion of furfural to the Pt/Cu-Zn(Al)(Zr)O catalyst was determined to be 100%, and the cyclopentanone selectivity was 90%.
- Step A Cu(NO 3 ) 2 ⁇ 3H 2 O (14 mmol), Zn(NO 3 ) 2 ⁇ 6H 2 O (42 mmol), Al(NO 3 ) 3 ⁇ 9H 2 O (12 mmol), and ZrO (NO) 3 ) 2 ⁇ 6H 2 O (6 mmol) was dissolved in 200 mL of deionized water into solution A, and NaOH (0.156 mol) and Na 2 CO 3 (0.024 mol) were dissolved in solution B in 200 mL of deionized water. Solutions A and B were then simultaneously added dropwise to a four-necked flask containing 200 mL of deionized water at a constant pH (10.0).
- Step B The CuZnAlZr-LDHs synthesized in the step (A) are placed in a tube furnace under H 2 (40 mL min -1 ), and the temperature is raised from room temperature to 450 ° C for 2 h, and the heating rate is 2 ° C min -1 . .
- a Cu-Zn(Al)(Zr)O catalyst was prepared, and the actual loading of Cu was 11%, and the metal center particle diameter ranged from 2 to 20 nm.
- the furfural hydroconversion was catalyzed by the Cu-Zn(Al)(Zr)O catalyst obtained in Comparative Example 1.
- the autoclave lining was added with furfural 0.5g, 0.03g catalyst, and ultra-pure water 10mL.
- the autoclave was installed, H 2 was charged from the inlet, the air in the autoclave was replaced 5 times, and then filled with 0.1 MPa of H 2 , sealed.
- the autoclave is heated to a preset temperature.
- the pressure at 160 ° C is about 0.5 MPa, the timing starts, the reaction is 10 h, and the process is continuously supplemented with H 2 to 0.5 MPa.
- the mixture is cooled to room temperature, and the liquid in the reaction vessel is centrifuged to quantitatively analyze the product.
- the conversion of furfural to the Cu-Zn(Al)(Zr)O catalyst was determined to be 24%, and the cyclopentanone selectivity was 9%.
- the Pt/Cu catalyst has a good performance of hydrogenation of furfural to cyclopentanone.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
- Crystallography & Structural Chemistry (AREA)
Abstract
一种高效催化糠醛转化制备环戊酮的方法和催化剂及其制备方法,属于生物质催化转化领域。该催化剂由均分散的金属活性中心纳米颗粒和水滑石煅烧所得的氧化物组成,其金属活性中心为单原子Pt/Cu;以水滑石为前体制得含Cu催化剂前体,H 2气氛中还原后,再利用少量Pt 2+与含Cu催化剂前体反应,得到单原子Pt/Cu催化剂,采用该催化剂催化糠醛水相加氢制环戊酮,反应温度为120~250℃,反应压力为0.1~5MPa,反应时间为0.5~24h,反应溶剂为超纯水。该催化剂便宜高效,催化糠醛水相加氢制环戊酮,反应在160℃、0.1MPa初始压力,10h时可将糠醛完全转化,环戊酮产率达到99%。
Description
本发明属于生物质催化技术领域,具体涉及一种高效催化糠醛转化制备环戊酮的催化剂及其制备方法,以及一种高效催化糠醛转化制备环戊酮的方法。
糠醛可由可再生生物质资源戊糖通过酸催化脱水生产,是重要的生物质平台分子之一,可以转化为高附加值化的生物燃料和精细化学品。糠醛的催化加氢是一系列重要的反应,可以得到糠醇,四氢糠醇,2-甲基呋喃和环戊酮等产物。由于糠醛的加氢过程中,涉及C=O、C=C键的加氢,C-C、C-O键的断裂等多种基元反应,因此高选择性的获得所需目标产物具有很大挑战。
环戊酮是一种多功能的精细化工品和多种化工合成中重要的中间体。它可以用于合成药物,杀真菌剂,橡胶化学品以及香料和香料化学品。目前工业中均采用石油路线生产,环戊酮主要通过氧化亚氮液相氧化环戊烯或气相环化1,6-己二醇或己二酸来制备。相比而言,从可再生生物质或平台分子出发制备环戊酮符合当前绿色、清洁化工过程的发展趋势,具有重要意义。最近,有工作报道了糠醛制备环戊酮的路线,有可能作为原料取代不可持续的化石燃料。
糠醛是在水相中戊糖的酸催化脱水的产物。从形成的水溶液中分离糠醛的过程增加了其生产成本。因此,使用糠醛水溶液作为制备化学品和燃料的原料是非常有益的。最近,Hronec等人报道了在水中糠醛和糠醇重排反应再加氢制环戊酮的新方法。他们发现一些金属催化剂(例如Pt/C,Pd-Cu/C和Ni基催化剂)表现出良好的糠醛或糠醇选择性转化为环戊酮的性能。在其他报道中,陆续发展了Ni-Cu/SBA-15,Cu-Co,ZnAl氧化物负载Cu,Ru/MIL-101等催化体系用于糠醛水相制备环戊酮。
尽管在这一领域已经做了一些开创性的工作,但该研究尚处于起步阶段。由于气体在水中的溶解度低以及多相界面之间的传输阻力,气-液-固相多相催化反应经常遇到催化效率低的问题。在温和条件下高效催化转化糠醛制环戊酮仍然是一个挑战。
发明内容
本发明的目的在于提供一种高效催化糠醛转化制备环戊酮的催化剂及其制备方法,以及一种高效催化糠醛转化制备环戊酮的方法,可以温和高效催化糠醛转化制备环戊酮的方法。
本发明的第一方面提供了一种高效催化糠醛转化制备环戊酮的催化剂,该催化剂由均分散的金属活性中心纳米颗粒和水滑石煅烧所得的氧化物组成,其金属活性中心为单原子Pt/Cu即Pt原子原位置换负载在Cu表面。
优选情况下,催化剂中金属活性中心的Cu的含量为5~30wt%,Pt的含量为0.01~3wt%,金属活性中心PtCu的粒径范围为2~20nm。
进一步优选地,金属活性中心Cu的含量为8~20wt%,Pt的含量为0.05~1wt%,金属活性中心单原子Pt/Cu的粒径范围为2~10nm。
本发明的第二方面提供了上述高效催化糠醛转化制备环戊酮的催化剂的制备方法,该制备方法包括:以水滑石为前体制得含Cu催化剂前体,H
2气氛中还原后,然后再利用Pt
2+与含Cu催化剂前体反应,洗涤干燥,得到含金属活性中心PtCu的催化剂。
优选地,以水滑石为前体制得含Cu催化剂前体的制备:将含Cu离子的水滑石前体在H
2气氛中还原,还原温度控制在400℃~650℃,还原时间控制在5min~6h,得到含Cu催化剂前体。
本发明中,上述含Cu离子的水滑石前体的水滑石层板二价阳离子选择Zn
2+或/和Mg
2+,三价阳离子选择Al
3+,进入层板间的金属活性中心离子为Cu
2+。
本发明中,水滑石层板二价阳离子Zn
2+或/和Mg
2+与进入层板间的金属活性中心离子Cu
2+摩尔比为(0~10):1,水滑石层板二价阳Zn
2+或/和Mg
2+离子不为0,水滑石层板所有二价金属阳离子Zn
2+、Mg
2+及Cu
2+与水滑石层板所有三价金属阳离子摩尔比=(2~5):1。
进一步优选地,以水滑石为前体制得含Cu催化剂前体的制备过程中,水滑石前体中还含有进入层板内的四价阳离子,四价阳离子选择Zr
4+,Zr
4+与三价阳离子Al
3+的摩尔比为(0.1-1):1,如0.5:1。
催化剂的制备方法包括:含Cu催化剂前体,将水滑石前体在H
2气氛中还原,还原温度控制在400℃~650℃,还原时间控制在5min~6h,得到含Cu催化剂前体,采用除氧的去离子水将其液封;在搅拌及N
2保护的条件下,向含Cu催化剂前体的液封液中滴加Pt
2+溶液,90-120℃下置换反应1-3h,分离、洗涤、干燥,得到单原子Pt/Cu催化剂。
本发明的第三方面提供了一种高效催化糠醛转化制备环戊酮的方法,采用上述的催化剂或上述的制备方法制得的催化剂,催化糠醛反应,反应条件包括:反应温度为120~250℃,反应压力为0.1~5MPa.反应时间为0.5~24h,反应溶剂为超纯水。
按照本发明的一种优选实施方式,本发明采用含单原子Pt/Cu催化剂催化糠醛制备环戊酮的方法:采用氢气置换反应釜中空气并充入适当压力,加入底物糠醛的质量分数为1~20wt%,采用含Cu催化剂,反应温度为120~250℃,反应压力为0.1~5MPa,反应时间为0.5~24h,反应溶剂为超纯水。
本发明中,含PtCu催化剂为由均分散的金属活性中心纳米颗粒和水滑石煅烧所得的氧化物组成,金属活性中心为单原子Pt/Cu;优选催化剂金属活性中心Cu的含量为5~30wt%,Pt的含量为0.01~3wt%,活性金属中心粒径范围2~20nm。
优选情况下,含单原子Pt/Cu催化剂的制备包括:以双金属复合氢氧化物又称为水滑石为前体制得,水滑石层板二价阳离子选择Zn
2+或Mg
2+,三价阳离子选择Al
3+,进入层板间的金属活性中心离子为Cu
2+,其中水滑石层板二价阳离子与金属活性中心离子摩尔比为(0~10):1,水滑石层板二价阳离子不为0,水滑石层板所有二价金属阳离子,水滑石层板所有三价金属阳离子摩尔比=(2~5):1,将水滑石前体在H
2气氛中还原,还原温度控制在400℃~550℃,还原时间控制在5min~6h,即可得到含Cu催化剂,再利用少量Pt
2+与Cu催化剂反应,H
2气氛中还原后,即可获得单原子Pt/Cu催化剂。进一步水滑石中还有四价阳离子进入层板间,选择Zr
4+。
本发明具有如下优点:
1.本发明催化剂由均分散的金属纳米颗粒PtCu合金,载体锌铝复合氧化物组成。该催化剂由水滑石前体还原制的,所选用的水滑石层板二价阳离子铜和锌、三价阳离子铝,其摩尔比为M
2+/M
3+=2~5,Cu
2+、Zn
2+与Al
3+摩尔比为(0~10)。利用水滑石层板金属阳离子比例和组成可调,控制了催化剂的金属活性中心元素。含Cu水滑石经原位还原制备了均分散的Cu基催化剂,再负载Pt获得PtCu负载型催化剂。利用水滑石层板金属离子比例和组成可调控的特点,制备负载量和组成可调的高分散负载型单原子Pt/Cu催化剂,催化糠醛转化制环戊酮,环戊酮产率达到99%。
2.反应条件温和,能耗低。反应在160℃、0.1MPa初始压力,10h时可将糠醛完全转化。
3.反应操作简便,密封反应釜中即可发生。
下面结合实施例对本发明做进一步说明,但本发明并不限于以下实施例。
实施例1
步骤A:将Cu(NO
3)
2·3H
2O(14mmol),Zn(NO
3)
2·6H
2O(42mmol),Al(NO
3)
3·9H
2O(12mmol),和ZrO(NO
3)
2·6H
2O(6mmol)用200mL去离子水溶解为溶液A,NaOH(0.156mol)和Na
2CO
3(0.024mol)用200mL去离子水中溶解为溶液B。然后在恒定的pH(10.0)下,将溶液A和B同时逐滴滴加到含有200mL去离子水的四口烧瓶中。在65℃晶化12h后,将固体过滤,用去离子水多次洗涤直至滤液呈中性,之后在80℃干燥过夜,得到CuZnAlZr-LDHs样品。
步骤B:对装有步骤(A)中合成的CuZnAlZr-LDHs在管式炉中,H
2下(40mL min
-1),由室温升温至450℃并保持2h,升温速率为2℃ min
-1,获得Cu-Zn(Al)(Zr)O。将1g还原过得Cu-Zn(Al)(Zr)O用5mL除过氧的去离子水直接液封,倒入圆底烧瓶,在剧烈搅拌和N
2保护下,滴加Pt
2+溶液。之后100℃下加回流冷凝管剧烈搅拌下置换反应2h。离心分离出的泥状物用去离子水洗涤三次,在真空中40℃下干燥24h。 获得。
即制备得到Pt/Cu-Zn(Al)(Zr)O催化剂,Pt的实际负载量为0.1%,Cu的实际负载量为11%,金属中心粒径范围2~20nm。
用实施例1所得到的Pt/Cu-Zn(Al)(Zr)O催化剂催化糠醛加氢转化。高压釜内衬加入糠醛0.5g,0.03g催化剂,超纯水10mL,安装高压釜,从进气口充入H
2,置换高压釜内的空气5次,而后充入0.1MPa的H
2,密封高压釜。高压釜加热到预设温度。160℃时压力约为0.5MPa,开始计时,反应10h,过程中不断补充H
2至0.5MPa,反应结束后,冷却至室温,反应釜内的液体离心分离,对产物进行GC定量分析。测得Pt/Cu-Zn(Al)(Zr)O催化剂上糠醛转化率为100%,环戊酮选择性为99%。
实施例2
步骤A:将Cu(NO
3)
2·3H
2O(10mmol),Zn(NO
3)
2·6H
2O(46mmol),Al(NO
3)
3·9H
2O(12mmol),和ZrO(NO
3)
2·6H
2O(6mmol)用200mL去离子水溶解为溶液A,NaOH(0.156mol)和Na
2CO
3(0.024mol)用200mL去离子水中溶解为溶液B。然后在恒定的pH(10.0)下,将溶液A和B同时逐滴滴加到含有200mL去离子水的四口烧瓶中。在65℃晶化12h后,将固体过滤,用去离子水多次洗涤直至滤液呈中性,之后在80℃干燥过夜,得到CuZnAlZr-LDHs样品。
步骤B:对装有步骤(A)中合成的CuZnAlZr-LDHs在管式炉中,H
2下(40mL min
-1),由室温升温至450℃并保持2h,升温速率为2℃ min
-1,获得Cu-Zn(Al)(Zr)O。将1g还原过得Cu-Zn(Al)(Zr)O用5mL除过氧的去离子水直接液封,倒入圆底烧瓶,在剧烈搅拌和N
2保护下,滴加Pt
2+溶液。之后100℃下加回流冷凝管剧烈搅拌下置换反应2h。离心分离出的泥状物用去离子水洗涤三次,在真空中40℃下干燥24h。获得。
即制备得到Pt/Cu-Zn(Al)(Zr)O催化剂,Pt的实际负载量为0.1%,Cu的实际负载量为8%,金属中心粒径范围2~20nm。
用实施例2所得到的Pt/Cu-Zn(Al)(Zr)O催化剂催化糠醛加氢转化。高压釜内衬加入糠醛0.5g,0.03g催化剂,超纯水10mL,安装高压釜,从进气口充入H
2,置换高压釜内的空气5次,而后充入0.1MPa的H
2,密封高压釜。高压釜加热到预设温度。160℃时压力约为0.5MPa,开始计时,反应10h,过程中不断补充H
2至0.5MPa,反应结束后,冷却至室温,反应釜内的液体离心分离,对产物进行GC定量分析。测得Pt/Cu-Zn(Al)(Zr)O催化剂上糠醛转化率为100%,环戊酮选择性为92%。
实施例3
步骤A:将Cu(NO
3)
2·3H
2O(20mmol),Zn(NO
3)
2·6H
2O(36mmol),Al(NO
3)
3·9H
2O(12mmol),和ZrO(NO
3)
2·6H
2O(6mmol)用200mL去离子水溶解为溶液A,NaOH(0.156mol)和Na
2CO
3(0.024mol)用200mL去离子水中溶解为溶液B。然后在恒定的pH(10.0)下,将溶液A和B同时逐滴滴加到含有200mL去离子水的四口烧瓶中。在65℃晶化12h后,将固体过滤,用去离子水多次洗涤直至滤液呈中性,之后在80℃干燥过夜,得到CuZnAlZr-LDHs样品。
步骤B:对装有步骤(A)中合成的CuZnAlZr-LDHs在管式炉中,H
2下(40mL min
-1),由室温升温至450℃并保持2h,升温速率为2℃ min
-1,获得Cu-Zn(Al)(Zr)O。将1g还原过得Cu-Zn(Al)(Zr)O用5mL除过氧的去离子水直接液封,倒入圆底烧瓶,在剧烈搅拌和N
2保护下,滴加Pt
2+溶液。之后100℃下加回流冷凝管剧烈搅拌下置换反应2h。离心分离出的泥状物用去离子水洗涤三次,在真空中40℃下干燥24h。获得。
即制备得到Pt/Cu-Zn(Al)(Zr)O催化剂,Pt的实际负载量为0.1%,Cu的实际负载量为17%,金属中心粒径范围2~20nm。
用实施例3所得到的Pt/Cu-Zn(Al)(Zr)O催化剂催化糠醛加氢转化。高压釜内衬加入糠醛0.5g,0.03g催化剂,超纯水10mL,安装高压釜,从进气口充入H
2,置换高压釜内的空气5次,而后充入0.1MPa的H
2,密封高压釜。高压釜加热到预设温度。160℃时压力约为0.5MPa,开始计时,反应10h,过程中不断补充H
2至0.5MPa,反应结束后,冷却至室温,反应釜内的液体离心分离,对产物进行GC定量分析。测得Pt/Cu-Zn(Al)(Zr)O催化剂上糠醛转化率为100%,环戊酮选择性为90%。
对比例1
步骤A:将Cu(NO
3)
2·3H
2O(14mmol),Zn(NO
3)
2·6H
2O(42mmol),Al(NO
3)
3·9H
2O(12mmol),和ZrO(NO
3)
2·6H
2O(6mmol)用200mL去离子水溶解为溶液A,NaOH(0.156mol)和Na
2CO
3(0.024mol)用200mL去离子水中溶解为溶液B。然后在恒定的pH(10.0)下,将溶液A和B同时逐滴滴加到含有200mL去离子水的四口烧瓶中。在65℃晶化12h后,将固体过滤,用去离子水多次洗涤直至滤液呈中性,之后在80℃干燥过夜,得到CuZnAlZr-LDHs样品。
步骤B:对装有步骤(A)中合成的CuZnAlZr-LDHs在管式炉中,H
2下(40mL min
-1),由室温升温至450℃并保持2h,升温速率为2℃min
-1。
即制备得到Cu-Zn(Al)(Zr)O催化剂,Cu的实际负载量为11%,金属中心粒径范围2~20nm。
用对比例1所得到Cu-Zn(Al)(Zr)O催化剂催化糠醛加氢转化。高压釜内衬加入糠醛0.5g,0.03g催化剂,超纯水10mL,安装高压釜,从进气口充入H
2,置换高压釜内的空气5次,而后充入0.1MPa的H
2,密封高压釜。高压釜加热到预设温度。160℃时压力约为0.5MPa,开始计时,反应10h,过程中不断补充H
2至0.5MPa,反应结束后,冷却至室温,反应釜内的液体离心分离,对产物进行GC定量分析。测得Cu-Zn(Al)(Zr)O催化剂上糠醛转化率为24%,环戊酮选择性为9%。
由实施例和对比例的反应结果可知,Pt/Cu催化剂具有良好的糠醛加氢制环戊酮性能。
Claims (10)
- 一种高效催化糠醛转化制备环戊酮的催化剂,其特征在于,该催化剂由均分散的金属活性中心纳米颗粒和水滑石煅烧所得的氧化物组成,其金属活性中心为单原子Pt/Cu,即Pt单原子原位置换负载在Cu表面。
- 按照权利要求1所述的一种高效催化糠醛转化制备环戊酮的催化剂,其特征在于,催化剂中金属活性中心的Cu的含量为5~30wt%,Pt的含量为0.01~3wt%,金属活性中心PtCu的粒径范围为2~20nm。
- 按照权利要求1所述的一种高效催化糠醛转化制备环戊酮的催化剂,其特征在于,金属活性中心Cu的含量为8~20wt%,Pt的含量为0.05~1wt%,金属活性中心单原子Pt/Cu的粒径范围为2~10nm。
- 制备权利要求1-3任一项所述的催化剂的方法,其特征在于,以水滑石为前体制得含Cu催化剂前体,H 2气氛中还原后,然后再利用Pt 2+与含Cu催化剂前体反应,洗涤干燥,得到含金属活性中心单原子Pt/Cu的催化剂。
- 按照权利要求4所述的方法,其特征在于,以水滑石为前体制得含Cu催化剂前体的制备:将含Cu离子的水滑石前体在H 2气氛中还原,还原温度控制在400℃~650℃,还原时间控制在5min~6h,得到含Cu催化剂前体。
- 按照权利要求5所述的方法,其特征在于,含Cu离子的水滑石前体的水滑石层板二价阳离子选择Zn 2+或/和Mg 2+,三价阳离子选择Al 3+,进入层板间的金属活性中心离子为Cu 2+;水滑石层板二价阳离子Zn 2+或/和Mg 2+与进入层板间的金属活性中心离子Cu 2+摩尔比为(0~10):1,水滑石层板二价阳Zn 2+或/和Mg 2+离子不为0,水滑石层板所有二价金属阳离子Zn 2+、Mg 2+及Cu 2+与水滑石层板所有三价金属阳离子摩尔比=(2~5):1。
- 按照权利要求6所述的方法,其特征在于,以水滑石为前体制得含Cu催化剂前体的制备过程中,水滑石前体中还含有进入层板内的四价阳离子,四价阳离子选择Zr 4+,Zr 4+与三价阳离子的摩尔比为(0.1-1):1。
- 按照权利要求4所述的方法,其特征在于,催化剂的制备方法包括:含Cu催化剂前体,将水滑石前体在H 2气氛中还原,还原温度控制在400℃~650℃,还原时间控制在5min~6h,得到含Cu催化剂前体,采用除氧的去离子水将其液封;在搅拌及N 2保护的条件下,向含Cu催化剂前体的液封液中滴加Pt 2+溶液,90-120℃下置换反应1-3h,分离、洗涤、干燥,得到PtCu催化剂。
- 采用权利要求1-3任一项所述的催化剂催化糠醛转化制备环戊酮的方法,其特征 在于,反应条件包括:反应温度为120~250℃,反应压力为0.1~5MPa.反应时间为0.5~24h,反应溶剂为超纯水。
- 按照权利要求9所述的方法,其特征在于,采用氢气置换反应釜中空气并充入适当压力,加入底物糠醛的质量分数为1~20wt%,反应温度为120~250℃,反应压力为0.1~5MPa,反应时间为0.5~24h,反应溶剂为超纯水。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/967,400 US11141724B2 (en) | 2018-05-08 | 2018-12-24 | Method for efficiently catalyzing furfural to prepare cyclopentanone, and catalyst and preparation method therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810430384.9A CN108855130B (zh) | 2018-05-08 | 2018-05-08 | 一种高效催化糠醛转化制备环戊酮的方法和催化剂及其制备方法 |
CN201810430384.9 | 2018-05-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019214247A1 true WO2019214247A1 (zh) | 2019-11-14 |
Family
ID=64327618
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/122982 WO2019214247A1 (zh) | 2018-05-08 | 2018-12-24 | 一种高效催化糠醛转化制备环戊酮的方法和催化剂及其制备方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11141724B2 (zh) |
CN (1) | CN108855130B (zh) |
WO (1) | WO2019214247A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111330594A (zh) * | 2020-03-31 | 2020-06-26 | 中国工程物理研究院材料研究所 | 一种疏水性层状双金属氧化物催化剂的制备方法及其应用 |
CN113117682A (zh) * | 2021-03-15 | 2021-07-16 | 吉林大学 | 皮克林乳液体系生物质平台化合物催化加氢提质的方法 |
CN116328795A (zh) * | 2021-12-17 | 2023-06-27 | 南京林业大学 | 一种复合载体负载双金属催化剂的制备用于催化碳氧双键选择性原位加氢的方法 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108855130B (zh) * | 2018-05-08 | 2021-06-08 | 北京化工大学 | 一种高效催化糠醛转化制备环戊酮的方法和催化剂及其制备方法 |
CN111253230B (zh) * | 2018-11-30 | 2021-05-25 | 中国科学院大连化学物理研究所 | 一种水相催化5-羟甲基糠醛加氢制备3-羟甲基环戊酮的方法 |
CN109876839A (zh) * | 2019-03-20 | 2019-06-14 | 山西大学 | 一种铜铬类水滑石催化剂及其制备方法和应用 |
CN111715220A (zh) * | 2020-06-16 | 2020-09-29 | 广东石油化工学院 | 一种新型金属复合氧化物催化剂及其制备方法 |
CN113231076B (zh) * | 2021-04-29 | 2022-03-04 | 东北石油大学 | 钯铜催化剂及其制备方法、应用 |
CN114085136B (zh) * | 2021-11-08 | 2023-07-07 | 南京工业大学 | 一种催化糠醛制备环戊酮的方法 |
CN114380678B (zh) * | 2022-01-28 | 2023-06-23 | 广东石油化工学院 | 一种糠醛水液加氢重排制备环戊酮的方法 |
CN114849755B (zh) * | 2022-05-05 | 2024-03-08 | 合肥工业大学 | 一种氮掺杂介孔碳负载合金纳米催化剂及其用途 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090054703A1 (en) * | 2007-08-22 | 2009-02-26 | Kostantinos Kourtakis | Catalytic Conversion of Ethanol and Methanol to an Isobutanol-Containing Reaction Product Using a Thermally Decomposed Hydrotalcite/Metal |
CN105130746A (zh) * | 2015-08-05 | 2015-12-09 | 中国科学院兰州化学物理研究所 | 一种呋喃衍生物选择氢解制戊二醇的方法 |
CN105854883A (zh) * | 2016-05-17 | 2016-08-17 | 北京化工大学 | 一种Co基复合金属氧化物催化剂及应用 |
CN107365287A (zh) * | 2016-05-11 | 2017-11-21 | 中国石油化工股份有限公司 | 一种合成2,5-呋喃二甲酸的方法 |
CN108855130A (zh) * | 2018-05-08 | 2018-11-23 | 北京化工大学 | 一种高效催化糠醛转化制备环戊酮的方法和催化剂及其制备方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105013509B (zh) * | 2015-07-22 | 2018-02-02 | 中国科学院广州能源研究所 | 一种糠醛或糠醇水相加氢制备环戊酮的催化剂及其制备方法和应用方法 |
-
2018
- 2018-05-08 CN CN201810430384.9A patent/CN108855130B/zh active Active
- 2018-12-24 WO PCT/CN2018/122982 patent/WO2019214247A1/zh active Application Filing
- 2018-12-24 US US16/967,400 patent/US11141724B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090054703A1 (en) * | 2007-08-22 | 2009-02-26 | Kostantinos Kourtakis | Catalytic Conversion of Ethanol and Methanol to an Isobutanol-Containing Reaction Product Using a Thermally Decomposed Hydrotalcite/Metal |
CN105130746A (zh) * | 2015-08-05 | 2015-12-09 | 中国科学院兰州化学物理研究所 | 一种呋喃衍生物选择氢解制戊二醇的方法 |
CN107365287A (zh) * | 2016-05-11 | 2017-11-21 | 中国石油化工股份有限公司 | 一种合成2,5-呋喃二甲酸的方法 |
CN105854883A (zh) * | 2016-05-17 | 2016-08-17 | 北京化工大学 | 一种Co基复合金属氧化物催化剂及应用 |
CN108855130A (zh) * | 2018-05-08 | 2018-11-23 | 北京化工大学 | 一种高效催化糠醛转化制备环戊酮的方法和催化剂及其制备方法 |
Non-Patent Citations (1)
Title |
---|
BARRABES, N. ET AL.: "Hydrodechlorination of Trichloroethylene on Noble Metal Promoted Cu-Hydrotalcite-Derived Catalysts", JOURNAL OF CATALYSIS, vol. 263, no. 2, 3 March 2009 (2009-03-03), pages 239 - 246, XP026043761, ISSN: 0021-9517, DOI: 10.1016/j.jcat.2009.02.015 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111330594A (zh) * | 2020-03-31 | 2020-06-26 | 中国工程物理研究院材料研究所 | 一种疏水性层状双金属氧化物催化剂的制备方法及其应用 |
CN113117682A (zh) * | 2021-03-15 | 2021-07-16 | 吉林大学 | 皮克林乳液体系生物质平台化合物催化加氢提质的方法 |
CN116328795A (zh) * | 2021-12-17 | 2023-06-27 | 南京林业大学 | 一种复合载体负载双金属催化剂的制备用于催化碳氧双键选择性原位加氢的方法 |
Also Published As
Publication number | Publication date |
---|---|
US20210213439A1 (en) | 2021-07-15 |
CN108855130B (zh) | 2021-06-08 |
CN108855130A (zh) | 2018-11-23 |
US11141724B2 (en) | 2021-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019214247A1 (zh) | 一种高效催化糠醛转化制备环戊酮的方法和催化剂及其制备方法 | |
Deng et al. | Hydrogenative ring-rearrangement of biobased furanic aldehydes to cyclopentanone compounds over Pd/pyrochlore by introducing oxygen vacancies | |
Chen et al. | Perovskite type oxide-supported Ni catalysts for the production of 2, 5-dimethylfuran from biomass-derived 5-hydroxymethylfurfural | |
Liu et al. | Bimetallic AuPt/TiO2 catalysts for direct oxidation of glucose and gluconic acid to tartaric acid in the presence of molecular O2 | |
US20230256423A1 (en) | Modified copper-zinc catalysts and methods for alcohol production from carbon dioxide | |
TWI612031B (zh) | 一種聯產環己醇和鏈烷醇的方法和裝置 | |
WO2011113281A1 (zh) | 一种多羟基化合物制乙二醇的方法 | |
WO2018157815A1 (zh) | 选择性加氢催化剂、其制备方法及生成异丁醛的催化评价方法 | |
Mane et al. | A review on non-noble metal catalysts for glycerol hydrodeoxygenation to 1, 2-propanediol with and without external hydrogen | |
CN102728380A (zh) | 甘油氢解制备1,3-丙二醇的催化剂及其制备和应用 | |
CN102746129A (zh) | 一种杂多酸催化正丁醛自缩合制备2-乙基-2-己烯醛的工艺方法 | |
CN105854883A (zh) | 一种Co基复合金属氧化物催化剂及应用 | |
Paun et al. | Flow hydrogenation of p-nitrophenol with nano-Ag/Al 2 O 3 | |
CN104028267B (zh) | 一种苯选择性加氢制环己烯贵金属Ru催化剂的制法 | |
CN106944050B (zh) | 一种合成1,3-丙二醇的催化剂及其制备方法和应用 | |
CN103664586B (zh) | 制备乙酸环己酯的方法及制备环己醇和乙醇的方法 | |
CN110256230B (zh) | 一种无碱条件下高效催化甘油制备甘油酸的催化剂及其制备方法 | |
CN103044203A (zh) | Zsm-5分子筛负载钴催化剂在制备肉桂醇中的应用 | |
CN104230643A (zh) | 制备异丙苯的方法 | |
CN106867574B (zh) | 一种高效催化山梨醇液相重整为c6碳氢化合物的方法 | |
CN109851473A (zh) | 一种甘油溶液高效氢解制备1,3-丙二醇的方法 | |
KR101964275B1 (ko) | 아크릴산 제조용 촉매 제조방법 및 이로부터 제조되는 촉매 | |
CN102886269B (zh) | 用于巴豆醛气相选择性加氢合成巴豆醇的催化剂和制备方法 | |
CN114192142B (zh) | 一种二壬基酚加氢用催化剂及其制备方法 | |
US20240116045A1 (en) | Method for manufacturing bimetallic hydrogenation catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18917866 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18917866 Country of ref document: EP Kind code of ref document: A1 |