WO2019214204A1 - 灯丝电流控制方法及装置 - Google Patents

灯丝电流控制方法及装置 Download PDF

Info

Publication number
WO2019214204A1
WO2019214204A1 PCT/CN2018/115959 CN2018115959W WO2019214204A1 WO 2019214204 A1 WO2019214204 A1 WO 2019214204A1 CN 2018115959 W CN2018115959 W CN 2018115959W WO 2019214204 A1 WO2019214204 A1 WO 2019214204A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
filament
control
range
value
Prior art date
Application number
PCT/CN2018/115959
Other languages
English (en)
French (fr)
Inventor
陈飞
范声芳
孙智勇
黄强
王万全
郝建伟
Original Assignee
苏州博思得电气有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州博思得电气有限公司 filed Critical 苏州博思得电气有限公司
Priority to EP18917616.7A priority Critical patent/EP3793333A4/en
Priority to JP2021512980A priority patent/JP7097649B2/ja
Priority to US17/053,527 priority patent/US11438994B2/en
Publication of WO2019214204A1 publication Critical patent/WO2019214204A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G1/00X-ray apparatus involving X-ray tubes; Circuits therefor
    • H05G1/08Electrical details
    • H05G1/26Measuring, controlling or protecting
    • H05G1/30Controlling
    • H05G1/34Anode current, heater current or heater voltage of X-ray tube

Definitions

  • the invention relates to the field of medical instruments, in particular to a method and a device for controlling filament current.
  • the tube current of the X-ray tube determines the amount of X-ray radiation that has a decisive influence on the quality of the diagnosis and treatment.
  • the tube current is formed by the electrons excited by the filament heating under the action of a high voltage electric field.
  • the size of the tube current is affected by the temperature of the filament, and the temperature of the filament depends on the current of the filament. That is to say, the magnitude of the filament current affects the amount of X-ray radiation of the X-ray tube, and therefore, the control of the filament current becomes more important.
  • FIG. 1 is a topological structure of a filament power supply circuit in the prior art.
  • the filament current is controlled by a filament transformer, if it is an ideal filament transformer, when the primary current is converted to the secondary side, the converted secondary current is obtained. It should be equal to the actual filament current. However, due to the nonlinearity of the actual filament transformer, the converted secondary current is not equal to the actual filament current, which brings a large control error to the filament current control.
  • the embodiments of the present invention provide a filament current control method and apparatus to solve the problem that the filament current control error is large due to the nonlinear characteristics of the filament transformer.
  • an embodiment of the present invention provides a filament current control method, including: acquiring a current filament current value; determining a current range in which the current filament current value is located; determining a corresponding filament current according to the current range Corresponding relationship with the control current; determining the current control current according to the current filament current value and the corresponding relationship.
  • determining the current control current according to the current filament current value and the corresponding relationship comprises: calculating according to the current filament current value and the corresponding relationship by using the following formula Current control current i p :
  • i sa and i s(a+1) are the current values of the two end points of the current range in which the current filament current is located; i pa and i p(a+1) are current values according to the two end points, The current value of the corresponding control current is measured; i s is the current filament current value.
  • the correspondence between the filament current and the control current is obtained by dividing the working range of the filament current into a plurality of consecutive Current range; calculate the corresponding relationship between filament current and control current in any one of the current ranges.
  • dividing the operating range of the filament current into a plurality of consecutive current ranges comprises: selecting a current value of N points within a working range of the filament current, Wherein, the N points are non-average distributed in the working range of the filament current; and the operating range is divided into current ranges of N+1 consecutive filament current values by the N points.
  • the N points are sparse to densely distributed as the filament current changes from low to high within the operating range.
  • respectively calculating the correspondence between the filament current and the control current in any one of the current ranges includes: determining the current range in any one of the current ranges The current value of the two end points; according to the current values of the two end points, the control current of the corresponding filament transformer is measured; according to the current values of the two end points of the current range, and the corresponding control current of the filament transformer is measured Calculate the correspondence between the filament current and the control current in the current range.
  • an embodiment of the present invention provides a filament current control apparatus, including: an acquisition module, configured to acquire a current filament current value; and an analysis module, configured to determine a current range in which the current filament current value is located; And a module, configured to determine a corresponding relationship between the corresponding filament current and the control current according to the current range; the processing module is configured to determine the current control current according to the current filament current value and the corresponding relationship.
  • the processing module includes:
  • a calculating unit configured to calculate a current control current i p according to the current filament current value and the corresponding relationship by using the following formula:
  • i sa and i s(a+1) are the current values of the two end points of the current range in which the current filament current is located; i pa and i p(a+1) are current values according to the two end points, The current value of the corresponding control current is measured; i s is the current filament current value.
  • an embodiment of the present invention provides a server, including: a memory and a processor, wherein the memory and the processor are in communication with each other, and the computer stores the computer instruction, and the processor executes the computer instruction to execute the foregoing implementation.
  • the filament current control method in the example is a server, including: a memory and a processor, wherein the memory and the processor are in communication with each other, and the computer stores the computer instruction, and the processor executes the computer instruction to execute the foregoing implementation.
  • an embodiment of the present invention provides a computer readable storage medium storing computer instructions for causing a computer to execute a filament current control method in the above embodiment.
  • the current filament current value is obtained by the above; the current range in which the current filament current value is located is determined; and the corresponding relationship between the filament current and the control current is determined according to the current range; The method of determining the current control current by the filament current value and the corresponding relationship solves the problem that the filament current control error is large due to the nonlinear characteristic of the filament transformer, and improves the filament current control precision.
  • FIG. 1 is a schematic view showing a topology of a filament power supply circuit in the prior art
  • FIG. 2 is a flow chart showing an optional filament current control method according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram showing a relationship between a control current and a filament current in a specific application scenario
  • FIG. 4 shows a schematic diagram of an alternative filament current control device in accordance with an embodiment of the present invention
  • FIG. 5 shows a schematic diagram of an optional server in accordance with an embodiment of the present invention.
  • FIG. 2 is a flowchart of an optional filament current control method according to an embodiment of the present invention. As shown in FIG. 2, the method includes:
  • step S11 the current filament current value is obtained.
  • the operating range of the filament current can be expressed as I a to I b .
  • the current filament current value can be any current value within the operating range.
  • Step S12 determining a current range in which the current filament current value is located.
  • the working range of the filament current can be divided into a plurality of current ranges, and according to the current filament current value, a specific current range within the working range of the filament current can be determined.
  • Step S13 determining a corresponding relationship between the corresponding filament current and the control current according to the current range in which it is located.
  • control current may be the current when the primary current of the filament transformer is converted to the secondary side.
  • FIG. 3 shows the control current i p and the actual application scenario. Schematic diagram of the relationship of filament current i s .
  • the correspondence between the filament current and the control current can be further obtained by the current range in which the current filament current value is located.
  • Step S14 determining a current control current according to the current filament current value and the corresponding relationship.
  • the corresponding relationship between the filament current and the control current in the current range is further determined, according to the current filament current.
  • the value and the corresponding relationship determine the current control current mode.
  • the control current and the filament current are equal, and the current control current is taken as the current filament current value, the control precision is improved, and the filament is solved.
  • step S14 may include:
  • the current control current i p is calculated by the following formula:
  • i sa and i s(a+1) are the current values of the two end points of the current range in which the current filament current is located; i pa and i p(a+1) are current values according to the two end points, The current value of the corresponding control current is measured; i s is the current filament current value.
  • the correspondence between the filament current and the control current in step S13 above may be obtained according to the following steps:
  • Step S21 dividing the working range of the filament current into a plurality of continuous current ranges.
  • Step S22 respectively calculating the correspondence relationship between the filament current and the control current in any one of the current ranges.
  • the working range of the filament current can be divided into five continuous current ranges.
  • five consecutive current ranges can be 0-1 amps, respectively. -2 amps, 2-3 amps, 3-4 amps, and 4-5 amps.
  • the corresponding relationship between the filament current and the control current can be calculated in any one of the current ranges.
  • the calculation method may be: selecting at least one current value in any current range, measuring a corresponding control current when the filament current is the current value, determining a filament in the current range according to the current value and the measured control current. The correspondence between current and control current.
  • dividing the operating range of the filament current into a plurality of consecutive current ranges in the above step S21 may include:
  • the operating range is divided into current ranges of N+1 consecutive filament current values by the N points.
  • the N points may be evenly distributed in the working range of the filament current, or may be non-average distributed in the working range of the filament current.
  • the filament current when the filament current is low, the difference between the control current and the filament current is small; when the filament current is high, the difference between the control current and the filament current is large. And in practical applications, the filament current mainly works in the second half of the working range. Therefore, it is possible to calculate the control current by dividing the N points with the filament current from low to high, from sparse to dense setting, by dividing the different current ranges more densely in the current region where the filament current is mainly operated. Can improve its accuracy.
  • step S22 respectively calculating the correspondence between the filament current and the control current in any one of the current ranges may include:
  • Corresponding relationship between the filament current and the control current in the current range is calculated according to the current values of the two end points of the current range and the control current of the corresponding filament transformer.
  • the current range in which it is located can be expressed as [i sa , i s(a+1) ], where 1 ⁇ a ⁇ N, and the two ends of the current range can be separately measured.
  • the control current corresponding to i sa and i s(a+1) the measured control current can be recorded as i pa and i p(a+1) respectively .
  • the correspondence between the filament current and the control current in the current range can be calculated.
  • FIG. 4 is a schematic diagram of an optional filament current control device according to an embodiment of the present invention. As shown in FIG. 4, the device includes:
  • the obtaining module 41 is configured to obtain a current filament current value; refer to the description of step S11 in the first embodiment.
  • the analysis module 42 is configured to determine a current range in which the current filament current value is located; please refer to the description of step S12 in the first embodiment.
  • the determining module 43 is configured to determine a corresponding relationship between the corresponding filament current and the control current according to the current range; refer to the description of step S13 in the first embodiment.
  • the processing module 44 is configured to determine a current control current according to the current filament current value and the corresponding relationship. Please refer to the description of step S14 in the first embodiment.
  • the obtaining module 41 is configured to obtain a current filament current value; the analyzing module 42 is configured to determine a current range in which the current filament current value is located; and the determining module 43 is configured to be located according to the current The current range determines a corresponding relationship between the corresponding filament current and the control current; the processing module 44 is configured to determine the current control current according to the current filament current value and the corresponding relationship, and solve the filament current control caused by the nonlinear characteristic of the filament transformer The problem of large errors.
  • the processing module includes:
  • a calculating unit configured to calculate a current control current i p according to the current filament current value and the corresponding relationship by using the following formula:
  • i sa and i s(a+1) are the current values of the two end points of the current range in which the current filament current is located; i pa and i p(a+1) are current values according to the two end points, The current value of the corresponding control current is measured; i s is the current filament current value.
  • the embodiment of the present invention further provides a server.
  • the server may include a processor 51 and a memory 52.
  • the processor 51 and the memory 52 may be connected by a bus or other manner, and the bus is connected in FIG. For example.
  • the processor 51 can be a Central Processing Unit (CPU).
  • the processor 51 can also be another general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or Other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc., or a combination of the above various types of chips.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • Other programmable logic devices discrete gates or transistor logic devices, discrete hardware components, etc., or a combination of the above various types of chips.
  • the memory 52 is used as a non-transitory computer readable storage medium, and can be used for storing a non-transitory software program, a non-transitory computer executable program, and a module, such as a program instruction corresponding to the button shielding method of the vehicle display device in the embodiment of the present invention.
  • / Module for example, acquisition module 41, analysis module 42, determination module 43, and processing module 44 shown in FIG. 4.
  • the processor 51 executes various functional applications and data processing of the processor by running non-transitory software programs, instructions, and modules stored in the memory 52, that is, implementing the filament current control method in the above method embodiments.
  • the memory 52 may include a storage program area and an storage data area, wherein the storage program area may store an operating system, an application required for at least one function; the storage data area may store data created by the processor 51, and the like.
  • memory 52 can include high speed random access memory, and can also include non-transitory memory, such as at least one magnetic disk storage device, flash memory device, or other non-transitory solid state storage device.
  • memory 52 may optionally include memory remotely located relative to processor 51, which may be coupled to processor 51 via a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • the one or more modules are stored in the memory 52, and when executed by the processor 51, the filament current control method in the embodiment shown in Fig. 2 is performed.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), a random access memory (RAM), a flash memory, a hard disk (Hard). Disk Drive, abbreviated as: HDD) or Solid-State Drive (SSD), etc.; the storage medium may also include a combination of the above types of memories.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Dc-Dc Converters (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • X-Ray Techniques (AREA)
  • Control Of Voltage And Current In General (AREA)
  • Control Of Resistance Heating (AREA)

Abstract

一种灯丝电流控制方法及装置,方法包括:获取当前灯丝电流值(S11);确定当前灯丝电流值所处的电流范围(S12);根据所处的电流范围确定对应的灯丝电流与控制电流的对应关系(S13);根据当前灯丝电流值和对应关系确定当前控制电流(S14),解决了由于灯丝变压器非线性特性导致的灯丝电流控制误差大的问题。

Description

灯丝电流控制方法及装置 技术领域
本发明涉及医疗器械领域,具体涉及灯丝电流控制方法及装置。
背景技术
X射线球管的管电流决定了X射线的辐射量,它对诊断和治疗的质量起着决定性的影响。在X射线球管中,管电流是灯丝加热激发出的电子在高压电场的作用下形成的。管电流的大小受灯丝温度高低的影响,而灯丝温度的高低又取决于灯丝电流的大小。也就是说,灯丝电流的大小,影响了X射线球管的X射线的辐射量,因而,对灯丝电流控制变得尤为重要。
图1为现有技术中,灯丝电源电路拓扑结构,如图1所示,通过灯丝变压器控制灯丝电流时,如果是理想的灯丝变压器,原边电流折算到副边时,折算得到的副边电流与实际灯丝电流应该是相等的。但是,由于实际灯丝变压器的非线性,折算得到的副边电流与实际灯丝电流不相等,给灯丝电流控制带来了较大的控制误差。
发明内容
有鉴于此,本发明实施例提供了一种灯丝电流控制方法及装置,以解决由于灯丝变压器非线性特性导致的灯丝电流控制误差大的问题。
根据第一方面,本发明实施例提供了一种灯丝电流控制方法,包括:获取当前灯丝电流值;确定所述当前灯丝电流值所处的电流范围;根据所处的电流范围确定对应的灯丝电流与控制电流的对应关系;根据所述当前灯丝电流值和所述对应关系确定当前控制电流。
结合第一方面,在第一方面第一实施方式中,根据所述当前灯丝电流值和所述对应关系确定当前控制电流包括:根据所述当前灯丝电流值和所述对应关系,通过如下公式计算当前控制电流i p
Figure PCTCN2018115959-appb-000001
其中,i sa以及i s(a+1)为当前灯丝电流所处的电流范围的两个端点的电流值;i pa以及i p(a+1)为根据所述两个端点的电流值,测量得到对应的控制电流的电流值;i s为所述当前灯丝电流值。
结合第一方面或第一方面第一实施方式,在第一方面第二实施方式中,通过如下步骤获取所述灯丝电流与控制电流的对应关系:将灯丝电流的工作范围划分为多个连续的电流范围;分别计算在任意一个电流范围内灯丝电流与控制电流的对应关系。
结合第一方面第二实施方式,在第一方面第三实施方式中,将灯丝电流的工作范围划分为多个连续的电流范围包括:在灯丝电流的工作范围内选取N个点的电流值,其中,所述N个点非平均的分布于灯丝电流的所述工作范围内;通过所述N个点,将所述工作范围分为N+1个连续的灯丝电流值的电流范围。
结合第一方面第三实施方式,在第一方面第四实施方式中,在所述工作范围内,随灯丝电流由低到高的变化,所述N个点由稀疏到密集分布。
结合第一方面第二实施方式,在第一方面第五实施方式中,分别计算在任意一个电流范围内灯丝电流与控制电流的对应关系包括:在任意一个电流范围内,确定所述电流范围的两个端点的电流值;根据所述两个端点的电流值,测量得到对应的灯丝变压器的控制电流;根据所述电流范围的两个端点的电流值,以及测量得到对应的灯丝变压器的控制电流,计算该电流范围内的灯丝电流与控制电流的对应关系。
根据第二方面,本发明实施例提供了一种灯丝电流控制装置,包括:获取模块,用于获取当前灯丝电流值;分析模块,用于确定所述当前灯丝电流值所处的电流范围;确定模块,用于根据所处的电流范围确定对应的灯丝电流与控制电流的对应关系;处理模块,用于根据所述当前灯丝电流值和所述对应关系确定当前控制电流。
结合第一方面,在第一方面第一实施方式中,所述处理模块包括:
计算单元,用于根据所述当前灯丝电流值和所述对应关系,通过如下公式计算当前控制电流i p
Figure PCTCN2018115959-appb-000002
其中,i sa以及i s(a+1)为当前灯丝电流所处的电流范围的两个端点的电流值;i pa以及i p(a+1)为根据所述两个端点的电流值,测量得到对应的控制电流的电流值;i s为所述当前灯丝电流值。
根据第三方面,本发明实施例提供了一种服务器,包括:存储器和处理器,存储器和处理器之间互相通信连接,存储器中存储有计算机指令,处理器通过执行计算机指令,从而执行上述实施例中的灯丝电流控制方法。
根据第四方面,本发明实施例提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机指令,计算机指令用于使计算机执行上述实施例中的灯丝电流控制方法。
在本发明实施例中,通过上述获取当前灯丝电流值;确定所述当前灯丝电流值所处的电流范围;根据所处的电流范围确定对应的灯丝电流与控制电流的对应关系;根据所述当前灯丝电流值和所述对应关系确定当前控制电流的方法,解决了由于灯丝变压器非线性特性导致的灯丝电流控制误差大的问题,提高了灯丝电流控制精度。
附图说明
通过参考附图会更加清楚的理解本发明的特征和优点,附图是示意性的而不应理解为对本发明进行任何限制,在附图中:
图1示出了现有技术中灯丝电源电路拓扑结构的示意图;
图2示出了本发明实施例一种可选的灯丝电流控制方法的流程图;
图3示出了具体应用场景下控制电流与灯丝电流关系的示意图;
图4示出了本发明实施例一种可选的灯丝电流控制装置的示意图;以及
图5示出了本发明实施例一种可选的服务器的示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
本发明实施例提供了一种灯丝电流控制方法,图2本发明实施例一种可选的灯丝电流控制方法的流程图,如图2所示,该方法包括:
步骤S11,获取当前灯丝电流值。
具体地,灯丝电流的工作范围可以表示为I a~I b。当前灯丝电流值可以是在工作范围内的任一电流值。
步骤S12,确定所述当前灯丝电流值所处的电流范围。
具体地,灯丝电流的工作范围可以分为多个电流范围,根据当前灯丝电流值,可以确定其在灯丝电流的工作范围内的具体的电流范围。
步骤S13,根据所处的电流范围确定对应的灯丝电流与控制电流的对应关系。
具体地,控制电流可以是灯丝变压器原边电流折算到副边时的电流,需要说明的是,由于实际灯丝变压器的非线性特性,图3示出了在实际应用场景下,控制电流i p与灯丝电流i s的关系曲线的示意图。在本发明实施例中,通过当前灯丝电流值所处的电流范围,可以进一步获得灯丝电流与控制电流的对应关系。
步骤S14,根据所述当前灯丝电流值和所述对应关系确定当前控制电流。
在本发明实施例中,根据上述步骤S11至步骤S14,通过确定当前灯丝电流值在工作范围内具体的电流范围,进一步确定在该电流范围内灯丝电流与控制电流的对应关系,根据当前灯丝电流值与对应关系确定当前控制电流的方式,与在理想情况下,按照控制电流与灯丝电流相等,将当前控 制电流取值为当前灯丝电流值的方法相比,提高了控制精度,解决了由于灯丝变压器非线性特性导致的灯丝电流控制误差大的问题。
在本发明一些可选的实施方式中,步骤S14可以包括:
根据所述当前灯丝电流值和所述对应关系,通过如下公式计算当前控制电流i p
Figure PCTCN2018115959-appb-000003
其中,i sa以及i s(a+1)为当前灯丝电流所处的电流范围的两个端点的电流值;i pa以及i p(a+1)为根据所述两个端点的电流值,测量得到对应的控制电流的电流值;i s为所述当前灯丝电流值。
在本发明一些可选的实施方式中,可以按照如下步骤获取上文中的步骤S13中的所述灯丝电流与控制电流的对应关系:
步骤S21:将灯丝电流的工作范围划分为多个连续的电流范围。
步骤S22:分别计算在任意一个电流范围内灯丝电流与控制电流的对应关系。
具体地,以灯丝电流的工作范围为0-5安培为例,可以将灯丝电流的工作范围划分为5个连续的电流范围,例如,5个连续的电流范围可以分别是0-1安培、1-2安培、2-3安培、3-4安培和4-5安培。对于上述5个电流范围,可以分别计算在任意一个电流范围的内,灯丝电流与控制电流的对应关系。计算方法可以是,选取任意一个电流范围内的至少一个电流值,测量在灯丝电流为该电流值时,对应的控制电流,根据该电流值以及测量得到的控制电流,确定在该电流范围内灯丝电流与控制电流的对应关系。在本发明实施例中,通过划分多个电流范围,分别确定在任意一个电流范围内,灯丝电流与控制电流的对应关系,提高了在灯丝电流的工作范围内的灯丝电流与控制电流的对应关系的准确性。
需要说明的是,在本发明实施例中,将灯丝电流的工作范围划分为多个连续的电流范围时,电流范围划分的数量越多,计算灯丝电流与控制电流对应关系时越准确,最终确定的控制电流误差越小,控制精度越高。
在本发明一些可选的实施方式中,在上述步骤S21中,将灯丝电流的工作范围划分为多个连续的电流范围可以包括:
在灯丝电流的工作范围内选取N个点的电流值;
通过所述N个点,将所述工作范围分为N+1个连续的灯丝电流值的电流范围。
具体地,N个点可以平均分布于灯丝电流的工作范围内,也可以非平均的分布于灯丝电流的工作范围内。在N个点非平均的分布于灯丝电流的工作范围内时,N个点可以随灯丝电流由低到高的变化,由稀疏到密集分布。例如,当N=7,且灯丝电流的工作范围为0~5安培时,在0~2安培范围内,可以选取2两个点,在2~5安培范围内,取5个点。
需要说明的是,在灯丝电流较低时,控制电流与灯丝电流的两者数值相差较小;在灯丝电流较高时,控制电流与灯丝电流两者数值相差较大。并且在实际应用中,灯丝电流主要工作在工作范围的后半段。因而可以通过将N个点随灯丝电流由低到高的变化,由稀疏到密集设置,通过在灯丝电流主要工作的电流区域内,更密集的划分不同的电流范围的方式,在计算控制电流时,可以提高其精度。
在本发明一些可选的实施方式中,在上述步骤S22中,分别计算在任意一个电流范围内灯丝电流与控制电流的对应关系可以包括:
在任意一个电流范围内,确定所述电流范围的两个端点的电流值;
根据所述两个端点的电流值,测量得到对应的灯丝变压器的控制电流;
根据所述电流范围的两个端点的电流值,以及测量得到对应的灯丝变压器的控制电流,计算该电流范围内的灯丝电流与控制电流的对应关系。
具体地,对于任意一个当前灯丝电流值i s,其所处的电流范围可以表示为[i sa,i s(a+1)],其中1≤a≤N,可以分别测量电流范围两个端点i sa和i s(a+1)对应的控制电流,测量得到的控制电流可以分别记为i pa和i p(a+1)。根据i sa、i s(a+1)、i pa和i p(a+1)可以计算在该电流范围内灯丝电流与控制电流的对应关系。
实施例二
根据本发明实施例,提供了一种灯丝电流控制装置,图4示出了本发明实施例一种可选的灯丝电流控制装置的示意图,如图4所示,该装置包括:
获取模块41,用于获取当前灯丝电流值;请参见实施例一中,步骤S11的描述。
分析模块42,用于确定所述当前灯丝电流值所处的电流范围;请参见实施例一中,步骤S12的描述。
确定模块43,用于根据所处的电流范围确定对应的灯丝电流与控制电流的对应关系;请参见实施例一中,步骤S13的描述。
处理模块44,用于根据所述当前灯丝电流值和所述对应关系确定当前控制电流。请参见实施例一中,步骤S14的描述。
在本发明实施实例中,通过上述获取模块41,用于获取当前灯丝电流值;分析模块42,用于确定所述当前灯丝电流值所处的电流范围;确定模块43,用于根据所处的电流范围确定对应的灯丝电流与控制电流的对应关系;处理模块44,用于根据所述当前灯丝电流值和所述对应关系确定当前控制电流,解决了由于灯丝变压器非线性特性导致的灯丝电流控制误差大的问题。
在本发明一些可选的实施方式中,所述处理模块包括:
计算单元,用于根据所述当前灯丝电流值和所述对应关系,通过如下公式计算当前控制电流i p
Figure PCTCN2018115959-appb-000004
其中,i sa以及i s(a+1)为当前灯丝电流所处的电流范围的两个端点的电流值;i pa以及i p(a+1)为根据所述两个端点的电流值,测量得到对应的控制电流的电流值;i s为所述当前灯丝电流值。
实施例三
本发明实施例还提供了一种服务器,如图5所示,该服务器可以包括处理器51和存储器52,其中处理器51和存储器52可以通过总线或者其他 方式连接,图5中以通过总线连接为例。
处理器51可以为中央处理器(Central Processing Unit,CPU)。处理器51还可以为其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等芯片,或者上述各类芯片的组合。
存储器52作为一种非暂态计算机可读存储介质,可用于存储非暂态软件程序、非暂态计算机可执行程序以及模块,如本发明实施例中的车载显示装置按键屏蔽方法对应的程序指令/模块(例如,图4所示的获取模块41,分析模块42、确定模块43和处理模块44)。处理器51通过运行存储在存储器52中的非暂态软件程序、指令以及模块,从而执行处理器的各种功能应用以及数据处理,即实现上述方法实施例中的灯丝电流控制方法。
存储器52可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储处理器51所创建的数据等。此外,存储器52可以包括高速随机存取存储器,还可以包括非暂态存储器,例如至少一个磁盘存储器件、闪存器件、或其他非暂态固态存储器件。在一些实施例中,存储器52可选包括相对于处理器51远程设置的存储器,这些远程存储器可以通过网络连接至处理器51。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
所述一个或者多个模块存储在所述存储器52中,当被所述处理器51执行时,执行如图2所示实施例中的灯丝电流控制方法。
上述服务器具体细节可以对应参阅图2所示的实施例中对应的相关描述和效果进行理解,此处不再赘述。
本领域技术人员可以理解,实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施 例的流程。其中,所述存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)、随机存储记忆体(Random Access Memory,RAM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,缩写:HDD)或固态硬盘(Solid-State Drive,SSD)等;所述存储介质还可以包括上述种类的存储器的组合。
虽然结合附图描述了本发明的实施例,但是本领域技术人员可以在不脱离本发明的精神和范围的情况下作出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。

Claims (10)

  1. 一种灯丝电流控制方法,其特征在于,包括:
    获取当前灯丝电流值;
    确定所述当前灯丝电流值所处的电流范围;
    根据所处的电流范围确定对应的灯丝电流与控制电流的对应关系;
    根据所述当前灯丝电流值和所述对应关系确定当前控制电流。
  2. 根据权利要求1所述的方法,其特征在于,根据所述当前灯丝电流值和所述对应关系确定当前控制电流包括:
    根据所述当前灯丝电流值和所述对应关系,通过如下公式计算当前控制电流i p
    Figure PCTCN2018115959-appb-100001
    其中,i sa以及i s(a+1)为当前灯丝电流所处的电流范围的两个端点的电流值;i pa以及i p(a+1)为根据所述两个端点的电流值,测量得到对应的控制电流的电流值;i s为所述当前灯丝电流值。
  3. 根据权利要求1或2所述的方法,其特征在于,通过如下步骤获取所述灯丝电流与控制电流的对应关系:
    将灯丝电流的工作范围划分为多个连续的电流范围;
    分别计算在任意一个电流范围内灯丝电流与控制电流的对应关系。
  4. 根据权利要求3所述的方法,其特征在于,将灯丝电流的工作范围划分为多个连续的电流范围包括:
    在灯丝电流的工作范围内选取N个点的电流值,其中,所述N个点非平均的分布于灯丝电流的所述工作范围内;
    通过所述N个点,将所述工作范围分为N+1个连续的灯丝电流值的电流范围。
  5. 根据权利要求4所述的方法,其特征在于,在所述工作范围内,随灯丝电流由低到高的变化,所述N个点由稀疏到密集分布。
  6. 根据权利要求5所述的方法,其特征在于,分别计算在任意一个电流范围内灯丝电流与控制电流的对应关系包括:
    在任意一个电流范围内,确定所述电流范围的两个端点的电流值;
    根据所述两个端点的电流值,测量得到对应的灯丝变压器的控制电流;
    根据所述电流范围的两个端点的电流值,以及测量得到对应的灯丝变压器的控制电流,计算该电流范围内的灯丝电流与控制电流的对应关系。
  7. 一种灯丝电流控制装置,其特征在于,包括:
    获取模块,用于获取当前灯丝电流值;
    分析模块,用于确定所述当前灯丝电流值所处的电流范围;
    确定模块,用于根据所处的电流范围确定对应的灯丝电流与控制电流的对应关系;
    处理模块,用于根据所述当前灯丝电流值和所述对应关系确定当前控制电流。
  8. 根据权利要求7所述的装置,其特征在于,所述处理模块包括:
    计算单元,用于根据所述当前灯丝电流值和所述对应关系,通过如下公式计算当前控制电流i p
    Figure PCTCN2018115959-appb-100002
    其中,i sa以及i s(a+1)为当前灯丝电流所处的电流范围的两个端点的电流值;i pa以及i p(a+1)为根据所述两个端点的电流值,测量得到对应的控制电流的电流值;i s为所述当前灯丝电流值。
  9. 一种电子设备,其特征在于,包括:
    存储器和处理器,所述存储器和所述处理器之间互相通信连接,所述存储器中存储有计算机指令,所述处理器通过执行所述计算机指令,从而执行权利要求1-6任一所述的灯丝电流控制方法。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机指令,所述计算机指令用于使所述计算机执行权利要求1-6任一所述的灯丝电流控制方法。
PCT/CN2018/115959 2018-05-09 2018-11-16 灯丝电流控制方法及装置 WO2019214204A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18917616.7A EP3793333A4 (en) 2018-05-09 2018-11-16 HEATING CURRENT CONTROL PROCESS AND APPARATUS
JP2021512980A JP7097649B2 (ja) 2018-05-09 2018-11-16 フィラメント電流制御方法及び装置
US17/053,527 US11438994B2 (en) 2018-05-09 2018-11-16 Filament current control method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810438338.3A CN108650768B (zh) 2018-05-09 2018-05-09 灯丝电流控制方法及装置
CN201810438338.3 2018-05-09

Publications (1)

Publication Number Publication Date
WO2019214204A1 true WO2019214204A1 (zh) 2019-11-14

Family

ID=63753838

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115959 WO2019214204A1 (zh) 2018-05-09 2018-11-16 灯丝电流控制方法及装置

Country Status (5)

Country Link
US (1) US11438994B2 (zh)
EP (1) EP3793333A4 (zh)
JP (1) JP7097649B2 (zh)
CN (1) CN108650768B (zh)
WO (1) WO2019214204A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11438994B2 (en) 2018-05-09 2022-09-06 Suzhou Powersite Electric Co., Ltd. Filament current control method and apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109451643B (zh) * 2018-09-27 2020-05-08 苏州博思得电气有限公司 管电流的控制方法、装置及电子设备
CN113347770B (zh) * 2020-02-18 2024-01-09 苏州博思得电气有限公司 一种球管保护方法、装置及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08273889A (ja) * 1995-03-31 1996-10-18 Shimadzu Corp X線制御装置
CN104302081A (zh) * 2014-09-24 2015-01-21 沈阳东软医疗系统有限公司 一种ct球管中灯丝电流的控制方法和设备
CN104470175A (zh) * 2013-09-18 2015-03-25 锐珂(上海)医疗器材有限公司 X射线发生器的阴极灯丝发射特性曲线的校准方法
CN106304587A (zh) * 2016-08-23 2017-01-04 辽宁开普医疗系统有限公司 一种混合控制管电流的系统及其控制方法
CN107049347A (zh) * 2017-06-14 2017-08-18 珠海和佳医疗设备股份有限公司 X射线机管电流的校准方法
CN107809184A (zh) * 2017-11-29 2018-03-16 苏州博思得电气有限公司 一种脉冲电压发生装置、方法及控制器
CN108650768A (zh) * 2018-05-09 2018-10-12 苏州博思得电气有限公司 灯丝电流控制方法及装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4072865A (en) * 1976-06-24 1978-02-07 American Radiologic Systems, Inc. Automatic control system
JPH0648800Y2 (ja) * 1988-11-30 1994-12-12 ジーイー横河メディカルシステム株式会社 X線管管電流補正回路
US5077773A (en) * 1990-07-05 1991-12-31 Picker International, Inc. Automatic filament calibration system for x-ray generators
JPH09161990A (ja) * 1995-11-30 1997-06-20 Shimadzu Corp X線発生装置
JP4653521B2 (ja) * 2005-03-07 2011-03-16 株式会社東芝 医療用x線管装置及び医療用x線管制御方法
CN101794321B (zh) * 2009-06-25 2013-03-06 华北电力大学 建立考虑励磁阻抗非线性影响的单相三绕组自耦变压器模型的方法
CN102291920B (zh) * 2011-07-07 2013-07-10 井冈山大学 准谐振型高频x线机的控制方法和控制电路
CN102833934A (zh) * 2012-09-13 2012-12-19 成都理工大学 一种x射线灯丝电源
CN104378897B (zh) * 2014-11-18 2017-05-10 汕头市超声仪器研究所有限公司 一种具有管电流控制的x射线发生装置
CN104852354A (zh) * 2015-06-04 2015-08-19 南京南瑞继保电气有限公司 一种自适应斜率的变压器零序差动保护方法和装置
JP2017027832A (ja) * 2015-07-24 2017-02-02 株式会社日立製作所 X線発生装置
CN105430858B (zh) * 2015-11-06 2017-06-23 苏州博思得电气有限公司 一种x射线管的灯丝电流值校准方法及装置
CN105769232B (zh) 2016-02-22 2018-01-12 上海联影医疗科技有限公司 Ct设备的x射线管灯丝预热方法和预热电路
JP6849521B2 (ja) * 2017-05-01 2021-03-24 キヤノン電子管デバイス株式会社 X線システムおよびx線管検査方法
CN107635347B (zh) * 2017-09-08 2019-10-25 苏州博思得电气有限公司 X射线管的控制方法及装置、驱动装置、x射线发生装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08273889A (ja) * 1995-03-31 1996-10-18 Shimadzu Corp X線制御装置
CN104470175A (zh) * 2013-09-18 2015-03-25 锐珂(上海)医疗器材有限公司 X射线发生器的阴极灯丝发射特性曲线的校准方法
CN104302081A (zh) * 2014-09-24 2015-01-21 沈阳东软医疗系统有限公司 一种ct球管中灯丝电流的控制方法和设备
CN106304587A (zh) * 2016-08-23 2017-01-04 辽宁开普医疗系统有限公司 一种混合控制管电流的系统及其控制方法
CN107049347A (zh) * 2017-06-14 2017-08-18 珠海和佳医疗设备股份有限公司 X射线机管电流的校准方法
CN107809184A (zh) * 2017-11-29 2018-03-16 苏州博思得电气有限公司 一种脉冲电压发生装置、方法及控制器
CN108650768A (zh) * 2018-05-09 2018-10-12 苏州博思得电气有限公司 灯丝电流控制方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3793333A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11438994B2 (en) 2018-05-09 2022-09-06 Suzhou Powersite Electric Co., Ltd. Filament current control method and apparatus

Also Published As

Publication number Publication date
CN108650768B (zh) 2020-07-07
US11438994B2 (en) 2022-09-06
EP3793333A4 (en) 2021-07-14
EP3793333A1 (en) 2021-03-17
US20210235570A1 (en) 2021-07-29
JP7097649B2 (ja) 2022-07-08
JP2021524145A (ja) 2021-09-09
CN108650768A (zh) 2018-10-12

Similar Documents

Publication Publication Date Title
WO2019214204A1 (zh) 灯丝电流控制方法及装置
US11340286B2 (en) On-wafer S-parameter calibration method
WO2021120769A1 (zh) 电池组的ocv-soc曲线更新方法、电池管理系统及车辆
TWI729606B (zh) 用於一邊緣運算網路的負載平衡裝置及方法
WO2020249067A1 (zh) 一种晶体振荡器校准方法、装置、终端设备及存储介质
WO2022179104A1 (zh) 一种量子设备校准方法、装置、设备及介质
WO2023202355A1 (zh) 一种基于边界面塑性模型的土体状态数据计算方法及装置
WO2020082595A1 (zh) 图像分类方法、终端设备及计算机非易失性可读存储介质
CN112799493B (zh) 一种电源vr芯片的电流自动校准电路及校准方法
WO2018054198A1 (zh) 一种集成电路器件神经网络建模样本选择方法及装置
CN106533998B (zh) 非线性特性的确定方法、装置和系统
JP2019039764A (ja) インピーダンス推定装置
CN116614620A (zh) 一种高像素光学镜头组装设备及控制方法
CN109725188B (zh) 一种电流测量方法和装置
CN112858983B (zh) 一种分流器自动校准的方法及系统
US8453101B1 (en) Method, system and program storage device for generating accurate performance targets for active semiconductor devices during new technology node development
US8495527B2 (en) Pattern recognition with edge correction for design based metrology
WO2021238521A1 (zh) 基于非易失存储器的存储和数据处理方法、装置及设备
WO2017161870A1 (zh) 一种频率调节的方法及装置
WO2019184845A1 (zh) 电动汽车及动力电池的能量状态soe计算方法、装置
JP6693219B2 (ja) 非線形特性推定装置及び非線形特性推定方法
WO2021077253A1 (zh) 测量方法、装置、可移动平台和计算机可读介质
TW201939055A (zh) 電池估測方法、電池估測裝置及電池管理系統
WO2020093525A1 (zh) 一种半导体器件的等效模型建立方法、装置及终端设备
CN114494315B (zh) 隧道横断面特征提取方法、装置、设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917616

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021512980

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018917616

Country of ref document: EP

Effective date: 20201209