WO2021120769A1 - 电池组的ocv-soc曲线更新方法、电池管理系统及车辆 - Google Patents

电池组的ocv-soc曲线更新方法、电池管理系统及车辆 Download PDF

Info

Publication number
WO2021120769A1
WO2021120769A1 PCT/CN2020/117861 CN2020117861W WO2021120769A1 WO 2021120769 A1 WO2021120769 A1 WO 2021120769A1 CN 2020117861 W CN2020117861 W CN 2020117861W WO 2021120769 A1 WO2021120769 A1 WO 2021120769A1
Authority
WO
WIPO (PCT)
Prior art keywords
ocv
battery pack
soc curve
soc
current
Prior art date
Application number
PCT/CN2020/117861
Other languages
English (en)
French (fr)
Inventor
汤慎之
杜明树
李世超
阮见
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP20904212.6A priority Critical patent/EP3930075B1/en
Priority to ES20904212T priority patent/ES2980577T3/es
Publication of WO2021120769A1 publication Critical patent/WO2021120769A1/zh
Priority to US17/750,602 priority patent/US20220281350A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3828Arrangements for monitoring battery or accumulator variables, e.g. SoC using current integration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4257Smart batteries, e.g. electronic circuits inside the housing of the cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane

Definitions

  • the embodiments of the present application relate to the field of battery technology, and in particular, to a method for updating an OCV-SOC curve of a battery pack, a battery management system, and a vehicle.
  • the open circuit voltage (OCV) of the battery is one of the basic parameters of the battery.
  • OCV open circuit voltage
  • the online state of the battery includes: State of Charge (SOC for short), State of Health (SOH for short), and State of Energy (SOE for short).
  • the purpose of the embodiments of the present application is to provide a method for updating the OCV-SOC curve of a battery pack, a battery management system, and a vehicle.
  • the OCV-SOC curve of the battery pack is updated based on the aging state of the battery pack, so as to be able to obtain compliance with the aging of the battery pack.
  • the OCV-SOC curve of the state facilitates a more accurate estimation of the online state of the battery pack.
  • the embodiments of the present application provide a method for updating the OCV-SOC curve of a battery pack, which includes: obtaining information that characterizes the aging state of the battery pack; and obtaining the battery according to the current OCV-SOC curve and information of the battery pack The current aging characteristic parameters of the battery pack; according to the current aging characteristic parameters of the battery pack and the current OCV-SOC curve, the OCV-SOC curve of the battery pack is updated to accurately estimate the online state of the battery pack.
  • the embodiment of the present application also provides a battery management system, including: at least one processor; and, a memory communicatively connected with the at least one processor; wherein the memory stores instructions that can be executed by the at least one processor, and the instructions are At least one processor is executed, so that the at least one processor can execute the above-mentioned method for updating the OCV-SOC curve of the battery pack.
  • the embodiment of the present application also provides a vehicle including a battery pack and the above-mentioned battery management system.
  • the embodiment of the application quantifies the aging state of the battery pack by acquiring information characterizing the aging state of the battery pack, and then combining the current OCV-SOC curve of the battery pack and the information characterizing the aging state of the battery pack, to obtain the current aging characteristic parameters of the battery pack
  • the OCV-SOC curve of the battery pack can be updated according to the current aging characteristic parameters of the battery pack and the current OCV-SOC curve of the battery pack; that is, the OCV-SOC curve of the battery pack is updated based on the aging state of the battery pack to obtain
  • the OCV-SOC curve conforms to the aging state of the battery pack, which facilitates a more accurate estimation of the online state of the battery pack.
  • obtaining information that characterizes the aging state of the battery pack includes: generating the net accumulative charge and discharge capacity of the battery pack-OCV according to the recorded multiple OCV values of the battery pack and the net accumulative charge and discharge capacity corresponding to each OCV value. Sequence: The net cumulative charge and discharge capacity-OCV sequence is translated and scaled, and the net cumulative charge and discharge capacity-OCV sequence after the translation and zoom transformation is obtained as the information that characterizes the aging state of the battery pack. This implementation manner provides a specific implementation manner for obtaining information that characterizes the aging state of the battery pack.
  • obtaining the information characterizing the aging state of the battery pack includes: obtaining the preset correspondence between the SOHC of the battery pack and the aging characteristic parameter as the information characterizing the aging state of the battery pack. This embodiment provides another specific implementation manner for obtaining information that characterizes the aging state of the battery pack.
  • obtaining the current aging characteristic parameters of the battery pack according to the current OCV-SOC curve and characterization information of the battery pack includes: obtaining the OCV-SOC sequence corresponding to the current OCV-SOC curve; The net cumulative charge-discharge capacity-OCV sequence after the pan-zoom transformation is used to obtain the current aging characteristic parameters of the battery pack.
  • This embodiment provides a specific implementation method for obtaining the current aging characteristic parameters of the battery pack according to the current OCV-SOC curve and characterization information of the battery pack.
  • obtaining the current aging characteristic parameters of the battery pack according to the OCV-SOC sequence and the net cumulative charge-discharge capacity-OCV sequence after pan-scaling transformation includes: correcting the OCV-SOC sequence based on the current aging characteristic parameters , Obtain the OCV-SOC sequence including the current aging characteristic parameters; compare the OCV-SOC sequence including the current aging characteristic parameters with the net cumulative charge-discharge capacity-OCV sequence after translation scaling transformation to obtain the current aging characteristic parameters.
  • This embodiment provides a specific structure for obtaining the current aging characteristic parameters of the battery pack according to the OCV-SOC sequence and the net cumulative charge-discharge capacity-OCV sequence after translation scaling transformation.
  • obtaining the current aging characteristic parameters of the battery pack according to the current OCV-SOC curve and characterization information of the battery pack includes: calculating the current SOHC of the battery pack according to the current OCV-SOC curve of the battery pack; The corresponding relationship between the current SOHC and the aging characteristic parameter is obtained, and the current aging characteristic parameter of the battery pack is obtained.
  • This embodiment provides another specific structure for obtaining the current aging characteristic parameters of the battery pack according to the current OCV-SOC curve and characterization information of the battery pack.
  • the method further includes: determining whether the updated OCV-SOC curve of the battery pack meets a preset Condition: If the updated OCV-SOC curve of the battery pack does not meet the preset condition, return to the step of obtaining the current aging characteristic parameters of the battery pack according to the current OCV-SOC curve and characterization information of the battery pack.
  • the judgment of whether the updated OCV-SOC curve of the battery pack meets the preset conditions is added, and the OCV-SOC curve of the battery pack can be updated iteratively, which improves the OCV of the updated battery pack. -The accuracy of the SOC curve.
  • the preset condition is that the difference between the OCV-SOC curve of the battery pack after the update and the OCV-SOC curve of the battery pack before the update is less than the preset threshold.
  • updating the OCV-SOC curve of the battery pack according to the current aging characteristic parameters of the battery pack and the current OCV-SOC curve includes: obtaining the positive OCV-SOC curve and the negative OCV-SOC corresponding to the current OCV-SOC curve Curve; According to the current aging characteristic parameters, the positive electrode OCV-SOC curve and the negative electrode OCV-SOC curve are respectively updated; according to the updated positive electrode OCV-SOC curve and the updated negative electrode OCV-SOC curve, the updated OCV of the battery pack is obtained -SOC curve.
  • This embodiment provides a specific implementation method for updating the OCV-SOC curve of the battery pack according to the current aging characteristic parameters of the battery pack and the current OCV-SOC curve.
  • the aging characteristic parameters include: the shrinkage ratio of the positive curve of the battery pack, the shrinkage ratio of the negative curve of the battery pack, and the translation ratio of the negative curve of the battery pack.
  • FIG. 1 is a specific flowchart of the method for updating the OCV-SOC curve of the battery pack according to the first embodiment of the present application;
  • FIG. 4 is a specific flowchart of the method for updating the OCV-SOC curve of the battery pack according to the fourth embodiment of the present application.
  • the first embodiment of the present application relates to a method for updating the OCV-SOC curve of a battery pack, which is applied to a battery management system of an electric vehicle, and can update the OCV-SOC curve of the battery pack of the electric vehicle.
  • Step 101 Obtain information that characterizes the aging state of the battery pack.
  • the battery pack will gradually age.
  • OCV-SOC curve of the battery pack first obtain information that can characterize the aging state of the battery pack.
  • Step 102 Obtain current aging characteristic parameters of the battery pack according to the current OCV-SOC curve and information of the battery pack.
  • the current OCV-SOC curve of the battery pack is obtained.
  • the current OCV-SOC curve can be the initial OCV-SOC curve, and then the battery pack is aged according to the current OCV-SOC curve of the battery pack and the information characterizing the aging state of the battery pack The state is quantified to obtain the current aging characteristic parameters of the battery pack.
  • the aging characteristic parameters of the battery pack include the following three:
  • the shrinkage ratio Wp of the positive electrode curve caused by the loss of the positive electrode material of the battery pack that is, the shrinkage ratio of the positive electrode OCV-SOC curve of the battery pack, the shrinkage direction is leftward shrinkage or rightward shrinkage.
  • the shrinkage ratio Wn of the negative electrode curve caused by the loss of the negative electrode material of the battery pack that is, the shrinkage ratio of the negative electrode OCV-SOC curve of the battery pack, the shrinkage direction is leftward or rightward shrinkage.
  • the negative curve translation ratio KLLI caused by the lithium loss of the battery pack is the distance that the negative electrode OCV-SOC curve of the battery pack shifts to the right.
  • Step 103 Update the OCV-SOC curve of the battery pack according to the current aging characteristic parameters of the battery pack and the current OCV-SOC curve.
  • the positive OCV-SOC curve and the negative OCV-SOC curve corresponding to the current OCV-SOC curve of the battery pack are obtained, and the positive OCV-SOC curve and the negative OCV-SOC curve are respectively updated according to the current aging characteristic parameters of the battery pack, based on The updated positive OCV-SOC curve and the updated negative OCV-SOC curve can obtain the updated OCV-SOC curve of the battery pack.
  • the aging state of the battery pack is quantified to obtain the current aging characteristic parameters of the battery pack. Therefore, the OCV-SOC curve of the battery pack can be updated according to the current aging characteristic parameters of the battery pack and the current OCV-SOC curve of the battery pack; that is, the OCV-SOC curve of the battery pack is updated based on the aging state of the battery pack, so as to obtain the compliance
  • the OCV-SOC curve of the aging state of the battery pack facilitates a more accurate estimation of the online state of the battery pack.
  • the second embodiment of the present application relates to a method for updating the OCV-SOC curve of the battery pack. Compared with the first embodiment, the second embodiment has the main difference in that it provides a method for updating the OCV-SOC curve of the battery pack. A specific implementation.
  • Step 201 includes the following sub-steps:
  • Sub-step 2011, according to the recorded multiple OCV values of the battery pack and the net cumulative charge and discharge capacity corresponding to each OCV value, generate a net cumulative charge and discharge capacity-OCV sequence of the battery pack.
  • record multiple OCV values of the battery pack for example, record the OCV value once every time the battery pack is left standing for a preset period of time, so that multiple OCV values can be obtained.
  • each OCV value obtain And record the net cumulative charge and discharge capacity of the battery pack at that moment, to obtain multiple OCV values and net cumulative charge and discharge capacities corresponding to each OCV value, and generate a net cumulative charge and discharge capacity-OCV sequence based on the recorded data.
  • net cumulative charge and discharge capacity cumulative charge capacity-cumulative discharge capacity
  • the ampere-hour integration method can be used to calculate the net cumulative charge and discharge capacity corresponding to the OCV value.
  • the net cumulative charge-discharge capacity-OCV sequence is translated and scaled, and the net cumulative charge-discharge capacity-OCV sequence after the translation-scale transformation is obtained as the information that characterizes the aging state of the battery pack.
  • the net cumulative charge and discharge capacity in the net cumulative charge and discharge capacity-OCV sequence is scaled and changed according to the preset ratio and displacement, and Q represents the net cumulative charge and discharge capacity, K represents the preset ratio, and b represents the preset Displacement, the net cumulative charge-discharge capacity-OCV sequence after translation scaling transformation is the (KQ+b)-OCV sequence, and the (KQ+b)-OCV sequence is the information that characterizes the aging state of the battery pack.
  • Step 202 includes the following sub-steps:
  • sub-step 2021 the OCV-SOC sequence corresponding to the current OCV-SOC curve is obtained.
  • the points on the current OCV-SOC curve are selected to form the OCV-SOC sequence corresponding to the current OCV-SOC curve; the method of selecting points on the current OCV-SOC curve can be every other SOC from 0% to 100%. 1% pick a point. It should be noted that in this step, the OCV-SOC sequence corresponding to the initial OCV-SOC curve of the battery pack can also be used to perform the following calculations.
  • the current aging characteristic parameters of the battery pack are obtained according to the OCV-SOC sequence and the net cumulative charge-discharge capacity-OCV sequence after the translation scaling transformation.
  • the OCV-SOC sequence is corrected based on the current aging characteristic parameters of the battery pack.
  • the current aging characteristic parameters include the positive curve shrinkage ratio Wp, the negative curve shrinkage ratio Wn, the negative curve translation ratio KLLI, and the battery pack.
  • the positive OCV-SOC sequence corresponding to the SOC sequence is corrected to the OCVp-SOCp*Wp sequence
  • the negative OCV-SOC sequence corresponding to the OCV-SOC sequence of the battery pack is corrected to the OCVn-SOCn*Wn+KLLI sequence
  • the positive OCV- SOCp*Wp in the SOC sequence and SOCn*Wn+KLLI in the negative OCV-SOC sequence are mapped to the SOC' sequence.
  • the SOC' sequence is usually 0%-100%, so that the positive OCVp'-SOC' sequence and the negative OCVn can be determined '-SOC' sequence, the corrected OCV-SOC sequence of the battery pack is (OCVp'-OCVn')-SOC' sequence, which includes the positive curve shrinkage ratio Wp, the negative curve shrinkage ratio Wn, and the negative curve translation ratio KLLI These three unknowns.
  • the OCV-SOC sequence including the current aging characteristic parameters is compared with the net cumulative charge-discharge capacity-OCV sequence after translation scaling transformation to obtain the current aging characteristic parameters; specifically, set (OCVp'-OCVn')-SOC'
  • the sequence coincides with the OCV-(KQ+b) sequence, so the SOC value corresponding to the same OCV value and KQ+b should also be equal, so that multiple equations can be obtained, and then K, b, Wp, Wn, KLLI can be solved Value.
  • Step 203 Update the OCV-SOC curve of the battery pack according to the current aging characteristic parameters of the battery pack and the current OCV-SOC curve.
  • the OCV-SOC sequence corresponding to the current OCV-SOC curve can be corrected to obtain the corrected OCV-SOC sequence of the battery pack.
  • the specific correction process is related to The sub-step 2022 is similar and will not be repeated here. Fit the corrected OCV-SOC sequence to obtain the OCV-SOC curve, which is the updated OCV-SOC curve of the battery pack.
  • this embodiment provides a specific implementation for updating the OCV-SOC curve of the battery pack.
  • the third embodiment of the present application relates to a method for updating the OCV-SOC curve of the battery pack. Compared with the first embodiment, the third embodiment has the main difference in that it provides a method for updating the OCV-SOC curve of the battery pack. Another specific implementation.
  • Step 301 Obtain a preset corresponding relationship between the SOHC of the battery pack and the aging characteristic parameter, as information that characterizes the aging state of the battery pack.
  • SOHC is the ratio of the current capacity of the battery pack to the nominal capacity of the battery pack, which can characterize the degree of aging of the battery, obtain in advance the OCV-SOV curve of SOHC battery packs with different aging degrees, and obtain each OCV-SOC curve Corresponding positive OCV-SOC curve and negative OCV-SOC curve.
  • the positive OCV-SOC curve and negative OCV-SOC curve of each aging degree are respectively corresponding to the initial positive OCV-SOC curve and initial negative OCV-SOC curve corresponding to the initial OCV-SOC curve.
  • the SOC curve is compared, and the relationship between each SOHC and the aging characteristic parameter can be obtained, that is, the corresponding relationship between the SOHC and the aging characteristic parameter is established.
  • SOHC and Wp, Wn, and KLLI includes but is not limited to:
  • Wp is X times of Wn.
  • Step 302 includes the following sub-steps:
  • the current SOHC of the battery pack is calculated according to the current OCV-SOC curve of the battery pack.
  • the current aging characteristic parameter of the battery pack is obtained according to the corresponding relationship between the current SOHC and SOHC of the battery pack and the aging characteristic parameter.
  • the current aging characteristic parameters Wp, Wn, and KLLI of the battery pack are calculated.
  • Step 303 Update the OCV-SOC curve of the battery pack according to the current aging characteristic parameters of the battery pack and the current OCV-SOC curve.
  • the OCV-SOC sequence corresponding to the current OCV-SOC curve can be obtained for correction, and the corrected OCV-SOC sequence of the battery pack can be obtained.
  • the specific correction process It is similar to the sub-step 2022 in the second embodiment, and will not be repeated here. Fit the corrected OCV-SOC sequence to obtain the OCV-SOC curve, which is the updated OCV-SOC curve of the battery pack.
  • this embodiment provides another specific implementation for updating the OCV-SOC curve of the battery pack.
  • the fourth embodiment of the present application relates to a method for updating the OCV-SOC curve of the battery pack.
  • the fourth embodiment has the main improvement in that: the OCV-SOC curve of the battery pack is performed multiple times. Iterative update.
  • step 401 to step 403 are roughly the same as step 301 to step 303, and will not be repeated here.
  • step 404 is added, which is specifically as follows:
  • Step 404 Determine whether the updated OCV-SOC curve of the battery pack meets a preset condition. If yes, it ends directly; if no, then go back to step 402.
  • the preset condition is that the difference between the updated OCV-SOC curve of the battery pack and the OCV-SOC curve of the battery pack before the update is less than the preset threshold, and the updated OCV-SOC curve of the battery pack is determined Whether the preset condition is met is to determine whether the difference between the updated OCV-SOC curve of the battery pack and the OCV-SOC curve of the battery pack before the update is less than the preset threshold; if the difference is less than the preset threshold, then It indicates that the OCV-SOC curve of the updated battery pack meets the preset conditions and ends directly; otherwise, it indicates whether the OCV-SOC curve of the updated battery pack does not meet the preset conditions, and returns to step 402 according to the updated battery pack OCV-SOC curve and characterization information, recalculate the current aging characteristic parameters of the battery pack, and update the OCV-SOC curve of the battery pack again according to the recalculated current aging characteristic parameters and the updated OCV-SOC curve, until the update
  • the difference between the OCV-SOC curve of the battery pack after the update and the OCV-SOC curve of the battery pack before the update is: the OCV-SOC sequence corresponding to the OCV-SOC curve of the battery pack after the update and the battery before the update.
  • the difference between the OCV-SOC series corresponding to the OCV-SOC curve of the group is calculated, and the variance between the two OCVs corresponding to the same SOC in the two series is calculated, and the sum of all the variances is calculated as the difference between the two curves.
  • this embodiment adds a judgment on whether the updated OCV-SOC curve of the battery pack satisfies the preset conditions, and can update the OCV-SOC curve of the battery pack multiple times, which improves The accuracy of the updated OCV-SOC curve of the battery pack.
  • the fifth embodiment of the present application relates to a battery management system, including: at least one processor; and, a memory communicatively connected with the at least one processor; wherein the memory stores instructions that can be executed by the at least one processor, and the instructions are At least one processor is executed, so that the at least one processor can execute the method for updating the OCV-SOC curve of the battery pack according to any one of the first to fourth embodiments.
  • the memory and the processor are connected in a bus mode
  • the bus may include any number of interconnected buses and bridges, and the bus connects one or more processors and various circuits of the memory together.
  • the bus can also connect various other circuits such as peripheral devices, voltage regulators, power management circuits, etc., which are all well-known in the art, and therefore, no further description will be given herein.
  • the bus interface provides an interface between the bus and the transceiver.
  • the transceiver may be one element or multiple elements, such as multiple receivers and transmitters, providing a unit for communicating with various other devices on the transmission medium.
  • the data processed by the processor is transmitted on the wireless medium through the antenna, and further, the antenna also receives the data and transmits the data to the processor.
  • the processor is responsible for managing the bus and general processing, and can also provide various functions, including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory can be used to store data used by the processor when performing operations.
  • the sixth embodiment of the present application relates to a vehicle, including a battery pack and the battery management system in the fifth embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种电池组的OCV-SOC曲线更新方法、电池管理系统及车辆。电池组的OCV-SOC曲线更新方法,包括:获取表征电池组老化状态的信息(101);根据电池组的当前OCV-SOC曲线与信息,得到电池组的当前老化特征参数(102);根据电池组的当前老化特征参数与当前OCV-SOC曲线,更新电池组的OCV-SOC曲线(103)。基于电池组的老化状态对电池组的OCV-SOC曲线进行更新,从而能够得到符合电池组老化状态的OCV-SOC曲线,便于更准确的估计电池组的在线状态。

Description

电池组的OCV-SOC曲线更新方法、电池管理系统及车辆
本申请要求于2019年12月20日提交中国专利局,申请号为201911328552.4,名称为“电池组的OCV-SOC曲线更新方法、电池管理系统及车辆”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及电池技术领域,特别涉及一种电池组的OCV-SOC曲线更新方法、电池管理系统及车辆。
背景技术
随着电池技术的发展,电动汽车替代燃油汽车已经成为了汽车行业的发展趋势。对于电动汽车的电池来说,电池的开路电压(Open Circuit Voltage,简称OCV)是电池的基本参数之一。在对电池的在线状态进行估计时,会使用电池的OCV作为重要的标定参数。电池的在线状态包括:电池荷电状态(State of Charge,简称SOC)、寿命状态(State of Health,简称SOH)、电池净累计充放电容量(StateofEnergy,简称SOE)等。
在一些情况下,申请人发现:电池会随着使用时间的增长而逐渐老化,其OCV也会相应的发生变化,会导致电池的在线状态估计的误差增大。
发明内容
本申请实施方式的目的在于提供一种电池组的OCV-SOC曲线更新 方法、电池管理系统及车辆,基于电池组的老化状态对电池组的OCV-SOC曲线进行更新,从而能够得到符合电池组老化状态的OCV-SOC曲线,便于更准确的估计电池组的在线状态。
为解决上述技术问题,本申请的实施方式提供了一种电池组的OCV-SOC曲线更新方法,包括:获取表征电池组老化状态的信息;根据电池组的当前OCV-SOC曲线与信息,得到电池组的当前老化特征参数;根据电池组的当前老化特征参数与当前OCV-SOC曲线,更新电池组的OCV-SOC曲线,以准确地估计电池组的在线状态。
本申请的实施方式还提供了一种电池管理系统,包括:至少一个处理器;以及,与至少一个处理器通信连接的存储器;其中,存储器存储有可被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器能够执行上述的电池组的OCV-SOC曲线更新方法。
本申请的实施方式还提供了一种车辆,包括电池组与上述的电池管理系统。
本申请实施方式通过获取表征电池组老化状态的信息,继而结合电池组当前的OCV-SOC曲线与表征电池组老化状态的信息,对电池组的老化状态进行量化,得到电池组的当前老化特征参数,从而能够根据电池组的当前老化特征参数与电池组当前OCV-SOC曲线,更新电池组的OCV-SOC曲线;即基于电池组的老化状态对电池组的OCV-SOC曲线进行更新,从而能够得到符合电池组老化状态的OCV-SOC曲线,便于更准确的估计电池组的在线状态。
在一些实施例中,获取表征电池组老化状态的信息,包括:根据记录的电池组的多个OCV值与各OCV值对应的净累计充放电容量,生成电池组的净累计充放电容量-OCV序列;对净累计充放电容量-OCV序列进行平移缩放变换,得到将平移缩放变换后的净累计充放电容量-OCV序 列作为表征电池组老化状态的信息。本实施方式提供了获取表征电池组老化状态的信息的一种具体实现方式。
在一些实施例中,获取表征电池组老化状态的信息,包括:获取预设的电池组的SOHC与老化特征参数的对应关系,作为表征电池组老化状态的信息。本实施方式提供了获取表征电池组老化状态的信息的另一种具体实现方式。
在一些实施例中,根据电池组的当前OCV-SOC曲线与表征信息,得到电池组的当前老化特征参数,包括:获取当前OCV-SOC曲线对应的OCV-SOC序列;根据OCV-SOC序列与经过平移缩放变换后的净累计充放电容量-OCV序列,得到电池组的当前老化特征参数。本实施方式提供了根据电池组的当前OCV-SOC曲线与表征信息,得到电池组的当前老化特征参数的一种具体实现方式。
在一些实施例中,根据OCV-SOC序列与经过平移缩放变换后的净累计充放电容量-OCV序列,得到电池组的当前老化特征参数,包括:基于当前老化特征参数对OCV-SOC序列进行修正,得到包括当前老化特征参数的OCV-SOC序列;将包括当前老化特征参数的OCV-SOC序列与经过平移缩放变换后的净累计充放电容量-OCV序列进行对比,得到当前老化特征参数。本实施方式提供了根据OCV-SOC序列与经过平移缩放变换后的净累计充放电容量-OCV序列,得到电池组的当前老化特征参数的一种具体结构。
在一些实施例中,根据电池组的当前OCV-SOC曲线与表征信息,得到电池组的当前老化特征参数,包括:根据电池组当前的OCV-SOC曲线,计算电池组的当前SOHC;根据电池组的当前SOHC与老化特征参数的对应关系,获取电池组的当前老化特征参数。本实施方式提供了根据电池组的当前OCV-SOC曲线与表征信息,得到电池组的当前老化特征参 数的另一种具体结构。
在一些实施例中,在根据电池组的当前老化特征参数与当前OCV-SOC曲线,更新电池组的OCV-SOC曲线之后,还包括:判断更新后的电池组的OCV-SOC曲线是否满足预设条件;若更新后的电池组的OCV-SOC曲线不满足预设条件,返回根据电池组的当前OCV-SOC曲线与表征信息,得到电池组的当前老化特征参数的步骤。本实施方式中,增加了对更新后的电池组的OCV-SOC曲线是否满足预设条件的判断,能够对电池组的OCV-SOC曲线进行多次迭代更新,提升了更新后的电池组的OCV-SOC曲线的准确度。
在一些实施例中,预设条件为更新后的电池组的OCV-SOC曲线与更新前的电池组的OCV-SOC曲线之间的差值小于预设阈值。
在一些实施例中,根据电池组的当前老化特征参数与当前OCV-SOC曲线,更新电池组的OCV-SOC曲线,包括:获取当前OCV-SOC曲线对应的正极OCV-SOC曲线以及负极OCV-SOC曲线;根据当前老化特征参数分别对正极OCV-SOC曲线与负极OCV-SOC曲线进行更新;根据更新后的正极OCV-SOC曲线与更新后的负极OCV-SOC曲线,得到更新后的电池组的OCV-SOC曲线。本实施方式提供了根据电池组的当前老化特征参数与当前OCV-SOC曲线,更新电池组的OCV-SOC曲线的一种具体实现方式。
在一些实施例中,老化特征参数包括:电池组的正极曲线收缩比例、电池组的负极曲线收缩比例,以及电池组的负极曲线平移比例。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附 图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其它的附图。
图1是根据本申请第一实施方式的电池组的OCV-SOC曲线更新方法的具体流程图;
图2是根据本申请第二实施方式的电池组的OCV-SOC曲线更新方法的具体流程图;
图3是根据本申请第三实施方式的电池组的OCV-SOC曲线更新方法的具体流程图;
图4是根据本申请第四实施方式的电池组的OCV-SOC曲线更新方法的具体流程图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请的各实施方式进行详细的阐述。然而,本领域的普通技术人员可以理解,在本申请各实施方式中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施方式的种种变化和修改,也可以实现本申请所要求保护的技术方案。
本申请的第一实施方式涉及一种电池组的OCV-SOC曲线更新方法,应用于电动车辆的电池管理系统,能够更新电动车辆的电池组的OCV-SOC曲线进行更新。
本实施方式的电池组的OCV-SOC曲线更新方法的具体流程如图1所示。
步骤101,获取表征电池组老化状态的信息。
具体而言,对于电动车辆的电池组来说,随着电池组的使用时间增加,电池组会逐渐老化,在更新电池组的OCV-SOC曲线时,先获取能 够表征电池组老化状态的信息。
步骤102,根据电池组的当前OCV-SOC曲线与信息,得到电池组的当前老化特征参数。
具体而言,获取电池组当前OCV-SOC曲线,当前OCV-SOC曲线可以为初始的OCV-SOC曲线,继而根据电池组当前OCV-SOC曲线与表征电池组老化状态的信息,对电池组的老化状态进行量化,得到电池组的当前老化特征参数。
在一个例子中,电池组的老化特征参数包括以下三个:
第一,由电池组正极材料损失导致的正极曲线收缩比例Wp,即电池组的正极OCV-SOC曲线的收缩比例,收缩方向为向左收缩或向右收缩。
第二,由电池组负极材料损失导致的负极曲线收缩比例Wn,即电池组的负极OCV-SOC曲线的收缩比例,收缩方向为向左收缩或向右收缩。
第三,由电池组锂损失导致的负极曲线平移比例KLLI,即电池组的负极OCV-SOC曲线向右平移的距离。
步骤103,根据电池组的当前老化特征参数与当前OCV-SOC曲线,更新电池组的OCV-SOC曲线。
具体而言,获取电池组当前OCV-SOC曲线所对应的正极OCV-SOC曲线与负极OCV-SOC曲线,根据电池组的当前老化特征参数分别更新正极OCV-SOC曲线与负极OCV-SOC曲线,基于更新后的正极OCV-SOC曲线与更新后的负极OCV-SOC曲线,可以得到更新后的电池组的OCV-SOC曲线。
本实施方式通过获取表征电池组老化状态的信息,继而结合电池组当前的OCV-SOC曲线与表征电池组老化状态的信息,对电池组的老化状态进行量化,得到电池组的当前老化特征参数,从而能够根据电池组的当前老化特征参数与电池组当前OCV-SOC曲线,更新电池组的OCV-SOC 曲线;即基于电池组的老化状态对电池组的OCV-SOC曲线进行更新,从而能够得到符合电池组老化状态的OCV-SOC曲线,便于更准确的估计电池组的在线状态。
本申请的第二实施方式涉及一种电池组的OCV-SOC曲线更新方法,第二实施方式相对于第一实施方式来说,主要区别之处在于:提供了更新电池组的OCV-SOC曲线的一种具体实现方式。
本实施例的电池组的OCV-SOC曲线更新方法的具体流程如图2所示。
步骤201,包括以下子步骤:
子步骤2011,根据记录的电池组的多个OCV值与各OCV值对应的净累计充放电容量,生成电池组的净累计充放电容量-OCV序列。
具体而言,记录电池组的多个OCV值,例如在电池组每次静置达到预设时长时,记录一次OCV值,从而能够得到多个OCV值,在记录每个OCV值的时刻,获取并记录该时刻电池组的净累计充放电容量,能够得到多个OCV值与各OCV值对应的净累计充放电容量,并基于记录的数据生成净累计充放电容量-OCV序列。其中,净累计充放电容量=累计充电容量-累计放电容量,可以采用安时积分法来计算OCV值对应的净累计充放电容量。
子步骤2012,对净累计充放电容量-OCV序列进行平移缩放变换,得到将平移缩放变换后的净累计充放电容量-OCV序列作为表征电池组老化状态的信息。
具体而言,对净累计充放电容量-OCV序列中的净累计充放电容量按照预设比例和位移进行平移缩放变化,以Q表示净累计充放电容量、K表示预设比例、b表示预设位移,则平移缩放变换后的净累计充放电容量-OCV序列为(KQ+b)-OCV序列,(KQ+b)-OCV序列即为表征电池组 老化状态的信息。
步骤202,包括以下子步骤:
子步骤2021,获取当前OCV-SOC曲线对应的OCV-SOC序列。
具体而言,选取当前OCV-SOC曲线上点,形成当前OCV-SOC曲线对应的OCV-SOC序列;在当前OCV-SOC曲线上选取点的方式可以为按照SOC从0%-100%中每隔1%选取一个点。需要说明的是,本步骤中也可以用电池组的初始OCV-SOC曲线对应的OCV-SOC序列,进行下面的计算。
子步骤2022,根据OCV-SOC序列与经过平移缩放变换后的净累计充放电容量-OCV序列,得到电池组的当前老化特征参数。
具体而言,基于电池组的当前老化特征参数对OCV-SOC序列进行修正,具体的,当前老化特征参数包括正极曲线收缩比例Wp、负极曲线收缩比例Wn、负极曲线平移比例KLLI,电池组的OCV-SOC序列对应的正极OCV-SOC序列被修正为OCVp-SOCp*Wp序列,电池组的OCV-SOC序列对应的负极OCV-SOC序列被修正为OCVn-SOCn*Wn+KLLI序列,将正极OCV-SOC序列中SOCp*Wp与负极OCV-SOC序列中的SOCn*Wn+KLLI映射到SOC’序列中,SOC’序列通常为0%-100%,从而能够确定正极OCVp’-SOC’序列与负极OCVn’-SOC’序列,修正后的电池组的OCV-SOC序列为(OCVp’-OCVn’)-SOC’序列,该序列中包括正极曲线收缩比例Wp、负极曲线收缩比例Wn、负极曲线平移比例KLLI这三个未知数。继而包括当前老化特征参数的OCV-SOC序列与经过平移缩放变换后的净累计充放电容量-OCV序列进行对比,得到当前老化特征参数;具体的,设定(OCVp’-OCVn’)-SOC’序列与OCV-(KQ+b)序列相重合,则相同OCV值对应的SOC值与KQ+b也应该相等,从而能够获得多个等式,继而可以求解得到K、b、Wp、Wn、KLLI的值。
步骤203,根据电池组的当前老化特征参数与当前OCV-SOC曲线, 更新电池组的OCV-SOC曲线。
具体而言,根据当前老化特征参数中Wp、Wn、KLLI的值,对当前OCV-SOC曲线对应的OCV-SOC序列进行修正,可以得到修正后的电池组的OCV-SOC序列,具体修正过程与子步骤2022中类似,在此不再赘述。对修正后的OCV-SOC序列进行拟合得到OCV-SOC曲线,即为更新后的电池组的OCV-SOC曲线。
本实施方式相对于第一实施方式而言,提供了更新电池组的OCV-SOC曲线的一种具体实现方式。
本申请的第三实施方式涉及一种电池组的OCV-SOC曲线更新方法,第三实施方式相对于第一实施方式来说,主要区别之处在于:提供了更新电池组的OCV-SOC曲线的另一种具体实现方式。
本实施例的电池组的OCV-SOC曲线更新方法的具体流程如图3所示。
步骤301,获取预设的电池组的SOHC与老化特征参数的对应关系,作为表征电池组老化状态的信息。
具体而言,SOHC为电池组当前的容量与电池组标称的容量的比值,能够表征电池的老化程度,预先获取不同老化程度SOHC的电池组的OCV-SOV曲线,并获取各OCV-SOC曲线对应的正极OCV-SOC曲线与负极OCV-SOC曲线,将各老化程度的正极OCV-SOC曲线、负极OCV-SOC曲线分别与初始OCV-SOC曲线对应的初始正极OCV-SOC曲线、初始负极OCV-SOC曲线进行对比,可以得到各SOHC与老化特征参数的关系式,即建立了SOHC与老化特征参数的对应关系。
本实施例中,SOHC与Wp、Wn、KLLI的关系式包括但不限于:
确定Wp、Wn、KLLI之间的关系,如Wp为Wn的X倍。
确定SOHC与Wp、Wn、KLLI之间的单独关系。例如,在SOHC>80% 前,Wn可以忽略;KLLI与SOHC有线性关系。
确定SOHC与Wp、Wn、KLLI的加和关系。例如,在Wn、KLLI为0时,SOHC=100%-Wp。
步骤302,包括以下子步骤:
子步骤3021,根据电池组当前的OCV-SOC曲线,计算电池组的当前SOHC。
具体而言,基于电池组当前的OCV-SOC曲线,可以计算出电池组的当前SOHC,例如,先任意选择两个SOC值:SOCA、SOCB,SOCA>SOCB,并计算SOCA对应的OCVA、SOCB对应的OCVB,计算方式可以为开路电压法;根据当前的OCV-SOC曲线,获取OCVA对应的SOCA’、OCVB对应的SOCB’,并计算OCVA对应的净累计充放电容量OA、OCVB对应的净累计充放电容量OB,电池组当前的SOH=(OA-OB)/(SOCA’-SOCB’),电池组当前SOHC=SOH/电池组的标称容量。
子步骤3022,根据电池组的当前SOHC与SOHC与老化特征参数的对应关系,获取电池组的当前老化特征参数。
具体而言,根据电池组的当前SOHC,结合SOHC与老化特征参数的对应关系,计算得到电池组的当前老化特征参数Wp、Wn、KLLI。
步骤303,根据电池组的当前老化特征参数与当前OCV-SOC曲线,更新电池组的OCV-SOC曲线。
具体而言,根据当前老化特征参数中Wp、Wn、KLLI的值,可以得到当前OCV-SOC曲线对应的OCV-SOC序列进行修正,可以得到修正后的电池组的OCV-SOC序列,具体修正过程与第二实施例中子步骤2022中类似,在此不再赘述。对修正后的OCV-SOC序列进行拟合得到OCV-SOC曲线,即为更新后的电池组的OCV-SOC曲线。
本实施方式相对于第一实施方式而言,提供了更新电池组的 OCV-SOC曲线的另一种具体实现方式。
本申请的第四实施方式涉及一种电池组的OCV-SOC曲线更新方法,第四实施方式相对于第三实施方式来说,主要改进之处在于:对电池组的OCV-SOC曲线进行多次迭代更新。
本实施例的电池组的OCV-SOC曲线更新方法的具体流程如图4所示。
其中,步骤401至步骤403与步骤301至步骤303大致相同,在此不再赘述,主要不同之处在于,增加了步骤404,具体如下:
步骤404,判断更新后的电池组的OCV-SOC曲线是否满足预设条件。若是,则直接结束;若否,则回到步骤402。
具体而言,预设条件为更新后的电池组的OCV-SOC曲线与更新前的电池组的OCV-SOC曲线之间的差值小于预设阈值,判断更新后的电池组的OCV-SOC曲线是否满足预设条件,即为判断更新后的电池组的OCV-SOC曲线与更新前的电池组的OCV-SOC曲线之间的差值是否小于预设阈值;若差值小于预设阈值,则说明更新后的电池组的OCV-SOC曲线满足预设条件,直接结束;反之,则说明更新后的电池组的OCV-SOC曲线是否不满足预设条件,回到步骤402根据更新后的电池组的OCV-SOC曲线与表征信息,重新计算电池组的当前老化特征参数,并根据重新计算的当前老化特征参数与更新后的OCV-SOC曲线,再次更新电池组的OCV-SOC曲线,直至更新后的电池组的OCV-SOC曲线满足预设条件。
其中,更新后的电池组的OCV-SOC曲线与更新前的电池组的OCV-SOC曲线之间的差值为:更新后电池组的OCV-SOC曲线对应的OCV-SOC序列与更新前的电池组的OCV-SOC曲线对应的OCV-SOC序列之间的差值,计算两个序列中相同SOC对应两个OCV之间的方差,并计算所有的方差之和作为两个曲线的差值。
本实施方式相对于第三实施方式而言,增加了对更新后的电池组的OCV-SOC曲线是否满足预设条件的判断,能够对电池组的OCV-SOC曲线进行多次迭代更新,提升了更新后的电池组的OCV-SOC曲线的准确度。
本申请的第五实施方式涉及一种电池管理系统,包括:至少一个处理器;以及,与至少一个处理器通信连接的存储器;其中,存储器存储有可被至少一个处理器执行的指令,指令被至少一个处理器执行,以使至少一个处理器能够执行第一至第四实施例中任一项的电池组的OCV-SOC曲线更新方法。
其中,存储器和处理器采用总线方式连接,总线可以包括任意数量的互联的总线和桥,总线将一个或多个处理器和存储器的各种电路连接在一起。总线还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路连接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口在总线和收发机之间提供接口。收发机可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器处理的数据通过天线在无线介质上进行传输,进一步,天线还接收数据并将数据传送给处理器。
处理器负责管理总线和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器可以被用于存储处理器在执行操作时所使用的数据。
本申请的第六实施方式涉及一种车辆,包括电池组与第五实施例中的电池管理系统。
本领域的普通技术人员可以理解,上述各实施方式是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (12)

  1. 一种电池组的OCV-SOC曲线更新方法,其中,包括:
    获取表征所述电池组老化状态的信息;
    根据所述电池组的当前OCV-SOC曲线与所述信息,得到所述电池组的当前老化特征参数;
    根据所述电池组的当前老化特征参数与所述当前OCV-SOC曲线,更新所述电池组的OCV-SOC曲线。
  2. 根据权利要求1所述的电池组的OCV-SOC曲线更新方法,其中,所述获取表征所述电池组老化状态的信息,包括:
    根据记录的电池组的多个OCV值与各所述OCV值对应的净累计充放电容量,生成所述电池组的净累计充放电容量-OCV序列;
    对所述净累计充放电容量-OCV序列进行平移缩放变换,得到将平移缩放变换后的所述净累计充放电容量-OCV序列作为表征所述电池组老化状态的所述信息。
  3. 根据权利要求1所述的电池组的OCV-SOC曲线更新方法,其中,所述获取表征所述电池组老化状态的信息,包括:
    获取预设的所述电池组的SOHC与老化特征参数的对应关系,作为表征所述电池组老化状态的信息。
  4. 根据权利要求2所述的电池组的OCV-SOC曲线更新方法,其中,所述根据所述电池组的当前OCV-SOC曲线与表征所述信息,得到所述电池组的当前老化特征参数,包括:
    获取所述当前OCV-SOC曲线对应的OCV-SOC序列;
    根据所述OCV-SOC序列与经过平移缩放变换后的所述净累计充放电容量-OCV序列,得到所述电池组的当前老化特征参数。
  5. 根据权利要求4所述的电池组的OCV-SOC曲线更新方法,其中, 所述根据所述OCV-SOC序列与经过平移缩放变换后的所述净累计充放电容量-OCV序列,得到所述电池组的当前老化特征参数,包括:
    基于所述当前老化特征参数对所述OCV-SOC序列进行修正,得到包括所述当前老化特征参数的所述OCV-SOC序列;
    将包括所述当前老化特征参数的所述OCV-SOC序列与经过平移缩放变换后的所述净累计充放电容量-OCV序列进行对比,得到所述当前老化特征参数。
  6. 根据权利要求3所述的电池组的OCV-SOC曲线更新方法,其中,所述根据所述电池组的当前OCV-SOC曲线与表征所述信息,得到所述电池组的当前老化特征参数,包括:
    根据所述电池组当前的OCV-SOC曲线,计算所述电池组的当前SOHC;
    根据所述电池组的所述当前SOHC与所述SOHC与老化特征参数的所述对应关系,获取所述电池组的当前老化特征参数。
  7. 根据权利要求3所述的电池组的OCV-SOC曲线更新方法,其中,在所述根据所述电池组的当前老化特征参数与所述当前OCV-SOC曲线,更新所述电池组的OCV-SOC曲线之后,还包括:
    判断更新后的所述电池组的OCV-SOC曲线是否满足预设条件;
    若更新后的所述电池组的OCV-SOC曲线不满足预设条件,返回所述根据所述电池组的当前OCV-SOC曲线与表征所述信息,得到所述电池组的当前老化特征参数的步骤。
  8. 根据权利要求7所述的电池组的OCV-SOC曲线更新方法,其中,所述预设条件为更新后的所述电池组的OCV-SOC曲线与更新前的所述电池组的OCV-SOC曲线之间的差值小于预设阈值。
  9. 根据权利要求1所述的电池组的OCV-SOC曲线更新方法,其中,所述根据所述电池组的当前老化特征参数与所述当前OCV-SOC曲线,更 新所述电池组的OCV-SOC曲线,包括:
    获取所述当前OCV-SOC曲线对应的正极OCV-SOC曲线以及负极OCV-SOC曲线;
    根据所述当前老化特征参数分别对所述正极OCV-SOC曲线与所述负极OCV-SOC曲线进行更新;
    根据更新后的所述正极OCV-SOC曲线与更新后的所述负极OCV-SOC曲线,得到更新后的电池组的OCV-SOC曲线。
  10. 根据权利要求1所述的电池组的OCV-SOC曲线更新方法,其中,所述老化特征参数包括:所述电池组的正极曲线收缩比例、所述电池组的负极曲线收缩比例,以及所述电池组的负极曲线平移比例。
  11. 一种电池管理系统,其中,包括:至少一个处理器;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行权利要求1至10中任一项所述的电池组的OCV-SOC曲线更新方法。
  12. 一种车辆,其中,包括:电池组与权利要求11所述的电池管理系统。
PCT/CN2020/117861 2019-12-20 2020-09-25 电池组的ocv-soc曲线更新方法、电池管理系统及车辆 WO2021120769A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20904212.6A EP3930075B1 (en) 2019-12-20 2020-09-25 Battery pack ocv-soc curve update method, battery management system and vehicle
ES20904212T ES2980577T3 (es) 2019-12-20 2020-09-25 Método de actualización de la curva de ocv-soc de paquete de baterías, sistema de gestión de baterías y vehículo
US17/750,602 US20220281350A1 (en) 2019-12-20 2022-05-23 Method for updating ocv-soc curve of battery pack, battery management system, and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911328552.4 2019-12-20
CN201911328552.4A CN111048857B (zh) 2019-12-20 2019-12-20 电池组的ocv-soc曲线更新方法、电池管理系统及车辆

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/750,602 Continuation US20220281350A1 (en) 2019-12-20 2022-05-23 Method for updating ocv-soc curve of battery pack, battery management system, and vehicle

Publications (1)

Publication Number Publication Date
WO2021120769A1 true WO2021120769A1 (zh) 2021-06-24

Family

ID=70238375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117861 WO2021120769A1 (zh) 2019-12-20 2020-09-25 电池组的ocv-soc曲线更新方法、电池管理系统及车辆

Country Status (6)

Country Link
US (1) US20220281350A1 (zh)
EP (1) EP3930075B1 (zh)
CN (2) CN114280478B (zh)
ES (1) ES2980577T3 (zh)
HU (1) HUE066715T2 (zh)
WO (1) WO2021120769A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114280478B (zh) * 2019-12-20 2024-07-12 宁德时代新能源科技股份有限公司 电池组的ocv-soc曲线更新方法、电池管理系统及车辆
CN113933730B (zh) * 2020-06-29 2023-12-08 宁德时代新能源科技股份有限公司 Soh及电池残值的计算方法、装置、设备和介质
CN111781504B (zh) * 2020-08-03 2023-09-01 北京理工大学 一种锂离子动力电池老化状态识别与开路电压重构方法
CN111707955B (zh) * 2020-08-11 2021-01-12 江苏时代新能源科技有限公司 电池剩余寿命的估算方法、装置和介质
CN112782604A (zh) * 2020-12-29 2021-05-11 珠海中力新能源科技有限公司 一种电池诊断方法、装置及终端设备
CN113466728B (zh) * 2021-07-13 2024-04-05 北京西清能源科技有限公司 一种两阶段电池模型参数在线辨识的方法与系统
WO2023035160A1 (zh) * 2021-09-08 2023-03-16 宁德时代新能源科技股份有限公司 动力电池充电的方法和电池管理系统
CN114019401B (zh) * 2021-11-09 2024-05-14 重庆金康赛力斯新能源汽车设计院有限公司 Soc-ocv曲线更新方法和设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468521A (zh) * 2010-11-01 2012-05-23 通用汽车环球科技运作有限责任公司 用于估计蓄电池健康状态的方法和装置
CN102565710A (zh) * 2010-11-01 2012-07-11 通用汽车环球科技运作有限责任公司 用于估计蓄电池健康状态的方法和装置
CN103424710A (zh) * 2012-05-25 2013-12-04 通用汽车环球科技运作有限责任公司 用于监测电池组中的老化单体的性能变化的方法和系统
CN103969589A (zh) * 2013-01-31 2014-08-06 通用汽车环球科技运作有限责任公司 通过阳电极半电池电压曲线的优化拟合检测开路电压偏移的方法
CN105322222A (zh) * 2014-07-31 2016-02-10 株式会社东芝 非水电解质电池及电池包
CN105548900A (zh) * 2016-01-07 2016-05-04 北京北交新能科技有限公司 一种轨道交通用动力电池健康状态评估方法
CN108896916A (zh) * 2018-06-08 2018-11-27 江苏大学 基于恒流充放电电压曲线的电池组开路电压及健康状态求解方法
CN111048857A (zh) * 2019-12-20 2020-04-21 宁德时代新能源科技股份有限公司 电池组的ocv-soc曲线更新方法、电池管理系统及车辆

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10288692B2 (en) * 2015-06-15 2019-05-14 GM Global Technology Operations LLC Systems and methods for estimating battery system parameters
DE102015214128A1 (de) * 2015-07-27 2017-02-02 Robert Bosch Gmbh Verfahren und Vorrichtung zum Abschätzen eines aktuellen Leerlaufspannungsverlaufs einer Batterie
CN105353313B (zh) * 2015-09-28 2020-07-28 欣旺达电子股份有限公司 电池荷电状态的估算方法和装置
CN107102263B (zh) * 2016-02-22 2019-10-18 华为技术有限公司 检测电池健康状态的方法、装置和电池管理系统
US10114079B2 (en) * 2016-02-24 2018-10-30 Ford Global Technologies, Llc System and method for identifying vehicle battery decay
CN106291381B (zh) * 2016-08-16 2018-09-11 北京理工大学 一种联合估计动力电池系统荷电状态与健康状态的方法
DE102017200548B4 (de) * 2017-01-16 2018-12-20 Audi Ag Verfahren zur Ermittlung einer aktuellen Kennlinie für einen ein Kraftfahrzeug versorgenden elektrochemischen Energiespeicher, Kraftfahrzeug und Server
CN106772101B (zh) * 2017-02-16 2019-05-17 欣旺达电子股份有限公司 电池soc的修正方法、修正装置及电池soh估算方法
JP2018159572A (ja) * 2017-03-22 2018-10-11 三菱自動車工業株式会社 バッテリ状態推定装置
JP6794947B2 (ja) * 2017-07-12 2020-12-02 トヨタ自動車株式会社 二次電池システム
JP6897479B2 (ja) * 2017-10-12 2021-06-30 トヨタ自動車株式会社 二次電池システム
JP6871145B2 (ja) * 2017-12-14 2021-05-12 本田技研工業株式会社 電池状態推定装置
CN109975708B (zh) * 2017-12-26 2022-04-29 宇通客车股份有限公司 一种电池soc的自动在线修正方法
KR102452626B1 (ko) * 2018-03-07 2022-10-06 주식회사 엘지에너지솔루션 Soc-ocv 프로파일 추정 방법 및 장치
CN108761338B (zh) * 2018-05-22 2020-05-22 金龙联合汽车工业(苏州)有限公司 一种在线更新电池ocv曲线的方法和装置
CN108761343B (zh) * 2018-06-05 2020-10-16 华霆(合肥)动力技术有限公司 Soh校正方法及装置
CN109085505A (zh) * 2018-07-25 2018-12-25 深圳华中科技大学研究院 一种动力电池充放电状态估算方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102468521A (zh) * 2010-11-01 2012-05-23 通用汽车环球科技运作有限责任公司 用于估计蓄电池健康状态的方法和装置
CN102565710A (zh) * 2010-11-01 2012-07-11 通用汽车环球科技运作有限责任公司 用于估计蓄电池健康状态的方法和装置
CN103424710A (zh) * 2012-05-25 2013-12-04 通用汽车环球科技运作有限责任公司 用于监测电池组中的老化单体的性能变化的方法和系统
CN103969589A (zh) * 2013-01-31 2014-08-06 通用汽车环球科技运作有限责任公司 通过阳电极半电池电压曲线的优化拟合检测开路电压偏移的方法
CN105322222A (zh) * 2014-07-31 2016-02-10 株式会社东芝 非水电解质电池及电池包
CN105548900A (zh) * 2016-01-07 2016-05-04 北京北交新能科技有限公司 一种轨道交通用动力电池健康状态评估方法
CN108896916A (zh) * 2018-06-08 2018-11-27 江苏大学 基于恒流充放电电压曲线的电池组开路电压及健康状态求解方法
CN111048857A (zh) * 2019-12-20 2020-04-21 宁德时代新能源科技股份有限公司 电池组的ocv-soc曲线更新方法、电池管理系统及车辆

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3930075A4

Also Published As

Publication number Publication date
EP3930075A1 (en) 2021-12-29
ES2980577T3 (es) 2024-10-02
CN114280478A (zh) 2022-04-05
HUE066715T2 (hu) 2024-09-28
CN111048857A (zh) 2020-04-21
EP3930075B1 (en) 2024-03-13
CN114280478B (zh) 2024-07-12
US20220281350A1 (en) 2022-09-08
EP3930075A4 (en) 2022-05-04
CN111048857B (zh) 2022-01-11

Similar Documents

Publication Publication Date Title
WO2021120769A1 (zh) 电池组的ocv-soc曲线更新方法、电池管理系统及车辆
WO2020228460A1 (zh) 电池组soc的修正方法、电池管理系统以及车辆
US20230047373A1 (en) Method and apparatus for battery soc correction, and battery management system
US11573273B2 (en) Method, apparatus, device and medium for estimating performance parameters of a battery
JP6171897B2 (ja) 近似関数作成プログラム、近似関数作成方法、近似関数作成装置および充電率推定プログラム
CN107907834B (zh) 一种电池管理系统的电流漂移校正方法、系统及装置
JP6221884B2 (ja) 推定プログラム、推定方法および推定装置
JP6330605B2 (ja) 推定プログラム、推定方法および推定装置
WO2019116815A1 (ja) 二次電池監視装置、二次電池状態演算装置および二次電池状態推定方法
US20230176130A1 (en) Battery management apparatus and method
JP7010563B2 (ja) バッテリー充電状態推定装置
KR20200102923A (ko) 배터리 상태 추정 장치 및 방법
CN116990691A (zh) 一种电池剩余满充时间的评估方法、装置、设备和介质
CN110726937B (zh) 用于确定状态噪声协方差矩阵的方法和相应设备
JP2015105863A (ja) 推定プログラム、推定方法および推定装置
CN116819346A (zh) 电池soc估算方法、装置、设备及存储介质
CN117269801B (zh) 电池荷电状态的确定方法、确定装置和电子设备
JP2016006404A (ja) 健全度算出装置、健全度算出方法及びプログラム
WO2018029849A1 (ja) 推定装置、推定プログラムおよび充電制御装置
KR20150023091A (ko) 배터리관리시스템 및 그 운용방법
CN116047323A (zh) 一种电池soc的修正方法、系统、电池及电池管理系统
CN116047305A (zh) 电池的soc修正方法、装置、控制器、系统及设备
CN117991099A (zh) 参数辩识模型建立方法、装置、计算机设备及存储介质
JP2019158836A (ja) 推定装置および推定方法
JP7188327B2 (ja) 電池状態推定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20904212

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020904212

Country of ref document: EP

Effective date: 20210920

NENP Non-entry into the national phase

Ref country code: DE