WO2020093525A1 - 一种半导体器件的等效模型建立方法、装置及终端设备 - Google Patents

一种半导体器件的等效模型建立方法、装置及终端设备 Download PDF

Info

Publication number
WO2020093525A1
WO2020093525A1 PCT/CN2018/121209 CN2018121209W WO2020093525A1 WO 2020093525 A1 WO2020093525 A1 WO 2020093525A1 CN 2018121209 W CN2018121209 W CN 2018121209W WO 2020093525 A1 WO2020093525 A1 WO 2020093525A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
model
parameter
semiconductor
value
Prior art date
Application number
PCT/CN2018/121209
Other languages
English (en)
French (fr)
Inventor
卓恩宗
莫琼花
Original Assignee
惠科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司 filed Critical 惠科股份有限公司
Publication of WO2020093525A1 publication Critical patent/WO2020093525A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/36Circuit design at the analogue level
    • G06F30/367Design verification, e.g. using simulation, simulation program with integrated circuit emphasis [SPICE], direct methods or relaxation methods

Definitions

  • the present application relates to the technical field of semiconductor device modeling, and in particular to a method, apparatus and terminal equipment for establishing an equivalent model of a semiconductor device.
  • the global model is to use a model card to model all devices in a set of characteristic data. Since only one model card is used to make the model fitting accuracy of one size device is very high, the model fitting accuracy of other size devices will be worse; the block model is to array devices of different sizes according to the size array Divided into several blocks, the four vertices corresponding to each block create a point model for each device in a set of feature data, each point model corresponds to a model card and a set of model parameters, and each is established according to the point model
  • the block model is composed of multiple sub-models. It is difficult to maintain the model and is prone to discontinuous parameters. If the parameters are discontinuous, you need to readjust the model of the relevant size device, and then re-establish a new block model, which makes many When simulating semiconductor devices of different sizes, the simulation speed is slow and there are many inconveniences.
  • An object of the present application is to provide an equivalent model building method of a semiconductor device, including but not limited to solving the problem that the model building accuracy of semiconductor devices of different sizes is low and discontinuity is prone to occur.
  • the technical solution adopted in the embodiment of the present application is to obtain the characteristic data of each semiconductor device of the block unit when voltage is applied; wherein, the block unit is a block extracted from the semiconductor device size array, and each semiconductor device is A device corresponding to the size at a vertex in the block unit;
  • the device corresponding to the size of a vertex in the unit includes:
  • the acquiring first characteristic data of each semiconductor device of the block unit at different drain voltages and second characteristic data at different gate voltages includes:
  • model cards of each semiconductor device are separately established according to the characteristic data of each semiconductor, including:
  • the first model parameter is a parameter that participates in establishing an equivalent model of all semiconductor devices within the size array range.
  • the establishing an equivalent model of all semiconductor devices within the size array range according to the model card of each semiconductor of the block unit includes:
  • the interpolation formula is:
  • channel length value, channel width value of the semiconductor at the vertex of the block unit and the first model parameter determine the second model parameter Q, the second model parameter in the channel length direction of the semiconductor device LQ, the second model Factor value WQ of the parameter in the channel width direction of the semiconductor device and factor value PQ of the second model parameter in the diagonal direction of the channel of the semiconductor device to obtain an equivalent model of the semiconductor device;
  • q is the first model parameter, that is, the parameter involved in the fusion of the model card of the semiconductor device
  • Q is the second model parameter, that is, the parameter value corresponding to the semiconductor device of the size to be inspected in the equivalent model obtained after fusion according to the interpolation formula
  • LQ is the factor value of the second model parameter in the semiconductor device channel length direction
  • WQ is the factor value of the second model parameter in the semiconductor device channel width direction
  • PQ is the second model parameter in the diagonal direction of the semiconductor device channel direction Factor value
  • L is the channel length value of the semiconductor device
  • W is the channel width value of the semiconductor device
  • the unit is micrometer.
  • the drain voltage ranges from 0.5V to 30V; the gate voltage ranges from 5V to 30V.
  • the first characteristic data includes a drain-source current value and a gate-source voltage difference; a drain-source current value and a gate-source voltage difference change correspondingly with changes in the drain voltage.
  • Another object of the present application is to provide an apparatus for establishing an equivalent model of a semiconductor device, including:
  • a data acquisition unit for acquiring characteristic data of each semiconductor device of the block unit when voltage is applied; wherein, the block unit is a block extracted from a semiconductor device size array, and each semiconductor device is the block The device corresponding to the size of one vertex in the unit;
  • a model card building unit which is used to build a model card of each semiconductor device according to the characteristic data of each semiconductor
  • An equivalent model building unit is used to establish an equivalent model of all semiconductor devices within the size array according to the model card of each semiconductor of the block unit.
  • the data acquisition unit includes:
  • a first acquisition module configured to acquire first characteristic data of each semiconductor device of the block unit at different drain voltages
  • the second acquisition module is configured to acquire second characteristic data of each semiconductor device of the block unit at different gate voltages.
  • the data acquisition unit further includes:
  • the first curve module is set to obtain the variation curve of the drain-source current value with the gate-source voltage difference when each semiconductor device has a different drain voltage
  • the second curve module is set to obtain the variation curve of the drain-source current value with the drain-source voltage difference when each semiconductor device has a different gate voltage.
  • the model card creation unit includes:
  • the parameter module is configured to obtain a first model parameter in the model card, and the first model parameter is a parameter participating in establishing an equivalent model of all semiconductor devices within the size array range.
  • the equivalent model building unit includes:
  • the interpolation fusion module is configured to fuse the model card of the semiconductor device according to the first model parameter and the interpolation formula, and the interpolation formula is:
  • the channel length value, channel width value of the semiconductor at the vertex of the block unit, and the first model parameter determine the second model parameter Q, the second model parameter factor value in the channel length direction of the semiconductor device LQ, the second model Factor value WQ of the parameter in the channel width direction of the semiconductor device and factor value PQ of the second model parameter in the diagonal direction of the channel of the semiconductor device to obtain an equivalent model of the semiconductor device;
  • q is the first model parameter, that is, the parameter involved in the fusion of the model card of the semiconductor device
  • Q is the second model parameter, that is, the parameter value corresponding to the semiconductor device of the size to be inspected in the equivalent model obtained after fusion according to the interpolation formula
  • LQ is the factor value of the second model parameter in the semiconductor device channel length direction
  • WQ is the factor value of the second model parameter in the semiconductor device channel width direction
  • PQ is the second model parameter in the diagonal direction of the semiconductor device channel direction Factor value
  • L is the channel length value of the semiconductor device
  • W is the channel width value of the semiconductor device
  • the unit is micrometer.
  • the drain voltage ranges from 0.5V to 30V; the gate voltage ranges from 5V to 30V.
  • the first characteristic data includes a drain-source current value and a gate-source voltage difference; a drain-source current value and a gate-source voltage difference change correspondingly with changes in the drain voltage.
  • Still another object of the present application is to provide a terminal device, including: a memory, a processor, and a computer program stored in the memory and executable on the processor, and the computer program is implemented when executed by the processor.
  • a computer-readable storage medium storing a computer program, wherein, when the computer program is executed by a processor, the steps of the method for establishing an equivalent model of the semiconductor device described above are realized.
  • the method, apparatus and terminal equipment for establishing an equivalent model of a semiconductor device improve the accuracy of establishing an equivalent model and reduce the fitting time by fusing model cards corresponding to semiconductor devices of different sizes.
  • the obtained equivalent model can predict the electrical characteristics of semiconductor devices of other sizes, thereby realizing the prediction of the working performance of the circuit containing the semiconductor device.
  • FIG. 1 is a schematic diagram of the distribution of semiconductor device size arrays in a block model provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of an implementation process of a method for establishing an equivalent model of a semiconductor device provided by an embodiment of the present application;
  • FIG. 3 is a schematic diagram of a transfer characteristic curve of a semiconductor device provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an array of first block units provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of an apparatus for establishing an equivalent model of a semiconductor device provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a terminal device provided by an embodiment of the present application.
  • FIG. 1 is a schematic diagram of the distribution of semiconductor device size arrays in a block model provided by an embodiment of the present application, with the channel width of the semiconductor device as the horizontal axis and the channel length as the vertical axis; within a certain channel width range, such as In the range of the minimum width Wmin to the maximum width Wmax in FIG. 1, and correspondingly within a certain channel length range, as shown in the range of the minimum length Lmin to the maximum length Lmax in FIG.
  • the size is divided into multiple blocks 1Bin1, block 2Bin2, etc.
  • the vertex corresponding to each block corresponds to a semiconductor device of a size
  • each block is a block unit
  • each block unit is for a set of feature data
  • the feature data includes but not Limited to each semiconductor device's turn-on voltage, transconductance voltage, maximum current corresponding to minimum drain-source voltage, maximum charging current, and leakage current, etc .
  • the devices have the same channel length or the same channel width, and a model is correspondingly established according to the characteristic data of each device ,
  • a set of model parameters corresponding to the card model, the model parameters have a strong continuity model a semiconductor device different sizes, such that a final model of the semiconductor device to meet the requirements established by fitting accuracy.
  • FIG. 2 is a schematic diagram of an implementation process of a method for establishing an equivalent model of a semiconductor device provided by an embodiment of the present application. Since the biggest impact on the performance of thin film transistor (TFT) devices is the length and width of the device channel, this method is mainly based on the characteristics of the channel length and width of the semiconductor device to establish an equivalent model of the device, such as thin film transistors.
  • TFT thin film transistor
  • the method may include the following steps:
  • Step S201 Obtain the characteristic data of each semiconductor device of the block unit when voltage is applied; wherein, the block unit is a block extracted from the semiconductor device size array, and each semiconductor device is one of the block units The device corresponding to the size at the vertex.
  • the block unit is a block extracted from the size distribution array of semiconductor devices.
  • a block unit may include four vertices, and each vertex corresponds to a semiconductor device of a size; the size array is The device is divided according to the length and width of the channel of the semiconductor device; each block unit shares two vertices with the adjacent block unit, and the semiconductor devices at the two vertices are also the same size of the two block units To share the device, so that the established equivalent model can avoid the situation that the device size is not continuous.
  • the semiconductor device includes a drain, a gate and a source; under the action of an applied voltage of the semiconductor, the energy band of the semiconductor device and the charge distribution of the gate, the drain and the source of the semiconductor will change and will be formed accordingly Two states, including: low channel resistance, high current on state and high channel resistance, small current off state; the distance between the source and drain of the semiconductor device is the channel length L, the vertical L direction Is the width W of the source and drain.
  • the device corresponding to the size of a vertex in the unit includes:
  • the first characteristic data includes: the value of the drain-source current and the difference between the gate-source voltage; the difference between the drain-source current and the difference between the gate-source voltage and the drain voltage. Under different drain voltages, the value of the drain-source current and the difference between the gate-source voltage are also different.
  • the first characteristic data can be obtained by measuring under different drain voltages, and the drain voltage ranges from 0.5V to 30V; the gate voltage ranges from 5V to 30V.
  • the acquiring first characteristic data of each semiconductor device of the block unit at different drain voltages and second characteristic data at different gate voltages includes:
  • the transfer characteristic curve of the semiconductor device can be obtained.
  • the voltage can produce different gate-source voltage differences V GS .
  • Different gate-source voltage differences V GS correspond to different drain-source currents.
  • the resulting curve includes the cut-off region, sub-threshold region, saturation region, and linear region of the semiconductor device. To reflect the electrical performance of the semiconductor device.
  • different gate voltages connected to the semiconductor device will generate different drain-source voltage differences V DS , and different drain-source voltage differences V DS correspond to different drain-source currents.
  • the two characteristic data include: drain-source voltage difference V DS and drain-source current I DS .
  • step S202 according to the characteristic data of each semiconductor, a model card of each semiconductor device is established.
  • a corresponding model card can be established based on the obtained characteristic data of the semiconductor device; the characteristic data includes: a curve of the change of the drain-source current value with the drain-source voltage difference and the drain-source current value with the gate source Polar voltage difference curve. Extract the characteristic values of different areas of the curve, fit the curve according to the characteristic values, and establish a model card corresponding to each semiconductor device, each model card corresponds to a semiconductor device of a size, and the model card also includes the corresponding to the semiconductor device
  • the model parameters are known parameters set for each model card, including the threshold voltage VTO of the known semiconductor device set by the model card established for the semiconductor device of a specific size.
  • model cards of each semiconductor device are separately established according to the characteristic data of each semiconductor, including:
  • the first model parameter is a parameter that participates in establishing an equivalent model of all semiconductor devices within the size array range.
  • the drain-source current value with the gate-source voltage difference Can also obtain a set of model parameters in the model card, the model parameters include: threshold voltage VTO, conduction band mobility Muband (Ion), sub-threshold zone VFB, maximum charging current ALPHASAT, leakage VDSL, leakage IOL Etc .; different model cards may also contain different model parameters; the model parameters are the basis for establishing an equivalent model of the semiconductor device, and also a reference for judging the electrical performance of the semiconductor device.
  • Step S203 Establish an equivalent model of all semiconductor devices within the range of the size array according to the model card of each semiconductor of the block unit.
  • one block unit may include four size semiconductor devices, and two adjacent semiconductor devices have the same size channel length or channel width; according to the characteristic data of each size semiconductor device, A model card corresponding to each semiconductor device.
  • Each block unit can establish four model cards, and use the difference method to fuse the four model cards of the block unit to obtain the equivalent model of all semiconductors within the entire size array; the equivalent model is based on Dimensional characteristics of semiconductor devices and the establishment of model parameters.
  • the size of the semiconductor device of the established equivalent model is continuous, so the problem of discontinuousness of the established equivalent model can be avoided, and according to the established equivalent model
  • the establishing an equivalent model of all semiconductor devices within the size array range according to the model card of each semiconductor of the block unit includes:
  • the interpolation formula is:
  • the second model parameter Q determines the second model parameter Q, the second model parameter factor value in the channel length direction of the semiconductor device LQ, the second model Factor value WQ of the parameter in the channel width direction of the semiconductor device and factor value PQ of the second model parameter in the diagonal direction of the channel of the semiconductor device to obtain an equivalent model of the semiconductor device;
  • q is the first model parameter, that is The parameters involved in the fusion of the model card of the semiconductor device;
  • Q is the second model parameter, that is, the parameter value corresponding to the semiconductor device of the size to be tested in the equivalent model obtained after the fusion of the interpolation formula;
  • LQ is the second model parameter in the semiconductor
  • WQ is the factor value of the second model parameter in the semiconductor device channel width direction;
  • PQ is the factor value of the second model parameter in the semiconductor device channel diagonal direction;
  • L is the semiconductor device The channel length value, W is the channel width value of the semiconductor device, and the unit
  • the establishment of a model card of a semiconductor device of a known size in addition to directly establishing the model card based on the measured characteristic data, also includes: indirectly estimating the required size using the difference method based on the established block model The model card of the semiconductor device of the semiconductor device; for the model of the semiconductor device corresponding to the size of a single point in the block matrix, the model card of the semiconductor device of the required size is calculated by normalization.
  • FIG. 4 a schematic diagram of an array of a first block unit provided by an embodiment of the present application, obtaining model cards of transistors of different sizes at positions PM1, PM2, PM3, and PM4, and VTO model parameters of different threshold voltages , Establish a quaternary linear equation system according to the above formula (1), where q at position PM1 is 2.5, L is 10 microns, and W is 50 microns; q at position PM2 is 2.1, L is 10 microns, and W is 10 microns ; Q at position PM3 is 1.8, L is 5 microns, and W is 10 microns; q at position PM4 is 1.7, L is 5 microns, and W is 50 microns; the set of internal difference equations is
  • model parameters of the semiconductor device includes multiple model parameters, not only limited to the threshold voltage VTO parameter, but also based on other types of parameters set in the model card.
  • Know the model parameters obtain the coefficients of the equivalent model through a block unit, obtain the model parameters of the interpolation point or the extrapolation point of the block unit, and then evaluate the performance of the semiconductor device according to the obtained model parameters to achieve Applied to the prediction of working performance in circuits.
  • the characteristic data of each semiconductor device in the block unit at different drain voltages and different gate voltages is obtained, and a model card of each semiconductor device is established according to the characteristic data, and then the block unit 4
  • the model cards corresponding to the semiconductor devices are fused to obtain the equivalent models of all semiconductor devices within the size array.
  • FIG. 5 is a schematic diagram of an apparatus for establishing an equivalent model of a semiconductor device provided by an embodiment of the present application. For convenience of description, only parts related to the embodiment of the present application are shown.
  • the device for establishing an equivalent model of the semiconductor device includes:
  • the data obtaining unit 51 is used to obtain characteristic data of each semiconductor device of the dividing unit when voltage is applied; wherein, the dividing unit is a block extracted from the semiconductor device size array, and each semiconductor device is the dividing The device corresponding to the size of one vertex in the block unit;
  • the model card establishing unit 52 is configured to establish a model card of each semiconductor device according to the characteristic data of each semiconductor;
  • the equivalent model establishing unit 53 is used to establish an equivalent model of all semiconductor devices within the size array according to the model card of each semiconductor of the block unit.
  • the data acquisition unit includes:
  • a first obtaining module configured to obtain the first characteristic data of each semiconductor device of the block unit at different drain voltages
  • the second acquisition module is used to acquire second characteristic data of each semiconductor device of the block unit at different gate voltages.
  • the data acquisition unit also includes:
  • the first curve module is set to obtain the variation curve of the drain-source current value with the gate-source voltage difference when each semiconductor device has a different drain voltage
  • the second curve module is set to obtain the variation curve of the drain-source current value with the drain-source voltage difference when each semiconductor device has a different gate voltage.
  • the model card creation unit includes:
  • the parameter module is configured to obtain a first model parameter in the model card, and the first model parameter is a parameter participating in establishing an equivalent model of all semiconductor devices within the size array range.
  • the equivalent model building unit includes:
  • the interpolation fusion module is configured to fuse the model card of the semiconductor device according to the first model parameter and the interpolation formula, and the interpolation formula is:
  • the second model parameter Q determines the second model parameter Q, the second model parameter factor value in the channel length direction of the semiconductor device LQ, the second model The factor value WQ of the parameter in the channel width direction of the semiconductor device and the factor value PQ of the second model parameter in the diagonal direction of the channel of the semiconductor device to obtain an equivalent model of the semiconductor device;
  • q is the first model parameter, that is The parameters involved in the fusion of the model card of the semiconductor device;
  • Q is the second model parameter, that is, the parameter value corresponding to the semiconductor device of the size to be tested in the equivalent model obtained after the fusion of the interpolation formula;
  • LQ is the second model parameter in the semiconductor
  • the factor value of the device channel length direction; WQ is the factor value of the second model parameter in the semiconductor device channel width direction;
  • PQ is the factor value of the second model parameter in the semiconductor device channel diagonal direction;
  • L is the semiconductor device The channel length value, W is the channel width value of the semiconductor device, and the unit
  • the drain voltage ranges from 0.5V to 30V; the gate voltage ranges from 5V to 30V.
  • the first characteristic data includes a drain-source current value and a gate-source voltage difference; a drain-source current value and a gate-source voltage difference change correspondingly with changes in the drain voltage.
  • the characteristic data of each semiconductor device in the block unit at different drain voltages and different gate voltages is obtained, and a model card of each semiconductor device is established according to the characteristic data, and then the block unit 4
  • the model cards corresponding to the semiconductor devices are fused to obtain the equivalent models of all semiconductor devices within the size array.
  • each unit or module in the apparatus may be implemented by a device or circuit having corresponding functions, and may be a general-purpose integrated circuit, such as a CPU (Central Processing Unit), or an ASIC (Application Specific Integrated Circuit (application specific integrated circuit) to achieve.
  • a CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • each functional module is used as an example for illustration.
  • the above-mentioned functions can be allocated by different functional units and modules according to needs. That is, the internal structure of the mobile terminal is divided into different functional units or modules to complete all or part of the functions described above.
  • the functional modules in the embodiments may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above integrated units may be implemented in the form of hardware , Can also be implemented in the form of software functional units.
  • the specific names of the functional modules are only for the purpose of distinguishing each other, and are not used to limit the protection scope of the present application.
  • For the specific working process of the module in the above mobile terminal reference may be made to the corresponding process in the foregoing method embodiments, which will not be repeated here.
  • the terminal device 6 of this embodiment includes: a processor 60, a memory 61, and a computer program 62 stored in the memory 61 and executable on the processor 60.
  • the processor 60 executes the computer program 62
  • the steps in the embodiment of the method for establishing an equivalent model of each semiconductor device described above are implemented, for example, steps S201 to S203 shown in FIG. 2.
  • the processor 60 executes the computer program 62
  • the functions of each module / unit in the foregoing device embodiments are realized, for example, the functions of the modules 51 to 53 shown in FIG. 5.
  • the processor calls the computer program code stored in the memory to perform the following operations:
  • the block unit is a block extracted from the semiconductor device size array, and each semiconductor device is at a vertex of the block unit The device corresponding to the size;
  • the processor when the processor executes acquiring the characteristic data of each semiconductor device of the block unit when voltage is applied, it includes:
  • the processor executes acquiring the first characteristic data of each semiconductor device of the block unit at different drain voltages, and the second characteristic data of different gate voltages, including:
  • the processor executes the model card of each semiconductor device separately according to the characteristic data of each semiconductor, it includes:
  • the first model parameter is a parameter that participates in establishing an equivalent model of all semiconductor devices within the size array range.
  • the processor executes the model card of each semiconductor of the block unit to establish an equivalent model of all semiconductor devices within the size array, it includes:
  • the model card of the semiconductor device is fused according to the first model parameter and interpolation formula, and the interpolation formula is:
  • the second model parameter Q determines the second model parameter Q, the second model parameter factor value in the channel length direction of the semiconductor device LQ, the second model The factor value WQ of the parameter in the channel width direction of the semiconductor device and the factor value PQ of the second model parameter in the diagonal direction of the channel of the semiconductor device to obtain an equivalent model of the semiconductor device;
  • q is the first model parameter, that is The parameters involved in the fusion of the model card of the semiconductor device;
  • Q is the second model parameter, that is, the parameter value corresponding to the semiconductor device of the size to be tested in the equivalent model obtained after the fusion of the interpolation formula;
  • LQ is the second model parameter in the semiconductor
  • the factor value of the device channel length direction; WQ is the factor value of the second model parameter in the semiconductor device channel width direction;
  • PQ is the factor value of the second model parameter in the semiconductor device channel diagonal direction;
  • L is the semiconductor device The channel length value, W is the channel width value of the semiconductor device, and the unit
  • the computer program 62 may be divided into one or more modules / units, and the one or more modules / units are stored in the memory 61 and executed by the processor 60 to complete This application.
  • the one or more modules / units may be a series of computer program instruction segments capable of performing specific functions, and the instruction segments are used to describe the execution process of the computer program 62 in the terminal device 6.
  • the terminal device 6 may be a computing device such as a desktop computer, a notebook, a palmtop computer and a cloud server.
  • the terminal device may include, but is not limited to, the processor 60 and the memory 61.
  • FIG. 6 is only an example of the terminal device 6 and does not constitute a limitation on the terminal device 6, and may include more or less components than the illustration, or a combination of certain components or different components.
  • the terminal device may further include an input and output device, a network access device, a bus, and the like.
  • the so-called processor 60 may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Ready-made programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the memory 61 may be an internal storage unit of the terminal device 6, such as a hard disk or a memory of the terminal device 6.
  • the memory 61 may also be an external storage device of the terminal device 6, such as a plug-in hard disk equipped on the terminal device 6, a smart memory card (Smart, Media, Card, SMC), and a secure digital (SD) Cards, flash cards, etc.
  • the memory 61 may include both an internal storage unit of the terminal device 6 and an external storage device.
  • the memory 61 is used to store the computer program and other programs and data required by the terminal device.
  • the memory 61 can also be used to temporarily store data that has been or will be output.
  • each functional unit and module is used as an example for illustration.
  • the above-mentioned functions may be allocated by different functional units
  • Module completion means that the internal structure of the device is divided into different functional units or modules to complete all or part of the functions described above.
  • the functional units and modules in the embodiments may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above integrated unit may use hardware It can also be implemented in the form of software functional units.
  • the specific names of each functional unit and module are only for the purpose of distinguishing each other, and are not used to limit the protection scope of the present application.
  • the disclosed device / terminal device and method may be implemented in other ways.
  • the device / terminal device embodiments described above are only schematic.
  • the division of the module or unit is only a logical function division, and in actual implementation, there may be another division manner, such as multiple units Or components can be combined or integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or software functional unit.
  • the integrated module / unit is implemented in the form of a software functional unit and sold or used as an independent product, it may be stored in a computer-readable storage medium.
  • the present application can implement all or part of the processes in the methods of the above embodiments, and can also be completed by a computer program instructing relevant hardware.
  • the computer program can be stored in a computer-readable storage medium. When the program is executed by the processor, the steps of the foregoing method embodiments may be implemented.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file, or some intermediate form.
  • the computer-readable medium may include: any entity or device capable of carrying the computer program code, a recording medium, a USB flash drive, a mobile hard disk, a magnetic disk, an optical disk, a computer memory, a read-only memory (ROM, Read-Only Memory) , Random Access Memory (RAM, Random Access Memory), electrical carrier signals, telecommunications signals and software distribution media, etc.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • electrical carrier signals telecommunications signals and software distribution media, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

一种半导体器件的等效模型建立方法、装置及终端设备,其中,该半导体器件的等效模型建立方法包括获取分块单元的每个半导体器件在外加电压时的特征数据;根据每个半导体的所述特征数据,分别建立每个半导体器件的模型卡;根据所述分块单元的每个半导体的所述模型卡,建立在所述尺寸阵列范围内的所有半导体器件的等效模型。提高了等效模型建立的精确度,减少了拟合时间,通过获取的等效模型可以预测其它尺寸的半导体器件的电性特征。

Description

一种半导体器件的等效模型建立方法、装置及终端设备
本申请要求于2018年11月05日提交中国专利局,申请号为201811308744.4,申请名称为“一种半导体器件的等效模型建立方法、装置及终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及半导体器件建模技术领域,尤其涉及一种半导体器件的等效模型建立方法、装置及终端设备。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然构成现有技术。在显示产品的设计过程中,对于半导体器件的等效建模是集成电路制程与面板设计的桥梁,通过将制程差异转化成模型参数的一部分,进行仿真,可以缩短产品的设计、制造周期,提高产品的成品率。目前,针对器件的一组特性数据,有两种仿真模型可以选择,一种为全局Global模型,另一种为分块Binning模型。
全局模型,就是用一个模型卡为一组特性数据中的所有器件建模。由于只用一个模型卡把其中一个尺寸的器件的模型拟合的精度做的很高,其它尺寸的器件的模型拟合精度就会变差;分块模型就是将尺寸大小不同的器件按尺寸阵列分为若干个方块,每一个方块对应的四个顶点针对一组特征数据中的每一个器件都建立一个点模型,每一个点模型对应一个模型卡和一套模型参数,根据点模型建立每一个分块模型,由多个子模型构成,模型维护困难,容易出现参数的不连续问题,如果参数不连续则需要重新调节相关尺寸器件的模型,然后重新建立新的分块模型,从而使得在有很多不同尺寸大小的半导体器件进行仿真时,仿真速度慢且存在诸多不便。
申请内容
本申请的一个目的在于提供一种半导体器件的等效模型建立方法,包括但不限于解决不同尺寸的半导体器件建立模型精度低,容易出现不连续的现象。
本申请实施例采用的技术方案是:获取分块单元的每个半导体器件在外加电压时的特征数据;其中,所述分块单元为半导体器件尺寸阵列中提取的一个方块,每个半导体器件 为所述分块单元中一个顶点处的尺寸对应的器件;
根据每个半导体的所述特征数据,分别建立每个半导体器件的模型卡;
根据所述分块单元的每个半导体的所述模型卡,建立在所述尺寸阵列范围内的所有半导体器件的等效模型。
在一个实施例中,获取分块单元的每个半导体器件在外加电压时的特征数据;其中,所述分块单元为半导体器件尺寸阵列中提取的一个方块,每个半导体器件为所述分块单元中一个顶点处的尺寸对应的器件,包括:
获取分块单元的每个半导体器件在不同漏极电压时的第一特征数据,以及在不同栅极电压时的第二特征数据。
在一个实施例中,所述获取分块单元的每个半导体器件在不同漏极电压时的第一特征数据,以及在不同栅极电压时的第二特征数据,包括:
获取每个半导体器件在不同漏极电压时,漏源极电流值随栅源极电压差的变化曲线;
获取每个半导体器件在不同栅极电压时,漏源极电流值随漏源极电压差的变化曲线。
在一个实施例中,所述根据每个半导体的所述特征数据,分别建立每个半导体器件的模型卡,包括:
获取所述模型卡中的第一模型参数,所述第一模型参数为参与建立在所述尺寸阵列范围内的所有半导体器件的等效模型的参数。
在一个实施例中,所述根据所述分块单元的每个半导体的所述模型卡,建立在所述尺寸阵列范围内的所有半导体器件的等效模型,包括:
根据所述第一模型参数和插值公式对所述半导体器件的模型卡进行融合,所述插值公式为:
Figure PCTCN2018121209-appb-000001
根据分块单元顶点处的半导体的沟道长度值、沟道宽度值以及第一模型参数,确定第二模型参数Q、第二模型参数在半导体器件沟道长度方向的因素值LQ、第二模型参数在半导体器件沟道宽度方向的因素值WQ以及第二模型参数在半导体器件沟道对角线方向的因素值PQ,以获取半导体器件的等效模型;
其中,q为第一模型参数,即参与半导体器件的模型卡融合时的参数;
Q为第二模型参数,即根据插值公式融合后获取的等效模型中,待验尺寸的半导体器件对应的参数值;
LQ为第二模型参数在半导体器件沟道长度方向的因素值;WQ为第二模型参数在半导 体器件沟道宽度方向的因素值;PQ为第二模型参数在半导体器件沟道对角线方向的因素值;
L为半导体器件的沟道长度值,W为半导体器件的沟道宽度值,单位为微米。
在一个实施例中,所述漏极电压的取值范围为0.5V~30V;所述栅极电压的取值范围为5V~30V。
在一个实施例中,所述第一特征数据包括,漏源极电流的值、栅源极电压差值;漏源极电流值、栅源极电压差值随漏极电压的变化对应改变。
本申请的另一目的在于提供一种半导体器件的等效模型建立装置,包括:
数据获取单元,用于获取分块单元的每个半导体器件在外加电压时的特征数据;其中,所述分块单元为半导体器件尺寸阵列中提取的一个方块,每个半导体器件为所述分块单元中一个顶点处的尺寸对应的器件;
模型卡建立单元,用于根据每个半导体的所述特征数据,分别建立每个半导体器件的模型卡;
等效模型建立单元,用于根据所述分块单元的每个半导体的所述模型卡,建立在所述尺寸阵列范围内的所有半导体器件的等效模型。
在一个实施例中,所述数据获取单元包括:
第一获取模块,设置为获取分块单元的每个半导体器件在不同漏极电压时的第一特征数据;
第二获取模块,设置为获取分块单元的每个半导体器件在不同栅极电压时的第二特征数据。
在一个实施例中,所述数据获取单元还包括:
第一曲线模块,设置为获取每个半导体器件在不同漏极电压时,漏源极电流值随栅源极电压差的变化曲线;
第二曲线模块,设置为获取每个半导体器件在不同栅极电压时,漏源极电流值随漏源极电压差的变化曲线。
在一个实施例中,所述模型卡建立单元包括:
参数模块,设置为获取所述模型卡中的第一模型参数,所述第一模型参数为参与建立在所述尺寸阵列范围内的所有半导体器件的等效模型的参数。
在一个实施例中,所述等效模型建立单元包括:
插值融合模块,设置为根据所述第一模型参数和插值公式对所述半导体器件的模型卡进行融合,所述插值公式为:
Figure PCTCN2018121209-appb-000002
根据分块单元顶点处的半导体的沟道长度值、沟道宽度值以及第一模型参数,确定第二模型参数Q、第二模型参数在半导体器件沟道长度方向的因素值LQ、第二模型参数在半导体器件沟道宽度方向的因素值WQ以及第二模型参数在半导体器件沟道对角线方向的因素值PQ,以获取半导体器件的等效模型;
其中,q为第一模型参数,即参与半导体器件的模型卡融合时的参数;
Q为第二模型参数,即根据插值公式融合后获取的等效模型中,待验尺寸的半导体器件对应的参数值;
LQ为第二模型参数在半导体器件沟道长度方向的因素值;WQ为第二模型参数在半导体器件沟道宽度方向的因素值;PQ为第二模型参数在半导体器件沟道对角线方向的因素值;
L为半导体器件的沟道长度值,W为半导体器件的沟道宽度值,单位为微米。
在一个实施例中,所述漏极电压的取值范围为0.5V~30V;所述栅极电压的取值范围为5V~30V。
在一个实施例中,所述第一特征数据包括,漏源极电流的值、栅源极电压差值;漏源极电流值、栅源极电压差值随漏极电压的变化对应改变。
本申请的再一目的在于提供一种终端设备,包括:包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述计算机程序被处理器执行时实现上述半导体器件的等效模型建立方法的步骤。
一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其中,所述计算机程序被处理器执行时实现上述半导体器件的等效模型建立方法的步骤。
本申请实施例提供的半导体器件的等效模型建立方法、装置及终端设备,通过对不同尺寸的半导体器件对应的模型卡的融合,提高了等效模型建立的精确度,减少了拟合时间,通过获取的等效模型可以预测其它尺寸的半导体器件的电性特征,进而实现对包含半导体器件的电路的工作性能的预测。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附 图获得其它的附图。
图1是本申请实施例提供的分块模型中半导体器件尺寸阵列的分布示意图;
图2是本申请实施例提供的半导体器件的等效模型建立方法的实现流程示意图;
图3是本申请实施例提供的半导体器件的转移特性曲线示意图;
图4是本申请实施例提供的第一分块单元的阵列示意图;
图5是本申请实施例提供的半导体器件的等效模型建立装置的示意图;
图6是本申请实施例提供的终端设备的示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
需说明的是,当部件被称为“固定于”或“设置于”另一个部件,它可以直接在另一个部件上或者间接在该另一个部件上。当一个部件被称为是“连接于”另一个部件,它可以是直接或者间接连接至该另一个部件上。术语“上”、“下”、“左”、“右”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制,对于本领域的普通技术人员而言,可以根据具体情况理解上述术语的具体含义。术语“第一”、“第二”仅用于便于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明技术特征的数量。“多个”的含义是两个或两个以上,除非另有明确具体的限定。
为了说明本申请所述的技术方案,以下结合具体附图及实施例进行详细说明。
图1是本申请实施例提供的分块模型中半导体器件尺寸阵列的分布示意图,以半导体器件的沟道宽度为横轴,以沟道长度为纵轴;在一定的沟道宽度范围内,如图1中的最小宽度Wmin至最大宽度Wmax范围内,以及对应在一定的沟道长度范围内,如图1中的最小长度Lmin至最大长度Lmax范围内,根据半导体器件的沟道具体的长宽尺寸划分多个方块1Bin1、方块2Bin2等,每一个方块对应的顶点分别对应一个尺寸的半导体器件,每个方块为一个分块单元,每个分块单元针对一组特征数据,特征数据包括但不限于每个半导体器件的开启电压、跨导电压、最小漏源电压对应的最大电流、最大充电电流以及漏电流等;每个顶点对应的每一个不同尺寸的器件,相邻两个顶点处的半导体器件具有相同的沟道长度或者相同的沟道宽度,根据每一个器件的特征数据对应建立一个模型卡,一套模型卡对应有一套模型参数,模型参数在不同尺寸的半导体器件的模型建立中具有较强的连续性, 使得最终拟合建立的半导体器件模型满足精度的要求。
参见图2,是本申请一个实施例提供的半导体器件的等效模型建立方法的实现流程示意图。由于对薄膜晶体管(Thin Film Transistor,TFT)器件性能影响最大就是器件沟道的长度和宽度,该方法主要基于半导体器件的沟道长度与宽度的特性,建立器件的等效模型,例如对薄膜晶体管TFT等效模型的建立,根据所建立的等效模型可以对TFT器件的相关的制程参数进行转化仿真,进一步预测器件应用到电路中的工作性能;所述的相关参数包括:亚阈值区VFB、最大充电电流ALPHASAT、漏电IOL等。如图所示,该方法可以包括以下步骤:
步骤S201,获取分块单元的每个半导体器件在外加电压时的特征数据;其中,所述分块单元为半导体器件尺寸阵列中提取的一个方块,每个半导体器件为所述分块单元中一个顶点处的尺寸对应的器件。
在一个实施例中,所述分块单元为半导体器件尺寸分布阵列中提取的一个方块,一个分块单元可以包括四个顶点,每个顶点处对应一个尺寸的半导体器件;所述的尺寸阵列为按照半导体器件的沟道的长度和宽度对器件进行的划分;每个分块单元与相邻的分块单元共用两个顶点,两个顶点处的半导体器件也为两个分块单元的相同尺寸的共用器件,从而可以避免建立的等效模型存在器件尺寸不连续的情况。
所述的半导体器件包括漏极、栅极和源极;在半导体外加电压的作用下,半导体器件的能带以及半导体的栅极、漏极和源极的电荷分布会发生变化,会相应的形成两种状态,包括:低沟道电阻、大电流的开态和高沟道电阻、小电流的关态;其中,半导体器件的源极和漏极的间距为沟道长L,垂直L方向的是源漏极的宽度W。
在一个实施例中,获取分块单元的每个半导体器件在外加电压时的特征数据;其中,所述分块单元为半导体器件尺寸阵列中提取的一个方块,每个半导体器件为所述分块单元中一个顶点处的尺寸对应的器件,包括:
获取分块单元的每个半导体器件在不同漏极电压时的第一特征数据,以及在不同栅极电压时的第二特征数据。
所述第一特征数据包括,漏源极电流的值、栅源极电压差值;漏源极电流值、栅源极电压差值随漏极电压的变化对应改变。在不同漏极电压下,漏源极电流的值、栅源极电压差值也不同。
另外,所述第一特征数据可以在不同的漏极电压下测量获得,所述漏极电压的取值范围为0.5V~30V;所述栅极电压的取值范围为5V~30V。
在一个实施例中,所述获取分块单元的每个半导体器件在不同漏极电压时的第一特征 数据,以及在不同栅极电压时的第二特征数据,包括:
获取每个半导体器件在不同漏极电压时,漏源极电流值随栅源极电压差的变化曲线;
获取每个半导体器件在不同栅极电压时,漏源极电流值随漏源极电压差的变化曲线。
在一个实施例中,不同的漏极电压下的半导体器件,存在栅源电压差与漏源电流的对应变化关系,从而可以获取半导体器件的转移特征曲线,如图3所示,不同的漏极电压可以产生不同的栅源极电压差V GS,不同的栅源极电压差V GS对应不同的漏源极电流,所形成的曲线包括半导体器件的截止区、亚阈值区、饱和区以及线性区,从而反映出半导体器件的电性能。
在一个实施例中,半导体器件所接入的栅极电压的不同,会产生不同漏源极电压差V DS,不同的漏源极电压差V DS对应不同的漏源极电流,所述的第二特征数据包括:漏源极电压差V DS和漏源极电流I DS
在一个实施例中,不同的栅极电压下的半导体器件,存在漏源电压差与漏源电流的对应变化关系,从而可以获取半导体器件的转移特征曲线;如图3所示的转移特性曲线中,不同的漏源极电压差在相同的栅源极电压差下对应的漏源极电流不同。
步骤S202,根据每个半导体的所述特征数据,分别建立每个半导体器件的模型卡。
在具体应用中,可以根据获取的半导体器件的特征数据,建立对应的模型卡;所述的特征数据包括:漏源极电流值随漏源极电压差变化曲线和漏源极电流值随栅源极电压差变化曲线。提取曲线不同区域的特征值,根据特征值对曲线进行拟合,建立每个半导体器件对应的模型卡,每个模型卡对应一个尺寸的半导体器件,所述模型卡中还包括与该半导体器件对应的模型参数,所述的模型参数为针对每个模型卡设置的已知参数,包括针对特定尺寸的半导体器件建立的模型卡所设置的已知的半导体器件的门槛电压VTO。
在一个实施例中,所述根据每个半导体的所述特征数据,分别建立每个半导体器件的模型卡,包括:
获取所述模型卡中的第一模型参数,所述第一模型参数为参与建立在所述尺寸阵列范围内的所有半导体器件的等效模型的参数。
在一个实施例中,建立模型卡的过程中,根据第一特征数据和第二特征数据,以及漏源极电流值随漏源极电压差变化曲线、漏源极电流值随栅源极电压差的变化曲线,还可以获取模型卡中的一套模型参数,所述模型参数包括:门槛电压VTO、传导带迁移率Muband(Ion)、亚阈值区VFB、最大充电电流ALPHASAT、漏电VDSL、漏电IOL等;不同的模型卡也可以包含不同的模型参数;所述的模型参数为建立半导体器件等效模型的依据,也是判断半导体器件电性能的参考量。
步骤S203,根据所述分块单元的每个半导体的所述模型卡,建立在所述尺寸阵列范围内的所有半导体器件的等效模型。
在本实施例中,一个分块单元可以包括四个尺寸的半导体器件,相邻的两个半导体器件具有相同尺寸的沟道长或沟道宽;根据每个尺寸的半导体器件的特征数据可以获取每个半导体器件对应的模型卡。每个分块单元可以建立四个模型卡,对分块单元的四个模型卡利用差值法进行融合,获取在整个尺寸阵列范围内的所有半导体的等效模型;所述的等效模型基于半导体器件的尺寸特征以及模型参数建立。由于每个分块单元之间是有重叠的,所建立等效模型的半导体器件的尺寸是连续的,因此可以避免建立的等效模型存在不连续的问题,并且可以根据所建立的等效模型获取不同尺寸器件的模型参数,根据模型参数可以分析器件的电性能,进而预测器件在电路中的工作性能。
在一个实施例中,所述根据所述分块单元的每个半导体的所述模型卡,建立在所述尺寸阵列范围内的所有半导体器件的等效模型,包括:
根据所述第一模型参数和插值公式对所述半导体器件的模型卡进行融合,所述插值公式为:
Figure PCTCN2018121209-appb-000003
根据分块单元顶点处的半导体的沟道长度值、沟道宽度值以及第一模型参数,确定第二模型参数Q、第二模型参数在半导体器件沟道长度方向的因素值LQ、第二模型参数在半导体器件沟道宽度方向的因素值WQ以及第二模型参数在半导体器件沟道对角线方向的因素值PQ,以获取半导体器件的等效模型;中,q为第一模型参数,即参与半导体器件的模型卡融合时的参数;Q为第二模型参数,即根据插值公式融合后获取的等效模型中,待验尺寸的半导体器件对应的参数值;LQ为第二模型参数在半导体器件沟道长度方向的因素值;WQ为第二模型参数在半导体器件沟道宽度方向的因素值;PQ为第二模型参数在半导体器件沟道对角线方向的因素值;L为半导体器件的沟道长度值,W为半导体器件的沟道宽度值,单位为微米。
在一个实施例中,对已知尺寸的半导体器件的模型卡的建立,除了根据测量的特征数据直接建立模型卡,还包括:根据建立好的分块模型,利用差值法间接推算所需尺寸的半导体器件的模型卡;对分块矩阵中单个点对应尺寸的半导体器件模型,通过归一化推算所需尺寸的半导体器件的模型卡。
如图4所示的本申请一个实施例提供的第一分块单元的阵列示意图,获取在位置PM1、PM2、PM3、PM4处的不同尺寸的晶体管TFT的模型卡,以及不同门槛电压VTO模型参 数,根据上述公式(1)建立四元一次方程组,其中位置PM1处的q为2.5,L为10微米,W为50微米;位置PM2处的q为2.1,L为10微米,W为10微米;位置PM3处的q为1.8,L为5微米,W为10微米;位置PM4处的q为1.7,L为5微米,W为50微米;所建立的内差点方程组为
Figure PCTCN2018121209-appb-000004
求解得出
Figure PCTCN2018121209-appb-000005
可以根据上述方程组求解的结果计算内差点,L=7微米、W=25微米,对应的半导体器件的其中一个模型参数,例如模型参数为门槛电压VTO,则
Figure PCTCN2018121209-appb-000006
若要获取外差点,尺寸为L=20微米,W=100微米的器件的其中一个模型参数门槛电压VTO,则:
Figure PCTCN2018121209-appb-000007
需要说明的是,上述求解得出的结果只是针对半导体器件其中一类模型参数,每个半导体器件包括多个模型参数,不仅限于门槛电压VTO参数,还可以根据模型卡中设置的其它类的已知模型参数,通过一个分块单元获取等效模型相关的系数,求得该分块单元的内插点或者外插点的模型参数,进而根据求得的模型参数评估半导体器件的性能,实现对应用到电路中工作性能的预测。
通过本申请实施例,获取分块单元中每个半导体器件的在不同漏极电压以及在不同栅极电压下的特征数据,根据特征数据建立每个半导体器件的模型卡,再对分块单元四个半导体器件对应的模型卡进行融合获取在尺寸阵列范围内的所有半导体器件的等效模型,通 过对不同尺寸的半导体器件对应的模型卡的融合,提高了等效模型建立的精确度,减少了拟合时间,通过获取的等效模型可以预测其它尺寸的半导体器件的电性特征,进而实现对电路工作性能的预测。
需要说明的是,本领域技术人员在本申请揭露的技术范围内,可容易想到的其他排序方案也应在本申请的保护范围之内,在此不一一赘述。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
参见图5,是本申请一个实施例提供的半导体器件的等效模型建立装置的示意图,为了便于说明,仅示出了与本申请实施例相关的部分。
所述半导体器件的等效模型建立装置包括:
数据获取单元51,用于获取分块单元的每个半导体器件在外加电压时的特征数据;其中,所述分块单元为半导体器件尺寸阵列中提取的一个方块,每个半导体器件为所述分块单元中一个顶点处的尺寸对应的器件;
模型卡建立单元52,用于根据每个半导体的所述特征数据,分别建立每个半导体器件的模型卡;
等效模型建立单元53,用于根据所述分块单元的每个半导体的所述模型卡,建立在所述尺寸阵列范围内的所有半导体器件的等效模型。
在一个实施例中,所述数据获取单元包括:
第一获取模块,用于获取分块单元的每个半导体器件在不同漏极电压时的第一特征数据;
第二获取模块,用于获取分块单元的每个半导体器件在不同栅极电压时的第二特征数据。
所述数据获取单元还包括:
第一曲线模块,设置为获取每个半导体器件在不同漏极电压时,漏源极电流值随栅源极电压差的变化曲线;
第二曲线模块,设置为获取每个半导体器件在不同栅极电压时,漏源极电流值随漏源极电压差的变化曲线。
在一个实施例中,所述模型卡建立单元包括:
参数模块,设置为获取所述模型卡中的第一模型参数,所述第一模型参数为参与建立在所述尺寸阵列范围内的所有半导体器件的等效模型的参数。
在一个实施例中,所述等效模型建立单元包括:
插值融合模块,设置为根据所述第一模型参数和插值公式对所述半导体器件的模型卡进行融合,所述插值公式为:
Figure PCTCN2018121209-appb-000008
根据分块单元顶点处的半导体的沟道长度值、沟道宽度值以及第一模型参数,确定第二模型参数Q、第二模型参数在半导体器件沟道长度方向的因素值LQ、第二模型参数在半导体器件沟道宽度方向的因素值WQ以及第二模型参数在半导体器件沟道对角线方向的因素值PQ,以获取半导体器件的等效模型;其中,q为第一模型参数,即参与半导体器件的模型卡融合时的参数;Q为第二模型参数,即根据插值公式融合后获取的等效模型中,待验尺寸的半导体器件对应的参数值;LQ为第二模型参数在半导体器件沟道长度方向的因素值;WQ为第二模型参数在半导体器件沟道宽度方向的因素值;PQ为第二模型参数在半导体器件沟道对角线方向的因素值;L为半导体器件的沟道长度值,W为半导体器件的沟道宽度值,单位为微米。
在一个实施例中,所述漏极电压的取值范围为0.5V~30V;所述栅极电压的取值范围为5V~30V。
在一个实施例中,所述第一特征数据包括,漏源极电流的值、栅源极电压差值;漏源极电流值、栅源极电压差值随漏极电压的变化对应改变。
通过本申请实施例,获取分块单元中每个半导体器件的在不同漏极电压以及在不同栅极电压下的特征数据,根据特征数据建立每个半导体器件的模型卡,再对分块单元四个半导体器件对应的模型卡进行融合获取在尺寸阵列范围内的所有半导体器件的等效模型,通过对不同尺寸的半导体器件对应的模型卡的融合,提高了等效模型建立的精确度,减少了拟合时间,通过获取的等效模型可以预测其它尺寸的半导体器件的电性特征,进而实现对电路工作性能的预测。
在一个实施例中,所述装置中的各单元或模块均可以通过具有相应功能的器件或电路实现,可以通过通用集成电路,例如CPU(Central Processing Unit,中央处理器),或通过ASIC(Application Specific Integrated Circuit,专用集成电路)来实现。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述移动终端的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可 以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述移动终端中模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
图6是本申请一实施例提供的终端设备的示意图。如图6所示,该实施例的终端设备6包括:处理器60、存储器61以及存储在所述存储器61中并可在所述处理器60上运行的计算机程序62。所述处理器60执行所述计算机程序62时实现上述各个半导体器件的等效模型建立方法实施例中的步骤,例如图2所示的步骤S201至S203。或者,所述处理器60执行所述计算机程序62时实现上述各装置实施例中各模块/单元的功能,例如图5所示模块51至53的功能。
在一个实施例中,所述处理器调用所述存储器中存储的计算机程序代码执行以下操作:
获取分块单元的每个半导体器件在外加电压时的特征数据;其中,所述分块单元为半导体器件尺寸阵列中提取的一个方块,每个半导体器件为所述分块单元中一个顶点处的尺寸对应的器件;
根据每个半导体的所述特征数据,分别建立每个半导体器件的模型卡;
根据所述分块单元的每个半导体的所述模型卡,建立在所述尺寸阵列范围内的所有半导体器件的等效模型。
在一个实施例中,所述处理器执行获取分块单元的每个半导体器件在外加电压时的特征数据时,包括:
获取分块单元的每个半导体器件在不同漏极电压时的第一特征数据,以及在不同栅极电压时的第二特征数据。
在一个实施例中,所述处理器执行获取分块单元的每个半导体器件在不同漏极电压时的第一特征数据,以及在不同栅极电压时的第二特征数据时,包括:
获取每个半导体器件在不同漏极电压时,漏源极电流值随栅源极电压差的变化曲线;
获取每个半导体器件在不同栅极电压时,漏源极电流值随漏源极电压差的变化曲线。
在一个实施例中,所述处理器执行根据每个半导体的所述特征数据,分别建立每个半导体器件的模型卡时,包括:
获取所述模型卡中的第一模型参数,所述第一模型参数为参与建立在所述尺寸阵列范围内的所有半导体器件的等效模型的参数。
在一个实施例中,所述处理器执行根据所述分块单元的每个半导体的所述模型卡,建立在所述尺寸阵列范围内的所有半导体器件的等效模型时,包括:
根据所述第一模型参数和插值公式对所述半导体器件的模型卡进行融合,所述插值公 式为:
Figure PCTCN2018121209-appb-000009
根据分块单元顶点处的半导体的沟道长度值、沟道宽度值以及第一模型参数,确定第二模型参数Q、第二模型参数在半导体器件沟道长度方向的因素值LQ、第二模型参数在半导体器件沟道宽度方向的因素值WQ以及第二模型参数在半导体器件沟道对角线方向的因素值PQ,以获取半导体器件的等效模型;其中,q为第一模型参数,即参与半导体器件的模型卡融合时的参数;Q为第二模型参数,即根据插值公式融合后获取的等效模型中,待验尺寸的半导体器件对应的参数值;LQ为第二模型参数在半导体器件沟道长度方向的因素值;WQ为第二模型参数在半导体器件沟道宽度方向的因素值;PQ为第二模型参数在半导体器件沟道对角线方向的因素值;L为半导体器件的沟道长度值,W为半导体器件的沟道宽度值,单位为微米。
示例性的,所述计算机程序62可以被分割成一个或多个模块/单元,所述一个或者多个模块/单元被存储在所述存储器61中,并由所述处理器60执行,以完成本申请。所述一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述所述计算机程序62在所述终端设备6中的执行过程。
所述终端设备6可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。所述终端设备可包括,但不仅限于,处理器60、存储器61。本领域技术人员可以理解,图6仅仅是终端设备6的示例,并不构成对终端设备6的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述终端设备还可以包括输入输出设备、网络接入设备、总线等。
所称处理器60可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器61可以是所述终端设备6的内部存储单元,例如终端设备6的硬盘或内存。所述存储器61也可以是所述终端设备6的外部存储设备,例如所述终端设备6上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器61还可以既包括所述终端设备6的内部存 储单元也包括外部存储设备。所述存储器61用于存储所述计算机程序以及所述终端设备所需的其他程序和数据。所述存储器61还可以用于暂时地存储已经输出或者将要输出的数据。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置/终端设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/终端设备实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。需要说明的是,所述计算机可读介质包含的内容可以根据司法管辖区内立法和专利实践的要求进行适当的增减,例如在某些司法管辖区,根据立法和专利实践,计算机可读介质不包括是电载波信号和电信信号。
以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (19)

  1. 一种半导体器件的等效模型建立方法,其中,包括:
    获取分块单元的每个半导体器件在外加电压时的特征数据;其中,所述分块单元为半导体器件尺寸阵列中提取的一个方块,每个半导体器件为所述分块单元中一个顶点处的尺寸对应的器件;
    根据每个半导体的所述特征数据,分别建立每个半导体器件的模型卡;
    根据所述分块单元的每个半导体的所述模型卡,建立在所述尺寸阵列范围内的所有半导体器件的等效模型。
  2. 根据权利要求1所述的半导体器件的等效模型建立方法,其中,获取分块单元的每个半导体器件在外加电压时的特征数据;其中,所述分块单元为半导体器件尺寸阵列中提取的一个方块,每个半导体器件为所述分块单元中一个顶点处的尺寸对应的器件,包括:
    获取分块单元的每个半导体器件在不同漏极电压时的第一特征数据,以及在不同栅极电压时的第二特征数据。
  3. 根据权利要求2所述的半导体器件的等效模型建立方法,其中,所述获取分块单元的每个半导体器件在不同漏极电压时的第一特征数据,以及在不同栅极电压时的第二特征数据,包括:
    获取每个半导体器件在不同漏极电压时,漏源极电流值随栅源极电压差的变化曲线;
    获取每个半导体器件在不同栅极电压时,漏源极电流值随漏源极电压差的变化曲线。
  4. 根据权利要求1所述的半导体器件的等效模型建立方法,其中,所述根据每个半导体的所述特征数据,分别建立每个半导体器件的模型卡,包括:
    获取所述模型卡中的第一模型参数,所述第一模型参数为参与建立在所述尺寸阵列范围内的所有半导体器件的等效模型的参数。
  5. 根据权利要求4所述的半导体器件的等效模型建立方法,其中,所述根据所述分块单元的每个半导体的所述模型卡,建立在所述尺寸阵列范围内的所有半导体器件的等效模型,包括:
    根据所述第一模型参数和插值公式对所述半导体器件的模型卡进行融合,所述插值公式为:
    Figure PCTCN2018121209-appb-100001
    根据分块单元顶点处的半导体的沟道长度值、沟道宽度值以及第一模型参数,确定第二模型参数Q、第二模型参数在半导体器件沟道长度方向的因素值LQ、第二模型参数在半导体器件沟道宽度方向的因素值WQ以及第二模型参数在半导体器件沟道对角线方向的因素值PQ,以获取半导体器件的等效模型;
    其中,q为第一模型参数,即参与半导体器件的模型卡融合时的参数;
    Q为第二模型参数,即根据插值公式融合后获取的等效模型中,待验尺寸的半导体器件对应的参数值;
    LQ为第二模型参数在半导体器件沟道长度方向的因素值;WQ为第二模型参数在半导体器件沟道宽度方向的因素值;PQ为第二模型参数在半导体器件沟道对角线方向的因素值;
    L为半导体器件的沟道长度值,W为半导体器件的沟道宽度值,单位为微米。
  6. 根据权利要求2所述的半导体器件的等效模型建立方法,其中,所述漏极电压的取值范围为0.5V~30V;所述栅极电压的取值范围为5V~30V。
  7. 根据权利要求2所述的半导体器件的等效模型建立方法,其中,所述第一特征数据包括,漏源极电流的值、栅源极电压差值;漏源极电流值、栅源极电压差值随漏极电压的变化对应改变。
  8. 一种半导体器件的等效模型建立装置,其中,包括:
    数据获取单元,设置为获取分块单元的每个半导体器件在外加电压时的特征数据;其中,所述分块单元为半导体器件尺寸阵列中提取的一个方块,每个半导体器件为所述分块单元中一个顶点处的尺寸对应的器件;
    模型卡建立单元,设置为根据每个半导体的所述特征数据,分别建立每个半导体器件的模型卡;
    等效模型建立单元,设置为根据所述分块单元的每个半导体的所述模型卡,建立在所述尺寸阵列范围内的所有半导体器件的等效模型。
  9. 根据权利要求8所述的半导体器件的等效模型建立装置,其中,所述数据获取单元包括:
    第一获取模块,设置为获取分块单元的每个半导体器件在不同漏极电压时的第一特征数据;
    第二获取模块,设置为获取分块单元的每个半导体器件在不同栅极电压时的第二特征数据。
  10. 根据权利要求9所述的半导体器件的等效模型建立装置,其中,所述数据获取单 元还包括:
    第一曲线模块,设置为获取每个半导体器件在不同漏极电压时,漏源极电流值随栅源极电压差的变化曲线;
    第二曲线模块,设置为获取每个半导体器件在不同栅极电压时,漏源极电流值随漏源极电压差的变化曲线。
  11. 根据权利要求8所述的半导体器件的等效模型建立装置,其中,所述模型卡建立单元包括:
    参数模块,设置为获取所述模型卡中的第一模型参数,所述第一模型参数为参与建立在所述尺寸阵列范围内的所有半导体器件的等效模型的参数。
  12. 根据权利要求11所述的半导体器件的等效模型建立装置,其中,所述等效模型建立单元包括:
    插值融合模块,设置为根据所述第一模型参数和插值公式对所述半导体器件的模型卡进行融合,所述插值公式为:
    Figure PCTCN2018121209-appb-100002
    根据分块单元顶点处的半导体的沟道长度值、沟道宽度值以及第一模型参数,确定第二模型参数Q、第二模型参数在半导体器件沟道长度方向的因素值LQ、第二模型参数在半导体器件沟道宽度方向的因素值WQ以及第二模型参数在半导体器件沟道对角线方向的因素值PQ,以获取半导体器件的等效模型;
    其中,q为第一模型参数,即参与半导体器件的模型卡融合时的参数;
    Q为第二模型参数,即根据插值公式融合后获取的等效模型中,待验尺寸的半导体器件对应的参数值;
    LQ为第二模型参数在半导体器件沟道长度方向的因素值;WQ为第二模型参数在半导体器件沟道宽度方向的因素值;PQ为第二模型参数在半导体器件沟道对角线方向的因素值;
    L为半导体器件的沟道长度值,W为半导体器件的沟道宽度值,单位为微米。
  13. 根据权利要求9所述的半导体器件的等效模型建立装置,其中,所述漏极电压的取值范围为0.5V~30V;所述栅极电压的取值范围为5V~30V。
  14. 根据权利要求9所述的半导体器件的等效模型建立装置,其中,所述第一特征数据包括,漏源极电流的值、栅源极电压差值;漏源极电流值、栅源极电压差值随漏极电压的变化对应改变。
  15. 一种终端设备,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其中,所述处理器调用所述存储器中存储的计算机程序代码执行以下操作:
    获取分块单元的每个半导体器件在外加电压时的特征数据;其中,所述分块单元为半导体器件尺寸阵列中提取的一个方块,每个半导体器件为所述分块单元中一个顶点处的尺寸对应的器件;
    根据每个半导体的所述特征数据,分别建立每个半导体器件的模型卡;
    根据所述分块单元的每个半导体的所述模型卡,建立在所述尺寸阵列范围内的所有半导体器件的等效模型。
  16. 根据权利要求15所述的终端设备,其中,所述处理器执行获取分块单元的每个半导体器件在外加电压时的特征数据时,包括:
    获取分块单元的每个半导体器件在不同漏极电压时的第一特征数据,以及在不同栅极电压时的第二特征数据。
  17. 根据权利要求16所述的终端设备,其中,所述处理器执行获取分块单元的每个半导体器件在不同漏极电压时的第一特征数据,以及在不同栅极电压时的第二特征数据时,包括:
    获取每个半导体器件在不同漏极电压时,漏源极电流值随栅源极电压差的变化曲线;
    获取每个半导体器件在不同栅极电压时,漏源极电流值随漏源极电压差的变化曲线。
  18. 根据权利要求15所述的终端设备,其中,所述处理器执行根据每个半导体的所述特征数据,分别建立每个半导体器件的模型卡时,包括:
    获取所述模型卡中的第一模型参数,所述第一模型参数为参与建立在所述尺寸阵列范围内的所有半导体器件的等效模型的参数。
  19. 根据权利要求18所述的终端设备,其中,所述处理器执行根据所述分块单元的每个半导体的所述模型卡,建立在所述尺寸阵列范围内的所有半导体器件的等效模型时,包括:
    根据所述第一模型参数和插值公式对所述半导体器件的模型卡进行融合,所述插值公式为:
    Figure PCTCN2018121209-appb-100003
    根据分块单元顶点处的半导体的沟道长度值、沟道宽度值以及第一模型参数,确定第二模型参数Q、第二模型参数在半导体器件沟道长度方向的因素值LQ、第二模型参数在半 导体器件沟道宽度方向的因素值WQ以及第二模型参数在半导体器件沟道对角线方向的因素值PQ,以获取半导体器件的等效模型;
    其中,q为第一模型参数,即参与半导体器件的模型卡融合时的参数;
    Q为第二模型参数,即根据插值公式融合后获取的等效模型中,待验尺寸的半导体器件对应的参数值;
    LQ为第二模型参数在半导体器件沟道长度方向的因素值;WQ为第二模型参数在半导体器件沟道宽度方向的因素值;PQ为第二模型参数在半导体器件沟道对角线方向的因素值;
    L为半导体器件的沟道长度值,W为半导体器件的沟道宽度值,单位为微米。
PCT/CN2018/121209 2018-11-05 2018-12-14 一种半导体器件的等效模型建立方法、装置及终端设备 WO2020093525A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811308744.4 2018-11-05
CN201811308744.4A CN109388911B (zh) 2018-11-05 2018-11-05 一种半导体器件的等效模型建立方法、装置及终端设备

Publications (1)

Publication Number Publication Date
WO2020093525A1 true WO2020093525A1 (zh) 2020-05-14

Family

ID=65428428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121209 WO2020093525A1 (zh) 2018-11-05 2018-12-14 一种半导体器件的等效模型建立方法、装置及终端设备

Country Status (2)

Country Link
CN (1) CN109388911B (zh)
WO (1) WO2020093525A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113311304B (zh) * 2021-04-28 2024-03-19 滁州惠科光电科技有限公司 半导体器件的性能检测方法和检测模型的建立方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080020417A (ko) * 2006-08-31 2008-03-05 동부일렉트로닉스 주식회사 Cmos 소자의 spice 모델링 방법
CN102385647A (zh) * 2010-09-01 2012-03-21 上海宏力半导体制造有限公司 一种建立mosfet模型的方法
CN104462728A (zh) * 2014-12-30 2015-03-25 上海华虹宏力半导体制造有限公司 半导体器件的模拟方法及模拟装置
CN106991201A (zh) * 2016-01-20 2017-07-28 中国科学院上海微系统与信息技术研究所 一种soi mosfet总剂量模型参数确定方法
CN108304663A (zh) * 2018-02-06 2018-07-20 上海华力微电子有限公司 射频晶体管射频参数模型建立方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080020417A (ko) * 2006-08-31 2008-03-05 동부일렉트로닉스 주식회사 Cmos 소자의 spice 모델링 방법
CN102385647A (zh) * 2010-09-01 2012-03-21 上海宏力半导体制造有限公司 一种建立mosfet模型的方法
CN104462728A (zh) * 2014-12-30 2015-03-25 上海华虹宏力半导体制造有限公司 半导体器件的模拟方法及模拟装置
CN106991201A (zh) * 2016-01-20 2017-07-28 中国科学院上海微系统与信息技术研究所 一种soi mosfet总剂量模型参数确定方法
CN108304663A (zh) * 2018-02-06 2018-07-20 上海华力微电子有限公司 射频晶体管射频参数模型建立方法

Also Published As

Publication number Publication date
CN109388911B (zh) 2021-09-03
CN109388911A (zh) 2019-02-26

Similar Documents

Publication Publication Date Title
US12045552B2 (en) Layout method of a chip and electronic equipment
US8176445B1 (en) Method and system for optimizing integrated circuit layout
US8136079B2 (en) Effective gate length circuit modeling based on concurrent length and mobility analysis
US10685160B2 (en) Large cluster persistence during placement optimization of integrated circuit designs
US9009638B1 (en) Estimating transistor characteristics and tolerances for compact modeling
US10037394B1 (en) Hierarchical timing analysis for multi-instance blocks
US10846451B1 (en) Methods of modelling irregular shaped transistor devices in circuit simulation
US10169501B1 (en) Timing context generation with multi-instance blocks for hierarchical analysis
JP2023514984A (ja) 半導体の設計と製造のための材料からシステムまで統合されたシミュレーション及び検証
JP5504506B2 (ja) シミュレーション方法及びシミュレーション装置
CN111339724A (zh) 用于生成数据处理模型和版图的方法、设备和存储介质
WO2020093525A1 (zh) 一种半导体器件的等效模型建立方法、装置及终端设备
US9483593B2 (en) Method for decomposing a hardware model and for accelerating formal verification of the hardware model
US11030362B2 (en) Modeling and cooperative simulation of systems with interdependent discrete and continuous elements
Srivastava et al. Independent and interdependent latch setup/hold time characterization via Newton–Raphson solution and Euler curve tracking of state-transition equations
US10885260B1 (en) Fin-based fill cell optimization
US10372837B2 (en) Integrated circuit buffering solutions considering sink delays
CN112861297B (zh) Mos晶体管特征提取方法、装置、介质及电子设备
CN114417581A (zh) 基于spice模型的仿真方法、仿真系统
CN113486583B (zh) 设备的健康评估方法、装置、计算机设备及计算机可读存储介质
US8352893B1 (en) Circuit topology recognition and circuit partitioning
WO2014100660A2 (en) Identifying circuit elements for selective inclusion in speed-push processing in an integrated circuit, and related circuit systems, apparatus, and computer-readable media
US8825455B2 (en) On-demand table model for semiconductor device evaluation
US8418089B2 (en) Computer readable non-transitory medium storing design aiding program, design aiding apparatus, and design aiding method for determining performance index of an integrated circuit in worst case operation conditions
US8539426B2 (en) Method and system for extracting compact models for circuit simulation

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01.09.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18939548

Country of ref document: EP

Kind code of ref document: A1