WO2019210661A1 - 一类基于萘并茚芴高双光子吸收的共轭聚合物及其制备方法与应用 - Google Patents

一类基于萘并茚芴高双光子吸收的共轭聚合物及其制备方法与应用 Download PDF

Info

Publication number
WO2019210661A1
WO2019210661A1 PCT/CN2018/112556 CN2018112556W WO2019210661A1 WO 2019210661 A1 WO2019210661 A1 WO 2019210661A1 CN 2018112556 W CN2018112556 W CN 2018112556W WO 2019210661 A1 WO2019210661 A1 WO 2019210661A1
Authority
WO
WIPO (PCT)
Prior art keywords
photon
photon absorption
reaction
naphthoquinone
conjugated polymer
Prior art date
Application number
PCT/CN2018/112556
Other languages
English (en)
French (fr)
Inventor
应磊
郭婷
胡黎文
彭俊彪
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2019210661A1 publication Critical patent/WO2019210661A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/143Side-chains containing nitrogen
    • C08G2261/1434Side-chains containing nitrogen containing triarylamine moieties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/18Definition of the polymer structure conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • C08G2261/3142Condensed aromatic systems, e.g. perylene, anthracene or pyrene fluorene-based, e.g. fluorene, indenofluorene, or spirobifluorene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/52Luminescence
    • C08G2261/522Luminescence fluorescent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/64Solubility
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1416Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1433Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1466Heterocyclic containing nitrogen as the only heteroatom

Definitions

  • the invention relates to the field of two-photon fluorescent polymers, in particular to a kind of conjugated polymers based on high two-photon absorption of naphthoquinone, and a preparation method and application thereof.
  • Two-photon absorption is a nonlinear optical phenomenon. With the rapid advancement of laser technology, researchers have explored the development of two-photon absorption more and more. In addition to being a spectral result, it is more widely applied to three-dimensional information storage. , two-photon upconversion laser, two-photon absorption optical limiting, two-photon fluorescence microscopy, photodynamic therapy and other fields.
  • the naphthoquinone unit is a rigid planar structure with high fluorescence quantum yield.
  • the naphthoquinone unit is introduced into the polymer backbone, which has high fluorescence quantum yield and excellent solubility, which is beneficial to enhance polymerization.
  • the two-photon absorption capacity of the object is a rigid planar structure with high fluorescence quantum yield.
  • the polymer has good solubility, high fluorescence quantum yield and strong two-photon response.
  • the method produces a conjugated polymer based on naphthoquinone high two-photon absorption by Suzuki polycondensation reaction with a large conjugated planar naphthoquinone unit and different units.
  • a class of conjugated polymers based on high two-photon absorption of naphthoquinone the polymer has the following structural formula:
  • n 1 ⁇ 1000;
  • R is a linear or branched C 1 ⁇ C 30 alkyl group or a C 1 ⁇ C 30 alkoxy group or a phenoxy group.
  • the Ar is any one of the following structural formulas:
  • R 1 to R 6 may be the same or different and are independently selected from H, C 1 to C 30 linear or branched alkyl groups, or C 1 to C 30 alkoxy groups, or phenoxy groups.
  • the above preparation method for a conjugated polymer based on naphthoquinone high two-photon absorption comprises the following steps:
  • the inert gas in the step (1) is argon; and the organic solvent is at least one of toluene, tetrahydrofuran, xylene, dioxane and N,N-dimethylformamide.
  • the catalyst is a combination of a palladium source and a phosphine source;
  • the palladium source is one of palladium acetate and tris(dibenzylideneacetone)dipalladium;
  • the phosphine source is tricyclohexylphosphorus, tetras.
  • the naphthoquinone unit and the Ar-containing monomer in the step (1) are used in an amount sufficient to satisfy the total molar amount of the bis-borate-containing functional group or the bis-boronic acid-containing monomer and the bis-bromo-functional group or the bis-containing group.
  • the total molar amount of monomers of the iodine functional group is equal.
  • the amount of the catalyst in the step (1) is from 5 ⁇ to 3% based on the total amount of the reactive monomers; the reactive monomer comprises a naphthoquinone unit and a monomer having an Ar structure (the same applies hereinafter).
  • the amount of the phenylboronic acid in the step (2) is 10-20% of the total molar amount of the reactive monomer.
  • the amount of bromobenzene described in the step (2) is 2 to 5 times the molar amount of the phenylboronic acid.
  • the purification according to the step (2) means that the obtained reaction liquid is cooled to room temperature, poured into methanol, precipitated, filtered, and dried to obtain a crude product, which is then extracted with methanol, acetone, n-hexane, and then toluene. Dissolved, separated by column chromatography, concentrated and precipitated again in methanol solution, filtered and dried to obtain the desired product.
  • conjugated polymers based on naphthoquinone high two-photon absorption in two-photon fluorescence microscopy, two-photon upconversion laser, optical limiting, two-photon three-dimensional processing, two-photon three-dimensional optical storage, two-photon Applications in photodynamic therapy, etc.
  • the application of the two-photon absorption property of the naphthoquinone-based conjugated polymer is measured by the two-photon absorption cross section.
  • the larger the two-photon absorption cross-section value the stronger the two-photon absorption capacity of the polymer. The faster the response.
  • the two-photon absorption cross-section is tested by dissolving the naphthoquinone-based conjugated polymer in an organic solvent, followed by two-photon induced fluorescence, Z-scan, and nonlinear transmission. Rate or two-photon transient absorption spectroscopy.
  • the organic solvent comprises toluene, xylene, n-hexane, diethyl ether, dioxane, dichloromethane, chloroform, ethyl acetate, tetrahydrofuran, 1,2-dichloroethane, N,N- Dimethylformamide, N,N-dimethylacetamide, acetone, dimethyl sulfoxide or chlorobenzene.
  • the present invention has the following advantages and benefits:
  • the conjugated polymer based on naphthoquinone high two-photon absorption of the present invention has a high conjugate length and has a high fluorescence quantum yield, which is advantageous for enhancing the two-photon absorption ability of the polymer. .
  • the conjugated polymer based on naphthoquinone high two-photon absorption of the present invention has strong single photon fluorescence and two-photon fluorescence intensity, and has good solubility, can be dissolved in common organic solvents, and is convenient for two-photon.
  • the testing and application of absorption performance has practical application value in the field of nonlinear optics and fluorescent bio-imaging.
  • the raw material is low in cost and low in cost; the synthesis step is simple and the yield is high, which is favorable for mass production.
  • Figure 1 is a single photon fluorescence spectrum of polymer P1 in different polar solvents
  • Figure 3 is a graph showing the relationship between the laser wavelength and the two-photon absorption cross-section of polymer P1 in toluene and dichloromethane solvents.
  • the single photon fluorescence spectrum of polymer P1 in different polar solvents is shown in Figure 1. It can be seen from Fig. 1 that the polarity of the solvent changes from weakly polar to strong DMF, and the spectrum of the polymer P1 gradually shifts red, indicating a strong charge transfer in the molecule, and the fluorescence intensity of the polymer is strong. In the toluene solvent, the fluorescence intensity was 1.84 ⁇ 10 7 ; in the DMF solvent, the fluorescence intensity was 3.89 ⁇ 10 6 . Strong fluorescence intensity means that polymer P1 has the potential for strong two-photon response.
  • the reaction system was gradually raised to normal temperature for 24 hours; the reaction liquid was concentrated, extracted three times with ethyl acetate, and the organic phase was washed three times with deionized water, dried, concentrated, and the crude product was purified by silica gel column chromatography, petroleum ether / A mixed solvent of ethyl acetate (6/1, v/v) was used as a rinse to give a white solid. The yield was 67%.
  • the results of 1 H NMR, 13 C NMR, MS and elemental analysis indicated that the obtained compound was the target product, and the chemical reaction equation was as follows:
  • the two-photon fluorescence spectrum of polymer P2 in toluene solvent is shown in Fig. 2.
  • the peak of the fluorescence spectrum of the polymer is 488 nm, which is the emission of the polymer conjugated backbone.
  • the two-photon fluorescence intensity of the polymer P2 increases first and then decreases and then decreases.
  • the laser wavelength is 730 nm
  • the two-photon fluorescence intensity of the polymer is the strongest, 3.98 ⁇ 10 6 . This means that the polymer has a maximum two-photon absorption cross-section at this wavelength.
  • 2,7-dibromocarbazole (3.25 g, 10 mmol) was completely dissolved in 80 ml of toluene, then tetrabutylammonium bromide (0.16 g, 0.5 mmol) was added, and the oil bath was heated to 85 ° C under argon atmosphere.
  • Add 50 wt% aqueous solution of sodium hydroxide (4.0 g / 4.0 ml of deionized water, 0.1 mol)
  • isooctyl bromide (2.32 g, 12 mmol); after reacting for 8 hours, add water to the reaction solution.
  • the precipitate is precipitated, stirred, filtered, and dried under vacuum to obtain a polymer solid; finally, it is extracted with methanol, acetone, and tetrahydrofuran for 24 hours to remove small molecules; the concentrated tetrahydrofuran solution is dropped into methanol to precipitate, vacuum Fiber obtained after drying Solid polymer P3.
  • 3-bromophenylhydrazine hydrochloride (11.2 g, 50 mmol) and sodium acetate (4.1 g, 50 mmol) were dissolved in 200 ml of ethanol, stirred and mixed uniformly; under argon, 1,4-cyclohexanedione (2.81 g) was added. , 25mmol) ethanol solution (100ml), then the oil bath was heated to 60 ° C, the reaction was carried out for 5 hours; after the reaction was stopped, the reaction solution was poured into ice water, stirred, and the filter cake was separated by suction filtration, and washed with iced ethanol to obtain a brown solid.
  • N 1 ,N 4 -bis(4-n-octylbenzene)-N 1 ,N 4 -diphenylbenzene-1,4-diamine (4.46 g, with 20 ml of N,N-dimethylformamide, 7 mmol)
  • N-bromosuccinimide (NBS, 2.74 g, 15.4 mmol) in N,N-dimethylformamide (DMF) was added dropwise at 0 ° C, and the reaction was carried out in the dark.
  • the reaction solution was poured into water, stirred, filtered, and the filter cake was separated and purified by silica gel column chromatography. The yield was 81%.
  • the results of 1 H NMR, 13 C NMR, MS and elemental analysis indicated that the obtained compound was the target product, and the chemical reaction equation was as follows:
  • N 1 ,N 4 -bis(4-n-octylphenyl)-N 1 ,N 4 -di(4,4',5,5'-tetramethyl-1,3,2 -dioxaborane-diyl)-phenyl)benzene-1,4-diamine (444.4 mg, 0.50 mmol) and 5,10-dibromo-7,7,13,13-tetra-n-hexyl-7 , 13-Dihydrobenzo[g]indole [1,2-b]indole (455.5 mg, 0.50 mmol) was dissolved in 12 ml of toluene, then palladium acetate (3.93 mg, 17.5 ⁇ mol) and tricyclohexylphosphine (9.81) were added.
  • the silica gel is a stationary phase, and the column chromatography is carried out with toluene as an eluent.
  • the solvent is concentrated, and precipitated again in methanol, stirred, filtered, and dried under vacuum to obtain a polymer solid; finally, methanol, acetone and tetrahydrofuran are sequentially used. Extracting for 24 hours to remove small molecules; dropping the concentrated tetrahydrofuran solution into A In precipitation, the solid polymer vacuum dried fiber obtained P6.
  • the results of 1 H NMR, GPC and elemental analysis indicated that the obtained polymer was the target product, and the chemical reaction equation of the preparation process was as follows:
  • the two-photon absorption performance of the naphthoquinone-based conjugated polymer obtained by the present invention was tested by two-photon fluorescence induction method; the titanium gems femtosecond laser (Avesta TiF-100M) was used as a pumping source, laser
  • the pulse width is 80 fs
  • the frequency is 84.5 Hz
  • the pulsed pass length is 10 mm quartz sample cell.
  • the polymer P1 is dissolved in four different polar solvents, namely toluene, tetrahydrofuran, dichloromethane, N,N-dimethylformamide; the polymers P2 to P4 are dissolved in toluene, and the concentrations of all the solutions are all 1 ⁇ 10 -6 mol L -1 .
  • the standard was a 0.1 mol L -1 aqueous sodium hydroxide solution of fluorescein at a concentration of 1 ⁇ 10 -6 mol L -1 , and the fluorescence quantum yield was 88%.
  • the fluorescence quantum yield of the polymer P1 is 83% in the toluene solution state, and as the polarity of the solvent increases, from weakly polar toluene to strongly polar N,N-dimethylformamide, fluorescence quantum The yield gradually decreased to 11%. This indicates that polymer P1 has a strong two-photon response potential in a weakly polar toluene solution. It also proves that the polarity of the solvent is an important factor affecting the two-photon response of the polymer.
  • the fluorescence quantum yields of the polymers P2 to P5 in the toluene solvent were 61%, 73%, 66% and 83%, respectively.
  • the higher fluorescence quantum yield indicates that the polymer is in two-photon fluorescence microscopy, two-photon.
  • Conversion laser, optical limiting, two-photon three-dimensional processing, two-photon three-dimensional optical storage, two-photon photodynamic therapy have excellent application prospects.
  • the two-photon absorption cross-section ⁇ of the polymer can be calculated according to the fluorescence quantum yield of the polymer and the two-photon fluorescence spectrum.
  • the calculation formula is as follows:
  • 1 represents a standard, 0.1 mol L -1 aqueous sodium hydroxide solution of fluorescein
  • 2 represents a sample to be tested.
  • I 1 and I 2 represent the integrated area of the two-photon fluorescence spectrum of the sample and the sample to be tested. The two-photon fluorescence spectrum is shown in Fig. 2 and Fig. 3.
  • ⁇ 1 and ⁇ 2 represent the fluorescence quantum efficiency of the standard sample and the sample to be tested.
  • C 1 and C 2 represent the concentration of the standard sample solution of the sample to be tested.
  • the relationship between the two-photon absorption cross section of the polymer P1 in the weakly polar toluene solvent and the medium polarity dichloromethane solvent and the laser wavelength is shown in FIG. It can be seen from the figure that the two-photon absorption cross section of polymer P1 is similar to the laser wavelength in different polar solvent states. As the laser wavelength increases, the two-photon absorption cross section of polymer P1 increases first and then decreases. Small decreases after increasing.
  • the two-photon absorption cross section of the polymer is the second largest, 2969GM in the toluene solvent and 1229GM in the dichloromethane; and the two-photon absorption cross section in methylene chloride is generally lower than in the toluene solvent, which is related to the polymer P1 in dichloromethane.
  • the medium fluorescence quantum yield is lower than that in the toluene solution, which indicates that the fluorescence quantum yield is a factor that affects the size of the two-photon absorption cross section of the material:
  • Polymer P1 has a large two-photon absorption cross-section value throughout the test range, indicating that the conjugated polymer based on naphthoquinone units has a good two-photon response and is practically useful in the field of nonlinear optics and fluorescent bioimaging.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

本发明公开了一类基于萘并茚芴高双光子吸收的共轭聚合物及其制备方法与应用。本发明以萘并茚芴单元为核心,通过分子设计及基团的合理选择,通过Suzuki聚合反应制得所述的一类基于萘并茚芴高双光子吸收的共轭聚合物。本发明的基于萘并茚芴高双光子吸收的共轭聚合物具有强的单光子荧光和双光子荧光强度,同时具有良好的溶解性,能溶解在常用有机溶剂中,便于双光子吸收性能的测试与应用,在非线性光学和荧光生物成像领域具用实际应用价值。

Description

一类基于萘并茚芴高双光子吸收的共轭聚合物及其制备方法与应用 技术领域
本发明涉及双光子荧光聚合物领域,具体涉及一类基于萘并茚芴高双光子吸收的共轭聚合物及其制备方法与应用。
背景技术
在1931年Goppert-Mayer率先提出了双光子吸收的概念,并从理论上计算了双光子过程的跃迁几率。材料在强光(如激光)的作用下经过中间虚态(用V表示,V 1,V 2可等可不等同)并同时吸收两个光子的能量(hv 1+hv 2)后,从基态S 0跃迁到激发态S n(S n能级为两光子的能量)的过程称为双光子吸收(TPA)。介于实验条件的限制,直到60年代初激光器的出现,Kaiser才在实验中首次观察到这种现象,证实了Goppert-Mayer的预言。双光子吸收是一种非线性光学现象,随着激光技术的快速进步,研究者们对双光子吸收的探究越来越深入,它除了是一种光谱结果,更广泛地扩展应用到三维信息存储、双光子上转换激光、双光子吸收光限幅、双光子荧光显微镜、光动力疗法等领域。
具有强的双光子吸收材料的最主要的特征在于分子结构中具有较大的共轭体系。萘并茚芴单元是一个刚性平面结构、荧光量子产率高的单元,将萘并茚芴单元引入聚合物主链中,具有较高的荧光量子产率及优异的溶解性,有利于增强聚合物的双光子吸收能力。
发明内容
本发明的目的在于提供一类基于萘并茚芴高双光子吸收的共轭聚合物。该聚合物具有较好的溶解性、较高的荧光量子产率及强双光子响应的特征。
本发明的目的还在于提供所述的一类基于萘并茚芴高双光子吸收的共轭聚合物的制备方法。该方法以大共轭平面萘并茚芴单元与不同的单元,通过Suzuki缩聚反应制得所述的一类基于萘并茚芴高双光子吸收的共轭聚合物。
本发明的目的还在于提供所述的一类基于萘并茚芴高双光子吸收的共轭聚合物的应用。
本发明的目的通过如下技术方案实现。
一类基于萘并茚芴高双光子吸收的共轭聚合物,该聚合物结构式如下:
Figure PCTCN2018112556-appb-000001
式中,n=1~1000;R为C 1~C 30的直链或者支链烷基、或为C 1~C 30的烷氧基、或为苯氧基。
优选的,所述Ar为如下结构式中的任意一种:
Figure PCTCN2018112556-appb-000002
其中,R 1~R 6可相同或者不同,独立选自H、C 1~C 30的直链或者支链烷基、或为C 1~C 30的烷氧基、或为苯氧基。
以上所述的一类基于萘并茚芴高双光子吸收的共轭聚合物的制备方法,包括如下步骤:
(1)在惰性气体保护下,用有机溶剂完全溶解萘并茚芴单元与含Ar结构的单体,在催化剂作用和四乙基氢氧化铵作用下,加热至60~100℃发生Suzuki聚合反应,反应时间为12~36h;
(2)向步骤(1)所得反应液中加入苯硼酸,60~100℃恒温继续反应6~12h;再加入溴苯60~100℃继续恒温反应6~12h,反应停止后将所得反应液纯化,即得基于萘并茚芴高双光子吸收的共轭聚合物。
优选的,步骤(1)所述惰性气体为氩气;所述有机溶剂为甲苯、四氢呋喃、二甲苯、二氧六环和N,N-二甲基甲酰胺中的至少一种。
优选的,所述催化剂为钯源与膦源的组合;所述钯源为醋酸钯和三(二亚苄基丙酮)二钯中的一种;所述膦源为三环己基磷、四三苯基膦钯和三苯基膦二氯化钯中的至少一种。
优选的,步骤(1)所述的萘并茚芴单元、含Ar结构的单体的用量满足含双硼酸酯官能团或含双硼酸官能团的单体总摩尔量与含双溴官能团或含双碘官能团的单体总摩尔量相等。
优选的,步骤(1)所述催化剂的用量为反应单体摩尔总量的5‰~3%;所述反应单体包括萘并茚芴单元和含Ar结构的单体(下同)。
优选的,步骤(2)所述的苯硼酸的用量为反应单体摩尔总量的10~20%.
优选的,步骤(2)所述的溴苯的用量为苯硼酸摩尔量的2~5倍。
优选的,步骤(2)所述的纯化是指将所得反应液冷却至室温,倒入甲醇中沉淀,过滤,干燥得粗产物,粗产物先后用甲醇、丙酮、正己烷抽提,再用甲苯溶解,柱层析分离,浓缩后再次沉析在甲醇溶液中,过滤,干燥,即得目标产物。
以上所述的一类基于萘并茚芴高双光子吸收的共轭聚合物在双光子荧光显微、双光子上转换激光、光限幅、双光子三维加工、双光子三维光学存储、双光子光动力学治疗等中的应用。
优选的,应用过程中,基于萘并茚芴的共轭聚合物的双光子吸收性能的强弱用双光子吸收截面来衡量,双光子吸收截面值越大,聚合物的双光子吸收能力越强,响应越快。
优选的,所述双光子吸收截面的测试方式为:将所述的基于萘并茚芴的共轭聚合物用有机溶剂溶解,再通过双光子诱导荧光法、Z-扫描技术、非线性透过率法或双光子瞬态吸收光 谱法测试。
优选的,所述有机溶剂包括甲苯、二甲苯、正己烷、乙醚、二氧六环、二氯甲烷、三氯甲烷、乙酸乙酯、四氢呋喃、1,2-二氯乙烷、N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、丙酮、二甲基亚砜或氯苯。
与现有技术相比,本发明具有如下的优点和有益效果:
(1)本发明的基于萘并茚芴高双光子吸收的共轭聚合物,由于具有较大的共轭长度,所以有较高的荧光量子产率,有利于增强聚合物的双光子吸收能力。
(2)本发明的基于萘并茚芴高双光子吸收的共轭聚合物具有强的单光子荧光和双光子荧光强度,同时具有良好的溶解性,能溶解在常用有机溶剂中,便于双光子吸收性能的测试与应用,在非线性光学和荧光生物成像领域具用实际应用价值。
(3)本发明基于萘并茚芴高双光子吸收的共轭聚合物制备过程中,原料低廉、成本低;同时合成步骤简便,产率高,有利于大规模量产。
附图说明
图1为聚合物P1在不同极性溶剂中的单光子荧光光谱图;
图2为在不同激光波长下聚合物P2的双光子荧光光谱图;
图3为聚合物P1在甲苯和二氯甲烷溶剂中激光波长与双光子吸收截面值的关系曲线图。
具体实施方式
以下结合具体实施例及附图对本发明技术方案作进一步说明,但本发明并不局限于此。
实施例1聚合物P1的合成
(1)4-正辛基三苯胺的合成:
用150ml甲苯溶剂完全溶解4-辛基溴苯(2.69g,10mmol)和苯胺(0.93g,23mmol),再加入叔丁基醇钠(3.94g,41mmol)和醋酸钯(96mg,0.5mmol),在氩气保护下,油浴升温至85℃,继续加入三叔丁基膦的甲苯溶液(2.0mol/L,0.5mL);反应12小时后,将水加到反应液中淬灭反应,用二氯甲烷萃取三次,有机相用去离子水洗涤三次后,干燥,浓缩,粗品用硅胶柱层析法分离提纯,纯石油醚作为淋洗剂,得到白色固体。产率82%。 1H NMR、 13C NMR、MS和元素分析结果表明得到的化合物为目标产物,化学反应方程式如下所示:
Figure PCTCN2018112556-appb-000003
(2)4,4’-二溴-4”-辛基三苯胺的合成:
用20ml N,N-二甲基甲酰胺完全溶解4-正辛基三苯胺(2.50g,7.0mmol),在0℃条件下,滴加N-溴代丁二酰亚胺(NBS,2.74g,15.4mmol)的N,N-二甲基甲酰胺(DMF)溶液,避光条件下反应4小时;将反应液倒入水中,搅拌,过滤,滤饼用硅胶柱层析法分离提纯,纯石油醚作为淋洗剂,得到白色固体。产率78%。 1H NMR、 13C NMR、MS和元素分析结果表明得到的化合物为目标产物,化学反应方程式如下所示:
Figure PCTCN2018112556-appb-000004
(3)4,4’-二(4,4’,5,5’-四甲基-1,3,2-二氧杂硼烷-二基)-苯基)-4”-辛基三苯胺的合成:
用100ml无水四氢呋喃(THF)完全溶解4,4’-二溴-4”-辛基三苯胺(2.58g,5mmol),在氩气保护下,降温至-78℃,滴加5.3ml的的正丁基锂的正己烷溶液(浓度为2.4mol L -1),反应1小时后,一次性加入2-异丙氧基-4,4,5,5-四甲基-1,3,2-乙二氧基硼酸酯(2.6g,14mmol),继续搅拌2小时;反应体系逐渐升至常温反应24小时;将反应液浓缩,依次用乙酸乙酯萃取三次,有机相用去离子水洗涤三次后,干燥,浓缩,粗品用硅胶柱层析法分离提纯,石油醚/乙酸乙酯(5/1,v/v)混合溶剂作为淋洗剂,得到白色固体。产率69%。 1H NMR、 13C NMR、MS和元素分析结果表明得到的化合物为目标产物,化学反应方程式如下所示:
Figure PCTCN2018112556-appb-000005
(4)聚合物P1合成:
氩气保护下,将4,4’-二(4,4’,5,5’-四甲基-1,3,2-二氧杂硼烷-二基)-苯基)-4”-辛基三苯胺(304.7mg,0.50mmol)和5,10-二溴-7,7,13,13-四正己基-7,13-二氢苯并[g]茚[1,2-b]芴(455.5mg,0.50mmol)溶解在12ml甲苯中,再加入醋酸钯(3.93mg,17.5μmol)和三环己基膦(9.81mg,35.0μmol),然后加入3mL四乙基氢氧化铵,升温至80℃,反应24小时;然后加入18.3mg(0.15mmol)苯硼酸进行封端,12小时后,再用47.1mg(0.30mmol)溴苯进行封端;继续反应12小时之后,停止反应,待温度降至室温,将产物滴加在300mL甲醇中沉析,过滤,再将粗产物溶于20mL的甲苯中,以200~300目硅胶为固定相,用甲苯为洗脱剂进行柱 层析,溶剂浓缩,再次在甲醇中沉析出来,搅拌,过滤,真空干燥后得到聚合物固体;最后再依次用甲醇、丙酮、四氢呋喃各抽提24小时,除去小分子;将浓缩后的四氢呋喃溶液滴入甲醇中沉析,真空干燥后得到的纤维状固体聚合物P1。 1H NMR、GPC和元素分析结果表明所得到的聚合物为目标产物,制备过程化学反应方程式如下所示:
Figure PCTCN2018112556-appb-000006
聚合物P1在不同极性溶剂中的单光子荧光光谱图见图1。从图1中可知,溶剂极性由弱极性甲苯变化到强极性DMF,聚合物P1的光谱逐渐红移,说明分子内具有较强的电荷转移,且聚合物的荧光强度较强,在甲苯溶剂中,荧光强度为1.84×10 7;在DMF溶剂中,荧光强度为3.89×10 6。强的荧光强度意味着聚合物P1有强双光子响应的潜力。
实施例2聚合物P2的合成
(1)3,6-二溴咔唑的合成:
用300ml二氯甲烷完全溶解咔唑(1.67g,10mmol),再加入30g的100-200目硅胶,在冰浴条件下(0℃),分三批加入N-溴代丁二酰亚胺(NBS,3.92g,22mmol),在避光条件下反应12小时;再将反应液抽滤,滤饼用二氯甲烷洗涤5次,收集有机相,干燥,浓缩,粗品用二氯甲烷/石油醚(5/100,v/v)重结晶三次,得到白色固体。产率83%。 1H NMR、 13C NMR、MS和元素分析结果表明得到的化合物为目标产物,化学反应方程式如下所示:
Figure PCTCN2018112556-appb-000007
(2)3,6-二溴-N-异辛基咔唑的合成:
用80ml甲苯完全溶解3,6-二溴咔唑(2.28g,7mmol),再加入四丁基溴化铵(0.11g,0.35mmol),在氩气保护下,油浴升温至85℃,继续加入50wt%的氢氧化钠(2.8g/2.8ml去离子水,70mmol)水溶液,搅拌1小时后,加入异辛基溴(2.03g,10.5mmol);反应8小时后,将水加到反应液中淬灭反应,用二氯甲烷萃取三次,有机相用去离子水洗涤三次后,干燥,浓缩,粗品用硅胶柱层析法分离提纯,纯石油醚作为淋洗剂,得到白色固体。产率94%。 1H NMR、 13C NMR、MS和元素分析结果表明得到的化合物为目标产物,化学反应方程式如下所示:
Figure PCTCN2018112556-appb-000008
(3)3,6-二(4,4’,5,5’-四甲基-1,3,2-二氧杂硼烷-二基)-N-异辛基咔唑的合成:
用100ml无水THF完全溶解3,6-二溴-N-异辛基咔唑(2.19g,5mmol),在氩气保护下,降温至-78℃,滴加2.4mol L -1的正丁基锂的正己烷溶液(5.3ml,12.5mmol),反应1小时后,一次性加入2-异丙氧基-4,4,5,5-四甲基-1,3,2-乙二氧基硼酸酯(2.79g,15mmol),继续搅拌2小时。反应体系逐渐升至常温反应24小时;将反应液浓缩,依次用乙酸乙酯萃取三次,有机相用去离子水洗涤三次后,干燥,浓缩,粗品用硅胶柱层析法分离提纯,石油醚/乙酸乙酯(6/1,v/v)混合溶剂作为淋洗剂,得到白色固体。产率67%。 1H NMR、 13C NMR、MS和元素分析结果表明得到的化合物为目标产物,化学反应方程式如下所示:
Figure PCTCN2018112556-appb-000009
(4)聚合物P2合成:
氩气保护下,将3,6-二(4,4’,5,5’-四甲基-1,3,2-二氧杂硼烷-二基)-N-异辛基咔唑(265.7mg,0.50mmol)和5,10-二溴-7,7,13,13-四正己基-7,13-二氢苯并[g]茚[1,2-b]芴(455.5mg,0.50mmol)溶解在12ml甲苯中,再加入醋酸钯(3.93mg,17.5μmol)和三环己基膦(9.81mg,35.0μmol),然后加入3mL四乙基氢氧化铵,升温至80℃,反应24小时;然后加入18.3mg(0.15mmol)苯硼酸进行封端,12小时后,再用47.1mg(0.30mmol)溴苯进行封端;继续反应12小时之后,停止反应,待温度降至室温,将产物滴加在300mL甲醇中沉析,过滤,再将粗产物溶于20mL的甲苯中,以200~300目硅胶为固定相,用甲苯为洗脱剂进行柱层析,溶剂浓缩,再次在甲醇中沉析出来,搅拌,过滤,真空干燥后得到聚合物固体;最后再依次用甲醇、丙酮、四氢呋喃各抽提24小时,除去小分子;将浓缩后的四氢呋喃溶液滴入甲醇中沉析,真空干燥后得到的纤维状固体聚合物P2。 1H NMR、GPC和元素分析结果表明所得到的聚合物为目标产物,制备过程化学反应方程式如下所示:
Figure PCTCN2018112556-appb-000010
聚合物P2在甲苯溶剂中的双光子荧光光谱图见图2。从图2中可知,聚合物的荧光光谱的峰值为488nm,是聚合物共轭主链的发射。改变激光的波长,聚合物P2的双光子荧光强度先增加后降低在增加再降低。当激光波长为730nm时,聚合物的双光子荧光强度最强,为3.98×10 6。这意味着此波长下,聚合物P2的双光子吸收截面值最大。
实施例3聚合物P3的合成
(1)2,7-二溴-N-异辛基咔唑的合成:
用80ml甲苯完全溶解2,7-二溴咔唑(3.25g,10mmol),再加入四丁基溴化铵(0.16g,0.5mmol),在氩气保护下,油浴升温至85℃,继续加入50wt%的氢氧化钠(4.0g/4.0ml去离子水,0.1mol)水溶液,搅拌1小时后,加入异辛基溴(2.32g,12mmol);反应8小时后,将水加到反应液中淬灭反应,用二氯甲烷萃取三次,有机相用去离子水洗涤三次后,干燥,浓缩,粗品用硅胶柱层析法分离提纯,纯石油醚作为淋洗剂,得到白色固体。产率94%。 1H NMR、 13C NMR、MS和元素分析结果表明得到的化合物为目标产物,化学反应方程式如下所示:
Figure PCTCN2018112556-appb-000011
(2)2,7-二(4,4’,5,5’-四甲基-1,3,2-二氧杂硼烷-二基)-N-异辛基咔唑的合成:
用100ml无水四氢呋喃(THF)完全溶解2,7-二溴-N-异辛基咔唑(3.5g,8mmol),在氩气保护下,降温至-78℃,逐滴滴加2.4mol L -1的正丁基锂的正己烷溶液(8.4ml,20mmol),反应1小时后,一次性加入2-异丙氧基-4,4,5,5-四甲基-1,3,2-乙二氧基硼酸酯(4.17g,22.4mmol),继续搅拌2小时;反应体系逐渐升至常温反应24小时;将反应液浓缩,依次用乙酸乙酯萃取三次,有机相用去离子水洗涤三次后,干燥,浓缩,粗品用硅胶柱层析法分离提纯,石油醚/乙酸乙酯(6/1,v/v)混合溶剂作为淋洗剂,得到白色固体。产率67%。 1H NMR、 13C NMR、MS和元素分析结果表明得到的化合物为目标产物,化学反应方程式如下所示:
Figure PCTCN2018112556-appb-000012
(3)聚合物P3合成:
氩气保护下,将2,7-二(4,4’,5,5’-四甲基-1,3,2-二氧杂硼烷-二基)-N-异辛基咔唑(265.7mg,0.50mmol)和5,10-二溴-7,7,13,13-四正己基-7,13-二氢苯并[g]茚[1,2-b]芴(455.5mg,0.50mmol)溶解在12ml甲苯中,再加入醋酸钯(3.93mg,17.5μmol)和三环己基膦(9.81mg,35.0μmol),然后加入3mL四乙基氢氧化铵,升温至80℃,反应24小时;然后加入18.3mg(0.15mmol)苯硼酸进行封端,12小时后,再用47.1mg(0.30mmol)溴苯进行封端;继续反应12小时之后,停止反应,待温度降至室温,将产物滴加在300mL甲醇中沉析,过滤,再将粗产物溶于20mL的甲苯中,以200~300目硅胶为固定相,用甲苯为洗脱剂进行柱层析,溶剂浓缩,再次在甲醇中沉析出来,搅拌,过滤,真空干燥后得到聚合物固体;最后再依次用甲醇、丙酮、四氢呋喃各抽提24小时,除去小分子;将浓缩后的四氢呋喃溶液滴入甲醇中沉析,真空干燥后得到的纤维状固体聚合物P3。 1H NMR、GPC和元素分析结果表明所得到的聚合物为目标产物,制备过程化学反应方程式如下所示:
Figure PCTCN2018112556-appb-000013
实施例4聚合物P4的合成
(1)环己烷-1,4-二羰基-二(3-溴苯基)腙的合成
用200ml乙醇溶解3-溴苯肼盐酸盐(11.2g,50mmol)和醋酸钠(4.1g,50mmol),搅拌混合均匀;在氩气保护下,加入1,4-环已二酮(2.81g,25mmol)的乙醇溶液(100ml),然后油浴升温至60℃,反应5小时;停止反应后,将反应液倒入冰水中,搅拌,抽滤分离滤饼,并用冰乙醇洗涤,得到棕色固体,产率75%,固体烘干后低温避光处理,无需处理直接用于下一步反应。 1H NMR、 13C NMR、MS和元素分析结果表明得到的化合物为目标产物,化学反应方程式如下所示:
Figure PCTCN2018112556-appb-000014
(2)3,9-二溴吲哚[3,2-b]咔唑的合成:
用100ml冰醋酸/浓硫酸混合溶液(体积比4/1)溶解环己烷-1,4-二羰基-二(3-溴苯基)腙(5.0g,11mmol),冰浴条件下,搅拌混合均匀;然后,油浴升温至50℃,反应5小时;再升温至90℃,反应12小时;停止反应后,将反应液倒入冰水中,搅拌,抽滤分离滤饼,并用冰乙醇洗涤,得到黄褐色粗品,并用DMF重结晶得到黄绿色针状固体,产率25%。 1H NMR、 13C NMR、MS和元素分析结果表明得到的化合物为目标产物,化学反应方程式如下所示:
Figure PCTCN2018112556-appb-000015
(3)3,9-二溴-5,11-二(9-十六烷基)吲哚[3,2-b]咔唑的合成:
用40ml二甲基亚砜溶解3,9-二溴吲哚[3,2-b]咔唑(2.0g,4.8mmol)、四丁基溴化铵(154mg,0.48mmol);在氩气保护下,油浴升温至60℃,继续加入50wt%的氢氧化钠(2.7g/2.7ml去离子水,48mmol)水溶液,搅拌1小时后,快速加入溴代十六烷(4.4g,14.2mmol);反应12小时后,将反应液倒入冰水中,搅拌,抽滤分离滤饼,并用乙醇洗涤,得到黄色固体,产率91%。 1H NMR、 13C NMR、MS和元素分析结果表明得到的化合物为目标产物,化学反应方程式如下所示:
Figure PCTCN2018112556-appb-000016
(4)3,9-二(4,4’,5,5’-四甲基-1,3,2-二氧杂硼烷-二基)-5,11-二(9-十六烷基)吲哚[3,2-b]咔唑的合成:
用50ml二氧六环溶液溶解3,9-二溴-5,11-二(9-十七烷基)吲哚[3,2-b]咔唑(1.0g,1.1mmol)和双联频哪醇硼酸酯(0.9g,3.5mmol),在氩气保护下,油浴升温至80℃,加入1,1’-双二苯基磷二茂铁二氯化钯(40mg,55μmol),反应12小时;停止反应后,将反应液浓缩,依次用乙酸乙酯萃取三次,有机相用去离子水洗涤三次后,干燥,浓缩,粗品用硅胶 柱层析法分离提纯,石油醚/乙酸乙酯(5/1,v/v)混合溶剂作为淋洗剂,得到淡黄色固体。产率56%。 1H NMR、 13C NMR、MS和元素分析结果表明得到的化合物为目标产物,化学反应方程式如下所示:
Figure PCTCN2018112556-appb-000017
(5)聚合物P4合成:
氩气保护下,将3,9-二(4,4’,5,5’-四甲基-1,3,2-二氧杂硼烷-二基)-5,11-二(9-十六烷基)吲哚[3,2-b]咔唑(478.6mg,0.50mmol)和5,10-二溴-7,7,13,13-四正己基-7,13-二氢苯并[g]茚[1,2-b]芴(455.5mg,0.50mmol)溶解在12ml甲苯中,再加入醋酸钯(3.93mg,17.5μmol)和三环己基膦(9.81mg,35.0μmol),然后加入3mL四乙基氢氧化铵,升温至80℃,反应24小时;然后加入18.3mg(0.15mmol)苯硼酸进行封端,12小时后,再用47.1mg(0.30mmol)溴苯进行封端;继续反应12小时之后,停止反应,待温度降至室温,将产物滴加在300mL甲醇中沉析,过滤,再将粗产物溶于20mL的甲苯中,以200~300目硅胶为固定相,用甲苯为洗脱剂进行柱层析,溶剂浓缩,再次在甲醇中沉析出来,搅拌,过滤,真空干燥后得到聚合物固体;最后再依次用甲醇、丙酮、四氢呋喃各抽提24小时,除去小分子;将浓缩后的四氢呋喃溶液滴入甲醇中沉析,真空干燥后得到的纤维状固体聚合物P4。 1H NMR、GPC和元素分析结果表明所得到的聚合物为目标产物,制备过程化学反应方程式如下所示:
Figure PCTCN2018112556-appb-000018
实施例5聚合物P5的合成
(1)2,2’-(7,7,13,13-四正己基-7,13-二氢苯并[g]茚[1,2-b]芴-5,11-二基)二(4,4’,5,5’-四甲基-1,3,2-二氧杂硼烷)的合成
用50ml二氧六环溶液溶解5,10-二溴-7,7,13,13-四正己基-7,13-二氢苯并[g]茚[1,2-b]芴(2.0g,2.2mmol)和双联频哪醇硼酸酯(1.8g,7.0mmol),在氩气保护下,油浴升温至80℃,快速加入1,1’-双二苯基磷二茂铁二氯化钯(80mg,110μmol),反应12小时;停止反应后,将反应液浓缩,依次用乙酸乙酯萃取三次,有机相用去离子水洗涤三次后,干燥,浓缩,粗品用硅胶柱层析法分离提纯,石油醚/乙酸乙酯(5/1,v/v)混合溶剂作为淋洗剂,得白色固 体。产率56%。 1H NMR、 13C NMR、MS和元素分析结果表明得到的化合物为目标产物,化学反应方程式如下所示:
Figure PCTCN2018112556-appb-000019
(2)3,6-二(4-溴苯基)-吡咯并吡咯-1,4-二酮的合成
氩气保护下,将金属钠(2.3g,0.1mol)、FeCl 3(56mg,1mmol)加入叔戊醇(50mL)中,升温至90℃,搅拌1h。钠全部溶解后,冷却至50℃,加入4-溴苯腈(6.56g,36mmol),再升温至90℃。逐滴滴加丁二酸二异丙酯(2.91g,14.4mmol)的叔戊醇溶液10mL。恒温反应20h后,冷却至50℃,加入15mL冰醋酸,再升温至120℃反应4h。停止反应后,用热甲醇/热水进行多次冲洗抽滤,晾干后得红色固体。产率82%。 1H NMR、 13C NMR、MS和元素分析结果表明得到的化合物为目标产物,化学反应方程式如下所示:
Figure PCTCN2018112556-appb-000020
(3)2,5-二十七烷基-3,6-二(4-溴苯基)-吡咯并吡咯-1,4-二酮的合成
将3,6-二(4-溴苯基)-吡咯并吡咯-1,4-二酮(4.4g,9.86mmol)、无水碳酸钾(1.82g,16mmol)和18-冠醚-6(130mg,0.49mmol)和120ml DMF加入反应瓶内。当温度稳定至120℃时,向体系内加入l-溴十七烷(4.0g,12mmol)。6h后停止反应,冷却至室温。用大量水、二氯甲烷萃取三次,收集有机相,浓缩,无水硫酸镁干燥,粗品用硅胶柱层析法分离提纯,石油醚/二氯甲烷(20/1,v/v)混合溶剂作为淋洗剂,得橙色固体。产率52%。 1H NMR、 13C NMR、MS和元素分析结果表明得到的化合物为目标产物,化学反应方程式如下所示:
Figure PCTCN2018112556-appb-000021
(4)聚合物P5的合成
氩气保护下,将2,5-二十七烷基-3,6-二(4-溴苯基)-吡咯并吡咯-1,4-二酮(475.5mg,0.50mmol)和2,2’-(7,7,13,13-四正己基-7,13-二氢苯并[g]茚[1,2-b]芴-5,11-二基)二(4,4’,5,5’-四甲基-1,3,2-二氧杂硼烷)(502.6mg,0.50mmol)溶解在12ml甲苯中,再加入醋酸钯 (3.93mg,17.5μmol)和三环己基膦(9.81mg,35.0μmol),然后加入3mL四乙基氢氧化铵,升温至80℃,反应24小时;然后加入18.3mg(0.15mmol)苯硼酸进行封端,12小时后,再用47.1mg(0.30mmol)溴苯进行封端;继续反应12小时之后,停止反应,待温度降至室温,将产物滴加在300mL甲醇中沉析,过滤,再将粗产物溶于20mL的甲苯中,以200~300目硅胶为固定相,用甲苯为洗脱剂进行柱层析,溶剂浓缩,再次在甲醇中沉析出来,搅拌,过滤,真空干燥后得到聚合物固体;最后再依次用甲醇、丙酮、四氢呋喃各抽提24小时,除去小分子;将浓缩后的四氢呋喃溶液滴入甲醇中沉析,真空干燥后得到的纤维状固体聚合物P5。 1H NMR、GPC和元素分析结果表明所得到的聚合物为目标产物,制备过程化学反应方程式如下所示:
Figure PCTCN2018112556-appb-000022
实施例6聚合物P6的合成
(1)N 1,N 4-二(4-正辛基苯)-N 1,N 4-二苯基苯-1,4-二胺的合成:
用150ml甲苯溶完全液溶解4-辛基溴苯(6.19g,23mmol)和N 1,N 4-二苯基苯-1,4-二胺(2.60g,10mmol),再加入叔丁基醇钠(3.94g,41mmol)和醋酸钯(96mg,0.5mmol),在氩气保护下,油浴升温至85℃,继续加入三叔丁基膦的甲苯溶液(2.0mol/L,0.5mL);反应12小时后,将水加到反应液中淬灭反应,用二氯甲烷萃取三次,有机相用去离子水洗涤三次后,干燥,浓缩,粗品用硅胶柱层析法分离提纯,纯石油醚作为淋洗剂,得到白色固体。产率82%。 1H NMR、 13C NMR、MS和元素分析结果表明得到的化合物为目标产物,化学反应方程式如下所示:
Figure PCTCN2018112556-appb-000023
(2)N 1,N 4-二(4-溴苯基)-N 1,N 4-二(4-正辛基苯基)-1,4-二胺的合成:
用20ml N,N-二甲基甲酰胺完全溶解N 1,N 4-二(4-正辛基苯)-N 1,N 4-二苯基苯-1,4-二胺(4.46g,7mmol),在0℃条件下,滴加N-溴代丁二酰亚胺(NBS,2.74g,15.4mmol)的N,N-二甲基甲酰胺(DMF)溶液,避光条件下反应4小时;将反应液倒入水中,搅拌,过滤, 滤饼用硅胶柱层析法分离提纯,纯石油醚作为淋洗剂,得到白色固体。产率81%。 1H NMR、 13C NMR、MS和元素分析结果表明得到的化合物为目标产物,化学反应方程式如下所示:
Figure PCTCN2018112556-appb-000024
(3)N 1,N 4-二(4-正辛基苯基)-N 1,N 4-二(4,4’,5,5’-四甲基-1,3,2-二氧杂硼烷-二基)-苯基)苯-1,4-二胺的合成:
用100ml无水四氢呋喃(THF)溶液完全溶解N 1,N 4-二(4-溴苯基)-N 1,N 4-二(4-正辛基苯基)-1,4-二胺(3.91g,5mmol),在氩气保护下,降温至-78℃,滴加5.3ml的的正丁基锂的正己烷溶液(浓度为2.4mol L -1),反应1小时后,一次性加入2-异丙氧基-4,4,5,5-四甲基-1,3,2-乙二氧基硼酸酯(2.6g,14mmol),继续搅拌2小时;反应体系逐渐升至常温反应24小时;将反应液浓缩,依次用乙酸乙酯萃取三次,有机相用去离子水洗涤三次后,干燥,浓缩,粗品用硅胶柱层析法分离提纯,石油醚/二氯甲烷(4/1,v/v)混合溶剂作为淋洗剂,得到白色固体。产率69%。 1H NMR、 13C NMR、MS和元素分析结果表明得到的化合物为目标产物,化学反应方程式如下所示:
Figure PCTCN2018112556-appb-000025
(4)聚合物P6合成:
氩气保护下,将N 1,N 4-二(4-正辛基苯基)-N 1,N 4-二(4,4’,5,5’-四甲基-1,3,2-二氧杂硼烷-二基)-苯基)苯-1,4-二胺(444.4mg,0.50mmol)和5,10-二溴-7,7,13,13-四正己基-7,13-二氢苯并[g]茚[1,2-b]芴(455.5mg,0.50mmol)溶解在12ml甲苯中,再加入醋酸钯(3.93mg,17.5μmol)和三环己基膦(9.81mg,35.0μmol),然后加入3mL四乙基氢氧化铵,升温至80℃,反应24小时;然后加入18.3mg(0.15mmol)苯硼酸进行封端,12小时后,再用47.1mg(0.30mmol)溴苯进行封端;继续反应12小时之后,停止反应,待温度降至室温,将产物滴加在300mL甲醇中沉析,过滤,再将粗产物溶于20mL的甲苯中,以200~300目硅胶为固定相, 用甲苯为洗脱剂进行柱层析,溶剂浓缩,再次在甲醇中沉析出来,搅拌,过滤,真空干燥后得到聚合物固体;最后再依次用甲醇、丙酮、四氢呋喃各抽提24小时,除去小分子;将浓缩后的四氢呋喃溶液滴入甲醇中沉析,真空干燥后得到的纤维状固体聚合物P6。 1H NMR、GPC和元素分析结果表明所得到的聚合物为目标产物,制备过程化学反应方程式如下所示:
Figure PCTCN2018112556-appb-000026
实施例7
基于萘并茚芴单元的共轭聚合物双光子吸收性能测试
通过双光子荧光诱导法对本发明所得的基于萘并茚芴单元的共轭聚合物的双光子吸收性能进行测试;实验测试时采用钛宝石飞秒激光器(Avesta TiF-100M)作为泵浦光源,激光的脉冲宽度为80fs,频率为84.5Hz;脉冲的通光长度为10mm的石英样品池。聚合物P1溶解在四种不同极性的溶剂中,分别为甲苯、四氢呋喃、二氯甲烷、N,N-二甲基甲酰胺;聚合物P2~P4溶解在甲苯中,所有溶液的浓度均为1×10 -6mol L -1。标样是荧光素的0.1mol L -1的氢氧化钠水溶液,浓度为1×10 -6mol L -1,其荧光量子产率为88%。
聚合物P1-P4在溶液状态的荧光量子产率测试结果如表1所示。
表1
Figure PCTCN2018112556-appb-000027
从表1可知,聚合物P1的荧光量子产率在甲苯溶液状态下为83%,随着溶剂极性增加,由弱极性甲苯到强极性N,N-二甲基甲酰胺,荧光量子产率逐渐下降到11%。这说明聚合物P1在弱极性甲苯溶液中具有较强的双光子响应潜力。同时也证明溶剂的极性是影响聚合物双光子响应的一个重要因素。在甲苯溶剂中聚合物P2~P5的的荧光量子产率分别为61%、73%、66%和83%,较高的荧光量子产率说明聚合物在双光子荧光显微技术、双光子上转换激光、光限幅、双光子三维加工、双光子三维光学存储、双光子光动力学治疗等方面有优异的应用前景。
根据聚合物的荧光量子产率及双光子荧光光谱可计算聚合物的双光子吸收截面δ,计算公式如下:
Figure PCTCN2018112556-appb-000028
上述公式中,1表示标样,荧光素的0.1mol L -1的氢氧化钠水溶液;2表示待测样品。I 1、I 2表示标样、待测样品的双光子荧光光谱的积分面积,双光子荧光光谱图见图2、图3。φ 1、φ 2表示标样、待测样品的荧光量子效率。C 1、C 2表示标样、待测样品的溶液浓度。
聚合物P1在弱极性甲苯溶剂和中等极性二氯甲烷溶剂中的双光子吸收截面与激光波长的关系图如图3所示。从图中可以看出,在不同极性溶剂状态下,聚合物P1的双光子吸收截面与激光波长的变化趋势类似,随着激光波长的增加,聚合物P1的双光子吸收截面先增加后减小在增加后减小。当激光波长为730nm时,聚合物的双光子吸收截面最大,甲苯溶剂中为6437GM(1GM=10 -50cm -4s photon -1),二氯甲烷中为3497GM;当激光波长为830nm时,聚合物的双光子吸收截面次大,甲苯溶剂中为2969GM,二氯甲烷中为1229GM;且二氯甲烷中的双光子吸收截面普遍比在甲苯溶剂中低,这与聚合物P1在二氯甲烷中荧光量子产率比甲苯溶液中低匹配,这说明,荧光量子产率是影响材料双光子吸收截面值大小的一个因素:
聚合物P1在整个测试范围内具有较大的双光子吸收截面值,说明基于萘并茚芴单元的共轭聚合物具有良好的双光子响应,在非线性光学和荧光生物成像领域实际应用价值。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他任何未背离本发明精神实质与原理下所作的改变、修饰、替代、组合、简化均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一类基于萘并茚芴高双光子吸收的共轭聚合物,其特征在于,该聚合物结构式如下:
    Figure PCTCN2018112556-appb-100001
    式中,n=1~1000;R为C 1~C 30的直链或者支链烷基、或为C 1~C 30的烷氧基、或为苯氧基。
  2. 根据权利要求1所述的一类基于萘并茚芴高双光子吸收的共轭聚合物,其特征在于,所述Ar为如下结构式中的任意一种:
    Figure PCTCN2018112556-appb-100002
    其中,R 1~R 6可相同或者不同,独立选自H、C 1~C 30的直链或者支链烷基、或为C 1~C 30 的烷氧基、或为苯氧基。
  3. 制备权利要求1或2所述的一类基于萘并茚芴高双光子吸收的共轭聚合物的方法,其特征在于,包括如下步骤:
    (1)在惰性气体保护下,用有机溶剂完全溶解萘并茚芴单元与含Ar结构的单体,在催化剂作用和四乙基氢氧化铵作用下,加热至60~100℃发生Suzuki聚合反应,反应时间为12~36h;
    (2)向步骤(1)所得反应液中加入苯硼酸,60~100℃恒温继续反应6~12h;再加入溴苯60~100℃继续恒温反应6~12h,反应停止后将所得反应液纯化,即得基于萘并茚芴高双光子吸收的共轭聚合物;
    合成路线如下所示
    Figure PCTCN2018112556-appb-100003
  4. 根据权利要求3所述的制备方法,其特征在于,步骤(1)所述惰性气体为氩气;所述有机溶剂为甲苯、四氢呋喃、二甲苯、二氧六环和N,N-二甲基甲酰胺中的至少一种。
  5. 根据权利要求3所述的制备方法,其特征在于,所述催化剂为钯源与膦源的组合;所述钯源为醋酸钯和三(二亚苄基丙酮)二钯中的一种;所述膦源为三环己基磷、四三苯基膦钯和三苯基膦二氯化钯中的至少一种。
  6. 根据权利要求3所述的制备方法,其特征在于,步骤(1)所述的萘并茚芴单元、含Ar结构的单体的用量满足含双硼酸酯官能团或含双硼酸官能团的单体总摩尔量与含双溴官能团或含双碘官能团的单体总摩尔量相等。
  7. 根据权利要求3所述的制备方法,其特征在于,步骤(1)所述催化剂的用量为反应单体摩尔总量的5‰~3%。
  8. 根据权利要求3所述的制备方法,其特征在于,步骤(2)所述的苯硼酸的用量为反应单体摩尔总量的10~20%.
  9. 根据权利要求3所述的制备方法,其特征在于,步骤(2)所述的溴苯的用量为苯硼酸摩尔量的2~5倍。
  10. 权利要求1或2所述的一类基于萘并茚芴高双光子吸收的共轭聚合物在双光子荧光显微、双光子上转换激光、光限幅、双光子三维加工、双光子三维光学存储和双光子光动力学治疗中的应用。
PCT/CN2018/112556 2018-04-30 2018-10-30 一类基于萘并茚芴高双光子吸收的共轭聚合物及其制备方法与应用 WO2019210661A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810406637.9A CN108707221B (zh) 2018-04-30 2018-04-30 一类基于萘并茚芴高双光子吸收的共轭聚合物及其制备方法与应用
CN201810406637.9 2018-04-30

Publications (1)

Publication Number Publication Date
WO2019210661A1 true WO2019210661A1 (zh) 2019-11-07

Family

ID=63867684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/112556 WO2019210661A1 (zh) 2018-04-30 2018-10-30 一类基于萘并茚芴高双光子吸收的共轭聚合物及其制备方法与应用

Country Status (2)

Country Link
CN (1) CN108707221B (zh)
WO (1) WO2019210661A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108707221B (zh) * 2018-04-30 2021-02-19 华南理工大学 一类基于萘并茚芴高双光子吸收的共轭聚合物及其制备方法与应用
CN111635506A (zh) * 2020-06-15 2020-09-08 胡芬 一种具有高荧光量子效率的红光聚合物及其制备方法
CN114456334B (zh) * 2021-09-30 2023-02-03 浙江大学 多孔微针的制备方法、多孔微针以及微针阵列给药系统
CN115028810B (zh) * 2022-05-30 2023-07-07 长春理工大学 三苯胺-四/三苯乙烯基共轭多孔聚合物纳米粒子及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007131582A1 (en) * 2006-05-12 2007-11-22 Merck Patent Gmbh Indenofluorene polymer based organic semiconductor materials
US20120097938A1 (en) * 2009-06-26 2012-04-26 Merck Patent Gmbh Polymers comprising structural units which contain alkylalkoxy groups, blends comprising these polymers, and opto-electronic devices comprising these polymers and blends
WO2014040055A2 (en) * 2012-09-10 2014-03-13 Saudi Basic Industries Corporation Conjugated polymer composition for solar cell and flexible electronics applications
CN105924629A (zh) * 2016-06-27 2016-09-07 华南理工大学 一种基于萘并茚芴单元的共轭聚合物及其制备方法与应用
CN106866938A (zh) * 2017-01-17 2017-06-20 华南理工大学 一种基于萘二并茚芴单元的共轭聚合物及其制备方法与应用
CN106883386A (zh) * 2017-02-24 2017-06-23 华南理工大学 一种基于芳杂环并茚芴单元的共轭聚合物及其制备方法与应用
CN107151312A (zh) * 2017-05-18 2017-09-12 南京邮电大学 一种茚并芴基共轭聚合物激光增益材料及制备方法与应用
CN107629197A (zh) * 2017-09-30 2018-01-26 华南协同创新研究院 基于萘并茚咔唑单元的蓝光聚合物发光材料及其制法与应用
CN108707221A (zh) * 2018-04-30 2018-10-26 华南理工大学 一类基于萘并茚芴高双光子吸收的共轭聚合物及其制备方法与应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007131582A1 (en) * 2006-05-12 2007-11-22 Merck Patent Gmbh Indenofluorene polymer based organic semiconductor materials
US20120097938A1 (en) * 2009-06-26 2012-04-26 Merck Patent Gmbh Polymers comprising structural units which contain alkylalkoxy groups, blends comprising these polymers, and opto-electronic devices comprising these polymers and blends
WO2014040055A2 (en) * 2012-09-10 2014-03-13 Saudi Basic Industries Corporation Conjugated polymer composition for solar cell and flexible electronics applications
CN105924629A (zh) * 2016-06-27 2016-09-07 华南理工大学 一种基于萘并茚芴单元的共轭聚合物及其制备方法与应用
CN106866938A (zh) * 2017-01-17 2017-06-20 华南理工大学 一种基于萘二并茚芴单元的共轭聚合物及其制备方法与应用
CN106883386A (zh) * 2017-02-24 2017-06-23 华南理工大学 一种基于芳杂环并茚芴单元的共轭聚合物及其制备方法与应用
CN107151312A (zh) * 2017-05-18 2017-09-12 南京邮电大学 一种茚并芴基共轭聚合物激光增益材料及制备方法与应用
CN107629197A (zh) * 2017-09-30 2018-01-26 华南协同创新研究院 基于萘并茚咔唑单元的蓝光聚合物发光材料及其制法与应用
CN108707221A (zh) * 2018-04-30 2018-10-26 华南理工大学 一类基于萘并茚芴高双光子吸收的共轭聚合物及其制备方法与应用

Also Published As

Publication number Publication date
CN108707221A (zh) 2018-10-26
CN108707221B (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
WO2019210661A1 (zh) 一类基于萘并茚芴高双光子吸收的共轭聚合物及其制备方法与应用
Qin et al. Click polymerization: facile synthesis of functional poly (aroyltriazole) s by metal-free, regioselective 1, 3-dipolar polycycloaddition
CN108148055B (zh) 一种基于萘的D-π-A型有机荧光材料及制备方法
CN111171202B (zh) 一种侧链型手性发光液晶聚合物及其制备方法
Jiang et al. Synthesis and two‐photon absorption properties of hyperbranched diketo‐pyrrolo‐pyrrole polymer with triphenylamine as the core
CN102993082B (zh) 具有咔唑基团的二氟单体及用于制备含咔唑侧基的聚芳醚聚合物
CN111154499A (zh) 一种具有圆偏振发光性质的手性发光液晶聚合物及其制备方法
CN110668997B (zh) 一类细胞器靶向的聚集诱导发光材料及其制备方法
CN111187374B (zh) 一种含薄荷醇手性结构的发光液晶聚合物及其制备方法
CN107540823A (zh) 一种基于s,s‑二氧‑二苯并噻吩单元的强双光子吸收共轭聚合物及其制备方法与应用
Wang et al. Synthesis and characterization of visible-light-activated Azo hyperbranched polymers
CN107759775B (zh) 含砜基稠环结构的具有强双光子效应的给受体型交替聚合物、制法与应用
Song et al. Synthesis and characterization of polybinaphthalene incorporating chiral (R) or (S)-1, 1′-binaphthalene and oxadiazole units by Heck reaction
CN101892045A (zh) 一种含两性侧链荧光共轭聚电解质、制备方法及应用
Tao et al. Synthesis and photoluminescent property of star polymers with carbzole pendent and a zinc porphyrin core by ATRP
Morisaki et al. Synthesis and optical properties of novel through-space π-conjugated polymers having a dithia [3.3] metacyclophane skeleton in the main chain
Moroni et al. Synthesis of a functional polymer with pendent luminescent phenylenevinylene units through nitroxide‐mediated free‐radical polymerization
CN110684134A (zh) 基于吩噻嗪或咔唑的杂环改性双光子聚合引发剂及其制备方法
CN115627082A (zh) 一种D-A-π-A型苯并噻二唑类功能染料及其制备方法与应用
Mikroyannidis Luminescent monomer of substituted tetrastyrylpyrene and poly (p-phenylenevinylene) derivative with pyrene segments: Synthesis and photophysics
CN107022351B (zh) 一种可用于生物检测的聚合物荧光材料及其制备方法
Tian et al. Synthesis and spectral properties of novel laser copolymers based on modified rhodamine 6G and 1, 8-naphthalimide
Liu et al. TPA-active D–π–D fluorophores with rigid, planar cores from phenylene to indenofluorene and indolocarbazole
Pourjavadi et al. Novel azo-containing polymethacrylates bearing spiroacetal-norbornene moiety and methylene spacers: synthesis and characterization
Shimizu et al. Solid emission color tuning of polymers consisting of BODIPY and styrene in various ratios

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18917504

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/02/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18917504

Country of ref document: EP

Kind code of ref document: A1