WO2019208128A1 - 燃料電池装置、制御装置および制御プログラム - Google Patents

燃料電池装置、制御装置および制御プログラム Download PDF

Info

Publication number
WO2019208128A1
WO2019208128A1 PCT/JP2019/014698 JP2019014698W WO2019208128A1 WO 2019208128 A1 WO2019208128 A1 WO 2019208128A1 JP 2019014698 W JP2019014698 W JP 2019014698W WO 2019208128 A1 WO2019208128 A1 WO 2019208128A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
control
breakthrough
fuel cell
replenishment
Prior art date
Application number
PCT/JP2019/014698
Other languages
English (en)
French (fr)
Inventor
晋平 白石
小林 和明
Original Assignee
京セラ株式会社
ダイニチ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社, ダイニチ工業株式会社 filed Critical 京セラ株式会社
Priority to JP2020516161A priority Critical patent/JP7007468B2/ja
Publication of WO2019208128A1 publication Critical patent/WO2019208128A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present disclosure relates to a fuel cell device, a control device, and a control program.
  • a fuel cell module includes a cell stack in which a plurality of fuel cells that can obtain electric power using a fuel gas that is a hydrogen-containing gas and air that is an oxygen-containing gas are stacked in a storage container.
  • Various fuel cell devices have been proposed in which the fuel cell module and auxiliary equipment necessary for its operation are accommodated in a housing such as an outer case.
  • Patent Document 1 discloses that when the water level of the water tank storing the condensed water decreases and the amount of water is insufficient, the water tank
  • a fuel cell device that purifies external water such as tap water through an ion exchange resin for external water purification treatment (hereinafter referred to as an ion exchange resin for supplementary water) and then supplies water (hereinafter referred to as “replenishment water”).
  • an ion exchange resin for supplementary water an ion exchange resin for supplementary water
  • a fuel cell device includes a fuel cell, a first tank that stores water collected from exhaust gas discharged from the fuel cell, a water replenishment device that replenishes water to the first tank from the outside, and a replenishment from the outside
  • a purification device that purifies the water to be discharged
  • a breakthrough detection device that detects breakthrough of the purification device
  • a control device that controls the power generation operation of the fuel cell.
  • the controller is Water replenishment control for supplying external water to the first tank by the water replenishing device; Breakthrough detection control for detecting breakthrough of the purification device by the breakthrough detection device, An abnormal stop control for stopping the power generation operation of the fuel cell when an abnormality requiring maintenance occurs, If breakthrough of the purification device is detected during execution of the water replenishment control by the breakthrough detection control, the water replenishment is not performed without executing the abnormal stop control due to the abnormality of breakthrough of the purification device. It is possible to execute breakthrough countermeasure control that stops execution of control.
  • control device of the present disclosure is a control device that controls a fuel cell device including a fuel cell, and the fuel cell includes a purification device and a breakthrough detection device, and the fuel cell device includes an external device.
  • Water replenishment control for replenishing water and breakthrough detection control for detecting breakthrough of the purification device by the breakthrough detection device.
  • the control device stops the abnormal stop control for stopping the power generation operation of the fuel cell when an event requiring the stop of the operation occurs, and the replenishment control when the breakthrough occurs in the purification device. It is possible to selectively execute breakthrough countermeasure control.
  • the control device executes the breakthrough countermeasure control instead of executing the abnormal stop control.
  • control program of the present disclosure is provided in a control device that controls a fuel cell device including a fuel cell.
  • the control device detects the breakthrough of the purification device in the breakthrough detection control step during the execution of the water replenishment control step, the control device replaces the execution of the abnormal stop control step with the running water supply control step. Stop and execute the breakthrough countermeasure control step.
  • FIG. 1 It is a schematic block diagram of the fuel cell apparatus of embodiment. It is explanatory drawing of the periphery of the reforming water tank of a fuel cell apparatus which expanded F part of FIG. 1 is an external perspective view of a fuel cell device. It is a flowchart which shows the control flow before the water supplement control start in the fuel cell apparatus of embodiment. It is a flowchart which shows the control flow after the water supplement control start in the fuel cell apparatus of embodiment.
  • FIG. 1 is a schematic configuration around the reforming water tank, showing the F section of FIG. 1 in an enlarged manner.
  • the fuel cell device 100 includes a power supply by operation of a fuel cell module 1 that generates power using raw fuel such as natural gas and LP gas and air, a heat exchanger 3, a radiator, and a heat medium circulation pump.
  • An exhaust heat recovery system including P2 and a heat storage tank is provided.
  • the exhaust heat recovery system is indicated by the symbol HS (heat cycle) in the figure.
  • the fuel cell device 100 may be a so-called monogeneration system that does not supply hot water.
  • the fuel cell device 100 includes a reformed water tank 6, a power conditioner 20, a control device 30, a storage device 40, a display device 50, and the like as auxiliary devices in addition to the fuel cell module 1 described above. Further, the fuel cell device 100 includes a reforming water channel R including a reforming water pump P1, a drain channel D, and various sensors.
  • the sensors include a water detector WL 1 located at a middle water level and a water detector WL 2 located at a low water level, which are water level detection devices, and an electrical conductivity meter that is a water quality measurement device for measuring the quality of supplementary water.
  • WC 1 at least.
  • the fuel cell module 1 is accommodated in a storage container 10.
  • a cell stack 11 in which a plurality of fuel cells are stacked, a reformer 12 that performs steam reforming of raw fuel using steam, and an ignition heater (not shown) for igniting surplus fuel gas And an exhaust gas catalyst filled in the catalyst container 2.
  • the fuel cell module 1 is disposed in a case 50 including each frame 51 and an exterior panel (not shown).
  • the case 50 includes a gas pump B1 that feeds raw fuel such as natural gas to the reformer as illustrated in FIG. 1, an oxygen-containing gas such as outside air or air. Is supplied to the cell stack, the air blower B2 for supplying the reformed water in the reformed water tank 6 to the reformer 12 as the raw water for steam reforming, and the reformed water tank 6 A drainage channel D for discharging the excess water is disposed.
  • a gas pump B1 that feeds raw fuel such as natural gas to the reformer as illustrated in FIG. 1, an oxygen-containing gas such as outside air or air.
  • the air blower B2 for supplying the reformed water in the reformed water tank 6 to the reformer 12 as the raw water for steam reforming, and the reformed water tank 6
  • a drainage channel D for discharging the excess water is disposed.
  • the power conditioner 20 linked to the system power source, the control device 30 including the control board for controlling the entire device, the storage device 40, etc., and the operation of the fuel cell as described above are controlled.
  • Various sensors used for this purpose are also arranged.
  • the generated condensed water is separated by a gas-liquid separator or the like, collected via the condensed water flow path C, and stored in the reformed water tank 6.
  • the reforming water tank 6 is an example of a first tank in the present disclosure.
  • the exhaust gas from which moisture has been removed is exhausted outside the fuel cell device via the exhaust gas flow path E. Further, the reformed water stored in the reformed water tank 6 is supplied to the reformer 12 in the fuel cell module 1 via the reformed water flow path R and the reformed water pump P1, and uses the reformed water. Used for steam reforming of raw fuel.
  • FIG. 2 is an enlarged view of a portion related to the power generation operation of the fuel cell and the reformed water used in the fuel cell device 100, that is, the inside of the two-dot chain line F in FIG.
  • the reformed water tank 6 that purifies and stores condensed water is composed of a first reformed water tank 61 for purification treatment and a second reformed water tank 62 for storage.
  • the first reforming water tank 61 and the second reforming water tank 62 are connected by a lower water pipe 65 to communicate with each other.
  • a reforming water outlet 62a connected to the suction port of the reforming water pump P1 is provided at the bottom or bottom of the second reforming water tank 62 that stores the generated reforming water.
  • An excess water outlet 62 b connected to the drainage channel D is provided on the upper side surface of the second reformed water tank 62.
  • water detectors WL 2 for detecting that has reached the empty water level is the lower limit water level is arranged .
  • the black dot at the tip of each sensor in the figure indicates the sensor placement position or the detection position of the tip of a probe or the like.
  • the above-mentioned, empty water level indicated by the detected position of the water detector WL 2 located low water level, the criteria below the abnormal stop control in the present disclosure is performed, predetermined prescribed amount of water, i.e. the embodiment It is also an index indicating the lower limit water level at.
  • the first reformed water tank 61 that collects and purifies the condensed water to produce reformed water is filled with ion exchange resin for condensed water for purifying the condensed water recovered from the heat exchanger 3.
  • the first ion exchange resin container 63 and the second ion exchange resin for replenishing water for purifying tap water and the like (hereinafter referred to as external water) replenished from the outside when the reforming water is insufficient.
  • An ion exchange resin container 64 is provided.
  • a water supply device for supplying water to the water tank from the outside, a reformed water tank 6 and a waterworks that is an external water source (Waterworks). between the like, water refilling channel G containing water stop valve V 1 of the solenoid-operated is provided.
  • the end which is the downstream end of the water supply channel G, is connected to an external water receiving port 61 a provided at the lower part of the first reformed water tank 61.
  • the external water that has flowed in from the external water receiving port 61a is supplied from the external water introducing port 64a provided at the bottom of the second ion exchange resin container 64 through the extension pipe 61b provided inside the tank. It is introduced into the reformed water tank 61.
  • the second ion exchange resin container 64 is filled with the above-mentioned ion exchange resin for water replenishment in order to purify external water. While the external water passes through the ion exchange resin for water replenishment, impurities contained in tap water and the like are removed, and deionized water having a conductivity of about 1 ⁇ S / cm, that is, purified water is purified.
  • the electric conductivity meter WC 1 in the figure judges whether the auxiliary water for the ion exchange resin described above is not breakthrough, which is an example of a breakthrough detection device.
  • the electrical conductivity meter WC 1 is disposed on the upper part of the second ion exchange resin container 64 where the supplementary water stays so that the conductivity of the supplementary water which is deionized water after the purification treatment can be measured. .
  • the purified replenishing water flows out from the purified water outlet 64b provided on the upper side surface of the second ion exchange resin container 64, flows down to the water storage section in the first reformed water tank 61, and reformed water. As stored.
  • the external water such as the tap water described above is purified through the ion exchange resin for replenishment, and then replenished. Is introduced into the reformed water tank 6. The conditions and control for rehydration will be described later.
  • the fuel cell device 100 includes a control device 30 that includes at least one processor to provide control and processing capabilities for performing various functions, as will be described in detail below.
  • the at least one processor may be implemented as a single integrated circuit or as a plurality of communicatively connected integrated circuits and / or discrete circuits.
  • the at least one processor can be implemented according to various known techniques.
  • the processor includes one or more circuits or units configured to perform one or more data computation procedures or processes, for example, by executing instructions stored in associated memory.
  • the processor may be firmware, such as a discrete logic component, configured to perform one or more data computation procedures or processes.
  • the processor may include one or more processors, controllers, microprocessors, microcontrollers, application specific integrated circuits, digital signal processors, programmable logic devices, field programmable gate arrays, or these devices or The functions described below may be performed, including any combination of configurations, or other known device and configuration combinations.
  • the control device 30 includes a storage device 40, a display device 50, a power conditioner 20, a fuel cell module 1, a raw fuel supply device such as a gas pump B1, and an oxygen-containing gas supply device such as an air blower B2.
  • quality water pump P1 water supply device such as the water replenishment passage G and the like including a Tomesuiben V 1 water supply device, and, the medium-level water detector WL 1, low level water detector WL 2, etc. It is connected to various sensors such as a water level detection device and a water quality measurement device such as an electric conductivity meter WC 1 and controls and manages the entire fuel cell device 100 including these functional units.
  • the control device 30 obtains a program stored in the storage device 40 and executes this program, thereby realizing various functions related to each part of the fuel cell device 100. Further, the display device 50 visualizes the specified necessary information and alarms or warnings based on the instruction signal from the control device 30. Note that the display device 50 may have a sound generation function for notifying an alarm or warning by sound.
  • control device 30 and the other function unit may be connected by wire or wireless. Control characteristic of this embodiment performed by the control device 30 will be described later.
  • the control device 30 particularly controls replenishment of the external water described above to the reforming water storage unit. Further, in the drawing, illustration of connection lines connecting the control device 30, the storage device 40, the display device 50, each device and each sensor constituting the fuel cell may be omitted.
  • the storage device 40 can store programs and data.
  • the storage device 40 may also be used as a work area for temporarily storing processing results.
  • the storage device 40 includes a recording medium.
  • the recording medium may include any non-transitory storage medium such as a semiconductor storage medium and a magnetic storage medium.
  • the storage device 40 may include a plurality of types of storage media.
  • the storage device 40 may include a combination of a portable storage medium such as a memory card, an optical disk, or a magneto-optical disk and a storage reading device.
  • the storage device 40 may include a storage device used as a temporary storage area such as a RAM (Random Access Memory).
  • the control device 30 of the fuel cell device transmits a water detector WL 1 disposed at a predetermined intermediate position of the reforming water tank 6 as the first tank at normal time or normal time when no abnormality is detected in the system. until interrupted by which water detection signal which is, i.e., until the water detection signal from the water detector WL 1 of the water level in the first of a predetermined level can not be received, to determine the presence or absence of reception of water detection signal (S1)
  • the process waits while repeating “Yes” on the left side of the flowchart in [S1] in the flowchart.
  • the breakthrough determination control [S2] is executed independently in the control device 30 including the storage device 40, such as a controller system or a computer system, and does not use sensors and measuring instruments. That is, the breakthrough determination control [S2] is a value of a computer flag (hereinafter referred to as a CP flag) indicating breakthrough of the ion exchange resin for water replenishment set in advance in a program or the like constituting the control device 30 or the like. Depending on whether the current value is “0 (zero)” or “1”, whether or not there has been a breakthrough of the ion exchange resin for water replenishment before the present, or a record of the breakthrough has occurred Whether or not is left is determined.
  • the setting of the CP flag and the abnormal stop control [S12] and breakthrough reporting control [S14] that may be executed when the CP flag is “1” will be described later.
  • the control device 30 starts water replenishment control after [S3]. Rehydration control, water detectors WL 1 is located in the middle water level to the output of water detection signal is performed by repeating opening and closing operations of Tomesuiben V 1.
  • the first time T1 is a time from several seconds to several tens of seconds, and in this example, is, for example, 3.5 seconds.
  • the control device 30, after closing the water stop valve V 1 in [S6], the time water stop valve V 1 is was open as described above, i.e., the first time T1 in this example, the storage device 40 stores the, already stored, "open" time in total-integration of previous valves V 1, to calculate the cumulative valve opening time V T is the accumulated value, is recorded [S7].
  • "open" integration time of the valve V 1 by the control device 30 described above is an example of the auxiliary water accumulation device in the present embodiment, the integration of the auxiliary water (operation), is realized by a combination of existing devices It is an example.
  • the configuration of the replenishment amount integrating device is not limited to this example, and may be other configurations as described later.
  • the control device 30 determines whether or not the water exchange ion exchange resin has reached the end of its life or use limit. The determination is performed as the water replenishment amount confirmation control for confirming whether or not the cumulative valve opening time V T that is the integrated value of the first time T1 is equal to or less than a predetermined first value (W1). Executed.
  • the control device 30 determines the ion for replenishment It is determined that the replacement resin has not yet reached the end of its life, and the next step, water amount recovery determination [S9], is performed.
  • the cumulative valve opening time V T is greater than a first value W1 of the above or above, if the branch judgment is "No", the control device 30, auxiliary water for the ion exchange resin is reached the life
  • Conductivity confirmation control to be confirmed using the conductivity meter WC 1 is executed. With this configuration, the reliability of the breakthrough determination can be improved.
  • the 2nd value W2 which is the determination criterion of the electrical conductivity of deionized water used as the reference
  • standard of breakthrough detection is set to 60 microseconds.
  • the conductivity of the deionized water measured by the first electric conductivity meter WC1 disposed on the upper part of the second ion exchange resin container 64 is 60 ⁇ s or less which is a criterion “Yes. ", The control device 30 proceeds to the next step, the water amount recovery determination [S9].
  • the above-described [S8] water replenishment amount confirmation control and [17] conductivity confirmation control indicate two determination conditions of breakthrough detection control in the present disclosure. Either of these [S8] water replenishment amount confirmation control and [17] conductivity confirmation control may be performed first, and the confirmation order can be changed. Moreover, beyond the cumulative valve opening time V T is first value W1 in the auxiliary water check control described above, and the conductivity of the deionized water first conductivity meter WC 1 in conductivity confirmation control has been measured is first When the binary value W2 is exceeded, it is determined that the ion exchange resin for water replenishment has broken through.
  • Water recovery determination [S9] is similar to [S1] in Fig. 4A, with water detector WL 1 disposed in a predetermined intermediate position of the reforming water tank 6 is first tank, above the external This is a step of confirming whether or not the water level of the reforming water in the reforming water tank 6 has been recovered to the middle water level that is the first predetermined water level by the water replenishment operation.
  • water detector WL 1 has transmitted the water detection signal, the water level of the reforming water reforming water tank 6, it was recovered to the water level in the first is a predetermined water level If it is confirmed and the branch determination is “Yes”, the control device 30 ends the water replenishment control normally [S10] and returns to the start [S0] which is the first of the flow.
  • the power generation operation may be stopped, and after waiting for a predetermined time, the power generation operation may be started again. Since the control is restarted without maintenance, it does not correspond to the abnormal stop control of the present disclosure.
  • the control device 30 closes the electromagnetic open / close stop valve V 1 disposed in the water replenishment flow path G for the second time ( Wait for T2) [S16].
  • the second time T2 is a time from several seconds to several tens of seconds, and in this example, for example, 12 seconds.
  • impurities and the like are removed from the tap water introduced into the reforming water tank 6 to generate water replenishment.
  • the second time T2 is previously described, is set longer than the first time T1 is "open" time of the water stop valve V 1 of the solenoid-operated for rehydration.
  • the control device 30 of the present embodiment is exemplified in [S12] unless there is any abnormality other than breakthrough of the ion exchange resin for water replenishment.
  • the abnormal stop control for stopping the power generation operation of the fuel cell device is not executed, and the value of the CP flag indicating breakthrough of the water refill ion exchange resin is rewritten from 0 to 1 [S18]. Then, the water replenishment control is stopped [S19].
  • the control device 30 when a breakthrough of the purification device is detected during the replenishment control, is caused by the occurrence of a breakthrough abnormality in the purification device, that is, the purification device breakthrough.
  • the abnormal stop control resulting from this is not executed, and instead, the execution of the water replenishment control being executed is stopped [S19].
  • This is an example of breakthrough countermeasure control of the present disclosure, and at the same time, an exceptional measure of abnormal stop control or abnormal stop control executed when an “abnormality that requires maintenance” described later occurs. An example of an exception.
  • the rewriting of the CP flag value [S18] may be performed after stopping the water replenishment control [S19].
  • the breakthrough reporting control such as reporting to the outside that the purification device has broken through [S14] is performed before or after stopping the supplementary water control [S19]. It can also be executed.
  • control device 30 the new (S11), the water detector WL 2 of low water position is drought position of the reforming water tank 6, whether or not outgoing water detection signal, i.e. in the tank Check whether the water level of the stored condensate has dropped to a dangerous level.
  • the control for stopping the power generation operation of the fuel cell device when an abnormal event requiring maintenance occurs is an example of the abnormal stop control, and the above example shows the amount of water stored in the tank. Is an abnormal stop control caused by the fact that the amount of water is less than a predetermined amount of water.
  • the above-described abnormal stop control is performed by displaying, for example, a display device with information on the abnormality (cause information) that causes the abnormal stop control to be executed when the power generation operation stops [S12]. Notification may be made to the outside [S13] through 50 or the like.
  • the fuel cell device issues information indicating that “the ion exchange resin for replenishing water has passed through” to the outside after [S13] issuing the above cause information to the outside.
  • the breakthrough alert control [S14] can be executed.
  • the method for reporting abnormal information (breakthrough information) in breakthrough reporting control may be the same as or different from the method for reporting abnormal information in the abnormal stop control described above.
  • the fuel cell device, the control device, and the control program according to the present embodiment do not stop the operation immediately even when the ion exchange resin breaks through, so that the power generation operation can be performed efficiently.
  • the fuel cell device, the control device, and the control program according to the present embodiment perform maintenance of the ion exchange resin for replenishing water as described above, and the amount of water stored in the reformed water is less than the dangerous level.
  • the fuel cell device of this embodiment can reduce the number of times of maintenance.
  • the fuel cell device of the present embodiment has the CP flag “1” after the rewriting of the value of the CP flag indicating breakthrough of the water refill ion exchange resin from “0” to “1” [S18]. "Is not reset without a command from an administrator including a user or the like. That is, in other words, when the control device 30 detects breakthrough of the water exchange ion exchange resin, it executes breakthrough recording control for rewriting the CP flag indicating breakthrough of the water exchange ion exchange resin to “1”. Until the recording erasure command or the like from the outside is received, the recording holding control is executed to keep the CP flag at “1”.
  • the fuel cell device, the control device, and the control program according to the present embodiment memorize and suspect that the ion exchange resin for supplementary water breaks through or is suspected of breakthrough.
  • an abnormality has occurred in the ion exchange resin for replenishment Can be reliably transmitted to the administrator.
  • the above-described embodiment is an example of breakthrough control of the ion exchange resin for water replenishment in the fuel cell device of the present disclosure. Further, in the above example, as an example of a supplementary water amount accumulating device used for the supplementary water amount confirmation control included in the breakthrough detection control in the control device 30, it is an accumulation / accumulation item of the amount of water that has passed through the ion exchange resin for supplementary water.
  • the tap water is the external water
  • the inflow into the second ion-exchange resin container 64 the time and the water replenishment passage water stop valve V 1 disposed in G is opened If it can be calculated by calculation based on the water pressure or flow rate of external water flowing in the water replenishment flow path G, the cumulative value obtained by integrating the valve opening time flows into the second ion exchange resin container 64.
  • the accumulated water amount may be used for the determination of breakthrough of the ion exchange resin for water replenishment.
  • the water level in the reformed water tank 6 is a low water level or lower.
  • the abnormal event / phenomenon requiring maintenance in the present disclosure is not limited to this.
  • the fuel cell device treats this “abnormality of ion exchange resin for supplementary water breakthrough” as an exception as a special case by separating it from “other abnormality requiring maintenance”. It is.
  • the control device 30 determines that an abnormality of the electrical conductivity meter or an abnormality of the water refilling electromagnetic valve has occurred, and executes an abnormal stop control.
  • the third value is larger than the second value described above, and is about 100 ⁇ s, for example. Whether or not the conductivity of the deionized water accumulated in the upper part of the second ion exchange resin container 64 exceeds the third value may be determined at all times during the power generation operation.
  • the control device 30 and the storage device 40 of the fuel cell device can also be realized as a configuration that is provided outside the fuel cell device 100. Further, it can be realized as a control method including a characteristic control process in the control device 30 according to the present disclosure, or can be realized as a control program for causing a computer to execute the above process.
  • the cell stack device and the fuel cell module are not limited to the SOFC.
  • the polymer electrolyte fuel cell Polymer Electrolyte Fuel Cell (PEFC)
  • the phosphoric acid fuel cell Phosphoric Acid Fuel Cell (PAFC)
  • a fuel cell such as a molten carbonate fuel cell (Molten Carbonate Fuel Cell (MCFC)) may be used.
  • Fuel cell module 6 Reformed water tank (first tank) 61 First Reformed Water Tank 62 Second Reformed Water Tank 63 First Ion Exchange Resin Container 64 Second Ion Exchange Resin Container 30 Control Device 40 Storage Device 50 Display Device 100 Fuel Cell Device
  • V 1 Water stop valve G Water supply channel WC 1 Electric conductivity meter WL 1 Water detector (Medium water level sensor) WL 2 water detector (low water level sensor)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

燃料電池装置は、燃料電池と、排ガスから回収した水を貯留する第1タンクと、第1タンクに外部から水を補給する補水装置と、外部から補給される水を浄化する浄化装置と、浄化装置が破過したことを検知する破過検知装置と、運転を制御する制御装置と、を備える。制御装置は、破過検知制御により、補水制御の実行中に浄化装置の破過が検知された場合、異常停止制御を行わず、代わりに、補水制御の実行を停止する破過対処制御を実行する。

Description

燃料電池装置、制御装置および制御プログラム
 本開示は、燃料電池装置、制御装置および制御プログラムに関する。
 収納容器内に、水素含有ガスである燃料ガスと、酸素含有ガスである空気とを用いて電力を得ることができる燃料電池セルを複数積層したセルスタックを備える燃料電池モジュールが知られている。また、該燃料電池モジュールおよびその動作に必要な補機類を外装ケース等の筐体に収容した燃料電池装置が、種々提案されている。
 このような燃料電池装置においては、発電に用いられなかった余剰の燃料ガスを燃焼させ、燃焼後の排ガスを熱交換器等に通して冷却する。この熱交換時に、前記排ガスに含まれる水蒸気が凝縮して生成される凝縮水を、イオン交換樹脂(以下、凝縮水用イオン交換樹脂という)により浄化処理して改質水タンク等の水タンクに貯留する。そして、貯留された水を、天然ガス等の原燃料を水蒸気改質する改質器に改質水として供給する、いわゆる水自立運転が行われている。
 このような、凝縮水を改質水として利用した燃料電池の運転および制御に関し、特許文献1には、前述の凝縮水を貯留する水タンクの水位が低下し水量が不足する場合、この水タンクに、水道水等の外部の水を、外部水浄化処理用のイオン交換樹脂(以下、補水用イオン交換樹脂という)を経由して浄化してから給水(以下「補水」)する燃料電池装置が、開示されている。
特開2008-159461号公報
 本開示の燃料電池装置は、燃料電池と、該燃料電池より排出される排ガスから回収した水を貯留する第1タンクと、前記第1タンクに外部から水を補給する補水装置と、外部から補給される水を浄化する浄化装置と、該浄化装置の破過を検知する破過検知装置と、前記燃料電池の発電運転を制御する制御装置と、を備える。
 前記制御装置は、
 前記補水装置により前記第1タンクに外部の水を補給する補水制御と、
 前記破過検知装置により前記浄化装置の破過を検知する破過検知制御と、
 メンテナンスが必要となる異常が発生した場合に燃料電池の発電運転を停止する異常停止制御と、
 前記破過検知制御により、前記補水制御の実行中に前記浄化装置の破過が検知された場合、前記浄化装置の破過の異常を原因とする前記異常停止制御を実行せずに、前記補水制御の実行を停止する、破過対処制御と、を実行可能である。
 また、本開示の制御装置は、燃料電池を備える燃料電池装置を制御する制御装置であって、前記燃料電池は、浄化装置と、破過検知装置と、を備え、前記燃料電池装置内に外部の水を補給する補水制御と、前記破過検知装置により前記浄化装置の破過を検知する破過検知制御と、を含む。
 前記制御装置は、運転の停止が必要となる事象が発生した場合に燃料電池の発電運転を停止する異常停止制御と、前記浄化装置に破過が発生した場合に前記補水制御の実行を停止する破過対処制御と、を選択的に実行可能である。
 該制御装置は、前記補水制御の実行中に、前記浄化装置の破過が発生した場合、前記異常停止制御の実行に代えて、前記破過対処制御を実行する。
 また、本開示の制御プログラムは、燃料電池を備える燃料電池装置を制御する制御装置に、
 燃料電池装置内に外部の水を補給する補水制御ステップと、
 破過検知装置により浄化装置の破過を検知する破過検知制御ステップと、
 運転の停止が必要となる事象を検知した場合に燃料電池の発電運転を停止する異常停止制御ステップと、
 前記浄化装置の破過を検知した場合に前記補水制御の実行を停止する破過対処制御ステップと、を実行させる制御プログラムである。
 前記制御装置は、前記補水制御ステップの実行中に、前記破過検知制御ステップにおいて浄化装置の破過を検知した場合、前記異常停止制御ステップの実行に代えて、実行中の前記補水制御ステップを停止して、前記破過対処制御ステップを実行する。
 本開示の目的、特色、および利点は、下記の詳細な説明と図面とから、より明確になるであろう。
実施形態の燃料電池装置の概略構成図である。 図1のF部分を拡大した、燃料電池装置の改質水タンク周辺の説明図である。 燃料電池装置の外観斜視図である。 実施形態の燃料電池装置における補水制御開始前の制御フローを示すフロー図である。 実施形態の燃料電池装置における補水制御開始後の制御フローを示すフロー図である。
 以下、図面を用いて実施形態の燃料電池装置について説明する。
 図1,図2および図3は、実施形態の燃料電池装置の概略構成を説明する図である。なお、図2は、図1のF部を拡大して示す、改質水タンク周りの概略構成である。
 実施形態の燃料電池装置100は、天然ガス,LPガス等の原燃料と空気とを使用して発電を行なう燃料電池モジュール1の稼動による電力供給と、熱交換器3、ラジエータ、熱媒循環ポンプP2および蓄熱タンク等からなる排熱回収システムを備える。なお、排熱回収システムは、図中に符号HS(ヒートサイクル)で表示されている。また、燃料電池装置100は、温水の供給を行なわない、いわゆるモノジェネレーションシステムとしてもよい。
 また、燃料電池装置100は、前述の燃料電池モジュール1等の他、補機として、改質水タンク6、パワーコンディショナ20、制御装置30、記憶装置40、表示装置50等を備えている。さらに、燃料電池装置100は、改質水ポンプP1を含む改質水流路R、排水流路Dと、各種センサ類とを備えている。センサとしては、水位検出装置である、中水位に位置する水検知器WLおよび低水位に位置する水検知器WLと、補水の水質を測定するための水質測定装置である電気伝導率計WCと、を少なくとも備える。
 燃料電池モジュール1は、収納容器10に収容されている。内部に、複数の燃料電池セルが積層されたセルスタック11と、水蒸気を用いて原燃料の水蒸気改質を行う改質器12と、余剰の燃料ガスに点火するための着火ヒータ(図示省略)、および、触媒容器2に充填された排ガス触媒等を備える。そして、燃料電池モジュール1は、図3に示すように、各フレーム51と外装パネル(図示省略)とからなるケース50の中に配設されている。
 なお、図3では図示していないが、ケース50内には、図1に例示するような、天然ガス等の原燃料を改質器に送給するガスポンプB1、外気または空気等の酸素含有ガスをセルスタックに送給する空気ブロワB2、改質水タンク6内の改質水を、水蒸気改質用の原料水として改質器12に供給する改質水ポンプP1、改質水タンク6内の余剰水を排出するための排水流路D等が、配設されている。
 さらに、ケース50内には、先に述べたような、系統電源と連係するパワーコンディショナ20、装置全体をコントロールする制御基板を含む制御装置30、記憶装置40等、および燃料電池の運転を制御するために用いる各種センサ類も、配置される。
 上述のような構成の燃料電池装置100においては、燃料電池モジュール1に隣接して配置された熱交換器3で、燃料電池モジュール1より排出された排ガスと、熱交換器3内を流れる水等の熱媒または冷媒との間で熱交換が行われ、排ガスに含まれる水分が結露して凝縮水が生じる。
 生じた凝縮水は、気液分離器等により分離され、凝縮水流路Cを経由して回収され、改質水タンク6に貯留される。なお、改質水タンク6は、本開示における第1タンクの一例である。
 水分が取り除かれた排ガスは、排ガス流路Eを介して、燃料電池装置の外に排気される。また、改質水タンク6に貯水された改質水は、改質水流路Rおよび改質水ポンプP1を介して、燃料電池モジュール1内の改質器12に供給され、改質水を用いた原燃料の水蒸気改質に利用される。
 図2は、燃料電池装置100の構成の中で、燃料電池の発電運転およびそれに用いられる改質水に関連する部分、すなわち図1の二点鎖線F内を拡大して示したものである。
 凝縮水を浄化して貯留する改質水タンク6は、浄化処理用途の第1改質水タンク61と、貯留用途の第2改質水タンク62と、で構成される。なお、これら第1改質水タンク61と第2改質水タンク62との間は、下部の通水管65で接続されて、連通している。
 生成された改質水を貯留する第2改質水タンク62の下部または底部には、改質水ポンプP1の吸引口に繋がる改質水導出口62aが設けられている。また、第2改質水タンク62の上部側面には、排水流路Dに繋がる余剰水導出口62bが設けられている。
 第2改質水タンク62の下部には、貯留された改質水の水位である上水面が、下限水位である渇水位に達したことを検出する水検知器WLが配設されている。
 なお、図中の各センサの先端の黒点は、センサの配設位置またはプローブ等の先端の、検出位置を示すものである。また、上記の、低水位に位置する水検知器WLの検出位置が示す渇水位は、本開示における後記の異常停止制御が実行される基準となる、予め決められた所定水量、すなわち実施形態における下限水位を示す指標でもある。
 凝縮水を回収および精製して改質水を作製する第1改質水タンク61の中には、熱交換器3から回収された凝縮水を浄化処理するための凝縮水用イオン交換樹脂が充填された第1のイオン交換樹脂容器63と、改質水の不足時に、外部から補給される水道水等(以下、外部水)を浄化するための補水用イオン交換樹脂が充填された第2のイオン交換樹脂容器64とが、配設されている。
 第1改質水タンク61の所定の中間位置には、貯留された改質水の水位である上水面が、予め決められた設定水位である中水位まで低下したことを検出するための水検知器WLが配設されている。
 そして、本実施形態の燃料電池装置100においては、水タンクに外部から水を補給する水補給装置として、図2に示すように、改質水タンク6と、外部の水源である上水道(Waterworks)等との間に、電磁開閉式の止水弁Vを含む水補給流路Gが配設されている。
 水補給流路Gの下流側の末端である端部は、第1改質水タンク61の下部に設けられた外部水受水口61aに接続されている。外部水受水口61aから流入した外部水は、タンク内部に配設された延設管61bを介して、第2のイオン交換樹脂容器64の底部に設けられた外部水導入口64aから、第1改質水タンク61内に導入される。
 また、第2のイオン交換樹脂容器64の中には、外部水の浄化のために、前述の補水用イオン交換樹脂が充填されている。外部水は、この補水用イオン交換樹脂を通過する間に、水道水等に含まれる不純物が除去され、導電率1μS/cm程度の脱イオン水、すなわち浄化された水である補水が、精製される。
 なお、図中の電気伝導率計WCは、前述の補水用イオン交換樹脂が破過していないか否かを判定する、破過検知装置の一例である。電気伝導率計WCは、浄化処理された後の脱イオン水である補水の導電率を測定できるように、補水が滞留する、第2のイオン交換樹脂容器64の上部に配設されている。
 浄化処理された補水は、第2のイオン交換樹脂容器64の上部側面に設けられた浄化水流出口64bから流出して、第1改質水タンク61内の貯水部に流下して、改質水として貯留される。
 本実施形態の燃料電池装置100においては、改質水タンク6内の改質水が不足する場合、上述した水道水などの外部水が、補水用イオン交換樹脂を介して浄化された後、補水として改質水タンク6内に導入される。補水が行われる条件および制御等については、後記で説明する。
 そして、燃料電池装置100は、以下に詳細に述べるように、種々の機能を実行するための制御および処理能力を提供するために、少なくとも1つのプロセッサを含む制御装置30を備える。
 種々の実施形態によれば、少なくとも1つのプロセッサは、単一の集積回路として、または、複数の通信可能に接続された集積回路および/もしくはディスクリート回路として、実行されてもよい。少なくとも1つのプロセッサは、種々の既知の技術にしたがって実行されることが可能である。
 1つの実施形態において、プロセッサは、たとえば、関連するメモリに記憶された指示を実行することによって1以上のデータ計算手続または処理を実行するように構成された、1以上の回路またはユニットを含む。他の実施形態において、プロセッサは、1以上のデータ計算手続きまたは処理を実行するように構成された、ファームウェア、たとえばディスクリートロジックコンポーネントであってもよい。
 種々の実施形態によれば、プロセッサは、1以上のプロセッサ、コントローラ、マイクロプロセッサ、マイクロコントローラ、特定用途向け集積回路、デジタル信号処理部、プログラマブルロジックデバイス、フィールドプログラマブルゲートアレイ、または、これらのデバイスもしくは構成の任意の組み合わせ、または、他の既知のデバイスおよび構成の組み合わせ、を含み、以下に説明される機能を実行してもよい。
 制御装置30は、記憶装置40と、表示装置50と、パワーコンディショナ20と、燃料電池モジュール1と、ガスポンプB1等の原燃料供給装置と、空気ブロワB2等の酸素含有ガス供給装置と、改質水ポンプP1等の水供給用装置、止水弁Vを含む水補給流路G等の水補給装置、および、中水位の水検知器WL,低水位の水検知器WL等の水位検出装置、電気伝導率計WC等の水質測定装置などの各種センサと接続され、これらの各機能部をはじめとして、燃料電池装置100の全体を制御および管理する。
 制御装置30は、記憶装置40に記憶されているプログラムを取得して、このプログラムを実行することにより、燃料電池装置100の各部にかかる、種々の機能を実現する。また、表示装置50は、制御装置30からの指示信号に基づいて、指定された必要な情報および警報または警告等を、可視化する。なお、表示装置50は、警報または警告等を音で知らせるための発音機能を備えていてもよい。
 制御装置30から、他の機能部または装置に制御信号または各種の情報などを送信する場合、制御装置30と他の機能部とは、有線または無線により接続されていればよい。制御装置30が行う本実施形態に特徴的な制御については、後記で説明する。なお、本実施形態において、制御装置30は特に、先に述べた外部水の、改質水貯留部への補水を制御する。また、図では、制御装置30および記憶装置40、表示装置50と、燃料電池を構成する各装置および各センサとを結ぶ接続線の図示を、省略している場合がある。
 記憶装置40は、プログラムおよびデータを記憶できる。記憶装置40は、処理結果を一時的に記憶する作業領域としても利用してもよい。記憶装置40は、記録媒体を含む。記録媒体は、半導体記憶媒体、および磁気記憶媒体等の任意の非一時的(non-transitory)な記憶媒体を含んでよい。また、記憶装置40は、複数の種類の記憶媒体を含んでいてもよい。
 記憶装置40は、メモリカード、光ディスク、または光磁気ディスク等の可搬の記憶媒体と、記憶の読み取り装置との組合せを含んでいてもよい。記憶装置40は、RAM(Random Access Memory)等の一時的な記憶領域として利用される記憶デバイスを含んでいてもよい。
 つぎに、上記構成の燃料電池装置による、改質水が不足する場合の補水制御は、以下のように行われる。なお、以下の説明は、図4A,図4Bのフローチャートにもとづいて行う。また、フローチャートにおける各ステップを「S」と省略して呼称する。たとえば、ステップ1,ステップ2・・・は、それぞれ、〔S1〕,〔S2〕・・・と称する。図中も同じである。
 燃料電池装置の制御装置30は、システムに異常を感知していない通常時または正常時には、第1タンクである改質水タンク6の所定の中間位置に配設された水検知器WLが発信している水検出信号が途切れるまで、すなわち、第1所定水位である中水位の水検知器WLからの水検出信号が受信できなくなるまで、水検知信号の受信の有無を判断する〔S1〕のループ、すなわちフローチャートの〔S1〕における図示左側の「Yes」を繰り返しながら待機する。
 上記〔S1〕のループ中に、中水位の水検知器WLが発信する水検出信号が受信されなくなった場合、すなわち、第1改質水タンク61内に貯留された凝縮水の水位が、予め決められた第1所定水位を示す中水位を下回り、分岐判断が「No」となった場合、制御装置30はまず、図4Bに示す補水制御〔S3〕を開始する前に、外部水が補給可能であるかどうかを判定する、破過判定制御〔S2〕を実行する。
 破過判定制御〔S2〕は、コントローラシステムまたはコンピュータシステム等、記憶装置40を含む制御装置30内で単独で実行されるものであり、センサおよび計測器等は使用しない。すなわち、破過判定制御〔S2〕は、制御装置30等を構成するプログラム等の中に予め設定された、補水用イオン交換樹脂の破過を示すコンピュータ・フラグ(以下、CPフラグという)の値が、現在、「0(ゼロ)」であるか「1」であるかにより、現在より以前に、補水用イオン交換樹脂の破過が発生しているか否か、または、破過が発生した記録が残されていないか否か、を判定する。このCPフラグの設定と、CPフラグが「1」の際に実行される場合のある異常停止制御〔S12〕および破過発報制御〔S14〕については、後記で説明する。
 そして、破過判定制御〔S2〕において、現在、補水用イオン交換樹脂の破過を示すCPフラグの値が「0」であれば、現在以前に破過は発生しておらず、逆にCPフラグの値が「1」であれば、補水用イオン交換樹脂が破過していると、制御装置30は判定する。
 図4Aの破過判定制御〔S2〕において、分岐判定が「Yes」、すなわち破過を示すCPフラグの値が「0」(Flag=0)である場合、制御装置30は、図4Bに示す補水制御〔S3〕に移行する。
 制御装置30は、補水用イオン交換樹脂が破過していないことが確認されると、〔S3〕以降において、補水制御を開始する。補水制御は、中水位に位置する水検知器WLが水検知信号を出力するまで、止水弁Vの開閉動作を繰り返すことで実行される。
 まず、図4Bのフローチャートに示すように、〔S4〕として、外部水導入用の、水補給流路Gに配設された電磁開閉式の止水弁Vを開けて、外部水である水道水を第2のイオン交換樹脂容器64に導入し、補水を開始する。以降、外部水を「水道水」とする。
 水道水を供給する補水は、第1時間(T1)の間行われ〔S5〕、第1時間T1経過後、電磁開閉式の止水弁Vが、制御装置30の指示により閉じられる〔S6〕。なお、第1時間T1とは、数秒から数十秒の時間であり、この例では、たとえば3.5秒である。
 つぎに、制御装置30は、〔S6〕において止水弁Vを閉じた後、前述のように止水弁Vが開いていた時間、すなわちこの例では第1時間T1を、記憶装置40に記憶するとともに、既に記憶されている、以前の弁Vの「開」時間と合計・積算して、累積値である累積開弁時間Vを算出し、記録する〔S7〕。なお、上記の制御装置30による弁Vの「開」時間の積算は、本実施形態における補水量積算装置の一例であり、この補水量の積算(演算)を、現有装置の組み合わせで実現した例である。補水量積算装置の構成はこの例に限定されず、後記のような他の構成としてもよい。
 ついで、制御装置30は、〔S8〕において、補水用イオン交換樹脂が、寿命もしくは使用限度を迎えていないか否かを、判定する。判定は、先に述べた、第1時間T1の積算値である累積開弁時間Vが、予め決められた第1値(W1)以下であるか否かを確認する、補水量確認制御として実行される。
 仮に、前述の第1値S1が7200秒(2時間)である場合、累積開弁時間Vが、分岐判断が「Yes」となる7200秒以下であれば、制御装置30は、補水用イオン交換樹脂はまだ寿命を迎えていないと判定し、つぎのステップである水量回復判定〔S9〕を行う。
 また、〔S8〕において、累積開弁時間Vが、前述の第1値W1を超えるまたは上回る、分岐判断が「No」の場合、制御装置30は、補水用イオン交換樹脂は寿命を迎えているおそれがあると判定し、〔S17〕において、補水用イオン交換樹脂に破過が発生していないか否かを、脱イオン水の導電率を計測するように配設された第1の電気伝導率計WCを用いて確認する、導電率確認制御を実行する。この構成により、破過判定の信頼性を向上することができる。
 上述のように、本フローチャートにおいては〔S7〕で止水弁Vが開いている時間を累積し、その積算値Vを〔S8〕において第1値W1と比較し、第1値W1を超える場合に〔S17〕を実行する。ただし、この〔S7〕と〔S8〕とからなる補水量確認制御は。省略または他の構成により代替することができる。省略した場合には、止水弁Vを閉じるたびに、脱イオン水の導電率の確認を行ってもよい。
 なお、図4Bに示すフローチャートの〔S17〕において、破過の検知の基準となる脱イオン水の導電率の判定基準である第2値W2は、60μsに設定される。
 そして、〔S17〕において、第2のイオン交換樹脂容器64上部に配設された第1の電気伝導率計WCが計測した、脱イオン水の導電率が、判定基準である60μs以下「Yes」である場合、制御装置30は、つぎのステップである水量回復判定〔S9〕に移行する。
 なお、前述の〔S8〕補水量確認制御と〔17〕導電率確認制御とは、本開示における破過検知制御の2つの判断条件を示すものである。これら〔S8〕補水量確認制御と〔17〕導電率確認制御とは、どちらの確認を先に行ってもよく、その確認順序は、入れ替えることができる。また、上述の補水量確認制御における累積開弁時間Vが第1値W1を超え、かつ、導電率確認制御における第1の電気伝導率計WCが計測した脱イオン水の導電率が第2値W2を超える場合に、補水用イオン交換樹脂が破過したとの判定が行われる。
 水量回復判定〔S9〕は、図4A中の〔S1〕と同様、第1タンクである改質水タンク6の所定の中間位置に配設された水検知器WLを用いて、上記の外部水の補水操作により、改質水タンク6内の改質水の水位が、第1所定水位である中水位まで回復したか否かを、確認するステップである。
 水量回復判定〔S9〕において、水検知器WLが水検出信号を発信しており、改質水タンク6内の改質水の水位が、第1所定水位である中水位まで回復したことが確認され、分岐判断が「Yes」であれば、制御装置30は、補水制御を正常に終了〔S10〕し、フローの最初であるスタート〔S0〕へ戻る。
 なお、前記の補水制御を終了〔S10〕した後、発電運転を中止し、所定時間待機した後、再度発電運転を開始してもよい。当該制御はメンテナンスを経ずに再起動するため、本開示の異常停止制御には該当しない。
 逆に、水量回復判定〔S9〕において、水検知器WLが水検出信号を発信しておらず、改質水タンク6内の改質水の水位が、第1所定水位である中水位まで回復していない、分岐判断が「No」である場合、制御装置30は、補水用水補給流路Gに配設された電磁開閉式の止水弁Vを閉めた状態で、第2時間(T2)の間待機〔S16〕する。
 その後、〔S4〕に戻り、当該止水弁Vを開けて、水道水を第2のイオン交換樹脂容器64に導入する補水操作を、再度行う。なお、以上のような補水制御は、フローチャート上でループするよう、複数回繰返してもよい。
 第2時間T2とは、数秒から数十秒の時間であり、この例では、たとえば12秒である。補水用イオン交換樹脂では、この第2時間T2の間に、改質水タンク6に導入された水道水から不純物等を除去し補水を生成する。水道水の浄化を確実に行うため、第2時間T2は、先に述べた、補水用電磁開閉式の止水弁Vの「開」時間である第1時間T1より長く設定される。
 また、〔S17〕において、第2のイオン交換樹脂容器64上部に配設された第1の電気伝導率計WCが計測した、脱イオン水の導電率が、60μsを超え、補水用イオン交換樹脂が破過したことが検知されたまたは破過したことが疑われる場合、すなわち〔S17〕における分岐判定が「No」の場合、制御装置30は、先述の制御装置30等を構成するプログラム等の中に予め設定された、補水用イオン交換樹脂の破過を示すCPフラグの値を、「0(ゼロ)」から「1」に書き換え〔S18〕してから、補水制御を停止〔S19〕し、フローの最初であるスタート〔S0〕へ戻る。
 このように補水用イオン交換樹脂の破過が疑われる場合でも、本実施形態の制御装置30は、上記の補水用イオン交換樹脂の破過以外の他の異常がなければ、〔S12〕に例示するような、燃料電池装置の発電運転を停止する異常停止制御は実行せずに、補水用イオン交換樹脂の破過を示すCPフラグの値の、0から1への書き換え〔S18〕を実行してから、補水制御を停止する〔S19〕。
 したがって、本実施形態における制御装置30は、補水制御の実行中に浄化装置の破過が検知された場合、浄化装置に破過の異常が発生したことを原因とする、すなわち浄化装置の破過に起因する異常停止制御は実行せず、代わりに、実行中の補水制御の実行を停止する〔S19〕。これは、本開示の破過対処制御の一例であると同時に、後述の「メンテナンスが必要となる異常」が発生した場合に実行される異常停止制御の、例外的な処置、または異常停止制御の例外、の一例でもある。
 なお、CPフラグの値の書き換え〔S18〕は、補水制御の停止〔S19〕の後に行っても差し支えない。また、本実施形態におけるフローチャートには示していないが、浄化装置が破過したことを外部に発報する〔S14〕等の破過発報制御を、補水制御の停止〔S19〕の前または後に実行することもできる。
 つぎに、〔S18〕にてCPフラグの値を「1」に書き換えたのち、補水制御を停止し、図4Aのフローチャートのスタート〔S0〕に復帰した場合、再度のタンク内凝縮水の水位低下〔S1〕を経て、破過判定制御〔S2〕までフローが進行した時、先に述べたものと異なり、今回は、破過判定制御〔S2〕において、分岐判定は「No」(Flag=1)となる。
 そのため、制御装置30は、新たに〔S11〕において、改質水タンク6の渇水位置である低水位位置の水検知器WLが、水検出信号を発信しているか否か、すなわちタンク内の貯留凝縮水の上水面が、危険レベルにまで低下していないかどうか、を確認する。
 この〔S11〕において、低水位位置の水検知器WLからの水検出信号が検出され続けている「Yes」であれば、改質水タンク6内の改質水の貯水量は、まだ危険レベルにまで低下していないと判断して、制御装置30は、先に述べた〔S1〕のループに戻る。
 つまり、補水用イオン交換樹脂に破過が発生していて、〔S3}以降の補水制御を実行することができなくても、改質水の貯水量が危険レベル以下になるまでは、燃料電池装置の発電運転が継続される。ただし、このように補水がされずに発電運転が継続される場合、回収される凝縮水の量が増えなければ、改質水タンク6の水位は徐々に低下していくことになる。
 そして、〔S11〕において、低水位位置の水検知器WLからの水検出信号が途絶えた「No」であれば、制御装置30は、改質水タンク6内の改質水の貯水量が危険レベルにまで低下していると判断する。改質水タンク6内の水位が低水位以下となった場合には、一度発電運転を停止〔S12〕させてメンテナンスを施す必要がある。
 すなわち、手動でのメンテナンスが完了するまでは、発電運転を再開することができない。このように、メンテナンスが必要となる異常な事象が発生した場合に燃料電池装置の発電運転を停止する制御は、異常停止制御の一例であり、上記の例は、タンクに貯留された水の量が予め決められた所定水量未満となったことを原因とする異常停止制御、である。
 なお、上述の異常停止制御は、図4Aのフローチャートに示すように、発電運転の停止〔S12〕に伴って、異常停止制御実行の原因となった異常の情報(原因情報)を、たとえば表示装置50等を通じて、外部へ発報〔S13〕してもよい。
 また、本実施形態の燃料電池装置は、前述の原因情報の外部への発報する〔S13〕の後に、「補水用イオン交換樹脂が破過している」という情報を外部に向けて発報する破過発報制御〔S14〕を実行可能である。破過発報制御における異常情報(破過情報)の発報方法は、上述する異常停止制御における異常情報の発報方法と同様であっても、異なっていてもよい。
 以上、詳述したように、本実施形態の燃料電池装置、制御装置および制御プログラムは、イオン交換樹脂が破過した場合でも、直ちに運転を停止しないため、効率よく発電運転を行うことができる。
 また、この構成によって、本実施形態の燃料電池装置、制御装置および制御プログラムは、その補水用イオン交換樹脂のメンテナンスを、先に述べた、改質水の貯水量が危険レベル未満となった渇水異常が発生した場合に、当該異常を解消するためのメンテナンスと同じタイミングで行うことが可能になる。したがって、本実施形態の燃料電池装置は、メンテナンスの回数を低減することができる。
 また、本実施形態の燃料電池装置は、前述の、補水用イオン交換樹脂の破過を示すCPフラグの値の「0」から「1」への書き換え〔S18〕後は、そのCPフラグ「1」は、ユーザ等を含む管理者の命令指示なしに、リセットされない。すなわち、言い換えれば、制御装置30は、補水用イオン交換樹脂の破過を検知した場合、補水用イオン交換樹脂の破過を示すCPフラグを「1」に書き換える破過記録制御を実行するとともに、外部からの記録消去命令等を受信するまで、前記CPフラグを「1」のまま維持する記録保持制御を実行する。
 この構成により、本実施形態の燃料電池装置、制御装置および制御プログラムは、補水用イオン交換樹脂が破過した、または破過が疑われた際に、それを記憶して、前述のような改質水の貯水量が危険レベル未満となった渇水異常が発生した場合に、この渇水異常について外部に発せられる情報である信号,報告等に加えて、補水用イオン交換樹脂に異常が生じているという情報を、管理者等に確実に伝達することができる。
 前述の実施形態は、本開示の燃料電池装置における補水用イオン交換樹脂の破過制御の一例である。また、上記例では、制御装置30における破過検知制御に含まれる補水量確認制御に用いられる補水量積算装置の一例として、補水用イオン交換樹脂を流過した水量の積算・累積項目である、電磁開閉式止水弁Vの累積開弁時間Vを用いたが、たとえば、外部水である水道水の、第2のイオン交換樹脂容器64への時間あたり流入量を計測するフローメーター、あるいは、量水計等を備える場合、それらのセンサから得られる値、すなわち水量を積算して、累積水量の値を、補水用イオン交換樹脂の破過判定の指標または基準としてもよい。これらフローメーターおよび量水計等も、補水量積算装置の一例である。
 また、たとえば、前記の外部水である水道水の、第2のイオン交換樹脂容器64への流入量を、水補給流路Gに配設された止水弁Vが開弁された時間と、水補給流路G中を流れる外部水の水圧または流量等にもとづいて、演算で算出可能であれば、開弁された時間を積算した累積値を、第2のイオン交換樹脂容器64へ流入した累積水量として、補水用イオン交換樹脂の破過判定に利用してもよい。
 実施形態では、燃料電池装置において異常停止制御が実行される「補水用イオン交換樹脂の破過以外の他の異常」の一例として、改質水タンク6内の水位が低水位以下の渇水位となる場合を例示したが、本開示におけるメンテナンスが必要となる異常な事象・現象は、これに限られるものでない。
 また、前述の補水用イオン交換樹脂の破過の異常も、最終的にはメンテナンスが必要となるため、上記メンテナンスが必要となる異常に含まれるものである。しかしながら、本実施形態における燃料電池装置は、この「補水用イオン交換樹脂の破過の異常」の処理を、「メンテナンスが必要となる他の異常」と分けて、特例として例外的に処理するものである。
 また、本実施形態におけるフローチャートには示していないが、補水用イオン交換樹脂が充填された第2のイオン交換樹脂容器64の上部に溜まる脱イオン水の導電率が第3値を超える場合も、本開示におけるメンテナンスが必要となる異常な事象に該当する。
 その場合、制御装置30は、電気伝導率計の異常または補水電磁弁の異常が発生したと判断して、異常停止制御を実行する。第3値は、上述する第2値より大きい値であり、たとえば、100μs程度である。第2のイオン交換樹脂容器64の上部に溜まる脱イオン水の導電率が第3値を超えるか否かは、発電運転を実行している間、常時、判定していてもよい。
 なお、燃料電池装置の制御装置30および記憶装置40は、燃料電池装置100の外部に有する構成として実現することもできる。さらに、本開示に係る制御装置30における特徴的な制御工程を含む制御方法として実現したり、上記工程をコンピュータに実行させるための制御プログラムとして実現したりすることも可能である。
 また、セルスタック装置および燃料電池モジュールは、SOFCに限定されず、たとえば固体高分子形燃料電池〔Polymer Electrolyte Fuel Cell(PEFC)〕、リン酸形燃料電池〔Phosphoric Acid Fuel Cell(PAFC)〕、および、溶融炭酸塩形燃料電池〔Molten Carbonate Fuel Cell(MCFC)〕などのような燃料電池で構成してもよい。
 さらに、本開示は、その精神または主要な特徴から逸脱することなく、他のいろいろな形態で実施できる。したがって、前述の実施形態はあらゆる点で単なる例示に過ぎず、本開示の範囲は請求の範囲に示すものであって、明細書本文には何ら拘束されない。さらに、請求の範囲に属する変形や変更は全て本開示の範囲内のものである。
 1 燃料電池モジュール
 6 改質水タンク(第1タンク)
 61 第1改質水タンク
 62 第2改質水タンク
 63 第1イオン交換樹脂容器
 64 第2イオン交換樹脂容器
 30 制御装置
 40 記憶装置
 50 表示装置
 100 燃料電池装置
 V 止水弁
 G 水補給流路
 WC 電気伝導率計
 WL 水検知器(中水位センサ)
 WL 水検知器(低水位センサ)

Claims (9)

  1.  燃料電池と、
     該燃料電池より排出される排ガスから回収した水を貯留する第1タンクと、
     前記第1タンクに外部から水を補給する補水装置と、
     外部から補給される水を浄化する浄化装置と、
     該浄化装置の破過を検知する破過検知装置と、
     前記燃料電池の発電運転を制御する制御装置と、を備え、
     前記制御装置は、
      前記補水装置により前記第1タンクに外部の水を補給する補水制御と、
      前記破過検知装置により前記浄化装置の破過を検知する破過検知制御と、
      メンテナンスが必要となる異常が発生した場合に燃料電池の発電運転を停止する異常停止制御と、
      前記破過検知制御により、前記補水制御の実行中に前記浄化装置の破過が検知された場合、前記浄化装置の破過の異常を原因とする前記異常停止制御を実行せずに、前記補水制御の実行を停止する、破過対処制御と、
    を実行可能である、燃料電池装置。
  2.  前記制御装置は、前記破過対処制御において、前記補水制御の実行を停止したのち、前記第1タンクに貯留された水の量が、予め決められた所定水量未満となったことを原因とする前記異常停止制御が実行された場合に、
     前記浄化装置の破過の情報を外部に発報する破過発報制御を実行する、請求項1に記載の燃料電池装置。
  3.  前記制御装置が実行するプログラムと該プログラムの実行に必要な情報とを記憶する記憶装置をさらに備え、
     前記制御装置は、
      前記破過検知装置による前記浄化装置の破過の検知を前記記憶装置に記録する破過記録制御と、
      前記浄化装置の破過の記録を前記記憶装置内に保持する記録保持制御と、を実行可能であり、
     前記制御装置は、前記破過検知制御により前記浄化装置の破過が検知された場合、前記破過記録制御を実行するとともに、外部からの記録消去命令を受信するまで、前記記録保持制御を実行する、請求項1または2に記載の燃料電池装置。
  4.  前記破過検知装置は、
      外部から補給され、前記浄化装置を経由した水の量を積算する補水量積算装置と、
      前記浄化装置を経由した外部の水の導電率を測定する水質測定装置と、を含み、
     前記破過検知制御は、
      前記浄化装置を経由した外部の水の総量を示す積算値が、予め決められた第1値を超えるか否かを確認する補水量確認制御と、
      前記浄化装置を経由した外部の水の導電率の値が、予め決められた第2値を超えるか否かを確認する導電率確認制御と、を含み
     前記制御装置は、前記破過検知制御において、
      前記補水量確認制御における前記積算値が前記第1値を超え、かつ、
      前記導電率確認制御における前記導電率の値が前記第2値を超える場合に、
     前記浄化装置が破過したと検知する、請求項1~3のいずれか1つに記載の燃料電池装置。
  5.  前記補水装置は、外部から補給される水の流入を制御する電磁開閉式の止水弁を含み、
     前記積算値は、前記止水弁が開いていた時間を積算した値である、請求項4に記載の燃料電池装置。
  6.  前記補水装置は、外部から補給される水の流入を制御する電磁開閉式の止水弁を含み、
     前記補水制御は、予め決められた第1時間継続して前記止水弁を開いた後、予め決められた第2時間継続して前記止水弁を閉じる止水弁開閉制御を、複数回繰り返して実行する、請求項1~5のいずれか1つに記載の燃料電池装置。
  7.  前記第1時間は、前記第2時間より短い、請求項6に記載の燃料電池装置。
  8.  燃料電池を備える燃料電池装置を制御する制御装置であって、
     前記燃料電池は、浄化装置と、破過検知装置と、を備え、
     前記燃料電池装置内に外部の水を補給する補水制御と、
     前記破過検知装置により前記浄化装置の破過を検知する破過検知制御と、を含み、
      運転の停止が必要となる事象が発生した場合に燃料電池の発電運転を停止する異常停止制御と、
      前記浄化装置に破過が発生した場合に前記補水制御の実行を停止する破過対処制御と、を選択的に実行可能であり、
     前記補水制御の実行中に、前記浄化装置の破過が発生した場合、前記異常停止制御に代えて、前記破過対処制御を実行する、制御装置。
  9.  燃料電池を備える燃料電池装置を制御する制御装置に、
     燃料電池装置内に外部の水を補給する補水制御ステップと、
     破過検知装置により浄化装置の破過を検知する破過検知制御ステップと、
     運転の停止が必要となる事象を検知した場合に燃料電池の発電運転を停止する異常停止制御ステップと、
     前記浄化装置の破過を検知した場合に前記補水制御の実行を停止する破過対処制御ステップと、を実行させる制御プログラムであって、
     前記補水制御ステップの実行中に、前記破過検知制御ステップにおいて浄化装置の破過を検知した場合、前記異常停止制御ステップの実行に代えて、実行中の前記補水制御ステップを停止して、前記破過対処制御ステップを実行する、制御プログラム。
PCT/JP2019/014698 2018-04-27 2019-04-02 燃料電池装置、制御装置および制御プログラム WO2019208128A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020516161A JP7007468B2 (ja) 2018-04-27 2019-04-02 燃料電池装置、制御装置および制御プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018087419 2018-04-27
JP2018-087419 2018-04-27

Publications (1)

Publication Number Publication Date
WO2019208128A1 true WO2019208128A1 (ja) 2019-10-31

Family

ID=68295388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014698 WO2019208128A1 (ja) 2018-04-27 2019-04-02 燃料電池装置、制御装置および制御プログラム

Country Status (2)

Country Link
JP (1) JP7007468B2 (ja)
WO (1) WO2019208128A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021064507A (ja) * 2019-10-11 2021-04-22 京セラ株式会社 燃料電池装置、制御装置および制御プログラム

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002269661A (ja) * 2001-03-08 2002-09-20 Osaka Gas Co Ltd 家庭用燃料電池システムの異常通報システム
JP2003308859A (ja) * 2002-04-17 2003-10-31 Mitsubishi Heavy Ind Ltd 燃料電池発電システムの水供給装置及びこれを用いた燃料電池発電システム
JP2008276948A (ja) * 2007-04-25 2008-11-13 Kyocera Corp 燃料電池装置
JP2009252594A (ja) * 2008-04-08 2009-10-29 Ebara Ballard Corp 燃料電池システム
JP2011249185A (ja) * 2010-05-28 2011-12-08 Ngk Spark Plug Co Ltd 燃料電池装置
JP2012212559A (ja) * 2011-03-31 2012-11-01 Panasonic Corp 燃料電池システムおよび燃料電池システムの運転方法
JP2015191765A (ja) * 2014-03-28 2015-11-02 Jx日鉱日石エネルギー株式会社 燃料電池装置のメンテナンス最適化方法
JP2016192269A (ja) * 2015-03-31 2016-11-10 パナソニックIpマネジメント株式会社 燃料電池システム及びその運転方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6100065B2 (ja) * 2013-04-10 2017-03-22 本田技研工業株式会社 燃料電池システム用イオン交換装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002269661A (ja) * 2001-03-08 2002-09-20 Osaka Gas Co Ltd 家庭用燃料電池システムの異常通報システム
JP2003308859A (ja) * 2002-04-17 2003-10-31 Mitsubishi Heavy Ind Ltd 燃料電池発電システムの水供給装置及びこれを用いた燃料電池発電システム
JP2008276948A (ja) * 2007-04-25 2008-11-13 Kyocera Corp 燃料電池装置
JP2009252594A (ja) * 2008-04-08 2009-10-29 Ebara Ballard Corp 燃料電池システム
JP2011249185A (ja) * 2010-05-28 2011-12-08 Ngk Spark Plug Co Ltd 燃料電池装置
JP2012212559A (ja) * 2011-03-31 2012-11-01 Panasonic Corp 燃料電池システムおよび燃料電池システムの運転方法
JP2015191765A (ja) * 2014-03-28 2015-11-02 Jx日鉱日石エネルギー株式会社 燃料電池装置のメンテナンス最適化方法
JP2016192269A (ja) * 2015-03-31 2016-11-10 パナソニックIpマネジメント株式会社 燃料電池システム及びその運転方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021064507A (ja) * 2019-10-11 2021-04-22 京セラ株式会社 燃料電池装置、制御装置および制御プログラム
JP7284062B2 (ja) 2019-10-11 2023-05-30 京セラ株式会社 燃料電池装置、制御装置および制御プログラム

Also Published As

Publication number Publication date
JP7007468B2 (ja) 2022-02-10
JPWO2019208128A1 (ja) 2021-04-08

Similar Documents

Publication Publication Date Title
JP5634488B2 (ja) 水素生成装置の運転方法、及び燃料電池システムの運転方法
US20020017495A1 (en) Water softening device
JP5132142B2 (ja) 燃料電池装置
JPWO2010113519A1 (ja) 燃料電池システム
JP5110415B2 (ja) 燃料電池システム及びガス漏れ検知方法
WO2009051348A1 (en) Heat recovery apparatus of fuel cell system
JP5292801B2 (ja) 燃料電池システム
WO2019208128A1 (ja) 燃料電池装置、制御装置および制御プログラム
JP6960306B2 (ja) 燃料電池装置、制御装置および制御プログラム
JP7101758B2 (ja) 燃料電池装置、制御装置および制御プログラム
JP7284062B2 (ja) 燃料電池装置、制御装置および制御プログラム
JP5323981B2 (ja) 燃料電池システムおよびその運転方法
JP7398923B2 (ja) 燃料電池装置、制御プログラムおよび燃料電池装置の制御方法
JP5879970B2 (ja) 燃料電池システム
JP5153178B2 (ja) 燃料電池装置
JP2020017507A (ja) 燃料電池装置、制御装置および制御プログラム
DK2797149T3 (en) Heat recovery unit based on fuel cell and related method of operation
JP7221036B2 (ja) 燃料電池装置および燃料電池装置の制御方法、制御プログラム
JP5178041B2 (ja) 燃料電池装置
JP2021005542A (ja) 燃料電池装置
JP2020194666A (ja) 燃料電池装置
JP2008034204A (ja) 燃料電池装置
JP7369575B2 (ja) 燃料電池装置
JP7387516B2 (ja) 燃料電池システム、制御装置、及び制御プログラム
JP7391749B2 (ja) 燃料電池システム、制御装置、及び制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19791917

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020516161

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19791917

Country of ref document: EP

Kind code of ref document: A1