WO2019207871A1 - 油脂または生体サンプル中のビタミンdの迅速検出方法 - Google Patents

油脂または生体サンプル中のビタミンdの迅速検出方法 Download PDF

Info

Publication number
WO2019207871A1
WO2019207871A1 PCT/JP2019/002588 JP2019002588W WO2019207871A1 WO 2019207871 A1 WO2019207871 A1 WO 2019207871A1 JP 2019002588 W JP2019002588 W JP 2019002588W WO 2019207871 A1 WO2019207871 A1 WO 2019207871A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid chromatography
supercritical
column
phase liquid
chromatography
Prior art date
Application number
PCT/JP2019/002588
Other languages
English (en)
French (fr)
Inventor
ヤンリ グオ
尚樹 濱田
裕樹 端
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Publication of WO2019207871A1 publication Critical patent/WO2019207871A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N30/46Flow patterns using more than one column
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/60Construction of the column
    • G01N30/6034Construction of the column joining multiple columns
    • G01N30/6039Construction of the column joining multiple columns in series
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86

Definitions

  • the present invention relates to a method and system for separating and detecting vitamins from fats or biological samples, and belongs to the field of natural substance separation.
  • Vitamin D 2 also referred to as “ergocalciferol”
  • vitamin D 3 (“cholecalciferol”) are fat-soluble vitamins and play a very important role in calcium metabolism. Vitamin D also affects other metabolic routes. Insufficient vitamin D causes serious illnesses such as rickets and osteoporosis.
  • vitamin D supplements are used to treat or prevent vitamin deficiencies. Vitamin D is also added to infant formula milk to meet nutritional requirements for infants. If vitamin D is excessively consumed, it may be dangerous. Therefore, proper use of vitamin D in vitamin supplements and infant formula foods plays a very important role in medicine and health care.
  • the preparation of the sample solution before detection usually includes steps such as saponification and extraction.
  • steps such as saponification and extraction.
  • NPLC normal phase liquid chromatography
  • RPLC reverse phase liquid chromatography column
  • Non-patent document 1 discloses that vitamin A, vitamin D 3 and vitamin E in prescription nutritional products for infants and adults are obtained by online two-dimensional liquid chromatography based on reversed-phase chromatography for both one-dimensional separation and two-dimensional separation.
  • a method for simultaneous measurement is disclosed. After saponification and extraction of the sample, it can be directly injected for analysis, and each vitamin in the sample can be quantitatively analyzed online even with a single injection.
  • washing a sample extracted from an oily or lipid substrate by RPLC leaves some strongly hydrophobic lipophilic impurities on the RPLC column. Accumulation of impurities on the chromatography column not only changes the retention time of the detected substance, but also shortens the life of the washing column.
  • Non-Patent Document 2 relates to a high-speed and high-sensitivity analytical method capable of simultaneously measuring fat-soluble vitamins A, D 2 , D 3 and ⁇ -tocopherol in infant formula milk using UPLC-MS / MS.
  • the detection sample still needs to be treated with an alkali inorganic substance and extracted with an organic solvent, and there is room for further improvement or improvement from the viewpoint of ease of pretreatment.
  • Patent Document 1 by column chromatography mobile phase is supercritical carbon dioxide, dehydrocholesterol, a method of separating a vitamin D 3 or previtamin D 3 from a mixture with other components such as tachysterol and lumisterol disclosed has been. However, this method relates only to separation or purification after the synthesis of the vitamin D product.
  • the conventional technique does not sufficiently improve the method for extracting vitamin D from a system having complicated components such as fats and oils and biological samples in terms of convenience of application, eco-type, and rapidity.
  • the present invention provides a method and detection system for the rapid analysis of vitamin D in fats and oils or biological samples using a multidimensional chromatography system.
  • the present invention uses a combination of reversed-phase liquid chromatography and supercritical chromatograph to easily and quickly separate vitamin D contained in fats and oils or biological samples, and further detect the separated vitamin D using a detection device. And analyze.
  • the method and analysis system of the present invention allows convenient and rapid switching between different chromatographic columns, and also enables rapid and accurate detection of vitamin D.
  • the present invention begins with [1] A method for rapid detection of vitamin D in fats and oils or biological samples, the method comprising: S1 step of preparing a test sample, S2 step of separating vitamin D in the test sample using a multidimensional chromatography system, and S3 step of detecting vitamin D separated in S2 step,
  • the multi-dimensional chromatography system includes a supercritical chromatography portion and a reverse phase liquid chromatography portion that are sequentially connected, and the reverse phase liquid chromatography portion includes one or more reverse phases.
  • the supercritical chromatography portion includes a supercritical mobile phase and a denaturing agent, and the denaturing agent is selected from alcohol, nitrile or an aqueous solution thereof, preferably methanol or an aqueous solution thereof.
  • a method for rapidly detecting vitamin D in fats and oils or biological samples. [2] The supercritical chromatography portion includes one supercritical chromatography column, and the reverse phase liquid chromatography portion includes two reverse phase liquid chromatography columns. the method of. [3] The method according to [1] or [2], wherein the chromatography columns in the multidimensional chromatography system are connected by a multi-way valve group.
  • the stationary phase is selected from silica gel modified with a polar group selected from hydroxy group, amino group or cyano group, preferably the modified silica gel is selected from diol group silica gel, The method according to any one of [1] to [3], wherein the mobile phase is supercritical carbon dioxide.
  • the stationary phase is selected from silica gel modified with a hydrophobic group selected from alkyl groups, preferably the modified silica gel is selected from C18-silica gel, The method according to any one of [1] to [4], wherein the mobile phase is a polar organic solvent or an aqueous solution thereof.
  • step S2 Separating the components of the test sample using supercritical chromatography and transporting the weakly polar substance to the reverse phase liquid chromatography portion, S21 step; Step S22 for removing the supercritical mobile phase that has flowed out of the supercritical chromatography into the reverse phase liquid chromatography, and introducing the mobile phase into the reverse phase liquid chromatography to remove the substances present in the reverse phase liquid chromatography.
  • Step S23 step Separating and obtaining a separated vitamin D component, S23 step, The method according to any one of [1] to [7], wherein the transport of the weakly polar substance in the step S21 to the reverse phase liquid chromatography column may be performed simultaneously with the step S22.
  • step S2 Separating the components of the sample using supercritical chromatography and transporting the weakly polar material to the first reversed phase liquid chromatography column of the reversed phase liquid chromatography portion; S21 step; A step S22 ′ for removing the supercritical mobile phase flowing out from the supercritical chromatography into the first reverse phase liquid chromatography column, and a mobile phase into the first reverse phase liquid chromatography column, Transporting weakly polar substances present in the chromatography column to a second reverse phase liquid chromatography column and separating them into the second reverse phase liquid chromatography column to obtain a vitamin D component,
  • the method according to any one of [1] to [8], wherein transporting the weakly polar substance in the S21 ′ step to the first reversed-phase liquid chromatography column may be performed simultaneously with the S22 ′ step.
  • the method includes a step of separating protein components in the test sample using a pretreatment chromatography column, and in step S3, detection is performed using a mass spectrometer. [1] ⁇ [9] The method according to any one of [9].
  • An analysis system used for the analysis and detection of highly fat-soluble components particularly for automatic detection of vitamin D in fats and oils or biological samples
  • Auto sampler Supercritical chromatography column, including one or more reversed-phase liquid chromatography columns, nonpolar substances are eluted and removed in the supercritical chromatography column, weak polar substances are adsorbed on the stationary phase of the supercritical chromatography column
  • a multi-dimensional chromatography system that is further transported to a reversed-phase liquid chromatography column, Column oven to install the column, A liquid pump that transports a denaturant to the supercritical chromatography column, transports a mobile phase to the one or more reversed-phase liquid chromatography columns, and
  • An analysis system consisting of a mass spectrometer.
  • the multi-dimensional chromatography system includes one reverse phase liquid chromatography column, and the weakly polar substance adsorbed on the supercritical chromatography column is converted into the reverse phase liquid chromatograph only by the action of the denaturing agent. After removing the supercritical mobile phase transported to the chromatography column and flowing out of the supercritical chromatography column with the reversed phase liquid chromatography column, the weakly polar substance components are separated with the reversed phase liquid chromatography column. [11] The system according to any one of [14]. [16] The multidimensional chromatography system includes two reversed-phase liquid chromatography columns, and the weakly polar substance adsorbed on the supercritical chromatography column is a first reversed-phase liquid only by the action of the denaturing agent.
  • the stationary phase is selected from silica gel modified with a polar group selected from hydroxy group, amino group or cyano group, preferably, the modified silica gel is a diol group silica gel,
  • the stationary phase is selected from silica gel modified with a hydrophobic group selected from hydrocarbon groups, preferably, the modified silica gel is C18 silica gel
  • the method or analysis system provided by the present invention can quickly and accurately analyze and detect vitamin D in fats and oils or biological samples, and can operate particularly with high automation, greatly improving the analysis efficiency. Improve and reduce analysis costs.
  • the detection result shows a good linear correlation coefficient, and has a good reproducibility and a high recovery rate.
  • a method that can rapidly detect vitamin D in a fat sample or biological sample.
  • the subject to be examined may be various vitamin D-containing dietary supplements or nutrients, infant formula milk or food.
  • these vitamin D-containing substances may be solid, liquid or pasty.
  • samples may or may not be pretreated as needed in some embodiments.
  • the means for pretreatment is not particularly limited as long as the content of vitamin D in the test sample is not impaired.
  • fine powder can be obtained by using means such as drying and pulverization so that the sample can be easily dissolved.
  • pretreatment means such as saponification or enzymatic decomposition can be used for powdered milk or rice flour.
  • a test sample is directly extracted with an organic solvent, and components, such as vitamin D, in it are extracted to an organic solvent.
  • the organic solvent can be selected from hydrocarbon solvents, ketone solvents, ether solvents and the like.
  • a hydrocarbon-based solvent such as n-hexane can be used.
  • the solution of the test sample that has already been dissolved can be injected into the detection device by an autosampler.
  • protein components in the sample can be removed by chromatography or the like before the sample is subjected to detection.
  • the protein component in the sample is removed in advance using a pretreatment column, and then the vitamin D component in the sample is separated and detected. Therefore, the present invention can also detect a vitamin D-containing biological sample such as blood.
  • the multidimensional chromatography system of the present invention provides the role of pre-washing and separating the sample solution to be tested.
  • the multidimensional chromatography system includes a supercritical chromatography portion and a reverse phase liquid chromatography portion.
  • Supercritical Chromatography Partial supercritical fluid chromatography is a chromatographic process in which a supercritical fluid is used as a mobile phase and components are separated and analyzed by the solvation ability of the mobile phase.
  • Supercritical fluid chromatography combines the characteristics of gas chromatography and liquid chromatography, can analyze high boiling point, low volatility samples that are not suitable for gas chromatography, and has a faster analysis speed than high performance liquid chromatography. Provide optimal conditions.
  • a sample solution is prewashed using a supercritical chromatography column. That is, the nonpolar oil / fat component in the test sample solution is removed.
  • the supercritical chromatography column may be a packed column or a capillary column.
  • packed column supercritical fluid chromatography PCSFC is preferred.
  • the stationary phase of the supercritical chromatography column is selected from silica gel modified with polar groups, which can be selected from hydroxy, amino or cyano groups.
  • polar groups which can be selected from hydroxy, amino or cyano groups.
  • a hydroxyl group is used as the modifying group in view of the need to ensure adequate vitamin D retention time when the sample solution is pre-washed with a supercritical chromatography column. It is preferable.
  • the stationary phase of the supercritical chromatography column is preferably a diol group silica gel bonded with a 1,2-dihydroxypropyl functional group-containing organosilane.
  • the stationary phase may be porous spherical silica gel.
  • the mobile phase in the supercritical chromatography column of the present invention it is possible to select a supercritical fluid that shows a state between the gas and liquid of the substance under the conditions of the critical temperature and the critical pressure or higher.
  • a suitable supercritical fluid may be supercritical carbon dioxide or supercritical ethane.
  • the supercritical mobile phase is selected from supercritical carbon dioxide.
  • the working temperature and pressure are mainly determined by the supercritical mobile phase selected.
  • the working temperature is 31 ° C. or higher, preferably 35 ° C. or higher, and the working pressure is 7.3 MPa or higher, preferably 7.5 MPa or higher.
  • the working temperature is preferably 40 to 60 ° C.
  • the working pressure is preferably 7.5 to 15 MPa.
  • a modifier is used as a substance that adjusts the polarity of the supercritical carbon dioxide fluid.
  • the modifier may be selected from alcohol or nitrile.
  • various aliphatic alcohols such as methanol and isopropanol can be used in the alcohol, and acetonitrile and the like can be used in the nitrile.
  • the amount of modifier used can usually be 1% to 5% of the mobile phase.
  • the use amount of the denaturing agent of the present invention is preferably 1.5% to 4%, more preferably 2% to 3%, most preferably 2% to 2.5%.
  • the purity of the modifier is 80% or more, preferably 90% or more, more preferably 100%.
  • the mobile phase and denaturant of the present invention can be supplied to the column by a liquid pump.
  • the supercritical chromatography column of the present invention can be installed in an oven.
  • a CO 2 supply pump independent of the detector and the pressure control unit (for example, the back pressure control unit BPR) may be provided.
  • a pressure control unit is provided at the end of the supercritical chromatography portion and is used to drain the mobile phase and waste liquid.
  • the detector is not particularly limited, but is arranged in front of the pressure control unit and can detect each component eluted from the column.
  • the outflow of vitamin D can be detected, whereby the retention time of vitamin D in the sample solution can be determined.
  • the detector may be a diode array detector.
  • the supercritical chromatograph used in the present invention can be obtained from a commercial product, for example, “Nexera UC” supercritical chromatography system manufactured by Shimadzu Corporation.
  • the sample solution is added to the supercritical chromatographic part by the autosampler, and then the supercritical chromatograph is started. While weakly polar substances such as vitamin D in the sample remain in the column, non-polar oils are rapidly eluted from the column.
  • the supercritical chromatography can finish the quick preliminary washing of the vitamin D-containing component, and the nonpolar oil and fat component can be easily and conveniently removed.
  • the system is switched to the reverse phase liquid chromatography section after removing non-polar fat components and before reaching the retention time of vitamin D.
  • the above switching can be performed using a multi-way valve group.
  • the multi-way valve group is not particularly limited, but various injection multi-way valves generally used in the field of liquid chromatography can be used. In the present invention, it is preferable to use a 6-way valve group or a 10-way valve group, and it is more preferable to use a 6-way valve group. Different flow paths or connection paths can be realized by different switching operations of the multi-way valve group, and is particularly suitable for connection and control between a plurality of types of devices.
  • Switching by the switching device means that the liquid outlet of the supercritical chromatography column is disconnected from the detector and the pressure control device, and at the same time, the liquid outlet of the supercritical chromatography column is connected to the liquid inlet of the reverse phase liquid chromatography via the multi-way valve group. Connect to. At the same time, the end of the reverse phase liquid chromatography is connected to at least the pressure control unit via the multi-way valve group.
  • the supply of the mobile phase to the supercritical chromatography column is stopped when or before the switching is performed.
  • the supply rate of the denaturing agent can be increased after switching without stopping the supply of the denaturing agent, and can be increased to, for example, 0.5 to 1 mL / min.
  • the weakly polar substance containing vitamin D adsorbed on the supercritical chromatography column is eluted only by the flow of the denaturing agent, and reverse phase liquid chromatography through a multi-way valve together with the supercritical carbon dioxide left in the system. You can enter the part.
  • Step S21 is completed by the above switching, that is, the components of the test sample are separated by supercritical chromatography, and the weakly polar substance containing vitamin D is transported to the reverse phase liquid chromatography portion.
  • step S21 ′ is completed by the above switching, that is, the components of the sample are separated by supercritical chromatography, and the weakly polar substance containing vitamin D is removed from the first reverse phase liquid chromatography column of the reverse phase liquid chromatography portion. To transport.
  • the reverse phase liquid chromatography part includes one or more reverse phase liquid chromatography columns. In some embodiments, in use, these reverse phase liquid chromatography columns are placed in an oven.
  • the stationary phase of the reverse phase liquid chromatography column of the present invention may be silica gel modified with a hydrophobic group.
  • the hydrophobic group may be various hydrocarbon groups such as C8 group, C18 group, and phenyl group.
  • C18 modified silica gel is used as the stationary phase.
  • a polar organic solvent such as alcohol or nitrile or an aqueous solution thereof can be used.
  • alcohol various aliphatic alcohols such as methanol and isopropanol can be used, and as the nitrile, acetonitrile and the like can be used.
  • the mobile phase can be used as an aqueous solution, for example, an aqueous solution of methanol may be used.
  • an aqueous solution of methanol may be used.
  • the content of the polar organic solvent in the mobile phase needs to be 60% or more, preferably 80% or more, and more preferably 90% or more.
  • the mobile phase in reverse phase liquid chromatography is 90% or more methanol or 100% methanol.
  • the reverse phase liquid chromatography portion may include only one column. As described above, after switching, reverse phase liquid chromatography and supercritical chromatography are connected in series, and at this time, the end of reverse phase liquid chromatography is also switched or connected to the pressure control unit described above. . Such switching or connection configuration can also be achieved by the multi-way valve group described above.
  • step S22 is completed. That is, in the reverse phase liquid chromatography, the mobile phase flowing out from the supercritical chromatogram is removed.
  • the mobile phase is introduced into the reverse phase liquid chromatography column using a liquid chromatography liquid pump.
  • the mobile phase of reverse phase liquid chromatography may be the same as or different from the denaturing agent in supercritical chromatography.
  • both are the same, for example, both are 80% or more, or 90% or more methanol aqueous solution, or 100% methanol.
  • the polar mobile phase can be introduced directly into the reverse phase liquid chromatography column, thus solving the problem of mobile phase mismatch when switching between different types of columns.
  • step S23 is completed, that is, in the reverse phase liquid chromatography, a mobile phase is further introduced to separate substances present in the reverse phase liquid chromatography, thereby obtaining a separated vitamin D component ( Step S23).
  • the vitamin D component here includes vitamin D 2 and vitamin D 3 components.
  • the reverse phase liquid chromatography is separated from the pressure control device.
  • the reverse phase liquid chromatography is connected to the mass spectrometer by switching the multi-way valve group. At this point, the separated vitamin D component can be detected and analyzed using a mass spectrometer.
  • the reverse phase liquid chromatography portion may include more than one column.
  • the reverse phase liquid chromatography portion can include two columns connected in series.
  • Step S21 ' is the same as step S21 described above.
  • the supply of the supercritical mobile phase is stopped and the denaturant is continuously introduced.
  • the column is switched via a multi-way valve group, and the vitamin D-containing weakly polar component adsorbed on the supercritical chromatography column is transferred to the first reversed-phase liquid chromatography column. Can be transported.
  • step S22 ' the end of the first reversed-phase liquid chromatography column is first connected to the pressure control unit, and the supercritical mobile phase transported to the column is discharged.
  • the first reversed-phase liquid chromatography is disconnected from the pressure control device by switching in the multi-way valve group and connected to the second reversed-phase liquid chromatography.
  • step S23 ′ simultaneously with or after discharging the supercritical mobile phase, the liquid pump is started to transport the polar mobile phase to the first reverse phase liquid chromatography, and the first and second reverse phase liquid chromatography columns.
  • the weakly polar component adsorbed on the first reversed-phase liquid chromatography column is further eluted into the second reversed-phase liquid chromatography column, and the vitamin D component is eluted in the second reversed-phase liquid chromatography column.
  • Vitamin D separated in the second reverse phase liquid chromatography can be analyzed and detected using a mass spectrometer connected in series with the column.
  • the first reversed phase liquid chromatography column and the second reversed phase liquid chromatography column may be the same or different. In a preferred embodiment of the invention, both are different, for example, the second reversed phase liquid chromatography column is longer than the first reversed phase liquid chromatography column.
  • the first reversed-phase liquid chromatography column can be regarded as a pretreatment column for the second reversed-phase liquid chromatography column, collecting weakly polar substances mainly containing vitamin D, and supercritical mobile phase. Perform the function of removing.
  • the infant vitamin D supplement was analyzed by the method of the present invention. An appropriate amount of the oily sample was taken, and the sample was dissolved in n-hexane.
  • the sample is put into the autosampler 13, the supercritical chromatograph is started, and the supercritical carbon dioxide and the denaturant are transported to the column 14 by the pump 11 and the liquid pump 12, respectively.
  • the chromatograph column 14 is sequentially connected to the diode array detector 15 and the pressure control unit 16 via the six-way valves 41 and 46 to form the flow path A.
  • non-polar oil and fat components are washed away in the column 14, and weak polar components including vitamin D are adsorbed to the stationary phase of the column 14, thereby weakly polar components containing vitamin D Pre-cleaning is completed.
  • the supercritical fluid supply is stopped while switching the system using a 6-way valve, but the denaturant flow rate is increased without stopping the supply of the denaturant.
  • 41 and 46 are separated from each other in the hexagonal valve, 41 and 42 are connected, and 45 and 46 are connected to form the flow path B.
  • This flow path sequentially includes a column 14, a column 22, a diode array detector 15 and a pressure control unit 16.
  • the denaturant whose flow rate is increased transports weakly polar components from the column 14 to the column 22.
  • the supercritical carbon dioxide remaining in the system is discharged by the pressure control unit 16.
  • the hexagonal valves 41 and 42 are disconnected, 45 and 46 are disconnected, 42 and 43 are connected, 44 and 45 are connected, and the liquid pump 21 is connected to the column 22.
  • Supply polar mobile phase In this way, the flow path C including the two reverse phase liquid chromatography columns 22 and 23 connected in series is formed.
  • the weakly polar component flows from the column 22 to the column 23 through the pipeline, and the separation of the vitamin D component is completed in the column 23.
  • the column 23 can be directly connected to the mass spectrometry detector 24 at the end of the flow path C. Thereby, analysis and detection of each component of vitamin D can be realized.
  • a system is provided that is applied to automatic detection of highly fat-soluble components, particularly fats and oils or vitamin D in biological samples. Such a system is used to implement the detection method of the first aspect of the invention.
  • Such a system is Auto sampler, A supercritical chromatography column and one or more reversed-phase liquid chromatography columns, wherein nonpolar substances are eluted and removed in the supercritical chromatography column, and weak polar substances are adsorbed on the stationary phase of the supercritical chromatography column; A multi-dimensional chromatography system that is further transported to a reversed-phase liquid chromatography column, Column oven to install the column, A liquid pump for transporting a denaturant to the supercritical chromatography column and transporting a mobile phase to the one or more reverse phase liquid chromatography columns; Consisting of a mass spectrometer.
  • the denaturing agent used in supercritical liquid chromatography is the same as described above, and is selected from alcohol, nitrile, or an aqueous solution thereof, preferably methanol or an aqueous solution thereof. In some preferred embodiments of the present invention, 80% or more or 90% or more of aqueous methanol can be used.
  • the supercritical chromatography column and one or more reversed-phase liquid chromatography columns in the multidimensional chromatography system are connected or switched by a multi-way valve group.
  • the multi-way valve group of the present invention is preferably a 6-way valve group or a 10-way valve group.
  • the weakly polar substance adsorbed on the supercritical chromatography column is transported to the reverse phase liquid chromatography column only by the action of the denaturing agent, and flows out from the supercritical chromatography column in the reverse phase liquid chromatography column. Remove the supercritical mobile phase.
  • the weakly polar substance adsorbed on the supercritical chromatography column is converted into the reversed-phase liquid chromatography column only by the action of the denaturing agent.
  • the supercritical mobile phase that has been transported to and discharged from the supercritical chromatography column in the reverse phase liquid chromatography column is removed. Further, the weakly polar substance separates components in the reverse phase liquid chromatography column.
  • the multidimensional chromatography system includes two reversed-phase liquid chromatography columns
  • the weakly polar substance adsorbed on the supercritical chromatography column is transported to the first chromatography column only by the action of the denaturing agent.
  • the supercritical mobile phase flowing out of the supercritical chromatography column is removed.
  • the weakly polar substance is transported to the second reversed phase liquid chromatography column to separate the components.
  • the stationary phase of the supercritical chromatography column or reverse phase liquid chromatography column and the mobile phase used are the same as the ranges disclosed above.
  • a reverse phase liquid chromatography column that performs separation of at least weakly polar substances is installed in the oven.
  • such a system further comprises a pretreatment column for separating protein components in the test sample, the pretreatment column being, for example, a supercritical chromatography column as described above. Can be installed upstream.
  • UC system includes CBM-20A controller, online DGU-20A deaerator, LC-30AD SF CO 2 pump, LC-30AD denaturant pump, SIL-30AC autosampler (with 5 ⁇ L sample loop), CTO-20AC column oven SPD M20A diode array detector (with high voltage battery) and one SFC-30A back pressure regulator (BPR).
  • BPR back pressure regulator
  • the SFC column (4.6 mm ⁇ 250 mm, 5 ⁇ m) uses its SFC mode for pre-separation and contains three materials: UC-X silica, UC-X NH 2 and UC-X (diol group).
  • Short C18 column (VP-ODS, 4.6 mm ⁇ 50 mm, 5 ⁇ m)
  • long C18 column (4.6 mm ⁇ 250 mm, 5 ⁇ m) for separating vitamin D, vitamin when using different proportions of methanol in mobile phase
  • Two reference columns consisting of a diol group column and a C18 column (4.0 mm ⁇ 10 mm, 5 ⁇ m) for examining the retention time of D are used. All columns were purchased from Shimadzu-GL Sciences (Shanghai) Laboratory Supplies Co., Ltd.
  • a standard stock solution of vitamin D was prepared in n-hexane as D 3 1 mg / mL; D 2 1 mg / mL. All standard stock solutions are stored at -30 ° C.
  • the test standard solution is a standard solution of vitamin D diluted with n-hexane to 10 to 200 ⁇ g / L.
  • Baby Ddrops (about 10 ⁇ g / drop) was diluted with n-hexane and the final concentration of vitamin D 3 was about 100 ⁇ g / L.
  • a drop of vitamin AD was extruded from the soft capsule and diluted with n-hexane, resulting in a final concentration of vitamin D 3 of about 125 ⁇ g / L.
  • Step of pre-washing using SFC a sample containing vitamin D is injected into the system, a mixture of supercritical carbon dioxide fluid and methanol is passed, and the vitamin D sample is passed through a normal phase column. Vitamin D and impurities were each retained in the column and separated. BPR provides a back pressure of 15 MPa. In another embodiment, each was used with two C18 columns for pretreatment and reverse phase separation and washed with methanol at a flow rate of 1 ml / min.
  • the retention time of vitamin D increased with a decrease in the content of the modifier methanol in each column.
  • the retention times of vitamins D 2 and D 3 were approximately the same, with vitamin D having the longest retention time on the diol group column compared to the NH 2 and Silica columns.
  • the retention time is increased, it means that the time for washing and removing the non-polar oil / fat component in the SFC column is also increased without dissolving or eluting the vitamin D component.
  • a diol group column was selected and the denaturant methanol flow rate was set to 2% (relative to the supercritical CO 2 flow rate) and used to wash oil or lipid samples containing vitamin D.
  • the SFC process uses a high content of methanol (90% and 100% methanol) as the modifier while maintaining a low ratio of modifier flow to supercritical CO 2 flow. It can be seen that a longer retention time of vitamin D is obtained in the cleaning process, and that vitamin D components are rapidly eluted from the SFC column and pretreatment of the C18 column is performed even after the supply of supercritical carbon dioxide is stopped. It was.
  • the retention behavior of the C18 column with different contents of methanol was also investigated.
  • the C18 column can still use a high content methanol solution as the mobile phase,
  • the SFC modifier and the mobile phase in the C18 column can have the same composition. This not only allows the high content of methanol to quickly elute vitamin D 3 from the diol group column, but also ensures sufficient retention time of the vitamin D 3 in the C18 column.
  • both the modifier in the SFC column and the mobile phase used in the C18 column can both be high contents of methanol.
  • the switching time from the SFC column to the pretreated C18 column is set to 8.5 minutes, and the reverse phase separation from the pretreated C18 column is performed.
  • the switching time to C18 column was set to 17.5 minutes.
  • a calibration curve was prepared with five concentrations (20, 50, 100, 150, 200 ⁇ g / L) (FIG. 6). A curve with good linearity was obtained, and the linear correlation coefficient was 0.998 or more within the detection range of 20 to 200 ⁇ g / L (Table 1). Detection limit of vitamins D 2 and D 3 standard sample were respectively 20 [mu] g / L and 16 [mu] g / L.
  • the detection method and apparatus of the present invention can be used for analysis of vitamin D components in industrial production.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本発明は、油脂または生体サンプル中のビタミンDの迅速検出方法に関する。本発明において、多次元クロマトグラフィーシステムにより、被検サンプルについてビタミンDサンプルのオンライン前処理及び分離を行う。前記多次元クロマトグラフィーシステムは、順次に接続される超臨界クロマトグラフィー部分および逆相液体クロマトグラフィー部分からなり、前記逆相液体クロマトグラフィー部分は、1本以上の逆相液体クロマトグラフィーカラムを含み、前記超臨界クロマトグラフィー部分は、超臨界移動相、変性剤及び超臨界用充填カラムを含む。

Description

油脂または生体サンプル中のビタミンDの迅速検出方法
 本発明は、油脂または生体サンプルからのビタミンの分離や検出方法およびシステムに関し、天然物質分離の分野に属している。
 ビタミンD(「エルゴカルシフェロール、Ergocalciferol」とも言う)およびビタミンD(「コレカルシフェロール、Cholecalciferol」)は脂溶性ビタミンであり、カルシウムの代謝において非常に重要な役割を果たしている。ビタミンDは、他の代謝ルートにも影響を与える。ビタミンDが不足すると、くる病や骨粗鬆症のような重大疾患を引き起こす。一般的に、ビタミンDサプリメントはビタミン欠乏症の治療または予防に用いられる。また、乳児に対する栄養要求を満たすために、乳児調合粉ミルクにもビタミンDが添加される。なお、ビタミンDが過剰に摂取されると危険になる可能性もある。そのため、ビタミンサプリメントおよび乳児処方食品へのビタミンDの適切な使用は、医療および保健では非常に重要な役割を果たしている。
 ビタミンDの含有量が少なく、基質による妨害を受けやすいため、検出前のサンプル溶液の調製には、通常ケン化、抽出等のステップが含まれている。従来から、ビタミンDの測定方法として、一般的に、溶媒で油脂または脂肪性基質から抽出した後、順相液体クロマトグラフィー(NPLC)にて洗浄し、続いて逆相液体クロマトグラフィーカラム(RPLC)にて分離および検出を行う。しかしながら、従来の溶媒による抽出技術は時間がかかり、煩雑な苦労も必要とし、且つ大量な有機溶媒を費やすので、サンプル調製プロセスを簡便化するための多くの試みもなされてきた。
 乳児調合粉ミルク中のビタミンDを分析するために、オンラインでの抽出物除去に使用する2種類の逆相液体クロマトグラフィーにおける二次元カラム切替システムが開発されている。非特許文献1には、一次元分離および二次元分離とも逆相クロマトグラフィーに基づき、オンラインの二次元液体クロマトグラフィー法により乳児および成人の処方栄養品中のビタミンA、ビタミンDおよびビタミンEを同時に測定する方法が公開されている。サンプルをケン化、抽出した後、直接注入して分析に供し、一回の注入でもサンプル中の各ビタミンをオンラインで定量分析することができる。しかしながら、RPLCにより油状物または脂質の基体から抽出されたサンプルを洗浄すると、RPLCカラム上にいくつかの強疎水性の脂溶性不純物が残される。不純物がクロマトグラフィーカラム上に蓄積すると、検出物の保持時間を変化させるだけではなく、洗浄カラムの寿命を短縮させてしまう。
 一方、高速液体クロマトグラフィー法/超高速液体クロマトグラフィー質量分析(HPLC/UPLC-MS)については、より簡単なサンプル調製法を用いて、既に油性ビタミンサプリメントや乳児調合粉ミルクまたは生物流体中のビタミンDの分析に用いられる。しかしながら、通常の状況では、このような方法は、サンプルの前処理または成分洗浄のために、やはりオフラインで溶媒の抽出プロセスまたは順相固相抽出(SPE)プロセスが必要となる。非特許文献2は、UPLC-MS/MSを用いて、乳児調合粉ミルク中の脂溶性ビタミンA、D、D、α-トコフェロールを同時に測定できる高速且つ高感度な分析方法に関する。しかし、検出サンプルに対して、アルカリ無機物による処理及び有機溶媒による抽出が依然として必要となり、前処理の簡易さの観点から、さらに改善する又は向上する余地がある。
 また、高効率の自動分析システムを得るために、順相液体により油脂または脂肪サンプルをオンラインで精製するクロマトグラフィー法は依然として必要となる。その後、よりよい分解能を提供するために、逆相液体クロマトグラフィーを用いて少なく分離された脂肪溶出液を分析することができる。しかしながら、異なる2種類の移動相がマッチしないので、順相および逆相液体クロマトグラフィーの両方が同時に含まれるカラム切替システムを構築することは困難である。
 また、超臨界流体技術の発展に伴い、超臨界抽出や超臨界クロマトグラフィーによる物質の抽出や分離が試みられている。超臨界技術では、ビタミンDの分離および分析においてNPLCと類似する保持時間および分離挙動が存在する。特許文献1は、移動相が超臨界二酸化炭素であるカラムクロマトグラフィーにより、デヒドロコレステロール、タキステロールおよびルミステロールなどの他の成分との混合物からビタミンDまたはプレビタミンDを分離する方法が開示されている。しかしながら、この方法は、ビタミンD製品を合成した後の分離または精製だけに関するものである。
 よって、従来の技術では、応用の利便性、エコ型、迅速性などの点で、油脂や生体サンプルなどの成分が複雑な系からビタミンDを抽出する方法の改善は十分ではないことが言える。
CN1144782C
「二次元液体クロマトグラフィー法によりオンラインで乳児および成人処方栄養品中のビタミンA、D3およびEの同時測定」、張艶海、《クロマトグラフィー》、2015年3月 "超高速液体クロマトグラフィー/超臨界流体クロマトグラフィー-タンデム質量分析の共同使用技術による乳児調和乳粉中の多種類のビタミンの同時測定に関する研究"、全思思、広東薬科大学修士学位論文、2017年
 前記従来の、油脂や生体サンプル等の成分が複雑な系からビタミンDを抽出する方法において、前処理ステップが複雑であり、溶媒の消耗量が多く、クロマトグラフィー分析間の切替が不便であるなどの問題があった。これに鑑みて、本発明は、多次元クロマトグラフィーシステムを使用して、油脂または生体サンプル中のビタミンDを迅速に分析する方法および検出システムを提供する。本発明は、逆相液体クロマトグラフィーと超臨界クロマトグラフを組み合わせて使用し、簡便で迅速に油脂または生体サンプルに含まれるビタミンDを分離し、さらに検出装置を用いて分離されたビタミンDを検出および分析する。
 本発明の方法および分析システムでは、異なるクロマトグラフィーカラム間の便利で迅速な切替が可能となり、さらに、ビタミンDの迅速かつ正確な検出が可能となる。
 本発明では、以下の態様により上記課題を解決した。
 本発明は、まず、
 [1] 油脂または生体サンプル中のビタミンDの迅速検出方法であって、前記方法は、
 被検サンプルを調製するS1ステップ、
 多次元クロマトグラフィーシステムを用いて被検サンプル中のビタミンDを分離するS2ステップ、及び
 S2ステップで分離されたビタミンDを検出するS3ステップを有し、
 前記S2ステップにおいて、前記多次元クロマトグラフィーシステムには、順次に接続される超臨界クロマトグラフィー部分および逆相液体クロマトグラフィー部分が含まれ、前記逆相液体クロマトグラフィー部分には、1本以上の逆相液体クロマトグラフィーカラムが含まれ、
 前記超臨界クロマトグラフィー部分には、超臨界移動相及び変性剤が含まれ、前記変性剤はアルコール、ニトリルまたはこれらの水溶液から選択されるものであり、好ましくはメタノールまたはその水溶液である、
 油脂または生体サンプル中のビタミンDの迅速検出方法。
 [2] 前記超臨界クロマトグラフィー部分には1本の超臨界クロマトグラフィーカラムが含まれ、前記逆相液体クロマトグラフィー部分には2本の逆相液体クロマトグラフィーカラムが含まれる、[1]に記載の方法。
 [3] 前記多次元クロマトグラフィーシステムにおけるクロマトグラフィーカラムは、多方バルブグループにより接続される、[1]または[2]に記載の方法。
 [4] 前記超臨界クロマトグラフィー部分において、
 固定相はヒドロキシ基、アミノ基またはシアノ基から選択される極性基で変性したシリカゲルから選択されるものであり、好ましくは、前記変性したシリカゲルは、ジオール基シリカゲルから選択されるものであり、
 移動相は超臨界二酸化炭素である、[1]-[3]のいずれか1項に記載の方法。
 [5] 前記逆相液体クロマトグラフィー部分において、
 固定相はアルキル基から選択される疎水基で変性したシリカゲルから選択されるものであり、好ましくは、前記変性したシリカゲルはC18-シリカゲルから選択されるものであり、
 前記移動相は極性有機溶媒またはその水溶液である、[1]-[4]のいずれか1項に記載の方法。
 [6] 前記逆相液体クロマトグラフィー部分の逆相液体クロマトグラフィーカラムは同様なカラム、または異なるカラムである、[1]-[5]のいずれか1項に記載の方法。
 [7] S2ステップにおいて、超臨界クロマトグラフィーに吸着された弱極性物質は前記変性剤の作用のみで逆相液体クロマトグラフィー部分に輸送され、当該逆相液体クロマトグラフィー部分において超臨界クロマトグラフィー部分から流出した超臨界移動相を除去する、[1]-[6]のいずれか1項に記載の方法。
 [8] S2ステップにおいて、さらに、
 超臨界クロマトグラフィーを用いて被検サンプルの成分を分離し、弱極性物質を逆相液体クロマトグラフィー部分に輸送するS21ステップ、
 逆相液体クロマトグラフィーに、超臨界クロマトグラフィーから流出した超臨界移動相を除去するS22ステップ、及び
 前記逆相液体クロマトグラフィーに、さらに移動相を導入し、逆相液体クロマトグラフィーに存在する物質を分離して、分離されたビタミンD成分を得るS23ステップ、を有し、
 S21ステップにおける前記弱極性物質を逆相液体クロマトグラフィーカラムに輸送することはS22ステップと同時に行ってもよい、[1]-[7]のいずれか1項に記載の方法。
 [9] S2ステップにおいて、さらに、
 超臨界クロマトグラフィーを用いてサンプルの成分を分離し、弱極性物質を逆相液体クロマトグラフィー部分の第1の逆相液体クロマトグラフィーカラムに輸送するS21ステップ、
 第1の逆相液体クロマトグラフィーカラムに、超臨界クロマトグラフィーから流出した超臨界移動相を除去するS22’ステップ、及び
 第1の逆相液体クロマトグラフィーカラムに、さらに移動相を導入し、当該クロマトグラフィーカラムに存在する弱極性物質を第2の逆相液体クロマトグラフィーカラムに輸送し、前記第2の逆相液体クロマトグラフィーカラム中に分離してビタミンD成分を得るS23’ステップ、を有し、
 S21’ステップにおける前記弱極性物質を第1の逆相液体クロマトグラフィーカラムに輸送することはS22’ステップと同時に行ってもよい、[1]-[8]のいずれか1項に記載の方法。
 [10] S2ステップの前に、前処理クロマトグラフィーカラムを用いて被検サンプル中のタンパク質成分を分離するステップを有し、S3ステップにおいて、質量分析装置を用いて検出を行う、[1]-[9]のいずれか1項に記載の方法。
 さらには、本発明は、以下の態様を提供する。
 [11]高脂溶性成分の分析及び検出、特に油脂又は生体サンプル中のビタミンDの自動検出に用いられる分析システムであって、
 オートサンプラー、
 超臨界クロマトグラフィーカラム、1本以上の逆相液体クロマトグラフィーカラムが含まれ、超臨界クロマトグラフィーカラムにおいて非極性物質が溶出除去され、弱極性物質が超臨界クロマトグラフィーカラムの固定相に吸着され、さらに逆相液体クロマトグラフィーカラムに輸送される多次元クロマトグラフィーシステム、
 カラムを設置するカラムオーブン、
 前記超臨界クロマトグラフィーカラムに変性剤を輸送し、前記1本以上の逆相液体クロマトグラフィーカラムに移動相を輸送する液体ポンプ、及び、
 質量分析計からなる、分析システム。
 [12] 前記変性剤はアルコール、ニトリル又はこれらの水溶液から選択されるものであり、好ましくは、メタノール又はその水溶液である、[11]に記載のシステム。
 [13] 前記多次元クロマトグラフィーシステムにおける超臨界クロマトグラフィーカラムと、1本または複数の逆相液体クロマトグラフィーカラムとの間は、多方バルブグループにより接続される、または接続を切り替える、[11]又は[12]に記載のシステム。
 [14] 前記超臨界クロマトグラフィーカラムに吸着された弱極性物質は、前記変性剤の作用のみで逆相液体クロマトグラフィーカラムに輸送され、該逆相液体クロマトグラフィーカラムで超臨界クロマトグラフィーカラムから流出した超臨界移動相を除去する、[11]-[13]のいずれか1項に記載のシステム。
 [15] 前記多次元クロマトグラフィーシステムは、1本の逆相液体クロマトグラフィーカラムを含み、前記超臨界クロマトグラフィーカラムに吸着された弱極性物質は、前記変性剤の作用のみで前記逆相液体クロマトグラフィーカラムに輸送され、該逆相液体クロマトグラフィーカラムで超臨界クロマトグラフィーカラムから流出した超臨界移動相を除去した後、該逆相液体クロマトグラフィーカラムで前記弱極性物質の成分を分離する、[11]-[14]のいずれか1項に記載のシステム。
 [16] 前記多次元クロマトグラフィーシステムは、2本の逆相液体クロマトグラフィーカラムを含み、前記超臨界クロマトグラフィーカラムに吸着された弱極性物質が前記変性剤の作用のみで第1の逆相液体クロマトグラフィーカラムに輸送され、該逆相液体クロマトグラフィーカラムで超臨界クロマトグラフィーカラムから流出した超臨界移動相を除去し、
 その後、弱極性物質が第2の逆相液体クロマトグラフィーカラムに輸送されて成分を分離する、[11]-[14]のいずれか1項に記載のシステム。
 [17] 前記超臨界クロマトグラフィーカラムにおいて、
 固定相はヒドロキシ基、アミノ基またはシアノ基から選択される極性基で変性したシリカゲルから選択されるものであり、好ましくは、前記変性したシリカゲルはジオール基シリカゲルであり、
 移動相は超臨界二酸化炭素である、[11]-[16]のいずれか1項に記載のシステム。
 [18] 前記逆相クロマトグラフィーカラムにおいて、
 固定相は炭化水素基から選択される疎水基で変性したシリカゲルから選択されるものであり、好ましくは、前記変性したシリカゲルはC18シリカゲルであり、
 前記移動相は極性有機溶媒またはその水溶液である、[11]-[17]のいずれか1項に記載のシステム。
 [19] 少なくとも、弱極性物質の分離を実行する逆相液体クロマトグラフィーカラムがカラムオーブンに設置される、[11]-[18]のいずれか1項に記載のシステム。
 [20] 前記システムは、被検サンプル中のタンパク質成分を分離するための前処理カラムを有する、[11]-[19]のいずれか1項に記載のシステム。
 本発明は、上記技術態様によって、以下の有益な効果が得られる。
 本発明では、油脂又は生体サンプルからビタミンDの検出については、サンプルに対する複雑な前処理の必要がないため、従来のような前処理ステップで大量な溶媒を用いてビタミンD成分を抽出する必要はない。
 本発明により提供される多次元クロマトグラフィーシステムでは、超臨界クロマトグラフィーカラムと逆相液体クロマトグラフィーカラムとの間で、異種類のクロマトグラフィーカラム間の直接切替が実現できるため、通常に異種類のカラムを共同使用する際に、移動相は互換性がないという欠点を回避できる。
 さらに、本発明により提供される方法または分析システムは、油脂または生体サンプル中のビタミンDを迅速かつ正確に分析および検出することができ、特に高度自動化で作動することができ、分析効率を大幅に改善し、分析コストも低減させる。
 また、本発明の方法によってビタミンD成分を検出すると、検出結果は良好な線形相関係数を示すと共に、良好な再現性および高回収率を有する。
本発明の一実施形態に係るビタミンDの検出プロセスのフローチャートである。 SFC過程においてCOに対する変性剤の使用量による異なるカラムの保留挙動への影響。 ジオール基カラムにおけるメタノールの異なる含有量による保留挙動への影響。 C18カラムにおけるメタノールの異なる含有量による保留挙動への影響。 標準サンプルに対する検出分析結果。 標準サンプルに対する検出分析結果。 油性液滴ビタミンDの分析
 以下、本発明の内容について詳細に説明する。以下に記載した技術構成の説明は、本発明の代表的な実施形態および具体的な実施例に基づくものである。本発明は、かかる実施形態および具体例に限定されない。また、本明細書において、「~」で表される数値範囲は、「~」の前後に記載される数値を下限及び上限として含む範囲を意味し、特に断りがない限り、「%」で表記されるのは体積百分率、すなわち「V%」を指す。
 <本発明の第1の態様>
 本発明の第1の態様において、油脂サンプルまたは生体サンプル中のビタミンDを迅速に検出できる方法が提供される。
 被検の対象については、様々なビタミンD含有栄養補助食品または栄養剤であってもよいし、乳児調合粉ミルクまたは食品であってもよい。本発明のいくつかの実施形態では、これらのビタミンD含有物質は、固形であってもよいし、液状またはペーストの形態であってもよい。
 これらのサンプルについて、いくつかの実施形態では、必要に応じて前処理を行っても行わなくてもよい。前処理の手段は、被検サンプル中のビタミンDの含有量を損なわない限り、特に限定されない。また、サンプルを溶解しやすいように、乾燥、粉砕などの手段を使用して微粉体を得ることができる。或いは、例えば、粉ミルクまたは米粉などに対して、ケン化、酵素分解などの前処理手段を使用することができる。或いは、一部の油脂成分について、有機溶媒で被検サンプルを直接に抽出処理して、その中のビタミンDなどの成分を有機溶媒に抽出する。
 必要に応じて前処理されたサンプルは、有機溶媒で溶解または希釈して被検サンプル溶液を調製する。本発明において、有機溶媒は、炭化水素系溶媒、ケトン系溶媒、エーテル系溶媒などから選択され得る。好ましい実施形態では、n-ヘキサンなどの炭化水素系溶媒を使用することができる。
 既に溶解された被検サンプルの溶液については、オートサンプラーによって検出装置に注入することができる。
 また、本発明の他の実施形態では、サンプルを検出に供する前に、クロマトグラフィーなどによってサンプル中のタンパク質成分を除去することができる。例えば、前もって前処理カラムを用いてサンプル中のタンパク質成分を除去した後、サンプル中のビタミンD成分を分離及び検出する。よって、本発明は、血液などのビタミンD含有生体サンプルに対しても検出することができる。
 多次元クロマトグラフィーシステム
 本発明の多次元クロマトグラフィーシステムは、被検サンプル溶液の予備洗浄および分離の役割を提供する。前記多次元クロマトグラフィーシステムには、超臨界クロマトグラフィー部分および逆相液体クロマトグラフィー部分が含まれる。
 超臨界クロマトグラフィー部分
 超臨界流体クロマトグラフィー(supercritical fluid chromatography、SFC)は、超臨界流体を移動相として、移動相の溶媒化能力により成分の分離および分析を行うクロマトグラフィープロセスである。
 超臨界流体クロマトグラフィーは、ガスクロマトグラフィーおよび液体クロマトグラフィーの特徴を併せ持ち、ガスクロマトグラフィーに適しない高沸点、低揮発性サンプルを分析することができ、且つ高速液体クロマトグラフィーよりも速い分析速度と最適な条件を備える。本発明では、超臨界クロマトグラフィーカラムを使用してサンプル溶液を予備洗浄する。すなわち、被検サンプル溶液中の非極性油脂成分を除去する。
 本発明において、超臨界クロマトグラフィーカラムは、充填カラムであってもよいし、キャピラリーカラムであってもよい。いくつかの実施形態では、充填カラム超臨界流体クロマトグラフィー(PCSFC)が好ましい。
 超臨界クロマトグラフィーカラムの固定相は極性基で変性したシリカゲルから選択され、極性基はヒドロキシ、アミノまたはシアノ基から選択され得る。いくつかの好ましい実施態様では、サンプル溶液を超臨界クロマトグラフィーカラムで予備洗浄する場合に、適切なビタミンDの保持時間を確保しておく必要があることを考慮して、変性基として水酸基を用いることが好ましい。より具体的には、本発明において超臨界クロマトグラフィーカラムの固定相は、1,2-ジヒドロキシプロピル官能基含有オルガノシランを用いて結合されたジオール基シリカゲルを用いることが好ましい。また、固定相は多孔質球状シリカゲルであってもよい。
 本発明の超臨界クロマトグラフィーカラムにおける移動相は、臨界温度と臨界圧力以上の条件で物質の気体と液体との間にある状態を示す超臨界流体を選択することができる。適切な超臨界流体は超臨界二酸化炭素または超臨界エタンであり得る。本発明のいくつかの実施形態では、超臨界移動相は超臨界二酸化炭素から選択される。作業温度および圧力は、主に選択された超臨界移動相によって決定される。本発明において、超臨界二酸化炭素を超臨界移動相とする場合、作業温度は31℃以上、好ましくは35℃以上であり、作業圧力は7.3MPa以上、好ましくは7.5MPa以上である。ビタミンDの超臨界流体への溶解性、保持時間及び作業性の観点から、作業温度は40~60℃が好ましく、作業圧力は7.5~15MPaが好ましい。
 本発明においては、超臨界二酸化炭素流体の極性を調整する物質として、変性剤が用いられる。前記変性剤は、アルコールまたはニトリルから選択され得る。変性剤として、アルコールにおいて、メタノール、イソプロパノールのような種々の脂肪族アルコールを使用することができ、ニトリルにおいて、アセトニトリルなどを使用することができる。変性剤の使用量(相対流量)は、通常、移動相の1%~5%であり得る。ビタミンDの保持時間を制御する観点から、本発明の変性剤の使用量は、1.5%~4%が好ましく、2%~3%がより好ましく、2%~2.5%が最も好ましい。また、保持時間を制御する観点から、変性剤の純度は80%以上、好ましくは90%以上、より好ましくは100%である。
 本発明の移動相および変性剤は、液体ポンプによってカラムに供給することができる。いくつかの実施形態では、本発明の超臨界クロマトグラフィーカラムがオーブン中に設置され得る。また、超臨界クロマトグラフィー部分において、検出器と圧力制御ユニット(例えば、背圧制御ユニットBPR)と独立したCO供給ポンプを設けてもよい。いくつかの実施形態では、圧力制御ユニットは、超臨界クロマトグラフィー部分の末端に設けられ、移動相および廃液の排出に用いられる。検出器は特に限定されないが、圧力制御ユニットの前に配置され、カラムから溶出された各々の成分を検出することができる。特に、ビタミンDの流出を検出することができ、これにより、サンプル溶液中のビタミンDの保持時間を確定することができる。好ましくは、検出器はダイオードアレイ検出器であってもよい。
 本発明に用いられる超臨界クロマトグラフは、市販品から入手することができ、例えば、島津製作所の「ネクセラUC」超臨界クロマトグラフィーシステムであってもよい。
 サンプル溶液はオートサンプラーにより超臨界クロマトグラフィー部分に添加した後、超臨界クロマトグラフを始動する。サンプル中のビタミンDのような弱極性物質がカラムに残る一方、非極性の油脂がカラムから速やかに溶出される。
 このステップにおいて、超臨界クロマトグラフィーにより、ビタミンD含有成分の迅速な予備洗浄を終え、非極性の油脂成分を簡単且つ便利に除去することができる。
 切替装置
 超臨界クロマトグラフィーの処理において、非極性の油脂成分を除去した後、ビタミンDの保持時間に達する前に、システムを逆相液体クロマトグラフィー部分に切り替える。
 本発明のいくつかの実施形態では、上記の切替は多方バルブグループを用いて行うことができる。多方バルブグループについては、特に限定されないが、液体クロマトグラフィーの分野で一般的に使用されている各種の注入用多方バルブを用いることができる。本発明では、6方バルブグループまたは10方バルブグループを使用することが好ましく、6方バルブグループを使用することがより好ましい。多方バルブグループの異なる切替動作により、異なる流れ経路または接続経路を実現することができ、特に複数種類の装置間の接続および制御に適する。
 切替装置による切替とは、超臨界クロマトグラフィーカラムの液体出口を検出器および圧力制御装置と切り離すと同時に、超臨界クロマトグラフィーカラムの液体出口を多方バルブグループを介して逆相液体クロマトグラフィーの液体入口に接続する。また、同時に該多方バルブグループを介して逆相液体クロマトグラフィーの末端を少なくとも前記圧力制御ユニットに接続する。
 本発明では、前記切替が行われる際またはその前に、超臨界クロマトグラフィーカラムへの移動相の供給を停止する。この間には変性剤の供給を停止することなく、切替が行われた後に変性剤の供給速度を増加させることができ、例えば、0.5~1mL/分まで増加させることができる。この場合に、超臨界クロマトグラフィーカラムに吸着されたビタミンDを含む弱極性物質は、変性剤の流れのみによって溶出され、系内に残された超臨界二酸化炭素と共に多方バルブを通じて逆相液体クロマトグラフィー部分に入ることができる。
 上記の切替によってステップS21が終了する、すなわち、超臨界クロマトグラフィーにより被検サンプルの成分を分離し、ビタミンDを含む弱極性物質を逆相液体クロマトグラフィー部分に輸送する。或いは、上記の切替によってステップS21'が完了する、すなわち、超臨界クロマトグラフィーによりサンプルの成分を分離し、ビタミンDを含む弱極性物質を逆相液体クロマトグラフィー部分の第1逆相液体クロマトグラフィーカラムに輸送する。
 逆相液体クロマトグラフィー部分
 本発明において、逆相液体クロマトグラフィー部分には、1本以上の逆相液体クロマトグラフィーカラムが含まれる。いくつかの実施形態では、使用の際に、これらの逆相液体クロマトグラフィーカラムがオーブンに設置される。
 本発明の逆相液体クロマトグラフィーカラムの固定相は、疎水基で変性したシリカゲルであってもよい。上記の疎水基は、C8基、C18基、フェニル基など、様々な炭化水素基であってもよい。本発明のいくつかの実施形態では、C18変性したシリカゲルを固定相として使用する。移動相としては、アルコールやニトリルなどの極性有機溶媒またはその水溶液を用いることができる。アルコールとしては、メタノール、イソプロパノール等の各種の脂肪族アルコールを用いることができ、ニトリルとしては、アセトニトリル等を用いることができる。いくつかの実施形態では、移動相は、水溶液として使用することができ、例えば、メタノールの水溶液を使用してもよい。水溶液として使用する場合、保持時間を短縮する観点から、移動相における極性有機溶媒の含有量を60%以上とする必要があり、好ましくは80%以上であり、より好ましくは90%以上である。本発明のいくつかの好ましい実施形態において、逆相液体クロマトグラフィーにおける移動相は、90%以上のメタノールまたは100%のメタノールである。
 本発明のいくつかの実施形態では、逆相液体クロマトグラフィー部分には、1本のカラムのみを含み得る。上記したように、切替を行った後に、逆相液体クロマトグラフィーと超臨界クロマトグラフィーとは直列に接続され、この際に、逆相液体クロマトグラフィー末端も上記した圧力制御ユニットに切替または接続される。このような切替または接続の構成は、上記した多方バルブグループによっても達成することができる。
 上記したように、超臨界クロマトグラフィーカラムに吸着された弱極性成分は、カラムの切替後にも変性剤によって溶出し続ける。いくつかの好ましい実施形態では、溶出効率を改善する観点から、この時に変性剤の流速を増大させることができ、これらの弱極性成分を超臨界クロマトグラフィーカラムから迅速に溶出させることができる。さらに、これらの成分は、系内に残る超臨界移動相と共に、逆相液体クロマトグラフィーカラムに入る。このとき、逆相液体クロマトグラフィーカラムの末端が既に圧力制御ユニットに接続されているので、系内の超臨界移動相が圧力制御ユニットの動きによって系外へ排出され得る。このような過程において、他の移動相または成分の状態に影響を与えない。この時点で、ステップS22が完了する。すなわち、逆相液体クロマトグラフィーにおいて、超臨界クロマトグラムから流出した移動相を除去する。
 超臨界移動相の除去と同時にまたはその後に、液体クロマトグラフィーの液体ポンプを用いて逆相液体クロマトグラフィーカラムに移動相を導入する。本発明のいくつかの実施形態では、逆相液体クロマトグラフィーの移動相は、超臨界クロマトグラフィーにおける前記変性剤と同じであっても異なっていてもよい。好ましい実施形態では、両方は同じであり、例えば、両方とも純度80%以上、或いは90%以上のメタノール水溶液であるか、または100%のメタノールである。本発明では、超臨界クロマトグラフィーに由来する超臨界移動相が除去されるため、逆相液体クロマトグラフィーにおいて分離すべく弱極性成分と極性を有する変性剤のみが残される。この場合に、極性の移動相を逆相液体クロマトグラフィーカラムに直接導入することができ、よって、異なるタイプのカラムを切り替える際の移動相のミスマッチという問題を解決することができる。
 極性移動相を逆相液体クロマトグラフィーカラムシステムに再度に導入すると、弱極性物質の分離を行うことができる。この時にステップS23が完了する、すなわち、上記逆相液体クロマトグラフィーにおいて、さらに移動相を導入させ、逆相液体クロマトグラフィーに存在している物質を分離して、分離されたビタミンD成分を得る(ステップS23)。ここでいうビタミンD成分には、ビタミンDとビタミンD成分が含まれる。
 また、上記ステップS23を実施する場合に、特に前記のように圧力制御ユニットを用いて超臨界クロマトグラフィーカラムに由来する超臨界移動相を除去した後、逆相液体クロマトグラフィーを圧力制御装置と切り離し、前記多方バルブグループの切替により逆相液体クロマトグラフィーを質量分析計に接続する。この時点で、前記分離されたビタミンD成分は、質量分析計を用いて検出および分析を行うことができる。
 本発明の他の実施形態では、逆相液体クロマトグラフィー部分には、2本以上のカラムが含まれ得る。典型的な実施形態では、逆相液体クロマトグラフィー部分は、直列に接続された2つのカラムが含まれ得る。
 ステップS21’は上記のステップS21と同じである。超臨界クロマトグラフィーにより被検サンプルの成分を分離し、非極性の油性物質を除去した後、超臨界移動相の供給を停止し、変性剤を導入し続ける。変性剤の導入流速を増大させることにより、多方バルブグループを介してカラムの切替を行って、超臨界クロマトグラフィーカラムに吸着されたビタミンD含有弱極性成分を第1の逆相液体クロマトグラフィーカラムに輸送することができる。
 ステップS22’では、最初に第1の逆相液体クロマトグラフィーカラムの末端を圧力制御ユニットに接続し、カラムに輸送された超臨界移動相を排出する。
 さらに、多方バルブグループでの切替によって第1の逆相液体クロマトグラフィーを圧力制御装置と切り離し、第2の逆相液体クロマトグラフィーに接続する。
 ステップS23’では、超臨界移動相を排出と同時にまたはその後、液体ポンプを始動し、第1の逆相液体クロマトグラフィーに極性移動相を輸送し、第1および第2の逆相液体クロマトグラフィーカラムを接続した後、第1の逆相液体クロマトグラフィーカラムに吸着された弱極性成分をさらに第2の逆相液体クロマトグラフィーカラムへ溶出し、ビタミンD成分を第2の逆相液体クロマトグラフィーカラム中で分離する。
 第2の逆相液体クロマトグラフィーにおいて分離されたビタミンDは、カラムと直列に接続された質量分析計を用いて分析および検出を行うことができる。
 上記の第1の逆相液体クロマトグラフィーカラムと第2の逆相液体クロマトグラフィーカラムは、同じであってもよく異なっていてもよい。本発明の好ましい実施形態では、両方は異なり、例えば、第2逆相液体クロマトグラフィーカラムは、第1逆相液体クロマトグラフィーカラムよりも長い。このようなデザインは、第1の逆相液体クロマトグラフィーカラムにおいて弱極性物質を溶出しやすくなるとともに、第2の逆相液体クロマトグラフィーカラムにおいて分離の精度を高める。したがって、第1の逆相液体クロマトグラフィーカラムは、第2の逆相液体クロマトグラフィーカラムの前処理カラムとみなすことができ、主にビタミンDを含む弱極性物質を収集し、超臨界移動相を除去する機能を果たす。
 以下、図1を参照して、本発明の好ましい実施形態を説明する。
 本発明の方法により乳児ビタミンDサプリメントを分析した。該油状サンプルを適量取り、サンプルをn-ヘキサンに溶解した。
 サンプルをオートサンプラー13に入れ、超臨界クロマトグラフを始動し、超臨界二酸化炭素と変性剤をそれぞれ、ポンプ11と液体ポンプ12によりカラム14に輸送する。このとき、クロマトグラフカラム14は、6方バルブ41と46を介してダイオードアレイ検出器15および圧力制御ユニット16に順次に接続して流路Aを形成する。超臨界移動相の流れに伴い、非極性の油脂成分がカラム14内で洗い流され、ビタミンDを含む弱極性成分がカラム14の固定相に吸着され、これにより、ビタミンDを含有する弱極性成分の予備洗浄が完成する。
 ビタミンDの保持時間に達する前に、6方バルブを用いてシステムを切替しながら超臨界流体の供給を停止するが、変性剤の供給を停止せずに変性剤の流量を増大させる。同時に、六方バルブにおいて41と46との間を切り離し、41と42とを接続し、45と46とを接続して流路Bを形成する。この流路は順次にカラム14、カラム22、ダイオードアレイ検出器15及び圧力制御ユニット16を含む。この流路において、流速が増大された変性剤は、弱極性成分をカラム14からカラム22に輸送する。また、系内に残る超臨界二酸化炭素を、圧力制御ユニット16により排出する。
 二酸化炭素が完全に除去された後、六方バルブの41と42を切り離し、45と46を切り離しながら、42と43とを接続し、44と45とを接続して、液体ポンプ21によりカラム22へ極性移動相を供給する。このように、直列に接続する2つの逆相液体クロマトグラフィーカラム22および23を含む流路Cを形成する。弱極性の成分は、パイプラインを介してカラム22からカラム23に流され、カラム23においてビタミンD成分の分離が完成する。
 さらに、流路Cの末端において、カラム23は、質量分析検出器24に直接接続することができる。これにより、ビタミンDの各成分の分析と検出を実現することができる。
 <本発明の第2の態様>
 本発明の第2の態様では、高脂溶性成分、特に油脂または生体サンプル中のビタミンDの自動検出に適用するシステムが提供される。かかるシステムは、本発明の第1の態様の検出方法を実施するために使用される。
 かかるシステムは、
 オートサンプラー、
 超臨界クロマトグラフィーカラム及び1本以上の逆相液体クロマトグラフィーカラムが含まれ、超臨界クロマトグラフィーカラムにおいて非極性物質が溶出除去され、弱極性物質が超臨界クロマトグラフィーカラムの固定相に吸着され、さらに逆相液体クロマトグラフィーカラムに輸送される多次元クロマトグラフィーシステム、
 カラムを設置するカラムオーブン、
 変性剤を前記超臨界クロマトグラフィーカラムに輸送し、移動相を前記1本以上の逆相液体クロマトグラフィーカラムに輸送する液体ポンプ、
 質量分析計、からなる。
 超臨界液体クロマトグラフィーに使用される前記変性剤は、上記したものと同じであり、アルコール、ニトリルまたはこれらの水溶液から選択されるものであり、好ましくはメタノールまたはその水溶液である。本発明のいくつかの好ましい実施形態では、80%以上または90%以上のメタノール水溶液を使用することができる。
 前記多次元クロマトグラフィーシステムにおける超臨界クロマトグラフィーカラムと1本以上の逆相液体クロマトグラフィーカラムとの間は、多方バルブグループによって接続される、または接続を切り替える。上記したように、本発明の多方バルブグループは6方バルブグループまたは10方バルブグループであることが好ましい。
 さらに、前記超臨界クロマトグラフィーカラムに吸着された弱極性物質は、前記変性剤の作用のみで前記逆相液体クロマトグラフィーカラムに輸送され、該逆相液体クロマトグラフィーカラムにおいて超臨界クロマトグラフィーカラムから流出した超臨界移動相を除去する。
 多次元クロマトグラフィーシステムは1本の逆相液体クロマトグラフィーカラムを含む場合には、前記超臨界クロマトグラフィーカラムに吸着された弱極性物質は、前記変性剤の作用のみで前記逆相液体クロマトグラフィーカラムに輸送され、該逆相液体クロマトグラフィーカラムにおいて超臨界クロマトグラフィーカラムから流出した超臨界移動相を除去する。さらに、前記弱極性物質は、該逆相液体クロマトグラフィーカラムにおいて成分を分離する。
 多次元クロマトグラフィーシステムは2本の逆相液体クロマトグラフィーカラムを含む場合には、前記超臨界クロマトグラフィーカラムに吸着された弱極性物質は、変性剤の作用のみで第1のクロマトグラフィーカラムに輸送され、該クロマトグラフィーカラムにおいて超臨界クロマトグラフィーカラムから流出した超臨界移動相を除去する。
 さらに、弱極性物質を第2の逆相液体クロマトグラフィーカラムに輸送して成分を分離する。
 かかる超臨界クロマトグラフィーカラムや逆相液体クロマトグラフィーカラムの固定相および使用する移動相は、それぞれ上記に開示された範囲と同じである。
 また、少なくとも弱極性物質の分離を実行する逆相液体クロマトグラフィーカラムがオーブンに設置される。
 さらに、本発明のいくつかの実施形態では、かかるシステムは、さらに被検サンプル中のタンパク質成分を分離するための前処理カラムを有し、該前処理カラムは、例えば上記超臨界クロマトグラフィーカラムの上流に設置することができる。
 実施例
 以下、本発明の実施例について説明するが、本発明は以下の実施例に限定されるものではない。
 <化学薬品および試薬>
 分析標準化合物、ビタミンDおよびビタミンD(Dr. Ehrenstorferの研究室から購入)。ビタミンサプリメント(Baby Ddrops、ロット番号:187759、液体ビタミンD,400IU/滴、Ddrops Companyから購入)。メタノール(LC-MSグレード)およびヘキサン(HPLCグレード)(Thermo Fisher Scientific社のSFCグレード)。二酸化炭素(CO、純度≧99.99%、北京、中国)。
 <装置>
 実験は、Shimadzu LC-MS 8050(日本京都)に連結したShimadzu Nexera UCシステムを用いて行った。UCシステムは、CBM-20Aコントローラー、オンラインDGU-20A脱気装置、LC-30AD SF COポンプ、LC-30AD変性剤ポンプ、SIL-30ACオートサンプラー(5μLのサンプルループ付)、CTO-20ACカラムオーブン、SPD M20Aダイオードアレイ検出器(高電圧バッテリ付)、1個のSFC-30A背圧調整器(BPR)から構成される。また、カラムオーブンには、カラムの切替用の高圧6方バルブが1つ設置されている。データ収集とシステム制御はShimadzu Labsolution Ver 5.8.5を使用した。
 SFCカラム(4.6mm×250mm、5μm)は、そのSFCモードを予備分離に使用し、UC-Xシリカ、UC-X NHおよびUC-X(ジオール基)という3つの材料を含む。短C18カラム(VP-ODS、4.6mm×50mm、5μm)、ビタミンDを分離するための長C18カラム(4.6mm×250mm、5μm)、移動相に異なる割合のメタノールを使用する場合のビタミンDの保持時間を調べるための、ジオール基カラムおよびC18カラム(4.0mm×10mm、5μm)からなる2本の参考カラムが用いられる。全てのカラムはShimadzu-GL Sciences(Shanghai)Laboratory Supplies Co.、Ltd.から購入した。
 <標準溶液の調製およびサンプル溶液>
 ビタミンDの標準原液は、D 1mg/mL; D 1mg/mLとしてn-ヘキサン中で調製した。すべての標準原液は-30℃で保存される。試験用標準液は、ビタミンDの標準原液をn-ヘキサンで10~200μg/Lに希釈したものである。
 Baby Ddrops(約10μg/滴)1滴をn-ヘキサンで希釈し、ビタミンDの最終濃度は約100μg/Lであった。ビタミンADの滴剤を、ソフトカプセルから押し出して、n-ヘキサンで希釈し、ビタミンDの最終濃度は約125μg/Lであった。
 <SFC-LC/MS列切替システム>
 図1に示すように、SFCとLC/MSには、0と1の間に位置を変える高圧6方バルブが備えられる。1回の分析では、バルブが2回変化し、以下の3つのステップがあった。
 SFCを使用した予備洗浄のステップ
 このステップでは、ビタミンDを含むサンプルを系内に注入し、超臨界二酸化炭素流体とメタノールとの混合物を通液し、ビタミンDサンプルを順相カラムに通じて、ビタミンDおよび不純物がそれぞれカラムに保持されて分離された。BPRは15MPaの背圧を提供する。別の態様では、それぞれ前処理および逆相分離の2本のC18カラムに使用し、流速1ml/分でメタノールで洗浄した。
 前処理逆相カラムで超臨界二酸化炭素の処理ステップ
 ビタミンDがSFCカラムから溶出する前に、バルブを位置0から位置1に切り替え、COポンプの運転を停止した。移動相には、0.5mL/分のメタノールのみが残され、BPR背圧は15MPaに維持された。ビタミンDおよび残された超臨界COをSFCカラムから前処理C18カラム(長さ50mm)に流した。ビタミンDは前処理C18カラムに保持され、超臨界CO流体はカラムから溶出して排出された。一方、逆相分離C18カラム(長さ250mm)を、依然として1mL/分の流速でメタノールにより洗った。
 逆相分離C18カラムを用いた分離ステップ
 ビタミンDが前処理C18カラムから溶出する前に、バルブを位置1から0に戻し、流速1mL/分のメタノールでビタミンDを、前処理C18カラムから逆相分離C18カラムに流した。ビタミンDを前記逆相分離C18カラムで分離した後、MS/MSにより検出した。データ収集は、以下のように陽イオンエレクトロスプレーイオン化(ESI)モードで実施された。条件は以下の通りである。
 キャピラリー電圧:4kV、インターフェース温度:300℃、DL温度:250℃、加熱ブロック温度:400℃、スプレーガス流量:3L/分、加熱ガス流量:10L/分、乾燥ガス流量:10L/分。このプロセスでは、多重反応モニタリング(MRM)手段を使用した(ビタミンDm/z 397.30>69.10、397.30>271.20;ビタミンD m/z 385.30>259.20、385.30>367.30)。一方、SFCカラムは、ステップ1と同様に、次の分析に備えて超臨界流体により洗浄された。
 <結果と検討>
 SFC-LC/MSカラム切替条件の最適化
 ビタミンDの保持時間に対するカラムの種類および移動相組成の影響を確認するために、異なる官能基を有するSFCカラムにおけるビタミンDの保持挙動、および移動相組成の保持時間への影響を検討した。
 SFCの最適化
 異なる極性官能基を有する3本の超臨界流体カラム(NH、Diol、およびSilica)を使用して、ビタミンDの保持挙動を調べた。
 図2に示すように、ビタミンDの保持時間は、各カラムにおいて、変性剤メタノールの含有量の低下に伴い増加した。任意のメタノールの割合においても、ビタミンDおよびDの保持時間はほぼ同じであり、NHおよびSilicaカラムと比較して、ビタミンDは、ジオール基カラムでの保持時間が最も長くなった。保持時間が長くなると、ビタミンD成分の溶解または溶出することなく、SFCカラム内で非極性油脂成分を洗って除去する時間も長くなることを意味する。最後に、ジオール基カラムを選択するとともに変性剤メタノールの流量を2%(超臨界CO流量に対して)に設定し、ビタミンDを含有する油状物または脂質サンプルの洗浄に用いられた。
 COの供給停止後、ジオール基カラムとC18カラムにおける移動相組成の影響
 COの供給停止後、ジオール基カラムとC18カラムにおける移動相組成の影響を確認するために、移動相におけるメタノールと水の割合によるジオール基カラムとC18カラムの保持挙動への影響を調べた。分析時間を短縮するためにガードカラム(長さ10mm)を使用した。
 この結果から、COの供給停止後、超臨界クロマトグラフィーカラムにおいて、移動相におけるメタノールの割合を増大させると、ジオール基カラム上のビタミンDの保持時間を減少させることが分かった(図3)。
 したがって、全体から見ると、SFCプロセスでは、超臨界CO流量に対する変性剤流量の比率を低く維持しながら、変性剤として高含有量のメタノール(90%および100%メタノール)を使用する場合、SFC洗浄プロセスでより長いビタミンDの保持時間が得られるとともに、超臨界二酸化炭素の供給を停止した後でも、ビタミンD成分がSFCカラムから速やかに溶出され、C18カラムの前処理が行われることが分かった。
 さらに、異なる含有量のメタノールでC18カラムの保持挙動も調べた。移動相におけるメタノールの含有量を低減するとビタミンDの保持時間が長くなったにもかかわらず(図4)、C18カラムでは依然として高含有量のメタノール溶液を移動相として使用することができ、つまり、SFCの変性剤とC18カラムでの移動相を同様な組成とすることができる。これは、高含有量のメタノールは、ジオール基カラムからビタミンDを迅速に溶出させるだけでなく、ビタミンDのC18カラムにおける十分な保持時間を保証することもできる。
 したがって、上記の分析から、SFCカラムでの変性剤およびC18カラムに使用される移動相の両方は、いずれも高含有量のメタノールであり得ることが分かる。
 上記SFCカラムでの変性剤およびC18カラムでの移動相の変性剤を決定した後、SFCカラムから前処理C18カラムへの切替時間を8.5分に設定し、前処理C18カラムから逆相分離C18カラムまでの切替時間を17.5分に設定した。
 <ビタミンDおよびD標準サンプルに対する分析>
 ビタミンDおよびDを含有する一連の標準溶液をカラム切替システムに注入した。図5に示すように、ビタミンDおよびDは、全部の3本のカラムから溶出され、MS/MSによってそれぞれ24.9分および25.5分の時点で検出された。ビタミンDとDの2つのピークが対称でシャープなピークとなった上で完全に分離された。20.0分の時点で溶媒ピークも検出された。
 さらに、5つの濃度(20、50、100、150、200μg/L)により検量線を作成した(図6)。線形性の良好な曲線が得られ、20~200μg/Lの検出範囲内で、線形相関係数は0.998以上であった(表1)。ビタミンDおよびD標準サンプルの検出限は、それぞれ20μg/Lおよび16μg/Lであった。
Figure JPOXMLDOC01-appb-T000001
 <ビタミンDの油性液滴の分析>
 図7に示すように、本発明の検出システムを用いて、乳児ビタミンDサプリメントBaby Ddropsを直接分析した。油状サンプルをn-ヘキサンで希釈した後、検出システムに直接注入したところ、良好な再現性が得られた(n=6、RSD=1.47%、nは測定回数、RSDは標準偏差)とともに、100%に近い回収率が得られた。
 本発明の検出方法および装置は、工業生産上ではビタミンD成分の分析に使用することができる。
 11:COポンプ   12:メタノール液体ポンプ  13:オートサンプラー  
 14:超臨界クロマトグラフィーカラム(ジオール基)  15:検出器(ダイオードアレイ検出器)
 16:圧力制御ユニット(背圧制御ユニット) 
 21:メタノール液体ポンプ   22:逆相液体クロマトグラフィーカラム(C18)
 23:逆相液体クロマトグラフィーカラム(C18)
 24:質量分析検出器
 41-46:六方バルブグループ

Claims (10)

  1.  被検サンプルを調製するS1ステップ、
     多次元クロマトグラフィーシステムを用いて被検サンプル中のビタミンDを分離するS2ステップ、及び
     S2ステップで分離されたビタミンDを検出するS3ステップを有し、
     前記S2ステップにおいて、前記多次元クロマトグラフィーシステムには、順次に接続される超臨界クロマトグラフィー部分および逆相液体クロマトグラフィー部分が含まれ、前記逆相液体クロマトグラフィー部分には、1本以上の逆相液体クロマトグラフィーカラムが含まれ、
     前記超臨界クロマトグラフィー部分には、超臨界移動相及び変性剤が含まれ、前記変性剤はアルコール、ニトリルまたはこれらの水溶液から選択されるものであることを特徴とする、
     油脂または生体サンプル中のビタミンDの迅速検出方法。
  2.  前記超臨界クロマトグラフィー部分には1本の超臨界クロマトグラフィーカラムが含まれ、前記逆相液体クロマトグラフィー部分には2本の逆相液体クロマトグラフィーカラムが含まれることを特徴とする、請求項1に記載の方法。
  3.  前記多次元クロマトグラフィーシステムにおけるクロマトグラフィーカラムは、多方バルブグループにより接続されることを特徴とする、請求項1または2に記載の方法。
  4.  前記超臨界クロマトグラフィー部分において、
     固定相はヒドロキシ基、アミノ基またはシアノ基から選択される極性基で変性したシリカゲルから選択されるものであり、
     移動相は超臨界二酸化炭素であることを特徴とする、請求項1~3のいずれか1項に記載の方法。
  5.  前記逆相液体クロマトグラフィー部分において、
     固定相は炭化水素基から選択される疎水基で変性したシリカゲルから選択されるものであり、
     前記移動相は極性有機溶媒またはその水溶液であることを特徴とする、請求項1~4のいずれか1項に記載の方法。
  6.  前記逆相液体クロマトグラフィー部分の逆相液体クロマトグラフィーカラムは同様なカラム、または異なるカラムであることを特徴とする、請求項1~5のいずれか1項に記載の方法。
  7.  S2ステップにおいて、超臨界クロマトグラフィーに吸着された弱極性物質は前記変性剤の作用のみで逆相液体クロマトグラフィー部分に輸送され、当該逆相液体クロマトグラフィー部分において超臨界クロマトグラフィー部分から流出した超臨界移動相を除去することを特徴とする、請求項1~6のいずれか1項に記載の方法。
  8.  S2ステップにおいて、さらに、
     超臨界クロマトグラフィーを用いて被検サンプルの成分を分離し、弱極性物質を逆相液体クロマトグラフィー部分に輸送するS21ステップ、
     逆相液体クロマトグラフィーに、超臨界クロマトグラフィーから流出した超臨界移動相を除去するS22ステップ、及び
     前記逆相液体クロマトグラフィーに、さらに移動相を導入し、逆相液体クロマトグラフィーに存在する物質を分離して、分離されたビタミンD成分を得るS23ステップ、を有し、
     S21ステップにおける前記弱極性物質を逆相液体クロマトグラフィーカラムに輸送することはS22ステップと同時に行ってもよいことを特徴とする、請求項1~8のいずれか1項に記載の方法。
  9.  S2ステップにおいて、さらに、
     超臨界クロマトグラフィーを用いてサンプルの成分を分離し、弱極性物質を逆相液体クロマトグラフィー部分の第1の逆相液体クロマトグラフィーカラムに輸送するS21ステップ、
     第1の逆相液体クロマトグラフィーカラムに、超臨界クロマトグラフィーから流出した超臨界移動相を除去するS22’ステップ、及び
     第1の逆相液体クロマトグラフィーカラムに、さらに移動相を導入し、当該クロマトグラフィーカラムに存在する弱極性物質を第2の逆相液体クロマトグラフィーカラムに輸送し、前記第2の逆相液体クロマトグラフィーカラム中に分離してビタミンD成分を得るS23’ステップ、を有し、
     S21’ステップにおける前記弱極性物質を第1の逆相液体クロマトグラフィーカラムに輸送することはS22’ステップと同時に行ってもよいことを特徴とする、請求項1~8のいずれか1項に記載の方法。
  10.  S2ステップの前に、前処理クロマトグラフィーカラムを用いて被検サンプル中のタンパク質成分を分離するステップを有し、S3ステップにおいて、質量分析装置を用いて検出を行うことを特徴とする、請求項1~9のいずれか1項に記載の方法。
PCT/JP2019/002588 2018-04-27 2019-01-25 油脂または生体サンプル中のビタミンdの迅速検出方法 WO2019207871A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810394691.6A CN110412189A (zh) 2018-04-27 2018-04-27 一种快速检测油脂或生物样品中的维生素d的方法
CN201810394691.6 2018-04-27

Publications (1)

Publication Number Publication Date
WO2019207871A1 true WO2019207871A1 (ja) 2019-10-31

Family

ID=68294958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002588 WO2019207871A1 (ja) 2018-04-27 2019-01-25 油脂または生体サンプル中のビタミンdの迅速検出方法

Country Status (2)

Country Link
CN (1) CN110412189A (ja)
WO (1) WO2019207871A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112229933A (zh) * 2020-10-23 2021-01-15 南京玉鹤鸣医学营养科技股份有限公司 利用二维液相色谱测定维生素种类的方法
CN115406974A (zh) * 2021-05-26 2022-11-29 株式会社岛津制作所 快速检测多环芳烃的方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112881539A (zh) * 2019-11-29 2021-06-01 岛津企业管理(中国)有限公司 快速检测苯并芘的方法
CN114660189A (zh) * 2020-12-24 2022-06-24 益海嘉里金龙鱼粮油食品股份有限公司 检测食用油中乙基麦芽酚的方法
CN114019035A (zh) * 2021-09-22 2022-02-08 华东理工大学 一种超临界流体色谱分离方法及装置
CN115184519A (zh) * 2022-07-05 2022-10-14 华谱科仪(大连)科技有限公司 维生素d软胶囊中维生素d溶出度的检测方法
CN115453033A (zh) * 2022-09-29 2022-12-09 山东达因金控儿童制药有限公司 一种维生素d滴剂中维生素d含量的检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS631968A (ja) * 1986-06-20 1988-01-06 Shimadzu Corp ビタミン類分析装置
JPH08310809A (ja) * 1995-05-17 1996-11-26 Wako Pure Chem Ind Ltd 新規な変性シリカゲル
JP2001261671A (ja) * 2000-02-02 2001-09-26 Malaysian Palm Oil Board クロマトグラフによるビタミンe異性体の単離方法
JP2015215320A (ja) * 2014-05-13 2015-12-03 株式会社島津製作所 異なる極性をもつ化合物を含む試料の一斉分析方法
JP2017512310A (ja) * 2014-03-01 2017-05-18 ウオーターズ・テクノロジーズ・コーポレイシヨン 不飽和分子を分離するためのクロマトグラフィー材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS631968A (ja) * 1986-06-20 1988-01-06 Shimadzu Corp ビタミン類分析装置
JPH08310809A (ja) * 1995-05-17 1996-11-26 Wako Pure Chem Ind Ltd 新規な変性シリカゲル
JP2001261671A (ja) * 2000-02-02 2001-09-26 Malaysian Palm Oil Board クロマトグラフによるビタミンe異性体の単離方法
JP2017512310A (ja) * 2014-03-01 2017-05-18 ウオーターズ・テクノロジーズ・コーポレイシヨン 不飽和分子を分離するためのクロマトグラフィー材料
JP2015215320A (ja) * 2014-05-13 2015-12-03 株式会社島津製作所 異なる極性をもつ化合物を含む試料の一斉分析方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
FRANCOIS, I. ET AL.: "Comprehensive supercritical fluid chromatography × reversed phase liquid chromatography for the analysis of the fatty acids in fish oil", JOURNAL OF CHROMATOGRAPHY A, vol. 1216, no. 18, 5 March 2009 (2009-03-05) - 1 May 2009 (2009-05-01), pages 4005 - 4012, XP027102889 *
FRANCOIS, I. ET AL.: "Construction of a new interface for comprehensive supercritical fluid chromatography×reversed phase liquid chromatography (SFC×RPLC)", JOURNAL OF SEPARATION SCIENCE, vol. 31, no. 19, 1 October 2008 (2008-10-01), pages 3473 - 3478, XP055236787 *
HAMADA, N. ET AL.: "Determination of vitamin D in oily drops using a column-switching system with an on-line clean-up by supercritical fluid chromatography", TALANTA, vol. 190, 20 July 2018 (2018-07-20) - 1 December 2018 (2018-12-01), pages 9 - 14, XP055647245 *
JENKINSON, C. ET AL.: "Analysis of multiple vitamin D metabolites by ultra-performance supercritical fluid chromatography-tandem mass spectrometry (UPSFC-MS/MS)", JOURNAL OF CHROMATOGRAPHY B, vol. 1087-1088, 18 April 2018 (2018-04-18) - 15 June 2018 (2018-06-15), pages 43 - 48, XP055647237 *
JUMAAH, F. ET AL.: "A rapid method for the separation of vitamin D and its metabolites by ultra-high performance supercritical fluid chromatography–mass spectrometry", JOURNAL OF CHROMATOGRAPHY A, vol. 1440, 17 February 2016 (2016-02-17) - 1 April 2016 (2016-04-01), pages 191 - 200, XP029444469 *
TAGUCHI, K. ET AL.: "Simultaneous analysis for water- and fat-soluble vitamins by a novel single chromatography technique unifying supercritical fluid chromatography and liquid chromatography", JOURNAL OF CHROMATOGRAPHY A, vol. 1362, 12 August 2014 (2014-08-12), pages 270 - 277, XP055647236 *
TYSKIEWICZ, K. ET AL.: "Determination of fat‐ and water‐soluble vitamins by supercritical fluid chromatography: A review", JOURNAL OF SEPARATION SCIENCE, vol. 41, no. 1, 3 August 2017 (2017-08-03) - January 2018 (2018-01-01), pages 336 - 350, XP055647240 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112229933A (zh) * 2020-10-23 2021-01-15 南京玉鹤鸣医学营养科技股份有限公司 利用二维液相色谱测定维生素种类的方法
CN115406974A (zh) * 2021-05-26 2022-11-29 株式会社岛津制作所 快速检测多环芳烃的方法
WO2022249819A1 (ja) * 2021-05-26 2022-12-01 株式会社島津製作所 多環芳香族炭化水素を検出する方法

Also Published As

Publication number Publication date
CN110412189A (zh) 2019-11-05

Similar Documents

Publication Publication Date Title
WO2019207871A1 (ja) 油脂または生体サンプル中のビタミンdの迅速検出方法
Jumaah et al. A rapid method for the separation of vitamin D and its metabolites by ultra-high performance supercritical fluid chromatography–mass spectrometry
Luque-Garcıa et al. Extraction of fat-soluble vitamins
Kasalová et al. Recent trends in the analysis of vitamin D and its metabolites in milk–A review
WO2020225940A1 (ja) 分析システム
Ma et al. The analysis of carbohydrates in milk powder by a new “heart-cutting” two-dimensional liquid chromatography method
Pilařová et al. Development and optimization of ultra-high performance supercritical fluid chromatography mass spectrometry method for high-throughput determination of tocopherols and tocotrienols in human serum
CN105467019A (zh) 维生素a、e的测定方法和相应的在线固相萃取分析系统
JP7092189B2 (ja) 分析システム、並びに、油脂または生体サンプル中のビタミンdの迅速検出方法
Brabcová et al. A rapid HPLC column switching method for sample preparation and determination of β-carotene in food supplements
CN105445390B (zh) 乳制品中氯霉素类残留的检测方法
Viganó et al. Comprehensive analysis of phenolic compounds from natural products: Integrating sample preparation and analysis
CN108663461B (zh) 一种测定奶粉中维生素d的方法
Zhong et al. Ultrasound-assisted low-density solvent dispersive liquid–liquid extraction for the determination of alkanolamines and alkylamines in cosmetics with ion chromatography
Karrar et al. Lipid-soluble vitamins from dairy products: Extraction, purification, and analytical techniques
Boyer et al. Determination of vitamins D 2, D 3, K 1 and K 3 and some hydroxy metabolites of vitamin D 3 in plasma using a continuous clean-up–preconcentration procedure coupled on-line with liquid chromatography–UV detection
CN105403631A (zh) 一种快速检测保健食品中维生素d3含量的方法
Wei et al. A rapid ion chromatography column-switching method for online sample pretreatment and determination of L-carnitine, choline and mineral ions in milk and powdered infant formula
JP2008309699A (ja) イオン交換および順相カラムによる2次元液体クロマトグラフ
Liang et al. Recent development of two-dimensional liquid chromatography in food analysis
Suto et al. Heart-cutting two-dimensional liquid chromatography combined with isotope ratio mass spectrometry for the determination of stable carbon isotope ratios of gluconic acid in honey
Hamada et al. Determination of vitamin D in oily drops using a column-switching system with an on-line clean-up by supercritical fluid chromatography
Zhang et al. Separation and purification of phosphatidylcholine and phosphatidylethanolamine from soybean degummed oil residues by using solvent extraction and column chromatography
Bénet et al. On-line cleanup for 2-aminobenzamide-labeled oligosaccharides
Zhan et al. Generic and rapid determination of low molecular weight organic chemical contaminants in protein powder by using ultra-performance liquid chromatography-tandem mass spectrometry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19793524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19793524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP