WO2019205739A1 - 显示面板及其制造方法、检测方法和显示装置 - Google Patents

显示面板及其制造方法、检测方法和显示装置 Download PDF

Info

Publication number
WO2019205739A1
WO2019205739A1 PCT/CN2019/070618 CN2019070618W WO2019205739A1 WO 2019205739 A1 WO2019205739 A1 WO 2019205739A1 CN 2019070618 W CN2019070618 W CN 2019070618W WO 2019205739 A1 WO2019205739 A1 WO 2019205739A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
fluorescent probe
display panel
light
detecting unit
Prior art date
Application number
PCT/CN2019/070618
Other languages
English (en)
French (fr)
Inventor
谢蒂旎
李伟
张晓晋
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/345,937 priority Critical patent/US10868085B2/en
Publication of WO2019205739A1 publication Critical patent/WO2019205739A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/88Dummy elements, i.e. elements having non-functional features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/90Assemblies of multiple devices comprising at least one organic light-emitting element
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/70Testing, e.g. accelerated lifetime tests
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/69Arrangements or methods for testing or calibrating a device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/351Metal complexes comprising lanthanides or actinides, e.g. comprising europium

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a display panel, a manufacturing method thereof, a detecting method, and a display device.
  • OLED Organic Light-Emitting Diode
  • a display panel includes: one or more detecting units on a substrate, each detecting unit including: a first electrode layer and a second electrode layer disposed opposite to each other; and a light emitting layer, Located between the first electrode layer and the second electrode layer; and a fluorescent probe layer between the first electrode layer and the light emitting layer.
  • At least one of the one or more detection units is located in a non-pixel area of the display panel.
  • each of the one or more detection units is located in the non-pixel region.
  • the first electrode layer is between the substrate and the luminescent layer.
  • the fluorescent probe layer comprises a fluorescent probe layer that is sensitive to one of the following parameters: temperature, humidity, oxygen concentration.
  • the fluorescent probe layer has a thickness of from 1 ⁇ m to 5 ⁇ m.
  • a display device comprising: the display panel of any one of the above embodiments.
  • a method of detecting a display panel comprising: illuminating a detecting unit in the display panel with excitation light such that the detecting unit The fluorescent probe layer emits light; detects a parameter of the light emitted by the fluorescent probe layer; and determines an environmental parameter of the light emitting layer in the detecting unit according to a parameter of the light emitted by the fluorescent probe layer.
  • determining an environmental parameter of the luminescent layer in the detecting unit according to a correspondence between a parameter of the light emitted by the fluorescent probe layer and an environmental parameter of an environment in which the fluorescent probe layer is located .
  • the environmental parameter comprises one of: temperature, humidity, oxygen concentration.
  • the parameter of the light comprises at least one of a wavelength and a light intensity of the light.
  • determining an environmental parameter of the luminescent layer in the detecting unit according to a parameter of the light emitted by the fluorescent probe layer comprises: determining the detecting according to a wavelength of light emitted by the fluorescent probe layer a first environmental parameter of the luminescent layer in the unit; determining a second environmental parameter of the luminescent layer in the detecting unit according to a light intensity of the light emitted by the fluorescent probe layer; according to the first environmental parameter and the The second environmental parameter determines an environmental parameter of the luminescent layer in the detecting unit.
  • determining the environmental parameters of the illuminating layer in the detecting unit according to the first environment parameter and the second environment parameter comprises: calculating the first environment parameter and the second environment parameter The average value is taken as the environmental parameter of the light-emitting layer in the detecting unit.
  • a method of manufacturing a display panel includes: forming one or more detecting units on a substrate; wherein forming each detecting unit includes: forming a first electrode on the substrate a layer; a fluorescent probe layer and a light emitting layer are formed on a side of the first electrode layer away from the substrate; and a second electrode layer is formed, wherein the fluorescent probe layer and the light emitting layer are located at the first Between the electrode layer and the second electrode layer.
  • At least one of the one or more detection units is located in a non-pixel area of the display panel.
  • each of the one or more detection units is located in the non-pixel region.
  • the luminescent layer is formed on a side of the fluorescent probe layer away from the first electrode layer.
  • the fluorescent probe layer comprises a fluorescent probe layer that is sensitive to one of the following parameters: temperature, humidity, oxygen concentration.
  • the fluorescent probe layer has a thickness of from 1 ⁇ m to 5 ⁇ m.
  • FIG. 1 is a schematic structural view of a display panel according to some embodiments of the present disclosure.
  • FIG. 2 is a schematic structural diagram of a display panel according to further embodiments of the present disclosure.
  • FIG. 3 is a flow diagram of a method of detecting a display panel in accordance with some embodiments of the present disclosure
  • FIG. 4 is a flow diagram of a method of fabricating a display panel in accordance with some embodiments of the present disclosure
  • FIG. 5 is a schematic structural diagram of a display device according to some embodiments of the present disclosure.
  • a particular component when it is described that a particular component is located between the first component and the second component, there may be intervening components between the particular component and the first component or the second component, or there may be no intervening components.
  • that particular component when it is described that a particular component is connected to other components, that particular component can be directly connected to the other component without the intervening component, or can be directly connected to the other component without having the intervening component.
  • the inventors have found that the luminous efficiency of the light-emitting layer is easily affected by the environment surrounding the light-emitting layer. For example, a high-temperature or high-humidity environment causes a significant decrease in the luminous efficiency of the light-emitting layer.
  • the inventors have thus realized that if the environmental parameters of the luminescent layer can be obtained, it is possible to provide a reference for analyzing the cause of the display defect.
  • FIG. 1 is a schematic structural view of a display panel according to some embodiments of the present disclosure.
  • the display panel includes one or more detection units 102 located on the substrate 101.
  • FIG. 1 schematically shows a detecting unit 102.
  • different ones of the plurality of detection units 102 may be spaced apart by the pixel defining layer 103 shown in FIG.
  • a driving circuit and various circuit elements such as a thin film transistor (TFT), a capacitor, a resistor, or the like can be formed in the substrate 101.
  • TFT thin film transistor
  • the substrate 101 may also be referred to as a TFT substrate.
  • Each of the detecting units 102 includes a first electrode layer 112 and a second electrode layer 122, a light emitting layer 132, and a fluorescent probe layer 142 disposed opposite to each other.
  • one of the first electrode layer 112 and the second electrode layer 122 is an anode, and the other is a cathode.
  • the light emitting layer 132 is located between the first electrode layer 112 and the second electrode layer 122.
  • the light emitting layer 132 may include a layer of a light emitting material.
  • the light emitting layer 132 may further include one or more of an electron transport layer, a hole transport layer, an electron injection layer, and a hole injection layer.
  • the fluorescent probe layer 142 is located between the first electrode layer 112 and the light emitting layer 132.
  • the first electrode layer 112 is located between the substrate 101 and the luminescent layer 132, as shown in FIG. That is, the first electrode layer 112 is closer to the substrate 101 than the second electrode layer 122. Such a manner can avoid adversely affecting the performance of the light-emitting layer 132 when the fluorescent probe layer 142 is formed.
  • the fluorescent probe layer 142 can include a fluorescent probe layer that is sensitive to one of the following parameters: temperature, humidity, oxygen concentration.
  • the temperature sensitive fluorescent probe layer may include, for example, a triarylboron compound or the like.
  • the moisture sensitive fluorescent probe layer may, for example, comprise one or more of the following: a complex of Eu 3+ , a complex of Tb 3+ .
  • the fluorescent probe layer sensitive to oxygen concentration may, for example, include one or more of the following: a ruthenium complex, a platinum complex, a palladium complex, a ruthenium complex.
  • the fluorescent probe layer has a thickness of from 1 ⁇ m to 5 ⁇ m, for example, from 2 ⁇ m to 4 ⁇ m, for example, 3 ⁇ m, and the like. Within such a thickness range, the fluorescent probe layer can be normally subjected to excitation light without affecting the formation of the light-emitting layer.
  • the display panel is provided with a detecting unit including a fluorescent probe layer, and the light emitting condition of the fluorescent probe layer can reflect the environmental parameter of the light emitting layer, and further, whether the light emitting layer is a display panel can be determined according to the environmental parameter of the light emitting layer. Shows the cause of the defect.
  • FIG. 2 is a schematic structural view of a display panel according to further embodiments of the present disclosure.
  • the display panel includes one or more detecting units 102 on the substrate 101, and a pixel unit 104. Between different pixel units 104, and between the detection unit 102 and the pixel unit 104 may be spaced apart by the pixel defining layer 103.
  • the pixel unit 104 includes a first electrode layer 114 and a second electrode layer 124 disposed opposite to each other, and a light emitting layer 134 between the first electrode layer 114 and the second electrode layer 124.
  • each pixel unit 104 can be regarded as one sub-pixel.
  • the three pixel units 104 can constitute one pixel.
  • the display panel includes a pixel area 111 and a non-pixel area 121 other than the pixel area 111.
  • the pixel unit 104 is located in the pixel area 111, and at least one of the one or more detection units 102 is located in the non-pixel area 121.
  • a portion of the detection unit 102 is located in the non-pixel region 121 and another portion of the detection unit 102 is located in the pixel region 121.
  • one pixel area 111 is correspondingly provided with one pixel unit 104.
  • some of the pixel regions 111 may also be provided with the detecting unit 102 correspondingly. In other words, a portion of the detection unit 102 can occupy the location of the pixel unit 104.
  • all of the detection units 102 are located in the non-pixel region 121.
  • the detecting unit 102 may occupy the position of the pixel defining layer 103, that is, the detecting unit 102 may be disposed in an opening of the pixel defining layer 103 other than the opening for the pixel unit 104. Such a manner can prevent the normal illumination of the pixel unit 104 from being affected.
  • the fluorescent probe layer 142 is provided between the light emitting layer 132 and the first electrode layer 112 in the detecting unit 102, even if a voltage is applied to the first electrode layer 112 and the second electrode layer 122 in the detecting unit 102, the detecting unit 102 It is also not luminous. Therefore, the detecting unit 102 located in the non-pixel area 121 does not affect the normal lighting of the pixel unit 104.
  • At least one detecting unit 102 is located in the non-pixel area 121 to minimize the influence of the detecting unit 102 on the pixel unit 104.
  • the display panel of each of the above embodiments includes the detecting unit 102. Therefore, in the case where a display defect occurs in the display panel, for example, some portions are dark, the illuminating condition of the fluorescent probe layer 142 in the display panel can be detected to determine whether the luminescent layer 132 is normal.
  • FIG. 3 is a flow diagram of a method of detecting a display panel in accordance with some embodiments of the present disclosure.
  • the detection unit in the display panel is illuminated with excitation light such that the fluorescent probe layer in the detection unit emits light.
  • the excitation light may be selected according to the type of the fluorescent probe layer so that the fluorescent probe layer can emit light after being irradiated with the excitation light.
  • step 304 parameters of the light emitted by the fluorescent probe layer are detected.
  • the parameters of the light can include the intensity of the light. In other embodiments, the parameters of the light can include the wavelength of the light. In still other embodiments, the parameters of the light can include both the light intensity and the wavelength of the light. For example, a spectrometer can be utilized to detect the intensity or wavelength of light emitted by the fluorescent probe layer.
  • an environmental parameter of the luminescent layer in the detecting unit is determined based on the parameters of the light emitted by the fluorescent probe layer.
  • the parameters of the light emitted by the fluorescent probe layer are affected by the environmental parameters of the luminescent layer. Therefore, the environmental parameters of the luminescent layer can be determined based on the parameters of the light emitted by the fluorescent probe layer.
  • the environmental parameters of the luminescent layer in the detection unit can be determined based on one of the wavelength and intensity of the light emitted by the fluorescent probe layer.
  • the environmental parameters of the luminescent layer in the detection unit can be determined based on both the wavelength and intensity of the light emitted by the fluorescent probe layer.
  • the environmental parameters of the luminescent layer in the detecting unit determined in such a manner are more accurate.
  • the first environmental parameter of the luminescent layer in the detecting unit may be determined according to the wavelength of the light emitted by the fluorescent probe layer; and the second environment of the luminescent layer in the detecting unit is determined according to the light intensity of the light emitted by the fluorescent probe layer a parameter; determining an environmental parameter of the light emitting layer in the detecting unit according to the first environmental parameter and the second environmental parameter.
  • an average of the first environmental parameter and the second environmental parameter may be calculated to calculate the average value as an environmental parameter of the luminescent layer in the detecting unit.
  • the environmental parameters of the luminescent layer can include one of the following: temperature, humidity, oxygen concentration. For example, if the temperature, humidity, or oxygen concentration of the light-emitting layer exceeds a corresponding threshold, it may be considered that there is a possibility of display defects due to the light-emitting layer.
  • the environmental parameter of the light emitting layer may be determined according to the parameter of the light emitted by the fluorescent probe layer in the detecting unit, and further, whether the light emitting layer is the cause of the display panel display defect may be determined.
  • the environmental parameters of the luminescent layer in the detection unit can be determined based on the correspondence between the parameters of the light emitted by the fluorescent probe layer and the environmental parameters of the environment in which the fluorescent probe layer is located.
  • a fluorescent probe layer is deposited on a substrate (for example, a glass substrate) to prepare a sample.
  • the sample is then placed in a closed environment (eg, a glove box). After that, adjust the environmental parameters in a closed environment, such as adjusting the temperature, humidity or oxygen concentration to a certain value. Then, the parameters of the light emitted by the sample, such as light intensity or wavelength, are measured. After that, the correspondence between the parameters of the light emitted by the sample and the current environmental parameters of the closed environment can be obtained.
  • the correspondence between the parameters of the different light emitted by the sample and the different environmental parameters of the sealed environment can be obtained, that is, the parameters of the light emitted by the fluorescent probe layer and the environment in which the fluorescent probe layer is located can be obtained.
  • Correspondence between environmental parameters can be obtained.
  • FIG. 4 is a flow diagram of a method of fabricating a display panel in accordance with some embodiments of the present disclosure.
  • each of the detecting units may be formed in accordance with steps 402-406 to form one or more detecting units on the substrate.
  • the at least one detection unit is located in a non-pixel area of the display panel.
  • a first electrode layer is formed on the substrate.
  • the first electrode layer is, for example, an anode.
  • a fluorescent probe layer and a light-emitting layer are formed on a side of the first electrode layer away from the substrate.
  • the fluorescent probe layer can include a fluorescent probe layer that is sensitive to one of the following parameters: temperature, humidity, oxygen concentration.
  • the fluorescent probe layer may have a thickness of from 1 ⁇ m to 5 ⁇ m.
  • a light emitting layer is formed on a side of the fluorescent probe layer away from the first electrode layer.
  • a second electrode layer is formed.
  • the second electrode layer is, for example, a cathode.
  • the fluorescent probe layer and the light emitting layer are located between the first electrode layer and the second electrode layer.
  • the second electrode layer may be located on the light emitting layer, that is, the light emitting layer is located between the second electrode layer and the fluorescent probe layer; or the second electrode layer may be located on the fluorescent probe layer, that is, the fluorescent probe layer is located Between the second electrode layer and the luminescent layer.
  • the display panel formed by the above embodiment includes a detecting unit having a fluorescent probe layer, and the light emitting condition of the fluorescent probe layer can reflect the environmental parameter of the light emitting layer, so that whether the light emitting layer is displayed on the display panel can be determined according to the environmental parameter of the light emitting layer. The cause of the defect.
  • FIG. 5 is a schematic structural diagram of a display device according to some embodiments of the present disclosure.
  • the display device 500 may include the display panel 501 of any of the above embodiments.
  • the display device 500 may be, for example, a mobile terminal, a television, a display, a notebook computer, a digital photo frame, a navigator, electronic paper, or the like, having any display function.

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开提供了一种显示面板及其制造方法、检测方法和显示装置,涉及显示技术领域。显示面板包括位于基板上的一个或多个检测单元,每个检测单元包括:相对设置的第一电极层和第二电极层;发光层,位于所述第一电极层与所述第二电极层之间;和荧光探针层,位于所述第一电极层和所述发光层之间。

Description

显示面板及其制造方法、检测方法和显示装置
相关申请的交叉引用
本申请是以CN申请号为201810366342.3,申请日为2018年4月23日的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种显示面板及其制造方法、检测方法和显示装置。
背景技术
在有机发光二极管(Organic Light-Emitting Diode,OLED)显示面板的制造过程中,经常会发现OLED显示面板的某些部位会具有亮度偏暗等显示缺陷。
发明内容
根据本公开实施例的一方面,提供一种显示面板,包括:位于基板上的一个或多个检测单元,每个检测单元包括:相对设置的第一电极层和第二电极层;发光层,位于所述第一电极层与所述第二电极层之间;和荧光探针层,位于所述第一电极层和所述发光层之间。
在一些实施例中,所述一个或多个检测单元中的至少一个位于所述显示面板的非像素区域。
在一些实施例中,所述一个或多个检测单元中的每一个均位于所述非像素区域。
在一些实施例中,所述第一电极层位于所述基板和所述发光层之间。
在一些实施例中,所述荧光探针层包括对下列参数之一敏感的荧光探针层:温度、湿度、氧浓度。
在一些实施例中,所述荧光探针层的厚度为1μm-5μm。
根据本公开实施例的另一方面,提供一种显示装置,包括:上述任意一个实施例所述的显示面板。
根据本公开实施例的又一方面,提供一种基于如上述任意一个实施例所述的显示面板的检测方法,包括:利用激发光照射所述显示面板中的检测单元,以使得所述检 测单元中的荧光探针层发光;检测所述荧光探针层发出的光的参数;和根据所述荧光探针层发出的光的参数,确定所述检测单元中的发光层的环境参数。
在一些实施例中,根据所述荧光探针层发出的光的参数与所述荧光探针层所处的环境的环境参数之间的对应关系,确定所述检测单元中的发光层的环境参数。
在一些实施例中,所述环境参数包括下列之一:温度、湿度、氧浓度。
在一些实施例中,所述光的参数包括所述光的波长和光强中的至少一个。
在一些实施例中,根据所述荧光探针层发出的光的参数,确定所述检测单元中的发光层的环境参数包括:根据所述荧光探针层发出的光的波长,确定所述检测单元中的发光层的第一环境参数;根据所述荧光探针层发出的光的光强,确定所述检测单元中的发光层的第二环境参数;根据所述第一环境参数和所述第二环境参数,确定所述检测单元中的发光层的环境参数。
在一些实施例中,根据所述第一环境参数和所述第二环境参数,确定所述检测单元中的发光层的环境参数包括:计算所述第一环境参数和所述第二环境参数的平均值,以所述平均值作为所述检测单元中的发光层的环境参数。
根据本公开实施例的再一方面,提供一种显示面板的制造方法,包括:在基板上形成一个或多个检测单元;其中,形成每个检测单元包括:在所述基板上形成第一电极层;在所述第一电极层远离所述基板的一侧形成荧光探针层和发光层;和形成第二电极层,其中,所述荧光探针层和所述发光层位于所述第一电极层和所述第二电极层之间。
在一些实施例中,所述一个或多个检测单元中的至少一个位于所述显示面板的非像素区域。
在一些实施例中,所述一个或多个检测单元中的每一个均位于所述非像素区域。
在一些实施例中,在形成所述荧光探针层后,在所述荧光探针层远离所述第一电极层的一侧形成所述发光层。
在一些实施例中,所述荧光探针层包括对下列参数之一敏感的荧光探针层:温度、湿度、氧浓度。
在一些实施例中,所述荧光探针层的厚度为1μm-5μm。
附图说明
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解 释本公开的原理。
参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:
图1是根据本公开一些实施例的显示面板的结构示意图;
图2是根据本公开另一些实施例的显示面板的结构示意图;
图3是根据本公开一些实施例的显示面板的检测方法的流程示意图;
图4是根据本公开一些实施例的显示面板的制造方法的流程示意图;
图5是根据本公开一些实施例的显示装置的结构示意图。
应当明白,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。此外,相同或类似的参考标号表示相同或类似的构件。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。对示例性实施例的描述仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。本公开可以以许多不同的形式实现,不限于这里所述的实施例。提供这些实施例是为了使本公开透彻且完整,并且向本领域技术人员充分表达本公开的范围。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、材料的组分和数值应被解释为仅仅是示例性的,而不是作为限制。
本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的部分。“包括”或者“包含”等类似的词语意指在该词前的要素涵盖在该词后列举的要素,并不排除也涵盖其他要素的可能。“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在本公开中,当描述到特定部件位于第一部件和第二部件之间时,在该特定部件与第一部件或第二部件之间可以存在居间部件,也可以不存在居间部件。当描述到特定部件连接其它部件时,该特定部件可以与所述其它部件直接连接而不具有居间部件,也可以不与所述其它部件直接连接而具有居间部件。
本公开使用的所有术语(包括技术术语或者科学术语)与本公开所属领域的普通技术人员理解的含义相同,除非另外特别定义。还应当理解,在诸如通用字典中定义的术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非这里明确地这样定义。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
显示缺陷的产生原因可能有多种。因此,确定显示缺陷的产生原因会比较困难。
发明人发现,发光层的发光效率容易受到发光层周围环境的影响。例如,高温或高湿的环境会导致发光层的发光效率大幅下降。发明人由此认识到,如果能够得到发光层的环境参数,就能为分析显示缺陷的产生原因提供参考。
因此,本公开实施例提供了如下技术方案。
图1是根据本公开一些实施例的显示面板的结构示意图。
如图1所示,显示面板包括位于基板101上的一个或多个检测单元102。这里,图1示意性地示出了一个检测单元102。在一些实施例中,多个检测单元102中的不同检测单元102可以由图1所示的像素界定层103间隔开。
基板101中可以形成有驱动电路及各种电路元件(图1中未示出),例如,薄膜晶体管(TFT)、电容器、电阻器等。这里,基板101也可以称为TFT基板。
每个检测单元102包括相对设置的第一电极层112和第二电极层122、发光层132、以及荧光探针层142。这里,第一电极层112和第二电极层122中的一个为阳极,另一个为阴极。
发光层132位于第一电极层112与第二电极层122之间。发光层132可以包括发光材料层。发光层132还可以包括电子传输层、空穴传输层、电子注入层和空穴注入层中的一种或多种。
荧光探针层142位于第一电极层112和发光层132之间。在一些实施例中,第一电极层112位于基板101和发光层132之间,如图1所示。即,第一电极层112比第二电极层122更靠近基板101。这样的方式可以避免形成荧光探针层142时对发光层132的性能造成不利影响。
在一些实施例中,荧光探针层142可以包括对下列参数之一敏感的荧光探针层:温度、湿度、氧浓度。对温度敏感的荧光探针层例如可以包括三芳基硼化合物等。对湿度敏感的荧光探针层例如可以包括下列中的一种或多种:Eu 3+的配合物、Tb 3+的配合物。对氧浓度敏感的荧光探针层例如可以包括下列中的一种或多种:钌络合物、铂络合物、钯络合物、铱络合物。
在一些实施例中,荧光探针层的厚度为1μm-5μm,例如,2μm-4μm,例如,3μm等。在这样的厚度范围内,荧光探针层既可以正常受激发光,也不会影响发光 层的形成。
上述实施例中,显示面板中设置有包括荧光探针层的检测单元,荧光探针层的发光情况可以反映发光层的环境参数,进而可以根据发光层的环境参数来确定发光层是否为显示面板显示缺陷的产生原因。
图2是根据本公开另一些实施例的显示面板的结构示意图。
如图2所示,显示面板包括位于基板101上的一个或多个检测单元102、以及像素单元104。不同的像素单元104之间、以及检测单元102与像素单元104之间可以由像素界定层103间隔开。
像素单元104包括相对设置的第一电极层114和第二电极层124、以及位于第一电极层114与第二电极层124之间的发光层134。这里,每个像素单元104可以视为一个子像素。三个像素单元104可以组成一个像素。
显示面板包括像素区域111和除像素区域111之外的非像素区域121。像素单元104位于像素区域111,一个或多个检测单元102中的至少一个位于非像素区域121。
在一些实现方式中,一部分检测单元102位于非像素区域121,另一部分检测单元102位于像素区域121。通常来说,一个像素区域111对应地设置有一个像素单元104。这里,由于显示面板还包括检测单元102,故某些像素区域111也可以对应地设置检测单元102。换言之,一部分检测单元102可以占据像素单元104的位置。
在另一些实现方式中,全部的检测单元102均位于非像素区域121。例如,检测单元102可以占据像素界定层103的位置,即,检测单元102可以设置在像素界定层103除用于像素单元104的开口之外的开口中。这样的方式可以避免像素单元104的正常发光受到影响。
由于检测单元102中的发光层132与第一电极层112之间具有荧光探针层142,因此,即便对检测单元102中的第一电极层112和第二电极层122施加电压,检测单元102也是不发光的。故位于非像素区域121的检测单元102不会对像素单元104的正常发光造成影响。
上述实施例中,至少一个检测单元102位于非像素区域121,以尽可能减小检测单元102对像素单元104的影响。
以上各实施例的显示面板包括检测单元102。因此,在显示面板出现显示缺陷的情况下,例如,某些部位亮度较暗,可以对显示面板中的荧光探针层142的发光情况进行检测,以确定发光层132是否正常。
以下结合图3详细介绍本公开一些实施例的显示面板的检测方法。
图3是根据本公开一些实施例的显示面板的检测方法的流程示意图。
在步骤302,利用激发光照射显示面板中的检测单元,以使得检测单元中的荧光探针层发光。
这里,激发光可以根据荧光探针层的类型进行选择,以使得荧光探针层被激发光照射后能够发光。
在步骤304,检测荧光探针层发出的光的参数。
在一些实施例中,光的参数可以包括光的光强。在另一些实施例中,光的参数可以包括光的波长。在又一些实施例中,光的参数可以包括光的光强和波长两者。例如,可以利用光谱仪来检测荧光探针层发出的光的光强或波长。
在步骤306,根据荧光探针层发出的光的参数,确定检测单元中的发光层的环境参数。
在检测单元中,荧光探针层发出的光的参数会受到发光层的环境参数的影响。因此,可以根据荧光探针层发出的光的参数来确定发光层的环境参数。
在一些实现方式中,可以根据荧光探针层发出的光的波长和光强中的一个,确定检测单元中的发光层的环境参数。
在另一些实现方式中,可以根据荧光探针层发出的光的波长和光强两者,确定检测单元中的发光层的环境参数。这样的方式确定的检测单元中的发光层的环境参数更为准确。例如,可以根据荧光探针层发出的光的波长,确定检测单元中的发光层的第一环境参数;根据荧光探针层发出的光的光强,确定检测单元中的发光层的第二环境参数;根据第一环境参数和第二环境参数,确定检测单元中的发光层的环境参数。例如,可以计算第一环境参数和第二环境参数的平均值,以计算得到的平均值作为检测单元中的发光层的环境参数。
在一些实施例中,发光层的环境参数可以包括下列之一:温度、湿度、氧浓度。例如,如果发光层的温度、湿度或氧浓度超过对应的阈值,则可以认为有可能是由于发光层导致的显示缺陷。
上述实施例中,可以根据检测单元中的荧光探针层发出的光的参数来确定发光层的环境参数,进而可以确定发光层是否为显示面板显示缺陷的产生原因。
在一些实施例中,可以根据荧光探针层发出的光的参数与该荧光探针层所处的环境的环境参数之间的对应关系,确定检测单元中的发光层的环境参数。
下面介绍一种确定上述对应关系的具体实现方式。
首先,在基板(例如玻璃基板)上沉积荧光探针层以制成样品。然后,将样品放置在密闭环境(例如手套箱)中。之后,调节密闭环境中的环境参数,例如将温度、湿度或氧浓度调节至某一数值。然后,测量样品发出的光的参数,例如光强或波长。之后,可以得到样品发出的光的参数与密闭环境当前的环境参数的对应关系。
根据上述方式可以得到样品发出的不同的光的参数与密闭环境的不同环境参数之间的对应关系,也即,可以得到荧光探针层发出的光的参数与该荧光探针层所处的环境的环境参数之间的对应关系。
下面介绍根据本公开一些实施例的显示面板的制造方法。
图4是根据本公开一些实施例的显示面板的制造方法的流程示意图。
如图4所示,可以按照步骤402-步骤406来形成每个检测单元,从而在基板上形成一个或多个检测单元。在一些实施例中,至少一个检测单元位于显示面板的非像素区域。
在步骤402,在基板上形成第一电极层。第一电极层例如是阳极。
在步骤404,在第一电极层远离基板的一侧形成荧光探针层和发光层。
例如,荧光探针层可以包括对下列参数之一敏感的荧光探针层:温度、湿度、氧浓度。例如,荧光探针层的厚度可以为1μm-5μm。
在一些实施例中,在第一电极层上形成荧光探针层后,在荧光探针层远离第一电极层的一侧形成发光层。这样的方式可以避免在形成荧光探针层时对发光层的性能造成不利影响。
在步骤406,形成第二电极层。第二电极层例如是阴极。
这里,荧光探针层和发光层位于第一电极层和第二电极层之间。例如,第二电极层可以位于发光层上,即,发光层位于第二电极层和荧光探针层之间;或者,第二电极层可以位于荧光探针层上,即,荧光探针层位于第二电极层和发光层之间。
上述实施例形成的显示面板中包括具有荧光探针层的检测单元,荧光探针层的发光情况可以反映发光层的环境参数,从而可以根据发光层的环境参数来确定发光层是否为显示面板显示缺陷的产生原因。
图5是根据本公开一些实施例的显示装置的结构示意图。
如图5所示,显示装置500可以包括上述任意一个实施例的显示面板501。显示装置500例如可以是移动终端、电视机、显示器、笔记本电脑、数码相框、导航仪、 电子纸等任何具有显示功能的产品或部件。
至此,已经详细描述了本公开的各实施例。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
虽然已经通过示例对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本公开的范围。本领域的技术人员应该理解,可在不脱离本公开的范围和精神的情况下,对以上实施例进行修改或者对部分技术特征进行等同替换。本公开的范围由所附权利要求来限定。

Claims (19)

  1. 一种显示面板,包括位于基板上的一个或多个检测单元,至少一个检测单元包括:
    相对设置的第一电极层和第二电极层;
    发光层,位于所述第一电极层与所述第二电极层之间;和
    荧光探针层,位于所述第一电极层和所述发光层之间。
  2. 根据权利要求1所述的显示面板,其中,所述一个或多个检测单元中的至少一个位于所述显示面板的非像素区域。
  3. 根据权利要求2所述的显示面板,其中,所述一个或多个检测单元中的每一个均位于所述非像素区域。
  4. 根据权利要求1所述的显示面板,其中,所述第一电极层位于所述基板和所述发光层之间。
  5. 根据权利要求1所述的显示面板,其中,所述荧光探针层包括对下列参数之一敏感的荧光探针层:温度、湿度、氧浓度。
  6. 根据权利要求1所述的显示面板,其中,所述荧光探针层的厚度为1μm-5μm。
  7. 一种显示装置,包括:如权利要求1-6任意一项所述的显示面板。
  8. 一种基于如权利要求1-6任意一项所述的显示面板的检测方法,包括:
    利用激发光照射所述显示面板中的检测单元,以使得所述检测单元中的荧光探针层发光;
    检测所述荧光探针层发出的光的参数;和
    根据所述荧光探针层发出的光的参数,确定所述检测单元中的发光层的环境参数。
  9. 根据权利要求8所述的方法,其中,根据所述荧光探针层发出的光的参数与所述荧光探针层所处的环境的环境参数之间的对应关系,确定所述检测单元中的发光层的环境参数。
  10. 根据权利要求8所述的方法,其中,所述环境参数包括下列之一:温度、湿度、氧浓度。
  11. 根据权利要求8所述的方法,其中,所述光的参数包括所述光的波长和光强中的至少一个。
  12. 根据权利要求11所述的方法,其中,根据所述荧光探针层发出的光的参数,确定所述检测单元中的发光层的环境参数包括:
    根据所述荧光探针层发出的光的波长,确定所述检测单元中的发光层的第一环境参数;
    根据所述荧光探针层发出的光的光强,确定所述检测单元中的发光层的第二环境参数;
    根据所述第一环境参数和所述第二环境参数,确定所述检测单元中的发光层的环境参数。
  13. 根据权利要求12所述的方法,其中,根据所述第一环境参数和所述第二环境参数,确定所述检测单元中的发光层的环境参数包括:
    计算所述第一环境参数和所述第二环境参数的平均值,以所述平均值作为所述检测单元中的发光层的环境参数。
  14. 一种显示面板的制造方法,包括在基板上形成一个或多个检测单元,其中,形成至少一个检测单元包括:
    在所述基板上形成第一电极层;
    在所述第一电极层远离所述基板的一侧形成荧光探针层和发光层;和
    形成第二电极层,其中,所述荧光探针层和所述发光层位于所述第一电极层和所述第二电极层之间。
  15. 根据权利要求14所述的方法,其中,所述一个或多个检测单元中的至少一个位于所述显示面板的非像素区域。
  16. 根据权利要求15所述的方法,其中,所述一个或多个检测单元中的每一个均位于所述非像素区域。
  17. 根据权利要求14所述的方法,其中,在形成所述荧光探针层后,在所述荧光探针层远离所述第一电极层的一侧形成所述发光层。
  18. 根据权利要求14所述的方法,其中,所述荧光探针层包括对下列参数之一敏感的荧光探针层:温度、湿度、氧浓度。
  19. 根据权利要求14所述的方法,其中,所述荧光探针层的厚度为1μm-5μm。
PCT/CN2019/070618 2018-04-23 2019-01-07 显示面板及其制造方法、检测方法和显示装置 WO2019205739A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/345,937 US10868085B2 (en) 2018-04-23 2019-01-07 Display panel with a fluorescent probe layer between a first electrode layer and light emitting layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810366342.3A CN108878473B (zh) 2018-04-23 2018-04-23 显示面板及其制造方法、检测方法和显示装置
CN201810366342.3 2018-04-23

Publications (1)

Publication Number Publication Date
WO2019205739A1 true WO2019205739A1 (zh) 2019-10-31

Family

ID=64327130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070618 WO2019205739A1 (zh) 2018-04-23 2019-01-07 显示面板及其制造方法、检测方法和显示装置

Country Status (3)

Country Link
US (1) US10868085B2 (zh)
CN (1) CN108878473B (zh)
WO (1) WO2019205739A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108878473B (zh) * 2018-04-23 2021-01-26 京东方科技集团股份有限公司 显示面板及其制造方法、检测方法和显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250254A (ja) * 2006-03-14 2007-09-27 Seiko Epson Corp 発光装置、及び発光装置の製造方法
CN102197299A (zh) * 2008-10-29 2011-09-21 松下电工株式会社 检测元件、检测装置及氧浓度测试装置
CN106024842A (zh) * 2016-07-26 2016-10-12 京东方科技集团股份有限公司 一种oled显示装置及其封装效果的检修方法
CN107369701A (zh) * 2017-07-19 2017-11-21 京东方科技集团股份有限公司 封装结构、显示面板、显示装置和用于检测封装结构的方法
CN108878473A (zh) * 2018-04-23 2018-11-23 京东方科技集团股份有限公司 显示面板及其制造方法、检测方法和显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005071746A1 (ja) * 2004-01-21 2005-08-04 Pioneer Corporation 半導体装置およびその製造方法
US7534615B2 (en) * 2004-12-03 2009-05-19 Cryovac, Inc. Process for detecting leaks in sealed packages
US9634285B2 (en) * 2012-12-05 2017-04-25 Koninklijke Philips N.V. Electrical device
CN107785406B (zh) * 2017-11-03 2020-04-14 京东方科技集团股份有限公司 一种有机电致发光显示面板及其驱动方法、显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007250254A (ja) * 2006-03-14 2007-09-27 Seiko Epson Corp 発光装置、及び発光装置の製造方法
CN102197299A (zh) * 2008-10-29 2011-09-21 松下电工株式会社 检测元件、检测装置及氧浓度测试装置
CN106024842A (zh) * 2016-07-26 2016-10-12 京东方科技集团股份有限公司 一种oled显示装置及其封装效果的检修方法
CN107369701A (zh) * 2017-07-19 2017-11-21 京东方科技集团股份有限公司 封装结构、显示面板、显示装置和用于检测封装结构的方法
CN108878473A (zh) * 2018-04-23 2018-11-23 京东方科技集团股份有限公司 显示面板及其制造方法、检测方法和显示装置

Also Published As

Publication number Publication date
US10868085B2 (en) 2020-12-15
CN108878473A (zh) 2018-11-23
CN108878473B (zh) 2021-01-26
US20200243619A1 (en) 2020-07-30

Similar Documents

Publication Publication Date Title
TW594617B (en) Organic EL display panel and method for making the same
US20070216426A1 (en) Method and structures for detecting moisture in electroluminescence display devices
TW201818387A (zh) 用於電致發光顯示器的電流補償方法與元件
US11238767B2 (en) Array substrate, display device and method for detecting the same
US20220352264A1 (en) Display panel motherboard and manufacturing method thereof
WO2019015322A1 (zh) 封装结构、显示面板、显示装置和用于检测封装结构的方法
WO2016026220A1 (zh) Oled显示装置、显示设备及oled显示装置的测试方法
WO2019205739A1 (zh) 显示面板及其制造方法、检测方法和显示装置
CN107731157A (zh) 一种显示面板、显示装置及其亮度调节方法
WO2010137452A1 (ja) 有機elパネル検査方法、有機elパネル検査装置及び有機elパネル
US11251172B2 (en) Display panel with sensors and manufacturing method thereof, and display device with sensors
KR100738089B1 (ko) 표면 전자방출 소자 어레이를 이용한 tft 검사 장치
JP2008021441A (ja) 検査装置と検査方法
JP2009211994A (ja) 有機el素子の検査方法
WO2021129632A1 (zh) 电子设备、其控制方法及计算机可读存储介质
US7746464B2 (en) Inspection device and method for inspecting coated transparent component
CN101853876A (zh) 一种主动矩阵有机发光二极体面板结构
JP2007080633A (ja) エレクトロルミネッセンス装置の製造方法と検査方法とエレクトロルミネッセンス装置
US20200193883A1 (en) Electronic device and manufacturing process thereof
JP2009063711A (ja) 有機el素子及び有機el表示装置の検査方法、並びに生産システム
CN114495838B (zh) 一种子像素的面积确定方法及其确定装置
JP5589472B2 (ja) 有機el基板検査装置及び検査方法
JP2006145971A (ja) ディスプレイ用回路基板の検査装置および検査方法
JP2010169552A (ja) 点灯検査装置および点灯検査方法
KR100842863B1 (ko) 평면표시장치의 화소상태 검사장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19791660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19791660

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/05/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19791660

Country of ref document: EP

Kind code of ref document: A1